code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCAmelCase ( unittest.TestCase ): def __init__( self , snake_case__ , snake_case__=3 , snake_case__=32 , snake_case__=3 , snake_case__=10 , snake_case__=[10, 20, 30, 40] , snake_case__=[1, 1, 2, 1] , snake_case__=True , snake_case__=True , snake_case__="relu" , snake_case__=3 , snake_case__=None , ): lowerCAmelCase : Any = parent lowerCAmelCase : Tuple = batch_size lowerCAmelCase : Optional[int] = image_size lowerCAmelCase : List[str] = num_channels lowerCAmelCase : Any = embeddings_size lowerCAmelCase : Optional[Any] = hidden_sizes lowerCAmelCase : List[str] = depths lowerCAmelCase : Union[str, Any] = is_training lowerCAmelCase : Any = use_labels lowerCAmelCase : Any = hidden_act lowerCAmelCase : str = num_labels lowerCAmelCase : Dict = scope lowerCAmelCase : Optional[int] = len(snake_case__ ) def lowercase ( self ): lowerCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase : Any = self.get_config() return config, pixel_values def lowercase ( self ): return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowercase ( self , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = FlaxRegNetModel(config=snake_case__ ) lowerCAmelCase : Dict = model(snake_case__ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowercase ( self , snake_case__ , snake_case__ ): lowerCAmelCase : int = self.num_labels lowerCAmelCase : List[str] = FlaxRegNetForImageClassification(config=snake_case__ ) lowerCAmelCase : Tuple = model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self ): lowerCAmelCase : int = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase : Tuple = config_and_inputs lowerCAmelCase : Dict = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : Dict = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () _lowerCamelCase : List[str] = False _lowerCamelCase : Optional[Any] = False _lowerCamelCase : Optional[Any] = False def lowercase ( self ): lowerCAmelCase : int = FlaxRegNetModelTester(self ) lowerCAmelCase : Optional[int] = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ ) def lowercase ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase ( self ): return def lowercase ( self ): lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) @unittest.skip(reason='RegNet does not use inputs_embeds' ) def lowercase ( self ): pass @unittest.skip(reason='RegNet does not support input and output embeddings' ) def lowercase ( self ): pass def lowercase ( self ): lowerCAmelCase , lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Dict = model_class(snake_case__ ) lowerCAmelCase : List[Any] = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase : List[str] = [*signature.parameters.keys()] lowerCAmelCase : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case__ ) def lowercase ( self ): def check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : List[str] = model_class(snake_case__ ) lowerCAmelCase : Optional[Any] = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) lowerCAmelCase : str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase : Tuple = self.model_tester.num_stages self.assertEqual(len(snake_case__ ) , expected_num_stages + 1 ) lowerCAmelCase , lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Tuple = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase : Optional[int] = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) def lowercase ( self ): lowerCAmelCase , lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCAmelCase : List[str] = self._prepare_for_class(snake_case__ , snake_case__ ) lowerCAmelCase : Tuple = model_class(snake_case__ ) @jax.jit def model_jitted(snake_case__ , **snake_case__ ): return model(pixel_values=snake_case__ , **snake_case__ ) with self.subTest('JIT Enabled' ): lowerCAmelCase : Optional[int] = model_jitted(**snake_case__ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): lowerCAmelCase : Union[str, Any] = model_jitted(**snake_case__ ).to_tuple() self.assertEqual(len(snake_case__ ) , len(snake_case__ ) ) for jitted_output, output in zip(snake_case__ , snake_case__ ): self.assertEqual(jitted_output.shape , output.shape ) def __UpperCamelCase ( ) -> List[str]: """simple docstring""" lowerCAmelCase : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_flax class lowerCAmelCase ( unittest.TestCase ): @cached_property def lowercase ( self ): return AutoImageProcessor.from_pretrained('facebook/regnet-y-040' ) if is_vision_available() else None @slow def lowercase ( self ): lowerCAmelCase : Optional[Any] = FlaxRegNetForImageClassification.from_pretrained('facebook/regnet-y-040' ) lowerCAmelCase : Optional[Any] = self.default_image_processor lowerCAmelCase : int = prepare_img() lowerCAmelCase : Any = image_processor(images=snake_case__ , return_tensors='np' ) lowerCAmelCase : Dict = model(**snake_case__ ) # verify the logits lowerCAmelCase : Union[str, Any] = (1, 1000) self.assertEqual(outputs.logits.shape , snake_case__ ) lowerCAmelCase : List[str] = jnp.array([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , snake_case__ , atol=1e-4 ) )
646
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Any = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { 'xlm-roberta-base': 'https://huggingface.co/xlm-roberta-base/resolve/main/config.json', 'xlm-roberta-large': 'https://huggingface.co/xlm-roberta-large/resolve/main/config.json', 'xlm-roberta-large-finetuned-conll02-dutch': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll02-spanish': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-english': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-german': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json' ), } class lowerCAmelCase ( a ): _lowerCamelCase : List[str] = """xlm-roberta""" def __init__( self , snake_case__=3_0522 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=1e-1_2 , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__="absolute" , snake_case__=True , snake_case__=None , **snake_case__ , ): super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) lowerCAmelCase : Optional[Any] = vocab_size lowerCAmelCase : Optional[Any] = hidden_size lowerCAmelCase : Optional[Any] = num_hidden_layers lowerCAmelCase : Any = num_attention_heads lowerCAmelCase : Optional[int] = hidden_act lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : Dict = hidden_dropout_prob lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob lowerCAmelCase : Optional[Any] = max_position_embeddings lowerCAmelCase : Optional[int] = type_vocab_size lowerCAmelCase : int = initializer_range lowerCAmelCase : List[Any] = layer_norm_eps lowerCAmelCase : Union[str, Any] = position_embedding_type lowerCAmelCase : Union[str, Any] = use_cache lowerCAmelCase : List[str] = classifier_dropout class lowerCAmelCase ( a ): @property def lowercase ( self ): if self.task == "multiple-choice": lowerCAmelCase : str = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase : Optional[int] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
646
1
'''simple docstring''' from scipy.stats import pearsonr import datasets _lowerCAmelCase : List[str] = '\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n' _lowerCAmelCase : str = '\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n' _lowerCAmelCase : List[Any] = '\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase ( datasets.Metric ): def lowercase ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('float' ), 'references': datasets.Value('float' ), } ) , reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'] , ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__=False ): if return_pvalue: lowerCAmelCase : str = pearsonr(snake_case__ , snake_case__ ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(snake_case__ , snake_case__ )[0] )}
646
'''simple docstring''' import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer _lowerCAmelCase : List[Any] = logging.getLogger(__name__) def __UpperCamelCase ( ) -> Any: """simple docstring""" lowerCAmelCase : str = argparse.ArgumentParser( description='Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.' ) parser.add_argument( '--dataset_name' , type=_A , default='wikitext' , help='Name of the training. Explore datasets at: hf.co/datasets.' , ) parser.add_argument( '--dataset_config' , type=_A , default='wikitext-103-raw-v1' , help='Configuration name of the dataset.' ) parser.add_argument( '--tokenizer_name_or_path' , type=_A , default='sayakpaul/unigram-tokenizer-wikitext' , help='Tokenizer identifier. Can be a local filepath or a Hub identifier.' , ) parser.add_argument( '--shard_size' , type=_A , default=10_00 , help='Number of entries to go in a single shard.' , ) parser.add_argument('--split' , type=_A , default='train' , choices=['train', 'test', 'validation'] ) parser.add_argument( '--limit' , default=_A , type=_A , help='Limit the number of shards (used for debugging).' , ) parser.add_argument( '--max_length' , type=_A , default=5_12 , help='Maximum sequence length. For training on TPUs, it helps to have a maximum' ' sequence length that is a multiple of 8.' , ) parser.add_argument( '--output_dir' , default='tf-tpu' , type=_A , help='Output directory where the TFRecord shards will be saved. If the' ' path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord' ' shards will be directly saved to a Google Cloud Storage bucket.' , ) lowerCAmelCase : Any = parser.parse_args() return args def __UpperCamelCase ( _A : Optional[int] ) -> int: """simple docstring""" def fn(_A : Tuple ): return tokenizer(examples['text'] ) return fn def __UpperCamelCase ( _A : int ) -> int: """simple docstring""" lowerCAmelCase : Tuple = [] for i in range(len(tokenized_data['input_ids'] ) ): lowerCAmelCase : Optional[Any] = { 'input_ids': tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data['input_ids'][i] ) ), 'attention_mask': tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data['attention_mask'][i] ) ), } lowerCAmelCase : Any = tf.train.Features(feature=_A ) lowerCAmelCase : List[str] = tf.train.Example(features=_A ) lowerCAmelCase : Tuple = example.SerializeToString() records.append(_A ) return records def __UpperCamelCase ( _A : int ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase : Union[str, Any] = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: lowerCAmelCase : Optional[Any] = min(len(_A ) , args.limit ) lowerCAmelCase : Dict = dataset.select(range(_A ) ) print(F"Limiting the dataset to {args.limit} entries." ) lowerCAmelCase : str = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) lowerCAmelCase : Any = os.path.join(args.output_dir , args.split ) if not os.path.exists(_A ): os.makedirs(_A ) else: lowerCAmelCase : List[Any] = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. lowerCAmelCase : Any = tokenize_function(_A ) lowerCAmelCase : Optional[int] = dataset.map(_A , batched=_A , num_proc=4 , remove_columns=['text'] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(_A : str ): # Concatenate all texts. lowerCAmelCase : Optional[int] = {k: sum(examples[k] , [] ) for k in examples.keys()} lowerCAmelCase : str = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 lowerCAmelCase : List[Any] = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. lowerCAmelCase : str = { k: [t[i : i + args.max_length] for i in range(0 , _A , args.max_length )] for k, t in concatenated_examples.items() } return result lowerCAmelCase : List[Any] = dataset_tokenized.map(_A , batched=_A , batch_size=10_00 , num_proc=4 ) lowerCAmelCase : Union[str, Any] = 0 lowerCAmelCase : Tuple = 0 for shard in range(0 , len(_A ) , args.shard_size ): lowerCAmelCase : Optional[Any] = grouped_dataset[shard : shard + args.shard_size] lowerCAmelCase : List[str] = len(dataset_snapshot['input_ids'] ) lowerCAmelCase : Union[str, Any] = os.path.join(_A , F"dataset-{shard_count}-{records_containing}.tfrecord" ) lowerCAmelCase : List[Any] = get_serialized_examples(_A ) with tf.io.TFRecordWriter(_A ) as out_file: for i in range(len(_A ) ): lowerCAmelCase : Union[str, Any] = serialized_examples[i] out_file.write(_A ) print('Wrote file {} containing {} records'.format(_A , _A ) ) shard_count += 1 total_records += records_containing with open(F"split-{args.split}-records-count.txt" , 'w' ) as f: print(F"Total {args.split} records: {total_records}" , file=_A ) if __name__ == "__main__": _lowerCAmelCase : List[Any] = parse_args() main(args)
646
1
'''simple docstring''' import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def __UpperCamelCase ( _A : Union[str, Any] , _A : Optional[int] ) -> int: """simple docstring""" assert isinstance(_A , _A ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def __UpperCamelCase ( _A : Dict , _A : int , _A : Any ) -> str: """simple docstring""" lowerCAmelCase : str = tmp_path / 'cache' lowerCAmelCase : str = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCAmelCase : List[str] = JsonDatasetReader(_A , cache_dir=_A , keep_in_memory=_A ).read() _check_json_dataset(_A , _A ) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def __UpperCamelCase ( _A : int , _A : List[Any] , _A : Optional[Any] ) -> str: """simple docstring""" lowerCAmelCase : int = tmp_path / 'cache' lowerCAmelCase : Tuple = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} lowerCAmelCase : Union[str, Any] = features.copy() if features else default_expected_features lowerCAmelCase : Tuple = ( Features({feature: Value(_A ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCAmelCase : List[Any] = JsonDatasetReader(_A , features=_A , cache_dir=_A ).read() _check_json_dataset(_A , _A ) @pytest.mark.parametrize( 'features' , [ None, {'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'}, ] , ) def __UpperCamelCase ( _A : Any , _A : Dict , _A : Optional[Any] ) -> Dict: """simple docstring""" lowerCAmelCase : str = tmp_path / 'cache' lowerCAmelCase : Optional[int] = {'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'} lowerCAmelCase : Any = features.copy() if features else default_expected_features lowerCAmelCase : List[Any] = ( Features({feature: Value(_A ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCAmelCase : Optional[int] = JsonDatasetReader(_A , features=_A , cache_dir=_A ).read() assert isinstance(_A , _A ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def __UpperCamelCase ( _A : Dict , _A : Union[str, Any] ) -> Dict: """simple docstring""" lowerCAmelCase : int = {'col_2': 'int64', 'col_3': 'float64', 'col_1': 'string'} lowerCAmelCase : Optional[int] = features.copy() lowerCAmelCase : int = ( Features({feature: Value(_A ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCAmelCase : Any = tmp_path / 'cache' lowerCAmelCase : Dict = JsonDatasetReader(_A , features=_A , cache_dir=_A ).read() assert isinstance(_A , _A ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def __UpperCamelCase ( _A : Optional[int] , _A : int , _A : Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowerCAmelCase : Optional[Any] = tmp_path / 'cache' lowerCAmelCase : Dict = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} lowerCAmelCase : int = JsonDatasetReader(_A , cache_dir=_A , split=_A ).read() _check_json_dataset(_A , _A ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type' , [str, list] ) def __UpperCamelCase ( _A : Any , _A : str , _A : Dict ) -> List[str]: """simple docstring""" if issubclass(_A , _A ): lowerCAmelCase : Optional[int] = jsonl_path elif issubclass(_A , _A ): lowerCAmelCase : Optional[Any] = [jsonl_path] lowerCAmelCase : Any = tmp_path / 'cache' lowerCAmelCase : Union[str, Any] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} lowerCAmelCase : Dict = JsonDatasetReader(_A , cache_dir=_A ).read() _check_json_dataset(_A , _A ) def __UpperCamelCase ( _A : int , _A : int , _A : Optional[int]=("train",) ) -> int: """simple docstring""" assert isinstance(_A , _A ) for split in splits: lowerCAmelCase : str = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def __UpperCamelCase ( _A : Optional[Any] , _A : int , _A : List[str] ) -> List[Any]: """simple docstring""" lowerCAmelCase : Optional[int] = tmp_path / 'cache' lowerCAmelCase : List[Any] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCAmelCase : Optional[Any] = JsonDatasetReader({'train': jsonl_path} , cache_dir=_A , keep_in_memory=_A ).read() _check_json_datasetdict(_A , _A ) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def __UpperCamelCase ( _A : Optional[Any] , _A : Any , _A : Any ) -> Tuple: """simple docstring""" lowerCAmelCase : List[Any] = tmp_path / 'cache' lowerCAmelCase : Union[str, Any] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} lowerCAmelCase : Dict = features.copy() if features else default_expected_features lowerCAmelCase : Dict = ( Features({feature: Value(_A ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCAmelCase : Dict = JsonDatasetReader({'train': jsonl_path} , features=_A , cache_dir=_A ).read() _check_json_datasetdict(_A , _A ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def __UpperCamelCase ( _A : Any , _A : Optional[Any] , _A : Union[str, Any] ) -> str: """simple docstring""" if split: lowerCAmelCase : Optional[Any] = {split: jsonl_path} else: lowerCAmelCase : Any = 'train' lowerCAmelCase : Tuple = {'train': jsonl_path, 'test': jsonl_path} lowerCAmelCase : str = tmp_path / 'cache' lowerCAmelCase : Optional[Any] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} lowerCAmelCase : str = JsonDatasetReader(_A , cache_dir=_A ).read() _check_json_datasetdict(_A , _A , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def __UpperCamelCase ( _A : Union[str, Any] ) -> Optional[int]: """simple docstring""" return json.load(_A ) def __UpperCamelCase ( _A : Optional[int] ) -> List[str]: """simple docstring""" return [json.loads(_A ) for line in buffer] class lowerCAmelCase : @pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)] ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ ): with io.BytesIO() as buffer: JsonDatasetWriter(snake_case__ , snake_case__ , lines=snake_case__ ).write() buffer.seek(0 ) lowerCAmelCase : Optional[Any] = load_json_function(snake_case__ ) assert isinstance(snake_case__ , snake_case__ ) assert isinstance(exported_content[0] , snake_case__ ) assert len(snake_case__ ) == 10 @pytest.mark.parametrize( 'orient, container, keys, len_at' , [ ('records', list, {'tokens', 'labels', 'answers', 'id'}, None), ('split', dict, {'columns', 'data'}, 'data'), ('index', dict, set('0123456789' ), None), ('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'), ('values', list, None, None), ('table', dict, {'schema', 'data'}, 'data'), ] , ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): with io.BytesIO() as buffer: JsonDatasetWriter(snake_case__ , snake_case__ , lines=snake_case__ , orient=snake_case__ ).write() buffer.seek(0 ) lowerCAmelCase : List[str] = load_json(snake_case__ ) assert isinstance(snake_case__ , snake_case__ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(snake_case__ , 'keys' ) and not hasattr(exported_content[0] , 'keys' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(snake_case__ ) == 10 @pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)] ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ ): with io.BytesIO() as buffer: JsonDatasetWriter(snake_case__ , snake_case__ , lines=snake_case__ , num_proc=2 ).write() buffer.seek(0 ) lowerCAmelCase : Any = load_json_function(snake_case__ ) assert isinstance(snake_case__ , snake_case__ ) assert isinstance(exported_content[0] , snake_case__ ) assert len(snake_case__ ) == 10 @pytest.mark.parametrize( 'orient, container, keys, len_at' , [ ('records', list, {'tokens', 'labels', 'answers', 'id'}, None), ('split', dict, {'columns', 'data'}, 'data'), ('index', dict, set('0123456789' ), None), ('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'), ('values', list, None, None), ('table', dict, {'schema', 'data'}, 'data'), ] , ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): with io.BytesIO() as buffer: JsonDatasetWriter(snake_case__ , snake_case__ , lines=snake_case__ , orient=snake_case__ , num_proc=2 ).write() buffer.seek(0 ) lowerCAmelCase : List[Any] = load_json(snake_case__ ) assert isinstance(snake_case__ , snake_case__ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(snake_case__ , 'keys' ) and not hasattr(exported_content[0] , 'keys' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(snake_case__ ) == 10 def lowercase ( self , snake_case__ ): with pytest.raises(snake_case__ ): with io.BytesIO() as buffer: JsonDatasetWriter(snake_case__ , snake_case__ , num_proc=0 ) @pytest.mark.parametrize('compression, extension' , [('gzip', 'gz'), ('bz2', 'bz2'), ('xz', 'xz')] ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : int = tmp_path_factory.mktemp('data' ) / f"test.json.{extension}" lowerCAmelCase : Optional[int] = str(shared_datadir / f"test_file.json.{extension}" ) JsonDatasetWriter(snake_case__ , snake_case__ , compression=snake_case__ ).write() with fsspec.open(snake_case__ , 'rb' , compression='infer' ) as f: lowerCAmelCase : Union[str, Any] = f.read() with fsspec.open(snake_case__ , 'rb' , compression='infer' ) as f: lowerCAmelCase : Optional[int] = f.read() assert exported_content == original_content
646
'''simple docstring''' import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() _lowerCAmelCase : List[str] = logging.get_logger('transformers.models.speecht5') def __UpperCamelCase ( _A : Any , _A : Dict , _A : Any ) -> Union[str, Any]: """simple docstring""" hf_model.apply_weight_norm() lowerCAmelCase : int = checkpoint['input_conv.weight_g'] lowerCAmelCase : Optional[int] = checkpoint['input_conv.weight_v'] lowerCAmelCase : Dict = checkpoint['input_conv.bias'] for i in range(len(config.upsample_rates ) ): lowerCAmelCase : Optional[Any] = checkpoint[F"upsamples.{i}.1.weight_g"] lowerCAmelCase : str = checkpoint[F"upsamples.{i}.1.weight_v"] lowerCAmelCase : str = checkpoint[F"upsamples.{i}.1.bias"] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): lowerCAmelCase : int = checkpoint[F"blocks.{i}.convs1.{j}.1.weight_g"] lowerCAmelCase : str = checkpoint[F"blocks.{i}.convs1.{j}.1.weight_v"] lowerCAmelCase : int = checkpoint[F"blocks.{i}.convs1.{j}.1.bias"] lowerCAmelCase : Optional[Any] = checkpoint[F"blocks.{i}.convs2.{j}.1.weight_g"] lowerCAmelCase : Tuple = checkpoint[F"blocks.{i}.convs2.{j}.1.weight_v"] lowerCAmelCase : Tuple = checkpoint[F"blocks.{i}.convs2.{j}.1.bias"] lowerCAmelCase : List[Any] = checkpoint['output_conv.1.weight_g'] lowerCAmelCase : List[str] = checkpoint['output_conv.1.weight_v'] lowerCAmelCase : Optional[Any] = checkpoint['output_conv.1.bias'] hf_model.remove_weight_norm() @torch.no_grad() def __UpperCamelCase ( _A : Dict , _A : Union[str, Any] , _A : List[Any] , _A : Any=None , _A : Any=None , ) -> Dict: """simple docstring""" if config_path is not None: lowerCAmelCase : Dict = SpeechTaHifiGanConfig.from_pretrained(_A ) else: lowerCAmelCase : Union[str, Any] = SpeechTaHifiGanConfig() lowerCAmelCase : List[Any] = SpeechTaHifiGan(_A ) lowerCAmelCase : List[str] = torch.load(_A ) load_weights(orig_checkpoint['model']['generator'] , _A , _A ) lowerCAmelCase : Tuple = np.load(_A ) lowerCAmelCase : List[Any] = stats[0].reshape(-1 ) lowerCAmelCase : int = stats[1].reshape(-1 ) lowerCAmelCase : Union[str, Any] = torch.from_numpy(_A ).float() lowerCAmelCase : int = torch.from_numpy(_A ).float() model.save_pretrained(_A ) if repo_id: print('Pushing to the hub...' ) model.push_to_hub(_A ) if __name__ == "__main__": _lowerCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--stats_path', required=True, default=None, type=str, help='Path to stats.npy file') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) _lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
646
1
'''simple docstring''' from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize('repo_id' , ['canonical_dataset_name', 'org-name/dataset-name'] ) @pytest.mark.parametrize('path' , ['filename.csv', 'filename with blanks.csv'] ) @pytest.mark.parametrize('revision' , [None, 'v2'] ) def __UpperCamelCase ( _A : List[str] , _A : Any , _A : Optional[int] ) -> int: """simple docstring""" lowerCAmelCase : Dict = hf_hub_url(repo_id=_A , path=_A , revision=_A ) assert url == F"https://huggingface.co/datasets/{repo_id}/resolve/{revision or 'main'}/{quote(_A )}"
646
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets _lowerCAmelCase : Dict = '\\n@inproceedings{popovic-2015-chrf,\n title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",\n month = sep,\n year = "2015",\n address = "Lisbon, Portugal",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W15-3049",\n doi = "10.18653/v1/W15-3049",\n pages = "392--395",\n}\n@inproceedings{popovic-2017-chrf,\n title = "chr{F}++: words helping character n-grams",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Second Conference on Machine Translation",\n month = sep,\n year = "2017",\n address = "Copenhagen, Denmark",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W17-4770",\n doi = "10.18653/v1/W17-4770",\n pages = "612--618",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' _lowerCAmelCase : Optional[Any] = '\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n' _lowerCAmelCase : List[Any] = '\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n \'score\' (float): The chrF (chrF++) score,\n \'char_order\' (int): The character n-gram order,\n \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n \'beta\' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase ( datasets.Metric ): def lowercase ( self ): if version.parse(scb.__version__ ) < version.parse('1.4.12' ): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/mjpost/sacreBLEU#chrf--chrf' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/mjpost/sacreBLEU#chrf--chrf'] , reference_urls=[ 'https://github.com/m-popovic/chrF', ] , ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ = CHRF.CHAR_ORDER , snake_case__ = CHRF.WORD_ORDER , snake_case__ = CHRF.BETA , snake_case__ = False , snake_case__ = False , snake_case__ = False , ): lowerCAmelCase : List[str] = len(references[0] ) if any(len(snake_case__ ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) lowerCAmelCase : List[str] = [[refs[i] for refs in references] for i in range(snake_case__ )] lowerCAmelCase : Union[str, Any] = CHRF(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase : Dict = sb_chrf.corpus_score(snake_case__ , snake_case__ ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
646
1
'''simple docstring''' from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class lowerCAmelCase : _lowerCamelCase : int _lowerCamelCase : TreeNode | None = None _lowerCamelCase : TreeNode | None = None _lowerCAmelCase : List[Any] = namedtuple('CoinsDistribResult', 'moves excess') def __UpperCamelCase ( _A : TreeNode | None ) -> int: """simple docstring""" if root is None: return 0 # Validation def count_nodes(_A : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(_A : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(_A ) != count_coins(_A ): raise ValueError('The nodes number should be same as the number of coins' ) # Main calculation def get_distrib(_A : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) lowerCAmelCase , lowerCAmelCase : Union[str, Any] = get_distrib(node.left ) lowerCAmelCase , lowerCAmelCase : Optional[Any] = get_distrib(node.right ) lowerCAmelCase : Tuple = 1 - left_distrib_excess lowerCAmelCase : Optional[int] = 1 - right_distrib_excess lowerCAmelCase : Tuple = ( left_distrib_moves + right_distrib_moves + abs(_A ) + abs(_A ) ) lowerCAmelCase : Dict = node.data - coins_to_left - coins_to_right return CoinsDistribResult(_A , _A ) return get_distrib(_A )[0] if __name__ == "__main__": import doctest doctest.testmod()
646
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : str = logging.get_logger(__name__) _lowerCAmelCase : Tuple = { 's-JoL/Open-Llama-V1': 'https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json', } class lowerCAmelCase ( a ): _lowerCamelCase : Union[str, Any] = """open-llama""" def __init__( self , snake_case__=10_0000 , snake_case__=4096 , snake_case__=1_1008 , snake_case__=32 , snake_case__=32 , snake_case__="silu" , snake_case__=2048 , snake_case__=0.0_2 , snake_case__=1e-6 , snake_case__=True , snake_case__=0 , snake_case__=1 , snake_case__=2 , snake_case__=False , snake_case__=True , snake_case__=0.1 , snake_case__=0.1 , snake_case__=True , snake_case__=True , snake_case__=None , **snake_case__ , ): lowerCAmelCase : Tuple = vocab_size lowerCAmelCase : Optional[Any] = max_position_embeddings lowerCAmelCase : List[Any] = hidden_size lowerCAmelCase : List[Any] = intermediate_size lowerCAmelCase : Tuple = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : str = rms_norm_eps lowerCAmelCase : Optional[int] = use_cache lowerCAmelCase : Dict = kwargs.pop( 'use_memorry_efficient_attention' , snake_case__ ) lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : Optional[Any] = attention_dropout_prob lowerCAmelCase : Union[str, Any] = use_stable_embedding lowerCAmelCase : Tuple = shared_input_output_embedding lowerCAmelCase : Tuple = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , tie_word_embeddings=snake_case__ , **snake_case__ , ) def lowercase ( self ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , snake_case__ ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' f"got {self.rope_scaling}" ) lowerCAmelCase : List[Any] = self.rope_scaling.get('type' , snake_case__ ) lowerCAmelCase : List[str] = self.rope_scaling.get('factor' , snake_case__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(snake_case__ , snake_case__ ) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
646
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) _lowerCAmelCase : Any = {'vocab_file': 'sentencepiece.bpe.model'} _lowerCAmelCase : List[str] = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, } _lowerCAmelCase : Optional[int] = { 'moussaKam/mbarthez': 1024, 'moussaKam/barthez': 1024, 'moussaKam/barthez-orangesum-title': 1024, } _lowerCAmelCase : List[Any] = '▁' class lowerCAmelCase ( a ): _lowerCamelCase : List[Any] = VOCAB_FILES_NAMES _lowerCamelCase : str = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase : Union[str, Any] = ["""input_ids""", """attention_mask"""] def __init__( self , snake_case__ , snake_case__="<s>" , snake_case__="</s>" , snake_case__="</s>" , snake_case__="<s>" , snake_case__="<unk>" , snake_case__="<pad>" , snake_case__="<mask>" , snake_case__ = None , **snake_case__ , ): # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase : Optional[Any] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else mask_token lowerCAmelCase : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , sp_model_kwargs=self.sp_model_kwargs , **snake_case__ , ) lowerCAmelCase : Dict = vocab_file lowerCAmelCase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(snake_case__ ) ) lowerCAmelCase : Optional[Any] = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} lowerCAmelCase : List[str] = len(self.sp_model ) - 1 lowerCAmelCase : Tuple = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def lowercase ( self , snake_case__ , snake_case__ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase : int = [self.cls_token_id] lowerCAmelCase : Optional[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase ( self , snake_case__ , snake_case__ = None , snake_case__ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) + [1] return [1] + ([0] * len(snake_case__ )) + [1, 1] + ([0] * len(snake_case__ )) + [1] def lowercase ( self , snake_case__ , snake_case__ = None ): lowerCAmelCase : Optional[int] = [self.sep_token_id] lowerCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowercase ( self ): return len(self.sp_model ) def lowercase ( self ): lowerCAmelCase : int = {self.convert_ids_to_tokens(snake_case__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowercase ( self , snake_case__ ): return self.sp_model.encode(snake_case__ , out_type=snake_case__ ) def lowercase ( self , snake_case__ ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCAmelCase : Dict = self.sp_model.PieceToId(snake_case__ ) return spm_id if spm_id else self.unk_token_id def lowercase ( self , snake_case__ ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(snake_case__ ) def lowercase ( self , snake_case__ ): lowerCAmelCase : Optional[Any] = [] lowerCAmelCase : Optional[int] = '' lowerCAmelCase : str = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(snake_case__ ) + token lowerCAmelCase : Optional[Any] = True lowerCAmelCase : List[Any] = [] else: current_sub_tokens.append(snake_case__ ) lowerCAmelCase : str = False out_string += self.sp_model.decode(snake_case__ ) return out_string.strip() def __getstate__( self ): lowerCAmelCase : Union[str, Any] = self.__dict__.copy() lowerCAmelCase : Union[str, Any] = None return state def __setstate__( self , snake_case__ ): lowerCAmelCase : Any = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowerCAmelCase : Tuple = {} lowerCAmelCase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase ( self , snake_case__ , snake_case__ = None ): if not os.path.isdir(snake_case__ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return lowerCAmelCase : List[str] = os.path.join( snake_case__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case__ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case__ , 'wb' ) as fi: lowerCAmelCase : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(snake_case__ ) return (out_vocab_file,)
646
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) _lowerCAmelCase : Dict = { 'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class lowerCAmelCase ( a ): _lowerCamelCase : Any = """deformable_detr""" _lowerCamelCase : List[str] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , snake_case__=True , snake_case__=None , snake_case__=3 , snake_case__=300 , snake_case__=1024 , snake_case__=6 , snake_case__=1024 , snake_case__=8 , snake_case__=6 , snake_case__=1024 , snake_case__=8 , snake_case__=0.0 , snake_case__=True , snake_case__="relu" , snake_case__=256 , snake_case__=0.1 , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.0_2 , snake_case__=1.0 , snake_case__=True , snake_case__=False , snake_case__="sine" , snake_case__="resnet50" , snake_case__=True , snake_case__=False , snake_case__=4 , snake_case__=4 , snake_case__=4 , snake_case__=False , snake_case__=300 , snake_case__=False , snake_case__=1 , snake_case__=5 , snake_case__=2 , snake_case__=1 , snake_case__=1 , snake_case__=5 , snake_case__=2 , snake_case__=0.1 , snake_case__=0.2_5 , snake_case__=False , **snake_case__ , ): if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) lowerCAmelCase : Optional[int] = CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : List[str] = backbone_config.get('model_type' ) lowerCAmelCase : str = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase : Optional[Any] = config_class.from_dict(snake_case__ ) lowerCAmelCase : Union[str, Any] = use_timm_backbone lowerCAmelCase : List[Any] = backbone_config lowerCAmelCase : Any = num_channels lowerCAmelCase : Tuple = num_queries lowerCAmelCase : Dict = max_position_embeddings lowerCAmelCase : int = d_model lowerCAmelCase : List[str] = encoder_ffn_dim lowerCAmelCase : List[str] = encoder_layers lowerCAmelCase : int = encoder_attention_heads lowerCAmelCase : str = decoder_ffn_dim lowerCAmelCase : str = decoder_layers lowerCAmelCase : Dict = decoder_attention_heads lowerCAmelCase : str = dropout lowerCAmelCase : List[str] = attention_dropout lowerCAmelCase : Union[str, Any] = activation_dropout lowerCAmelCase : str = activation_function lowerCAmelCase : Any = init_std lowerCAmelCase : Any = init_xavier_std lowerCAmelCase : Dict = encoder_layerdrop lowerCAmelCase : int = auxiliary_loss lowerCAmelCase : Optional[Any] = position_embedding_type lowerCAmelCase : List[str] = backbone lowerCAmelCase : int = use_pretrained_backbone lowerCAmelCase : int = dilation # deformable attributes lowerCAmelCase : List[str] = num_feature_levels lowerCAmelCase : List[str] = encoder_n_points lowerCAmelCase : Union[str, Any] = decoder_n_points lowerCAmelCase : Tuple = two_stage lowerCAmelCase : Dict = two_stage_num_proposals lowerCAmelCase : Union[str, Any] = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.' ) # Hungarian matcher lowerCAmelCase : Union[str, Any] = class_cost lowerCAmelCase : Dict = bbox_cost lowerCAmelCase : List[Any] = giou_cost # Loss coefficients lowerCAmelCase : Dict = mask_loss_coefficient lowerCAmelCase : Any = dice_loss_coefficient lowerCAmelCase : str = bbox_loss_coefficient lowerCAmelCase : Tuple = giou_loss_coefficient lowerCAmelCase : List[str] = eos_coefficient lowerCAmelCase : Any = focal_alpha lowerCAmelCase : Dict = disable_custom_kernels super().__init__(is_encoder_decoder=snake_case__ , **snake_case__ ) @property def lowercase ( self ): return self.encoder_attention_heads @property def lowercase ( self ): return self.d_model def lowercase ( self ): lowerCAmelCase : Union[str, Any] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: lowerCAmelCase : List[Any] = self.backbone_config.to_dict() lowerCAmelCase : str = self.__class__.model_type return output
646
1
'''simple docstring''' import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def __UpperCamelCase ( _A : str , _A : str , _A : List[Any] , _A : List[Any] , _A : Any ) -> Optional[int]: """simple docstring""" lowerCAmelCase : Dict = TapasConfig.from_json_file(_A ) # set absolute/relative position embeddings parameter lowerCAmelCase : Union[str, Any] = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": lowerCAmelCase : Any = TapasForQuestionAnswering(config=_A ) elif task == "WTQ": # run_task_main.py hparams lowerCAmelCase : Optional[Any] = 4 lowerCAmelCase : List[Any] = True # hparam_utils.py hparams lowerCAmelCase : Dict = 0.66_46_94 lowerCAmelCase : List[str] = 0.20_79_51 lowerCAmelCase : List[Any] = 0.12_11_94 lowerCAmelCase : Optional[int] = True lowerCAmelCase : List[str] = True lowerCAmelCase : int = False lowerCAmelCase : Union[str, Any] = 0.0_35_25_13 lowerCAmelCase : Union[str, Any] = TapasForQuestionAnswering(config=_A ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams lowerCAmelCase : Optional[Any] = 4 lowerCAmelCase : Union[str, Any] = False # hparam_utils.py hparams lowerCAmelCase : List[str] = 36.45_19 lowerCAmelCase : List[Any] = 0.90_34_21 lowerCAmelCase : Optional[Any] = 2_22.0_88 lowerCAmelCase : Dict = True lowerCAmelCase : List[str] = True lowerCAmelCase : Union[str, Any] = True lowerCAmelCase : int = 0.76_31_41 lowerCAmelCase : Tuple = TapasForQuestionAnswering(config=_A ) elif task == "TABFACT": lowerCAmelCase : Optional[int] = TapasForSequenceClassification(config=_A ) elif task == "MLM": lowerCAmelCase : Tuple = TapasForMaskedLM(config=_A ) elif task == "INTERMEDIATE_PRETRAINING": lowerCAmelCase : List[str] = TapasModel(config=_A ) else: raise ValueError(F"Task {task} not supported." ) print(F"Building PyTorch model from configuration: {config}" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(_A , _A , _A ) # Save pytorch-model (weights and configuration) print(F"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(_A ) # Save tokenizer files print(F"Save tokenizer files to {pytorch_dump_path}" ) lowerCAmelCase : List[Any] = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + 'vocab.txt' , model_max_length=5_12 ) tokenizer.save_pretrained(_A ) print('Used relative position embeddings:' , model.config.reset_position_index_per_cell ) if __name__ == "__main__": _lowerCAmelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--task', default='SQA', type=str, help='Model task for which to convert a checkpoint. Defaults to SQA.' ) parser.add_argument( '--reset_position_index_per_cell', default=False, action='store_true', help='Whether to use relative position embeddings or not. Defaults to True.', ) parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--tapas_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained TAPAS model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _lowerCAmelCase : int = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
646
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece_no_bos.model') @require_sentencepiece @require_tokenizers class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : str = PegasusTokenizer _lowerCamelCase : Union[str, Any] = PegasusTokenizerFast _lowerCamelCase : Optional[Any] = True _lowerCamelCase : Optional[Any] = True def lowercase ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : List[Any] = PegasusTokenizer(snake_case__ ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase ( self ): return PegasusTokenizer.from_pretrained('google/pegasus-large' ) def lowercase ( self , **snake_case__ ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def lowercase ( self , snake_case__ ): return ("This is a test", "This is a test") def lowercase ( self ): lowerCAmelCase : Optional[int] = '</s>' lowerCAmelCase : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '</s>' ) self.assertEqual(vocab_keys[-1] , 'v' ) self.assertEqual(len(snake_case__ ) , 1103 ) def lowercase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def lowercase ( self ): lowerCAmelCase : List[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : List[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : Optional[Any] = ( 'Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important' ' </s> <pad> <pad> <pad>' ) lowerCAmelCase : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] lowerCAmelCase : Optional[int] = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Any = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowerCAmelCase : List[str] = '<mask_1> To ensure a <mask_2> flow of bank resolutions.' lowerCAmelCase : Optional[Any] = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1] lowerCAmelCase : Optional[Any] = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Optional[Any] = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 lowerCAmelCase : List[Any] = 'To ensure a smooth flow of bank resolutions.' lowerCAmelCase : Optional[int] = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1] lowerCAmelCase : Any = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def lowercase ( self ): lowerCAmelCase : Union[str, Any] = ['This is going to be way too long.' * 150, 'short example'] lowerCAmelCase : int = ['not super long but more than 5 tokens', 'tiny'] lowerCAmelCase : Dict = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) lowerCAmelCase : Dict = self._large_tokenizer( text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(snake_case__ ) == 2 # input_ids, attention_mask. @slow def lowercase ( self ): # fmt: off lowerCAmelCase : Tuple = {'input_ids': [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name='google/bigbird-pegasus-large-arxiv' , revision='ba85d0851d708441f91440d509690f1ab6353415' , ) @require_sentencepiece @require_tokenizers class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : Optional[Any] = PegasusTokenizer _lowerCamelCase : str = PegasusTokenizerFast _lowerCamelCase : Tuple = True _lowerCamelCase : int = True def lowercase ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : int = PegasusTokenizer(snake_case__ , offset=0 , mask_token_sent=snake_case__ , mask_token='[MASK]' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase ( self ): return PegasusTokenizer.from_pretrained('google/bigbird-pegasus-large-arxiv' ) def lowercase ( self , **snake_case__ ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def lowercase ( self , snake_case__ ): return ("This is a test", "This is a test") def lowercase ( self ): lowerCAmelCase : Tuple = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : Union[str, Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : List[str] = ( 'Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>' ' <pad> <pad> <pad>' ) lowerCAmelCase : Dict = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] lowerCAmelCase : Union[str, Any] = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) @require_torch def lowercase ( self ): lowerCAmelCase : Optional[int] = ['This is going to be way too long.' * 1000, 'short example'] lowerCAmelCase : Union[str, Any] = ['not super long but more than 5 tokens', 'tiny'] lowerCAmelCase : List[str] = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) lowerCAmelCase : List[str] = self._large_tokenizer( text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(snake_case__ ) == 2 # input_ids, attention_mask. def lowercase ( self ): lowerCAmelCase : List[str] = ( 'This is an example string that is used to test the original TF implementation against the HF' ' implementation' ) lowerCAmelCase : Tuple = self._large_tokenizer(snake_case__ ).input_ids self.assertListEqual( snake_case__ , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
646
1
'''simple docstring''' import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): debug_launcher(test_script.main ) def lowercase ( self ): debug_launcher(test_ops.main )
646
'''simple docstring''' import math import sys import cva import numpy as np def __UpperCamelCase ( _A : np.ndarray , _A : float ) -> np.ndarray: """simple docstring""" lowerCAmelCase : Union[str, Any] = math.sqrt(_A ) lowerCAmelCase : Union[str, Any] = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def __UpperCamelCase ( _A : np.ndarray , _A : int , _A : int , _A : int ) -> np.ndarray: """simple docstring""" lowerCAmelCase : int = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def __UpperCamelCase ( _A : int , _A : float ) -> np.ndarray: """simple docstring""" lowerCAmelCase : Dict = np.zeros((kernel_size, kernel_size) ) for i in range(0 , _A ): for j in range(0 , _A ): lowerCAmelCase : Optional[int] = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(_A , _A ) def __UpperCamelCase ( _A : np.ndarray , _A : float , _A : float , _A : int , ) -> np.ndarray: """simple docstring""" lowerCAmelCase : str = np.zeros(img.shape ) lowerCAmelCase : int = get_gauss_kernel(_A , _A ) lowerCAmelCase , lowerCAmelCase : Dict = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): lowerCAmelCase : int = get_slice(_A , _A , _A , _A ) lowerCAmelCase : Any = img_s - img_s[kernel_size // 2, kernel_size // 2] lowerCAmelCase : str = vec_gaussian(_A , _A ) lowerCAmelCase : Optional[int] = np.multiply(_A , _A ) lowerCAmelCase : str = np.multiply(_A , _A ) lowerCAmelCase : Union[str, Any] = np.sum(_A ) / np.sum(_A ) lowerCAmelCase : Tuple = val return imga def __UpperCamelCase ( _A : list ) -> tuple: """simple docstring""" lowerCAmelCase : List[Any] = args[1] if args[1:] else '../image_data/lena.jpg' lowerCAmelCase : Any = float(args[2] ) if args[2:] else 1.0 lowerCAmelCase : Union[str, Any] = float(args[3] ) if args[3:] else 1.0 if args[4:]: lowerCAmelCase : int = int(args[4] ) lowerCAmelCase : Optional[Any] = kernel_size + abs(kernel_size % 2 - 1 ) else: lowerCAmelCase : Optional[int] = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Any = parse_args(sys.argv) _lowerCAmelCase : str = cva.imread(filename, 0) cva.imshow('input image', img) _lowerCAmelCase : Union[str, Any] = img / 255 _lowerCAmelCase : List[str] = out.astype('float32') _lowerCAmelCase : Optional[int] = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) _lowerCAmelCase : Union[str, Any] = out * 255 _lowerCAmelCase : Optional[Any] = np.uinta(out) cva.imshow('output image', out) cva.waitKey(0) cva.destroyAllWindows()
646
1
'''simple docstring''' from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration _lowerCAmelCase : List[Any] = HfArgumentParser(InitializationArguments) _lowerCAmelCase : Optional[Any] = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization _lowerCAmelCase : Dict = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks _lowerCAmelCase : Optional[Any] = { 'vocab_size': len(tokenizer), 'scale_attn_by_inverse_layer_idx': True, 'reorder_and_upcast_attn': True, } # Load model config (GPT-2 large in this case) _lowerCAmelCase : Optional[int] = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config _lowerCAmelCase : Optional[int] = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
646
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowerCAmelCase : int = { 'configuration_nezha': ['NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NezhaConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Tuple = [ 'NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST', 'NezhaForNextSentencePrediction', 'NezhaForMaskedLM', 'NezhaForPreTraining', 'NezhaForMultipleChoice', 'NezhaForQuestionAnswering', 'NezhaForSequenceClassification', 'NezhaForTokenClassification', 'NezhaModel', 'NezhaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys _lowerCAmelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
646
1
'''simple docstring''' import requests from bsa import BeautifulSoup def __UpperCamelCase ( _A : str , _A : dict ) -> str: """simple docstring""" lowerCAmelCase : List[Any] = BeautifulSoup(requests.get(_A , params=_A ).content , 'html.parser' ) lowerCAmelCase : List[str] = soup.find('div' , attrs={'class': 'gs_ri'} ) lowerCAmelCase : Dict = div.find('div' , attrs={'class': 'gs_fl'} ).find_all('a' ) return anchors[2].get_text() if __name__ == "__main__": _lowerCAmelCase : Union[str, Any] = { 'title': ( 'Precisely geometry controlled microsupercapacitors for ultrahigh areal ' 'capacitance, volumetric capacitance, and energy density' ), 'journal': 'Chem. Mater.', 'volume': 30, 'pages': '3979-3990', 'year': 2018, 'hl': 'en', } print(get_citation('https://scholar.google.com/scholar_lookup', params=params))
646
'''simple docstring''' from typing import Any class lowerCAmelCase : def __init__( self , snake_case__ ): lowerCAmelCase : Optional[int] = data lowerCAmelCase : Optional[Any] = None def __repr__( self ): return f"Node({self.data})" class lowerCAmelCase : def __init__( self ): lowerCAmelCase : Dict = None def __iter__( self ): lowerCAmelCase : Optional[Any] = self.head while node: yield node.data lowerCAmelCase : Optional[int] = node.next def __len__( self ): return sum(1 for _ in self ) def __repr__( self ): return "->".join([str(snake_case__ ) for item in self] ) def __getitem__( self , snake_case__ ): if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , snake_case__ , snake_case__ ): if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) lowerCAmelCase : Any = self.head for _ in range(snake_case__ ): lowerCAmelCase : List[str] = current.next lowerCAmelCase : int = data def lowercase ( self , snake_case__ ): self.insert_nth(len(self ) , snake_case__ ) def lowercase ( self , snake_case__ ): self.insert_nth(0 , snake_case__ ) def lowercase ( self , snake_case__ , snake_case__ ): if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) lowerCAmelCase : List[str] = Node(snake_case__ ) if self.head is None: lowerCAmelCase : int = new_node elif index == 0: lowerCAmelCase : List[Any] = self.head # link new_node to head lowerCAmelCase : List[Any] = new_node else: lowerCAmelCase : List[Any] = self.head for _ in range(index - 1 ): lowerCAmelCase : Union[str, Any] = temp.next lowerCAmelCase : Any = temp.next lowerCAmelCase : str = new_node def lowercase ( self ): # print every node data print(self ) def lowercase ( self ): return self.delete_nth(0 ) def lowercase ( self ): # delete from tail return self.delete_nth(len(self ) - 1 ) def lowercase ( self , snake_case__ = 0 ): if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) lowerCAmelCase : List[str] = self.head # default first node if index == 0: lowerCAmelCase : Tuple = self.head.next else: lowerCAmelCase : Dict = self.head for _ in range(index - 1 ): lowerCAmelCase : Tuple = temp.next lowerCAmelCase : Dict = temp.next lowerCAmelCase : Tuple = temp.next.next return delete_node.data def lowercase ( self ): return self.head is None def lowercase ( self ): lowerCAmelCase : List[Any] = None lowerCAmelCase : Any = self.head while current: # Store the current node's next node. lowerCAmelCase : List[str] = current.next # Make the current node's next point backwards lowerCAmelCase : int = prev # Make the previous node be the current node lowerCAmelCase : int = current # Make the current node the next node (to progress iteration) lowerCAmelCase : Optional[Any] = next_node # Return prev in order to put the head at the end lowerCAmelCase : List[Any] = prev def __UpperCamelCase ( ) -> None: """simple docstring""" lowerCAmelCase : Tuple = LinkedList() assert linked_list.is_empty() is True assert str(_A ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(_A ) == i linked_list.insert_nth(_A , i + 1 ) assert str(_A ) == "->".join(str(_A ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(_A ) == "->".join(str(_A ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(_A ) == 9 assert str(_A ) == "->".join(str(_A ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): lowerCAmelCase : Optional[Any] = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(_A ) == "->".join(str(_A ) for i in range(-8 , 1 ) ) def __UpperCamelCase ( ) -> None: """simple docstring""" lowerCAmelCase : Optional[int] = [ -9, 1_00, Node(77_34_51_12 ), 'dlrow olleH', 7, 55_55, 0, -1_92.5_55_55, 'Hello, world!', 77.9, Node(10 ), None, None, 12.20, ] lowerCAmelCase : Dict = LinkedList() for i in test_input: linked_list.insert_tail(_A ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(_A ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head lowerCAmelCase : Optional[Any] = linked_list.delete_head() assert result == -9 assert ( str(_A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail lowerCAmelCase : List[str] = linked_list.delete_tail() assert result == 12.2 assert ( str(_A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list lowerCAmelCase : List[str] = linked_list.delete_nth(10 ) assert result is None assert ( str(_A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(_A ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(_A ) assert ( str(_A ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(_A ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def __UpperCamelCase ( ) -> List[Any]: """simple docstring""" from doctest import testmod testmod() lowerCAmelCase : Optional[Any] = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(_A ) print('\nReading/changing Node data using indexing:' ) print(F"Element at Position 1: {linked_list[1]}" ) lowerCAmelCase : Tuple = input('Enter New Value: ' ).strip() print('New list:' ) print(_A ) print(F"length of linked_list is : {len(_A )}" ) if __name__ == "__main__": main()
646
1
'''simple docstring''' import argparse import os import re _lowerCAmelCase : Dict = 'src/diffusers' # Pattern that looks at the indentation in a line. _lowerCAmelCase : str = re.compile(r'^(\s*)\S') # Pattern that matches `"key":" and puts `key` in group 0. _lowerCAmelCase : Any = re.compile(r'^\s*"([^"]+)":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. _lowerCAmelCase : List[Any] = re.compile(r'^\s*_import_structure\["([^"]+)"\]') # Pattern that matches `"key",` and puts `key` in group 0. _lowerCAmelCase : int = re.compile(r'^\s*"([^"]+)",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. _lowerCAmelCase : Optional[Any] = re.compile(r'\[([^\]]+)\]') def __UpperCamelCase ( _A : Union[str, Any] ) -> Dict: """simple docstring""" lowerCAmelCase : Any = _re_indent.search(_A ) return "" if search is None else search.groups()[0] def __UpperCamelCase ( _A : Dict , _A : Any="" , _A : List[str]=None , _A : Any=None ) -> Tuple: """simple docstring""" lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Tuple = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(_A ): index += 1 lowerCAmelCase : Optional[int] = ['\n'.join(lines[:index] )] else: lowerCAmelCase : int = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowerCAmelCase : Tuple = [lines[index]] index += 1 while index < len(_A ) and (end_prompt is None or not lines[index].startswith(_A )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(_A ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(_A ) ) if index < len(_A ) - 1: lowerCAmelCase : List[Any] = [lines[index + 1]] index += 1 else: lowerCAmelCase : int = [] else: blocks.append('\n'.join(_A ) ) lowerCAmelCase : Any = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(_A ) > 0: blocks.append('\n'.join(_A ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(_A ): blocks.append('\n'.join(lines[index:] ) ) return blocks def __UpperCamelCase ( _A : Dict ) -> List[Any]: """simple docstring""" def _inner(_A : Tuple ): return key(_A ).lower().replace('_' , '' ) return _inner def __UpperCamelCase ( _A : Union[str, Any] , _A : Any=None ) -> Optional[Any]: """simple docstring""" def noop(_A : Any ): return x if key is None: lowerCAmelCase : List[str] = noop # Constants are all uppercase, they go first. lowerCAmelCase : str = [obj for obj in objects if key(_A ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowerCAmelCase : List[str] = [obj for obj in objects if key(_A )[0].isupper() and not key(_A ).isupper()] # Functions begin with a lowercase, they go last. lowerCAmelCase : Optional[Any] = [obj for obj in objects if not key(_A )[0].isupper()] lowerCAmelCase : Tuple = ignore_underscore(_A ) return sorted(_A , key=_A ) + sorted(_A , key=_A ) + sorted(_A , key=_A ) def __UpperCamelCase ( _A : Union[str, Any] ) -> int: """simple docstring""" def _replace(_A : List[Any] ): lowerCAmelCase : List[Any] = match.groups()[0] if "," not in imports: return F"[{imports}]" lowerCAmelCase : Dict = [part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase : List[str] = keys[:-1] return "[" + ", ".join([F"\"{k}\"" for k in sort_objects(_A )] ) + "]" lowerCAmelCase : Optional[int] = import_statement.split('\n' ) if len(_A ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowerCAmelCase : Optional[Any] = 2 if lines[1].strip() == '[' else 1 lowerCAmelCase : List[str] = [(i, _re_strip_line.search(_A ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowerCAmelCase : Optional[Any] = sort_objects(_A , key=lambda _A : x[1] ) lowerCAmelCase : Dict = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(_A ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowerCAmelCase : Optional[int] = _re_bracket_content.sub(_replace , lines[1] ) else: lowerCAmelCase : List[Any] = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase : int = keys[:-1] lowerCAmelCase : Tuple = get_indent(lines[1] ) + ', '.join([F"\"{k}\"" for k in sort_objects(_A )] ) return "\n".join(_A ) else: # Finally we have to deal with imports fitting on one line lowerCAmelCase : Union[str, Any] = _re_bracket_content.sub(_replace , _A ) return import_statement def __UpperCamelCase ( _A : str , _A : Tuple=True ) -> Optional[Any]: """simple docstring""" with open(_A , 'r' ) as f: lowerCAmelCase : Optional[int] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowerCAmelCase : List[Any] = split_code_in_indented_blocks( _A , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(_A ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowerCAmelCase : List[str] = main_blocks[block_idx] lowerCAmelCase : Union[str, Any] = block.split('\n' ) # Get to the start of the imports. lowerCAmelCase : Optional[Any] = 0 while line_idx < len(_A ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowerCAmelCase : Optional[Any] = len(_A ) else: line_idx += 1 if line_idx >= len(_A ): continue # Ignore beginning and last line: they don't contain anything. lowerCAmelCase : str = '\n'.join(block_lines[line_idx:-1] ) lowerCAmelCase : str = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowerCAmelCase : Optional[Any] = split_code_in_indented_blocks(_A , indent_level=_A ) # We have two categories of import key: list or _import_structure[key].append/extend lowerCAmelCase : Union[str, Any] = _re_direct_key if '_import_structure' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowerCAmelCase : int = [(pattern.search(_A ).groups()[0] if pattern.search(_A ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowerCAmelCase : Dict = [(i, key) for i, key in enumerate(_A ) if key is not None] lowerCAmelCase : List[Any] = [x[0] for x in sorted(_A , key=lambda _A : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowerCAmelCase : int = 0 lowerCAmelCase : Dict = [] for i in range(len(_A ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: lowerCAmelCase : str = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(_A ) count += 1 # And we put our main block back together with its first and last line. lowerCAmelCase : str = '\n'.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(_A ): if check_only: return True else: print(F"Overwriting {file}." ) with open(_A , 'w' ) as f: f.write('\n'.join(_A ) ) def __UpperCamelCase ( _A : Tuple=True ) -> Any: """simple docstring""" lowerCAmelCase : Tuple = [] for root, _, files in os.walk(_A ): if "__init__.py" in files: lowerCAmelCase : Any = sort_imports(os.path.join(_A , '__init__.py' ) , check_only=_A ) if result: lowerCAmelCase : Optional[Any] = [os.path.join(_A , '__init__.py' )] if len(_A ) > 0: raise ValueError(F"Would overwrite {len(_A )} files, run `make style`." ) if __name__ == "__main__": _lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') _lowerCAmelCase : Optional[int] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
646
'''simple docstring''' _lowerCAmelCase : List[str] = {str(digit): digit**5 for digit in range(10)} def __UpperCamelCase ( _A : int ) -> int: """simple docstring""" return sum(DIGITS_FIFTH_POWER[digit] for digit in str(_A ) ) def __UpperCamelCase ( ) -> int: """simple docstring""" return sum( number for number in range(10_00 , 1_00_00_00 ) if number == digits_fifth_powers_sum(_A ) ) if __name__ == "__main__": print(solution())
646
1
'''simple docstring''' from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def __UpperCamelCase ( _A : Optional[Any] ) -> int: """simple docstring""" if isinstance(_A , collections.abc.Iterable ): return x return (x, x) @require_tf class lowerCAmelCase : def lowercase ( self , snake_case__ , snake_case__ ): pass def lowercase ( self ): pass def lowercase ( self ): pass def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=None , **snake_case__ ): lowerCAmelCase : Tuple = VisionTextDualEncoderConfig.from_vision_text_configs(snake_case__ , snake_case__ ) lowerCAmelCase : Any = TFVisionTextDualEncoderModel(snake_case__ ) lowerCAmelCase : int = model(input_ids=snake_case__ , pixel_values=snake_case__ , attention_mask=snake_case__ ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], config.projection_dim) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=None , **snake_case__ ): lowerCAmelCase , lowerCAmelCase : List[str] = self.get_vision_text_model(snake_case__ , snake_case__ ) lowerCAmelCase : Union[str, Any] = TFVisionTextDualEncoderModel(vision_model=snake_case__ , text_model=snake_case__ ) lowerCAmelCase : Optional[Any] = model(input_ids=snake_case__ , pixel_values=snake_case__ , attention_mask=snake_case__ ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=None , **snake_case__ ): lowerCAmelCase , lowerCAmelCase : List[Any] = self.get_vision_text_model(snake_case__ , snake_case__ ) lowerCAmelCase : str = {'vision_model': vision_model, 'text_model': text_model} lowerCAmelCase : Optional[int] = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**snake_case__ ) lowerCAmelCase : Optional[int] = model(input_ids=snake_case__ , pixel_values=snake_case__ , attention_mask=snake_case__ ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=None , **snake_case__ ): lowerCAmelCase , lowerCAmelCase : Any = self.get_vision_text_model(snake_case__ , snake_case__ ) lowerCAmelCase : Tuple = TFVisionTextDualEncoderModel(vision_model=snake_case__ , text_model=snake_case__ ) lowerCAmelCase : str = model(input_ids=snake_case__ , pixel_values=snake_case__ , attention_mask=snake_case__ ) lowerCAmelCase : List[str] = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case__ ) lowerCAmelCase : Any = TFVisionTextDualEncoderModel.from_pretrained(snake_case__ ) lowerCAmelCase : Union[str, Any] = model(input_ids=snake_case__ , pixel_values=snake_case__ , attention_mask=snake_case__ ) lowerCAmelCase : Union[str, Any] = after_output[0].numpy() lowerCAmelCase : str = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(snake_case__ , 1e-5 ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=None , **snake_case__ ): lowerCAmelCase , lowerCAmelCase : Union[str, Any] = self.get_vision_text_model(snake_case__ , snake_case__ ) lowerCAmelCase : str = TFVisionTextDualEncoderModel(vision_model=snake_case__ , text_model=snake_case__ ) lowerCAmelCase : List[Any] = model( input_ids=snake_case__ , pixel_values=snake_case__ , attention_mask=snake_case__ , output_attentions=snake_case__ ) lowerCAmelCase : str = output.vision_model_output.attentions self.assertEqual(len(snake_case__ ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCAmelCase : Optional[Any] = to_atuple(vision_model.config.image_size ) lowerCAmelCase : List[Any] = to_atuple(vision_model.config.patch_size ) lowerCAmelCase : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowerCAmelCase : Optional[int] = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) lowerCAmelCase : List[Any] = output.text_model_output.attentions self.assertEqual(len(snake_case__ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Optional[Any] = np.abs((a - b) ).max() self.assertLessEqual(snake_case__ , snake_case__ , f"Difference between torch and flax is {diff} (>= {tol})." ) def lowercase ( self ): lowerCAmelCase : Dict = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**snake_case__ ) def lowercase ( self ): lowerCAmelCase : Any = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**snake_case__ ) def lowercase ( self ): lowerCAmelCase : List[str] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**snake_case__ ) def lowercase ( self ): lowerCAmelCase : Any = self.prepare_config_and_inputs() self.check_save_load(**snake_case__ ) def lowercase ( self ): lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**snake_case__ ) @slow def lowercase ( self ): lowerCAmelCase , lowerCAmelCase : Dict = self.get_pretrained_model_and_inputs() lowerCAmelCase : Dict = model_a(**snake_case__ ) lowerCAmelCase : List[str] = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(snake_case__ ) lowerCAmelCase : Dict = TFVisionTextDualEncoderModel.from_pretrained(snake_case__ ) lowerCAmelCase : Dict = model_a(**snake_case__ ) lowerCAmelCase : int = after_outputs[0].numpy() lowerCAmelCase : Union[str, Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(snake_case__ , 1e-5 ) @require_tf class lowerCAmelCase ( a , unittest.TestCase ): def lowercase ( self ): lowerCAmelCase : Any = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-vit' , 'hf-internal-testing/tiny-random-bert' ) lowerCAmelCase : Dict = 13 lowerCAmelCase : List[str] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowerCAmelCase : Optional[Any] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) lowerCAmelCase : Union[str, Any] = random_attention_mask([batch_size, 4] ) lowerCAmelCase : List[Any] = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def lowercase ( self , snake_case__ , snake_case__ ): lowerCAmelCase : List[Any] = TFViTModel(snake_case__ , name='vision_model' ) lowerCAmelCase : Dict = TFBertModel(snake_case__ , name='text_model' ) return vision_model, text_model def lowercase ( self ): lowerCAmelCase : Tuple = TFViTModelTester(self ) lowerCAmelCase : Any = TFBertModelTester(self ) lowerCAmelCase : Any = vit_model_tester.prepare_config_and_inputs() lowerCAmelCase : Optional[Any] = bert_model_tester.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : List[str] = vision_config_and_inputs ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) : Tuple = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class lowerCAmelCase ( a , unittest.TestCase ): def lowercase ( self ): # DeiT repo doesn't have TF weights, but we don't actually use the weights at all so let's # just reinitialize it. lowerCAmelCase : List[str] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'Rocketknight1/tiny-random-deit-tf' , 'hf-internal-testing/tiny-random-roberta' ) lowerCAmelCase : Any = 13 lowerCAmelCase : Union[str, Any] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowerCAmelCase : str = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) lowerCAmelCase : Any = random_attention_mask([batch_size, 4] ) lowerCAmelCase : str = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=None , **snake_case__ ): lowerCAmelCase , lowerCAmelCase : Optional[int] = self.get_vision_text_model(snake_case__ , snake_case__ ) lowerCAmelCase : str = TFVisionTextDualEncoderModel(vision_model=snake_case__ , text_model=snake_case__ ) lowerCAmelCase : Optional[int] = model( input_ids=snake_case__ , pixel_values=snake_case__ , attention_mask=snake_case__ , output_attentions=snake_case__ ) lowerCAmelCase : str = output.vision_model_output.attentions self.assertEqual(len(snake_case__ ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) lowerCAmelCase : Union[str, Any] = to_atuple(vision_model.config.image_size ) lowerCAmelCase : Union[str, Any] = to_atuple(vision_model.config.patch_size ) lowerCAmelCase : str = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowerCAmelCase : int = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) lowerCAmelCase : Tuple = output.text_model_output.attentions self.assertEqual(len(snake_case__ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def lowercase ( self , snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = TFDeiTModel(snake_case__ , name='vision_model' ) lowerCAmelCase : List[str] = TFRobertaModel(snake_case__ , name='text_model' ) return vision_model, text_model def lowercase ( self ): lowerCAmelCase : str = TFDeiTModelTester(self ) lowerCAmelCase : int = TFRobertaModelTester(self ) lowerCAmelCase : List[str] = vit_model_tester.prepare_config_and_inputs() lowerCAmelCase : Any = bert_model_tester.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Any = vision_config_and_inputs ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) : List[Any] = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class lowerCAmelCase ( a , unittest.TestCase ): def lowercase ( self ): lowerCAmelCase : Union[str, Any] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'Rocketknight1/tiny-random-clip-tf' , 'hf-internal-testing/tiny-random-bert' ) lowerCAmelCase : List[Any] = 13 lowerCAmelCase : Union[str, Any] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowerCAmelCase : Any = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) lowerCAmelCase : List[Any] = random_attention_mask([batch_size, 4] ) lowerCAmelCase : str = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def lowercase ( self , snake_case__ , snake_case__ ): lowerCAmelCase : List[Any] = TFCLIPVisionModel(snake_case__ , name='vision_model' ) lowerCAmelCase : List[str] = TFBertModel(snake_case__ , name='text_model' ) return vision_model, text_model def lowercase ( self ): lowerCAmelCase : Tuple = TFCLIPVisionModelTester(self ) lowerCAmelCase : List[str] = TFBertModelTester(self ) lowerCAmelCase : int = clip_model_tester.prepare_config_and_inputs() lowerCAmelCase : Optional[int] = bert_model_tester.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase : Optional[int] = vision_config_and_inputs ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) : List[str] = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class lowerCAmelCase ( unittest.TestCase ): @slow def lowercase ( self ): lowerCAmelCase : int = TFVisionTextDualEncoderModel.from_pretrained( 'clip-italian/clip-italian' , logit_scale_init_value=1.0 , from_pt=snake_case__ ) lowerCAmelCase : Tuple = VisionTextDualEncoderProcessor.from_pretrained('clip-italian/clip-italian' ) lowerCAmelCase : Union[str, Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) lowerCAmelCase : Tuple = processor( text=['una foto di un gatto', 'una foto di un cane'] , images=snake_case__ , padding=snake_case__ , return_tensors='np' ) lowerCAmelCase : List[str] = model(**snake_case__ ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) lowerCAmelCase : List[Any] = np.array([[1.2_2_8_4_7_2_7, 0.3_1_0_4_1_2_2]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , snake_case__ , atol=1e-3 ) )
646
'''simple docstring''' def __UpperCamelCase ( _A : List[str] ) -> Optional[Any]: """simple docstring""" if not head: return True # split the list to two parts lowerCAmelCase , lowerCAmelCase : str = head.next, head while fast and fast.next: lowerCAmelCase : Optional[int] = fast.next.next lowerCAmelCase : int = slow.next lowerCAmelCase : int = slow.next lowerCAmelCase : Optional[Any] = None # Don't forget here! But forget still works! # reverse the second part lowerCAmelCase : List[Any] = None while second: lowerCAmelCase : List[Any] = second.next lowerCAmelCase : Union[str, Any] = node lowerCAmelCase : Optional[Any] = second lowerCAmelCase : Any = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False lowerCAmelCase : Optional[Any] = node.next lowerCAmelCase : Tuple = head.next return True def __UpperCamelCase ( _A : Optional[Any] ) -> Optional[int]: """simple docstring""" if not head or not head.next: return True # 1. Get the midpoint (slow) lowerCAmelCase : Optional[int] = head while fast and fast.next: lowerCAmelCase , lowerCAmelCase : Optional[Any] = fast.next.next, slow.next # 2. Push the second half into the stack lowerCAmelCase : Tuple = [slow.val] while slow.next: lowerCAmelCase : Tuple = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False lowerCAmelCase : Union[str, Any] = cur.next return True def __UpperCamelCase ( _A : Tuple ) -> Optional[int]: """simple docstring""" if not head or not head.next: return True lowerCAmelCase : Optional[int] = {} lowerCAmelCase : int = 0 while head: if head.val in d: d[head.val].append(_A ) else: lowerCAmelCase : Any = [pos] lowerCAmelCase : int = head.next pos += 1 lowerCAmelCase : str = pos - 1 lowerCAmelCase : Optional[Any] = 0 for v in d.values(): if len(_A ) % 2 != 0: middle += 1 else: lowerCAmelCase : Any = 0 for i in range(0 , len(_A ) ): if v[i] + v[len(_A ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
646
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor _lowerCAmelCase : Any = logging.get_logger(__name__) class lowerCAmelCase ( a ): def __init__( self , *snake_case__ , **snake_case__ ): warnings.warn( 'The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use GLPNImageProcessor instead.' , snake_case__ , ) super().__init__(*snake_case__ , **snake_case__ )
646
'''simple docstring''' import math def __UpperCamelCase ( _A : int = 1_00 ) -> int: """simple docstring""" lowerCAmelCase : List[Any] = sum(i * i for i in range(1 , n + 1 ) ) lowerCAmelCase : Optional[Any] = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f"""{solution() = }""")
646
1
'''simple docstring''' import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class lowerCAmelCase ( unittest.TestCase ): @parameterized.expand([(None,), ('foo.json',)] ) def lowercase ( self , snake_case__ ): lowerCAmelCase : str = GenerationConfig( do_sample=snake_case__ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(snake_case__ , config_name=snake_case__ ) lowerCAmelCase : str = GenerationConfig.from_pretrained(snake_case__ , config_name=snake_case__ ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , snake_case__ ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Tuple = AutoConfig.from_pretrained('gpt2' ) lowerCAmelCase : Dict = GenerationConfig.from_model_config(snake_case__ ) lowerCAmelCase : List[Any] = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(snake_case__ , snake_case__ ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def lowercase ( self ): lowerCAmelCase : Any = GenerationConfig() lowerCAmelCase : Optional[Any] = { 'max_new_tokens': 1024, 'foo': 'bar', } lowerCAmelCase : List[str] = copy.deepcopy(snake_case__ ) lowerCAmelCase : Optional[Any] = generation_config.update(**snake_case__ ) # update_kwargs was not modified (no side effects) self.assertEqual(snake_case__ , snake_case__ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1024 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(snake_case__ , {'foo': 'bar'} ) def lowercase ( self ): lowerCAmelCase : List[str] = GenerationConfig() lowerCAmelCase : Tuple = 'bar' with tempfile.TemporaryDirectory('test-generation-config' ) as tmp_dir: generation_config.save_pretrained(snake_case__ ) lowerCAmelCase : str = GenerationConfig.from_pretrained(snake_case__ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , 'bar' ) lowerCAmelCase : str = GenerationConfig.from_model_config(snake_case__ ) assert not hasattr(snake_case__ , 'foo' ) # no new kwargs should be initialized if from config def lowercase ( self ): lowerCAmelCase : List[str] = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , snake_case__ ) self.assertEqual(default_config.num_beams , 1 ) lowerCAmelCase : Any = GenerationConfig( do_sample=snake_case__ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , snake_case__ ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(snake_case__ ) lowerCAmelCase : List[str] = GenerationConfig.from_pretrained(snake_case__ , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , snake_case__ ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class lowerCAmelCase ( unittest.TestCase ): @classmethod def lowercase ( cls ): lowerCAmelCase : str = TOKEN HfFolder.save_token(snake_case__ ) @classmethod def lowercase ( cls ): try: delete_repo(token=cls._token , repo_id='test-generation-config' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-generation-config-org' ) except HTTPError: pass def lowercase ( self ): lowerCAmelCase : Union[str, Any] = GenerationConfig( do_sample=snake_case__ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('test-generation-config' , use_auth_token=self._token ) lowerCAmelCase : List[str] = GenerationConfig.from_pretrained(f"{USER}/test-generation-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) ) # Reset repo delete_repo(token=self._token , repo_id='test-generation-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( snake_case__ , repo_id='test-generation-config' , push_to_hub=snake_case__ , use_auth_token=self._token ) lowerCAmelCase : Tuple = GenerationConfig.from_pretrained(f"{USER}/test-generation-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) ) def lowercase ( self ): lowerCAmelCase : List[Any] = GenerationConfig( do_sample=snake_case__ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('valid_org/test-generation-config-org' , use_auth_token=self._token ) lowerCAmelCase : Union[str, Any] = GenerationConfig.from_pretrained('valid_org/test-generation-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-generation-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( snake_case__ , repo_id='valid_org/test-generation-config-org' , push_to_hub=snake_case__ , use_auth_token=self._token ) lowerCAmelCase : List[str] = GenerationConfig.from_pretrained('valid_org/test-generation-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) )
646
'''simple docstring''' import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece_with_bytefallback.model') @require_sentencepiece @require_tokenizers class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : Tuple = GPTSwaTokenizer _lowerCamelCase : str = False _lowerCamelCase : Dict = True _lowerCamelCase : Optional[Any] = False def lowercase ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : Tuple = GPTSwaTokenizer(snake_case__ , eos_token='<unk>' , bos_token='<unk>' , pad_token='<unk>' ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase ( self , snake_case__ ): lowerCAmelCase : List[Any] = 'This is a test' lowerCAmelCase : List[Any] = 'This is a test' return input_text, output_text def lowercase ( self ): lowerCAmelCase : Tuple = '<s>' lowerCAmelCase : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def lowercase ( self ): lowerCAmelCase : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(snake_case__ ) , 2000 ) def lowercase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 2000 ) def lowercase ( self ): lowerCAmelCase : List[Any] = GPTSwaTokenizer(snake_case__ ) lowerCAmelCase : Optional[Any] = tokenizer.tokenize('This is a test' ) self.assertListEqual(snake_case__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , [465, 287, 265, 631, 842] ) lowerCAmelCase : Tuple = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) # fmt: off self.assertListEqual( snake_case__ , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] , ) # fmt: on lowerCAmelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual( snake_case__ , [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] , ) lowerCAmelCase : int = tokenizer.convert_ids_to_tokens(snake_case__ ) # fmt: off self.assertListEqual( snake_case__ , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] ) # fmt: on def lowercase ( self ): lowerCAmelCase : str = GPTSwaTokenizer(snake_case__ ) lowerCAmelCase : Optional[int] = ['This is a test', 'I was born in 92000, and this is falsé.'] lowerCAmelCase : Tuple = [ [465, 287, 265, 631, 842], [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(snake_case__ , snake_case__ ): self.assertListEqual(tokenizer.encode_fast(snake_case__ ) , snake_case__ ) # Test that decode_fast returns the input text for text, token_ids in zip(snake_case__ , snake_case__ ): self.assertEqual(tokenizer.decode_fast(snake_case__ ) , snake_case__ ) @slow def lowercase ( self ): lowerCAmelCase : str = [ '<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')', 'Hey there, how are you doing this fine day?', 'This is a text with a trailing spaces followed by a dot .', 'Häj sväjs lillebrör! =)', 'Det är inget fel på Mr. Cool', ] # fmt: off lowerCAmelCase : Tuple = {'input_ids': [[6_3423, 5, 6811, 1_4954, 282, 816, 3821, 6_3466, 6_3425, 6_3462, 18, 6_3978, 678, 301, 1320, 6_3423, 6_3455, 6_3458, 18, 6_3982, 4246, 3940, 1901, 4_7789, 5547, 1_8994], [1_9630, 1100, 6_3446, 1342, 633, 544, 4488, 593, 5102, 2416, 6_3495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1652, 428, 268, 1936, 515, 268, 5_8593, 2_2413, 9106, 546, 268, 3_3213, 6_3979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_5130, 6_3450, 924, 6_3449, 2249, 4062, 1558, 318, 6_3504, 2_1498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2827, 2559, 332, 6575, 6_3443, 2_6801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name='AI-Sweden/gpt-sw3-126m' , sequences=snake_case__ , )
646
1
'''simple docstring''' from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class lowerCAmelCase ( a ): _lowerCamelCase : torch.FloatTensor class lowerCAmelCase ( a , a ): @register_to_config def __init__( self , snake_case__ = 32 , snake_case__ = 64 , snake_case__ = 20 , snake_case__ = 768 , snake_case__=77 , snake_case__=4 , snake_case__ = 0.0 , snake_case__ = "silu" , snake_case__ = None , snake_case__ = None , snake_case__ = "linear" , snake_case__ = "prd" , snake_case__ = None , snake_case__ = None , snake_case__ = None , ): super().__init__() lowerCAmelCase : List[str] = num_attention_heads lowerCAmelCase : Union[str, Any] = attention_head_dim lowerCAmelCase : Union[str, Any] = num_attention_heads * attention_head_dim lowerCAmelCase : int = additional_embeddings lowerCAmelCase : str = time_embed_dim or inner_dim lowerCAmelCase : Optional[int] = embedding_proj_dim or embedding_dim lowerCAmelCase : Tuple = clip_embed_dim or embedding_dim lowerCAmelCase : Optional[Any] = Timesteps(snake_case__ , snake_case__ , 0 ) lowerCAmelCase : Any = TimestepEmbedding(snake_case__ , snake_case__ , out_dim=snake_case__ , act_fn=snake_case__ ) lowerCAmelCase : int = nn.Linear(snake_case__ , snake_case__ ) if embedding_proj_norm_type is None: lowerCAmelCase : List[str] = None elif embedding_proj_norm_type == "layer": lowerCAmelCase : int = nn.LayerNorm(snake_case__ ) else: raise ValueError(f"unsupported embedding_proj_norm_type: {embedding_proj_norm_type}" ) lowerCAmelCase : Optional[Any] = nn.Linear(snake_case__ , snake_case__ ) if encoder_hid_proj_type is None: lowerCAmelCase : Any = None elif encoder_hid_proj_type == "linear": lowerCAmelCase : Optional[Any] = nn.Linear(snake_case__ , snake_case__ ) else: raise ValueError(f"unsupported encoder_hid_proj_type: {encoder_hid_proj_type}" ) lowerCAmelCase : Union[str, Any] = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , snake_case__ ) ) if added_emb_type == "prd": lowerCAmelCase : Dict = nn.Parameter(torch.zeros(1 , 1 , snake_case__ ) ) elif added_emb_type is None: lowerCAmelCase : str = None else: raise ValueError( f"`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`." ) lowerCAmelCase : str = nn.ModuleList( [ BasicTransformerBlock( snake_case__ , snake_case__ , snake_case__ , dropout=snake_case__ , activation_fn='gelu' , attention_bias=snake_case__ , ) for d in range(snake_case__ ) ] ) if norm_in_type == "layer": lowerCAmelCase : List[Any] = nn.LayerNorm(snake_case__ ) elif norm_in_type is None: lowerCAmelCase : List[str] = None else: raise ValueError(f"Unsupported norm_in_type: {norm_in_type}." ) lowerCAmelCase : Tuple = nn.LayerNorm(snake_case__ ) lowerCAmelCase : List[str] = nn.Linear(snake_case__ , snake_case__ ) lowerCAmelCase : Optional[int] = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_0_0_0_0.0 ) causal_attention_mask.triu_(1 ) lowerCAmelCase : Dict = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' , snake_case__ , persistent=snake_case__ ) lowerCAmelCase : Union[str, Any] = nn.Parameter(torch.zeros(1 , snake_case__ ) ) lowerCAmelCase : Optional[int] = nn.Parameter(torch.zeros(1 , snake_case__ ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def lowercase ( self ): lowerCAmelCase : Optional[int] = {} def fn_recursive_add_processors(snake_case__ , snake_case__ , snake_case__ ): if hasattr(snake_case__ , 'set_processor' ): lowerCAmelCase : str = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"{name}.{sub_name}" , snake_case__ , snake_case__ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(snake_case__ , snake_case__ , snake_case__ ) return processors def lowercase ( self , snake_case__ ): lowerCAmelCase : List[str] = len(self.attn_processors.keys() ) if isinstance(snake_case__ , snake_case__ ) and len(snake_case__ ) != count: raise ValueError( f"A dict of processors was passed, but the number of processors {len(snake_case__ )} does not match the" f" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(snake_case__ , snake_case__ , snake_case__ ): if hasattr(snake_case__ , 'set_processor' ): if not isinstance(snake_case__ , snake_case__ ): module.set_processor(snake_case__ ) else: module.set_processor(processor.pop(f"{name}.processor" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"{name}.{sub_name}" , snake_case__ , snake_case__ ) for name, module in self.named_children(): fn_recursive_attn_processor(snake_case__ , snake_case__ , snake_case__ ) def lowercase ( self ): self.set_attn_processor(AttnProcessor() ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , snake_case__ = None , snake_case__ = True , ): lowerCAmelCase : Any = hidden_states.shape[0] lowerCAmelCase : Dict = timestep if not torch.is_tensor(snake_case__ ): lowerCAmelCase : int = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(snake_case__ ) and len(timesteps.shape ) == 0: lowerCAmelCase : Optional[int] = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML lowerCAmelCase : List[str] = timesteps * torch.ones(snake_case__ , dtype=timesteps.dtype , device=timesteps.device ) lowerCAmelCase : Optional[Any] = self.time_proj(snake_case__ ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. lowerCAmelCase : List[Any] = timesteps_projected.to(dtype=self.dtype ) lowerCAmelCase : Optional[Any] = self.time_embedding(snake_case__ ) if self.embedding_proj_norm is not None: lowerCAmelCase : Optional[Any] = self.embedding_proj_norm(snake_case__ ) lowerCAmelCase : Any = self.embedding_proj(snake_case__ ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: lowerCAmelCase : List[str] = self.encoder_hidden_states_proj(snake_case__ ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) lowerCAmelCase : Any = self.proj_in(snake_case__ ) lowerCAmelCase : List[str] = self.positional_embedding.to(hidden_states.dtype ) lowerCAmelCase : str = [] lowerCAmelCase : int = 0 if encoder_hidden_states is not None: additional_embeds.append(snake_case__ ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: lowerCAmelCase : str = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: lowerCAmelCase : List[Any] = hidden_states[:, None, :] lowerCAmelCase : int = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: lowerCAmelCase : Any = self.prd_embedding.to(hidden_states.dtype ).expand(snake_case__ , -1 , -1 ) additional_embeds.append(snake_case__ ) lowerCAmelCase : Optional[Any] = torch.cat( snake_case__ , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens lowerCAmelCase : str = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: lowerCAmelCase : Tuple = F.pad( snake_case__ , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) lowerCAmelCase : List[str] = hidden_states + positional_embeddings if attention_mask is not None: lowerCAmelCase : str = (1 - attention_mask.to(hidden_states.dtype )) * -1_0_0_0_0.0 lowerCAmelCase : Tuple = F.pad(snake_case__ , (0, self.additional_embeddings) , value=0.0 ) lowerCAmelCase : List[str] = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) lowerCAmelCase : int = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: lowerCAmelCase : str = self.norm_in(snake_case__ ) for block in self.transformer_blocks: lowerCAmelCase : Tuple = block(snake_case__ , attention_mask=snake_case__ ) lowerCAmelCase : str = self.norm_out(snake_case__ ) if self.prd_embedding is not None: lowerCAmelCase : Optional[int] = hidden_states[:, -1] else: lowerCAmelCase : Tuple = hidden_states[:, additional_embeddings_len:] lowerCAmelCase : int = self.proj_to_clip_embeddings(snake_case__ ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=snake_case__ ) def lowercase ( self , snake_case__ ): lowerCAmelCase : Tuple = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
646
'''simple docstring''' def __UpperCamelCase ( _A : int ) -> bool: """simple docstring""" return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
646
1
'''simple docstring''' from manim import * class lowerCAmelCase ( a ): def lowercase ( self ): lowerCAmelCase : int = Rectangle(height=0.5 , width=0.5 ) lowerCAmelCase : List[str] = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) lowerCAmelCase : Any = [mem.copy() for i in range(6 )] lowerCAmelCase : Union[str, Any] = [mem.copy() for i in range(6 )] lowerCAmelCase : str = VGroup(*snake_case__ ).arrange(snake_case__ , buff=0 ) lowerCAmelCase : Any = VGroup(*snake_case__ ).arrange(snake_case__ , buff=0 ) lowerCAmelCase : str = VGroup(snake_case__ , snake_case__ ).arrange(snake_case__ , buff=0 ) lowerCAmelCase : Dict = Text('CPU' , font_size=24 ) lowerCAmelCase : Union[str, Any] = Group(snake_case__ , snake_case__ ).arrange(snake_case__ , buff=0.5 , aligned_edge=snake_case__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(snake_case__ ) lowerCAmelCase : str = [mem.copy() for i in range(1 )] lowerCAmelCase : Any = VGroup(*snake_case__ ).arrange(snake_case__ , buff=0 ) lowerCAmelCase : Optional[int] = Text('GPU' , font_size=24 ) lowerCAmelCase : List[Any] = Group(snake_case__ , snake_case__ ).arrange(snake_case__ , buff=0.5 , aligned_edge=snake_case__ ) gpu.align_to(snake_case__ , snake_case__ ) gpu.set_x(gpu.get_x() - 1 ) self.add(snake_case__ ) lowerCAmelCase : Dict = [mem.copy() for i in range(6 )] lowerCAmelCase : Dict = VGroup(*snake_case__ ).arrange(snake_case__ , buff=0 ) lowerCAmelCase : Tuple = Text('Model' , font_size=24 ) lowerCAmelCase : Optional[Any] = Group(snake_case__ , snake_case__ ).arrange(snake_case__ , buff=0.5 , aligned_edge=snake_case__ ) model.move_to([3, -1.0, 0] ) self.play( Create(snake_case__ , run_time=1 ) , Create(snake_case__ , run_time=1 ) , Create(snake_case__ , run_time=1 ) , ) lowerCAmelCase : Tuple = MarkupText( f"First, an empty model skeleton is loaded\ninto <span fgcolor='{YELLOW}'>memory</span> without using much RAM." , font_size=24 , ) lowerCAmelCase : List[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCAmelCase : List[Any] = MarkupText( f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(snake_case__ , run_time=2.5 ) , Write(snake_case__ ) , Write(snake_case__ ) ) self.add(snake_case__ ) lowerCAmelCase : List[str] = [] lowerCAmelCase : Optional[Any] = [] lowerCAmelCase : List[Any] = [] for i, rect in enumerate(snake_case__ ): lowerCAmelCase : List[str] = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0.0 ).set_fill(snake_case__ , opacity=0.7 ) cpu_target.move_to(snake_case__ ) cpu_target.generate_target() lowerCAmelCase : str = 0.4_6 / 4 lowerCAmelCase : Optional[Any] = 0.4_6 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=snake_case__ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=snake_case__ , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=snake_case__ , buff=0.0 ) cpu_targs.append(snake_case__ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(snake_case__ ) ) second_animations.append(MoveToTarget(snake_case__ , run_time=1.5 ) ) self.play(*snake_case__ ) self.play(*snake_case__ ) self.wait()
646
'''simple docstring''' import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( 'files' , [ ['full:README.md', 'dataset_infos.json'], ['empty:README.md', 'dataset_infos.json'], ['dataset_infos.json'], ['full:README.md'], ] , ) def __UpperCamelCase ( _A : str , _A : List[Any] ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase : Optional[int] = tmp_path_factory.mktemp('dset_infos_dir' ) if "full:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('---\ndataset_info:\n dataset_size: 42\n---' ) if "empty:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / 'dataset_infos.json' , 'w' ) as f: f.write('{"default": {"dataset_size": 42}}' ) lowerCAmelCase : Union[str, Any] = DatasetInfosDict.from_directory(_A ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( 'dataset_info' , [ DatasetInfo(), DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ), ] , ) def __UpperCamelCase ( _A : str , _A : DatasetInfo ) -> Optional[int]: """simple docstring""" lowerCAmelCase : str = str(_A ) dataset_info.write_to_directory(_A ) lowerCAmelCase : List[str] = DatasetInfo.from_directory(_A ) assert dataset_info == reloaded assert os.path.exists(os.path.join(_A , 'dataset_info.json' ) ) def __UpperCamelCase ( ) -> List[str]: """simple docstring""" lowerCAmelCase : Tuple = DatasetInfo( description='foo' , citation='bar' , homepage='https://foo.bar' , license='CC0' , features=Features({'a': Value('int32' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train', 'num_examples': 42}] , download_checksums={} , download_size=13_37 , post_processing_size=4_42 , dataset_size=12_34 , size_in_bytes=13_37 + 4_42 + 12_34 , ) lowerCAmelCase : Optional[int] = dataset_info._to_yaml_dict() assert sorted(_A ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) lowerCAmelCase : Any = yaml.safe_dump(_A ) lowerCAmelCase : int = yaml.safe_load(_A ) assert dataset_info_yaml_dict == reloaded def __UpperCamelCase ( ) -> Dict: """simple docstring""" lowerCAmelCase : Union[str, Any] = DatasetInfo() lowerCAmelCase : List[Any] = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( 'dataset_infos_dict' , [ DatasetInfosDict(), DatasetInfosDict({'default': DatasetInfo()} ), DatasetInfosDict({'my_config_name': DatasetInfo()} ), DatasetInfosDict( { 'default': DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ) } ), DatasetInfosDict( { 'v1': DatasetInfo(dataset_size=42 ), 'v2': DatasetInfo(dataset_size=13_37 ), } ), ] , ) def __UpperCamelCase ( _A : Tuple , _A : DatasetInfosDict ) -> List[Any]: """simple docstring""" lowerCAmelCase : Tuple = str(_A ) dataset_infos_dict.write_to_directory(_A ) lowerCAmelCase : List[str] = DatasetInfosDict.from_directory(_A ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): lowerCAmelCase : Tuple = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml lowerCAmelCase : Optional[Any] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(_A , 'README.md' ) )
646
1
'''simple docstring''' import math from collections.abc import Iterator from itertools import takewhile def __UpperCamelCase ( _A : int ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_A ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __UpperCamelCase ( ) -> Iterator[int]: """simple docstring""" lowerCAmelCase : List[str] = 2 while True: if is_prime(_A ): yield num num += 1 def __UpperCamelCase ( _A : int = 2_00_00_00 ) -> int: """simple docstring""" return sum(takewhile(lambda _A : x < n , prime_generator() ) ) if __name__ == "__main__": print(f"""{solution() = }""")
646
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCAmelCase ( a ): def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): super().__init__() if safety_checker is None: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" ' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered' ' results in services or applications open to the public. Both the diffusers team and Hugging Face' ' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling' ' it only for use-cases that involve analyzing network behavior or auditing its results. For more' ' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .' ) self.register_modules( speech_model=snake_case__ , speech_processor=snake_case__ , vae=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , unet=snake_case__ , scheduler=snake_case__ , feature_extractor=snake_case__ , ) def lowercase ( self , snake_case__ = "auto" ): if slice_size == "auto": lowerCAmelCase : Union[str, Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(snake_case__ ) def lowercase ( self ): self.enable_attention_slicing(snake_case__ ) @torch.no_grad() def __call__( self , snake_case__ , snake_case__=1_6000 , snake_case__ = 512 , snake_case__ = 512 , snake_case__ = 50 , snake_case__ = 7.5 , snake_case__ = None , snake_case__ = 1 , snake_case__ = 0.0 , snake_case__ = None , snake_case__ = None , snake_case__ = "pil" , snake_case__ = True , snake_case__ = None , snake_case__ = 1 , **snake_case__ , ): lowerCAmelCase : List[str] = self.speech_processor.feature_extractor( snake_case__ , return_tensors='pt' , sampling_rate=snake_case__ ).input_features.to(self.device ) lowerCAmelCase : Optional[Any] = self.speech_model.generate(snake_case__ , max_length=48_0000 ) lowerCAmelCase : str = self.speech_processor.tokenizer.batch_decode(snake_case__ , skip_special_tokens=snake_case__ , normalize=snake_case__ )[ 0 ] if isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = 1 elif isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = len(snake_case__ ) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(snake_case__ )}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(snake_case__ , snake_case__ ) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(snake_case__ )}." ) # get prompt text embeddings lowerCAmelCase : str = self.tokenizer( snake_case__ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) lowerCAmelCase : Tuple = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowerCAmelCase : str = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) lowerCAmelCase : Union[str, Any] = text_input_ids[:, : self.tokenizer.model_max_length] lowerCAmelCase : Union[str, Any] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : int = text_embeddings.shape lowerCAmelCase : Any = text_embeddings.repeat(1 , snake_case__ , 1 ) lowerCAmelCase : Optional[int] = text_embeddings.view(bs_embed * num_images_per_prompt , snake_case__ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowerCAmelCase : List[str] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowerCAmelCase : List[str] if negative_prompt is None: lowerCAmelCase : Any = [''] * batch_size elif type(snake_case__ ) is not type(snake_case__ ): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(snake_case__ )} !=" f" {type(snake_case__ )}." ) elif isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = [negative_prompt] elif batch_size != len(snake_case__ ): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(snake_case__ )}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" ' the batch size of `prompt`.' ) else: lowerCAmelCase : Dict = negative_prompt lowerCAmelCase : Optional[int] = text_input_ids.shape[-1] lowerCAmelCase : int = self.tokenizer( snake_case__ , padding='max_length' , max_length=snake_case__ , truncation=snake_case__ , return_tensors='pt' , ) lowerCAmelCase : Union[str, Any] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowerCAmelCase : List[Any] = uncond_embeddings.shape[1] lowerCAmelCase : List[str] = uncond_embeddings.repeat(1 , snake_case__ , 1 ) lowerCAmelCase : Optional[Any] = uncond_embeddings.view(batch_size * num_images_per_prompt , snake_case__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCAmelCase : List[str] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowerCAmelCase : Union[str, Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowerCAmelCase : Dict = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowerCAmelCase : str = torch.randn(snake_case__ , generator=snake_case__ , device='cpu' , dtype=snake_case__ ).to( self.device ) else: lowerCAmelCase : Tuple = torch.randn(snake_case__ , generator=snake_case__ , device=self.device , dtype=snake_case__ ) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) lowerCAmelCase : str = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(snake_case__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowerCAmelCase : Union[str, Any] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowerCAmelCase : Any = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowerCAmelCase : Tuple = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCAmelCase : Union[str, Any] = {} if accepts_eta: lowerCAmelCase : int = eta for i, t in enumerate(self.progress_bar(snake_case__ ) ): # expand the latents if we are doing classifier free guidance lowerCAmelCase : Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCAmelCase : Tuple = self.scheduler.scale_model_input(snake_case__ , snake_case__ ) # predict the noise residual lowerCAmelCase : List[str] = self.unet(snake_case__ , snake_case__ , encoder_hidden_states=snake_case__ ).sample # perform guidance if do_classifier_free_guidance: lowerCAmelCase , lowerCAmelCase : Dict = noise_pred.chunk(2 ) lowerCAmelCase : Tuple = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowerCAmelCase : int = self.scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase : List[Any] = 1 / 0.1_8_2_1_5 * latents lowerCAmelCase : Dict = self.vae.decode(snake_case__ ).sample lowerCAmelCase : List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowerCAmelCase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowerCAmelCase : Dict = self.numpy_to_pil(snake_case__ ) if not return_dict: return image return StableDiffusionPipelineOutput(images=snake_case__ , nsfw_content_detected=snake_case__ )
646
1
'''simple docstring''' from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) _lowerCAmelCase : Any = { 'huggingface/time-series-transformer-tourism-monthly': ( 'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class lowerCAmelCase ( a ): _lowerCamelCase : Union[str, Any] = """time_series_transformer""" _lowerCamelCase : Optional[Any] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self , snake_case__ = None , snake_case__ = None , snake_case__ = "student_t" , snake_case__ = "nll" , snake_case__ = 1 , snake_case__ = [1, 2, 3, 4, 5, 6, 7] , snake_case__ = "mean" , snake_case__ = 0 , snake_case__ = 0 , snake_case__ = 0 , snake_case__ = 0 , snake_case__ = None , snake_case__ = None , snake_case__ = 32 , snake_case__ = 32 , snake_case__ = 2 , snake_case__ = 2 , snake_case__ = 2 , snake_case__ = 2 , snake_case__ = True , snake_case__ = "gelu" , snake_case__ = 64 , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 100 , snake_case__ = 0.0_2 , snake_case__=True , **snake_case__ , ): # time series specific configuration lowerCAmelCase : Tuple = prediction_length lowerCAmelCase : List[Any] = context_length or prediction_length lowerCAmelCase : int = distribution_output lowerCAmelCase : Dict = loss lowerCAmelCase : Tuple = input_size lowerCAmelCase : List[Any] = num_time_features lowerCAmelCase : Any = lags_sequence lowerCAmelCase : Tuple = scaling lowerCAmelCase : str = num_dynamic_real_features lowerCAmelCase : str = num_static_real_features lowerCAmelCase : str = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(snake_case__ ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) lowerCAmelCase : List[Any] = cardinality else: lowerCAmelCase : Any = [0] if embedding_dimension and num_static_categorical_features > 0: if len(snake_case__ ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) lowerCAmelCase : Optional[Any] = embedding_dimension else: lowerCAmelCase : Tuple = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] lowerCAmelCase : int = num_parallel_samples # Transformer architecture configuration lowerCAmelCase : Union[str, Any] = input_size * len(snake_case__ ) + self._number_of_features lowerCAmelCase : Optional[Any] = d_model lowerCAmelCase : Union[str, Any] = encoder_attention_heads lowerCAmelCase : int = decoder_attention_heads lowerCAmelCase : List[str] = encoder_ffn_dim lowerCAmelCase : Any = decoder_ffn_dim lowerCAmelCase : Tuple = encoder_layers lowerCAmelCase : Tuple = decoder_layers lowerCAmelCase : List[Any] = dropout lowerCAmelCase : Any = attention_dropout lowerCAmelCase : Optional[Any] = activation_dropout lowerCAmelCase : Union[str, Any] = encoder_layerdrop lowerCAmelCase : Union[str, Any] = decoder_layerdrop lowerCAmelCase : List[str] = activation_function lowerCAmelCase : List[str] = init_std lowerCAmelCase : Tuple = use_cache super().__init__(is_encoder_decoder=snake_case__ , **snake_case__ ) @property def lowercase ( self ): return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
646
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : List[Any] = LDMTextToImagePipeline _lowerCamelCase : Optional[Any] = TEXT_TO_IMAGE_PARAMS - { """negative_prompt""", """negative_prompt_embeds""", """cross_attention_kwargs""", """prompt_embeds""", } _lowerCamelCase : List[str] = PipelineTesterMixin.required_optional_params - { """num_images_per_prompt""", """callback""", """callback_steps""", } _lowerCamelCase : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS _lowerCamelCase : Optional[int] = False def lowercase ( self ): torch.manual_seed(0 ) lowerCAmelCase : Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) lowerCAmelCase : int = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , ) torch.manual_seed(0 ) lowerCAmelCase : str = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') , up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') , latent_channels=4 , ) torch.manual_seed(0 ) lowerCAmelCase : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowerCAmelCase : str = CLIPTextModel(snake_case__ ) lowerCAmelCase : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCAmelCase : List[Any] = { 'unet': unet, 'scheduler': scheduler, 'vqvae': vae, 'bert': text_encoder, 'tokenizer': tokenizer, } return components def lowercase ( self , snake_case__ , snake_case__=0 ): if str(snake_case__ ).startswith('mps' ): lowerCAmelCase : Optional[int] = torch.manual_seed(snake_case__ ) else: lowerCAmelCase : str = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) lowerCAmelCase : Tuple = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase ( self ): lowerCAmelCase : List[str] = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase : Optional[Any] = self.get_dummy_components() lowerCAmelCase : Optional[Any] = LDMTextToImagePipeline(**snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Tuple = self.get_dummy_inputs(snake_case__ ) lowerCAmelCase : Union[str, Any] = pipe(**snake_case__ ).images lowerCAmelCase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) lowerCAmelCase : List[Any] = np.array([0.6_1_0_1, 0.6_1_5_6, 0.5_6_2_2, 0.4_8_9_5, 0.6_6_6_1, 0.3_8_0_4, 0.5_7_4_8, 0.6_1_3_6, 0.5_0_1_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self , snake_case__ , snake_case__=torch.floataa , snake_case__=0 ): lowerCAmelCase : List[str] = torch.manual_seed(snake_case__ ) lowerCAmelCase : int = np.random.RandomState(snake_case__ ).standard_normal((1, 4, 32, 32) ) lowerCAmelCase : Optional[Any] = torch.from_numpy(snake_case__ ).to(device=snake_case__ , dtype=snake_case__ ) lowerCAmelCase : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase ( self ): lowerCAmelCase : Tuple = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Optional[Any] = self.get_inputs(snake_case__ ) lowerCAmelCase : List[Any] = pipe(**snake_case__ ).images lowerCAmelCase : str = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) lowerCAmelCase : Tuple = np.array([0.5_1_8_2_5, 0.5_2_8_5_0, 0.5_2_5_4_3, 0.5_4_2_5_8, 0.5_2_3_0_4, 0.5_2_5_6_9, 0.5_4_3_6_3, 0.5_5_2_7_6, 0.5_6_8_7_8] ) lowerCAmelCase : int = np.abs(expected_slice - image_slice ).max() assert max_diff < 1e-3 @nightly @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self , snake_case__ , snake_case__=torch.floataa , snake_case__=0 ): lowerCAmelCase : List[str] = torch.manual_seed(snake_case__ ) lowerCAmelCase : Any = np.random.RandomState(snake_case__ ).standard_normal((1, 4, 32, 32) ) lowerCAmelCase : List[Any] = torch.from_numpy(snake_case__ ).to(device=snake_case__ , dtype=snake_case__ ) lowerCAmelCase : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase ( self ): lowerCAmelCase : Optional[int] = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : int = self.get_inputs(snake_case__ ) lowerCAmelCase : Optional[int] = pipe(**snake_case__ ).images[0] lowerCAmelCase : Optional[int] = load_numpy( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy' ) lowerCAmelCase : List[str] = np.abs(expected_image - image ).max() assert max_diff < 1e-3
646
1
'''simple docstring''' from __future__ import annotations import math def __UpperCamelCase ( _A : int ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_A ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True _lowerCAmelCase : Any = [num for num in range(3, 10_0001, 2) if not is_prime(num)] def __UpperCamelCase ( _A : int ) -> list[int]: """simple docstring""" if not isinstance(_A , _A ): raise ValueError('n must be an integer' ) if n <= 0: raise ValueError('n must be >= 0' ) lowerCAmelCase : str = [] for num in range(len(_A ) ): lowerCAmelCase : Tuple = 0 while 2 * i * i <= odd_composites[num]: lowerCAmelCase : Union[str, Any] = odd_composites[num] - 2 * i * i if is_prime(_A ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(_A ) == n: return list_nums return [] def __UpperCamelCase ( ) -> int: """simple docstring""" return compute_nums(1 )[0] if __name__ == "__main__": print(f"""{solution() = }""")
646
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Tuple = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { 'facebook/xmod-base': 'https://huggingface.co/facebook/xmod-base/resolve/main/config.json', 'facebook/xmod-large-prenorm': 'https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json', 'facebook/xmod-base-13-125k': 'https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json', 'facebook/xmod-base-30-125k': 'https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json', 'facebook/xmod-base-30-195k': 'https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json', 'facebook/xmod-base-60-125k': 'https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json', 'facebook/xmod-base-60-265k': 'https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json', 'facebook/xmod-base-75-125k': 'https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json', 'facebook/xmod-base-75-269k': 'https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json', } class lowerCAmelCase ( a ): _lowerCamelCase : int = """xmod""" def __init__( self , snake_case__=3_0522 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=1e-1_2 , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__="absolute" , snake_case__=True , snake_case__=None , snake_case__=False , snake_case__=2 , snake_case__=False , snake_case__=True , snake_case__=True , snake_case__=("en_XX",) , snake_case__=None , **snake_case__ , ): super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) lowerCAmelCase : Dict = vocab_size lowerCAmelCase : Optional[Any] = hidden_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob lowerCAmelCase : str = max_position_embeddings lowerCAmelCase : int = type_vocab_size lowerCAmelCase : List[Any] = initializer_range lowerCAmelCase : Any = layer_norm_eps lowerCAmelCase : Dict = position_embedding_type lowerCAmelCase : Optional[Any] = use_cache lowerCAmelCase : Union[str, Any] = classifier_dropout lowerCAmelCase : int = pre_norm lowerCAmelCase : Optional[Any] = adapter_reduction_factor lowerCAmelCase : Any = adapter_layer_norm lowerCAmelCase : Dict = adapter_reuse_layer_norm lowerCAmelCase : Any = ln_before_adapter lowerCAmelCase : Optional[Any] = list(snake_case__ ) lowerCAmelCase : List[Any] = default_language class lowerCAmelCase ( a ): @property def lowercase ( self ): if self.task == "multiple-choice": lowerCAmelCase : List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase : Optional[int] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
646
1
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Optional[int] = get_tests_dir('fixtures/test_sentencepiece.model') _lowerCAmelCase : List[str] = {'target_lang': 'fi', 'source_lang': 'en'} _lowerCAmelCase : Dict = '>>zh<<' _lowerCAmelCase : Dict = 'Helsinki-NLP/' if is_torch_available(): _lowerCAmelCase : Optional[int] = 'pt' elif is_tf_available(): _lowerCAmelCase : List[str] = 'tf' else: _lowerCAmelCase : Optional[int] = 'jax' @require_sentencepiece class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : Dict = MarianTokenizer _lowerCamelCase : str = False _lowerCamelCase : Union[str, Any] = True def lowercase ( self ): super().setUp() lowerCAmelCase : Union[str, Any] = ['</s>', '<unk>', '▁This', '▁is', '▁a', '▁t', 'est', '\u0120', '<pad>'] lowerCAmelCase : Optional[Any] = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) lowerCAmelCase : List[str] = Path(self.tmpdirname ) save_json(snake_case__ , save_dir / VOCAB_FILES_NAMES['vocab'] ) save_json(snake_case__ , save_dir / VOCAB_FILES_NAMES['tokenizer_config_file'] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(snake_case__ , save_dir / VOCAB_FILES_NAMES['source_spm'] ) copyfile(snake_case__ , save_dir / VOCAB_FILES_NAMES['target_spm'] ) lowerCAmelCase : Union[str, Any] = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase ( self , **snake_case__ ): return MarianTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def lowercase ( self , snake_case__ ): return ( "This is a test", "This is a test", ) def lowercase ( self ): lowerCAmelCase : Optional[Any] = '</s>' lowerCAmelCase : str = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def lowercase ( self ): lowerCAmelCase : int = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '</s>' ) self.assertEqual(vocab_keys[1] , '<unk>' ) self.assertEqual(vocab_keys[-1] , '<pad>' ) self.assertEqual(len(snake_case__ ) , 9 ) def lowercase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def lowercase ( self ): lowerCAmelCase : Optional[Any] = MarianTokenizer.from_pretrained(f"{ORG_NAME}opus-mt-en-de" ) lowerCAmelCase : Union[str, Any] = en_de_tokenizer(['I am a small frog'] , return_tensors=snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) lowerCAmelCase : Any = [38, 121, 14, 697, 3_8848, 0] self.assertListEqual(snake_case__ , batch.input_ids[0] ) lowerCAmelCase : Optional[int] = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(snake_case__ ) lowerCAmelCase : str = [x.name for x in Path(snake_case__ ).glob('*' )] self.assertIn('source.spm' , snake_case__ ) MarianTokenizer.from_pretrained(snake_case__ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = self.get_tokenizer() lowerCAmelCase : List[str] = tok( ['I am a small frog' * 1000, 'I am a small frog'] , padding=snake_case__ , truncation=snake_case__ , return_tensors=snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) self.assertEqual(batch.input_ids.shape , (2, 512) ) def lowercase ( self ): lowerCAmelCase : List[str] = self.get_tokenizer() lowerCAmelCase : Dict = tok(['I am a tiny frog', 'I am a small frog'] , padding=snake_case__ , return_tensors=snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def lowercase ( self ): # fmt: off lowerCAmelCase : Any = {'input_ids': [[4_3495, 462, 20, 4_2164, 1369, 52, 464, 132, 1703, 492, 13, 7491, 3_8999, 6, 8, 464, 132, 1703, 492, 13, 4669, 3_7867, 13, 7525, 27, 1593, 988, 13, 3_3972, 7029, 6, 20, 8251, 383, 2, 270, 5866, 3788, 2, 2353, 8251, 1_2338, 2, 1_3958, 387, 2, 3629, 6953, 188, 2900, 2, 1_3958, 8011, 1_1501, 23, 8460, 4073, 3_4009, 20, 435, 1_1439, 27, 8, 8460, 4073, 6004, 20, 9988, 375, 27, 33, 266, 1945, 1076, 1350, 3_7867, 3288, 5, 577, 1076, 4374, 8, 5082, 5, 2_6453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 1_0767, 6, 316, 304, 4239, 3, 0], [148, 1_5722, 19, 1839, 12, 1350, 13, 2_2327, 5082, 5418, 4_7567, 3_5938, 59, 318, 1_9552, 108, 2183, 54, 1_4976, 4835, 32, 547, 1114, 8, 315, 2417, 5, 92, 1_9088, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100], [36, 6395, 1_2570, 3_9147, 1_1597, 6, 266, 4, 4_5405, 7296, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name='Helsinki-NLP/opus-mt-en-de' , revision='1a8c2263da11e68e50938f97e10cd57820bd504c' , decode_kwargs={'use_source_tokenizer': True} , ) def lowercase ( self ): lowerCAmelCase : str = MarianTokenizer.from_pretrained('hf-internal-testing/test-marian-two-vocabs' ) lowerCAmelCase : Tuple = 'Tämä on testi' lowerCAmelCase : Tuple = 'This is a test' lowerCAmelCase : Any = [76, 7, 2047, 2] lowerCAmelCase : Tuple = [69, 12, 11, 940, 2] lowerCAmelCase : List[Any] = tokenizer(snake_case__ ).input_ids self.assertListEqual(snake_case__ , snake_case__ ) lowerCAmelCase : Optional[int] = tokenizer(text_target=snake_case__ ).input_ids self.assertListEqual(snake_case__ , snake_case__ ) lowerCAmelCase : int = tokenizer.decode(snake_case__ , skip_special_tokens=snake_case__ ) self.assertEqual(snake_case__ , snake_case__ )
646
'''simple docstring''' import argparse import os import re _lowerCAmelCase : Dict = 'src/diffusers' # Pattern that looks at the indentation in a line. _lowerCAmelCase : str = re.compile(r'^(\s*)\S') # Pattern that matches `"key":" and puts `key` in group 0. _lowerCAmelCase : Any = re.compile(r'^\s*"([^"]+)":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. _lowerCAmelCase : List[Any] = re.compile(r'^\s*_import_structure\["([^"]+)"\]') # Pattern that matches `"key",` and puts `key` in group 0. _lowerCAmelCase : int = re.compile(r'^\s*"([^"]+)",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. _lowerCAmelCase : Optional[Any] = re.compile(r'\[([^\]]+)\]') def __UpperCamelCase ( _A : Union[str, Any] ) -> Dict: """simple docstring""" lowerCAmelCase : Any = _re_indent.search(_A ) return "" if search is None else search.groups()[0] def __UpperCamelCase ( _A : Dict , _A : Any="" , _A : List[str]=None , _A : Any=None ) -> Tuple: """simple docstring""" lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Tuple = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(_A ): index += 1 lowerCAmelCase : Optional[int] = ['\n'.join(lines[:index] )] else: lowerCAmelCase : int = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowerCAmelCase : Tuple = [lines[index]] index += 1 while index < len(_A ) and (end_prompt is None or not lines[index].startswith(_A )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(_A ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(_A ) ) if index < len(_A ) - 1: lowerCAmelCase : List[Any] = [lines[index + 1]] index += 1 else: lowerCAmelCase : int = [] else: blocks.append('\n'.join(_A ) ) lowerCAmelCase : Any = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(_A ) > 0: blocks.append('\n'.join(_A ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(_A ): blocks.append('\n'.join(lines[index:] ) ) return blocks def __UpperCamelCase ( _A : Dict ) -> List[Any]: """simple docstring""" def _inner(_A : Tuple ): return key(_A ).lower().replace('_' , '' ) return _inner def __UpperCamelCase ( _A : Union[str, Any] , _A : Any=None ) -> Optional[Any]: """simple docstring""" def noop(_A : Any ): return x if key is None: lowerCAmelCase : List[str] = noop # Constants are all uppercase, they go first. lowerCAmelCase : str = [obj for obj in objects if key(_A ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowerCAmelCase : List[str] = [obj for obj in objects if key(_A )[0].isupper() and not key(_A ).isupper()] # Functions begin with a lowercase, they go last. lowerCAmelCase : Optional[Any] = [obj for obj in objects if not key(_A )[0].isupper()] lowerCAmelCase : Tuple = ignore_underscore(_A ) return sorted(_A , key=_A ) + sorted(_A , key=_A ) + sorted(_A , key=_A ) def __UpperCamelCase ( _A : Union[str, Any] ) -> int: """simple docstring""" def _replace(_A : List[Any] ): lowerCAmelCase : List[Any] = match.groups()[0] if "," not in imports: return F"[{imports}]" lowerCAmelCase : Dict = [part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase : List[str] = keys[:-1] return "[" + ", ".join([F"\"{k}\"" for k in sort_objects(_A )] ) + "]" lowerCAmelCase : Optional[int] = import_statement.split('\n' ) if len(_A ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowerCAmelCase : Optional[Any] = 2 if lines[1].strip() == '[' else 1 lowerCAmelCase : List[str] = [(i, _re_strip_line.search(_A ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowerCAmelCase : Optional[Any] = sort_objects(_A , key=lambda _A : x[1] ) lowerCAmelCase : Dict = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(_A ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowerCAmelCase : Optional[int] = _re_bracket_content.sub(_replace , lines[1] ) else: lowerCAmelCase : List[Any] = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase : int = keys[:-1] lowerCAmelCase : Tuple = get_indent(lines[1] ) + ', '.join([F"\"{k}\"" for k in sort_objects(_A )] ) return "\n".join(_A ) else: # Finally we have to deal with imports fitting on one line lowerCAmelCase : Union[str, Any] = _re_bracket_content.sub(_replace , _A ) return import_statement def __UpperCamelCase ( _A : str , _A : Tuple=True ) -> Optional[Any]: """simple docstring""" with open(_A , 'r' ) as f: lowerCAmelCase : Optional[int] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowerCAmelCase : List[Any] = split_code_in_indented_blocks( _A , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(_A ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowerCAmelCase : List[str] = main_blocks[block_idx] lowerCAmelCase : Union[str, Any] = block.split('\n' ) # Get to the start of the imports. lowerCAmelCase : Optional[Any] = 0 while line_idx < len(_A ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowerCAmelCase : Optional[Any] = len(_A ) else: line_idx += 1 if line_idx >= len(_A ): continue # Ignore beginning and last line: they don't contain anything. lowerCAmelCase : str = '\n'.join(block_lines[line_idx:-1] ) lowerCAmelCase : str = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowerCAmelCase : Optional[Any] = split_code_in_indented_blocks(_A , indent_level=_A ) # We have two categories of import key: list or _import_structure[key].append/extend lowerCAmelCase : Union[str, Any] = _re_direct_key if '_import_structure' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowerCAmelCase : int = [(pattern.search(_A ).groups()[0] if pattern.search(_A ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowerCAmelCase : Dict = [(i, key) for i, key in enumerate(_A ) if key is not None] lowerCAmelCase : List[Any] = [x[0] for x in sorted(_A , key=lambda _A : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowerCAmelCase : int = 0 lowerCAmelCase : Dict = [] for i in range(len(_A ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: lowerCAmelCase : str = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(_A ) count += 1 # And we put our main block back together with its first and last line. lowerCAmelCase : str = '\n'.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(_A ): if check_only: return True else: print(F"Overwriting {file}." ) with open(_A , 'w' ) as f: f.write('\n'.join(_A ) ) def __UpperCamelCase ( _A : Tuple=True ) -> Any: """simple docstring""" lowerCAmelCase : Tuple = [] for root, _, files in os.walk(_A ): if "__init__.py" in files: lowerCAmelCase : Any = sort_imports(os.path.join(_A , '__init__.py' ) , check_only=_A ) if result: lowerCAmelCase : Optional[Any] = [os.path.join(_A , '__init__.py' )] if len(_A ) > 0: raise ValueError(F"Would overwrite {len(_A )} files, run `make style`." ) if __name__ == "__main__": _lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') _lowerCAmelCase : Optional[int] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
646
1
'''simple docstring''' import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class lowerCAmelCase ( unittest.TestCase , a ): def lowercase ( self ): lowerCAmelCase : Dict = load_tool('text-classification' ) self.tool.setup() lowerCAmelCase : int = load_tool('text-classification' , remote=snake_case__ ) def lowercase ( self ): lowerCAmelCase : Any = self.tool('That\'s quite cool' , ['positive', 'negative'] ) self.assertEqual(snake_case__ , 'positive' ) def lowercase ( self ): lowerCAmelCase : Dict = self.remote_tool('That\'s quite cool' , ['positive', 'negative'] ) self.assertEqual(snake_case__ , 'positive' ) def lowercase ( self ): lowerCAmelCase : int = self.tool(text='That\'s quite cool' , labels=['positive', 'negative'] ) self.assertEqual(snake_case__ , 'positive' ) def lowercase ( self ): lowerCAmelCase : List[Any] = self.remote_tool(text='That\'s quite cool' , labels=['positive', 'negative'] ) self.assertEqual(snake_case__ , 'positive' )
646
'''simple docstring''' import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class lowerCAmelCase : def __init__( self , snake_case__ , snake_case__=13 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=99 , snake_case__=64 , snake_case__=32 , snake_case__=5 , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=16 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=3 , snake_case__=4 , snake_case__=None , ): lowerCAmelCase : str = parent lowerCAmelCase : Optional[int] = batch_size lowerCAmelCase : Optional[Any] = seq_length lowerCAmelCase : Optional[Any] = is_training lowerCAmelCase : Dict = use_input_mask lowerCAmelCase : Tuple = use_token_type_ids lowerCAmelCase : int = use_labels lowerCAmelCase : int = vocab_size lowerCAmelCase : Any = hidden_size lowerCAmelCase : Optional[Any] = embedding_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : List[str] = num_attention_heads lowerCAmelCase : List[Any] = intermediate_size lowerCAmelCase : Dict = hidden_act lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : int = attention_probs_dropout_prob lowerCAmelCase : List[Any] = max_position_embeddings lowerCAmelCase : int = type_vocab_size lowerCAmelCase : List[str] = type_sequence_label_size lowerCAmelCase : Dict = initializer_range lowerCAmelCase : Any = num_labels lowerCAmelCase : str = num_choices lowerCAmelCase : int = scope def lowercase ( self ): lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Union[str, Any] = None if self.use_input_mask: lowerCAmelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : Optional[int] = None if self.use_token_type_ids: lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : Optional[Any] = None lowerCAmelCase : Optional[Any] = None lowerCAmelCase : Dict = None if self.use_labels: lowerCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase ( self ): return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case__ , initializer_range=self.initializer_range , ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = MobileBertModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : int = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) lowerCAmelCase : Optional[int] = model(snake_case__ , token_type_ids=snake_case__ ) lowerCAmelCase : Optional[Any] = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : int = MobileBertForMaskedLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : str = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = MobileBertForNextSentencePrediction(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : str = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : List[Any] = MobileBertForPreTraining(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Tuple = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , next_sentence_label=snake_case__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = MobileBertForQuestionAnswering(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : List[str] = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = self.num_labels lowerCAmelCase : List[Any] = MobileBertForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = self.num_labels lowerCAmelCase : int = MobileBertForTokenClassification(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : List[str] = self.num_choices lowerCAmelCase : Any = MobileBertForMultipleChoice(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : int = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : List[str] = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase ( self ): lowerCAmelCase : Any = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) : Optional[Any] = config_and_inputs lowerCAmelCase : List[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase ( a , a , unittest.TestCase ): _lowerCamelCase : List[str] = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) _lowerCamelCase : Tuple = ( { """feature-extraction""": MobileBertModel, """fill-mask""": MobileBertForMaskedLM, """question-answering""": MobileBertForQuestionAnswering, """text-classification""": MobileBertForSequenceClassification, """token-classification""": MobileBertForTokenClassification, """zero-shot""": MobileBertForSequenceClassification, } if is_torch_available() else {} ) _lowerCamelCase : str = True def lowercase ( self , snake_case__ , snake_case__ , snake_case__=False ): lowerCAmelCase : int = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if return_labels: if model_class in get_values(snake_case__ ): lowerCAmelCase : str = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=snake_case__ ) lowerCAmelCase : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case__ ) return inputs_dict def lowercase ( self ): lowerCAmelCase : List[Any] = MobileBertModelTester(self ) lowerCAmelCase : Dict = ConfigTester(self , config_class=snake_case__ , hidden_size=37 ) def lowercase ( self ): self.config_tester.run_common_tests() def lowercase ( self ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*snake_case__ ) def __UpperCamelCase ( _A : Optional[Any] ) -> Optional[int]: """simple docstring""" return torch.tensor( _A , dtype=torch.long , device=_A , ) _lowerCAmelCase : Union[str, Any] = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase ( unittest.TestCase ): @slow def lowercase ( self ): lowerCAmelCase : List[str] = MobileBertModel.from_pretrained('google/mobilebert-uncased' ).to(snake_case__ ) lowerCAmelCase : List[Any] = _long_tensor([[101, 7110, 1005, 1056, 2023, 1_1333, 1_7413, 1029, 102]] ) with torch.no_grad(): lowerCAmelCase : Tuple = model(snake_case__ )[0] lowerCAmelCase : List[Any] = torch.Size((1, 9, 512) ) self.assertEqual(output.shape , snake_case__ ) lowerCAmelCase : Union[str, Any] = torch.tensor( [ [ [-2.4_7_3_6_5_2_6e0_7, 8.2_6_9_1_6_5_6e0_4, 1.6_5_2_1_8_3_8e0_5], [-5.7_5_4_1_7_0_4e-0_1, 3.9_0_5_6_0_2_2e0_0, 4.4_0_1_1_5_0_7e0_0], [2.6_0_4_7_3_5_9e0_0, 1.5_6_7_7_6_5_2e0_0, -1.7_3_2_4_1_8_8e-0_1], ] ] , device=snake_case__ , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE lowerCAmelCase : List[str] = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) lowerCAmelCase : Dict = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
646
1
'''simple docstring''' def __UpperCamelCase ( _A : int , _A : int , _A : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square(_A : int , _A : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 lowerCAmelCase : Tuple = update_area_of_max_square(_A , col + 1 ) lowerCAmelCase : Optional[Any] = update_area_of_max_square(row + 1 , col + 1 ) lowerCAmelCase : List[Any] = update_area_of_max_square(row + 1 , _A ) if mat[row][col]: lowerCAmelCase : int = 1 + min([right, diagonal, down] ) lowerCAmelCase : Any = max(largest_square_area[0] , _A ) return sub_problem_sol else: return 0 lowerCAmelCase : Any = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def __UpperCamelCase ( _A : int , _A : int , _A : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square_using_dp_array( _A : int , _A : int , _A : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] lowerCAmelCase : Union[str, Any] = update_area_of_max_square_using_dp_array(_A , col + 1 , _A ) lowerCAmelCase : List[str] = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , _A ) lowerCAmelCase : str = update_area_of_max_square_using_dp_array(row + 1 , _A , _A ) if mat[row][col]: lowerCAmelCase : Any = 1 + min([right, diagonal, down] ) lowerCAmelCase : List[str] = max(largest_square_area[0] , _A ) lowerCAmelCase : int = sub_problem_sol return sub_problem_sol else: return 0 lowerCAmelCase : List[Any] = [0] lowerCAmelCase : Optional[int] = [[-1] * cols for _ in range(_A )] update_area_of_max_square_using_dp_array(0 , 0 , _A ) return largest_square_area[0] def __UpperCamelCase ( _A : int , _A : int , _A : list[list[int]] ) -> int: """simple docstring""" lowerCAmelCase : List[Any] = [[0] * (cols + 1) for _ in range(rows + 1 )] lowerCAmelCase : str = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowerCAmelCase : List[Any] = dp_array[row][col + 1] lowerCAmelCase : Optional[Any] = dp_array[row + 1][col + 1] lowerCAmelCase : str = dp_array[row + 1][col] if mat[row][col] == 1: lowerCAmelCase : Union[str, Any] = 1 + min(_A , _A , _A ) lowerCAmelCase : Union[str, Any] = max(dp_array[row][col] , _A ) else: lowerCAmelCase : Dict = 0 return largest_square_area def __UpperCamelCase ( _A : int , _A : int , _A : list[list[int]] ) -> int: """simple docstring""" lowerCAmelCase : Optional[Any] = [0] * (cols + 1) lowerCAmelCase : List[str] = [0] * (cols + 1) lowerCAmelCase : Optional[Any] = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowerCAmelCase : str = current_row[col + 1] lowerCAmelCase : Optional[Any] = next_row[col + 1] lowerCAmelCase : Optional[Any] = next_row[col] if mat[row][col] == 1: lowerCAmelCase : Optional[Any] = 1 + min(_A , _A , _A ) lowerCAmelCase : str = max(current_row[col] , _A ) else: lowerCAmelCase : str = 0 lowerCAmelCase : Any = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
646
'''simple docstring''' import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __UpperCamelCase ( _A : Dict ) -> int: """simple docstring""" lowerCAmelCase : Tuple = [] embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight", F"stage{idx}.patch_embed.proj.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias", F"stage{idx}.patch_embed.proj.bias", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight", F"stage{idx}.patch_embed.norm.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias", F"stage{idx}.patch_embed.norm.bias", ) ) return embed def __UpperCamelCase ( _A : List[Any] , _A : Dict ) -> Any: """simple docstring""" lowerCAmelCase : str = [] attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight", F"stage{idx}.blocks.{cnt}.attn.proj_q.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias", F"stage{idx}.blocks.{cnt}.attn.proj_q.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight", F"stage{idx}.blocks.{cnt}.attn.proj_k.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias", F"stage{idx}.blocks.{cnt}.attn.proj_k.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight", F"stage{idx}.blocks.{cnt}.attn.proj_v.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias", F"stage{idx}.blocks.{cnt}.attn.proj_v.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight", F"stage{idx}.blocks.{cnt}.attn.proj.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias", F"stage{idx}.blocks.{cnt}.attn.proj.bias", ) ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc2.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight", F"stage{idx}.blocks.{cnt}.norm1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias", F"stage{idx}.blocks.{cnt}.norm1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight", F"stage{idx}.blocks.{cnt}.norm2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias", F"stage{idx}.blocks.{cnt}.norm2.bias") ) return attention_weights def __UpperCamelCase ( _A : Optional[int] ) -> Optional[int]: """simple docstring""" lowerCAmelCase : Optional[int] = [] token.append((F"cvt.encoder.stages.{idx}.cls_token", 'stage2.cls_token') ) return token def __UpperCamelCase ( ) -> int: """simple docstring""" lowerCAmelCase : List[Any] = [] head.append(('layernorm.weight', 'norm.weight') ) head.append(('layernorm.bias', 'norm.bias') ) head.append(('classifier.weight', 'head.weight') ) head.append(('classifier.bias', 'head.bias') ) return head def __UpperCamelCase ( _A : str , _A : Optional[Any] , _A : Dict , _A : str ) -> Optional[int]: """simple docstring""" lowerCAmelCase : List[str] = 'imagenet-1k-id2label.json' lowerCAmelCase : Tuple = 10_00 lowerCAmelCase : str = 'huggingface/label-files' lowerCAmelCase : List[Any] = num_labels lowerCAmelCase : Any = json.load(open(cached_download(hf_hub_url(_A , _A , repo_type='dataset' ) ) , 'r' ) ) lowerCAmelCase : List[str] = {int(_A ): v for k, v in idalabel.items()} lowerCAmelCase : List[str] = idalabel lowerCAmelCase : str = {v: k for k, v in idalabel.items()} lowerCAmelCase : int = CvtConfig(num_labels=_A , idalabel=_A , labelaid=_A ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13": lowerCAmelCase : List[str] = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21": lowerCAmelCase : Tuple = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: lowerCAmelCase : Any = [2, 2, 20] lowerCAmelCase : List[str] = [3, 12, 16] lowerCAmelCase : List[Any] = [1_92, 7_68, 10_24] lowerCAmelCase : Union[str, Any] = CvtForImageClassification(_A ) lowerCAmelCase : str = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) lowerCAmelCase : Optional[Any] = image_size lowerCAmelCase : List[Any] = torch.load(_A , map_location=torch.device('cpu' ) ) lowerCAmelCase : str = OrderedDict() lowerCAmelCase : int = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: lowerCAmelCase : List[str] = list_of_state_dict + cls_token(_A ) lowerCAmelCase : Optional[Any] = list_of_state_dict + embeddings(_A ) for cnt in range(config.depth[idx] ): lowerCAmelCase : List[Any] = list_of_state_dict + attention(_A , _A ) lowerCAmelCase : List[str] = list_of_state_dict + final() for gg in list_of_state_dict: print(_A ) for i in range(len(_A ) ): lowerCAmelCase : Tuple = original_weights[list_of_state_dict[i][1]] model.load_state_dict(_A ) model.save_pretrained(_A ) image_processor.save_pretrained(_A ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": _lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '--cvt_model', default='cvt-w24', type=str, help='Name of the cvt model you\'d like to convert.', ) parser.add_argument( '--image_size', default=384, type=int, help='Input Image Size', ) parser.add_argument( '--cvt_file_name', default=r'cvtmodels\CvT-w24-384x384-IN-22k.pth', type=str, help='Input Image Size', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) _lowerCAmelCase : str = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
646
1
'''simple docstring''' import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('9.1.0'): _lowerCAmelCase : Any = { 'linear': PIL.Image.Resampling.BILINEAR, 'bilinear': PIL.Image.Resampling.BILINEAR, 'bicubic': PIL.Image.Resampling.BICUBIC, 'lanczos': PIL.Image.Resampling.LANCZOS, 'nearest': PIL.Image.Resampling.NEAREST, } else: _lowerCAmelCase : List[str] = { 'linear': PIL.Image.LINEAR, 'bilinear': PIL.Image.BILINEAR, 'bicubic': PIL.Image.BICUBIC, 'lanczos': PIL.Image.LANCZOS, 'nearest': PIL.Image.NEAREST, } def __UpperCamelCase ( _A : List[str] ) -> List[str]: """simple docstring""" lowerCAmelCase : List[str] = (images / 2 + 0.5).clamp(0 , 1 ) lowerCAmelCase : Dict = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowerCAmelCase : str = numpy_to_pil(_A ) return images def __UpperCamelCase ( _A : Any ) -> Optional[int]: """simple docstring""" if images.ndim == 3: lowerCAmelCase : int = images[None, ...] lowerCAmelCase : Union[str, Any] = (images * 2_55).round().astype('uint8' ) if images.shape[-1] == 1: # special case for grayscale (single channel) images lowerCAmelCase : List[str] = [Image.fromarray(image.squeeze() , mode='L' ) for image in images] else: lowerCAmelCase : Any = [Image.fromarray(_A ) for image in images] return pil_images
646
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Any = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { 'xlm-roberta-base': 'https://huggingface.co/xlm-roberta-base/resolve/main/config.json', 'xlm-roberta-large': 'https://huggingface.co/xlm-roberta-large/resolve/main/config.json', 'xlm-roberta-large-finetuned-conll02-dutch': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll02-spanish': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-english': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-german': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json' ), } class lowerCAmelCase ( a ): _lowerCamelCase : List[str] = """xlm-roberta""" def __init__( self , snake_case__=3_0522 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=1e-1_2 , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__="absolute" , snake_case__=True , snake_case__=None , **snake_case__ , ): super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) lowerCAmelCase : Optional[Any] = vocab_size lowerCAmelCase : Optional[Any] = hidden_size lowerCAmelCase : Optional[Any] = num_hidden_layers lowerCAmelCase : Any = num_attention_heads lowerCAmelCase : Optional[int] = hidden_act lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : Dict = hidden_dropout_prob lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob lowerCAmelCase : Optional[Any] = max_position_embeddings lowerCAmelCase : Optional[int] = type_vocab_size lowerCAmelCase : int = initializer_range lowerCAmelCase : List[Any] = layer_norm_eps lowerCAmelCase : Union[str, Any] = position_embedding_type lowerCAmelCase : Union[str, Any] = use_cache lowerCAmelCase : List[str] = classifier_dropout class lowerCAmelCase ( a ): @property def lowercase ( self ): if self.task == "multiple-choice": lowerCAmelCase : str = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase : Optional[int] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
646
1
'''simple docstring''' import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) _lowerCAmelCase : List[str] = '\\n Text data.\n Second line of data.' _lowerCAmelCase : Any = 'file' @pytest.fixture(scope='session' ) def __UpperCamelCase ( _A : List[Any] ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase : List[str] = tmp_path_factory.mktemp('data' ) / (FILE_PATH + '.zstd') lowerCAmelCase : Tuple = bytes(_A , 'utf-8' ) with zstd.open(_A , 'wb' ) as f: f.write(_A ) return path @pytest.fixture def __UpperCamelCase ( _A : List[str] ) -> Union[str, Any]: """simple docstring""" with open(os.path.join(tmpfs.local_root_dir , _A ) , 'w' ) as f: f.write(_A ) return FILE_PATH @pytest.mark.parametrize('compression_format' , ['gzip', 'xz', 'zstd'] ) def __UpperCamelCase ( _A : str , _A : Tuple , _A : List[str] , _A : Dict , _A : int , _A : Optional[Any] ) -> Tuple: """simple docstring""" lowerCAmelCase : str = {'gzip': gz_file, 'xz': xz_file, 'zstd': zstd_path} lowerCAmelCase : Union[str, Any] = input_paths[compression_format] lowerCAmelCase : Optional[Any] = tmp_path / 'cache' lowerCAmelCase : int = DownloadConfig(cache_dir=_A , extract_compressed_file=_A ) lowerCAmelCase : Optional[int] = cached_path(_A , download_config=_A ) with open(_A ) as f: lowerCAmelCase : Any = f.read() with open(_A ) as f: lowerCAmelCase : List[str] = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize('default_extracted' , [True, False] ) @pytest.mark.parametrize('default_cache_dir' , [True, False] ) def __UpperCamelCase ( _A : int , _A : Any , _A : Tuple , _A : Any , _A : List[Any] ) -> Optional[int]: """simple docstring""" lowerCAmelCase : Union[str, Any] = 'custom_cache' lowerCAmelCase : Any = 'custom_extracted_dir' lowerCAmelCase : int = tmp_path / 'custom_extracted_path' if default_extracted: lowerCAmelCase : Tuple = ('downloads' if default_cache_dir else custom_cache_dir, 'extracted') else: monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_DIR' , _A ) monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_PATH' , str(_A ) ) lowerCAmelCase : Any = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) lowerCAmelCase : List[Any] = xz_file lowerCAmelCase : List[Any] = ( DownloadConfig(extract_compressed_file=_A ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=_A ) ) lowerCAmelCase : Dict = cached_path(_A , download_config=_A ) assert Path(_A ).parent.parts[-2:] == expected def __UpperCamelCase ( _A : Optional[int] ) -> List[str]: """simple docstring""" lowerCAmelCase : Optional[int] = str(Path(_A ).resolve() ) assert cached_path(_A ) == text_file # relative path lowerCAmelCase : Optional[Any] = str(Path(_A ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(_A ) == text_file def __UpperCamelCase ( _A : str ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase : int = str(tmp_path.resolve() / '__missing_file__.txt' ) with pytest.raises(_A ): cached_path(_A ) # relative path lowerCAmelCase : Union[str, Any] = './__missing_file__.txt' with pytest.raises(_A ): cached_path(_A ) def __UpperCamelCase ( _A : Optional[Any] ) -> Optional[int]: """simple docstring""" lowerCAmelCase : str = get_from_cache(F"tmp://{tmpfs_file}" ) with open(_A ) as f: lowerCAmelCase : Tuple = f.read() assert output_file_content == FILE_CONTENT @patch('datasets.config.HF_DATASETS_OFFLINE' , _A ) def __UpperCamelCase ( ) -> List[str]: """simple docstring""" with pytest.raises(_A ): cached_path('https://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE' , _A ) def __UpperCamelCase ( _A : Tuple ) -> Any: """simple docstring""" lowerCAmelCase : Union[str, Any] = tmp_path_factory.mktemp('data' ) / 'file.html' with pytest.raises(_A ): http_get('https://huggingface.co' , temp_file=_A ) with pytest.raises(_A ): http_head('https://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE' , _A ) def __UpperCamelCase ( _A : List[str] ) -> Optional[int]: """simple docstring""" lowerCAmelCase : Tuple = tmp_path_factory.mktemp('data' ) / 'file.html' with pytest.raises(_A ): ftp_get('ftp://huggingface.co' , temp_file=_A ) with pytest.raises(_A ): ftp_head('ftp://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE' , _A ) def __UpperCamelCase ( _A : Dict ) -> List[str]: """simple docstring""" lowerCAmelCase : Dict = tmp_path_factory.mktemp('data' ) / 'file.html' with pytest.raises(_A ): fsspec_get('s3://huggingface.co' , temp_file=_A ) with pytest.raises(_A ): fsspec_head('s3://huggingface.co' )
646
'''simple docstring''' import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer _lowerCAmelCase : List[Any] = logging.getLogger(__name__) def __UpperCamelCase ( ) -> Any: """simple docstring""" lowerCAmelCase : str = argparse.ArgumentParser( description='Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.' ) parser.add_argument( '--dataset_name' , type=_A , default='wikitext' , help='Name of the training. Explore datasets at: hf.co/datasets.' , ) parser.add_argument( '--dataset_config' , type=_A , default='wikitext-103-raw-v1' , help='Configuration name of the dataset.' ) parser.add_argument( '--tokenizer_name_or_path' , type=_A , default='sayakpaul/unigram-tokenizer-wikitext' , help='Tokenizer identifier. Can be a local filepath or a Hub identifier.' , ) parser.add_argument( '--shard_size' , type=_A , default=10_00 , help='Number of entries to go in a single shard.' , ) parser.add_argument('--split' , type=_A , default='train' , choices=['train', 'test', 'validation'] ) parser.add_argument( '--limit' , default=_A , type=_A , help='Limit the number of shards (used for debugging).' , ) parser.add_argument( '--max_length' , type=_A , default=5_12 , help='Maximum sequence length. For training on TPUs, it helps to have a maximum' ' sequence length that is a multiple of 8.' , ) parser.add_argument( '--output_dir' , default='tf-tpu' , type=_A , help='Output directory where the TFRecord shards will be saved. If the' ' path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord' ' shards will be directly saved to a Google Cloud Storage bucket.' , ) lowerCAmelCase : Any = parser.parse_args() return args def __UpperCamelCase ( _A : Optional[int] ) -> int: """simple docstring""" def fn(_A : Tuple ): return tokenizer(examples['text'] ) return fn def __UpperCamelCase ( _A : int ) -> int: """simple docstring""" lowerCAmelCase : Tuple = [] for i in range(len(tokenized_data['input_ids'] ) ): lowerCAmelCase : Optional[Any] = { 'input_ids': tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data['input_ids'][i] ) ), 'attention_mask': tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data['attention_mask'][i] ) ), } lowerCAmelCase : Any = tf.train.Features(feature=_A ) lowerCAmelCase : List[str] = tf.train.Example(features=_A ) lowerCAmelCase : Tuple = example.SerializeToString() records.append(_A ) return records def __UpperCamelCase ( _A : int ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase : Union[str, Any] = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: lowerCAmelCase : Optional[Any] = min(len(_A ) , args.limit ) lowerCAmelCase : Dict = dataset.select(range(_A ) ) print(F"Limiting the dataset to {args.limit} entries." ) lowerCAmelCase : str = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) lowerCAmelCase : Any = os.path.join(args.output_dir , args.split ) if not os.path.exists(_A ): os.makedirs(_A ) else: lowerCAmelCase : List[Any] = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. lowerCAmelCase : Any = tokenize_function(_A ) lowerCAmelCase : Optional[int] = dataset.map(_A , batched=_A , num_proc=4 , remove_columns=['text'] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(_A : str ): # Concatenate all texts. lowerCAmelCase : Optional[int] = {k: sum(examples[k] , [] ) for k in examples.keys()} lowerCAmelCase : str = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 lowerCAmelCase : List[Any] = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. lowerCAmelCase : str = { k: [t[i : i + args.max_length] for i in range(0 , _A , args.max_length )] for k, t in concatenated_examples.items() } return result lowerCAmelCase : List[Any] = dataset_tokenized.map(_A , batched=_A , batch_size=10_00 , num_proc=4 ) lowerCAmelCase : Union[str, Any] = 0 lowerCAmelCase : Tuple = 0 for shard in range(0 , len(_A ) , args.shard_size ): lowerCAmelCase : Optional[Any] = grouped_dataset[shard : shard + args.shard_size] lowerCAmelCase : List[str] = len(dataset_snapshot['input_ids'] ) lowerCAmelCase : Union[str, Any] = os.path.join(_A , F"dataset-{shard_count}-{records_containing}.tfrecord" ) lowerCAmelCase : List[Any] = get_serialized_examples(_A ) with tf.io.TFRecordWriter(_A ) as out_file: for i in range(len(_A ) ): lowerCAmelCase : Union[str, Any] = serialized_examples[i] out_file.write(_A ) print('Wrote file {} containing {} records'.format(_A , _A ) ) shard_count += 1 total_records += records_containing with open(F"split-{args.split}-records-count.txt" , 'w' ) as f: print(F"Total {args.split} records: {total_records}" , file=_A ) if __name__ == "__main__": _lowerCAmelCase : List[Any] = parse_args() main(args)
646
1
'''simple docstring''' from collections.abc import Sequence def __UpperCamelCase ( _A : Sequence[float] , _A : float ) -> float: """simple docstring""" return sum(c * (x**i) for i, c in enumerate(_A ) ) def __UpperCamelCase ( _A : Sequence[float] , _A : float ) -> float: """simple docstring""" lowerCAmelCase : Union[str, Any] = 0.0 for coeff in reversed(_A ): lowerCAmelCase : List[Any] = result * x + coeff return result if __name__ == "__main__": _lowerCAmelCase : Optional[int] = (0.0, 0.0, 5.0, 9.3, 7.0) _lowerCAmelCase : Union[str, Any] = 1_0.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
646
'''simple docstring''' import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() _lowerCAmelCase : List[str] = logging.get_logger('transformers.models.speecht5') def __UpperCamelCase ( _A : Any , _A : Dict , _A : Any ) -> Union[str, Any]: """simple docstring""" hf_model.apply_weight_norm() lowerCAmelCase : int = checkpoint['input_conv.weight_g'] lowerCAmelCase : Optional[int] = checkpoint['input_conv.weight_v'] lowerCAmelCase : Dict = checkpoint['input_conv.bias'] for i in range(len(config.upsample_rates ) ): lowerCAmelCase : Optional[Any] = checkpoint[F"upsamples.{i}.1.weight_g"] lowerCAmelCase : str = checkpoint[F"upsamples.{i}.1.weight_v"] lowerCAmelCase : str = checkpoint[F"upsamples.{i}.1.bias"] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): lowerCAmelCase : int = checkpoint[F"blocks.{i}.convs1.{j}.1.weight_g"] lowerCAmelCase : str = checkpoint[F"blocks.{i}.convs1.{j}.1.weight_v"] lowerCAmelCase : int = checkpoint[F"blocks.{i}.convs1.{j}.1.bias"] lowerCAmelCase : Optional[Any] = checkpoint[F"blocks.{i}.convs2.{j}.1.weight_g"] lowerCAmelCase : Tuple = checkpoint[F"blocks.{i}.convs2.{j}.1.weight_v"] lowerCAmelCase : Tuple = checkpoint[F"blocks.{i}.convs2.{j}.1.bias"] lowerCAmelCase : List[Any] = checkpoint['output_conv.1.weight_g'] lowerCAmelCase : List[str] = checkpoint['output_conv.1.weight_v'] lowerCAmelCase : Optional[Any] = checkpoint['output_conv.1.bias'] hf_model.remove_weight_norm() @torch.no_grad() def __UpperCamelCase ( _A : Dict , _A : Union[str, Any] , _A : List[Any] , _A : Any=None , _A : Any=None , ) -> Dict: """simple docstring""" if config_path is not None: lowerCAmelCase : Dict = SpeechTaHifiGanConfig.from_pretrained(_A ) else: lowerCAmelCase : Union[str, Any] = SpeechTaHifiGanConfig() lowerCAmelCase : List[Any] = SpeechTaHifiGan(_A ) lowerCAmelCase : List[str] = torch.load(_A ) load_weights(orig_checkpoint['model']['generator'] , _A , _A ) lowerCAmelCase : Tuple = np.load(_A ) lowerCAmelCase : List[Any] = stats[0].reshape(-1 ) lowerCAmelCase : int = stats[1].reshape(-1 ) lowerCAmelCase : Union[str, Any] = torch.from_numpy(_A ).float() lowerCAmelCase : int = torch.from_numpy(_A ).float() model.save_pretrained(_A ) if repo_id: print('Pushing to the hub...' ) model.push_to_hub(_A ) if __name__ == "__main__": _lowerCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--stats_path', required=True, default=None, type=str, help='Path to stats.npy file') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) _lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
646
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Any = logging.get_logger(__name__) _lowerCAmelCase : List[Any] = { 'google/canine-s': 'https://huggingface.co/google/canine-s/resolve/main/config.json', # See all CANINE models at https://huggingface.co/models?filter=canine } class lowerCAmelCase ( a ): _lowerCamelCase : Any = """canine""" def __init__( self , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=1_6384 , snake_case__=16 , snake_case__=0.0_2 , snake_case__=1e-1_2 , snake_case__=0 , snake_case__=0Xe_000 , snake_case__=0Xe_001 , snake_case__=4 , snake_case__=4 , snake_case__=8 , snake_case__=1_6384 , snake_case__=128 , **snake_case__ , ): super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) lowerCAmelCase : Union[str, Any] = max_position_embeddings lowerCAmelCase : Tuple = hidden_size lowerCAmelCase : Optional[Any] = num_hidden_layers lowerCAmelCase : Any = num_attention_heads lowerCAmelCase : int = intermediate_size lowerCAmelCase : int = hidden_act lowerCAmelCase : str = hidden_dropout_prob lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob lowerCAmelCase : Any = initializer_range lowerCAmelCase : Any = type_vocab_size lowerCAmelCase : List[str] = layer_norm_eps # Character config: lowerCAmelCase : str = downsampling_rate lowerCAmelCase : Dict = upsampling_kernel_size lowerCAmelCase : Optional[int] = num_hash_functions lowerCAmelCase : List[str] = num_hash_buckets lowerCAmelCase : str = local_transformer_stride
646
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets _lowerCAmelCase : Dict = '\\n@inproceedings{popovic-2015-chrf,\n title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",\n month = sep,\n year = "2015",\n address = "Lisbon, Portugal",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W15-3049",\n doi = "10.18653/v1/W15-3049",\n pages = "392--395",\n}\n@inproceedings{popovic-2017-chrf,\n title = "chr{F}++: words helping character n-grams",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Second Conference on Machine Translation",\n month = sep,\n year = "2017",\n address = "Copenhagen, Denmark",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W17-4770",\n doi = "10.18653/v1/W17-4770",\n pages = "612--618",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' _lowerCAmelCase : Optional[Any] = '\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n' _lowerCAmelCase : List[Any] = '\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n \'score\' (float): The chrF (chrF++) score,\n \'char_order\' (int): The character n-gram order,\n \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n \'beta\' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase ( datasets.Metric ): def lowercase ( self ): if version.parse(scb.__version__ ) < version.parse('1.4.12' ): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/mjpost/sacreBLEU#chrf--chrf' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/mjpost/sacreBLEU#chrf--chrf'] , reference_urls=[ 'https://github.com/m-popovic/chrF', ] , ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ = CHRF.CHAR_ORDER , snake_case__ = CHRF.WORD_ORDER , snake_case__ = CHRF.BETA , snake_case__ = False , snake_case__ = False , snake_case__ = False , ): lowerCAmelCase : List[str] = len(references[0] ) if any(len(snake_case__ ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) lowerCAmelCase : List[str] = [[refs[i] for refs in references] for i in range(snake_case__ )] lowerCAmelCase : Union[str, Any] = CHRF(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase : Dict = sb_chrf.corpus_score(snake_case__ , snake_case__ ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
646
1
'''simple docstring''' from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def __UpperCamelCase ( ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase : Dict = HfArgumentParser(_A ) lowerCAmelCase : Dict = parser.parse_args_into_dataclasses()[0] lowerCAmelCase : Any = TensorFlowBenchmark(args=_A ) try: lowerCAmelCase : Optional[int] = parser.parse_args_into_dataclasses()[0] except ValueError as e: lowerCAmelCase : Tuple = 'Arg --no_{0} is no longer used, please use --no-{0} instead.' lowerCAmelCase : Dict = ' '.join(str(_A ).split(' ' )[:-1] ) lowerCAmelCase : int = '' lowerCAmelCase : Dict = eval(str(_A ).split(' ' )[-1] ) lowerCAmelCase : Dict = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(_A ) if len(_A ) > 0: lowerCAmelCase : Any = full_error_msg + begin_error_msg + str(_A ) raise ValueError(_A ) benchmark.run() if __name__ == "__main__": main()
646
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : str = logging.get_logger(__name__) _lowerCAmelCase : Tuple = { 's-JoL/Open-Llama-V1': 'https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json', } class lowerCAmelCase ( a ): _lowerCamelCase : Union[str, Any] = """open-llama""" def __init__( self , snake_case__=10_0000 , snake_case__=4096 , snake_case__=1_1008 , snake_case__=32 , snake_case__=32 , snake_case__="silu" , snake_case__=2048 , snake_case__=0.0_2 , snake_case__=1e-6 , snake_case__=True , snake_case__=0 , snake_case__=1 , snake_case__=2 , snake_case__=False , snake_case__=True , snake_case__=0.1 , snake_case__=0.1 , snake_case__=True , snake_case__=True , snake_case__=None , **snake_case__ , ): lowerCAmelCase : Tuple = vocab_size lowerCAmelCase : Optional[Any] = max_position_embeddings lowerCAmelCase : List[Any] = hidden_size lowerCAmelCase : List[Any] = intermediate_size lowerCAmelCase : Tuple = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : str = rms_norm_eps lowerCAmelCase : Optional[int] = use_cache lowerCAmelCase : Dict = kwargs.pop( 'use_memorry_efficient_attention' , snake_case__ ) lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : Optional[Any] = attention_dropout_prob lowerCAmelCase : Union[str, Any] = use_stable_embedding lowerCAmelCase : Tuple = shared_input_output_embedding lowerCAmelCase : Tuple = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , tie_word_embeddings=snake_case__ , **snake_case__ , ) def lowercase ( self ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , snake_case__ ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' f"got {self.rope_scaling}" ) lowerCAmelCase : List[Any] = self.rope_scaling.get('type' , snake_case__ ) lowerCAmelCase : List[str] = self.rope_scaling.get('factor' , snake_case__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(snake_case__ , snake_case__ ) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
646
1
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging _lowerCAmelCase : str = logging.get_logger(__name__) _lowerCAmelCase : str = {'vocab_file': 'spiece.model'} _lowerCAmelCase : int = { 'vocab_file': { 'TsinghuaAI/CPM-Generate': 'https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model', } } class lowerCAmelCase ( a ): def __init__( self , snake_case__ , snake_case__=False , snake_case__=True , snake_case__=False , snake_case__="<s>" , snake_case__="</s>" , snake_case__="<unk>" , snake_case__="<sep>" , snake_case__="<pad>" , snake_case__="<cls>" , snake_case__="<mask>" , snake_case__=["<eop>", "<eod>"] , snake_case__ = None , **snake_case__ , ): lowerCAmelCase : int = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else mask_token lowerCAmelCase : Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=snake_case__ , remove_space=snake_case__ , keep_accents=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , additional_special_tokens=snake_case__ , sp_model_kwargs=self.sp_model_kwargs , **snake_case__ , ) lowerCAmelCase : List[str] = 3 lowerCAmelCase : Tuple = do_lower_case lowerCAmelCase : Any = remove_space lowerCAmelCase : Tuple = keep_accents lowerCAmelCase : Dict = vocab_file lowerCAmelCase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(snake_case__ ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( 'You need to install jieba to use CpmTokenizer or CpmTokenizerFast. ' 'See https://pypi.org/project/jieba/ for installation.' ) lowerCAmelCase : Optional[Any] = jieba lowerCAmelCase : List[str] = str.maketrans(' \n' , '\u2582\u2583' ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def lowercase ( self ): return len(self.sp_model ) def lowercase ( self ): lowerCAmelCase : Dict = {self.convert_ids_to_tokens(snake_case__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): lowerCAmelCase : Tuple = self.__dict__.copy() lowerCAmelCase : int = None return state def __setstate__( self , snake_case__ ): lowerCAmelCase : str = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowerCAmelCase : str = {} lowerCAmelCase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase ( self , snake_case__ ): if self.remove_space: lowerCAmelCase : Optional[Any] = ' '.join(inputs.strip().split() ) else: lowerCAmelCase : Any = inputs lowerCAmelCase : Optional[int] = outputs.replace('``' , '"' ).replace('\'\'' , '"' ) if not self.keep_accents: lowerCAmelCase : List[Any] = unicodedata.normalize('NFKD' , snake_case__ ) lowerCAmelCase : List[str] = ''.join([c for c in outputs if not unicodedata.combining(snake_case__ )] ) if self.do_lower_case: lowerCAmelCase : Any = outputs.lower() return outputs def lowercase ( self , snake_case__ ): lowerCAmelCase : str = self.preprocess_text(snake_case__ ) lowerCAmelCase : Optional[int] = self.sp_model.encode(snake_case__ , out_type=snake_case__ ) lowerCAmelCase : Any = [] for piece in pieces: if len(snake_case__ ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit(): lowerCAmelCase : Optional[Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(snake_case__ , '' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: lowerCAmelCase : int = cur_pieces[1:] else: lowerCAmelCase : Optional[int] = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(snake_case__ ) else: new_pieces.append(snake_case__ ) return new_pieces def lowercase ( self , snake_case__ ): return self.sp_model.PieceToId(snake_case__ ) def lowercase ( self , snake_case__ ): return self.sp_model.IdToPiece(snake_case__ ) def lowercase ( self , snake_case__ ): lowerCAmelCase : Union[str, Any] = ''.join(snake_case__ ).replace(snake_case__ , ' ' ).strip() return out_string def lowercase ( self , snake_case__ , snake_case__ = None ): lowerCAmelCase : List[Any] = [self.sep_token_id] lowerCAmelCase : Dict = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def lowercase ( self , snake_case__ , snake_case__ = None , snake_case__ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is not None: return ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) + [1, 1] return ([0] * len(snake_case__ )) + [1, 1] def lowercase ( self , snake_case__ , snake_case__ = None ): lowerCAmelCase : str = [self.sep_token_id] lowerCAmelCase : int = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def lowercase ( self , snake_case__ , snake_case__ = None ): if not os.path.isdir(snake_case__ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return lowerCAmelCase : str = os.path.join( snake_case__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case__ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case__ , 'wb' ) as fi: lowerCAmelCase : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(snake_case__ ) return (out_vocab_file,) def lowercase ( self , *snake_case__ , **snake_case__ ): lowerCAmelCase : str = super()._decode(*snake_case__ , **snake_case__ ) lowerCAmelCase : Optional[int] = text.replace(' ' , '' ).replace('\u2582' , ' ' ).replace('\u2583' , '\n' ) return text
646
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) _lowerCAmelCase : Dict = { 'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class lowerCAmelCase ( a ): _lowerCamelCase : Any = """deformable_detr""" _lowerCamelCase : List[str] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , snake_case__=True , snake_case__=None , snake_case__=3 , snake_case__=300 , snake_case__=1024 , snake_case__=6 , snake_case__=1024 , snake_case__=8 , snake_case__=6 , snake_case__=1024 , snake_case__=8 , snake_case__=0.0 , snake_case__=True , snake_case__="relu" , snake_case__=256 , snake_case__=0.1 , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.0_2 , snake_case__=1.0 , snake_case__=True , snake_case__=False , snake_case__="sine" , snake_case__="resnet50" , snake_case__=True , snake_case__=False , snake_case__=4 , snake_case__=4 , snake_case__=4 , snake_case__=False , snake_case__=300 , snake_case__=False , snake_case__=1 , snake_case__=5 , snake_case__=2 , snake_case__=1 , snake_case__=1 , snake_case__=5 , snake_case__=2 , snake_case__=0.1 , snake_case__=0.2_5 , snake_case__=False , **snake_case__ , ): if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) lowerCAmelCase : Optional[int] = CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : List[str] = backbone_config.get('model_type' ) lowerCAmelCase : str = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase : Optional[Any] = config_class.from_dict(snake_case__ ) lowerCAmelCase : Union[str, Any] = use_timm_backbone lowerCAmelCase : List[Any] = backbone_config lowerCAmelCase : Any = num_channels lowerCAmelCase : Tuple = num_queries lowerCAmelCase : Dict = max_position_embeddings lowerCAmelCase : int = d_model lowerCAmelCase : List[str] = encoder_ffn_dim lowerCAmelCase : List[str] = encoder_layers lowerCAmelCase : int = encoder_attention_heads lowerCAmelCase : str = decoder_ffn_dim lowerCAmelCase : str = decoder_layers lowerCAmelCase : Dict = decoder_attention_heads lowerCAmelCase : str = dropout lowerCAmelCase : List[str] = attention_dropout lowerCAmelCase : Union[str, Any] = activation_dropout lowerCAmelCase : str = activation_function lowerCAmelCase : Any = init_std lowerCAmelCase : Any = init_xavier_std lowerCAmelCase : Dict = encoder_layerdrop lowerCAmelCase : int = auxiliary_loss lowerCAmelCase : Optional[Any] = position_embedding_type lowerCAmelCase : List[str] = backbone lowerCAmelCase : int = use_pretrained_backbone lowerCAmelCase : int = dilation # deformable attributes lowerCAmelCase : List[str] = num_feature_levels lowerCAmelCase : List[str] = encoder_n_points lowerCAmelCase : Union[str, Any] = decoder_n_points lowerCAmelCase : Tuple = two_stage lowerCAmelCase : Dict = two_stage_num_proposals lowerCAmelCase : Union[str, Any] = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.' ) # Hungarian matcher lowerCAmelCase : Union[str, Any] = class_cost lowerCAmelCase : Dict = bbox_cost lowerCAmelCase : List[Any] = giou_cost # Loss coefficients lowerCAmelCase : Dict = mask_loss_coefficient lowerCAmelCase : Any = dice_loss_coefficient lowerCAmelCase : str = bbox_loss_coefficient lowerCAmelCase : Tuple = giou_loss_coefficient lowerCAmelCase : List[str] = eos_coefficient lowerCAmelCase : Any = focal_alpha lowerCAmelCase : Dict = disable_custom_kernels super().__init__(is_encoder_decoder=snake_case__ , **snake_case__ ) @property def lowercase ( self ): return self.encoder_attention_heads @property def lowercase ( self ): return self.d_model def lowercase ( self ): lowerCAmelCase : Union[str, Any] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: lowerCAmelCase : List[Any] = self.backbone_config.to_dict() lowerCAmelCase : str = self.__class__.model_type return output
646
1
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) _lowerCAmelCase : Any = { 'microsoft/git-base': 'https://huggingface.co/microsoft/git-base/resolve/main/config.json', } class lowerCAmelCase ( a ): _lowerCamelCase : Union[str, Any] = """git_vision_model""" def __init__( self , snake_case__=768 , snake_case__=3072 , snake_case__=12 , snake_case__=12 , snake_case__=3 , snake_case__=224 , snake_case__=16 , snake_case__="quick_gelu" , snake_case__=1e-5 , snake_case__=0.0 , snake_case__=0.0_2 , **snake_case__ , ): super().__init__(**snake_case__ ) lowerCAmelCase : str = hidden_size lowerCAmelCase : List[Any] = intermediate_size lowerCAmelCase : Tuple = num_hidden_layers lowerCAmelCase : List[str] = num_attention_heads lowerCAmelCase : int = num_channels lowerCAmelCase : List[Any] = patch_size lowerCAmelCase : str = image_size lowerCAmelCase : Tuple = initializer_range lowerCAmelCase : List[str] = attention_dropout lowerCAmelCase : int = layer_norm_eps lowerCAmelCase : Optional[Any] = hidden_act @classmethod def lowercase ( cls , snake_case__ , **snake_case__ ): cls._set_token_in_kwargs(snake_case__ ) lowerCAmelCase , lowerCAmelCase : Optional[Any] = cls.get_config_dict(snake_case__ , **snake_case__ ) # get the vision config dict if we are loading from GITConfig if config_dict.get('model_type' ) == "git": lowerCAmelCase : Union[str, Any] = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(snake_case__ , **snake_case__ ) class lowerCAmelCase ( a ): _lowerCamelCase : Optional[int] = """git""" def __init__( self , snake_case__=None , snake_case__=3_0522 , snake_case__=768 , snake_case__=6 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=1024 , snake_case__=0.0_2 , snake_case__=1e-1_2 , snake_case__=0 , snake_case__="absolute" , snake_case__=True , snake_case__=False , snake_case__=101 , snake_case__=102 , snake_case__=None , **snake_case__ , ): super().__init__(bos_token_id=snake_case__ , eos_token_id=snake_case__ , pad_token_id=snake_case__ , **snake_case__ ) if vision_config is None: lowerCAmelCase : Any = {} logger.info('vision_config is None. initializing the GitVisionConfig with default values.' ) lowerCAmelCase : Optional[Any] = GitVisionConfig(**snake_case__ ) lowerCAmelCase : str = vocab_size lowerCAmelCase : Optional[int] = hidden_size lowerCAmelCase : List[Any] = num_hidden_layers lowerCAmelCase : str = num_attention_heads lowerCAmelCase : int = hidden_act lowerCAmelCase : Union[str, Any] = intermediate_size lowerCAmelCase : Dict = hidden_dropout_prob lowerCAmelCase : int = attention_probs_dropout_prob lowerCAmelCase : Optional[int] = max_position_embeddings lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : Optional[Any] = layer_norm_eps lowerCAmelCase : Optional[int] = position_embedding_type lowerCAmelCase : Any = use_cache lowerCAmelCase : List[str] = tie_word_embeddings lowerCAmelCase : Dict = num_image_with_embedding lowerCAmelCase : Tuple = bos_token_id lowerCAmelCase : Any = eos_token_id def lowercase ( self ): lowerCAmelCase : Union[str, Any] = copy.deepcopy(self.__dict__ ) lowerCAmelCase : Dict = self.vision_config.to_dict() lowerCAmelCase : Optional[int] = self.__class__.model_type return output
646
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece_no_bos.model') @require_sentencepiece @require_tokenizers class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : str = PegasusTokenizer _lowerCamelCase : Union[str, Any] = PegasusTokenizerFast _lowerCamelCase : Optional[Any] = True _lowerCamelCase : Optional[Any] = True def lowercase ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : List[Any] = PegasusTokenizer(snake_case__ ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase ( self ): return PegasusTokenizer.from_pretrained('google/pegasus-large' ) def lowercase ( self , **snake_case__ ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def lowercase ( self , snake_case__ ): return ("This is a test", "This is a test") def lowercase ( self ): lowerCAmelCase : Optional[int] = '</s>' lowerCAmelCase : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '</s>' ) self.assertEqual(vocab_keys[-1] , 'v' ) self.assertEqual(len(snake_case__ ) , 1103 ) def lowercase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def lowercase ( self ): lowerCAmelCase : List[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : List[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : Optional[Any] = ( 'Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important' ' </s> <pad> <pad> <pad>' ) lowerCAmelCase : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] lowerCAmelCase : Optional[int] = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Any = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowerCAmelCase : List[str] = '<mask_1> To ensure a <mask_2> flow of bank resolutions.' lowerCAmelCase : Optional[Any] = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1] lowerCAmelCase : Optional[Any] = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Optional[Any] = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 lowerCAmelCase : List[Any] = 'To ensure a smooth flow of bank resolutions.' lowerCAmelCase : Optional[int] = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1] lowerCAmelCase : Any = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def lowercase ( self ): lowerCAmelCase : Union[str, Any] = ['This is going to be way too long.' * 150, 'short example'] lowerCAmelCase : int = ['not super long but more than 5 tokens', 'tiny'] lowerCAmelCase : Dict = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) lowerCAmelCase : Dict = self._large_tokenizer( text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(snake_case__ ) == 2 # input_ids, attention_mask. @slow def lowercase ( self ): # fmt: off lowerCAmelCase : Tuple = {'input_ids': [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name='google/bigbird-pegasus-large-arxiv' , revision='ba85d0851d708441f91440d509690f1ab6353415' , ) @require_sentencepiece @require_tokenizers class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : Optional[Any] = PegasusTokenizer _lowerCamelCase : str = PegasusTokenizerFast _lowerCamelCase : Tuple = True _lowerCamelCase : int = True def lowercase ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : int = PegasusTokenizer(snake_case__ , offset=0 , mask_token_sent=snake_case__ , mask_token='[MASK]' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase ( self ): return PegasusTokenizer.from_pretrained('google/bigbird-pegasus-large-arxiv' ) def lowercase ( self , **snake_case__ ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def lowercase ( self , snake_case__ ): return ("This is a test", "This is a test") def lowercase ( self ): lowerCAmelCase : Tuple = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : Union[str, Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : List[str] = ( 'Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>' ' <pad> <pad> <pad>' ) lowerCAmelCase : Dict = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] lowerCAmelCase : Union[str, Any] = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) @require_torch def lowercase ( self ): lowerCAmelCase : Optional[int] = ['This is going to be way too long.' * 1000, 'short example'] lowerCAmelCase : Union[str, Any] = ['not super long but more than 5 tokens', 'tiny'] lowerCAmelCase : List[str] = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) lowerCAmelCase : List[str] = self._large_tokenizer( text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(snake_case__ ) == 2 # input_ids, attention_mask. def lowercase ( self ): lowerCAmelCase : List[str] = ( 'This is an example string that is used to test the original TF implementation against the HF' ' implementation' ) lowerCAmelCase : Tuple = self._large_tokenizer(snake_case__ ).input_ids self.assertListEqual( snake_case__ , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
646
1
'''simple docstring''' from PIL import Image def __UpperCamelCase ( _A : Image , _A : float ) -> Image: """simple docstring""" def brightness(_A : int ) -> float: return 1_28 + level + (c - 1_28) if not -2_55.0 <= level <= 2_55.0: raise ValueError('level must be between -255.0 (black) and 255.0 (white)' ) return img.point(_A ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change brightness to 100 _lowerCAmelCase : str = change_brightness(img, 100) brigt_img.save('image_data/lena_brightness.png', format='png')
646
'''simple docstring''' import math import sys import cva import numpy as np def __UpperCamelCase ( _A : np.ndarray , _A : float ) -> np.ndarray: """simple docstring""" lowerCAmelCase : Union[str, Any] = math.sqrt(_A ) lowerCAmelCase : Union[str, Any] = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def __UpperCamelCase ( _A : np.ndarray , _A : int , _A : int , _A : int ) -> np.ndarray: """simple docstring""" lowerCAmelCase : int = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def __UpperCamelCase ( _A : int , _A : float ) -> np.ndarray: """simple docstring""" lowerCAmelCase : Dict = np.zeros((kernel_size, kernel_size) ) for i in range(0 , _A ): for j in range(0 , _A ): lowerCAmelCase : Optional[int] = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(_A , _A ) def __UpperCamelCase ( _A : np.ndarray , _A : float , _A : float , _A : int , ) -> np.ndarray: """simple docstring""" lowerCAmelCase : str = np.zeros(img.shape ) lowerCAmelCase : int = get_gauss_kernel(_A , _A ) lowerCAmelCase , lowerCAmelCase : Dict = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): lowerCAmelCase : int = get_slice(_A , _A , _A , _A ) lowerCAmelCase : Any = img_s - img_s[kernel_size // 2, kernel_size // 2] lowerCAmelCase : str = vec_gaussian(_A , _A ) lowerCAmelCase : Optional[int] = np.multiply(_A , _A ) lowerCAmelCase : str = np.multiply(_A , _A ) lowerCAmelCase : Union[str, Any] = np.sum(_A ) / np.sum(_A ) lowerCAmelCase : Tuple = val return imga def __UpperCamelCase ( _A : list ) -> tuple: """simple docstring""" lowerCAmelCase : List[Any] = args[1] if args[1:] else '../image_data/lena.jpg' lowerCAmelCase : Any = float(args[2] ) if args[2:] else 1.0 lowerCAmelCase : Union[str, Any] = float(args[3] ) if args[3:] else 1.0 if args[4:]: lowerCAmelCase : int = int(args[4] ) lowerCAmelCase : Optional[Any] = kernel_size + abs(kernel_size % 2 - 1 ) else: lowerCAmelCase : Optional[int] = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Any = parse_args(sys.argv) _lowerCAmelCase : str = cva.imread(filename, 0) cva.imshow('input image', img) _lowerCAmelCase : Union[str, Any] = img / 255 _lowerCAmelCase : List[str] = out.astype('float32') _lowerCAmelCase : Optional[int] = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) _lowerCAmelCase : Union[str, Any] = out * 255 _lowerCAmelCase : Optional[Any] = np.uinta(out) cva.imshow('output image', out) cva.waitKey(0) cva.destroyAllWindows()
646
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCAmelCase : int = { 'configuration_mobilebert': [ 'MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileBertConfig', 'MobileBertOnnxConfig', ], 'tokenization_mobilebert': ['MobileBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : List[str] = ['MobileBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Union[str, Any] = [ 'MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileBertForMaskedLM', 'MobileBertForMultipleChoice', 'MobileBertForNextSentencePrediction', 'MobileBertForPreTraining', 'MobileBertForQuestionAnswering', 'MobileBertForSequenceClassification', 'MobileBertForTokenClassification', 'MobileBertLayer', 'MobileBertModel', 'MobileBertPreTrainedModel', 'load_tf_weights_in_mobilebert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Dict = [ 'TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileBertForMaskedLM', 'TFMobileBertForMultipleChoice', 'TFMobileBertForNextSentencePrediction', 'TFMobileBertForPreTraining', 'TFMobileBertForQuestionAnswering', 'TFMobileBertForSequenceClassification', 'TFMobileBertForTokenClassification', 'TFMobileBertMainLayer', 'TFMobileBertModel', 'TFMobileBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys _lowerCAmelCase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
646
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowerCAmelCase : int = { 'configuration_nezha': ['NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NezhaConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Tuple = [ 'NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST', 'NezhaForNextSentencePrediction', 'NezhaForMaskedLM', 'NezhaForPreTraining', 'NezhaForMultipleChoice', 'NezhaForQuestionAnswering', 'NezhaForSequenceClassification', 'NezhaForTokenClassification', 'NezhaModel', 'NezhaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys _lowerCAmelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
646
1
'''simple docstring''' import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class lowerCAmelCase ( a ): def lowercase ( self ): lowerCAmelCase : Optional[int] = pa.array(TypedSequence([1, 2, 3] ) ) self.assertEqual(arr.type , pa.intaa() ) def lowercase ( self ): with self.assertRaises(snake_case__ ): lowerCAmelCase : int = pa.array(TypedSequence([1, 2, 3] ) , type=pa.intaa() ) def lowercase ( self ): with self.assertRaises(snake_case__ ): lowerCAmelCase : List[Any] = pa.array(TypedSequence([1, 2, 3] , try_type=Value('bool' ) , type=Value('int64' ) ) ) def lowercase ( self ): lowerCAmelCase : str = pa.array(TypedSequence([1, 2, 3] , type=Value('int32' ) ) ) self.assertEqual(arr.type , pa.intaa() ) def lowercase ( self ): with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): lowerCAmelCase : str = pa.array(TypedSequence(['foo', 'bar'] , type=Value('int64' ) ) ) def lowercase ( self ): lowerCAmelCase : int = pa.array(TypedSequence([1, 2, 3] , try_type=Value('int32' ) ) ) self.assertEqual(arr.type , pa.intaa() ) def lowercase ( self ): lowerCAmelCase : List[Any] = pa.array(TypedSequence(['foo', 'bar'] , try_type=Value('int64' ) ) ) self.assertEqual(arr.type , pa.string() ) def lowercase ( self ): lowerCAmelCase : Tuple = pa.array(TypedSequence([[[1, 2, 3]]] , type=ArrayaD((1, 3) , 'int64' ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , 'int64' ) ) def lowercase ( self ): with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): lowerCAmelCase : List[Any] = pa.array(TypedSequence(['foo', 'bar'] , type=ArrayaD((1, 3) , 'int64' ) ) ) def lowercase ( self ): lowerCAmelCase : List[Any] = pa.array(TypedSequence([[[1, 2, 3]]] , try_type=ArrayaD((1, 3) , 'int64' ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , 'int64' ) ) def lowercase ( self ): lowerCAmelCase : Dict = pa.array(TypedSequence(['foo', 'bar'] , try_type=ArrayaD((1, 3) , 'int64' ) ) ) self.assertEqual(arr.type , pa.string() ) @require_pil def lowercase ( self ): import PIL.Image lowerCAmelCase : Tuple = PIL.Image.fromarray(np.arange(10 , dtype=np.uinta ).reshape(2 , 5 ) ) with patch( 'datasets.arrow_writer.cast_to_python_objects' , side_effect=snake_case__ ) as mock_cast_to_python_objects: lowerCAmelCase : Any = pa.array(TypedSequence([{'path': None, 'bytes': B'image_bytes'}, pil_image] , type=Image() ) ) lowerCAmelCase , lowerCAmelCase : Dict = mock_cast_to_python_objects.call_args_list[-1] self.assertIn('optimize_list_casting' , snake_case__ ) self.assertFalse(kwargs['optimize_list_casting'] ) def __UpperCamelCase ( _A : str , _A : int ) -> Tuple: """simple docstring""" lowerCAmelCase : Optional[Any] = pa.BufferReader(_A ) if isinstance(_A , pa.Buffer ) else pa.memory_map(_A ) lowerCAmelCase : Union[str, Any] = pa.ipc.open_stream(_A ) lowerCAmelCase : pa.Table = f.read_all() assert len(pa_table.to_batches() ) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize('writer_batch_size' , [None, 1, 10] ) @pytest.mark.parametrize( 'fields' , [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def __UpperCamelCase ( _A : Any , _A : Tuple ) -> Optional[Any]: """simple docstring""" lowerCAmelCase : Optional[Any] = pa.BufferOutputStream() lowerCAmelCase : Any = pa.schema(_A ) if fields else None with ArrowWriter(stream=_A , schema=_A , writer_batch_size=_A ) as writer: writer.write({'col_1': 'foo', 'col_2': 1} ) writer.write({'col_1': 'bar', 'col_2': 2} ) lowerCAmelCase , lowerCAmelCase : int = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: lowerCAmelCase : Union[str, Any] = {'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(_A , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def __UpperCamelCase ( ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase : int = pa.BufferOutputStream() lowerCAmelCase : List[str] = Features({'labels': ClassLabel(names=['neg', 'pos'] )} ) with ArrowWriter(stream=_A , features=_A ) as writer: writer.write({'labels': 0} ) writer.write({'labels': 1} ) lowerCAmelCase , lowerCAmelCase : Union[str, Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata lowerCAmelCase : Union[str, Any] = pa.BufferReader(output.getvalue() ) lowerCAmelCase : int = pa.ipc.open_stream(_A ) lowerCAmelCase : pa.Table = f.read_all() lowerCAmelCase : Dict = pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(_A ) @pytest.mark.parametrize('writer_batch_size' , [None, 1, 10] ) def __UpperCamelCase ( _A : Optional[int] ) -> Optional[Any]: """simple docstring""" lowerCAmelCase : Dict = pa.BufferOutputStream() with ArrowWriter( stream=_A , writer_batch_size=_A , hash_salt='split_name' , check_duplicates=_A , ) as writer: with pytest.raises(_A ): writer.write({'col_1': 'foo', 'col_2': 1} , key=[1, 2] ) lowerCAmelCase , lowerCAmelCase : Union[str, Any] = writer.finalize() @pytest.mark.parametrize('writer_batch_size' , [None, 2, 10] ) def __UpperCamelCase ( _A : Dict ) -> Any: """simple docstring""" lowerCAmelCase : Optional[int] = pa.BufferOutputStream() with ArrowWriter( stream=_A , writer_batch_size=_A , hash_salt='split_name' , check_duplicates=_A , ) as writer: with pytest.raises(_A ): writer.write({'col_1': 'foo', 'col_2': 1} , key=10 ) writer.write({'col_1': 'bar', 'col_2': 2} , key=10 ) lowerCAmelCase , lowerCAmelCase : int = writer.finalize() @pytest.mark.parametrize('writer_batch_size' , [None, 2, 10] ) def __UpperCamelCase ( _A : Dict ) -> Dict: """simple docstring""" lowerCAmelCase : Dict = pa.BufferOutputStream() with ArrowWriter( stream=_A , writer_batch_size=_A , hash_salt='split_name' , check_duplicates=_A , ) as writer: writer.write({'col_1': 'foo', 'col_2': 1} , key=1 ) writer.write({'col_1': 'bar', 'col_2': 2} , key=2 ) lowerCAmelCase , lowerCAmelCase : List[str] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('writer_batch_size' , [None, 1, 10] ) @pytest.mark.parametrize( 'fields' , [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def __UpperCamelCase ( _A : str , _A : Dict ) -> Tuple: """simple docstring""" lowerCAmelCase : Optional[int] = pa.BufferOutputStream() lowerCAmelCase : Any = pa.schema(_A ) if fields else None with ArrowWriter(stream=_A , schema=_A , writer_batch_size=_A ) as writer: writer.write_batch({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) writer.write_batch({'col_1': [], 'col_2': []} ) lowerCAmelCase , lowerCAmelCase : str = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: lowerCAmelCase : List[Any] = {'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(_A , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('writer_batch_size' , [None, 1, 10] ) @pytest.mark.parametrize( 'fields' , [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def __UpperCamelCase ( _A : Any , _A : Optional[Any] ) -> List[Any]: """simple docstring""" lowerCAmelCase : str = pa.BufferOutputStream() lowerCAmelCase : Optional[Any] = pa.schema(_A ) if fields else None with ArrowWriter(stream=_A , schema=_A , writer_batch_size=_A ) as writer: writer.write_table(pa.Table.from_pydict({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) ) lowerCAmelCase , lowerCAmelCase : Optional[Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: lowerCAmelCase : Optional[int] = {'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(_A , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('writer_batch_size' , [None, 1, 10] ) @pytest.mark.parametrize( 'fields' , [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def __UpperCamelCase ( _A : int , _A : Dict ) -> Optional[Any]: """simple docstring""" lowerCAmelCase : str = pa.BufferOutputStream() lowerCAmelCase : Optional[Any] = pa.schema(_A ) if fields else None with ArrowWriter(stream=_A , schema=_A , writer_batch_size=_A ) as writer: writer.write_row(pa.Table.from_pydict({'col_1': ['foo'], 'col_2': [1]} ) ) writer.write_row(pa.Table.from_pydict({'col_1': ['bar'], 'col_2': [2]} ) ) lowerCAmelCase , lowerCAmelCase : Optional[int] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: lowerCAmelCase : List[Any] = {'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(_A , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def __UpperCamelCase ( ) -> Any: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase : Optional[int] = {'col_1': pa.string(), 'col_2': pa.intaa()} lowerCAmelCase : List[Any] = os.path.join(_A , 'test.arrow' ) with ArrowWriter(path=_A , schema=pa.schema(_A ) ) as writer: writer.write_batch({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) lowerCAmelCase , lowerCAmelCase : Any = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(_A , metadata=writer._schema.metadata ) _check_output(_A , 1 ) def __UpperCamelCase ( _A : str ) -> Union[str, Any]: """simple docstring""" if pa.types.is_list(_A ): return get_base_dtype(arr_type.value_type ) else: return arr_type def __UpperCamelCase ( _A : Tuple , _A : Union[str, Any] ) -> int: """simple docstring""" if isinstance(lst[0] , _A ): change_first_primitive_element_in_list(lst[0] , _A ) else: lowerCAmelCase : Dict = value @pytest.mark.parametrize('optimized_int_type, expected_dtype' , [(None, pa.intaa()), (Value('int32' ), pa.intaa())] ) @pytest.mark.parametrize('sequence' , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def __UpperCamelCase ( _A : Union[str, Any] , _A : Tuple , _A : Dict ) -> List[str]: """simple docstring""" lowerCAmelCase : int = pa.array(TypedSequence(_A , optimized_int_type=_A ) ) assert get_base_dtype(arr.type ) == expected_dtype @pytest.mark.parametrize( 'col, expected_dtype' , [ ('attention_mask', pa.inta()), ('special_tokens_mask', pa.inta()), ('token_type_ids', pa.inta()), ('input_ids', pa.intaa()), ('other', pa.intaa()), ] , ) @pytest.mark.parametrize('sequence' , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def __UpperCamelCase ( _A : List[Any] , _A : Union[str, Any] , _A : List[str] ) -> List[Any]: """simple docstring""" lowerCAmelCase : Optional[int] = pa.array(OptimizedTypedSequence(_A , col=_A ) ) assert get_base_dtype(arr.type ) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications lowerCAmelCase : List[str] = copy.deepcopy(_A ) lowerCAmelCase : Dict = np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1 change_first_primitive_element_in_list(_A , _A ) lowerCAmelCase : Tuple = pa.array(OptimizedTypedSequence(_A , col=_A ) ) assert get_base_dtype(arr.type ) == pa.intaa() @pytest.mark.parametrize('raise_exception' , [False, True] ) def __UpperCamelCase ( _A : List[Any] , _A : Tuple ) -> Any: """simple docstring""" lowerCAmelCase : Tuple = str(tmp_path / 'dataset-train.arrow' ) try: with ArrowWriter(path=_A ) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def __UpperCamelCase ( _A : Optional[int] ) -> Optional[Any]: """simple docstring""" lowerCAmelCase : Dict = 'mock://dataset-train.arrow' with ArrowWriter(path=_A , storage_options=mockfs.storage_options ) as writer: assert isinstance(writer._fs , type(_A ) ) assert writer._fs.storage_options == mockfs.storage_options writer.write({'col_1': 'foo', 'col_2': 1} ) writer.write({'col_1': 'bar', 'col_2': 2} ) lowerCAmelCase , lowerCAmelCase : List[str] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(_A ) def __UpperCamelCase ( ) -> int: """simple docstring""" lowerCAmelCase : Tuple = pa.BufferOutputStream() with ParquetWriter(stream=_A ) as writer: writer.write({'col_1': 'foo', 'col_2': 1} ) writer.write({'col_1': 'bar', 'col_2': 2} ) lowerCAmelCase , lowerCAmelCase : Optional[int] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 lowerCAmelCase : Tuple = pa.BufferReader(output.getvalue() ) lowerCAmelCase : pa.Table = pq.read_table(_A ) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize('embed_local_files' , [False, True] ) def __UpperCamelCase ( _A : Union[str, Any] , _A : Optional[int] ) -> str: """simple docstring""" import PIL.Image lowerCAmelCase : List[Any] = str(tmp_path / 'test_image_rgb.jpg' ) PIL.Image.fromarray(np.zeros((5, 5) , dtype=np.uinta ) ).save(_A , format='png' ) lowerCAmelCase : Tuple = pa.BufferOutputStream() with ParquetWriter( stream=_A , features=Features({'image': Image()} ) , embed_local_files=_A ) as writer: writer.write({'image': image_path} ) writer.finalize() lowerCAmelCase : int = pa.BufferReader(output.getvalue() ) lowerCAmelCase : pa.Table = pq.read_table(_A ) lowerCAmelCase : Optional[Any] = pa_table.to_pydict() if embed_local_files: assert isinstance(out['image'][0]['path'] , _A ) with open(_A , 'rb' ) as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def __UpperCamelCase ( ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase : Union[str, Any] = pa.schema([pa.field('col_1' , pa.string() , nullable=_A )] ) lowerCAmelCase : Union[str, Any] = pa.BufferOutputStream() with ArrowWriter(stream=_A ) as writer: writer._build_writer(inferred_schema=_A ) assert writer._schema == pa.schema([pa.field('col_1' , pa.string() )] )
646
'''simple docstring''' from typing import Any class lowerCAmelCase : def __init__( self , snake_case__ ): lowerCAmelCase : Optional[int] = data lowerCAmelCase : Optional[Any] = None def __repr__( self ): return f"Node({self.data})" class lowerCAmelCase : def __init__( self ): lowerCAmelCase : Dict = None def __iter__( self ): lowerCAmelCase : Optional[Any] = self.head while node: yield node.data lowerCAmelCase : Optional[int] = node.next def __len__( self ): return sum(1 for _ in self ) def __repr__( self ): return "->".join([str(snake_case__ ) for item in self] ) def __getitem__( self , snake_case__ ): if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , snake_case__ , snake_case__ ): if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) lowerCAmelCase : Any = self.head for _ in range(snake_case__ ): lowerCAmelCase : List[str] = current.next lowerCAmelCase : int = data def lowercase ( self , snake_case__ ): self.insert_nth(len(self ) , snake_case__ ) def lowercase ( self , snake_case__ ): self.insert_nth(0 , snake_case__ ) def lowercase ( self , snake_case__ , snake_case__ ): if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) lowerCAmelCase : List[str] = Node(snake_case__ ) if self.head is None: lowerCAmelCase : int = new_node elif index == 0: lowerCAmelCase : List[Any] = self.head # link new_node to head lowerCAmelCase : List[Any] = new_node else: lowerCAmelCase : List[Any] = self.head for _ in range(index - 1 ): lowerCAmelCase : Union[str, Any] = temp.next lowerCAmelCase : Any = temp.next lowerCAmelCase : str = new_node def lowercase ( self ): # print every node data print(self ) def lowercase ( self ): return self.delete_nth(0 ) def lowercase ( self ): # delete from tail return self.delete_nth(len(self ) - 1 ) def lowercase ( self , snake_case__ = 0 ): if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) lowerCAmelCase : List[str] = self.head # default first node if index == 0: lowerCAmelCase : Tuple = self.head.next else: lowerCAmelCase : Dict = self.head for _ in range(index - 1 ): lowerCAmelCase : Tuple = temp.next lowerCAmelCase : Dict = temp.next lowerCAmelCase : Tuple = temp.next.next return delete_node.data def lowercase ( self ): return self.head is None def lowercase ( self ): lowerCAmelCase : List[Any] = None lowerCAmelCase : Any = self.head while current: # Store the current node's next node. lowerCAmelCase : List[str] = current.next # Make the current node's next point backwards lowerCAmelCase : int = prev # Make the previous node be the current node lowerCAmelCase : int = current # Make the current node the next node (to progress iteration) lowerCAmelCase : Optional[Any] = next_node # Return prev in order to put the head at the end lowerCAmelCase : List[Any] = prev def __UpperCamelCase ( ) -> None: """simple docstring""" lowerCAmelCase : Tuple = LinkedList() assert linked_list.is_empty() is True assert str(_A ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(_A ) == i linked_list.insert_nth(_A , i + 1 ) assert str(_A ) == "->".join(str(_A ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(_A ) == "->".join(str(_A ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(_A ) == 9 assert str(_A ) == "->".join(str(_A ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): lowerCAmelCase : Optional[Any] = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(_A ) == "->".join(str(_A ) for i in range(-8 , 1 ) ) def __UpperCamelCase ( ) -> None: """simple docstring""" lowerCAmelCase : Optional[int] = [ -9, 1_00, Node(77_34_51_12 ), 'dlrow olleH', 7, 55_55, 0, -1_92.5_55_55, 'Hello, world!', 77.9, Node(10 ), None, None, 12.20, ] lowerCAmelCase : Dict = LinkedList() for i in test_input: linked_list.insert_tail(_A ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(_A ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head lowerCAmelCase : Optional[Any] = linked_list.delete_head() assert result == -9 assert ( str(_A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail lowerCAmelCase : List[str] = linked_list.delete_tail() assert result == 12.2 assert ( str(_A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list lowerCAmelCase : List[str] = linked_list.delete_nth(10 ) assert result is None assert ( str(_A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(_A ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(_A ) assert ( str(_A ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(_A ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def __UpperCamelCase ( ) -> List[Any]: """simple docstring""" from doctest import testmod testmod() lowerCAmelCase : Optional[Any] = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(_A ) print('\nReading/changing Node data using indexing:' ) print(F"Element at Position 1: {linked_list[1]}" ) lowerCAmelCase : Tuple = input('Enter New Value: ' ).strip() print('New list:' ) print(_A ) print(F"length of linked_list is : {len(_A )}" ) if __name__ == "__main__": main()
646
1
'''simple docstring''' import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate _lowerCAmelCase : str = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow('', '|', '|'), datarow=DataRow('', '|', '|'), padding=1, with_header_hide=None, ) _lowerCAmelCase : Tuple = [] _lowerCAmelCase : List[str] = [] _lowerCAmelCase : Tuple = {'type': 'section', 'text': {'type': 'plain_text', 'text': 'No failed tests! 🤗', 'emoji': True}} _lowerCAmelCase : str = [ { 'type': 'header', 'text': { 'type': 'plain_text', 'text': f"""🤗 Accelerate nightly {os.environ.get('TEST_TYPE', '')} test results""", 'emoji': True, }, } ] _lowerCAmelCase : Any = 0 for log in Path().glob('*.log'): _lowerCAmelCase : Optional[int] = 0 with open(log, 'r') as f: for line in f: _lowerCAmelCase : Dict = json.loads(line) if line.get('nodeid', '') != "": _lowerCAmelCase : Union[str, Any] = line['nodeid'] if line.get('duration', None) is not None: _lowerCAmelCase : Optional[int] = f"""{line['duration']:.4f}""" if line.get('outcome', '') == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split('_')[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) _lowerCAmelCase : Optional[Any] = [] log.unlink() _lowerCAmelCase : Dict = '' _lowerCAmelCase : List[Any] = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += f"*{name[1:]}: {num_failed} failed test*\n" else: message += f"*{name[1:]}: {num_failed} failed tests*\n" _lowerCAmelCase : Any = [] _lowerCAmelCase : Tuple = {} for test in failed_tests: _lowerCAmelCase : str = test[0].split('::') _lowerCAmelCase : Optional[Any] = data[0].split('/')[-1] if data[0] not in filesafailed: _lowerCAmelCase : int = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) _lowerCAmelCase : int = [test[0] for test in failed_table] _lowerCAmelCase : Union[str, Any] = list(set(files)) # Count number of instances in failed_tests _lowerCAmelCase : Optional[int] = [] for file in individual_files: table.append([file, len(filesafailed[file])]) _lowerCAmelCase : Any = tabulate( table, headers=['Test Location', 'Num Failed'], tablefmt=hf_table_format, stralign='right', ) message += f"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: _lowerCAmelCase : Union[str, Any] = 'Too many failed tests, please see the full report in the Action results.' _lowerCAmelCase : List[Any] = len(err) + 10 _lowerCAmelCase : Optional[Any] = message[: 3000 - offset] + f"""\n...\n```\n{err}""" print(f"""### {message}""") else: _lowerCAmelCase : Optional[int] = 'No failed tests! 🤗' print(f"""## {message}""") payload.append(no_error_payload) if os.environ.get('TEST_TYPE', '') != "": from slack_sdk import WebClient _lowerCAmelCase : Optional[int] = WebClient(token=os.environ['SLACK_API_TOKEN']) if message != "No failed tests! 🤗": _lowerCAmelCase : str = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': message, }, } payload.append(md_report) _lowerCAmelCase : List[Any] = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': '*For more details:*', }, 'accessory': { 'type': 'button', 'text': { 'type': 'plain_text', 'text': 'Check Action results', 'emoji': True, }, 'url': f"""https://github.com/{os.environ['GITHUB_REPOSITORY']}/actions/runs/{os.environ['GITHUB_RUN_ID']}""", }, } payload.append(action_button) _lowerCAmelCase : Optional[int] = { 'type': 'context', 'elements': [ { 'type': 'plain_text', 'text': f"""Nightly {os.environ.get('TEST_TYPE')} test results for {date.today()}""", } ], } payload.append(date_report) _lowerCAmelCase : Dict = client.chat_postMessage(channel='#accelerate-ci-daily', text=message, blocks=payload) _lowerCAmelCase : List[str] = response.data['ts'] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name _lowerCAmelCase : Optional[Any] = '' for i, row in enumerate(test_failures): if row[0] != test_class: _lowerCAmelCase : Dict = row[0] else: _lowerCAmelCase : str = '' _lowerCAmelCase : List[str] = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': f"""Test location: {test_location}\n```\n{tabulate(test_failures, headers=['Class', 'Test'], tablefmt=hf_table_format, stralign='right')}\n```""", }, } client.chat_postMessage( channel='#accelerate-ci-daily', thread_ts=ts, blocks=[payload], )
646
'''simple docstring''' _lowerCAmelCase : List[str] = {str(digit): digit**5 for digit in range(10)} def __UpperCamelCase ( _A : int ) -> int: """simple docstring""" return sum(DIGITS_FIFTH_POWER[digit] for digit in str(_A ) ) def __UpperCamelCase ( ) -> int: """simple docstring""" return sum( number for number in range(10_00 , 1_00_00_00 ) if number == digits_fifth_powers_sum(_A ) ) if __name__ == "__main__": print(solution())
646
1
'''simple docstring''' from __future__ import annotations def __UpperCamelCase ( _A : list[int] , _A : int ) -> list[list[int]]: """simple docstring""" lowerCAmelCase : list[list[int]] = [] lowerCAmelCase : list[int] = [] lowerCAmelCase : List[Any] = 0 lowerCAmelCase : Union[str, Any] = sum(_A ) create_state_space_tree(_A , _A , _A , _A , _A , _A ) return result def __UpperCamelCase ( _A : list[int] , _A : int , _A : int , _A : list[int] , _A : list[list[int]] , _A : int , ) -> None: """simple docstring""" if sum(_A ) > max_sum or (remaining_nums_sum + sum(_A )) < max_sum: return if sum(_A ) == max_sum: result.append(_A ) return for index in range(_A , len(_A ) ): create_state_space_tree( _A , _A , index + 1 , [*path, nums[index]] , _A , remaining_nums_sum - nums[index] , ) _lowerCAmelCase : int = [3, 34, 4, 12, 5, 2] _lowerCAmelCase : Dict = 9 _lowerCAmelCase : str = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
646
'''simple docstring''' def __UpperCamelCase ( _A : List[str] ) -> Optional[Any]: """simple docstring""" if not head: return True # split the list to two parts lowerCAmelCase , lowerCAmelCase : str = head.next, head while fast and fast.next: lowerCAmelCase : Optional[int] = fast.next.next lowerCAmelCase : int = slow.next lowerCAmelCase : int = slow.next lowerCAmelCase : Optional[Any] = None # Don't forget here! But forget still works! # reverse the second part lowerCAmelCase : List[Any] = None while second: lowerCAmelCase : List[Any] = second.next lowerCAmelCase : Union[str, Any] = node lowerCAmelCase : Optional[Any] = second lowerCAmelCase : Any = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False lowerCAmelCase : Optional[Any] = node.next lowerCAmelCase : Tuple = head.next return True def __UpperCamelCase ( _A : Optional[Any] ) -> Optional[int]: """simple docstring""" if not head or not head.next: return True # 1. Get the midpoint (slow) lowerCAmelCase : Optional[int] = head while fast and fast.next: lowerCAmelCase , lowerCAmelCase : Optional[Any] = fast.next.next, slow.next # 2. Push the second half into the stack lowerCAmelCase : Tuple = [slow.val] while slow.next: lowerCAmelCase : Tuple = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False lowerCAmelCase : Union[str, Any] = cur.next return True def __UpperCamelCase ( _A : Tuple ) -> Optional[int]: """simple docstring""" if not head or not head.next: return True lowerCAmelCase : Optional[int] = {} lowerCAmelCase : int = 0 while head: if head.val in d: d[head.val].append(_A ) else: lowerCAmelCase : Any = [pos] lowerCAmelCase : int = head.next pos += 1 lowerCAmelCase : str = pos - 1 lowerCAmelCase : Optional[Any] = 0 for v in d.values(): if len(_A ) % 2 != 0: middle += 1 else: lowerCAmelCase : Any = 0 for i in range(0 , len(_A ) ): if v[i] + v[len(_A ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
646
1
'''simple docstring''' import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def __UpperCamelCase ( _A : Optional[int] , _A : Dict , _A : Any ) -> int: """simple docstring""" lowerCAmelCase : Optional[Any] = AutoConfig.from_pretrained(_A ) lowerCAmelCase : int = FlaxAutoModelForSeqaSeqLM.from_config(config=_A ) lowerCAmelCase : int = checkpoints.load_tax_checkpoint(_A ) lowerCAmelCase : List[Any] = 'wi_0' in tax_model['target']['encoder']['layers_0']['mlp'] if config.model_type == "t5": lowerCAmelCase : Tuple = 'SelfAttention' if config.model_type == "longt5" and config.encoder_attention_type == "local": lowerCAmelCase : Dict = 'LocalSelfAttention' elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowerCAmelCase : Tuple = 'TransientGlobalSelfAttention' else: raise ValueError( 'Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`' ' attribute with a value from [\'local\', \'transient-global].' ) # Encoder for layer_index in range(config.num_layers ): lowerCAmelCase : Optional[Any] = F"layers_{str(_A )}" # Self-Attention lowerCAmelCase : Tuple = tax_model['target']['encoder'][layer_name]['attention']['key']['kernel'] lowerCAmelCase : List[Any] = tax_model['target']['encoder'][layer_name]['attention']['out']['kernel'] lowerCAmelCase : Union[str, Any] = tax_model['target']['encoder'][layer_name]['attention']['query']['kernel'] lowerCAmelCase : int = tax_model['target']['encoder'][layer_name]['attention']['value']['kernel'] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowerCAmelCase : List[Any] = tax_model['target']['encoder'][layer_name]['attention']['T5LayerNorm_0']['scale'] # Layer Normalization lowerCAmelCase : Any = tax_model['target']['encoder'][layer_name]['pre_attention_layer_norm']['scale'] if split_mlp_wi: lowerCAmelCase : Any = tax_model['target']['encoder'][layer_name]['mlp']['wi_0']['kernel'] lowerCAmelCase : Optional[int] = tax_model['target']['encoder'][layer_name]['mlp']['wi_1']['kernel'] else: lowerCAmelCase : Optional[int] = tax_model['target']['encoder'][layer_name]['mlp']['wi']['kernel'] lowerCAmelCase : Optional[int] = tax_model['target']['encoder'][layer_name]['mlp']['wo']['kernel'] # Layer Normalization lowerCAmelCase : Union[str, Any] = tax_model['target']['encoder'][layer_name]['pre_mlp_layer_norm']['scale'] # Assigning lowerCAmelCase : str = flax_model.params['encoder']['block'][str(_A )]['layer'] lowerCAmelCase : str = tax_attention_key lowerCAmelCase : List[Any] = tax_attention_out lowerCAmelCase : Any = tax_attention_query lowerCAmelCase : str = tax_attention_value lowerCAmelCase : List[Any] = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowerCAmelCase : Dict = tax_global_layer_norm if split_mlp_wi: lowerCAmelCase : Optional[Any] = tax_mlp_wi_a lowerCAmelCase : str = tax_mlp_wi_a else: lowerCAmelCase : Tuple = tax_mlp_wi lowerCAmelCase : Optional[int] = tax_mlp_wo lowerCAmelCase : List[str] = tax_mlp_layer_norm lowerCAmelCase : Tuple = flax_model_encoder_layer_block # Only for layer 0: lowerCAmelCase : Optional[int] = tax_model['target']['encoder']['relpos_bias']['rel_embedding'].T lowerCAmelCase : Optional[Any] = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowerCAmelCase : Optional[Any] = tax_model['target']['encoder']['side_relpos_bias']['rel_embedding'].T lowerCAmelCase : List[Any] = tax_encoder_global_rel_embedding # Assigning lowerCAmelCase : List[Any] = tax_model['target']['encoder']['encoder_norm']['scale'] lowerCAmelCase : int = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): lowerCAmelCase : Dict = F"layers_{str(_A )}" # Self-Attention lowerCAmelCase : Optional[int] = tax_model['target']['decoder'][layer_name]['self_attention']['key']['kernel'] lowerCAmelCase : Optional[int] = tax_model['target']['decoder'][layer_name]['self_attention']['out']['kernel'] lowerCAmelCase : Any = tax_model['target']['decoder'][layer_name]['self_attention']['query']['kernel'] lowerCAmelCase : List[Any] = tax_model['target']['decoder'][layer_name]['self_attention']['value']['kernel'] # Layer Normalization lowerCAmelCase : Optional[int] = tax_model['target']['decoder'][layer_name]['pre_self_attention_layer_norm'][ 'scale' ] # Encoder-Decoder-Attention lowerCAmelCase : int = tax_model['target']['decoder'][layer_name]['encoder_decoder_attention'] lowerCAmelCase : Optional[int] = tax_enc_dec_attention_module['key']['kernel'] lowerCAmelCase : str = tax_enc_dec_attention_module['out']['kernel'] lowerCAmelCase : Any = tax_enc_dec_attention_module['query']['kernel'] lowerCAmelCase : str = tax_enc_dec_attention_module['value']['kernel'] # Layer Normalization lowerCAmelCase : Dict = tax_model['target']['decoder'][layer_name]['pre_cross_attention_layer_norm']['scale'] # MLP if split_mlp_wi: lowerCAmelCase : Any = tax_model['target']['decoder'][layer_name]['mlp']['wi_0']['kernel'] lowerCAmelCase : Dict = tax_model['target']['decoder'][layer_name]['mlp']['wi_1']['kernel'] else: lowerCAmelCase : int = tax_model['target']['decoder'][layer_name]['mlp']['wi']['kernel'] lowerCAmelCase : Union[str, Any] = tax_model['target']['decoder'][layer_name]['mlp']['wo']['kernel'] # Layer Normalization lowerCAmelCase : List[Any] = tax_model['target']['decoder'][layer_name]['pre_mlp_layer_norm']['scale'] # Assigning lowerCAmelCase : str = flax_model.params['decoder']['block'][str(_A )]['layer'] lowerCAmelCase : Dict = tax_attention_key lowerCAmelCase : List[str] = tax_attention_out lowerCAmelCase : List[Any] = tax_attention_query lowerCAmelCase : Any = tax_attention_value lowerCAmelCase : List[str] = tax_pre_attention_layer_norm lowerCAmelCase : List[str] = tax_enc_dec_attention_key lowerCAmelCase : Any = tax_enc_dec_attention_out lowerCAmelCase : int = tax_enc_dec_attention_query lowerCAmelCase : Optional[int] = tax_enc_dec_attention_value lowerCAmelCase : List[Any] = tax_cross_layer_norm if split_mlp_wi: lowerCAmelCase : List[str] = tax_mlp_wi_a lowerCAmelCase : Optional[int] = tax_mlp_wi_a else: lowerCAmelCase : Optional[Any] = tax_mlp_wi lowerCAmelCase : Tuple = tax_mlp_wo lowerCAmelCase : Tuple = txa_mlp_layer_norm lowerCAmelCase : int = flax_model_decoder_layer_block # Decoder Normalization lowerCAmelCase : Optional[Any] = tax_model['target']['decoder']['decoder_norm']['scale'] lowerCAmelCase : Union[str, Any] = txa_decoder_norm # Only for layer 0: lowerCAmelCase : str = tax_model['target']['decoder']['relpos_bias']['rel_embedding'].T lowerCAmelCase : List[Any] = tax_decoder_rel_embedding # Token Embeddings lowerCAmelCase : Any = tax_model['target']['token_embedder']['embedding'] lowerCAmelCase : str = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: lowerCAmelCase : int = tax_model['target']['decoder']['logits_dense']['kernel'] flax_model.save_pretrained(_A ) print('T5X Model was sucessfully converted!' ) if __name__ == "__main__": _lowerCAmelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path the T5X checkpoint.' ) parser.add_argument('--config_name', default=None, type=str, required=True, help='Config name of LongT5/T5 model.') parser.add_argument( '--flax_dump_folder_path', default=None, type=str, required=True, help='Path to the output FLAX model.' ) _lowerCAmelCase : Optional[Any] = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
646
'''simple docstring''' import math def __UpperCamelCase ( _A : int = 1_00 ) -> int: """simple docstring""" lowerCAmelCase : List[Any] = sum(i * i for i in range(1 , n + 1 ) ) lowerCAmelCase : Optional[Any] = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f"""{solution() = }""")
646
1
'''simple docstring''' import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): lowerCAmelCase : List[Any] = tempfile.mkdtemp() lowerCAmelCase : Dict = SamImageProcessor() lowerCAmelCase : Union[str, Any] = SamProcessor(snake_case__ ) processor.save_pretrained(self.tmpdirname ) def lowercase ( self , **snake_case__ ): return AutoProcessor.from_pretrained(self.tmpdirname , **snake_case__ ).image_processor def lowercase ( self ): shutil.rmtree(self.tmpdirname ) def lowercase ( self ): lowerCAmelCase : str = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCAmelCase : List[str] = [Image.fromarray(np.moveaxis(snake_case__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase ( self ): lowerCAmelCase : Optional[int] = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase : Any = self.get_image_processor(do_normalize=snake_case__ , padding_value=1.0 ) lowerCAmelCase : Dict = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=snake_case__ , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = self.get_image_processor() lowerCAmelCase : str = SamProcessor(image_processor=snake_case__ ) lowerCAmelCase : Optional[Any] = self.prepare_image_inputs() lowerCAmelCase : Optional[Any] = image_processor(snake_case__ , return_tensors='np' ) lowerCAmelCase : str = processor(images=snake_case__ , return_tensors='np' ) input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor input_feat_extract.pop('reshaped_input_sizes' ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_torch def lowercase ( self ): lowerCAmelCase : Union[str, Any] = self.get_image_processor() lowerCAmelCase : Tuple = SamProcessor(image_processor=snake_case__ ) lowerCAmelCase : List[Any] = [torch.ones((1, 3, 5, 5) )] lowerCAmelCase : List[Any] = [[1764, 2646]] lowerCAmelCase : Union[str, Any] = [[683, 1024]] lowerCAmelCase : Optional[int] = processor.post_process_masks(snake_case__ , snake_case__ , snake_case__ ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) lowerCAmelCase : int = processor.post_process_masks( snake_case__ , torch.tensor(snake_case__ ) , torch.tensor(snake_case__ ) ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) # should also work with np lowerCAmelCase : int = [np.ones((1, 3, 5, 5) )] lowerCAmelCase : List[str] = processor.post_process_masks(snake_case__ , np.array(snake_case__ ) , np.array(snake_case__ ) ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) lowerCAmelCase : List[Any] = [[1, 0], [0, 1]] with self.assertRaises(snake_case__ ): lowerCAmelCase : Optional[Any] = processor.post_process_masks(snake_case__ , np.array(snake_case__ ) , np.array(snake_case__ ) ) @require_vision @require_tf class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): lowerCAmelCase : List[str] = tempfile.mkdtemp() lowerCAmelCase : Tuple = SamImageProcessor() lowerCAmelCase : str = SamProcessor(snake_case__ ) processor.save_pretrained(self.tmpdirname ) def lowercase ( self , **snake_case__ ): return AutoProcessor.from_pretrained(self.tmpdirname , **snake_case__ ).image_processor def lowercase ( self ): shutil.rmtree(self.tmpdirname ) def lowercase ( self ): lowerCAmelCase : str = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCAmelCase : Optional[int] = [Image.fromarray(np.moveaxis(snake_case__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase ( self ): lowerCAmelCase : Tuple = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase : List[str] = self.get_image_processor(do_normalize=snake_case__ , padding_value=1.0 ) lowerCAmelCase : List[Any] = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=snake_case__ , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Any = self.get_image_processor() lowerCAmelCase : str = SamProcessor(image_processor=snake_case__ ) lowerCAmelCase : Optional[int] = self.prepare_image_inputs() lowerCAmelCase : List[Any] = image_processor(snake_case__ , return_tensors='np' ) lowerCAmelCase : Any = processor(images=snake_case__ , return_tensors='np' ) input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor input_feat_extract.pop('reshaped_input_sizes' ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_tf def lowercase ( self ): lowerCAmelCase : str = self.get_image_processor() lowerCAmelCase : Tuple = SamProcessor(image_processor=snake_case__ ) lowerCAmelCase : List[str] = [tf.ones((1, 3, 5, 5) )] lowerCAmelCase : Dict = [[1764, 2646]] lowerCAmelCase : List[str] = [[683, 1024]] lowerCAmelCase : Dict = processor.post_process_masks(snake_case__ , snake_case__ , snake_case__ , return_tensors='tf' ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) lowerCAmelCase : Tuple = processor.post_process_masks( snake_case__ , tf.convert_to_tensor(snake_case__ ) , tf.convert_to_tensor(snake_case__ ) , return_tensors='tf' , ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) # should also work with np lowerCAmelCase : Any = [np.ones((1, 3, 5, 5) )] lowerCAmelCase : Any = processor.post_process_masks( snake_case__ , np.array(snake_case__ ) , np.array(snake_case__ ) , return_tensors='tf' ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) lowerCAmelCase : int = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): lowerCAmelCase : Dict = processor.post_process_masks( snake_case__ , np.array(snake_case__ ) , np.array(snake_case__ ) , return_tensors='tf' ) @require_vision @require_torchvision class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): lowerCAmelCase : Optional[int] = tempfile.mkdtemp() lowerCAmelCase : List[str] = SamImageProcessor() lowerCAmelCase : Optional[Any] = SamProcessor(snake_case__ ) processor.save_pretrained(self.tmpdirname ) def lowercase ( self , **snake_case__ ): return AutoProcessor.from_pretrained(self.tmpdirname , **snake_case__ ).image_processor def lowercase ( self ): shutil.rmtree(self.tmpdirname ) def lowercase ( self ): lowerCAmelCase : Any = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCAmelCase : List[str] = [Image.fromarray(np.moveaxis(snake_case__ , 0 , -1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def lowercase ( self ): lowerCAmelCase : str = self.get_image_processor() lowerCAmelCase : Dict = SamProcessor(image_processor=snake_case__ ) lowerCAmelCase : Tuple = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa ) lowerCAmelCase : Union[str, Any] = [tf.convert_to_tensor(snake_case__ )] lowerCAmelCase : str = [torch.tensor(snake_case__ )] lowerCAmelCase : Tuple = [[1764, 2646]] lowerCAmelCase : int = [[683, 1024]] lowerCAmelCase : str = processor.post_process_masks( snake_case__ , snake_case__ , snake_case__ , return_tensors='tf' ) lowerCAmelCase : int = processor.post_process_masks( snake_case__ , snake_case__ , snake_case__ , return_tensors='pt' ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def lowercase ( self ): lowerCAmelCase : List[Any] = self.get_image_processor() lowerCAmelCase : Tuple = SamProcessor(image_processor=snake_case__ ) lowerCAmelCase : Union[str, Any] = self.prepare_image_inputs() lowerCAmelCase : Any = image_processor(snake_case__ , return_tensors='pt' )['pixel_values'].numpy() lowerCAmelCase : Tuple = processor(images=snake_case__ , return_tensors='pt' )['pixel_values'].numpy() lowerCAmelCase : Optional[int] = image_processor(snake_case__ , return_tensors='tf' )['pixel_values'].numpy() lowerCAmelCase : Tuple = processor(images=snake_case__ , return_tensors='tf' )['pixel_values'].numpy() self.assertTrue(np.allclose(snake_case__ , snake_case__ ) ) self.assertTrue(np.allclose(snake_case__ , snake_case__ ) ) self.assertTrue(np.allclose(snake_case__ , snake_case__ ) )
646
'''simple docstring''' import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece_with_bytefallback.model') @require_sentencepiece @require_tokenizers class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : Tuple = GPTSwaTokenizer _lowerCamelCase : str = False _lowerCamelCase : Dict = True _lowerCamelCase : Optional[Any] = False def lowercase ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : Tuple = GPTSwaTokenizer(snake_case__ , eos_token='<unk>' , bos_token='<unk>' , pad_token='<unk>' ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase ( self , snake_case__ ): lowerCAmelCase : List[Any] = 'This is a test' lowerCAmelCase : List[Any] = 'This is a test' return input_text, output_text def lowercase ( self ): lowerCAmelCase : Tuple = '<s>' lowerCAmelCase : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def lowercase ( self ): lowerCAmelCase : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(snake_case__ ) , 2000 ) def lowercase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 2000 ) def lowercase ( self ): lowerCAmelCase : List[Any] = GPTSwaTokenizer(snake_case__ ) lowerCAmelCase : Optional[Any] = tokenizer.tokenize('This is a test' ) self.assertListEqual(snake_case__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , [465, 287, 265, 631, 842] ) lowerCAmelCase : Tuple = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) # fmt: off self.assertListEqual( snake_case__ , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] , ) # fmt: on lowerCAmelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual( snake_case__ , [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] , ) lowerCAmelCase : int = tokenizer.convert_ids_to_tokens(snake_case__ ) # fmt: off self.assertListEqual( snake_case__ , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] ) # fmt: on def lowercase ( self ): lowerCAmelCase : str = GPTSwaTokenizer(snake_case__ ) lowerCAmelCase : Optional[int] = ['This is a test', 'I was born in 92000, and this is falsé.'] lowerCAmelCase : Tuple = [ [465, 287, 265, 631, 842], [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(snake_case__ , snake_case__ ): self.assertListEqual(tokenizer.encode_fast(snake_case__ ) , snake_case__ ) # Test that decode_fast returns the input text for text, token_ids in zip(snake_case__ , snake_case__ ): self.assertEqual(tokenizer.decode_fast(snake_case__ ) , snake_case__ ) @slow def lowercase ( self ): lowerCAmelCase : str = [ '<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')', 'Hey there, how are you doing this fine day?', 'This is a text with a trailing spaces followed by a dot .', 'Häj sväjs lillebrör! =)', 'Det är inget fel på Mr. Cool', ] # fmt: off lowerCAmelCase : Tuple = {'input_ids': [[6_3423, 5, 6811, 1_4954, 282, 816, 3821, 6_3466, 6_3425, 6_3462, 18, 6_3978, 678, 301, 1320, 6_3423, 6_3455, 6_3458, 18, 6_3982, 4246, 3940, 1901, 4_7789, 5547, 1_8994], [1_9630, 1100, 6_3446, 1342, 633, 544, 4488, 593, 5102, 2416, 6_3495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1652, 428, 268, 1936, 515, 268, 5_8593, 2_2413, 9106, 546, 268, 3_3213, 6_3979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_5130, 6_3450, 924, 6_3449, 2249, 4062, 1558, 318, 6_3504, 2_1498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2827, 2559, 332, 6575, 6_3443, 2_6801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name='AI-Sweden/gpt-sw3-126m' , sequences=snake_case__ , )
646
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : Optional[Any] = '▁' _lowerCAmelCase : List[Any] = {'vocab_file': 'sentencepiece.bpe.model'} _lowerCAmelCase : List[Any] = { 'vocab_file': { 'facebook/mbart-large-50-one-to-many-mmt': ( 'https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model' ), } } _lowerCAmelCase : Union[str, Any] = { 'facebook/mbart-large-50-one-to-many-mmt': 1024, } # fmt: off _lowerCAmelCase : Tuple = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN', 'af_ZA', 'az_AZ', 'bn_IN', 'fa_IR', 'he_IL', 'hr_HR', 'id_ID', 'ka_GE', 'km_KH', 'mk_MK', 'ml_IN', 'mn_MN', 'mr_IN', 'pl_PL', 'ps_AF', 'pt_XX', 'sv_SE', 'sw_KE', 'ta_IN', 'te_IN', 'th_TH', 'tl_XX', 'uk_UA', 'ur_PK', 'xh_ZA', 'gl_ES', 'sl_SI'] class lowerCAmelCase ( a ): _lowerCamelCase : str = VOCAB_FILES_NAMES _lowerCamelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : Union[str, Any] = ["""input_ids""", """attention_mask"""] _lowerCamelCase : List[int] = [] _lowerCamelCase : List[int] = [] def __init__( self , snake_case__ , snake_case__=None , snake_case__=None , snake_case__="</s>" , snake_case__="</s>" , snake_case__="<s>" , snake_case__="<unk>" , snake_case__="<pad>" , snake_case__="<mask>" , snake_case__ = None , **snake_case__ , ): # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase : Tuple = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else mask_token lowerCAmelCase : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs lowerCAmelCase : List[Any] = kwargs.get('additional_special_tokens' , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=snake_case__ , tgt_lang=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , sp_model_kwargs=self.sp_model_kwargs , **snake_case__ , ) lowerCAmelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(snake_case__ ) ) lowerCAmelCase : int = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token lowerCAmelCase : Any = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowerCAmelCase : List[str] = 1 lowerCAmelCase : str = len(self.sp_model ) lowerCAmelCase : Union[str, Any] = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(snake_case__ ) } lowerCAmelCase : int = {v: k for k, v in self.lang_code_to_id.items()} lowerCAmelCase : Union[str, Any] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) lowerCAmelCase : Dict = {v: k for k, v in self.fairseq_tokens_to_ids.items()} lowerCAmelCase : List[Any] = src_lang if src_lang is not None else 'en_XX' lowerCAmelCase : Optional[Any] = self.lang_code_to_id[self._src_lang] lowerCAmelCase : Union[str, Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def lowercase ( self ): return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def lowercase ( self ): return self._src_lang @src_lang.setter def lowercase ( self , snake_case__ ): lowerCAmelCase : Optional[Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ): lowerCAmelCase : List[Any] = self.__dict__.copy() lowerCAmelCase : Union[str, Any] = None return state def __setstate__( self , snake_case__ ): lowerCAmelCase : List[str] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowerCAmelCase : List[str] = {} lowerCAmelCase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase ( self ): lowerCAmelCase : Any = {self.convert_ids_to_tokens(snake_case__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowercase ( self , snake_case__ ): return self.sp_model.encode(snake_case__ , out_type=snake_case__ ) def lowercase ( self , snake_case__ ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCAmelCase : Union[str, Any] = self.sp_model.PieceToId(snake_case__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowercase ( self , snake_case__ ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowercase ( self , snake_case__ ): lowerCAmelCase : Union[str, Any] = [] lowerCAmelCase : Any = '' lowerCAmelCase : Optional[Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(snake_case__ ) + token lowerCAmelCase : Optional[int] = True lowerCAmelCase : Tuple = [] else: current_sub_tokens.append(snake_case__ ) lowerCAmelCase : str = False out_string += self.sp_model.decode(snake_case__ ) return out_string.strip() def lowercase ( self , snake_case__ , snake_case__ = None ): if not os.path.isdir(snake_case__ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return lowerCAmelCase : Dict = os.path.join( snake_case__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case__ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case__ , 'wb' ) as fi: lowerCAmelCase : str = self.sp_model.serialized_model_proto() fi.write(snake_case__ ) return (out_vocab_file,) def lowercase ( self , snake_case__ , snake_case__ = None , snake_case__ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) lowerCAmelCase : List[Any] = [1] * len(self.prefix_tokens ) lowerCAmelCase : Tuple = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(snake_case__ )) + suffix_ones return prefix_ones + ([0] * len(snake_case__ )) + ([0] * len(snake_case__ )) + suffix_ones def lowercase ( self , snake_case__ , snake_case__ = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , **snake_case__ ): if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) lowerCAmelCase : Optional[Any] = src_lang lowerCAmelCase : Optional[Any] = self(snake_case__ , add_special_tokens=snake_case__ , return_tensors=snake_case__ , **snake_case__ ) lowerCAmelCase : Dict = self.convert_tokens_to_ids(snake_case__ ) lowerCAmelCase : Optional[Any] = tgt_lang_id return inputs def lowercase ( self , snake_case__ , snake_case__ = "en_XX" , snake_case__ = None , snake_case__ = "ro_RO" , **snake_case__ , ): lowerCAmelCase : List[str] = src_lang lowerCAmelCase : Any = tgt_lang return super().prepare_seqaseq_batch(snake_case__ , snake_case__ , **snake_case__ ) def lowercase ( self ): return self.set_src_lang_special_tokens(self.src_lang ) def lowercase ( self ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowercase ( self , snake_case__ ): lowerCAmelCase : Optional[Any] = self.lang_code_to_id[src_lang] lowerCAmelCase : Tuple = [self.cur_lang_code_id] lowerCAmelCase : List[Any] = [self.eos_token_id] def lowercase ( self , snake_case__ ): lowerCAmelCase : List[Any] = self.lang_code_to_id[tgt_lang] lowerCAmelCase : Tuple = [self.cur_lang_code_id] lowerCAmelCase : Optional[int] = [self.eos_token_id]
646
'''simple docstring''' def __UpperCamelCase ( _A : int ) -> bool: """simple docstring""" return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
646
1
'''simple docstring''' import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): lowerCAmelCase : Optional[Any] = 'laion/clap-htsat-unfused' lowerCAmelCase : List[str] = tempfile.mkdtemp() def lowercase ( self , **snake_case__ ): return RobertaTokenizer.from_pretrained(self.checkpoint , **snake_case__ ) def lowercase ( self , **snake_case__ ): return ClapFeatureExtractor.from_pretrained(self.checkpoint , **snake_case__ ) def lowercase ( self ): shutil.rmtree(self.tmpdirname ) def lowercase ( self ): lowerCAmelCase : Any = self.get_tokenizer() lowerCAmelCase : str = self.get_feature_extractor() lowerCAmelCase : Optional[int] = ClapProcessor(tokenizer=snake_case__ , feature_extractor=snake_case__ ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase : str = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case__ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , snake_case__ ) def lowercase ( self ): lowerCAmelCase : str = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase : int = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) lowerCAmelCase : List[Any] = self.get_feature_extractor(do_normalize=snake_case__ , padding_value=1.0 ) lowerCAmelCase : Optional[int] = ClapProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=snake_case__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case__ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Tuple = self.get_feature_extractor() lowerCAmelCase : str = self.get_tokenizer() lowerCAmelCase : Optional[Any] = ClapProcessor(tokenizer=snake_case__ , feature_extractor=snake_case__ ) lowerCAmelCase : Union[str, Any] = floats_list((3, 1000) ) lowerCAmelCase : List[Any] = feature_extractor(snake_case__ , return_tensors='np' ) lowerCAmelCase : Tuple = processor(audios=snake_case__ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowercase ( self ): lowerCAmelCase : List[Any] = self.get_feature_extractor() lowerCAmelCase : Any = self.get_tokenizer() lowerCAmelCase : Optional[Any] = ClapProcessor(tokenizer=snake_case__ , feature_extractor=snake_case__ ) lowerCAmelCase : int = 'This is a test string' lowerCAmelCase : Optional[Any] = processor(text=snake_case__ ) lowerCAmelCase : int = tokenizer(snake_case__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase ( self ): lowerCAmelCase : str = self.get_feature_extractor() lowerCAmelCase : List[Any] = self.get_tokenizer() lowerCAmelCase : Dict = ClapProcessor(tokenizer=snake_case__ , feature_extractor=snake_case__ ) lowerCAmelCase : int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase : List[str] = processor.batch_decode(snake_case__ ) lowerCAmelCase : Optional[int] = tokenizer.batch_decode(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) def lowercase ( self ): lowerCAmelCase : List[Any] = self.get_feature_extractor() lowerCAmelCase : List[str] = self.get_tokenizer() lowerCAmelCase : Union[str, Any] = ClapProcessor(tokenizer=snake_case__ , feature_extractor=snake_case__ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , )
646
'''simple docstring''' import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( 'files' , [ ['full:README.md', 'dataset_infos.json'], ['empty:README.md', 'dataset_infos.json'], ['dataset_infos.json'], ['full:README.md'], ] , ) def __UpperCamelCase ( _A : str , _A : List[Any] ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase : Optional[int] = tmp_path_factory.mktemp('dset_infos_dir' ) if "full:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('---\ndataset_info:\n dataset_size: 42\n---' ) if "empty:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / 'dataset_infos.json' , 'w' ) as f: f.write('{"default": {"dataset_size": 42}}' ) lowerCAmelCase : Union[str, Any] = DatasetInfosDict.from_directory(_A ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( 'dataset_info' , [ DatasetInfo(), DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ), ] , ) def __UpperCamelCase ( _A : str , _A : DatasetInfo ) -> Optional[int]: """simple docstring""" lowerCAmelCase : str = str(_A ) dataset_info.write_to_directory(_A ) lowerCAmelCase : List[str] = DatasetInfo.from_directory(_A ) assert dataset_info == reloaded assert os.path.exists(os.path.join(_A , 'dataset_info.json' ) ) def __UpperCamelCase ( ) -> List[str]: """simple docstring""" lowerCAmelCase : Tuple = DatasetInfo( description='foo' , citation='bar' , homepage='https://foo.bar' , license='CC0' , features=Features({'a': Value('int32' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train', 'num_examples': 42}] , download_checksums={} , download_size=13_37 , post_processing_size=4_42 , dataset_size=12_34 , size_in_bytes=13_37 + 4_42 + 12_34 , ) lowerCAmelCase : Optional[int] = dataset_info._to_yaml_dict() assert sorted(_A ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) lowerCAmelCase : Any = yaml.safe_dump(_A ) lowerCAmelCase : int = yaml.safe_load(_A ) assert dataset_info_yaml_dict == reloaded def __UpperCamelCase ( ) -> Dict: """simple docstring""" lowerCAmelCase : Union[str, Any] = DatasetInfo() lowerCAmelCase : List[Any] = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( 'dataset_infos_dict' , [ DatasetInfosDict(), DatasetInfosDict({'default': DatasetInfo()} ), DatasetInfosDict({'my_config_name': DatasetInfo()} ), DatasetInfosDict( { 'default': DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ) } ), DatasetInfosDict( { 'v1': DatasetInfo(dataset_size=42 ), 'v2': DatasetInfo(dataset_size=13_37 ), } ), ] , ) def __UpperCamelCase ( _A : Tuple , _A : DatasetInfosDict ) -> List[Any]: """simple docstring""" lowerCAmelCase : Tuple = str(_A ) dataset_infos_dict.write_to_directory(_A ) lowerCAmelCase : List[str] = DatasetInfosDict.from_directory(_A ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): lowerCAmelCase : Tuple = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml lowerCAmelCase : Optional[Any] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(_A , 'README.md' ) )
646
1
'''simple docstring''' def __UpperCamelCase ( _A : List[str] ) -> Optional[Any]: """simple docstring""" if not head: return True # split the list to two parts lowerCAmelCase , lowerCAmelCase : str = head.next, head while fast and fast.next: lowerCAmelCase : Optional[int] = fast.next.next lowerCAmelCase : int = slow.next lowerCAmelCase : int = slow.next lowerCAmelCase : Optional[Any] = None # Don't forget here! But forget still works! # reverse the second part lowerCAmelCase : List[Any] = None while second: lowerCAmelCase : List[Any] = second.next lowerCAmelCase : Union[str, Any] = node lowerCAmelCase : Optional[Any] = second lowerCAmelCase : Any = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False lowerCAmelCase : Optional[Any] = node.next lowerCAmelCase : Tuple = head.next return True def __UpperCamelCase ( _A : Optional[Any] ) -> Optional[int]: """simple docstring""" if not head or not head.next: return True # 1. Get the midpoint (slow) lowerCAmelCase : Optional[int] = head while fast and fast.next: lowerCAmelCase , lowerCAmelCase : Optional[Any] = fast.next.next, slow.next # 2. Push the second half into the stack lowerCAmelCase : Tuple = [slow.val] while slow.next: lowerCAmelCase : Tuple = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False lowerCAmelCase : Union[str, Any] = cur.next return True def __UpperCamelCase ( _A : Tuple ) -> Optional[int]: """simple docstring""" if not head or not head.next: return True lowerCAmelCase : Optional[int] = {} lowerCAmelCase : int = 0 while head: if head.val in d: d[head.val].append(_A ) else: lowerCAmelCase : Any = [pos] lowerCAmelCase : int = head.next pos += 1 lowerCAmelCase : str = pos - 1 lowerCAmelCase : Optional[Any] = 0 for v in d.values(): if len(_A ) % 2 != 0: middle += 1 else: lowerCAmelCase : Any = 0 for i in range(0 , len(_A ) ): if v[i] + v[len(_A ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
646
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCAmelCase ( a ): def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): super().__init__() if safety_checker is None: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" ' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered' ' results in services or applications open to the public. Both the diffusers team and Hugging Face' ' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling' ' it only for use-cases that involve analyzing network behavior or auditing its results. For more' ' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .' ) self.register_modules( speech_model=snake_case__ , speech_processor=snake_case__ , vae=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , unet=snake_case__ , scheduler=snake_case__ , feature_extractor=snake_case__ , ) def lowercase ( self , snake_case__ = "auto" ): if slice_size == "auto": lowerCAmelCase : Union[str, Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(snake_case__ ) def lowercase ( self ): self.enable_attention_slicing(snake_case__ ) @torch.no_grad() def __call__( self , snake_case__ , snake_case__=1_6000 , snake_case__ = 512 , snake_case__ = 512 , snake_case__ = 50 , snake_case__ = 7.5 , snake_case__ = None , snake_case__ = 1 , snake_case__ = 0.0 , snake_case__ = None , snake_case__ = None , snake_case__ = "pil" , snake_case__ = True , snake_case__ = None , snake_case__ = 1 , **snake_case__ , ): lowerCAmelCase : List[str] = self.speech_processor.feature_extractor( snake_case__ , return_tensors='pt' , sampling_rate=snake_case__ ).input_features.to(self.device ) lowerCAmelCase : Optional[Any] = self.speech_model.generate(snake_case__ , max_length=48_0000 ) lowerCAmelCase : str = self.speech_processor.tokenizer.batch_decode(snake_case__ , skip_special_tokens=snake_case__ , normalize=snake_case__ )[ 0 ] if isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = 1 elif isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = len(snake_case__ ) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(snake_case__ )}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(snake_case__ , snake_case__ ) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(snake_case__ )}." ) # get prompt text embeddings lowerCAmelCase : str = self.tokenizer( snake_case__ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) lowerCAmelCase : Tuple = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowerCAmelCase : str = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) lowerCAmelCase : Union[str, Any] = text_input_ids[:, : self.tokenizer.model_max_length] lowerCAmelCase : Union[str, Any] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : int = text_embeddings.shape lowerCAmelCase : Any = text_embeddings.repeat(1 , snake_case__ , 1 ) lowerCAmelCase : Optional[int] = text_embeddings.view(bs_embed * num_images_per_prompt , snake_case__ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowerCAmelCase : List[str] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowerCAmelCase : List[str] if negative_prompt is None: lowerCAmelCase : Any = [''] * batch_size elif type(snake_case__ ) is not type(snake_case__ ): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(snake_case__ )} !=" f" {type(snake_case__ )}." ) elif isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = [negative_prompt] elif batch_size != len(snake_case__ ): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(snake_case__ )}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" ' the batch size of `prompt`.' ) else: lowerCAmelCase : Dict = negative_prompt lowerCAmelCase : Optional[int] = text_input_ids.shape[-1] lowerCAmelCase : int = self.tokenizer( snake_case__ , padding='max_length' , max_length=snake_case__ , truncation=snake_case__ , return_tensors='pt' , ) lowerCAmelCase : Union[str, Any] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowerCAmelCase : List[Any] = uncond_embeddings.shape[1] lowerCAmelCase : List[str] = uncond_embeddings.repeat(1 , snake_case__ , 1 ) lowerCAmelCase : Optional[Any] = uncond_embeddings.view(batch_size * num_images_per_prompt , snake_case__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCAmelCase : List[str] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowerCAmelCase : Union[str, Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowerCAmelCase : Dict = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowerCAmelCase : str = torch.randn(snake_case__ , generator=snake_case__ , device='cpu' , dtype=snake_case__ ).to( self.device ) else: lowerCAmelCase : Tuple = torch.randn(snake_case__ , generator=snake_case__ , device=self.device , dtype=snake_case__ ) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) lowerCAmelCase : str = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(snake_case__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowerCAmelCase : Union[str, Any] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowerCAmelCase : Any = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowerCAmelCase : Tuple = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCAmelCase : Union[str, Any] = {} if accepts_eta: lowerCAmelCase : int = eta for i, t in enumerate(self.progress_bar(snake_case__ ) ): # expand the latents if we are doing classifier free guidance lowerCAmelCase : Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCAmelCase : Tuple = self.scheduler.scale_model_input(snake_case__ , snake_case__ ) # predict the noise residual lowerCAmelCase : List[str] = self.unet(snake_case__ , snake_case__ , encoder_hidden_states=snake_case__ ).sample # perform guidance if do_classifier_free_guidance: lowerCAmelCase , lowerCAmelCase : Dict = noise_pred.chunk(2 ) lowerCAmelCase : Tuple = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowerCAmelCase : int = self.scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase : List[Any] = 1 / 0.1_8_2_1_5 * latents lowerCAmelCase : Dict = self.vae.decode(snake_case__ ).sample lowerCAmelCase : List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowerCAmelCase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowerCAmelCase : Dict = self.numpy_to_pil(snake_case__ ) if not return_dict: return image return StableDiffusionPipelineOutput(images=snake_case__ , nsfw_content_detected=snake_case__ )
646
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : Dict = logging.get_logger(__name__) def __UpperCamelCase ( _A : Optional[int] , _A : int=False , _A : Union[str, Any]=False , _A : List[Any]=False ) -> List[str]: """simple docstring""" lowerCAmelCase : Optional[int] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"transformer.blocks.{i}.norm1.weight", F"vilt.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"transformer.blocks.{i}.norm1.bias", F"vilt.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (F"transformer.blocks.{i}.attn.proj.weight", F"vilt.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (F"transformer.blocks.{i}.attn.proj.bias", F"vilt.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"transformer.blocks.{i}.norm2.weight", F"vilt.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"transformer.blocks.{i}.norm2.bias", F"vilt.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append( (F"transformer.blocks.{i}.mlp.fc1.weight", F"vilt.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"transformer.blocks.{i}.mlp.fc1.bias", F"vilt.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"transformer.blocks.{i}.mlp.fc2.weight", F"vilt.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"transformer.blocks.{i}.mlp.fc2.bias", F"vilt.encoder.layer.{i}.output.dense.bias") ) # embeddings rename_keys.extend( [ # text embeddings ('text_embeddings.word_embeddings.weight', 'vilt.embeddings.text_embeddings.word_embeddings.weight'), ( 'text_embeddings.position_embeddings.weight', 'vilt.embeddings.text_embeddings.position_embeddings.weight', ), ('text_embeddings.position_ids', 'vilt.embeddings.text_embeddings.position_ids'), ( 'text_embeddings.token_type_embeddings.weight', 'vilt.embeddings.text_embeddings.token_type_embeddings.weight', ), ('text_embeddings.LayerNorm.weight', 'vilt.embeddings.text_embeddings.LayerNorm.weight'), ('text_embeddings.LayerNorm.bias', 'vilt.embeddings.text_embeddings.LayerNorm.bias'), # patch embeddings ('transformer.cls_token', 'vilt.embeddings.cls_token'), ('transformer.patch_embed.proj.weight', 'vilt.embeddings.patch_embeddings.projection.weight'), ('transformer.patch_embed.proj.bias', 'vilt.embeddings.patch_embeddings.projection.bias'), ('transformer.pos_embed', 'vilt.embeddings.position_embeddings'), # token type embeddings ('token_type_embeddings.weight', 'vilt.embeddings.token_type_embeddings.weight'), ] ) # final layernorm + pooler rename_keys.extend( [ ('transformer.norm.weight', 'vilt.layernorm.weight'), ('transformer.norm.bias', 'vilt.layernorm.bias'), ('pooler.dense.weight', 'vilt.pooler.dense.weight'), ('pooler.dense.bias', 'vilt.pooler.dense.bias'), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ('vqa_classifier.0.weight', 'classifier.0.weight'), ('vqa_classifier.0.bias', 'classifier.0.bias'), ('vqa_classifier.1.weight', 'classifier.1.weight'), ('vqa_classifier.1.bias', 'classifier.1.bias'), ('vqa_classifier.3.weight', 'classifier.3.weight'), ('vqa_classifier.3.bias', 'classifier.3.bias'), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ('nlvr2_classifier.0.weight', 'classifier.0.weight'), ('nlvr2_classifier.0.bias', 'classifier.0.bias'), ('nlvr2_classifier.1.weight', 'classifier.1.weight'), ('nlvr2_classifier.1.bias', 'classifier.1.bias'), ('nlvr2_classifier.3.weight', 'classifier.3.weight'), ('nlvr2_classifier.3.bias', 'classifier.3.bias'), ] ) else: pass return rename_keys def __UpperCamelCase ( _A : List[Any] , _A : str ) -> Union[str, Any]: """simple docstring""" for i in range(config.num_hidden_layers ): lowerCAmelCase : Union[str, Any] = 'vilt.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase : str = state_dict.pop(F"transformer.blocks.{i}.attn.qkv.weight" ) lowerCAmelCase : List[Any] = state_dict.pop(F"transformer.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase : Optional[Any] = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase : Dict = in_proj_bias[: config.hidden_size] lowerCAmelCase : List[str] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase : Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase : Dict = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase : int = in_proj_bias[-config.hidden_size :] def __UpperCamelCase ( _A : Optional[int] ) -> List[Any]: """simple docstring""" lowerCAmelCase : Optional[Any] = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(_A , _A ) def __UpperCamelCase ( _A : Any , _A : Dict , _A : Optional[int] ) -> Optional[int]: """simple docstring""" lowerCAmelCase : str = dct.pop(_A ) lowerCAmelCase : str = val @torch.no_grad() def __UpperCamelCase ( _A : str , _A : List[Any] ) -> Dict: """simple docstring""" lowerCAmelCase : Dict = ViltConfig(image_size=3_84 , patch_size=32 , tie_word_embeddings=_A ) lowerCAmelCase : Union[str, Any] = False lowerCAmelCase : Union[str, Any] = False lowerCAmelCase : int = False lowerCAmelCase : Any = False if "vqa" in checkpoint_url: lowerCAmelCase : Union[str, Any] = True lowerCAmelCase : int = 31_29 lowerCAmelCase : Dict = 'huggingface/label-files' lowerCAmelCase : Optional[int] = 'vqa2-id2label.json' lowerCAmelCase : Any = json.load(open(hf_hub_download(_A , _A , repo_type='dataset' ) , 'r' ) ) lowerCAmelCase : Union[str, Any] = {int(_A ): v for k, v in idalabel.items()} lowerCAmelCase : Union[str, Any] = idalabel lowerCAmelCase : Union[str, Any] = {v: k for k, v in idalabel.items()} lowerCAmelCase : str = ViltForQuestionAnswering(_A ) elif "nlvr" in checkpoint_url: lowerCAmelCase : Optional[int] = True lowerCAmelCase : str = 2 lowerCAmelCase : Any = {0: 'False', 1: 'True'} lowerCAmelCase : Tuple = {v: k for k, v in config.idalabel.items()} lowerCAmelCase : str = 3 lowerCAmelCase : Optional[Any] = ViltForImagesAndTextClassification(_A ) elif "irtr" in checkpoint_url: lowerCAmelCase : Union[str, Any] = True lowerCAmelCase : int = ViltForImageAndTextRetrieval(_A ) elif "mlm_itm" in checkpoint_url: lowerCAmelCase : Optional[int] = True lowerCAmelCase : str = ViltForMaskedLM(_A ) else: raise ValueError('Unknown model type' ) # load state_dict of original model, remove and rename some keys lowerCAmelCase : int = torch.hub.load_state_dict_from_url(_A , map_location='cpu' )['state_dict'] lowerCAmelCase : int = create_rename_keys(_A , _A , _A , _A ) for src, dest in rename_keys: rename_key(_A , _A , _A ) read_in_q_k_v(_A , _A ) if mlm_model or irtr_model: lowerCAmelCase : Tuple = ['itm_score.fc.weight', 'itm_score.fc.bias'] for k in ignore_keys: state_dict.pop(_A , _A ) # load state dict into HuggingFace model model.eval() if mlm_model: lowerCAmelCase , lowerCAmelCase : Optional[Any] = model.load_state_dict(_A , strict=_A ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(_A ) # Define processor lowerCAmelCase : int = ViltImageProcessor(size=3_84 ) lowerCAmelCase : int = BertTokenizer.from_pretrained('bert-base-uncased' ) lowerCAmelCase : List[str] = ViltProcessor(_A , _A ) # Forward pass on example inputs (image + text) if nlvr_model: lowerCAmelCase : Tuple = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=_A ).raw ) lowerCAmelCase : int = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=_A ).raw ) lowerCAmelCase : str = ( 'The left image contains twice the number of dogs as the right image, and at least two dogs in total are' ' standing.' ) lowerCAmelCase : str = processor(_A , _A , return_tensors='pt' ) lowerCAmelCase : int = processor(_A , _A , return_tensors='pt' ) lowerCAmelCase : Union[str, Any] = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: lowerCAmelCase : str = Image.open(requests.get('http://images.cocodataset.org/val2017/000000039769.jpg' , stream=_A ).raw ) if mlm_model: lowerCAmelCase : Tuple = 'a bunch of [MASK] laying on a [MASK].' else: lowerCAmelCase : int = 'How many cats are there?' lowerCAmelCase : Tuple = processor(_A , _A , return_tensors='pt' ) lowerCAmelCase : Optional[int] = model(**_A ) # Verify outputs if mlm_model: lowerCAmelCase : Union[str, Any] = torch.Size([1, 11, 3_05_22] ) lowerCAmelCase : int = torch.tensor([-12.50_61, -12.51_23, -12.51_74] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , _A , atol=1e-4 ) # verify masked token prediction equals "cats" lowerCAmelCase : Optional[int] = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: lowerCAmelCase : Any = torch.Size([1, 31_29] ) lowerCAmelCase : Union[str, Any] = torch.tensor([-15.94_95, -18.14_72, -10.30_41] ) assert torch.allclose(outputs.logits[0, :3] , _A , atol=1e-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , _A , atol=1e-4 ) # verify vqa prediction equals "2" lowerCAmelCase : Optional[Any] = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: lowerCAmelCase : List[str] = torch.Size([1, 2] ) lowerCAmelCase : Tuple = torch.tensor([-2.87_21, 2.12_91] ) assert torch.allclose(outputs.logits[0, :3] , _A , atol=1e-4 ) assert outputs.logits.shape == expected_shape Path(_A ).mkdir(exist_ok=_A ) print(F"Saving model and processor to {pytorch_dump_folder_path}" ) model.save_pretrained(_A ) processor.save_pretrained(_A ) if __name__ == "__main__": _lowerCAmelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) _lowerCAmelCase : str = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
646
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : List[Any] = LDMTextToImagePipeline _lowerCamelCase : Optional[Any] = TEXT_TO_IMAGE_PARAMS - { """negative_prompt""", """negative_prompt_embeds""", """cross_attention_kwargs""", """prompt_embeds""", } _lowerCamelCase : List[str] = PipelineTesterMixin.required_optional_params - { """num_images_per_prompt""", """callback""", """callback_steps""", } _lowerCamelCase : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS _lowerCamelCase : Optional[int] = False def lowercase ( self ): torch.manual_seed(0 ) lowerCAmelCase : Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) lowerCAmelCase : int = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , ) torch.manual_seed(0 ) lowerCAmelCase : str = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') , up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') , latent_channels=4 , ) torch.manual_seed(0 ) lowerCAmelCase : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowerCAmelCase : str = CLIPTextModel(snake_case__ ) lowerCAmelCase : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCAmelCase : List[Any] = { 'unet': unet, 'scheduler': scheduler, 'vqvae': vae, 'bert': text_encoder, 'tokenizer': tokenizer, } return components def lowercase ( self , snake_case__ , snake_case__=0 ): if str(snake_case__ ).startswith('mps' ): lowerCAmelCase : Optional[int] = torch.manual_seed(snake_case__ ) else: lowerCAmelCase : str = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) lowerCAmelCase : Tuple = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase ( self ): lowerCAmelCase : List[str] = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase : Optional[Any] = self.get_dummy_components() lowerCAmelCase : Optional[Any] = LDMTextToImagePipeline(**snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Tuple = self.get_dummy_inputs(snake_case__ ) lowerCAmelCase : Union[str, Any] = pipe(**snake_case__ ).images lowerCAmelCase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) lowerCAmelCase : List[Any] = np.array([0.6_1_0_1, 0.6_1_5_6, 0.5_6_2_2, 0.4_8_9_5, 0.6_6_6_1, 0.3_8_0_4, 0.5_7_4_8, 0.6_1_3_6, 0.5_0_1_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self , snake_case__ , snake_case__=torch.floataa , snake_case__=0 ): lowerCAmelCase : List[str] = torch.manual_seed(snake_case__ ) lowerCAmelCase : int = np.random.RandomState(snake_case__ ).standard_normal((1, 4, 32, 32) ) lowerCAmelCase : Optional[Any] = torch.from_numpy(snake_case__ ).to(device=snake_case__ , dtype=snake_case__ ) lowerCAmelCase : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase ( self ): lowerCAmelCase : Tuple = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Optional[Any] = self.get_inputs(snake_case__ ) lowerCAmelCase : List[Any] = pipe(**snake_case__ ).images lowerCAmelCase : str = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) lowerCAmelCase : Tuple = np.array([0.5_1_8_2_5, 0.5_2_8_5_0, 0.5_2_5_4_3, 0.5_4_2_5_8, 0.5_2_3_0_4, 0.5_2_5_6_9, 0.5_4_3_6_3, 0.5_5_2_7_6, 0.5_6_8_7_8] ) lowerCAmelCase : int = np.abs(expected_slice - image_slice ).max() assert max_diff < 1e-3 @nightly @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self , snake_case__ , snake_case__=torch.floataa , snake_case__=0 ): lowerCAmelCase : List[str] = torch.manual_seed(snake_case__ ) lowerCAmelCase : Any = np.random.RandomState(snake_case__ ).standard_normal((1, 4, 32, 32) ) lowerCAmelCase : List[Any] = torch.from_numpy(snake_case__ ).to(device=snake_case__ , dtype=snake_case__ ) lowerCAmelCase : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase ( self ): lowerCAmelCase : Optional[int] = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : int = self.get_inputs(snake_case__ ) lowerCAmelCase : Optional[int] = pipe(**snake_case__ ).images[0] lowerCAmelCase : Optional[int] = load_numpy( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy' ) lowerCAmelCase : List[str] = np.abs(expected_image - image ).max() assert max_diff < 1e-3
646
1
'''simple docstring''' from typing import Union import fire import torch from tqdm import tqdm def __UpperCamelCase ( _A : str , _A : str = "cpu" , _A : Union[str, None] = None ) -> None: """simple docstring""" lowerCAmelCase : List[Any] = torch.load(_A , map_location=_A ) for k, v in tqdm(state_dict.items() ): if not isinstance(_A , torch.Tensor ): raise TypeError('FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin' ) lowerCAmelCase : Optional[int] = v.half() if save_path is None: # overwrite src_path lowerCAmelCase : Dict = src_path torch.save(_A , _A ) if __name__ == "__main__": fire.Fire(convert)
646
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Tuple = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { 'facebook/xmod-base': 'https://huggingface.co/facebook/xmod-base/resolve/main/config.json', 'facebook/xmod-large-prenorm': 'https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json', 'facebook/xmod-base-13-125k': 'https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json', 'facebook/xmod-base-30-125k': 'https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json', 'facebook/xmod-base-30-195k': 'https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json', 'facebook/xmod-base-60-125k': 'https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json', 'facebook/xmod-base-60-265k': 'https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json', 'facebook/xmod-base-75-125k': 'https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json', 'facebook/xmod-base-75-269k': 'https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json', } class lowerCAmelCase ( a ): _lowerCamelCase : int = """xmod""" def __init__( self , snake_case__=3_0522 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=1e-1_2 , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__="absolute" , snake_case__=True , snake_case__=None , snake_case__=False , snake_case__=2 , snake_case__=False , snake_case__=True , snake_case__=True , snake_case__=("en_XX",) , snake_case__=None , **snake_case__ , ): super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) lowerCAmelCase : Dict = vocab_size lowerCAmelCase : Optional[Any] = hidden_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob lowerCAmelCase : str = max_position_embeddings lowerCAmelCase : int = type_vocab_size lowerCAmelCase : List[Any] = initializer_range lowerCAmelCase : Any = layer_norm_eps lowerCAmelCase : Dict = position_embedding_type lowerCAmelCase : Optional[Any] = use_cache lowerCAmelCase : Union[str, Any] = classifier_dropout lowerCAmelCase : int = pre_norm lowerCAmelCase : Optional[Any] = adapter_reduction_factor lowerCAmelCase : Any = adapter_layer_norm lowerCAmelCase : Dict = adapter_reuse_layer_norm lowerCAmelCase : Any = ln_before_adapter lowerCAmelCase : Optional[Any] = list(snake_case__ ) lowerCAmelCase : List[Any] = default_language class lowerCAmelCase ( a ): @property def lowercase ( self ): if self.task == "multiple-choice": lowerCAmelCase : List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase : Optional[int] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
646
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : Any = logging.get_logger(__name__) def __UpperCamelCase ( _A : Dict , _A : int=False ) -> Optional[int]: """simple docstring""" lowerCAmelCase : Dict = [] # fmt: off # stem: rename_keys.append(('cls_token', 'vit.embeddings.cls_token') ) rename_keys.append(('pos_embed', 'vit.embeddings.position_embeddings') ) rename_keys.append(('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias') ) # backbone rename_keys.append(('patch_embed.backbone.stem.conv.weight', 'vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight') ) rename_keys.append(('patch_embed.backbone.stem.norm.weight', 'vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight') ) rename_keys.append(('patch_embed.backbone.stem.norm.bias', 'vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias') ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias") ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((F"blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((F"blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias") ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ('pre_logits.fc.weight', 'pooler.dense.weight'), ('pre_logits.fc.bias', 'pooler.dense.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCAmelCase : List[Any] = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) # fmt: on return rename_keys def __UpperCamelCase ( _A : Dict , _A : Union[str, Any] , _A : Union[str, Any]=False ) -> str: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase : List[str] = '' else: lowerCAmelCase : Tuple = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase : List[str] = state_dict.pop(F"blocks.{i}.attn.qkv.weight" ) lowerCAmelCase : Union[str, Any] = state_dict.pop(F"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase : Tuple = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase : int = in_proj_bias[: config.hidden_size] lowerCAmelCase : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase : List[str] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase : List[str] = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase : Tuple = in_proj_bias[-config.hidden_size :] def __UpperCamelCase ( _A : Optional[int] ) -> Optional[Any]: """simple docstring""" lowerCAmelCase : Any = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(_A , _A ) def __UpperCamelCase ( _A : Any , _A : List[str] , _A : str ) -> Tuple: """simple docstring""" lowerCAmelCase : Tuple = dct.pop(_A ) lowerCAmelCase : int = val def __UpperCamelCase ( ) -> Optional[int]: """simple docstring""" lowerCAmelCase : Optional[Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCAmelCase : Union[str, Any] = Image.open(requests.get(_A , stream=_A ).raw ) return im @torch.no_grad() def __UpperCamelCase ( _A : Any , _A : Optional[int] , _A : Tuple=False ) -> Optional[Any]: """simple docstring""" lowerCAmelCase : Any = BitConfig( global_padding='same' , layer_type='bottleneck' , depths=(3, 4, 9) , out_features=['stage3'] , embedding_dynamic_padding=_A , ) lowerCAmelCase : str = ViTHybridConfig(backbone_config=_A , image_size=3_84 , num_labels=10_00 ) lowerCAmelCase : Any = False # load original model from timm lowerCAmelCase : int = timm.create_model(_A , pretrained=_A ) timm_model.eval() # load state_dict of original model, remove and rename some keys lowerCAmelCase : Union[str, Any] = timm_model.state_dict() if base_model: remove_classification_head_(_A ) lowerCAmelCase : Optional[Any] = create_rename_keys(_A , _A ) for src, dest in rename_keys: rename_key(_A , _A , _A ) read_in_q_k_v(_A , _A , _A ) lowerCAmelCase : Optional[int] = 'huggingface/label-files' lowerCAmelCase : Tuple = 'imagenet-1k-id2label.json' lowerCAmelCase : List[Any] = json.load(open(hf_hub_download(_A , _A , repo_type='dataset' ) , 'r' ) ) lowerCAmelCase : List[str] = {int(_A ): v for k, v in idalabel.items()} lowerCAmelCase : Dict = idalabel lowerCAmelCase : Optional[Any] = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": lowerCAmelCase : Dict = ViTHybridModel(_A ).eval() else: lowerCAmelCase : str = ViTHybridForImageClassification(_A ).eval() model.load_state_dict(_A ) # create image processor lowerCAmelCase : List[str] = create_transform(**resolve_data_config({} , model=_A ) ) lowerCAmelCase : List[Any] = transform.transforms lowerCAmelCase : Optional[int] = { 'bilinear': PILImageResampling.BILINEAR, 'bicubic': PILImageResampling.BICUBIC, 'nearest': PILImageResampling.NEAREST, } lowerCAmelCase : Optional[int] = ViTHybridImageProcessor( do_resize=_A , size={'shortest_edge': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=_A , crop_size={'height': timm_transforms[1].size[0], 'width': timm_transforms[1].size[1]} , do_normalize=_A , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) lowerCAmelCase : Union[str, Any] = prepare_img() lowerCAmelCase : str = transform(_A ).unsqueeze(0 ) lowerCAmelCase : Optional[int] = processor(_A , return_tensors='pt' ).pixel_values # verify pixel values assert torch.allclose(_A , _A ) # verify logits with torch.no_grad(): lowerCAmelCase : str = model(_A ) lowerCAmelCase : Union[str, Any] = outputs.logits print('Predicted class:' , logits.argmax(-1 ).item() ) if base_model: lowerCAmelCase : List[str] = timm_model.forward_features(_A ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_A , outputs.pooler_output , atol=1e-3 ) else: lowerCAmelCase : Dict = timm_model(_A ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_A , outputs.logits , atol=1e-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: Path(_A ).mkdir(exist_ok=_A ) print(F"Saving model {vit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_A ) print(F"Saving processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(_A ) if push_to_hub: print(F"Pushing model and processor to the hub {vit_name}" ) model.push_to_hub(F"ybelkada/{vit_name}" ) processor.push_to_hub(F"ybelkada/{vit_name}" ) if __name__ == "__main__": _lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--vit_name', default='vit_base_r50_s16_384', type=str, help='Name of the hybrid ViT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) _lowerCAmelCase : Any = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
646
'''simple docstring''' import argparse import os import re _lowerCAmelCase : Dict = 'src/diffusers' # Pattern that looks at the indentation in a line. _lowerCAmelCase : str = re.compile(r'^(\s*)\S') # Pattern that matches `"key":" and puts `key` in group 0. _lowerCAmelCase : Any = re.compile(r'^\s*"([^"]+)":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. _lowerCAmelCase : List[Any] = re.compile(r'^\s*_import_structure\["([^"]+)"\]') # Pattern that matches `"key",` and puts `key` in group 0. _lowerCAmelCase : int = re.compile(r'^\s*"([^"]+)",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. _lowerCAmelCase : Optional[Any] = re.compile(r'\[([^\]]+)\]') def __UpperCamelCase ( _A : Union[str, Any] ) -> Dict: """simple docstring""" lowerCAmelCase : Any = _re_indent.search(_A ) return "" if search is None else search.groups()[0] def __UpperCamelCase ( _A : Dict , _A : Any="" , _A : List[str]=None , _A : Any=None ) -> Tuple: """simple docstring""" lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Tuple = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(_A ): index += 1 lowerCAmelCase : Optional[int] = ['\n'.join(lines[:index] )] else: lowerCAmelCase : int = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowerCAmelCase : Tuple = [lines[index]] index += 1 while index < len(_A ) and (end_prompt is None or not lines[index].startswith(_A )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(_A ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(_A ) ) if index < len(_A ) - 1: lowerCAmelCase : List[Any] = [lines[index + 1]] index += 1 else: lowerCAmelCase : int = [] else: blocks.append('\n'.join(_A ) ) lowerCAmelCase : Any = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(_A ) > 0: blocks.append('\n'.join(_A ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(_A ): blocks.append('\n'.join(lines[index:] ) ) return blocks def __UpperCamelCase ( _A : Dict ) -> List[Any]: """simple docstring""" def _inner(_A : Tuple ): return key(_A ).lower().replace('_' , '' ) return _inner def __UpperCamelCase ( _A : Union[str, Any] , _A : Any=None ) -> Optional[Any]: """simple docstring""" def noop(_A : Any ): return x if key is None: lowerCAmelCase : List[str] = noop # Constants are all uppercase, they go first. lowerCAmelCase : str = [obj for obj in objects if key(_A ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowerCAmelCase : List[str] = [obj for obj in objects if key(_A )[0].isupper() and not key(_A ).isupper()] # Functions begin with a lowercase, they go last. lowerCAmelCase : Optional[Any] = [obj for obj in objects if not key(_A )[0].isupper()] lowerCAmelCase : Tuple = ignore_underscore(_A ) return sorted(_A , key=_A ) + sorted(_A , key=_A ) + sorted(_A , key=_A ) def __UpperCamelCase ( _A : Union[str, Any] ) -> int: """simple docstring""" def _replace(_A : List[Any] ): lowerCAmelCase : List[Any] = match.groups()[0] if "," not in imports: return F"[{imports}]" lowerCAmelCase : Dict = [part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase : List[str] = keys[:-1] return "[" + ", ".join([F"\"{k}\"" for k in sort_objects(_A )] ) + "]" lowerCAmelCase : Optional[int] = import_statement.split('\n' ) if len(_A ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowerCAmelCase : Optional[Any] = 2 if lines[1].strip() == '[' else 1 lowerCAmelCase : List[str] = [(i, _re_strip_line.search(_A ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowerCAmelCase : Optional[Any] = sort_objects(_A , key=lambda _A : x[1] ) lowerCAmelCase : Dict = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(_A ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowerCAmelCase : Optional[int] = _re_bracket_content.sub(_replace , lines[1] ) else: lowerCAmelCase : List[Any] = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase : int = keys[:-1] lowerCAmelCase : Tuple = get_indent(lines[1] ) + ', '.join([F"\"{k}\"" for k in sort_objects(_A )] ) return "\n".join(_A ) else: # Finally we have to deal with imports fitting on one line lowerCAmelCase : Union[str, Any] = _re_bracket_content.sub(_replace , _A ) return import_statement def __UpperCamelCase ( _A : str , _A : Tuple=True ) -> Optional[Any]: """simple docstring""" with open(_A , 'r' ) as f: lowerCAmelCase : Optional[int] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowerCAmelCase : List[Any] = split_code_in_indented_blocks( _A , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(_A ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowerCAmelCase : List[str] = main_blocks[block_idx] lowerCAmelCase : Union[str, Any] = block.split('\n' ) # Get to the start of the imports. lowerCAmelCase : Optional[Any] = 0 while line_idx < len(_A ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowerCAmelCase : Optional[Any] = len(_A ) else: line_idx += 1 if line_idx >= len(_A ): continue # Ignore beginning and last line: they don't contain anything. lowerCAmelCase : str = '\n'.join(block_lines[line_idx:-1] ) lowerCAmelCase : str = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowerCAmelCase : Optional[Any] = split_code_in_indented_blocks(_A , indent_level=_A ) # We have two categories of import key: list or _import_structure[key].append/extend lowerCAmelCase : Union[str, Any] = _re_direct_key if '_import_structure' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowerCAmelCase : int = [(pattern.search(_A ).groups()[0] if pattern.search(_A ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowerCAmelCase : Dict = [(i, key) for i, key in enumerate(_A ) if key is not None] lowerCAmelCase : List[Any] = [x[0] for x in sorted(_A , key=lambda _A : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowerCAmelCase : int = 0 lowerCAmelCase : Dict = [] for i in range(len(_A ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: lowerCAmelCase : str = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(_A ) count += 1 # And we put our main block back together with its first and last line. lowerCAmelCase : str = '\n'.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(_A ): if check_only: return True else: print(F"Overwriting {file}." ) with open(_A , 'w' ) as f: f.write('\n'.join(_A ) ) def __UpperCamelCase ( _A : Tuple=True ) -> Any: """simple docstring""" lowerCAmelCase : Tuple = [] for root, _, files in os.walk(_A ): if "__init__.py" in files: lowerCAmelCase : Any = sort_imports(os.path.join(_A , '__init__.py' ) , check_only=_A ) if result: lowerCAmelCase : Optional[Any] = [os.path.join(_A , '__init__.py' )] if len(_A ) > 0: raise ValueError(F"Would overwrite {len(_A )} files, run `make style`." ) if __name__ == "__main__": _lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') _lowerCAmelCase : Optional[int] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
646
1
'''simple docstring''' import operator as op _lowerCAmelCase : Any = 'scaler.pt' _lowerCAmelCase : List[str] = 'pytorch_model' _lowerCAmelCase : Union[str, Any] = 'random_states' _lowerCAmelCase : Tuple = 'optimizer' _lowerCAmelCase : List[str] = 'scheduler' _lowerCAmelCase : Tuple = 'pytorch_model.bin' _lowerCAmelCase : str = 'pytorch_model.bin.index.json' _lowerCAmelCase : Union[str, Any] = 'model.safetensors' _lowerCAmelCase : int = 'model.safetensors.index.json' _lowerCAmelCase : List[str] = '1.10.2' _lowerCAmelCase : int = 'py38' _lowerCAmelCase : Optional[Any] = '4.17.0' _lowerCAmelCase : List[str] = ['ml.p3.16xlarge', 'ml.p3dn.24xlarge', 'ml.p4dn.24xlarge'] _lowerCAmelCase : str = ['FULL_SHARD', 'SHARD_GRAD_OP', 'NO_SHARD', 'HYBRID_SHARD', 'HYBRID_SHARD_ZERO2'] _lowerCAmelCase : str = ['TRANSFORMER_BASED_WRAP', 'SIZE_BASED_WRAP', 'NO_WRAP'] _lowerCAmelCase : Union[str, Any] = ['BACKWARD_PRE', 'BACKWARD_POST', 'NO_PREFETCH'] _lowerCAmelCase : Dict = ['FULL_STATE_DICT', 'LOCAL_STATE_DICT', 'SHARDED_STATE_DICT'] _lowerCAmelCase : Any = '2.0.1' _lowerCAmelCase : int = ['pdsh', 'standard', 'openmpi', 'mvapich'] _lowerCAmelCase : Dict = ['default', 'reduce-overhead', 'max-autotune'] _lowerCAmelCase : str = {'>': op.gt, '>=': op.ge, '==': op.eq, '!=': op.ne, '<=': op.le, '<': op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 _lowerCAmelCase : Optional[int] = [ 'nnodes', 'nproc_per_node', 'rdzv_backend', 'rdzv_endpoint', 'rdzv_id', 'rdzv_conf', 'standalone', 'max_restarts', 'monitor_interval', 'start_method', 'role', 'module', 'm', 'no_python', 'run_path', 'log_dir', 'r', 'redirects', 't', 'tee', 'node_rank', 'master_addr', 'master_port', ] _lowerCAmelCase : List[Any] = ['DEEPSPEED', 'MULTI_GPU', 'FSDP', 'MEGATRON_LM'] _lowerCAmelCase : List[Any] = ['DEEPSPEED', 'MULTI_XPU', 'FSDP']
646
'''simple docstring''' import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class lowerCAmelCase : def __init__( self , snake_case__ , snake_case__=13 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=99 , snake_case__=64 , snake_case__=32 , snake_case__=5 , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=16 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=3 , snake_case__=4 , snake_case__=None , ): lowerCAmelCase : str = parent lowerCAmelCase : Optional[int] = batch_size lowerCAmelCase : Optional[Any] = seq_length lowerCAmelCase : Optional[Any] = is_training lowerCAmelCase : Dict = use_input_mask lowerCAmelCase : Tuple = use_token_type_ids lowerCAmelCase : int = use_labels lowerCAmelCase : int = vocab_size lowerCAmelCase : Any = hidden_size lowerCAmelCase : Optional[Any] = embedding_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : List[str] = num_attention_heads lowerCAmelCase : List[Any] = intermediate_size lowerCAmelCase : Dict = hidden_act lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : int = attention_probs_dropout_prob lowerCAmelCase : List[Any] = max_position_embeddings lowerCAmelCase : int = type_vocab_size lowerCAmelCase : List[str] = type_sequence_label_size lowerCAmelCase : Dict = initializer_range lowerCAmelCase : Any = num_labels lowerCAmelCase : str = num_choices lowerCAmelCase : int = scope def lowercase ( self ): lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Union[str, Any] = None if self.use_input_mask: lowerCAmelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : Optional[int] = None if self.use_token_type_ids: lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : Optional[Any] = None lowerCAmelCase : Optional[Any] = None lowerCAmelCase : Dict = None if self.use_labels: lowerCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase ( self ): return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case__ , initializer_range=self.initializer_range , ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = MobileBertModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : int = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) lowerCAmelCase : Optional[int] = model(snake_case__ , token_type_ids=snake_case__ ) lowerCAmelCase : Optional[Any] = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : int = MobileBertForMaskedLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : str = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = MobileBertForNextSentencePrediction(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : str = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : List[Any] = MobileBertForPreTraining(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Tuple = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , next_sentence_label=snake_case__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = MobileBertForQuestionAnswering(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : List[str] = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = self.num_labels lowerCAmelCase : List[Any] = MobileBertForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = self.num_labels lowerCAmelCase : int = MobileBertForTokenClassification(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : List[str] = self.num_choices lowerCAmelCase : Any = MobileBertForMultipleChoice(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : int = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : List[str] = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase ( self ): lowerCAmelCase : Any = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) : Optional[Any] = config_and_inputs lowerCAmelCase : List[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase ( a , a , unittest.TestCase ): _lowerCamelCase : List[str] = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) _lowerCamelCase : Tuple = ( { """feature-extraction""": MobileBertModel, """fill-mask""": MobileBertForMaskedLM, """question-answering""": MobileBertForQuestionAnswering, """text-classification""": MobileBertForSequenceClassification, """token-classification""": MobileBertForTokenClassification, """zero-shot""": MobileBertForSequenceClassification, } if is_torch_available() else {} ) _lowerCamelCase : str = True def lowercase ( self , snake_case__ , snake_case__ , snake_case__=False ): lowerCAmelCase : int = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if return_labels: if model_class in get_values(snake_case__ ): lowerCAmelCase : str = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=snake_case__ ) lowerCAmelCase : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case__ ) return inputs_dict def lowercase ( self ): lowerCAmelCase : List[Any] = MobileBertModelTester(self ) lowerCAmelCase : Dict = ConfigTester(self , config_class=snake_case__ , hidden_size=37 ) def lowercase ( self ): self.config_tester.run_common_tests() def lowercase ( self ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*snake_case__ ) def __UpperCamelCase ( _A : Optional[Any] ) -> Optional[int]: """simple docstring""" return torch.tensor( _A , dtype=torch.long , device=_A , ) _lowerCAmelCase : Union[str, Any] = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase ( unittest.TestCase ): @slow def lowercase ( self ): lowerCAmelCase : List[str] = MobileBertModel.from_pretrained('google/mobilebert-uncased' ).to(snake_case__ ) lowerCAmelCase : List[Any] = _long_tensor([[101, 7110, 1005, 1056, 2023, 1_1333, 1_7413, 1029, 102]] ) with torch.no_grad(): lowerCAmelCase : Tuple = model(snake_case__ )[0] lowerCAmelCase : List[Any] = torch.Size((1, 9, 512) ) self.assertEqual(output.shape , snake_case__ ) lowerCAmelCase : Union[str, Any] = torch.tensor( [ [ [-2.4_7_3_6_5_2_6e0_7, 8.2_6_9_1_6_5_6e0_4, 1.6_5_2_1_8_3_8e0_5], [-5.7_5_4_1_7_0_4e-0_1, 3.9_0_5_6_0_2_2e0_0, 4.4_0_1_1_5_0_7e0_0], [2.6_0_4_7_3_5_9e0_0, 1.5_6_7_7_6_5_2e0_0, -1.7_3_2_4_1_8_8e-0_1], ] ] , device=snake_case__ , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE lowerCAmelCase : List[str] = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) lowerCAmelCase : Dict = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
646
1
'''simple docstring''' def __UpperCamelCase ( _A : list ) -> int: """simple docstring""" if not grid or not grid[0]: raise TypeError('The grid does not contain the appropriate information' ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] lowerCAmelCase : List[Any] = grid[0] for row_n in range(1 , len(_A ) ): lowerCAmelCase : Tuple = grid[row_n] lowerCAmelCase : Any = fill_row(_A , _A ) lowerCAmelCase : int = grid[row_n] return grid[-1][-1] def __UpperCamelCase ( _A : list , _A : list ) -> list: """simple docstring""" current_row[0] += row_above[0] for cell_n in range(1 , len(_A ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
646
'''simple docstring''' import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __UpperCamelCase ( _A : Dict ) -> int: """simple docstring""" lowerCAmelCase : Tuple = [] embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight", F"stage{idx}.patch_embed.proj.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias", F"stage{idx}.patch_embed.proj.bias", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight", F"stage{idx}.patch_embed.norm.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias", F"stage{idx}.patch_embed.norm.bias", ) ) return embed def __UpperCamelCase ( _A : List[Any] , _A : Dict ) -> Any: """simple docstring""" lowerCAmelCase : str = [] attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight", F"stage{idx}.blocks.{cnt}.attn.proj_q.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias", F"stage{idx}.blocks.{cnt}.attn.proj_q.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight", F"stage{idx}.blocks.{cnt}.attn.proj_k.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias", F"stage{idx}.blocks.{cnt}.attn.proj_k.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight", F"stage{idx}.blocks.{cnt}.attn.proj_v.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias", F"stage{idx}.blocks.{cnt}.attn.proj_v.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight", F"stage{idx}.blocks.{cnt}.attn.proj.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias", F"stage{idx}.blocks.{cnt}.attn.proj.bias", ) ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc2.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight", F"stage{idx}.blocks.{cnt}.norm1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias", F"stage{idx}.blocks.{cnt}.norm1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight", F"stage{idx}.blocks.{cnt}.norm2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias", F"stage{idx}.blocks.{cnt}.norm2.bias") ) return attention_weights def __UpperCamelCase ( _A : Optional[int] ) -> Optional[int]: """simple docstring""" lowerCAmelCase : Optional[int] = [] token.append((F"cvt.encoder.stages.{idx}.cls_token", 'stage2.cls_token') ) return token def __UpperCamelCase ( ) -> int: """simple docstring""" lowerCAmelCase : List[Any] = [] head.append(('layernorm.weight', 'norm.weight') ) head.append(('layernorm.bias', 'norm.bias') ) head.append(('classifier.weight', 'head.weight') ) head.append(('classifier.bias', 'head.bias') ) return head def __UpperCamelCase ( _A : str , _A : Optional[Any] , _A : Dict , _A : str ) -> Optional[int]: """simple docstring""" lowerCAmelCase : List[str] = 'imagenet-1k-id2label.json' lowerCAmelCase : Tuple = 10_00 lowerCAmelCase : str = 'huggingface/label-files' lowerCAmelCase : List[Any] = num_labels lowerCAmelCase : Any = json.load(open(cached_download(hf_hub_url(_A , _A , repo_type='dataset' ) ) , 'r' ) ) lowerCAmelCase : List[str] = {int(_A ): v for k, v in idalabel.items()} lowerCAmelCase : List[str] = idalabel lowerCAmelCase : str = {v: k for k, v in idalabel.items()} lowerCAmelCase : int = CvtConfig(num_labels=_A , idalabel=_A , labelaid=_A ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13": lowerCAmelCase : List[str] = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21": lowerCAmelCase : Tuple = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: lowerCAmelCase : Any = [2, 2, 20] lowerCAmelCase : List[str] = [3, 12, 16] lowerCAmelCase : List[Any] = [1_92, 7_68, 10_24] lowerCAmelCase : Union[str, Any] = CvtForImageClassification(_A ) lowerCAmelCase : str = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) lowerCAmelCase : Optional[Any] = image_size lowerCAmelCase : List[Any] = torch.load(_A , map_location=torch.device('cpu' ) ) lowerCAmelCase : str = OrderedDict() lowerCAmelCase : int = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: lowerCAmelCase : List[str] = list_of_state_dict + cls_token(_A ) lowerCAmelCase : Optional[Any] = list_of_state_dict + embeddings(_A ) for cnt in range(config.depth[idx] ): lowerCAmelCase : List[Any] = list_of_state_dict + attention(_A , _A ) lowerCAmelCase : List[str] = list_of_state_dict + final() for gg in list_of_state_dict: print(_A ) for i in range(len(_A ) ): lowerCAmelCase : Tuple = original_weights[list_of_state_dict[i][1]] model.load_state_dict(_A ) model.save_pretrained(_A ) image_processor.save_pretrained(_A ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": _lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '--cvt_model', default='cvt-w24', type=str, help='Name of the cvt model you\'d like to convert.', ) parser.add_argument( '--image_size', default=384, type=int, help='Input Image Size', ) parser.add_argument( '--cvt_file_name', default=r'cvtmodels\CvT-w24-384x384-IN-22k.pth', type=str, help='Input Image Size', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) _lowerCAmelCase : str = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
646
1
'''simple docstring''' import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def __UpperCamelCase ( _A : str , _A : str , _A : List[Any] ) -> List[Any]: """simple docstring""" lowerCAmelCase : Any = AlbertConfig.from_json_file(_A ) print(F"Building PyTorch model from configuration: {config}" ) lowerCAmelCase : Optional[int] = AlbertForPreTraining(_A ) # Load weights from tf checkpoint load_tf_weights_in_albert(_A , _A , _A ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , _A ) if __name__ == "__main__": _lowerCAmelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--albert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained ALBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _lowerCAmelCase : str = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
646
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Any = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { 'xlm-roberta-base': 'https://huggingface.co/xlm-roberta-base/resolve/main/config.json', 'xlm-roberta-large': 'https://huggingface.co/xlm-roberta-large/resolve/main/config.json', 'xlm-roberta-large-finetuned-conll02-dutch': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll02-spanish': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-english': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-german': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json' ), } class lowerCAmelCase ( a ): _lowerCamelCase : List[str] = """xlm-roberta""" def __init__( self , snake_case__=3_0522 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=1e-1_2 , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__="absolute" , snake_case__=True , snake_case__=None , **snake_case__ , ): super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) lowerCAmelCase : Optional[Any] = vocab_size lowerCAmelCase : Optional[Any] = hidden_size lowerCAmelCase : Optional[Any] = num_hidden_layers lowerCAmelCase : Any = num_attention_heads lowerCAmelCase : Optional[int] = hidden_act lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : Dict = hidden_dropout_prob lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob lowerCAmelCase : Optional[Any] = max_position_embeddings lowerCAmelCase : Optional[int] = type_vocab_size lowerCAmelCase : int = initializer_range lowerCAmelCase : List[Any] = layer_norm_eps lowerCAmelCase : Union[str, Any] = position_embedding_type lowerCAmelCase : Union[str, Any] = use_cache lowerCAmelCase : List[str] = classifier_dropout class lowerCAmelCase ( a ): @property def lowercase ( self ): if self.task == "multiple-choice": lowerCAmelCase : str = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase : Optional[int] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
646
1
'''simple docstring''' import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class lowerCAmelCase ( ctypes.Structure ): # _fields is a specific attr expected by ctypes _lowerCamelCase : int = [("""size""", ctypes.c_int), ("""visible""", ctypes.c_byte)] def __UpperCamelCase ( ) -> Dict: """simple docstring""" if os.name == "nt": lowerCAmelCase : int = CursorInfo() lowerCAmelCase : Optional[int] = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_A , ctypes.byref(_A ) ) lowerCAmelCase : List[str] = False ctypes.windll.kernelaa.SetConsoleCursorInfo(_A , ctypes.byref(_A ) ) elif os.name == "posix": sys.stdout.write('\033[?25l' ) sys.stdout.flush() def __UpperCamelCase ( ) -> str: """simple docstring""" if os.name == "nt": lowerCAmelCase : List[str] = CursorInfo() lowerCAmelCase : int = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_A , ctypes.byref(_A ) ) lowerCAmelCase : Dict = True ctypes.windll.kernelaa.SetConsoleCursorInfo(_A , ctypes.byref(_A ) ) elif os.name == "posix": sys.stdout.write('\033[?25h' ) sys.stdout.flush() @contextmanager def __UpperCamelCase ( ) -> Any: """simple docstring""" try: hide_cursor() yield finally: show_cursor()
646
'''simple docstring''' import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer _lowerCAmelCase : List[Any] = logging.getLogger(__name__) def __UpperCamelCase ( ) -> Any: """simple docstring""" lowerCAmelCase : str = argparse.ArgumentParser( description='Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.' ) parser.add_argument( '--dataset_name' , type=_A , default='wikitext' , help='Name of the training. Explore datasets at: hf.co/datasets.' , ) parser.add_argument( '--dataset_config' , type=_A , default='wikitext-103-raw-v1' , help='Configuration name of the dataset.' ) parser.add_argument( '--tokenizer_name_or_path' , type=_A , default='sayakpaul/unigram-tokenizer-wikitext' , help='Tokenizer identifier. Can be a local filepath or a Hub identifier.' , ) parser.add_argument( '--shard_size' , type=_A , default=10_00 , help='Number of entries to go in a single shard.' , ) parser.add_argument('--split' , type=_A , default='train' , choices=['train', 'test', 'validation'] ) parser.add_argument( '--limit' , default=_A , type=_A , help='Limit the number of shards (used for debugging).' , ) parser.add_argument( '--max_length' , type=_A , default=5_12 , help='Maximum sequence length. For training on TPUs, it helps to have a maximum' ' sequence length that is a multiple of 8.' , ) parser.add_argument( '--output_dir' , default='tf-tpu' , type=_A , help='Output directory where the TFRecord shards will be saved. If the' ' path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord' ' shards will be directly saved to a Google Cloud Storage bucket.' , ) lowerCAmelCase : Any = parser.parse_args() return args def __UpperCamelCase ( _A : Optional[int] ) -> int: """simple docstring""" def fn(_A : Tuple ): return tokenizer(examples['text'] ) return fn def __UpperCamelCase ( _A : int ) -> int: """simple docstring""" lowerCAmelCase : Tuple = [] for i in range(len(tokenized_data['input_ids'] ) ): lowerCAmelCase : Optional[Any] = { 'input_ids': tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data['input_ids'][i] ) ), 'attention_mask': tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data['attention_mask'][i] ) ), } lowerCAmelCase : Any = tf.train.Features(feature=_A ) lowerCAmelCase : List[str] = tf.train.Example(features=_A ) lowerCAmelCase : Tuple = example.SerializeToString() records.append(_A ) return records def __UpperCamelCase ( _A : int ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase : Union[str, Any] = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: lowerCAmelCase : Optional[Any] = min(len(_A ) , args.limit ) lowerCAmelCase : Dict = dataset.select(range(_A ) ) print(F"Limiting the dataset to {args.limit} entries." ) lowerCAmelCase : str = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) lowerCAmelCase : Any = os.path.join(args.output_dir , args.split ) if not os.path.exists(_A ): os.makedirs(_A ) else: lowerCAmelCase : List[Any] = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. lowerCAmelCase : Any = tokenize_function(_A ) lowerCAmelCase : Optional[int] = dataset.map(_A , batched=_A , num_proc=4 , remove_columns=['text'] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(_A : str ): # Concatenate all texts. lowerCAmelCase : Optional[int] = {k: sum(examples[k] , [] ) for k in examples.keys()} lowerCAmelCase : str = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 lowerCAmelCase : List[Any] = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. lowerCAmelCase : str = { k: [t[i : i + args.max_length] for i in range(0 , _A , args.max_length )] for k, t in concatenated_examples.items() } return result lowerCAmelCase : List[Any] = dataset_tokenized.map(_A , batched=_A , batch_size=10_00 , num_proc=4 ) lowerCAmelCase : Union[str, Any] = 0 lowerCAmelCase : Tuple = 0 for shard in range(0 , len(_A ) , args.shard_size ): lowerCAmelCase : Optional[Any] = grouped_dataset[shard : shard + args.shard_size] lowerCAmelCase : List[str] = len(dataset_snapshot['input_ids'] ) lowerCAmelCase : Union[str, Any] = os.path.join(_A , F"dataset-{shard_count}-{records_containing}.tfrecord" ) lowerCAmelCase : List[Any] = get_serialized_examples(_A ) with tf.io.TFRecordWriter(_A ) as out_file: for i in range(len(_A ) ): lowerCAmelCase : Union[str, Any] = serialized_examples[i] out_file.write(_A ) print('Wrote file {} containing {} records'.format(_A , _A ) ) shard_count += 1 total_records += records_containing with open(F"split-{args.split}-records-count.txt" , 'w' ) as f: print(F"Total {args.split} records: {total_records}" , file=_A ) if __name__ == "__main__": _lowerCAmelCase : List[Any] = parse_args() main(args)
646
1
'''simple docstring''' import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : List[str] = logging.get_logger(__name__) set_seed(770) _lowerCAmelCase : Optional[int] = { 'c_attn': 'att_proj', 'c_proj': 'out_proj', 'c_fc': 'in_proj', 'transformer.': '', 'h.': 'layers.', 'ln_1': 'layernorm_1', 'ln_2': 'layernorm_2', 'ln_f': 'layernorm_final', 'wpe': 'position_embeds_layer', 'wte': 'input_embeds_layer', } _lowerCAmelCase : int = { 'text_small': { 'repo_id': 'suno/bark', 'file_name': 'text.pt', }, 'coarse_small': { 'repo_id': 'suno/bark', 'file_name': 'coarse.pt', }, 'fine_small': { 'repo_id': 'suno/bark', 'file_name': 'fine.pt', }, 'text': { 'repo_id': 'suno/bark', 'file_name': 'text_2.pt', }, 'coarse': { 'repo_id': 'suno/bark', 'file_name': 'coarse_2.pt', }, 'fine': { 'repo_id': 'suno/bark', 'file_name': 'fine_2.pt', }, } _lowerCAmelCase : Any = os.path.dirname(os.path.abspath(__file__)) _lowerCAmelCase : List[Any] = os.path.join(os.path.expanduser('~'), '.cache') _lowerCAmelCase : Optional[int] = os.path.join(os.getenv('XDG_CACHE_HOME', default_cache_dir), 'suno', 'bark_v0') def __UpperCamelCase ( _A : List[str] , _A : List[Any]=False ) -> str: """simple docstring""" lowerCAmelCase : Dict = model_type if use_small: key += "_small" return os.path.join(_A , REMOTE_MODEL_PATHS[key]['file_name'] ) def __UpperCamelCase ( _A : Union[str, Any] , _A : List[str] ) -> List[str]: """simple docstring""" os.makedirs(_A , exist_ok=_A ) hf_hub_download(repo_id=_A , filename=_A , local_dir=_A ) def __UpperCamelCase ( _A : str , _A : Union[str, Any] , _A : Any=False , _A : Union[str, Any]="text" ) -> Optional[int]: """simple docstring""" if model_type == "text": lowerCAmelCase : int = BarkSemanticModel lowerCAmelCase : Optional[Any] = BarkSemanticConfig lowerCAmelCase : List[Any] = BarkSemanticGenerationConfig elif model_type == "coarse": lowerCAmelCase : str = BarkCoarseModel lowerCAmelCase : Dict = BarkCoarseConfig lowerCAmelCase : Optional[int] = BarkCoarseGenerationConfig elif model_type == "fine": lowerCAmelCase : Optional[int] = BarkFineModel lowerCAmelCase : str = BarkFineConfig lowerCAmelCase : str = BarkFineGenerationConfig else: raise NotImplementedError() lowerCAmelCase : Optional[Any] = F"{model_type}_small" if use_small else model_type lowerCAmelCase : Any = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(_A ): logger.info(F"{model_type} model not found, downloading into `{CACHE_DIR}`." ) _download(model_info['repo_id'] , model_info['file_name'] ) lowerCAmelCase : Optional[int] = torch.load(_A , map_location=_A ) # this is a hack lowerCAmelCase : List[Any] = checkpoint['model_args'] if "input_vocab_size" not in model_args: lowerCAmelCase : Any = model_args['vocab_size'] lowerCAmelCase : List[str] = model_args['vocab_size'] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments lowerCAmelCase : Any = model_args.pop('n_head' ) lowerCAmelCase : Tuple = model_args.pop('n_embd' ) lowerCAmelCase : List[str] = model_args.pop('n_layer' ) lowerCAmelCase : Tuple = ConfigClass(**checkpoint['model_args'] ) lowerCAmelCase : List[Any] = ModelClass(config=_A ) lowerCAmelCase : Union[str, Any] = GenerationConfigClass() lowerCAmelCase : Dict = model_generation_config lowerCAmelCase : List[Any] = checkpoint['model'] # fixup checkpoint lowerCAmelCase : Any = '_orig_mod.' for k, v in list(state_dict.items() ): if k.startswith(_A ): # replace part of the key with corresponding layer name in HF implementation lowerCAmelCase : Union[str, Any] = k[len(_A ) :] for old_layer_name in new_layer_name_dict: lowerCAmelCase : int = new_k.replace(_A , new_layer_name_dict[old_layer_name] ) lowerCAmelCase : Dict = state_dict.pop(_A ) lowerCAmelCase : Any = set(state_dict.keys() ) - set(model.state_dict().keys() ) lowerCAmelCase : str = {k for k in extra_keys if not k.endswith('.attn.bias' )} lowerCAmelCase : int = set(model.state_dict().keys() ) - set(state_dict.keys() ) lowerCAmelCase : Optional[int] = {k for k in missing_keys if not k.endswith('.attn.bias' )} if len(_A ) != 0: raise ValueError(F"extra keys found: {extra_keys}" ) if len(_A ) != 0: raise ValueError(F"missing keys: {missing_keys}" ) model.load_state_dict(_A , strict=_A ) lowerCAmelCase : Tuple = model.num_parameters(exclude_embeddings=_A ) lowerCAmelCase : int = checkpoint['best_val_loss'].item() logger.info(F"model loaded: {round(n_params/1e6 , 1 )}M params, {round(_A , 3 )} loss" ) model.eval() model.to(_A ) del checkpoint, state_dict return model def __UpperCamelCase ( _A : int , _A : List[str]=False , _A : Union[str, Any]="text" ) -> Optional[Any]: """simple docstring""" if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() lowerCAmelCase : str = 'cpu' # do conversion on cpu lowerCAmelCase : str = _get_ckpt_path(_A , use_small=_A ) lowerCAmelCase : List[Any] = _load_model(_A , _A , model_type=_A , use_small=_A ) # load bark initial model lowerCAmelCase : Any = _bark_load_model(_A , 'cpu' , model_type=_A , use_small=_A ) if model_type == "text": lowerCAmelCase : Optional[Any] = bark_model['model'] if model.num_parameters(exclude_embeddings=_A ) != bark_model.get_num_params(): raise ValueError('initial and new models don\'t have the same number of parameters' ) # check if same output as the bark model lowerCAmelCase : Union[str, Any] = 5 lowerCAmelCase : Optional[Any] = 10 if model_type in ["text", "coarse"]: lowerCAmelCase : int = torch.randint(2_56 , (batch_size, sequence_length) , dtype=torch.int ) lowerCAmelCase : Dict = bark_model(_A )[0] lowerCAmelCase : int = model(_A ) # take last logits lowerCAmelCase : Tuple = output_new_model_total.logits[:, [-1], :] else: lowerCAmelCase : int = 3 lowerCAmelCase : int = 8 lowerCAmelCase : List[str] = torch.randint(2_56 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) lowerCAmelCase : Optional[Any] = model(_A , _A ) lowerCAmelCase : int = bark_model(_A , _A ) lowerCAmelCase : Any = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError('initial and new outputs don\'t have the same shape' ) if (output_new_model - output_old_model).abs().max().item() > 1e-3: raise ValueError('initial and new outputs are not equal' ) Path(_A ).mkdir(exist_ok=_A ) model.save_pretrained(_A ) def __UpperCamelCase ( _A : str , _A : Union[str, Any] , _A : Any , _A : Optional[Any] , _A : List[str] , _A : Tuple , ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase : Optional[int] = os.path.join(_A , _A ) lowerCAmelCase : Dict = BarkSemanticConfig.from_pretrained(os.path.join(_A , 'config.json' ) ) lowerCAmelCase : int = BarkCoarseConfig.from_pretrained(os.path.join(_A , 'config.json' ) ) lowerCAmelCase : Tuple = BarkFineConfig.from_pretrained(os.path.join(_A , 'config.json' ) ) lowerCAmelCase : str = EncodecConfig.from_pretrained('facebook/encodec_24khz' ) lowerCAmelCase : int = BarkSemanticModel.from_pretrained(_A ) lowerCAmelCase : Optional[int] = BarkCoarseModel.from_pretrained(_A ) lowerCAmelCase : str = BarkFineModel.from_pretrained(_A ) lowerCAmelCase : List[str] = EncodecModel.from_pretrained('facebook/encodec_24khz' ) lowerCAmelCase : Optional[Any] = BarkConfig.from_sub_model_configs( _A , _A , _A , _A ) lowerCAmelCase : int = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) lowerCAmelCase : Dict = BarkModel(_A ) lowerCAmelCase : int = semantic lowerCAmelCase : Union[str, Any] = coarseAcoustic lowerCAmelCase : int = fineAcoustic lowerCAmelCase : Dict = codec lowerCAmelCase : List[Any] = bark_generation_config Path(_A ).mkdir(exist_ok=_A ) bark.save_pretrained(_A , repo_id=_A , push_to_hub=_A ) if __name__ == "__main__": _lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument('model_type', type=str, help='text, coarse or fine.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--is_small', action='store_true', help='convert the small version instead of the large.') _lowerCAmelCase : str = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
646
'''simple docstring''' import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() _lowerCAmelCase : List[str] = logging.get_logger('transformers.models.speecht5') def __UpperCamelCase ( _A : Any , _A : Dict , _A : Any ) -> Union[str, Any]: """simple docstring""" hf_model.apply_weight_norm() lowerCAmelCase : int = checkpoint['input_conv.weight_g'] lowerCAmelCase : Optional[int] = checkpoint['input_conv.weight_v'] lowerCAmelCase : Dict = checkpoint['input_conv.bias'] for i in range(len(config.upsample_rates ) ): lowerCAmelCase : Optional[Any] = checkpoint[F"upsamples.{i}.1.weight_g"] lowerCAmelCase : str = checkpoint[F"upsamples.{i}.1.weight_v"] lowerCAmelCase : str = checkpoint[F"upsamples.{i}.1.bias"] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): lowerCAmelCase : int = checkpoint[F"blocks.{i}.convs1.{j}.1.weight_g"] lowerCAmelCase : str = checkpoint[F"blocks.{i}.convs1.{j}.1.weight_v"] lowerCAmelCase : int = checkpoint[F"blocks.{i}.convs1.{j}.1.bias"] lowerCAmelCase : Optional[Any] = checkpoint[F"blocks.{i}.convs2.{j}.1.weight_g"] lowerCAmelCase : Tuple = checkpoint[F"blocks.{i}.convs2.{j}.1.weight_v"] lowerCAmelCase : Tuple = checkpoint[F"blocks.{i}.convs2.{j}.1.bias"] lowerCAmelCase : List[Any] = checkpoint['output_conv.1.weight_g'] lowerCAmelCase : List[str] = checkpoint['output_conv.1.weight_v'] lowerCAmelCase : Optional[Any] = checkpoint['output_conv.1.bias'] hf_model.remove_weight_norm() @torch.no_grad() def __UpperCamelCase ( _A : Dict , _A : Union[str, Any] , _A : List[Any] , _A : Any=None , _A : Any=None , ) -> Dict: """simple docstring""" if config_path is not None: lowerCAmelCase : Dict = SpeechTaHifiGanConfig.from_pretrained(_A ) else: lowerCAmelCase : Union[str, Any] = SpeechTaHifiGanConfig() lowerCAmelCase : List[Any] = SpeechTaHifiGan(_A ) lowerCAmelCase : List[str] = torch.load(_A ) load_weights(orig_checkpoint['model']['generator'] , _A , _A ) lowerCAmelCase : Tuple = np.load(_A ) lowerCAmelCase : List[Any] = stats[0].reshape(-1 ) lowerCAmelCase : int = stats[1].reshape(-1 ) lowerCAmelCase : Union[str, Any] = torch.from_numpy(_A ).float() lowerCAmelCase : int = torch.from_numpy(_A ).float() model.save_pretrained(_A ) if repo_id: print('Pushing to the hub...' ) model.push_to_hub(_A ) if __name__ == "__main__": _lowerCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--stats_path', required=True, default=None, type=str, help='Path to stats.npy file') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) _lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
646
1
'''simple docstring''' import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) _lowerCAmelCase : List[Any] = logging.getLogger() def __UpperCamelCase ( ) -> Optional[int]: """simple docstring""" lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument('-f' ) lowerCAmelCase : str = parser.parse_args() return args.f class lowerCAmelCase ( a ): def lowercase ( self ): lowerCAmelCase : Optional[int] = logging.StreamHandler(sys.stdout ) logger.addHandler(snake_case__ ) def lowercase ( self , snake_case__ ): lowerCAmelCase : Optional[int] = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , 'run_glue_deebert.py' ) with patch.object(snake_case__ , 'argv' , snake_case__ ): lowerCAmelCase : Dict = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(snake_case__ , 0.6_6_6 ) @slow @require_torch_non_multi_gpu def lowercase ( self ): lowerCAmelCase : Optional[Any] = '\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n '.split() self.run_and_check(snake_case__ ) lowerCAmelCase : Optional[int] = '\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n '.split() self.run_and_check(snake_case__ ) lowerCAmelCase : Optional[int] = '\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n '.split() self.run_and_check(snake_case__ )
646
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets _lowerCAmelCase : Dict = '\\n@inproceedings{popovic-2015-chrf,\n title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",\n month = sep,\n year = "2015",\n address = "Lisbon, Portugal",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W15-3049",\n doi = "10.18653/v1/W15-3049",\n pages = "392--395",\n}\n@inproceedings{popovic-2017-chrf,\n title = "chr{F}++: words helping character n-grams",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Second Conference on Machine Translation",\n month = sep,\n year = "2017",\n address = "Copenhagen, Denmark",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W17-4770",\n doi = "10.18653/v1/W17-4770",\n pages = "612--618",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' _lowerCAmelCase : Optional[Any] = '\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n' _lowerCAmelCase : List[Any] = '\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n \'score\' (float): The chrF (chrF++) score,\n \'char_order\' (int): The character n-gram order,\n \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n \'beta\' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase ( datasets.Metric ): def lowercase ( self ): if version.parse(scb.__version__ ) < version.parse('1.4.12' ): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/mjpost/sacreBLEU#chrf--chrf' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/mjpost/sacreBLEU#chrf--chrf'] , reference_urls=[ 'https://github.com/m-popovic/chrF', ] , ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ = CHRF.CHAR_ORDER , snake_case__ = CHRF.WORD_ORDER , snake_case__ = CHRF.BETA , snake_case__ = False , snake_case__ = False , snake_case__ = False , ): lowerCAmelCase : List[str] = len(references[0] ) if any(len(snake_case__ ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) lowerCAmelCase : List[str] = [[refs[i] for refs in references] for i in range(snake_case__ )] lowerCAmelCase : Union[str, Any] = CHRF(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase : Dict = sb_chrf.corpus_score(snake_case__ , snake_case__ ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
646
1
'''simple docstring''' def __UpperCamelCase ( _A : Any ) -> bool: """simple docstring""" if p < 2: raise ValueError('p should not be less than 2!' ) elif p == 2: return True lowerCAmelCase : Dict = 4 lowerCAmelCase : str = (1 << p) - 1 for _ in range(p - 2 ): lowerCAmelCase : List[Any] = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
700
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : str = logging.get_logger(__name__) _lowerCAmelCase : Tuple = { 's-JoL/Open-Llama-V1': 'https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json', } class lowerCAmelCase ( a ): _lowerCamelCase : Union[str, Any] = """open-llama""" def __init__( self , snake_case__=10_0000 , snake_case__=4096 , snake_case__=1_1008 , snake_case__=32 , snake_case__=32 , snake_case__="silu" , snake_case__=2048 , snake_case__=0.0_2 , snake_case__=1e-6 , snake_case__=True , snake_case__=0 , snake_case__=1 , snake_case__=2 , snake_case__=False , snake_case__=True , snake_case__=0.1 , snake_case__=0.1 , snake_case__=True , snake_case__=True , snake_case__=None , **snake_case__ , ): lowerCAmelCase : Tuple = vocab_size lowerCAmelCase : Optional[Any] = max_position_embeddings lowerCAmelCase : List[Any] = hidden_size lowerCAmelCase : List[Any] = intermediate_size lowerCAmelCase : Tuple = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : str = rms_norm_eps lowerCAmelCase : Optional[int] = use_cache lowerCAmelCase : Dict = kwargs.pop( 'use_memorry_efficient_attention' , snake_case__ ) lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : Optional[Any] = attention_dropout_prob lowerCAmelCase : Union[str, Any] = use_stable_embedding lowerCAmelCase : Tuple = shared_input_output_embedding lowerCAmelCase : Tuple = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , tie_word_embeddings=snake_case__ , **snake_case__ , ) def lowercase ( self ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , snake_case__ ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' f"got {self.rope_scaling}" ) lowerCAmelCase : List[Any] = self.rope_scaling.get('type' , snake_case__ ) lowerCAmelCase : List[str] = self.rope_scaling.get('factor' , snake_case__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(snake_case__ , snake_case__ ) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
646
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCAmelCase ( _snake_case , unittest.TestCase ): _lowerCamelCase : str = KandinskyInpaintPipeline _lowerCamelCase : Optional[Any] = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] _lowerCamelCase : Dict = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] _lowerCamelCase : Dict = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] _lowerCamelCase : Dict = False @property def lowercase ( self ): return 32 @property def lowercase ( self ): return 32 @property def lowercase ( self ): return self.time_input_dim @property def lowercase ( self ): return self.time_input_dim * 4 @property def lowercase ( self ): return 100 @property def lowercase ( self ): lowerCAmelCase : Union[str, Any] = XLMRobertaTokenizerFast.from_pretrained('YiYiXu/tiny-random-mclip-base' ) return tokenizer @property def lowercase ( self ): torch.manual_seed(0 ) lowerCAmelCase : Optional[int] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) lowerCAmelCase : Dict = MultilingualCLIP(lowerCAmelCase__ ) lowerCAmelCase : Optional[int] = text_encoder.eval() return text_encoder @property def lowercase ( self ): torch.manual_seed(0 ) lowerCAmelCase : List[Any] = { 'in_channels': 9, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'text_image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'text_image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } lowerCAmelCase : Any = UNetaDConditionModel(**lowerCAmelCase__ ) return model @property def lowercase ( self ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowercase ( self ): torch.manual_seed(0 ) lowerCAmelCase : Optional[int] = VQModel(**self.dummy_movq_kwargs ) return model def lowercase ( self ): lowerCAmelCase : Dict = self.dummy_text_encoder lowerCAmelCase : List[str] = self.dummy_tokenizer lowerCAmelCase : Any = self.dummy_unet lowerCAmelCase : Dict = self.dummy_movq lowerCAmelCase : Optional[int] = DDIMScheduler( num_train_timesteps=1000 , beta_schedule='linear' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=lowerCAmelCase__ , set_alpha_to_one=lowerCAmelCase__ , steps_offset=1 , prediction_type='epsilon' , thresholding=lowerCAmelCase__ , ) lowerCAmelCase : Union[str, Any] = { 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def lowercase ( self , snake_case__ , snake_case__=0 ): lowerCAmelCase : Optional[int] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) lowerCAmelCase : List[str] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(lowerCAmelCase__ ) # create init_image lowerCAmelCase : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) lowerCAmelCase : Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase : Optional[Any] = Image.fromarray(np.uinta(lowerCAmelCase__ ) ).convert('RGB' ).resize((256, 256) ) # create mask lowerCAmelCase : str = np.ones((64, 64) , dtype=np.floataa ) lowerCAmelCase : List[Any] = 0 if str(lowerCAmelCase__ ).startswith('mps' ): lowerCAmelCase : Optional[Any] = torch.manual_seed(lowerCAmelCase__ ) else: lowerCAmelCase : Union[str, Any] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) lowerCAmelCase : Union[str, Any] = { 'prompt': 'horse', 'image': init_image, 'mask_image': mask, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 2, 'guidance_scale': 4.0, 'output_type': 'np', } return inputs def lowercase ( self ): lowerCAmelCase : List[str] = 'cpu' lowerCAmelCase : Union[str, Any] = self.get_dummy_components() lowerCAmelCase : List[str] = self.pipeline_class(**lowerCAmelCase__ ) lowerCAmelCase : Union[str, Any] = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowerCAmelCase : Tuple = pipe(**self.get_dummy_inputs(lowerCAmelCase__ ) ) lowerCAmelCase : Optional[Any] = output.images lowerCAmelCase : Optional[int] = pipe( **self.get_dummy_inputs(lowerCAmelCase__ ) , return_dict=lowerCAmelCase__ , )[0] lowerCAmelCase : str = image[0, -3:, -3:, -1] lowerCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] print(f"image.shape {image.shape}" ) assert image.shape == (1, 64, 64, 3) lowerCAmelCase : Optional[Any] = np.array( [0.8_3_2_6_9_1_9, 0.7_3_7_9_0_4_6_7, 0.2_0_9_1_8_5_8_1, 0.9_3_0_9_6_1_2, 0.5_5_1_1_7_9_1, 0.4_3_7_1_3_3_2_8, 0.5_5_1_3_3_2_1, 0.4_9_9_2_2_9_3_4, 0.5_9_4_9_7_7_8_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" def lowercase ( self ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self ): lowerCAmelCase : str = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy' ) lowerCAmelCase : Optional[int] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) lowerCAmelCase : Dict = np.ones((768, 768) , dtype=np.floataa ) lowerCAmelCase : Tuple = 0 lowerCAmelCase : Dict = 'a hat' lowerCAmelCase : List[str] = KandinskyPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-prior' , torch_dtype=torch.floataa ) pipe_prior.to(lowerCAmelCase__ ) lowerCAmelCase : str = KandinskyInpaintPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-inpaint' , torch_dtype=torch.floataa ) lowerCAmelCase : str = pipeline.to(lowerCAmelCase__ ) pipeline.set_progress_bar_config(disable=lowerCAmelCase__ ) lowerCAmelCase : str = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCAmelCase , lowerCAmelCase : int = pipe_prior( lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=5 , negative_prompt='' , ).to_tuple() lowerCAmelCase : Optional[int] = pipeline( lowerCAmelCase__ , image=lowerCAmelCase__ , mask_image=lowerCAmelCase__ , image_embeds=lowerCAmelCase__ , negative_image_embeds=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=100 , height=768 , width=768 , output_type='np' , ) lowerCAmelCase : int = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__ )
701
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) _lowerCAmelCase : Dict = { 'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class lowerCAmelCase ( a ): _lowerCamelCase : Any = """deformable_detr""" _lowerCamelCase : List[str] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , snake_case__=True , snake_case__=None , snake_case__=3 , snake_case__=300 , snake_case__=1024 , snake_case__=6 , snake_case__=1024 , snake_case__=8 , snake_case__=6 , snake_case__=1024 , snake_case__=8 , snake_case__=0.0 , snake_case__=True , snake_case__="relu" , snake_case__=256 , snake_case__=0.1 , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.0_2 , snake_case__=1.0 , snake_case__=True , snake_case__=False , snake_case__="sine" , snake_case__="resnet50" , snake_case__=True , snake_case__=False , snake_case__=4 , snake_case__=4 , snake_case__=4 , snake_case__=False , snake_case__=300 , snake_case__=False , snake_case__=1 , snake_case__=5 , snake_case__=2 , snake_case__=1 , snake_case__=1 , snake_case__=5 , snake_case__=2 , snake_case__=0.1 , snake_case__=0.2_5 , snake_case__=False , **snake_case__ , ): if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) lowerCAmelCase : Optional[int] = CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : List[str] = backbone_config.get('model_type' ) lowerCAmelCase : str = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase : Optional[Any] = config_class.from_dict(snake_case__ ) lowerCAmelCase : Union[str, Any] = use_timm_backbone lowerCAmelCase : List[Any] = backbone_config lowerCAmelCase : Any = num_channels lowerCAmelCase : Tuple = num_queries lowerCAmelCase : Dict = max_position_embeddings lowerCAmelCase : int = d_model lowerCAmelCase : List[str] = encoder_ffn_dim lowerCAmelCase : List[str] = encoder_layers lowerCAmelCase : int = encoder_attention_heads lowerCAmelCase : str = decoder_ffn_dim lowerCAmelCase : str = decoder_layers lowerCAmelCase : Dict = decoder_attention_heads lowerCAmelCase : str = dropout lowerCAmelCase : List[str] = attention_dropout lowerCAmelCase : Union[str, Any] = activation_dropout lowerCAmelCase : str = activation_function lowerCAmelCase : Any = init_std lowerCAmelCase : Any = init_xavier_std lowerCAmelCase : Dict = encoder_layerdrop lowerCAmelCase : int = auxiliary_loss lowerCAmelCase : Optional[Any] = position_embedding_type lowerCAmelCase : List[str] = backbone lowerCAmelCase : int = use_pretrained_backbone lowerCAmelCase : int = dilation # deformable attributes lowerCAmelCase : List[str] = num_feature_levels lowerCAmelCase : List[str] = encoder_n_points lowerCAmelCase : Union[str, Any] = decoder_n_points lowerCAmelCase : Tuple = two_stage lowerCAmelCase : Dict = two_stage_num_proposals lowerCAmelCase : Union[str, Any] = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.' ) # Hungarian matcher lowerCAmelCase : Union[str, Any] = class_cost lowerCAmelCase : Dict = bbox_cost lowerCAmelCase : List[Any] = giou_cost # Loss coefficients lowerCAmelCase : Dict = mask_loss_coefficient lowerCAmelCase : Any = dice_loss_coefficient lowerCAmelCase : str = bbox_loss_coefficient lowerCAmelCase : Tuple = giou_loss_coefficient lowerCAmelCase : List[str] = eos_coefficient lowerCAmelCase : Any = focal_alpha lowerCAmelCase : Dict = disable_custom_kernels super().__init__(is_encoder_decoder=snake_case__ , **snake_case__ ) @property def lowercase ( self ): return self.encoder_attention_heads @property def lowercase ( self ): return self.d_model def lowercase ( self ): lowerCAmelCase : Union[str, Any] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: lowerCAmelCase : List[Any] = self.backbone_config.to_dict() lowerCAmelCase : str = self.__class__.model_type return output
646
0
'''simple docstring''' from abc import ABC, abstractmethod from typing import List, Optional class lowerCAmelCase ( snake_case__ ): def __init__( self ): self.test() def lowercase ( self ): lowerCAmelCase : Tuple = 0 lowerCAmelCase : Optional[Any] = False while not completed: if counter == 1: self.reset() lowerCAmelCase : Union[str, Any] = self.advance() if not self.does_advance(UpperCAmelCase_ ): raise Exception( 'Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.' ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Dict = self.update(UpperCAmelCase_ ) counter += 1 if counter > 1_0000: raise Exception('update() does not fulfill the constraint.' ) if self.remaining() != 0: raise Exception('Custom Constraint is not defined correctly.' ) @abstractmethod def lowercase ( self ): raise NotImplementedError( f"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def lowercase ( self , snake_case__ ): raise NotImplementedError( f"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def lowercase ( self , snake_case__ ): raise NotImplementedError( f"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def lowercase ( self ): raise NotImplementedError( f"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def lowercase ( self ): raise NotImplementedError( f"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def lowercase ( self , snake_case__=False ): raise NotImplementedError( f"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) class lowerCAmelCase ( snake_case__ ): def __init__( self , snake_case__ ): super(UpperCAmelCase_ , self ).__init__() if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or len(UpperCAmelCase_ ) == 0: raise ValueError(f"`token_ids` has to be a non-empty list, but is {token_ids}." ) if any((not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or token_id < 0) for token_id in token_ids ): raise ValueError(f"Each list in `token_ids` has to be a list of positive integers, but is {token_ids}." ) lowerCAmelCase : int = token_ids lowerCAmelCase : Dict = len(self.token_ids ) lowerCAmelCase : Any = -1 # the index of the currently fulfilled step lowerCAmelCase : Tuple = False def lowercase ( self ): if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def lowercase ( self , snake_case__ ): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise ValueError(f"`token_id` has to be an `int`, but is {token_id} of type {type(UpperCAmelCase_ )}" ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def lowercase ( self , snake_case__ ): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise ValueError(f"`token_id` has to be an `int`, but is {token_id} of type {type(UpperCAmelCase_ )}" ) lowerCAmelCase : List[str] = False lowerCAmelCase : Union[str, Any] = False lowerCAmelCase : List[str] = False if self.does_advance(UpperCAmelCase_ ): self.fulfilled_idx += 1 lowerCAmelCase : Any = True if self.fulfilled_idx == (self.seqlen - 1): lowerCAmelCase : Optional[int] = True lowerCAmelCase : Dict = completed else: # failed to make progress. lowerCAmelCase : Union[str, Any] = True self.reset() return stepped, completed, reset def lowercase ( self ): lowerCAmelCase : Optional[int] = False lowerCAmelCase : Optional[Any] = 0 def lowercase ( self ): return self.seqlen - (self.fulfilled_idx + 1) def lowercase ( self , snake_case__=False ): lowerCAmelCase : int = PhrasalConstraint(self.token_ids ) if stateful: lowerCAmelCase : Dict = self.seqlen lowerCAmelCase : Optional[int] = self.fulfilled_idx lowerCAmelCase : str = self.completed return new_constraint class lowerCAmelCase : def __init__( self , snake_case__ , snake_case__=True ): lowerCAmelCase : Union[str, Any] = max([len(UpperCAmelCase_ ) for one in nested_token_ids] ) lowerCAmelCase : Union[str, Any] = {} for token_ids in nested_token_ids: lowerCAmelCase : str = root for tidx, token_id in enumerate(UpperCAmelCase_ ): if token_id not in level: lowerCAmelCase : Any = {} lowerCAmelCase : Union[str, Any] = level[token_id] if no_subsets and self.has_subsets(UpperCAmelCase_ , UpperCAmelCase_ ): raise ValueError( 'Each list in `nested_token_ids` can\'t be a complete subset of another list, but is' f" {nested_token_ids}." ) lowerCAmelCase : Dict = root def lowercase ( self , snake_case__ ): lowerCAmelCase : str = self.trie for current_token in current_seq: lowerCAmelCase : Union[str, Any] = start[current_token] lowerCAmelCase : int = list(start.keys() ) return next_tokens def lowercase ( self , snake_case__ ): lowerCAmelCase : Any = self.next_tokens(UpperCAmelCase_ ) return len(UpperCAmelCase_ ) == 0 def lowercase ( self , snake_case__ ): lowerCAmelCase : Optional[int] = list(root.values() ) if len(UpperCAmelCase_ ) == 0: return 1 else: return sum([self.count_leaves(UpperCAmelCase_ ) for nn in next_nodes] ) def lowercase ( self , snake_case__ , snake_case__ ): lowerCAmelCase : Any = self.count_leaves(UpperCAmelCase_ ) return len(UpperCAmelCase_ ) != leaf_count class lowerCAmelCase ( snake_case__ ): def __init__( self , snake_case__ ): super(UpperCAmelCase_ , self ).__init__() if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or len(UpperCAmelCase_ ) == 0: raise ValueError(f"`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}." ) if any(not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) for token_ids in nested_token_ids ): raise ValueError(f"`nested_token_ids` has to be a list of lists, but is {nested_token_ids}." ) if any( any((not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( f"Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}." ) lowerCAmelCase : Tuple = DisjunctiveTrie(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = nested_token_ids lowerCAmelCase : List[Any] = self.trie.max_height lowerCAmelCase : str = [] lowerCAmelCase : str = False def lowercase ( self ): lowerCAmelCase : List[str] = self.trie.next_tokens(self.current_seq ) if len(UpperCAmelCase_ ) == 0: return None else: return token_list def lowercase ( self , snake_case__ ): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise ValueError(f"`token_id` is supposed to be type `int`, but is {token_id} of type {type(UpperCAmelCase_ )}" ) lowerCAmelCase : Tuple = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def lowercase ( self , snake_case__ ): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise ValueError(f"`token_id` is supposed to be type `int`, but is {token_id} of type {type(UpperCAmelCase_ )}" ) lowerCAmelCase : Any = False lowerCAmelCase : List[str] = False lowerCAmelCase : List[str] = False if self.does_advance(UpperCAmelCase_ ): self.current_seq.append(UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = True else: lowerCAmelCase : Dict = True self.reset() lowerCAmelCase : Union[str, Any] = self.trie.reached_leaf(self.current_seq ) lowerCAmelCase : Any = completed return stepped, completed, reset def lowercase ( self ): lowerCAmelCase : str = False lowerCAmelCase : List[str] = [] def lowercase ( self ): if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def lowercase ( self , snake_case__=False ): lowerCAmelCase : Optional[int] = DisjunctiveConstraint(self.token_ids ) if stateful: lowerCAmelCase : Optional[int] = self.seqlen lowerCAmelCase : Optional[Any] = self.current_seq lowerCAmelCase : int = self.completed return new_constraint class lowerCAmelCase : def __init__( self , snake_case__ ): lowerCAmelCase : Union[str, Any] = constraints # max # of steps required to fulfill a given constraint lowerCAmelCase : Optional[int] = max([c.seqlen for c in constraints] ) lowerCAmelCase : Optional[int] = len(UpperCAmelCase_ ) lowerCAmelCase : List[str] = False self.init_state() def lowercase ( self ): lowerCAmelCase : Optional[int] = [] lowerCAmelCase : Tuple = None lowerCAmelCase : List[str] = [constraint.copy(stateful=UpperCAmelCase_ ) for constraint in self.constraints] def lowercase ( self ): lowerCAmelCase : Dict = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def lowercase ( self ): lowerCAmelCase : Any = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" lowerCAmelCase : Union[str, Any] = constraint.advance() if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): token_list.append(UpperCAmelCase_ ) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): token_list.extend(UpperCAmelCase_ ) else: lowerCAmelCase : int = self.inprogress_constraint.advance() if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): token_list.append(UpperCAmelCase_ ) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): token_list.extend(UpperCAmelCase_ ) if len(UpperCAmelCase_ ) == 0: return None else: return token_list def lowercase ( self , snake_case__ ): self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint lowerCAmelCase , lowerCAmelCase : Dict = self.add(UpperCAmelCase_ ) # the entire list of constraints are fulfilled if self.completed: break def lowercase ( self , snake_case__ ): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise ValueError(f"`token_id` should be an `int`, but is `{token_id}`." ) lowerCAmelCase , lowerCAmelCase : int = False, False if self.completed: lowerCAmelCase : Any = True lowerCAmelCase : List[Any] = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Tuple = self.inprogress_constraint.update(UpperCAmelCase_ ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=UpperCAmelCase_ ) ) lowerCAmelCase : Optional[Any] = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) lowerCAmelCase : Dict = None if len(self.pending_constraints ) == 0: # we're done! lowerCAmelCase : Any = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(UpperCAmelCase_ ): lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : str = pending_constraint.update(UpperCAmelCase_ ) if not stepped: raise Exception( '`constraint.update(token_id)` is not yielding incremental progress, ' 'even though `constraint.does_advance(token_id)` is true.' ) if complete: self.complete_constraints.append(UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = None if not complete and stepped: lowerCAmelCase : List[Any] = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". lowerCAmelCase : Union[str, Any] = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. lowerCAmelCase : Tuple = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def lowercase ( self , snake_case__=True ): lowerCAmelCase : List[Any] = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: lowerCAmelCase : Optional[int] = [ constraint.copy(stateful=UpperCAmelCase_ ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: lowerCAmelCase : Tuple = self.inprogress_constraint.copy(stateful=UpperCAmelCase_ ) lowerCAmelCase : List[Any] = [constraint.copy() for constraint in self.pending_constraints] return new_state
702
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece_no_bos.model') @require_sentencepiece @require_tokenizers class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : str = PegasusTokenizer _lowerCamelCase : Union[str, Any] = PegasusTokenizerFast _lowerCamelCase : Optional[Any] = True _lowerCamelCase : Optional[Any] = True def lowercase ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : List[Any] = PegasusTokenizer(snake_case__ ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase ( self ): return PegasusTokenizer.from_pretrained('google/pegasus-large' ) def lowercase ( self , **snake_case__ ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def lowercase ( self , snake_case__ ): return ("This is a test", "This is a test") def lowercase ( self ): lowerCAmelCase : Optional[int] = '</s>' lowerCAmelCase : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '</s>' ) self.assertEqual(vocab_keys[-1] , 'v' ) self.assertEqual(len(snake_case__ ) , 1103 ) def lowercase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def lowercase ( self ): lowerCAmelCase : List[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : List[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : Optional[Any] = ( 'Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important' ' </s> <pad> <pad> <pad>' ) lowerCAmelCase : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] lowerCAmelCase : Optional[int] = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Any = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowerCAmelCase : List[str] = '<mask_1> To ensure a <mask_2> flow of bank resolutions.' lowerCAmelCase : Optional[Any] = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1] lowerCAmelCase : Optional[Any] = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Optional[Any] = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 lowerCAmelCase : List[Any] = 'To ensure a smooth flow of bank resolutions.' lowerCAmelCase : Optional[int] = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1] lowerCAmelCase : Any = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def lowercase ( self ): lowerCAmelCase : Union[str, Any] = ['This is going to be way too long.' * 150, 'short example'] lowerCAmelCase : int = ['not super long but more than 5 tokens', 'tiny'] lowerCAmelCase : Dict = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) lowerCAmelCase : Dict = self._large_tokenizer( text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(snake_case__ ) == 2 # input_ids, attention_mask. @slow def lowercase ( self ): # fmt: off lowerCAmelCase : Tuple = {'input_ids': [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name='google/bigbird-pegasus-large-arxiv' , revision='ba85d0851d708441f91440d509690f1ab6353415' , ) @require_sentencepiece @require_tokenizers class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : Optional[Any] = PegasusTokenizer _lowerCamelCase : str = PegasusTokenizerFast _lowerCamelCase : Tuple = True _lowerCamelCase : int = True def lowercase ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : int = PegasusTokenizer(snake_case__ , offset=0 , mask_token_sent=snake_case__ , mask_token='[MASK]' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase ( self ): return PegasusTokenizer.from_pretrained('google/bigbird-pegasus-large-arxiv' ) def lowercase ( self , **snake_case__ ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def lowercase ( self , snake_case__ ): return ("This is a test", "This is a test") def lowercase ( self ): lowerCAmelCase : Tuple = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : Union[str, Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : List[str] = ( 'Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>' ' <pad> <pad> <pad>' ) lowerCAmelCase : Dict = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] lowerCAmelCase : Union[str, Any] = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) @require_torch def lowercase ( self ): lowerCAmelCase : Optional[int] = ['This is going to be way too long.' * 1000, 'short example'] lowerCAmelCase : Union[str, Any] = ['not super long but more than 5 tokens', 'tiny'] lowerCAmelCase : List[str] = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) lowerCAmelCase : List[str] = self._large_tokenizer( text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(snake_case__ ) == 2 # input_ids, attention_mask. def lowercase ( self ): lowerCAmelCase : List[str] = ( 'This is an example string that is used to test the original TF implementation against the HF' ' implementation' ) lowerCAmelCase : Tuple = self._large_tokenizer(snake_case__ ).input_ids self.assertListEqual( snake_case__ , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
646
0
'''simple docstring''' import operator as op def __UpperCamelCase ( _A : Dict ) -> str: """simple docstring""" lowerCAmelCase : Any = [] lowerCAmelCase : Tuple = lambda _A , _A : int(x / y ) # noqa: E731 integer division operation lowerCAmelCase : Union[str, Any] = { '^': op.pow, '*': op.mul, '/': div, '+': op.add, '-': op.sub, } # operators & their respective operation # print table header print('Symbol'.center(8 ) , 'Action'.center(12 ) , 'Stack' , sep=' | ' ) print('-' * (30 + len(_A )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(_A ) # append x to stack # output in tabular format print(x.rjust(8 ) , ('push(' + x + ')').ljust(12 ) , ','.join(_A ) , sep=' | ' ) else: lowerCAmelCase : Any = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + b + ')').ljust(12 ) , ','.join(_A ) , sep=' | ' ) lowerCAmelCase : List[str] = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + a + ')').ljust(12 ) , ','.join(_A ) , sep=' | ' ) stack.append( str(opr[x](int(_A ) , int(_A ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ('push(' + a + x + b + ')').ljust(12 ) , ','.join(_A ) , sep=' | ' , ) return int(stack[0] ) if __name__ == "__main__": _lowerCAmelCase : Optional[int] = input('\n\nEnter a Postfix Equation (space separated) = ').split(' ') print('\n\tResult = ', solve(Postfix))
703
'''simple docstring''' import math import sys import cva import numpy as np def __UpperCamelCase ( _A : np.ndarray , _A : float ) -> np.ndarray: """simple docstring""" lowerCAmelCase : Union[str, Any] = math.sqrt(_A ) lowerCAmelCase : Union[str, Any] = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def __UpperCamelCase ( _A : np.ndarray , _A : int , _A : int , _A : int ) -> np.ndarray: """simple docstring""" lowerCAmelCase : int = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def __UpperCamelCase ( _A : int , _A : float ) -> np.ndarray: """simple docstring""" lowerCAmelCase : Dict = np.zeros((kernel_size, kernel_size) ) for i in range(0 , _A ): for j in range(0 , _A ): lowerCAmelCase : Optional[int] = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(_A , _A ) def __UpperCamelCase ( _A : np.ndarray , _A : float , _A : float , _A : int , ) -> np.ndarray: """simple docstring""" lowerCAmelCase : str = np.zeros(img.shape ) lowerCAmelCase : int = get_gauss_kernel(_A , _A ) lowerCAmelCase , lowerCAmelCase : Dict = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): lowerCAmelCase : int = get_slice(_A , _A , _A , _A ) lowerCAmelCase : Any = img_s - img_s[kernel_size // 2, kernel_size // 2] lowerCAmelCase : str = vec_gaussian(_A , _A ) lowerCAmelCase : Optional[int] = np.multiply(_A , _A ) lowerCAmelCase : str = np.multiply(_A , _A ) lowerCAmelCase : Union[str, Any] = np.sum(_A ) / np.sum(_A ) lowerCAmelCase : Tuple = val return imga def __UpperCamelCase ( _A : list ) -> tuple: """simple docstring""" lowerCAmelCase : List[Any] = args[1] if args[1:] else '../image_data/lena.jpg' lowerCAmelCase : Any = float(args[2] ) if args[2:] else 1.0 lowerCAmelCase : Union[str, Any] = float(args[3] ) if args[3:] else 1.0 if args[4:]: lowerCAmelCase : int = int(args[4] ) lowerCAmelCase : Optional[Any] = kernel_size + abs(kernel_size % 2 - 1 ) else: lowerCAmelCase : Optional[int] = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Any = parse_args(sys.argv) _lowerCAmelCase : str = cva.imread(filename, 0) cva.imshow('input image', img) _lowerCAmelCase : Union[str, Any] = img / 255 _lowerCAmelCase : List[str] = out.astype('float32') _lowerCAmelCase : Optional[int] = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) _lowerCAmelCase : Union[str, Any] = out * 255 _lowerCAmelCase : Optional[Any] = np.uinta(out) cva.imshow('output image', out) cva.waitKey(0) cva.destroyAllWindows()
646
0
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : Union[str, Any] = DanceDiffusionPipeline _lowerCamelCase : Tuple = UNCONDITIONAL_AUDIO_GENERATION_PARAMS _lowerCamelCase : Any = PipelineTesterMixin.required_optional_params - { """callback""", """latents""", """callback_steps""", """output_type""", """num_images_per_prompt""", } _lowerCamelCase : Optional[Any] = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS _lowerCamelCase : str = False _lowerCamelCase : Tuple = False def lowercase ( self ): torch.manual_seed(0 ) lowerCAmelCase : List[str] = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=512 , sample_rate=1_6000 , in_channels=2 , out_channels=2 , flip_sin_to_cos=UpperCamelCase_ , use_timestep_embedding=UpperCamelCase_ , time_embedding_type='fourier' , mid_block_type='UNetMidBlock1D' , down_block_types=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D') , up_block_types=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip') , ) lowerCAmelCase : List[str] = IPNDMScheduler() lowerCAmelCase : Tuple = { 'unet': unet, 'scheduler': scheduler, } return components def lowercase ( self , snake_case__ , snake_case__=0 ): if str(UpperCamelCase_ ).startswith('mps' ): lowerCAmelCase : str = torch.manual_seed(UpperCamelCase_ ) else: lowerCAmelCase : str = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 4, } return inputs def lowercase ( self ): lowerCAmelCase : Union[str, Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase : int = self.get_dummy_components() lowerCAmelCase : Optional[int] = DanceDiffusionPipeline(**UpperCamelCase_ ) lowerCAmelCase : int = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowerCAmelCase : str = self.get_dummy_inputs(UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = pipe(**UpperCamelCase_ ) lowerCAmelCase : Any = output.audios lowerCAmelCase : Dict = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) lowerCAmelCase : Union[str, Any] = np.array([-0.7_2_6_5, 1.0_0_0_0, -0.8_3_8_8, 0.1_1_7_5, 0.9_4_9_8, -1.0_0_0_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def lowercase ( self ): return super().test_save_load_local() @skip_mps def lowercase ( self ): return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) @skip_mps def lowercase ( self ): return super().test_save_load_optional_components() @skip_mps def lowercase ( self ): return super().test_attention_slicing_forward_pass() def lowercase ( self ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self ): lowerCAmelCase : int = torch_device lowerCAmelCase : Tuple = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ) lowerCAmelCase : Dict = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowerCAmelCase : int = torch.manual_seed(0 ) lowerCAmelCase : Dict = pipe(generator=UpperCamelCase_ , num_inference_steps=100 , audio_length_in_s=4.0_9_6 ) lowerCAmelCase : Union[str, Any] = output.audios lowerCAmelCase : Union[str, Any] = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowerCAmelCase : List[str] = np.array([-0.0_1_9_2, -0.0_2_3_1, -0.0_3_1_8, -0.0_0_5_9, 0.0_0_0_2, -0.0_0_2_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase ( self ): lowerCAmelCase : int = torch_device lowerCAmelCase : int = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' , torch_dtype=torch.floataa ) lowerCAmelCase : Union[str, Any] = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = torch.manual_seed(0 ) lowerCAmelCase : List[str] = pipe(generator=UpperCamelCase_ , num_inference_steps=100 , audio_length_in_s=4.0_9_6 ) lowerCAmelCase : Any = output.audios lowerCAmelCase : Any = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowerCAmelCase : Dict = np.array([-0.0_3_6_7, -0.0_4_8_8, -0.0_7_7_1, -0.0_5_2_5, -0.0_4_4_4, -0.0_3_4_1] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
704
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowerCAmelCase : int = { 'configuration_nezha': ['NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NezhaConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Tuple = [ 'NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST', 'NezhaForNextSentencePrediction', 'NezhaForMaskedLM', 'NezhaForPreTraining', 'NezhaForMultipleChoice', 'NezhaForQuestionAnswering', 'NezhaForSequenceClassification', 'NezhaForTokenClassification', 'NezhaModel', 'NezhaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys _lowerCAmelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
646
0
import argparse _lowerCAmelCase : Tuple = "docs/source/_static/js/custom.js" def __UpperCamelCase ( _A : List[Any] ) -> Any: """simple docstring""" with open(_A , encoding='utf-8' , newline='\n' ) as f: lowerCAmelCase : Tuple = f.readlines() lowerCAmelCase : str = 0 # First let's put the right version while not lines[index].startswith('const stableVersion =' ): index += 1 lowerCAmelCase : int = F"const stableVersion = \"v{version}\"\n" # Then update the dictionary while not lines[index].startswith('const versionMapping = {' ): index += 1 # We go until the end while not lines[index].startswith('}' ): index += 1 # We add the new version at the end lines[index - 1] += F" \"v{version}\": \"v{version}\",\n" with open(_A , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(_A ) if __name__ == "__main__": _lowerCAmelCase : Dict = argparse.ArgumentParser() parser.add_argument('--version', help='Release version.') _lowerCAmelCase : Optional[int] = parser.parse_args() update_custom_js(args.version)
705
'''simple docstring''' from typing import Any class lowerCAmelCase : def __init__( self , snake_case__ ): lowerCAmelCase : Optional[int] = data lowerCAmelCase : Optional[Any] = None def __repr__( self ): return f"Node({self.data})" class lowerCAmelCase : def __init__( self ): lowerCAmelCase : Dict = None def __iter__( self ): lowerCAmelCase : Optional[Any] = self.head while node: yield node.data lowerCAmelCase : Optional[int] = node.next def __len__( self ): return sum(1 for _ in self ) def __repr__( self ): return "->".join([str(snake_case__ ) for item in self] ) def __getitem__( self , snake_case__ ): if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , snake_case__ , snake_case__ ): if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) lowerCAmelCase : Any = self.head for _ in range(snake_case__ ): lowerCAmelCase : List[str] = current.next lowerCAmelCase : int = data def lowercase ( self , snake_case__ ): self.insert_nth(len(self ) , snake_case__ ) def lowercase ( self , snake_case__ ): self.insert_nth(0 , snake_case__ ) def lowercase ( self , snake_case__ , snake_case__ ): if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) lowerCAmelCase : List[str] = Node(snake_case__ ) if self.head is None: lowerCAmelCase : int = new_node elif index == 0: lowerCAmelCase : List[Any] = self.head # link new_node to head lowerCAmelCase : List[Any] = new_node else: lowerCAmelCase : List[Any] = self.head for _ in range(index - 1 ): lowerCAmelCase : Union[str, Any] = temp.next lowerCAmelCase : Any = temp.next lowerCAmelCase : str = new_node def lowercase ( self ): # print every node data print(self ) def lowercase ( self ): return self.delete_nth(0 ) def lowercase ( self ): # delete from tail return self.delete_nth(len(self ) - 1 ) def lowercase ( self , snake_case__ = 0 ): if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) lowerCAmelCase : List[str] = self.head # default first node if index == 0: lowerCAmelCase : Tuple = self.head.next else: lowerCAmelCase : Dict = self.head for _ in range(index - 1 ): lowerCAmelCase : Tuple = temp.next lowerCAmelCase : Dict = temp.next lowerCAmelCase : Tuple = temp.next.next return delete_node.data def lowercase ( self ): return self.head is None def lowercase ( self ): lowerCAmelCase : List[Any] = None lowerCAmelCase : Any = self.head while current: # Store the current node's next node. lowerCAmelCase : List[str] = current.next # Make the current node's next point backwards lowerCAmelCase : int = prev # Make the previous node be the current node lowerCAmelCase : int = current # Make the current node the next node (to progress iteration) lowerCAmelCase : Optional[Any] = next_node # Return prev in order to put the head at the end lowerCAmelCase : List[Any] = prev def __UpperCamelCase ( ) -> None: """simple docstring""" lowerCAmelCase : Tuple = LinkedList() assert linked_list.is_empty() is True assert str(_A ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(_A ) == i linked_list.insert_nth(_A , i + 1 ) assert str(_A ) == "->".join(str(_A ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(_A ) == "->".join(str(_A ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(_A ) == 9 assert str(_A ) == "->".join(str(_A ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): lowerCAmelCase : Optional[Any] = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(_A ) == "->".join(str(_A ) for i in range(-8 , 1 ) ) def __UpperCamelCase ( ) -> None: """simple docstring""" lowerCAmelCase : Optional[int] = [ -9, 1_00, Node(77_34_51_12 ), 'dlrow olleH', 7, 55_55, 0, -1_92.5_55_55, 'Hello, world!', 77.9, Node(10 ), None, None, 12.20, ] lowerCAmelCase : Dict = LinkedList() for i in test_input: linked_list.insert_tail(_A ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(_A ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head lowerCAmelCase : Optional[Any] = linked_list.delete_head() assert result == -9 assert ( str(_A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail lowerCAmelCase : List[str] = linked_list.delete_tail() assert result == 12.2 assert ( str(_A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list lowerCAmelCase : List[str] = linked_list.delete_nth(10 ) assert result is None assert ( str(_A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(_A ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(_A ) assert ( str(_A ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(_A ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def __UpperCamelCase ( ) -> List[Any]: """simple docstring""" from doctest import testmod testmod() lowerCAmelCase : Optional[Any] = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(_A ) print('\nReading/changing Node data using indexing:' ) print(F"Element at Position 1: {linked_list[1]}" ) lowerCAmelCase : Tuple = input('Enter New Value: ' ).strip() print('New list:' ) print(_A ) print(F"length of linked_list is : {len(_A )}" ) if __name__ == "__main__": main()
646
0
'''simple docstring''' import math def __UpperCamelCase ( _A : Optional[int] , _A : int ) -> int: """simple docstring""" lowerCAmelCase : List[str] = len(lowerCamelCase_ ) lowerCAmelCase : Optional[int] = int(math.floor(math.sqrt(lowerCamelCase_ ) ) ) lowerCAmelCase : List[str] = 0 while arr[min(lowerCamelCase_ , lowerCamelCase_ ) - 1] < x: lowerCAmelCase : Tuple = step step += int(math.floor(math.sqrt(lowerCamelCase_ ) ) ) if prev >= n: return -1 while arr[prev] < x: lowerCAmelCase : int = prev + 1 if prev == min(lowerCamelCase_ , lowerCamelCase_ ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": _lowerCAmelCase : Tuple = input('Enter numbers separated by a comma:\n').strip() _lowerCAmelCase : Any = [int(item) for item in user_input.split(',')] _lowerCAmelCase : List[str] = int(input('Enter the number to be searched:\n')) _lowerCAmelCase : Tuple = jump_search(arr, x) if res == -1: print('Number not found!') else: print(f"""Number {x} is at index {res}""")
706
'''simple docstring''' _lowerCAmelCase : List[str] = {str(digit): digit**5 for digit in range(10)} def __UpperCamelCase ( _A : int ) -> int: """simple docstring""" return sum(DIGITS_FIFTH_POWER[digit] for digit in str(_A ) ) def __UpperCamelCase ( ) -> int: """simple docstring""" return sum( number for number in range(10_00 , 1_00_00_00 ) if number == digits_fifth_powers_sum(_A ) ) if __name__ == "__main__": print(solution())
646
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) _lowerCAmelCase : str = { "facebook/data2vec-text-base": "https://huggingface.co/data2vec/resolve/main/config.json", } class lowerCAmelCase ( UpperCAmelCase_ ): _lowerCamelCase : Optional[int] = 'data2vec-text' def __init__( self , snake_case__=3_0522 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=1e-1_2 , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__="absolute" , snake_case__=True , snake_case__=None , **snake_case__ , ): super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) lowerCAmelCase : Dict = vocab_size lowerCAmelCase : Optional[int] = hidden_size lowerCAmelCase : Union[str, Any] = num_hidden_layers lowerCAmelCase : Tuple = num_attention_heads lowerCAmelCase : str = hidden_act lowerCAmelCase : Any = intermediate_size lowerCAmelCase : Union[str, Any] = hidden_dropout_prob lowerCAmelCase : List[str] = attention_probs_dropout_prob lowerCAmelCase : int = max_position_embeddings lowerCAmelCase : Tuple = type_vocab_size lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : Any = layer_norm_eps lowerCAmelCase : List[Any] = position_embedding_type lowerCAmelCase : List[str] = use_cache lowerCAmelCase : List[Any] = classifier_dropout class lowerCAmelCase ( UpperCAmelCase_ ): @property def lowercase ( self ): if self.task == "multiple-choice": lowerCAmelCase : List[str] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase : Union[str, Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
707
'''simple docstring''' def __UpperCamelCase ( _A : List[str] ) -> Optional[Any]: """simple docstring""" if not head: return True # split the list to two parts lowerCAmelCase , lowerCAmelCase : str = head.next, head while fast and fast.next: lowerCAmelCase : Optional[int] = fast.next.next lowerCAmelCase : int = slow.next lowerCAmelCase : int = slow.next lowerCAmelCase : Optional[Any] = None # Don't forget here! But forget still works! # reverse the second part lowerCAmelCase : List[Any] = None while second: lowerCAmelCase : List[Any] = second.next lowerCAmelCase : Union[str, Any] = node lowerCAmelCase : Optional[Any] = second lowerCAmelCase : Any = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False lowerCAmelCase : Optional[Any] = node.next lowerCAmelCase : Tuple = head.next return True def __UpperCamelCase ( _A : Optional[Any] ) -> Optional[int]: """simple docstring""" if not head or not head.next: return True # 1. Get the midpoint (slow) lowerCAmelCase : Optional[int] = head while fast and fast.next: lowerCAmelCase , lowerCAmelCase : Optional[Any] = fast.next.next, slow.next # 2. Push the second half into the stack lowerCAmelCase : Tuple = [slow.val] while slow.next: lowerCAmelCase : Tuple = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False lowerCAmelCase : Union[str, Any] = cur.next return True def __UpperCamelCase ( _A : Tuple ) -> Optional[int]: """simple docstring""" if not head or not head.next: return True lowerCAmelCase : Optional[int] = {} lowerCAmelCase : int = 0 while head: if head.val in d: d[head.val].append(_A ) else: lowerCAmelCase : Any = [pos] lowerCAmelCase : int = head.next pos += 1 lowerCAmelCase : str = pos - 1 lowerCAmelCase : Optional[Any] = 0 for v in d.values(): if len(_A ) % 2 != 0: middle += 1 else: lowerCAmelCase : Any = 0 for i in range(0 , len(_A ) ): if v[i] + v[len(_A ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
646
0
'''simple docstring''' import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) _lowerCAmelCase : List[str] = '\\n Text data.\n Second line of data.' _lowerCAmelCase : List[str] = 'file' @pytest.fixture(scope='session' ) def __UpperCamelCase ( _A : Optional[int] ) -> Dict: """simple docstring""" lowerCAmelCase : Union[str, Any] = tmp_path_factory.mktemp('data' ) / (FILE_PATH + '''.zstd''') lowerCAmelCase : Dict = bytes(__A , 'utf-8' ) with zstd.open(__A , 'wb' ) as f: f.write(__A ) return path @pytest.fixture def __UpperCamelCase ( _A : Any ) -> int: """simple docstring""" with open(os.path.join(tmpfs.local_root_dir , __A ) , 'w' ) as f: f.write(__A ) return FILE_PATH @pytest.mark.parametrize('compression_format' , ['gzip', 'xz', 'zstd'] ) def __UpperCamelCase ( _A : int , _A : int , _A : Any , _A : List[Any] , _A : Dict , _A : Tuple ) -> Dict: """simple docstring""" lowerCAmelCase : Optional[Any] = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_path} lowerCAmelCase : List[Any] = input_paths[compression_format] lowerCAmelCase : Optional[Any] = tmp_path / '''cache''' lowerCAmelCase : List[Any] = DownloadConfig(cache_dir=__A , extract_compressed_file=__A ) lowerCAmelCase : List[str] = cached_path(__A , download_config=__A ) with open(__A ) as f: lowerCAmelCase : Any = f.read() with open(__A ) as f: lowerCAmelCase : int = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize('default_extracted' , [True, False] ) @pytest.mark.parametrize('default_cache_dir' , [True, False] ) def __UpperCamelCase ( _A : Union[str, Any] , _A : List[Any] , _A : List[Any] , _A : Optional[Any] , _A : Any ) -> Optional[Any]: """simple docstring""" lowerCAmelCase : Dict = '''custom_cache''' lowerCAmelCase : int = '''custom_extracted_dir''' lowerCAmelCase : Optional[Any] = tmp_path / '''custom_extracted_path''' if default_extracted: lowerCAmelCase : Tuple = ('''downloads''' if default_cache_dir else custom_cache_dir, '''extracted''') else: monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_DIR' , __A ) monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_PATH' , str(__A ) ) lowerCAmelCase : List[Any] = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) lowerCAmelCase : str = xz_file lowerCAmelCase : str = ( DownloadConfig(extract_compressed_file=__A ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=__A ) ) lowerCAmelCase : Tuple = cached_path(__A , download_config=__A ) assert Path(__A ).parent.parts[-2:] == expected def __UpperCamelCase ( _A : int ) -> Any: """simple docstring""" lowerCAmelCase : Tuple = str(Path(__A ).resolve() ) assert cached_path(__A ) == text_file # relative path lowerCAmelCase : Optional[Any] = str(Path(__A ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(__A ) == text_file def __UpperCamelCase ( _A : Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowerCAmelCase : Optional[int] = str(tmp_path.resolve() / '__missing_file__.txt' ) with pytest.raises(__A ): cached_path(__A ) # relative path lowerCAmelCase : List[str] = '''./__missing_file__.txt''' with pytest.raises(__A ): cached_path(__A ) def __UpperCamelCase ( _A : Optional[Any] ) -> Tuple: """simple docstring""" lowerCAmelCase : Union[str, Any] = get_from_cache(F"tmp://{tmpfs_file}" ) with open(__A ) as f: lowerCAmelCase : Optional[int] = f.read() assert output_file_content == FILE_CONTENT @patch('datasets.config.HF_DATASETS_OFFLINE' , __A ) def __UpperCamelCase ( ) -> Dict: """simple docstring""" with pytest.raises(__A ): cached_path('https://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE' , __A ) def __UpperCamelCase ( _A : Tuple ) -> Optional[Any]: """simple docstring""" lowerCAmelCase : Optional[int] = tmp_path_factory.mktemp('data' ) / '''file.html''' with pytest.raises(__A ): http_get('https://huggingface.co' , temp_file=__A ) with pytest.raises(__A ): http_head('https://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE' , __A ) def __UpperCamelCase ( _A : Optional[int] ) -> Optional[Any]: """simple docstring""" lowerCAmelCase : str = tmp_path_factory.mktemp('data' ) / '''file.html''' with pytest.raises(__A ): ftp_get('ftp://huggingface.co' , temp_file=__A ) with pytest.raises(__A ): ftp_head('ftp://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE' , __A ) def __UpperCamelCase ( _A : List[str] ) -> Any: """simple docstring""" lowerCAmelCase : Tuple = tmp_path_factory.mktemp('data' ) / '''file.html''' with pytest.raises(__A ): fsspec_get('s3://huggingface.co' , temp_file=__A ) with pytest.raises(__A ): fsspec_head('s3://huggingface.co' )
708
'''simple docstring''' import math def __UpperCamelCase ( _A : int = 1_00 ) -> int: """simple docstring""" lowerCAmelCase : List[Any] = sum(i * i for i in range(1 , n + 1 ) ) lowerCAmelCase : Optional[Any] = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f"""{solution() = }""")
646
0
import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig _lowerCAmelCase : Optional[int] = logging.get_logger(__name__) _lowerCAmelCase : Dict = 'T5Config' def __UpperCamelCase ( _A : jnp.array , _A : int , _A : int ) -> Dict: """simple docstring""" lowerCAmelCase : Union[str, Any] = jnp.zeros_like(__lowerCAmelCase ) lowerCAmelCase : Any = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) lowerCAmelCase : List[Any] = shifted_input_ids.at[:, 0].set(__lowerCAmelCase ) lowerCAmelCase : str = jnp.where(shifted_input_ids == -1_00 , __lowerCAmelCase , __lowerCAmelCase ) return shifted_input_ids class lowerCAmelCase ( a ): _lowerCamelCase : Tuple = """mt5""" _lowerCamelCase : str = MTaConfig class lowerCAmelCase ( a ): _lowerCamelCase : List[str] = """mt5""" _lowerCamelCase : Tuple = MTaConfig class lowerCAmelCase ( a ): _lowerCamelCase : str = """mt5""" _lowerCamelCase : Dict = MTaConfig
709
'''simple docstring''' import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece_with_bytefallback.model') @require_sentencepiece @require_tokenizers class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : Tuple = GPTSwaTokenizer _lowerCamelCase : str = False _lowerCamelCase : Dict = True _lowerCamelCase : Optional[Any] = False def lowercase ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : Tuple = GPTSwaTokenizer(snake_case__ , eos_token='<unk>' , bos_token='<unk>' , pad_token='<unk>' ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase ( self , snake_case__ ): lowerCAmelCase : List[Any] = 'This is a test' lowerCAmelCase : List[Any] = 'This is a test' return input_text, output_text def lowercase ( self ): lowerCAmelCase : Tuple = '<s>' lowerCAmelCase : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def lowercase ( self ): lowerCAmelCase : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(snake_case__ ) , 2000 ) def lowercase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 2000 ) def lowercase ( self ): lowerCAmelCase : List[Any] = GPTSwaTokenizer(snake_case__ ) lowerCAmelCase : Optional[Any] = tokenizer.tokenize('This is a test' ) self.assertListEqual(snake_case__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , [465, 287, 265, 631, 842] ) lowerCAmelCase : Tuple = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) # fmt: off self.assertListEqual( snake_case__ , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] , ) # fmt: on lowerCAmelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual( snake_case__ , [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] , ) lowerCAmelCase : int = tokenizer.convert_ids_to_tokens(snake_case__ ) # fmt: off self.assertListEqual( snake_case__ , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] ) # fmt: on def lowercase ( self ): lowerCAmelCase : str = GPTSwaTokenizer(snake_case__ ) lowerCAmelCase : Optional[int] = ['This is a test', 'I was born in 92000, and this is falsé.'] lowerCAmelCase : Tuple = [ [465, 287, 265, 631, 842], [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(snake_case__ , snake_case__ ): self.assertListEqual(tokenizer.encode_fast(snake_case__ ) , snake_case__ ) # Test that decode_fast returns the input text for text, token_ids in zip(snake_case__ , snake_case__ ): self.assertEqual(tokenizer.decode_fast(snake_case__ ) , snake_case__ ) @slow def lowercase ( self ): lowerCAmelCase : str = [ '<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')', 'Hey there, how are you doing this fine day?', 'This is a text with a trailing spaces followed by a dot .', 'Häj sväjs lillebrör! =)', 'Det är inget fel på Mr. Cool', ] # fmt: off lowerCAmelCase : Tuple = {'input_ids': [[6_3423, 5, 6811, 1_4954, 282, 816, 3821, 6_3466, 6_3425, 6_3462, 18, 6_3978, 678, 301, 1320, 6_3423, 6_3455, 6_3458, 18, 6_3982, 4246, 3940, 1901, 4_7789, 5547, 1_8994], [1_9630, 1100, 6_3446, 1342, 633, 544, 4488, 593, 5102, 2416, 6_3495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1652, 428, 268, 1936, 515, 268, 5_8593, 2_2413, 9106, 546, 268, 3_3213, 6_3979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_5130, 6_3450, 924, 6_3449, 2249, 4062, 1558, 318, 6_3504, 2_1498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2827, 2559, 332, 6575, 6_3443, 2_6801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name='AI-Sweden/gpt-sw3-126m' , sequences=snake_case__ , )
646
0
'''simple docstring''' import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def __UpperCamelCase ( _A : Tuple , _A : Optional[int] , _A : List[str] , _A : int , _A : Optional[Any] ) -> Optional[Any]: """simple docstring""" with open(lowerCamelCase__ ) as metadata_file: lowerCAmelCase : List[Any] = json.load(lowerCamelCase__ ) lowerCAmelCase : Dict = LukeConfig(use_entity_aware_attention=lowerCamelCase__ , **metadata['model_config'] ) # Load in the weights from the checkpoint_path lowerCAmelCase : Optional[Any] = torch.load(lowerCamelCase__ , map_location='cpu' )["module"] # Load the entity vocab file lowerCAmelCase : Optional[int] = load_original_entity_vocab(lowerCamelCase__ ) # add an entry for [MASK2] lowerCAmelCase : Dict = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 lowerCAmelCase : List[str] = XLMRobertaTokenizer.from_pretrained(metadata['model_config']['bert_model_name'] ) # Add special tokens to the token vocabulary for downstream tasks lowerCAmelCase : List[str] = AddedToken('<ent>' , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) lowerCAmelCase : Union[str, Any] = AddedToken('<ent2>' , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) tokenizer.add_special_tokens({'additional_special_tokens': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F"Saving tokenizer to {pytorch_dump_folder_path}" ) tokenizer.save_pretrained(lowerCamelCase__ ) with open(os.path.join(lowerCamelCase__ , 'tokenizer_config.json' ) , 'r' ) as f: lowerCAmelCase : Dict = json.load(lowerCamelCase__ ) lowerCAmelCase : Optional[int] = "MLukeTokenizer" with open(os.path.join(lowerCamelCase__ , 'tokenizer_config.json' ) , 'w' ) as f: json.dump(lowerCamelCase__ , lowerCamelCase__ ) with open(os.path.join(lowerCamelCase__ , MLukeTokenizer.vocab_files_names['entity_vocab_file'] ) , 'w' ) as f: json.dump(lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase : Tuple = MLukeTokenizer.from_pretrained(lowerCamelCase__ ) # Initialize the embeddings of the special tokens lowerCAmelCase : Any = tokenizer.convert_tokens_to_ids(['@'] )[0] lowerCAmelCase : str = tokenizer.convert_tokens_to_ids(['#'] )[0] lowerCAmelCase : Tuple = state_dict["embeddings.word_embeddings.weight"] lowerCAmelCase : List[str] = word_emb[ent_init_index].unsqueeze(0 ) lowerCAmelCase : int = word_emb[enta_init_index].unsqueeze(0 ) lowerCAmelCase : Any = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: lowerCAmelCase : Union[str, Any] = state_dict[bias_name] lowerCAmelCase : Tuple = decoder_bias[ent_init_index].unsqueeze(0 ) lowerCAmelCase : str = decoder_bias[enta_init_index].unsqueeze(0 ) lowerCAmelCase : Optional[Any] = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: lowerCAmelCase : int = F"encoder.layer.{layer_index}.attention.self." lowerCAmelCase : Tuple = state_dict[prefix + matrix_name] lowerCAmelCase : int = state_dict[prefix + matrix_name] lowerCAmelCase : Union[str, Any] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks lowerCAmelCase : Tuple = state_dict["entity_embeddings.entity_embeddings.weight"] lowerCAmelCase : Any = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 ) lowerCAmelCase : List[str] = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' lowerCAmelCase : Union[str, Any] = state_dict["entity_predictions.bias"] lowerCAmelCase : Union[str, Any] = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 ) lowerCAmelCase : str = torch.cat([entity_prediction_bias, entity_mask_bias] ) lowerCAmelCase : Optional[Any] = LukeForMaskedLM(config=lowerCamelCase__ ).eval() state_dict.pop('entity_predictions.decoder.weight' ) state_dict.pop('lm_head.decoder.weight' ) state_dict.pop('lm_head.decoder.bias' ) lowerCAmelCase : Any = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('lm_head' ) or key.startswith('entity_predictions' )): lowerCAmelCase : Dict = state_dict[key] else: lowerCAmelCase : Dict = state_dict[key] lowerCAmelCase : Optional[Any] = model.load_state_dict(lowerCamelCase__ , strict=lowerCamelCase__ ) if set(lowerCamelCase__ ) != {"luke.embeddings.position_ids"}: raise ValueError(F"Unexpected unexpected_keys: {unexpected_keys}" ) if set(lowerCamelCase__ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F"Unexpected missing_keys: {missing_keys}" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs lowerCAmelCase : List[Any] = MLukeTokenizer.from_pretrained(lowerCamelCase__ , task='entity_classification' ) lowerCAmelCase : Optional[int] = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)." lowerCAmelCase : Dict = (0, 9) lowerCAmelCase : List[str] = tokenizer(lowerCamelCase__ , entity_spans=[span] , return_tensors='pt' ) lowerCAmelCase : int = model(**lowerCamelCase__ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base lowerCAmelCase : int = torch.Size((1, 33, 7_68) ) lowerCAmelCase : str = torch.tensor([[0.08_92, 0.05_96, -0.28_19], [0.01_34, 0.11_99, 0.05_73], [-0.01_69, 0.09_27, 0.06_44]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F"Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base lowerCAmelCase : Tuple = torch.Size((1, 1, 7_68) ) lowerCAmelCase : Tuple = torch.tensor([[-0.14_82, 0.06_09, 0.03_22]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F"Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is" F" {expected_shape}" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ): raise ValueError # Verify masked word/entity prediction lowerCAmelCase : Optional[int] = MLukeTokenizer.from_pretrained(lowerCamelCase__ ) lowerCAmelCase : int = "Tokyo is the capital of <mask>." lowerCAmelCase : List[str] = (24, 30) lowerCAmelCase : Any = tokenizer(lowerCamelCase__ , entity_spans=[span] , return_tensors='pt' ) lowerCAmelCase : Tuple = model(**lowerCamelCase__ ) lowerCAmelCase : List[Any] = encoding["input_ids"][0].tolist() lowerCAmelCase : Union[str, Any] = input_ids.index(tokenizer.convert_tokens_to_ids('<mask>' ) ) lowerCAmelCase : Optional[Any] = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(lowerCamelCase__ ) lowerCAmelCase : Dict = outputs.entity_logits[0][0].argmax().item() lowerCAmelCase : Optional[int] = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('en:' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('Saving PyTorch model to {}'.format(lowerCamelCase__ ) ) model.save_pretrained(lowerCamelCase__ ) def __UpperCamelCase ( _A : List[Any] ) -> List[str]: """simple docstring""" lowerCAmelCase : int = ["[MASK]", "[PAD]", "[UNK]"] lowerCAmelCase : Dict = [json.loads(lowerCamelCase__ ) for line in open(lowerCamelCase__ )] lowerCAmelCase : str = {} for entry in data: lowerCAmelCase : Any = entry["id"] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: lowerCAmelCase : int = entity_id break lowerCAmelCase : Union[str, Any] = F"{language}:{entity_name}" lowerCAmelCase : List[str] = entity_id return new_mapping if __name__ == "__main__": _lowerCAmelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Path to a pytorch_model.bin file.') parser.add_argument( '--metadata_path', default=None, type=str, help='Path to a metadata.json file, defining the configuration.' ) parser.add_argument( '--entity_vocab_path', default=None, type=str, help='Path to an entity_vocab.tsv file, containing the entity vocabulary.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to where to dump the output PyTorch model.' ) parser.add_argument( '--model_size', default='base', type=str, choices=['base', 'large'], help='Size of the model to be converted.' ) _lowerCAmelCase : Any = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
710
'''simple docstring''' def __UpperCamelCase ( _A : int ) -> bool: """simple docstring""" return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
646
0
'''simple docstring''' import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node _lowerCAmelCase : Dict = 4 _lowerCAmelCase : List[str] = 3 class lowerCAmelCase ( a ): pass def __UpperCamelCase ( _A : List[str] ) -> Optional[Any]: """simple docstring""" for shard in shards: for i in range(_lowerCAmelCase ): yield {"i": i, "shard": shard} def __UpperCamelCase ( ) -> List[str]: """simple docstring""" lowerCAmelCase : str = int(os.environ['RANK'] ) lowerCAmelCase : List[str] = int(os.environ['WORLD_SIZE'] ) lowerCAmelCase : Optional[Any] = ArgumentParser() parser.add_argument('--streaming' , type=_lowerCAmelCase ) parser.add_argument('--local_rank' , type=_lowerCAmelCase ) parser.add_argument('--num_workers' , type=_lowerCAmelCase , default=0 ) lowerCAmelCase : Optional[int] = parser.parse_args() lowerCAmelCase : Tuple = args.streaming lowerCAmelCase : Any = args.num_workers lowerCAmelCase : Tuple = {"shards": [F"shard_{shard_idx}" for shard_idx in range(_lowerCAmelCase )]} lowerCAmelCase : int = IterableDataset.from_generator(_lowerCAmelCase , gen_kwargs=_lowerCAmelCase ) if not streaming: lowerCAmelCase : List[str] = Dataset.from_list(list(_lowerCAmelCase ) ) lowerCAmelCase : Optional[Any] = split_dataset_by_node(_lowerCAmelCase , rank=_lowerCAmelCase , world_size=_lowerCAmelCase ) lowerCAmelCase : List[str] = torch.utils.data.DataLoader(_lowerCAmelCase , num_workers=_lowerCAmelCase ) lowerCAmelCase : Union[str, Any] = NUM_SHARDS * NUM_ITEMS_PER_SHARD lowerCAmelCase : Optional[int] = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) lowerCAmelCase : Union[str, Any] = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(F"local_size {local_size} != expected_local_size {expected_local_size}" ) if __name__ == "__main__": main()
711
'''simple docstring''' import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( 'files' , [ ['full:README.md', 'dataset_infos.json'], ['empty:README.md', 'dataset_infos.json'], ['dataset_infos.json'], ['full:README.md'], ] , ) def __UpperCamelCase ( _A : str , _A : List[Any] ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase : Optional[int] = tmp_path_factory.mktemp('dset_infos_dir' ) if "full:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('---\ndataset_info:\n dataset_size: 42\n---' ) if "empty:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / 'dataset_infos.json' , 'w' ) as f: f.write('{"default": {"dataset_size": 42}}' ) lowerCAmelCase : Union[str, Any] = DatasetInfosDict.from_directory(_A ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( 'dataset_info' , [ DatasetInfo(), DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ), ] , ) def __UpperCamelCase ( _A : str , _A : DatasetInfo ) -> Optional[int]: """simple docstring""" lowerCAmelCase : str = str(_A ) dataset_info.write_to_directory(_A ) lowerCAmelCase : List[str] = DatasetInfo.from_directory(_A ) assert dataset_info == reloaded assert os.path.exists(os.path.join(_A , 'dataset_info.json' ) ) def __UpperCamelCase ( ) -> List[str]: """simple docstring""" lowerCAmelCase : Tuple = DatasetInfo( description='foo' , citation='bar' , homepage='https://foo.bar' , license='CC0' , features=Features({'a': Value('int32' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train', 'num_examples': 42}] , download_checksums={} , download_size=13_37 , post_processing_size=4_42 , dataset_size=12_34 , size_in_bytes=13_37 + 4_42 + 12_34 , ) lowerCAmelCase : Optional[int] = dataset_info._to_yaml_dict() assert sorted(_A ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) lowerCAmelCase : Any = yaml.safe_dump(_A ) lowerCAmelCase : int = yaml.safe_load(_A ) assert dataset_info_yaml_dict == reloaded def __UpperCamelCase ( ) -> Dict: """simple docstring""" lowerCAmelCase : Union[str, Any] = DatasetInfo() lowerCAmelCase : List[Any] = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( 'dataset_infos_dict' , [ DatasetInfosDict(), DatasetInfosDict({'default': DatasetInfo()} ), DatasetInfosDict({'my_config_name': DatasetInfo()} ), DatasetInfosDict( { 'default': DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ) } ), DatasetInfosDict( { 'v1': DatasetInfo(dataset_size=42 ), 'v2': DatasetInfo(dataset_size=13_37 ), } ), ] , ) def __UpperCamelCase ( _A : Tuple , _A : DatasetInfosDict ) -> List[Any]: """simple docstring""" lowerCAmelCase : Tuple = str(_A ) dataset_infos_dict.write_to_directory(_A ) lowerCAmelCase : List[str] = DatasetInfosDict.from_directory(_A ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): lowerCAmelCase : Tuple = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml lowerCAmelCase : Optional[Any] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(_A , 'README.md' ) )
646
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : Dict = logging.get_logger(__name__) def __UpperCamelCase ( _A : int ) -> List[str]: """simple docstring""" lowerCAmelCase : Union[str, Any] = """huggingface/label-files""" lowerCAmelCase : Tuple = """imagenet-1k-id2label.json""" lowerCAmelCase : Tuple = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type='dataset' ) , 'r' ) ) lowerCAmelCase : str = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} lowerCAmelCase : str = {v: k for k, v in idalabel.items()} lowerCAmelCase : Optional[Any] = """std_conv""" if """bit""" in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" lowerCAmelCase : Dict = BitConfig( conv_layer=__lowerCAmelCase , num_labels=10_00 , idalabel=__lowerCAmelCase , labelaid=__lowerCAmelCase , ) return config def __UpperCamelCase ( _A : List[str] ) -> Any: """simple docstring""" if "stem.conv" in name: lowerCAmelCase : str = name.replace('stem.conv' , 'bit.embedder.convolution' ) if "blocks" in name: lowerCAmelCase : str = name.replace('blocks' , 'layers' ) if "head.fc" in name: lowerCAmelCase : int = name.replace('head.fc' , 'classifier.1' ) if name.startswith('norm' ): lowerCAmelCase : str = """bit.""" + name if "bit" not in name and "classifier" not in name: lowerCAmelCase : Optional[int] = """bit.encoder.""" + name return name def __UpperCamelCase ( ) -> List[str]: """simple docstring""" lowerCAmelCase : Union[str, Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCAmelCase : Tuple = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return im @torch.no_grad() def __UpperCamelCase ( _A : Dict , _A : List[Any] , _A : List[str]=False ) -> Optional[int]: """simple docstring""" lowerCAmelCase : List[Any] = get_config(__lowerCAmelCase ) # load original model from timm lowerCAmelCase : str = create_model(__lowerCAmelCase , pretrained=__lowerCAmelCase ) timm_model.eval() # load state_dict of original model lowerCAmelCase : int = timm_model.state_dict() for key in state_dict.copy().keys(): lowerCAmelCase : int = state_dict.pop(__lowerCAmelCase ) lowerCAmelCase : Union[str, Any] = val.squeeze() if """head""" in key else val # load HuggingFace model lowerCAmelCase : Any = BitForImageClassification(__lowerCAmelCase ) model.eval() model.load_state_dict(__lowerCAmelCase ) # create image processor lowerCAmelCase : Dict = create_transform(**resolve_data_config({} , model=__lowerCAmelCase ) ) lowerCAmelCase : Union[str, Any] = transform.transforms lowerCAmelCase : Union[str, Any] = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } lowerCAmelCase : Tuple = BitImageProcessor( do_resize=__lowerCAmelCase , size={'shortest_edge': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=__lowerCAmelCase , crop_size={'height': timm_transforms[1].size[0], 'width': timm_transforms[1].size[1]} , do_normalize=__lowerCAmelCase , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) lowerCAmelCase : Union[str, Any] = prepare_img() lowerCAmelCase : Optional[int] = transform(__lowerCAmelCase ).unsqueeze(0 ) lowerCAmelCase : Any = processor(__lowerCAmelCase , return_tensors='pt' ).pixel_values # verify pixel values assert torch.allclose(__lowerCAmelCase , __lowerCAmelCase ) # verify logits with torch.no_grad(): lowerCAmelCase : Optional[int] = model(__lowerCAmelCase ) lowerCAmelCase : List[Any] = outputs.logits print('Logits:' , logits[0, :3] ) print('Predicted class:' , model.config.idalabel[logits.argmax(-1 ).item()] ) lowerCAmelCase : Optional[int] = timm_model(__lowerCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__lowerCAmelCase , outputs.logits , atol=1e-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) print(F"Saving model {model_name} and processor to {pytorch_dump_folder_path}" ) model.save_pretrained(__lowerCAmelCase ) processor.save_pretrained(__lowerCAmelCase ) if push_to_hub: print(F"Pushing model {model_name} and processor to the hub" ) model.push_to_hub(F"ybelkada/{model_name}" ) processor.push_to_hub(F"ybelkada/{model_name}" ) if __name__ == "__main__": _lowerCAmelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='resnetv2_50x1_bitm', type=str, help='Name of the BiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model to the hub.', ) _lowerCAmelCase : List[Any] = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
712
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCAmelCase ( a ): def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): super().__init__() if safety_checker is None: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" ' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered' ' results in services or applications open to the public. Both the diffusers team and Hugging Face' ' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling' ' it only for use-cases that involve analyzing network behavior or auditing its results. For more' ' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .' ) self.register_modules( speech_model=snake_case__ , speech_processor=snake_case__ , vae=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , unet=snake_case__ , scheduler=snake_case__ , feature_extractor=snake_case__ , ) def lowercase ( self , snake_case__ = "auto" ): if slice_size == "auto": lowerCAmelCase : Union[str, Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(snake_case__ ) def lowercase ( self ): self.enable_attention_slicing(snake_case__ ) @torch.no_grad() def __call__( self , snake_case__ , snake_case__=1_6000 , snake_case__ = 512 , snake_case__ = 512 , snake_case__ = 50 , snake_case__ = 7.5 , snake_case__ = None , snake_case__ = 1 , snake_case__ = 0.0 , snake_case__ = None , snake_case__ = None , snake_case__ = "pil" , snake_case__ = True , snake_case__ = None , snake_case__ = 1 , **snake_case__ , ): lowerCAmelCase : List[str] = self.speech_processor.feature_extractor( snake_case__ , return_tensors='pt' , sampling_rate=snake_case__ ).input_features.to(self.device ) lowerCAmelCase : Optional[Any] = self.speech_model.generate(snake_case__ , max_length=48_0000 ) lowerCAmelCase : str = self.speech_processor.tokenizer.batch_decode(snake_case__ , skip_special_tokens=snake_case__ , normalize=snake_case__ )[ 0 ] if isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = 1 elif isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = len(snake_case__ ) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(snake_case__ )}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(snake_case__ , snake_case__ ) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(snake_case__ )}." ) # get prompt text embeddings lowerCAmelCase : str = self.tokenizer( snake_case__ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) lowerCAmelCase : Tuple = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowerCAmelCase : str = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) lowerCAmelCase : Union[str, Any] = text_input_ids[:, : self.tokenizer.model_max_length] lowerCAmelCase : Union[str, Any] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : int = text_embeddings.shape lowerCAmelCase : Any = text_embeddings.repeat(1 , snake_case__ , 1 ) lowerCAmelCase : Optional[int] = text_embeddings.view(bs_embed * num_images_per_prompt , snake_case__ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowerCAmelCase : List[str] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowerCAmelCase : List[str] if negative_prompt is None: lowerCAmelCase : Any = [''] * batch_size elif type(snake_case__ ) is not type(snake_case__ ): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(snake_case__ )} !=" f" {type(snake_case__ )}." ) elif isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = [negative_prompt] elif batch_size != len(snake_case__ ): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(snake_case__ )}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" ' the batch size of `prompt`.' ) else: lowerCAmelCase : Dict = negative_prompt lowerCAmelCase : Optional[int] = text_input_ids.shape[-1] lowerCAmelCase : int = self.tokenizer( snake_case__ , padding='max_length' , max_length=snake_case__ , truncation=snake_case__ , return_tensors='pt' , ) lowerCAmelCase : Union[str, Any] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowerCAmelCase : List[Any] = uncond_embeddings.shape[1] lowerCAmelCase : List[str] = uncond_embeddings.repeat(1 , snake_case__ , 1 ) lowerCAmelCase : Optional[Any] = uncond_embeddings.view(batch_size * num_images_per_prompt , snake_case__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCAmelCase : List[str] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowerCAmelCase : Union[str, Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowerCAmelCase : Dict = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowerCAmelCase : str = torch.randn(snake_case__ , generator=snake_case__ , device='cpu' , dtype=snake_case__ ).to( self.device ) else: lowerCAmelCase : Tuple = torch.randn(snake_case__ , generator=snake_case__ , device=self.device , dtype=snake_case__ ) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) lowerCAmelCase : str = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(snake_case__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowerCAmelCase : Union[str, Any] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowerCAmelCase : Any = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowerCAmelCase : Tuple = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCAmelCase : Union[str, Any] = {} if accepts_eta: lowerCAmelCase : int = eta for i, t in enumerate(self.progress_bar(snake_case__ ) ): # expand the latents if we are doing classifier free guidance lowerCAmelCase : Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCAmelCase : Tuple = self.scheduler.scale_model_input(snake_case__ , snake_case__ ) # predict the noise residual lowerCAmelCase : List[str] = self.unet(snake_case__ , snake_case__ , encoder_hidden_states=snake_case__ ).sample # perform guidance if do_classifier_free_guidance: lowerCAmelCase , lowerCAmelCase : Dict = noise_pred.chunk(2 ) lowerCAmelCase : Tuple = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowerCAmelCase : int = self.scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase : List[Any] = 1 / 0.1_8_2_1_5 * latents lowerCAmelCase : Dict = self.vae.decode(snake_case__ ).sample lowerCAmelCase : List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowerCAmelCase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowerCAmelCase : Dict = self.numpy_to_pil(snake_case__ ) if not return_dict: return image return StableDiffusionPipelineOutput(images=snake_case__ , nsfw_content_detected=snake_case__ )
646
0
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) class lowerCAmelCase : def __init__( self , snake_case__ = None , snake_case__ = None , snake_case__=None , snake_case__=None ): if not conversation_id: lowerCAmelCase : str = uuid.uuida() if past_user_inputs is None: lowerCAmelCase : str = [] if generated_responses is None: lowerCAmelCase : Tuple = [] lowerCAmelCase : Dict = conversation_id lowerCAmelCase : List[Any] = past_user_inputs lowerCAmelCase : int = generated_responses lowerCAmelCase : Optional[Any] = text def __eq__( self , snake_case__ ): if not isinstance(snake_case__ , snake_case__ ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def lowercase ( self , snake_case__ , snake_case__ = False ): if self.new_user_input: if overwrite: logger.warning( f"User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten " f"with: \"{text}\"." ) lowerCAmelCase : Optional[int] = text else: logger.warning( f"User input added while unprocessed input was existing: \"{self.new_user_input}\" new input " f"ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input" ) else: lowerCAmelCase : Optional[int] = text def lowercase ( self ): if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) lowerCAmelCase : List[Any] = None def lowercase ( self , snake_case__ ): self.generated_responses.append(snake_case__ ) def lowercase ( self ): for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self ): lowerCAmelCase : List[Any] = f"Conversation id: {self.uuid} \n" for is_user, text in self.iter_texts(): lowerCAmelCase : List[str] = 'user' if is_user else 'bot' output += f"{name} >> {text} \n" return output @add_end_docstrings( _snake_case , R"""\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n """ , ) class lowerCAmelCase ( _snake_case ): def __init__( self , *snake_case__ , **snake_case__ ): super().__init__(*snake_case__ , **snake_case__ ) if self.tokenizer.pad_token_id is None: lowerCAmelCase : Optional[int] = self.tokenizer.eos_token def lowercase ( self , snake_case__=None , snake_case__=None , snake_case__=None , **snake_case__ ): lowerCAmelCase : int = {} lowerCAmelCase : Dict = {} lowerCAmelCase : Optional[Any] = {} if min_length_for_response is not None: lowerCAmelCase : int = min_length_for_response if minimum_tokens is not None: lowerCAmelCase : str = minimum_tokens if "max_length" in generate_kwargs: lowerCAmelCase : Union[str, Any] = generate_kwargs['max_length'] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: lowerCAmelCase : Union[str, Any] = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(snake_case__ ) return preprocess_params, forward_params, postprocess_params def __call__( self , snake_case__ , snake_case__=0 , **snake_case__ ): lowerCAmelCase : List[str] = super().__call__(snake_case__ , num_workers=snake_case__ , **snake_case__ ) if isinstance(snake_case__ , snake_case__ ) and len(snake_case__ ) == 1: return outputs[0] return outputs def lowercase ( self , snake_case__ , snake_case__=32 ): if not isinstance(snake_case__ , snake_case__ ): raise ValueError('ConversationalPipeline, expects Conversation as inputs' ) if conversation.new_user_input is None: raise ValueError( f"Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. " 'Add user inputs with the conversation\'s `add_user_input` method' ) if hasattr(self.tokenizer , '_build_conversation_input_ids' ): lowerCAmelCase : int = self.tokenizer._build_conversation_input_ids(snake_case__ ) else: # If the tokenizer cannot handle conversations, we default to only the old version lowerCAmelCase : Optional[Any] = self._legacy_parse_and_tokenize(snake_case__ ) if self.framework == "pt": lowerCAmelCase : Union[str, Any] = torch.LongTensor([input_ids] ) elif self.framework == "tf": lowerCAmelCase : int = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def lowercase ( self , snake_case__ , snake_case__=10 , **snake_case__ ): lowerCAmelCase : List[Any] = generate_kwargs.get('max_length' , self.model.config.max_length ) lowerCAmelCase : Any = model_inputs['input_ids'].shape[1] if max_length - minimum_tokens < n: logger.warning(f"Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})" ) lowerCAmelCase : Optional[int] = max_length - minimum_tokens lowerCAmelCase : List[Any] = model_inputs['input_ids'][:, -trim:] if "attention_mask" in model_inputs: lowerCAmelCase : Dict = model_inputs['attention_mask'][:, -trim:] lowerCAmelCase : str = model_inputs.pop('conversation' ) lowerCAmelCase : str = max_length lowerCAmelCase : int = self.model.generate(**snake_case__ , **snake_case__ ) if self.model.config.is_encoder_decoder: lowerCAmelCase : Union[str, Any] = 1 else: lowerCAmelCase : Union[str, Any] = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def lowercase ( self , snake_case__ , snake_case__=True ): lowerCAmelCase : Optional[int] = model_outputs['output_ids'] lowerCAmelCase : str = self.tokenizer.decode( output_ids[0] , skip_special_tokens=snake_case__ , clean_up_tokenization_spaces=snake_case__ , ) lowerCAmelCase : Union[str, Any] = model_outputs['conversation'] conversation.mark_processed() conversation.append_response(snake_case__ ) return conversation def lowercase ( self , snake_case__ ): lowerCAmelCase : str = self.tokenizer.eos_token_id lowerCAmelCase : Optional[int] = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) ) if len(snake_case__ ) > self.tokenizer.model_max_length: lowerCAmelCase : List[Any] = input_ids[-self.tokenizer.model_max_length :] return input_ids
713
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : List[Any] = LDMTextToImagePipeline _lowerCamelCase : Optional[Any] = TEXT_TO_IMAGE_PARAMS - { """negative_prompt""", """negative_prompt_embeds""", """cross_attention_kwargs""", """prompt_embeds""", } _lowerCamelCase : List[str] = PipelineTesterMixin.required_optional_params - { """num_images_per_prompt""", """callback""", """callback_steps""", } _lowerCamelCase : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS _lowerCamelCase : Optional[int] = False def lowercase ( self ): torch.manual_seed(0 ) lowerCAmelCase : Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) lowerCAmelCase : int = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , ) torch.manual_seed(0 ) lowerCAmelCase : str = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') , up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') , latent_channels=4 , ) torch.manual_seed(0 ) lowerCAmelCase : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowerCAmelCase : str = CLIPTextModel(snake_case__ ) lowerCAmelCase : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCAmelCase : List[Any] = { 'unet': unet, 'scheduler': scheduler, 'vqvae': vae, 'bert': text_encoder, 'tokenizer': tokenizer, } return components def lowercase ( self , snake_case__ , snake_case__=0 ): if str(snake_case__ ).startswith('mps' ): lowerCAmelCase : Optional[int] = torch.manual_seed(snake_case__ ) else: lowerCAmelCase : str = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) lowerCAmelCase : Tuple = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase ( self ): lowerCAmelCase : List[str] = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase : Optional[Any] = self.get_dummy_components() lowerCAmelCase : Optional[Any] = LDMTextToImagePipeline(**snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Tuple = self.get_dummy_inputs(snake_case__ ) lowerCAmelCase : Union[str, Any] = pipe(**snake_case__ ).images lowerCAmelCase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) lowerCAmelCase : List[Any] = np.array([0.6_1_0_1, 0.6_1_5_6, 0.5_6_2_2, 0.4_8_9_5, 0.6_6_6_1, 0.3_8_0_4, 0.5_7_4_8, 0.6_1_3_6, 0.5_0_1_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self , snake_case__ , snake_case__=torch.floataa , snake_case__=0 ): lowerCAmelCase : List[str] = torch.manual_seed(snake_case__ ) lowerCAmelCase : int = np.random.RandomState(snake_case__ ).standard_normal((1, 4, 32, 32) ) lowerCAmelCase : Optional[Any] = torch.from_numpy(snake_case__ ).to(device=snake_case__ , dtype=snake_case__ ) lowerCAmelCase : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase ( self ): lowerCAmelCase : Tuple = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Optional[Any] = self.get_inputs(snake_case__ ) lowerCAmelCase : List[Any] = pipe(**snake_case__ ).images lowerCAmelCase : str = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) lowerCAmelCase : Tuple = np.array([0.5_1_8_2_5, 0.5_2_8_5_0, 0.5_2_5_4_3, 0.5_4_2_5_8, 0.5_2_3_0_4, 0.5_2_5_6_9, 0.5_4_3_6_3, 0.5_5_2_7_6, 0.5_6_8_7_8] ) lowerCAmelCase : int = np.abs(expected_slice - image_slice ).max() assert max_diff < 1e-3 @nightly @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self , snake_case__ , snake_case__=torch.floataa , snake_case__=0 ): lowerCAmelCase : List[str] = torch.manual_seed(snake_case__ ) lowerCAmelCase : Any = np.random.RandomState(snake_case__ ).standard_normal((1, 4, 32, 32) ) lowerCAmelCase : List[Any] = torch.from_numpy(snake_case__ ).to(device=snake_case__ , dtype=snake_case__ ) lowerCAmelCase : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase ( self ): lowerCAmelCase : Optional[int] = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : int = self.get_inputs(snake_case__ ) lowerCAmelCase : Optional[int] = pipe(**snake_case__ ).images[0] lowerCAmelCase : Optional[int] = load_numpy( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy' ) lowerCAmelCase : List[str] = np.abs(expected_image - image ).max() assert max_diff < 1e-3
646
0
'''simple docstring''' import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def __UpperCamelCase ( _A : Dict ) -> Any: """simple docstring""" lowerCAmelCase : List[str] = VideoMAEConfig() set_architecture_configs(lowerCAmelCase__ , lowerCAmelCase__ ) if "finetuned" not in model_name: lowerCAmelCase : Optional[Any] = False if "finetuned" in model_name: lowerCAmelCase : Optional[Any] = 'huggingface/label-files' if "kinetics" in model_name: lowerCAmelCase : Optional[Any] = 4_00 lowerCAmelCase : List[Any] = 'kinetics400-id2label.json' elif "ssv2" in model_name: lowerCAmelCase : Union[str, Any] = 1_74 lowerCAmelCase : Dict = 'something-something-v2-id2label.json' else: raise ValueError('Model name should either contain \'kinetics\' or \'ssv2\' in case it\'s fine-tuned.' ) lowerCAmelCase : Optional[Any] = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type='dataset' ) , 'r' ) ) lowerCAmelCase : str = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} lowerCAmelCase : Union[str, Any] = idalabel lowerCAmelCase : Union[str, Any] = {v: k for k, v in idalabel.items()} return config def __UpperCamelCase ( _A : Tuple , _A : Any ) -> List[str]: """simple docstring""" if "small" in model_name: lowerCAmelCase : Dict = 3_84 lowerCAmelCase : List[str] = 15_36 lowerCAmelCase : Tuple = 12 lowerCAmelCase : int = 16 lowerCAmelCase : Optional[int] = 12 lowerCAmelCase : Optional[Any] = 3 lowerCAmelCase : List[Any] = 1_92 lowerCAmelCase : Any = 7_68 elif "large" in model_name: lowerCAmelCase : List[str] = 10_24 lowerCAmelCase : List[str] = 40_96 lowerCAmelCase : List[Any] = 24 lowerCAmelCase : Any = 16 lowerCAmelCase : Optional[Any] = 12 lowerCAmelCase : List[Any] = 8 lowerCAmelCase : Union[str, Any] = 5_12 lowerCAmelCase : Any = 20_48 elif "huge" in model_name: lowerCAmelCase : Optional[int] = 12_80 lowerCAmelCase : Tuple = 51_20 lowerCAmelCase : List[Any] = 32 lowerCAmelCase : Dict = 16 lowerCAmelCase : Union[str, Any] = 12 lowerCAmelCase : Any = 8 lowerCAmelCase : Optional[Any] = 6_40 lowerCAmelCase : str = 25_60 elif "base" not in model_name: raise ValueError('Model name should include either \"small\", \"base\", \"large\", or \"huge\"' ) def __UpperCamelCase ( _A : Optional[Any] ) -> Optional[Any]: """simple docstring""" if "encoder." in name: lowerCAmelCase : Tuple = name.replace('encoder.' , '' ) if "cls_token" in name: lowerCAmelCase : Union[str, Any] = name.replace('cls_token' , 'videomae.embeddings.cls_token' ) if "decoder_pos_embed" in name: lowerCAmelCase : str = name.replace('decoder_pos_embed' , 'decoder.decoder_pos_embed' ) if "pos_embed" in name and "decoder" not in name: lowerCAmelCase : Tuple = name.replace('pos_embed' , 'videomae.embeddings.position_embeddings' ) if "patch_embed.proj" in name: lowerCAmelCase : str = name.replace('patch_embed.proj' , 'videomae.embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: lowerCAmelCase : Tuple = name.replace('patch_embed.norm' , 'videomae.embeddings.norm' ) if "decoder.blocks" in name: lowerCAmelCase : int = name.replace('decoder.blocks' , 'decoder.decoder_layers' ) if "blocks" in name: lowerCAmelCase : List[Any] = name.replace('blocks' , 'videomae.encoder.layer' ) if "attn.proj" in name: lowerCAmelCase : Any = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name and "bias" not in name: lowerCAmelCase : List[str] = name.replace('attn' , 'attention.self' ) if "attn" in name: lowerCAmelCase : List[str] = name.replace('attn' , 'attention.attention' ) if "norm1" in name: lowerCAmelCase : Optional[int] = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: lowerCAmelCase : str = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: lowerCAmelCase : Optional[int] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: lowerCAmelCase : Union[str, Any] = name.replace('mlp.fc2' , 'output.dense' ) if "decoder_embed" in name: lowerCAmelCase : int = name.replace('decoder_embed' , 'decoder.decoder_embed' ) if "decoder_norm" in name: lowerCAmelCase : Optional[int] = name.replace('decoder_norm' , 'decoder.decoder_norm' ) if "decoder_pred" in name: lowerCAmelCase : Tuple = name.replace('decoder_pred' , 'decoder.decoder_pred' ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: lowerCAmelCase : Optional[int] = name.replace('norm.weight' , 'videomae.layernorm.weight' ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: lowerCAmelCase : Optional[int] = name.replace('norm.bias' , 'videomae.layernorm.bias' ) if "head" in name and "decoder" not in name: lowerCAmelCase : str = name.replace('head' , 'classifier' ) return name def __UpperCamelCase ( _A : int , _A : Optional[Any] ) -> Any: """simple docstring""" for key in orig_state_dict.copy().keys(): lowerCAmelCase : List[str] = orig_state_dict.pop(lowerCAmelCase__ ) if key.startswith('encoder.' ): lowerCAmelCase : Optional[Any] = key.replace('encoder.' , '' ) if "qkv" in key: lowerCAmelCase : str = key.split('.' ) if key.startswith('decoder.blocks' ): lowerCAmelCase : List[Any] = config.decoder_hidden_size lowerCAmelCase : Dict = int(key_split[2] ) lowerCAmelCase : List[Any] = 'decoder.decoder_layers.' if "weight" in key: lowerCAmelCase : List[str] = val[:dim, :] lowerCAmelCase : Optional[Any] = val[dim : dim * 2, :] lowerCAmelCase : Dict = val[-dim:, :] else: lowerCAmelCase : List[str] = config.hidden_size lowerCAmelCase : List[str] = int(key_split[1] ) lowerCAmelCase : int = 'videomae.encoder.layer.' if "weight" in key: lowerCAmelCase : Union[str, Any] = val[:dim, :] lowerCAmelCase : int = val[dim : dim * 2, :] lowerCAmelCase : Optional[Any] = val[-dim:, :] else: lowerCAmelCase : Optional[int] = val return orig_state_dict def __UpperCamelCase ( ) -> Any: """simple docstring""" lowerCAmelCase : Union[str, Any] = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename='eating_spaghetti.npy' , repo_type='dataset' ) lowerCAmelCase : Tuple = np.load(lowerCAmelCase__ ) return list(lowerCAmelCase__ ) def __UpperCamelCase ( _A : Tuple , _A : Any , _A : Dict , _A : Tuple ) -> Any: """simple docstring""" lowerCAmelCase : Any = get_videomae_config(lowerCAmelCase__ ) if "finetuned" in model_name: lowerCAmelCase : Tuple = VideoMAEForVideoClassification(lowerCAmelCase__ ) else: lowerCAmelCase : Any = VideoMAEForPreTraining(lowerCAmelCase__ ) # download original checkpoint, hosted on Google Drive lowerCAmelCase : Optional[Any] = 'pytorch_model.bin' gdown.cached_download(lowerCAmelCase__ , lowerCAmelCase__ , quiet=lowerCAmelCase__ ) lowerCAmelCase : str = torch.load(lowerCAmelCase__ , map_location='cpu' ) if "model" in files: lowerCAmelCase : Tuple = files['model'] else: lowerCAmelCase : Union[str, Any] = files['module'] lowerCAmelCase : Tuple = convert_state_dict(lowerCAmelCase__ , lowerCAmelCase__ ) model.load_state_dict(lowerCAmelCase__ ) model.eval() # verify model on basic input lowerCAmelCase : List[Any] = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) lowerCAmelCase : Union[str, Any] = prepare_video() lowerCAmelCase : int = image_processor(lowerCAmelCase__ , return_tensors='pt' ) if "finetuned" not in model_name: lowerCAmelCase : int = hf_hub_download(repo_id='hf-internal-testing/bool-masked-pos' , filename='bool_masked_pos.pt' ) lowerCAmelCase : Union[str, Any] = torch.load(lowerCAmelCase__ ) lowerCAmelCase : Optional[int] = model(**lowerCAmelCase__ ) lowerCAmelCase : int = outputs.logits lowerCAmelCase : Tuple = [ 'videomae-small-finetuned-kinetics', 'videomae-small-finetuned-ssv2', # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) 'videomae-base-short', 'videomae-base-short-finetuned-kinetics', 'videomae-base', 'videomae-base-finetuned-kinetics', 'videomae-large', 'videomae-large-finetuned-kinetics', 'videomae-huge-finetuned-kinetics', # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) 'videomae-base-short-ssv2', 'videomae-base-short-finetuned-ssv2', 'videomae-base-ssv2', 'videomae-base-finetuned-ssv2', ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": lowerCAmelCase : Dict = torch.Size([1, 4_00] ) lowerCAmelCase : Tuple = torch.tensor([-0.92_91, -0.40_61, -0.93_07] ) elif model_name == "videomae-small-finetuned-ssv2": lowerCAmelCase : Optional[int] = torch.Size([1, 1_74] ) lowerCAmelCase : Union[str, Any] = torch.tensor([0.26_71, -0.46_89, -0.82_35] ) elif model_name == "videomae-base": lowerCAmelCase : int = torch.Size([1, 14_08, 15_36] ) lowerCAmelCase : Any = torch.tensor([[0.77_39, 0.79_68, 0.70_89], [0.67_01, 0.74_87, 0.62_09], [0.42_87, 0.51_58, 0.47_73]] ) elif model_name == "videomae-base-short": lowerCAmelCase : Dict = torch.Size([1, 14_08, 15_36] ) lowerCAmelCase : Union[str, Any] = torch.tensor([[0.79_94, 0.96_12, 0.85_08], [0.74_01, 0.89_58, 0.83_02], [0.58_62, 0.74_68, 0.73_25]] ) # we verified the loss both for normalized and unnormalized targets for this one lowerCAmelCase : Optional[Any] = torch.tensor([0.51_42] ) if config.norm_pix_loss else torch.tensor([0.64_69] ) elif model_name == "videomae-large": lowerCAmelCase : str = torch.Size([1, 14_08, 15_36] ) lowerCAmelCase : List[str] = torch.tensor([[0.71_49, 0.79_97, 0.69_66], [0.67_68, 0.78_69, 0.69_48], [0.51_39, 0.62_21, 0.56_05]] ) elif model_name == "videomae-large-finetuned-kinetics": lowerCAmelCase : Optional[int] = torch.Size([1, 4_00] ) lowerCAmelCase : Any = torch.tensor([0.07_71, 0.00_11, -0.36_25] ) elif model_name == "videomae-huge-finetuned-kinetics": lowerCAmelCase : int = torch.Size([1, 4_00] ) lowerCAmelCase : str = torch.tensor([0.24_33, 0.16_32, -0.48_94] ) elif model_name == "videomae-base-short-finetuned-kinetics": lowerCAmelCase : Any = torch.Size([1, 4_00] ) lowerCAmelCase : str = torch.tensor([0.65_88, 0.09_90, -0.24_93] ) elif model_name == "videomae-base-finetuned-kinetics": lowerCAmelCase : List[Any] = torch.Size([1, 4_00] ) lowerCAmelCase : Union[str, Any] = torch.tensor([0.36_69, -0.06_88, -0.24_21] ) elif model_name == "videomae-base-short-ssv2": lowerCAmelCase : Dict = torch.Size([1, 14_08, 15_36] ) lowerCAmelCase : str = torch.tensor([[0.47_12, 0.52_96, 0.57_86], [0.22_78, 0.27_29, 0.40_26], [0.03_52, 0.07_30, 0.25_06]] ) elif model_name == "videomae-base-short-finetuned-ssv2": lowerCAmelCase : Tuple = torch.Size([1, 1_74] ) lowerCAmelCase : int = torch.tensor([-0.05_37, -0.15_39, -0.32_66] ) elif model_name == "videomae-base-ssv2": lowerCAmelCase : str = torch.Size([1, 14_08, 15_36] ) lowerCAmelCase : Union[str, Any] = torch.tensor([[0.81_31, 0.87_27, 0.85_46], [0.73_66, 0.93_77, 0.88_70], [0.59_35, 0.88_74, 0.85_64]] ) elif model_name == "videomae-base-finetuned-ssv2": lowerCAmelCase : Any = torch.Size([1, 1_74] ) lowerCAmelCase : str = torch.tensor([0.19_61, -0.83_37, -0.63_89] ) else: raise ValueError(F"Model name not supported. Should be one of {model_names}" ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) else: print('Logits:' , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , lowerCAmelCase__ , atol=1e-4 ) print('Logits ok!' ) # verify loss, if applicable if model_name == "videomae-base-short": lowerCAmelCase : Tuple = outputs.loss assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-4 ) print('Loss ok!' ) if pytorch_dump_folder_path is not None: print(F"Saving model and image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) if push_to_hub: print('Pushing to the hub...' ) model.push_to_hub(lowerCAmelCase__ , organization='nielsr' ) if __name__ == "__main__": _lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4', type=str, help=( 'URL of the original PyTorch checkpoint (on Google Drive) you\'d like to convert. Should be a direct' ' download link.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default='/Users/nielsrogge/Documents/VideoMAE/Test', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--model_name', default='videomae-base', type=str, help='Name of the model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _lowerCAmelCase : Tuple = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
714
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Tuple = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { 'facebook/xmod-base': 'https://huggingface.co/facebook/xmod-base/resolve/main/config.json', 'facebook/xmod-large-prenorm': 'https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json', 'facebook/xmod-base-13-125k': 'https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json', 'facebook/xmod-base-30-125k': 'https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json', 'facebook/xmod-base-30-195k': 'https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json', 'facebook/xmod-base-60-125k': 'https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json', 'facebook/xmod-base-60-265k': 'https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json', 'facebook/xmod-base-75-125k': 'https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json', 'facebook/xmod-base-75-269k': 'https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json', } class lowerCAmelCase ( a ): _lowerCamelCase : int = """xmod""" def __init__( self , snake_case__=3_0522 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=1e-1_2 , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__="absolute" , snake_case__=True , snake_case__=None , snake_case__=False , snake_case__=2 , snake_case__=False , snake_case__=True , snake_case__=True , snake_case__=("en_XX",) , snake_case__=None , **snake_case__ , ): super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) lowerCAmelCase : Dict = vocab_size lowerCAmelCase : Optional[Any] = hidden_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob lowerCAmelCase : str = max_position_embeddings lowerCAmelCase : int = type_vocab_size lowerCAmelCase : List[Any] = initializer_range lowerCAmelCase : Any = layer_norm_eps lowerCAmelCase : Dict = position_embedding_type lowerCAmelCase : Optional[Any] = use_cache lowerCAmelCase : Union[str, Any] = classifier_dropout lowerCAmelCase : int = pre_norm lowerCAmelCase : Optional[Any] = adapter_reduction_factor lowerCAmelCase : Any = adapter_layer_norm lowerCAmelCase : Dict = adapter_reuse_layer_norm lowerCAmelCase : Any = ln_before_adapter lowerCAmelCase : Optional[Any] = list(snake_case__ ) lowerCAmelCase : List[Any] = default_language class lowerCAmelCase ( a ): @property def lowercase ( self ): if self.task == "multiple-choice": lowerCAmelCase : List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase : Optional[int] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
646
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowerCAmelCase ( metaclass=__lowerCAmelCase ): _lowerCamelCase : Union[str, Any] = ["""torch""", """transformers""", """onnx"""] def __init__( self , *snake_case__ , **snake_case__ ): requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def lowercase ( cls , *snake_case__ , **snake_case__ ): requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def lowercase ( cls , *snake_case__ , **snake_case__ ): requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class lowerCAmelCase ( metaclass=__lowerCAmelCase ): _lowerCamelCase : Union[str, Any] = ["""torch""", """transformers""", """onnx"""] def __init__( self , *snake_case__ , **snake_case__ ): requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def lowercase ( cls , *snake_case__ , **snake_case__ ): requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def lowercase ( cls , *snake_case__ , **snake_case__ ): requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class lowerCAmelCase ( metaclass=__lowerCAmelCase ): _lowerCamelCase : str = ["""torch""", """transformers""", """onnx"""] def __init__( self , *snake_case__ , **snake_case__ ): requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def lowercase ( cls , *snake_case__ , **snake_case__ ): requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def lowercase ( cls , *snake_case__ , **snake_case__ ): requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class lowerCAmelCase ( metaclass=__lowerCAmelCase ): _lowerCamelCase : str = ["""torch""", """transformers""", """onnx"""] def __init__( self , *snake_case__ , **snake_case__ ): requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def lowercase ( cls , *snake_case__ , **snake_case__ ): requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def lowercase ( cls , *snake_case__ , **snake_case__ ): requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class lowerCAmelCase ( metaclass=__lowerCAmelCase ): _lowerCamelCase : int = ["""torch""", """transformers""", """onnx"""] def __init__( self , *snake_case__ , **snake_case__ ): requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def lowercase ( cls , *snake_case__ , **snake_case__ ): requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def lowercase ( cls , *snake_case__ , **snake_case__ ): requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class lowerCAmelCase ( metaclass=__lowerCAmelCase ): _lowerCamelCase : Optional[int] = ["""torch""", """transformers""", """onnx"""] def __init__( self , *snake_case__ , **snake_case__ ): requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def lowercase ( cls , *snake_case__ , **snake_case__ ): requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def lowercase ( cls , *snake_case__ , **snake_case__ ): requires_backends(cls , ['torch', 'transformers', 'onnx'] )
715
'''simple docstring''' import argparse import os import re _lowerCAmelCase : Dict = 'src/diffusers' # Pattern that looks at the indentation in a line. _lowerCAmelCase : str = re.compile(r'^(\s*)\S') # Pattern that matches `"key":" and puts `key` in group 0. _lowerCAmelCase : Any = re.compile(r'^\s*"([^"]+)":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. _lowerCAmelCase : List[Any] = re.compile(r'^\s*_import_structure\["([^"]+)"\]') # Pattern that matches `"key",` and puts `key` in group 0. _lowerCAmelCase : int = re.compile(r'^\s*"([^"]+)",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. _lowerCAmelCase : Optional[Any] = re.compile(r'\[([^\]]+)\]') def __UpperCamelCase ( _A : Union[str, Any] ) -> Dict: """simple docstring""" lowerCAmelCase : Any = _re_indent.search(_A ) return "" if search is None else search.groups()[0] def __UpperCamelCase ( _A : Dict , _A : Any="" , _A : List[str]=None , _A : Any=None ) -> Tuple: """simple docstring""" lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Tuple = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(_A ): index += 1 lowerCAmelCase : Optional[int] = ['\n'.join(lines[:index] )] else: lowerCAmelCase : int = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowerCAmelCase : Tuple = [lines[index]] index += 1 while index < len(_A ) and (end_prompt is None or not lines[index].startswith(_A )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(_A ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(_A ) ) if index < len(_A ) - 1: lowerCAmelCase : List[Any] = [lines[index + 1]] index += 1 else: lowerCAmelCase : int = [] else: blocks.append('\n'.join(_A ) ) lowerCAmelCase : Any = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(_A ) > 0: blocks.append('\n'.join(_A ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(_A ): blocks.append('\n'.join(lines[index:] ) ) return blocks def __UpperCamelCase ( _A : Dict ) -> List[Any]: """simple docstring""" def _inner(_A : Tuple ): return key(_A ).lower().replace('_' , '' ) return _inner def __UpperCamelCase ( _A : Union[str, Any] , _A : Any=None ) -> Optional[Any]: """simple docstring""" def noop(_A : Any ): return x if key is None: lowerCAmelCase : List[str] = noop # Constants are all uppercase, they go first. lowerCAmelCase : str = [obj for obj in objects if key(_A ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowerCAmelCase : List[str] = [obj for obj in objects if key(_A )[0].isupper() and not key(_A ).isupper()] # Functions begin with a lowercase, they go last. lowerCAmelCase : Optional[Any] = [obj for obj in objects if not key(_A )[0].isupper()] lowerCAmelCase : Tuple = ignore_underscore(_A ) return sorted(_A , key=_A ) + sorted(_A , key=_A ) + sorted(_A , key=_A ) def __UpperCamelCase ( _A : Union[str, Any] ) -> int: """simple docstring""" def _replace(_A : List[Any] ): lowerCAmelCase : List[Any] = match.groups()[0] if "," not in imports: return F"[{imports}]" lowerCAmelCase : Dict = [part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase : List[str] = keys[:-1] return "[" + ", ".join([F"\"{k}\"" for k in sort_objects(_A )] ) + "]" lowerCAmelCase : Optional[int] = import_statement.split('\n' ) if len(_A ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowerCAmelCase : Optional[Any] = 2 if lines[1].strip() == '[' else 1 lowerCAmelCase : List[str] = [(i, _re_strip_line.search(_A ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowerCAmelCase : Optional[Any] = sort_objects(_A , key=lambda _A : x[1] ) lowerCAmelCase : Dict = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(_A ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowerCAmelCase : Optional[int] = _re_bracket_content.sub(_replace , lines[1] ) else: lowerCAmelCase : List[Any] = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase : int = keys[:-1] lowerCAmelCase : Tuple = get_indent(lines[1] ) + ', '.join([F"\"{k}\"" for k in sort_objects(_A )] ) return "\n".join(_A ) else: # Finally we have to deal with imports fitting on one line lowerCAmelCase : Union[str, Any] = _re_bracket_content.sub(_replace , _A ) return import_statement def __UpperCamelCase ( _A : str , _A : Tuple=True ) -> Optional[Any]: """simple docstring""" with open(_A , 'r' ) as f: lowerCAmelCase : Optional[int] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowerCAmelCase : List[Any] = split_code_in_indented_blocks( _A , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(_A ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowerCAmelCase : List[str] = main_blocks[block_idx] lowerCAmelCase : Union[str, Any] = block.split('\n' ) # Get to the start of the imports. lowerCAmelCase : Optional[Any] = 0 while line_idx < len(_A ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowerCAmelCase : Optional[Any] = len(_A ) else: line_idx += 1 if line_idx >= len(_A ): continue # Ignore beginning and last line: they don't contain anything. lowerCAmelCase : str = '\n'.join(block_lines[line_idx:-1] ) lowerCAmelCase : str = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowerCAmelCase : Optional[Any] = split_code_in_indented_blocks(_A , indent_level=_A ) # We have two categories of import key: list or _import_structure[key].append/extend lowerCAmelCase : Union[str, Any] = _re_direct_key if '_import_structure' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowerCAmelCase : int = [(pattern.search(_A ).groups()[0] if pattern.search(_A ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowerCAmelCase : Dict = [(i, key) for i, key in enumerate(_A ) if key is not None] lowerCAmelCase : List[Any] = [x[0] for x in sorted(_A , key=lambda _A : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowerCAmelCase : int = 0 lowerCAmelCase : Dict = [] for i in range(len(_A ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: lowerCAmelCase : str = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(_A ) count += 1 # And we put our main block back together with its first and last line. lowerCAmelCase : str = '\n'.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(_A ): if check_only: return True else: print(F"Overwriting {file}." ) with open(_A , 'w' ) as f: f.write('\n'.join(_A ) ) def __UpperCamelCase ( _A : Tuple=True ) -> Any: """simple docstring""" lowerCAmelCase : Tuple = [] for root, _, files in os.walk(_A ): if "__init__.py" in files: lowerCAmelCase : Any = sort_imports(os.path.join(_A , '__init__.py' ) , check_only=_A ) if result: lowerCAmelCase : Optional[Any] = [os.path.join(_A , '__init__.py' )] if len(_A ) > 0: raise ValueError(F"Would overwrite {len(_A )} files, run `make style`." ) if __name__ == "__main__": _lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') _lowerCAmelCase : Optional[int] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
646
0
'''simple docstring''' from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent _lowerCAmelCase : Dict = {'UserAgent': UserAgent().random} def __UpperCamelCase ( _A : Tuple ) -> List[Any]: """simple docstring""" lowerCAmelCase : Any = script.contents[0] lowerCAmelCase : Union[str, Any] = json.loads(data[data.find('{"config"' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class lowerCAmelCase : def __init__( self , snake_case__ ): lowerCAmelCase : Optional[Any] = f"https://www.instagram.com/{username}/" lowerCAmelCase : str = self.get_json() def lowercase ( self ): lowerCAmelCase : str = requests.get(self.url , headers=_A ).text lowerCAmelCase : Optional[Any] = BeautifulSoup(_A , 'html.parser' ).find_all('script' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self ): return f"{self.__class__.__name__}('{self.username}')" def __str__( self ): return f"{self.fullname} ({self.username}) is {self.biography}" @property def lowercase ( self ): return self.user_data["username"] @property def lowercase ( self ): return self.user_data["full_name"] @property def lowercase ( self ): return self.user_data["biography"] @property def lowercase ( self ): return self.user_data["business_email"] @property def lowercase ( self ): return self.user_data["external_url"] @property def lowercase ( self ): return self.user_data["edge_followed_by"]["count"] @property def lowercase ( self ): return self.user_data["edge_follow"]["count"] @property def lowercase ( self ): return self.user_data["edge_owner_to_timeline_media"]["count"] @property def lowercase ( self ): return self.user_data["profile_pic_url_hd"] @property def lowercase ( self ): return self.user_data["is_verified"] @property def lowercase ( self ): return self.user_data["is_private"] def __UpperCamelCase ( _A : Dict = "github" ) -> int: """simple docstring""" import os if os.environ.get('CI' ): return # test failing on GitHub Actions lowerCAmelCase : Tuple = InstagramUser(_lowerCamelCase ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , _lowerCamelCase ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 1_50 assert instagram_user.number_of_followers > 12_00_00 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('https://instagram.' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : Union[str, Any] = InstagramUser('github') print(instagram_user) print(f"""{instagram_user.number_of_posts = }""") print(f"""{instagram_user.number_of_followers = }""") print(f"""{instagram_user.number_of_followings = }""") print(f"""{instagram_user.email = }""") print(f"""{instagram_user.website = }""") print(f"""{instagram_user.profile_picture_url = }""") print(f"""{instagram_user.is_verified = }""") print(f"""{instagram_user.is_private = }""")
716
'''simple docstring''' import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class lowerCAmelCase : def __init__( self , snake_case__ , snake_case__=13 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=99 , snake_case__=64 , snake_case__=32 , snake_case__=5 , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=16 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=3 , snake_case__=4 , snake_case__=None , ): lowerCAmelCase : str = parent lowerCAmelCase : Optional[int] = batch_size lowerCAmelCase : Optional[Any] = seq_length lowerCAmelCase : Optional[Any] = is_training lowerCAmelCase : Dict = use_input_mask lowerCAmelCase : Tuple = use_token_type_ids lowerCAmelCase : int = use_labels lowerCAmelCase : int = vocab_size lowerCAmelCase : Any = hidden_size lowerCAmelCase : Optional[Any] = embedding_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : List[str] = num_attention_heads lowerCAmelCase : List[Any] = intermediate_size lowerCAmelCase : Dict = hidden_act lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : int = attention_probs_dropout_prob lowerCAmelCase : List[Any] = max_position_embeddings lowerCAmelCase : int = type_vocab_size lowerCAmelCase : List[str] = type_sequence_label_size lowerCAmelCase : Dict = initializer_range lowerCAmelCase : Any = num_labels lowerCAmelCase : str = num_choices lowerCAmelCase : int = scope def lowercase ( self ): lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Union[str, Any] = None if self.use_input_mask: lowerCAmelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : Optional[int] = None if self.use_token_type_ids: lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : Optional[Any] = None lowerCAmelCase : Optional[Any] = None lowerCAmelCase : Dict = None if self.use_labels: lowerCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase ( self ): return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case__ , initializer_range=self.initializer_range , ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = MobileBertModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : int = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) lowerCAmelCase : Optional[int] = model(snake_case__ , token_type_ids=snake_case__ ) lowerCAmelCase : Optional[Any] = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : int = MobileBertForMaskedLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : str = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = MobileBertForNextSentencePrediction(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : str = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : List[Any] = MobileBertForPreTraining(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Tuple = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , next_sentence_label=snake_case__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = MobileBertForQuestionAnswering(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : List[str] = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = self.num_labels lowerCAmelCase : List[Any] = MobileBertForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = self.num_labels lowerCAmelCase : int = MobileBertForTokenClassification(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : List[str] = self.num_choices lowerCAmelCase : Any = MobileBertForMultipleChoice(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : int = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : List[str] = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase ( self ): lowerCAmelCase : Any = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) : Optional[Any] = config_and_inputs lowerCAmelCase : List[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase ( a , a , unittest.TestCase ): _lowerCamelCase : List[str] = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) _lowerCamelCase : Tuple = ( { """feature-extraction""": MobileBertModel, """fill-mask""": MobileBertForMaskedLM, """question-answering""": MobileBertForQuestionAnswering, """text-classification""": MobileBertForSequenceClassification, """token-classification""": MobileBertForTokenClassification, """zero-shot""": MobileBertForSequenceClassification, } if is_torch_available() else {} ) _lowerCamelCase : str = True def lowercase ( self , snake_case__ , snake_case__ , snake_case__=False ): lowerCAmelCase : int = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if return_labels: if model_class in get_values(snake_case__ ): lowerCAmelCase : str = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=snake_case__ ) lowerCAmelCase : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case__ ) return inputs_dict def lowercase ( self ): lowerCAmelCase : List[Any] = MobileBertModelTester(self ) lowerCAmelCase : Dict = ConfigTester(self , config_class=snake_case__ , hidden_size=37 ) def lowercase ( self ): self.config_tester.run_common_tests() def lowercase ( self ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*snake_case__ ) def __UpperCamelCase ( _A : Optional[Any] ) -> Optional[int]: """simple docstring""" return torch.tensor( _A , dtype=torch.long , device=_A , ) _lowerCAmelCase : Union[str, Any] = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase ( unittest.TestCase ): @slow def lowercase ( self ): lowerCAmelCase : List[str] = MobileBertModel.from_pretrained('google/mobilebert-uncased' ).to(snake_case__ ) lowerCAmelCase : List[Any] = _long_tensor([[101, 7110, 1005, 1056, 2023, 1_1333, 1_7413, 1029, 102]] ) with torch.no_grad(): lowerCAmelCase : Tuple = model(snake_case__ )[0] lowerCAmelCase : List[Any] = torch.Size((1, 9, 512) ) self.assertEqual(output.shape , snake_case__ ) lowerCAmelCase : Union[str, Any] = torch.tensor( [ [ [-2.4_7_3_6_5_2_6e0_7, 8.2_6_9_1_6_5_6e0_4, 1.6_5_2_1_8_3_8e0_5], [-5.7_5_4_1_7_0_4e-0_1, 3.9_0_5_6_0_2_2e0_0, 4.4_0_1_1_5_0_7e0_0], [2.6_0_4_7_3_5_9e0_0, 1.5_6_7_7_6_5_2e0_0, -1.7_3_2_4_1_8_8e-0_1], ] ] , device=snake_case__ , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE lowerCAmelCase : List[str] = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) lowerCAmelCase : Dict = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
646
0
'''simple docstring''' import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() _lowerCAmelCase : List[Any] = logging.get_logger(__name__) def __UpperCamelCase ( _A : List[Any] , _A : int , _A : Tuple ) -> Tuple: """simple docstring""" lowerCAmelCase : Tuple = UniSpeechSatForSequenceClassification.from_pretrained(_lowerCamelCase , config=_lowerCamelCase ) lowerCAmelCase : Optional[int] = downstream_dict["projector.weight"] lowerCAmelCase : List[str] = downstream_dict["projector.bias"] lowerCAmelCase : List[str] = downstream_dict["model.post_net.linear.weight"] lowerCAmelCase : List[str] = downstream_dict["model.post_net.linear.bias"] return model def __UpperCamelCase ( _A : List[str] , _A : Optional[int] , _A : Any ) -> Optional[int]: """simple docstring""" lowerCAmelCase : str = UniSpeechSatForAudioFrameClassification.from_pretrained(_lowerCamelCase , config=_lowerCamelCase ) lowerCAmelCase : Tuple = downstream_dict["model.linear.weight"] lowerCAmelCase : str = downstream_dict["model.linear.bias"] return model def __UpperCamelCase ( _A : Optional[int] , _A : Optional[Any] , _A : Tuple ) -> Optional[Any]: """simple docstring""" lowerCAmelCase : int = UniSpeechSatForXVector.from_pretrained(_lowerCamelCase , config=_lowerCamelCase ) lowerCAmelCase : Optional[int] = downstream_dict["connector.weight"] lowerCAmelCase : str = downstream_dict["connector.bias"] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): lowerCAmelCase : Dict = downstream_dict[ F"model.framelevel_feature_extractor.module.{i}.kernel.weight" ] lowerCAmelCase : Union[str, Any] = downstream_dict[F"model.framelevel_feature_extractor.module.{i}.kernel.bias"] lowerCAmelCase : List[Any] = downstream_dict["model.utterancelevel_feature_extractor.linear1.weight"] lowerCAmelCase : str = downstream_dict["model.utterancelevel_feature_extractor.linear1.bias"] lowerCAmelCase : Optional[Any] = downstream_dict["model.utterancelevel_feature_extractor.linear2.weight"] lowerCAmelCase : Optional[Any] = downstream_dict["model.utterancelevel_feature_extractor.linear2.bias"] lowerCAmelCase : Optional[Any] = downstream_dict["objective.W"] return model @torch.no_grad() def __UpperCamelCase ( _A : Dict , _A : List[Any] , _A : Optional[int] , _A : Tuple ) -> int: """simple docstring""" lowerCAmelCase : Optional[Any] = torch.load(_lowerCamelCase , map_location='cpu' ) lowerCAmelCase : Dict = checkpoint["Downstream"] lowerCAmelCase : Dict = UniSpeechSatConfig.from_pretrained(_lowerCamelCase ) lowerCAmelCase : Any = WavaVecaFeatureExtractor.from_pretrained( _lowerCamelCase , return_attention_mask=_lowerCamelCase , do_normalize=_lowerCamelCase ) lowerCAmelCase : Dict = hf_config.architectures[0] if arch.endswith('ForSequenceClassification' ): lowerCAmelCase : str = convert_classification(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) elif arch.endswith('ForAudioFrameClassification' ): lowerCAmelCase : Optional[int] = convert_diarization(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) elif arch.endswith('ForXVector' ): lowerCAmelCase : Optional[Any] = convert_xvector(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: raise NotImplementedError(F"S3PRL weights conversion is not supported for {arch}" ) if hf_config.use_weighted_layer_sum: lowerCAmelCase : Union[str, Any] = checkpoint["Featurizer"]["weights"] hf_feature_extractor.save_pretrained(_lowerCamelCase ) hf_model.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase : str = argparse.ArgumentParser() parser.add_argument( '--base_model_name', default=None, type=str, help='Name of the huggingface pretrained base model.' ) parser.add_argument('--config_path', default=None, type=str, help='Path to the huggingface classifier config.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to the s3prl checkpoint.') parser.add_argument('--model_dump_path', default=None, type=str, help='Path to the final converted model.') _lowerCAmelCase : List[str] = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
717
'''simple docstring''' import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __UpperCamelCase ( _A : Dict ) -> int: """simple docstring""" lowerCAmelCase : Tuple = [] embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight", F"stage{idx}.patch_embed.proj.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias", F"stage{idx}.patch_embed.proj.bias", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight", F"stage{idx}.patch_embed.norm.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias", F"stage{idx}.patch_embed.norm.bias", ) ) return embed def __UpperCamelCase ( _A : List[Any] , _A : Dict ) -> Any: """simple docstring""" lowerCAmelCase : str = [] attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight", F"stage{idx}.blocks.{cnt}.attn.proj_q.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias", F"stage{idx}.blocks.{cnt}.attn.proj_q.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight", F"stage{idx}.blocks.{cnt}.attn.proj_k.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias", F"stage{idx}.blocks.{cnt}.attn.proj_k.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight", F"stage{idx}.blocks.{cnt}.attn.proj_v.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias", F"stage{idx}.blocks.{cnt}.attn.proj_v.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight", F"stage{idx}.blocks.{cnt}.attn.proj.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias", F"stage{idx}.blocks.{cnt}.attn.proj.bias", ) ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc2.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight", F"stage{idx}.blocks.{cnt}.norm1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias", F"stage{idx}.blocks.{cnt}.norm1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight", F"stage{idx}.blocks.{cnt}.norm2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias", F"stage{idx}.blocks.{cnt}.norm2.bias") ) return attention_weights def __UpperCamelCase ( _A : Optional[int] ) -> Optional[int]: """simple docstring""" lowerCAmelCase : Optional[int] = [] token.append((F"cvt.encoder.stages.{idx}.cls_token", 'stage2.cls_token') ) return token def __UpperCamelCase ( ) -> int: """simple docstring""" lowerCAmelCase : List[Any] = [] head.append(('layernorm.weight', 'norm.weight') ) head.append(('layernorm.bias', 'norm.bias') ) head.append(('classifier.weight', 'head.weight') ) head.append(('classifier.bias', 'head.bias') ) return head def __UpperCamelCase ( _A : str , _A : Optional[Any] , _A : Dict , _A : str ) -> Optional[int]: """simple docstring""" lowerCAmelCase : List[str] = 'imagenet-1k-id2label.json' lowerCAmelCase : Tuple = 10_00 lowerCAmelCase : str = 'huggingface/label-files' lowerCAmelCase : List[Any] = num_labels lowerCAmelCase : Any = json.load(open(cached_download(hf_hub_url(_A , _A , repo_type='dataset' ) ) , 'r' ) ) lowerCAmelCase : List[str] = {int(_A ): v for k, v in idalabel.items()} lowerCAmelCase : List[str] = idalabel lowerCAmelCase : str = {v: k for k, v in idalabel.items()} lowerCAmelCase : int = CvtConfig(num_labels=_A , idalabel=_A , labelaid=_A ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13": lowerCAmelCase : List[str] = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21": lowerCAmelCase : Tuple = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: lowerCAmelCase : Any = [2, 2, 20] lowerCAmelCase : List[str] = [3, 12, 16] lowerCAmelCase : List[Any] = [1_92, 7_68, 10_24] lowerCAmelCase : Union[str, Any] = CvtForImageClassification(_A ) lowerCAmelCase : str = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) lowerCAmelCase : Optional[Any] = image_size lowerCAmelCase : List[Any] = torch.load(_A , map_location=torch.device('cpu' ) ) lowerCAmelCase : str = OrderedDict() lowerCAmelCase : int = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: lowerCAmelCase : List[str] = list_of_state_dict + cls_token(_A ) lowerCAmelCase : Optional[Any] = list_of_state_dict + embeddings(_A ) for cnt in range(config.depth[idx] ): lowerCAmelCase : List[Any] = list_of_state_dict + attention(_A , _A ) lowerCAmelCase : List[str] = list_of_state_dict + final() for gg in list_of_state_dict: print(_A ) for i in range(len(_A ) ): lowerCAmelCase : Tuple = original_weights[list_of_state_dict[i][1]] model.load_state_dict(_A ) model.save_pretrained(_A ) image_processor.save_pretrained(_A ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": _lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '--cvt_model', default='cvt-w24', type=str, help='Name of the cvt model you\'d like to convert.', ) parser.add_argument( '--image_size', default=384, type=int, help='Input Image Size', ) parser.add_argument( '--cvt_file_name', default=r'cvtmodels\CvT-w24-384x384-IN-22k.pth', type=str, help='Input Image Size', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) _lowerCAmelCase : str = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
646
0
'''simple docstring''' import argparse import os import re _lowerCAmelCase : List[str] = "src/transformers/models/auto" # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict _lowerCAmelCase : str = re.compile(r'[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict') # re pattern that matches identifiers in mappings _lowerCAmelCase : Union[str, Any] = re.compile(r'\s*\(\s*\"(\S[^\"]+)\"') def __UpperCamelCase ( _A , _A = False ) -> Tuple: """simple docstring""" with open(a_ , 'r' , encoding='utf-8' ) as f: lowerCAmelCase : Tuple = f.read() lowerCAmelCase : Union[str, Any] = content.split('\n' ) lowerCAmelCase : List[str] = [] lowerCAmelCase : Optional[Any] = 0 while line_idx < len(a_ ): if _re_intro_mapping.search(lines[line_idx] ) is not None: lowerCAmelCase : Optional[Any] = len(re.search(r'^(\s*)\S' , lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(' ' * indent + '(' ): new_lines.append(lines[line_idx] ) line_idx += 1 lowerCAmelCase : Tuple = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": lowerCAmelCase : Tuple = line_idx while not lines[line_idx].startswith(' ' * indent + ')' ): line_idx += 1 blocks.append('\n'.join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers lowerCAmelCase : Union[str, Any] = sorted(a_ , key=lambda _A : _re_identifier.search(a_ ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(a_ , 'w' , encoding='utf-8' ) as f: f.write('\n'.join(a_ ) ) elif "\n".join(a_ ) != content: return True def __UpperCamelCase ( _A = False ) -> str: """simple docstring""" lowerCAmelCase : Union[str, Any] = [os.path.join(a_ , a_ ) for f in os.listdir(a_ ) if f.endswith('.py' )] lowerCAmelCase : List[Any] = [sort_auto_mapping(a_ , overwrite=a_ ) for fname in fnames] if not overwrite and any(a_ ): lowerCAmelCase : Tuple = [f for f, d in zip(a_ , a_ ) if d] raise ValueError( F"The following files have auto mappings that need sorting: {', '.join(a_ )}. Run `make style` to fix" ' this.' ) if __name__ == "__main__": _lowerCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') _lowerCAmelCase : Any = parser.parse_args() sort_all_auto_mappings(not args.check_only)
718
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Any = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { 'xlm-roberta-base': 'https://huggingface.co/xlm-roberta-base/resolve/main/config.json', 'xlm-roberta-large': 'https://huggingface.co/xlm-roberta-large/resolve/main/config.json', 'xlm-roberta-large-finetuned-conll02-dutch': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll02-spanish': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-english': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-german': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json' ), } class lowerCAmelCase ( a ): _lowerCamelCase : List[str] = """xlm-roberta""" def __init__( self , snake_case__=3_0522 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=1e-1_2 , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__="absolute" , snake_case__=True , snake_case__=None , **snake_case__ , ): super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) lowerCAmelCase : Optional[Any] = vocab_size lowerCAmelCase : Optional[Any] = hidden_size lowerCAmelCase : Optional[Any] = num_hidden_layers lowerCAmelCase : Any = num_attention_heads lowerCAmelCase : Optional[int] = hidden_act lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : Dict = hidden_dropout_prob lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob lowerCAmelCase : Optional[Any] = max_position_embeddings lowerCAmelCase : Optional[int] = type_vocab_size lowerCAmelCase : int = initializer_range lowerCAmelCase : List[Any] = layer_norm_eps lowerCAmelCase : Union[str, Any] = position_embedding_type lowerCAmelCase : Union[str, Any] = use_cache lowerCAmelCase : List[str] = classifier_dropout class lowerCAmelCase ( a ): @property def lowercase ( self ): if self.task == "multiple-choice": lowerCAmelCase : str = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase : Optional[int] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
646
0
'''simple docstring''' from collections.abc import Callable import numpy as np def __UpperCamelCase ( _A : Tuple , _A : Any , _A : Any , _A : Tuple , _A : Dict ) -> np.array: """simple docstring""" lowerCAmelCase : List[Any] = int(np.ceil((x_end - xa) / step_size ) ) lowerCAmelCase : Tuple = np.zeros((n + 1,) ) lowerCAmelCase : Tuple = ya lowerCAmelCase : Tuple = xa for k in range(_A ): lowerCAmelCase : Dict = y[k] + step_size * ode_func(_A , y[k] ) lowerCAmelCase : Optional[Any] = y[k] + ( (step_size / 2) * (ode_func(_A , y[k] ) + ode_func(x + step_size , _A )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
719
'''simple docstring''' import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer _lowerCAmelCase : List[Any] = logging.getLogger(__name__) def __UpperCamelCase ( ) -> Any: """simple docstring""" lowerCAmelCase : str = argparse.ArgumentParser( description='Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.' ) parser.add_argument( '--dataset_name' , type=_A , default='wikitext' , help='Name of the training. Explore datasets at: hf.co/datasets.' , ) parser.add_argument( '--dataset_config' , type=_A , default='wikitext-103-raw-v1' , help='Configuration name of the dataset.' ) parser.add_argument( '--tokenizer_name_or_path' , type=_A , default='sayakpaul/unigram-tokenizer-wikitext' , help='Tokenizer identifier. Can be a local filepath or a Hub identifier.' , ) parser.add_argument( '--shard_size' , type=_A , default=10_00 , help='Number of entries to go in a single shard.' , ) parser.add_argument('--split' , type=_A , default='train' , choices=['train', 'test', 'validation'] ) parser.add_argument( '--limit' , default=_A , type=_A , help='Limit the number of shards (used for debugging).' , ) parser.add_argument( '--max_length' , type=_A , default=5_12 , help='Maximum sequence length. For training on TPUs, it helps to have a maximum' ' sequence length that is a multiple of 8.' , ) parser.add_argument( '--output_dir' , default='tf-tpu' , type=_A , help='Output directory where the TFRecord shards will be saved. If the' ' path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord' ' shards will be directly saved to a Google Cloud Storage bucket.' , ) lowerCAmelCase : Any = parser.parse_args() return args def __UpperCamelCase ( _A : Optional[int] ) -> int: """simple docstring""" def fn(_A : Tuple ): return tokenizer(examples['text'] ) return fn def __UpperCamelCase ( _A : int ) -> int: """simple docstring""" lowerCAmelCase : Tuple = [] for i in range(len(tokenized_data['input_ids'] ) ): lowerCAmelCase : Optional[Any] = { 'input_ids': tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data['input_ids'][i] ) ), 'attention_mask': tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data['attention_mask'][i] ) ), } lowerCAmelCase : Any = tf.train.Features(feature=_A ) lowerCAmelCase : List[str] = tf.train.Example(features=_A ) lowerCAmelCase : Tuple = example.SerializeToString() records.append(_A ) return records def __UpperCamelCase ( _A : int ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase : Union[str, Any] = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: lowerCAmelCase : Optional[Any] = min(len(_A ) , args.limit ) lowerCAmelCase : Dict = dataset.select(range(_A ) ) print(F"Limiting the dataset to {args.limit} entries." ) lowerCAmelCase : str = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) lowerCAmelCase : Any = os.path.join(args.output_dir , args.split ) if not os.path.exists(_A ): os.makedirs(_A ) else: lowerCAmelCase : List[Any] = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. lowerCAmelCase : Any = tokenize_function(_A ) lowerCAmelCase : Optional[int] = dataset.map(_A , batched=_A , num_proc=4 , remove_columns=['text'] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(_A : str ): # Concatenate all texts. lowerCAmelCase : Optional[int] = {k: sum(examples[k] , [] ) for k in examples.keys()} lowerCAmelCase : str = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 lowerCAmelCase : List[Any] = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. lowerCAmelCase : str = { k: [t[i : i + args.max_length] for i in range(0 , _A , args.max_length )] for k, t in concatenated_examples.items() } return result lowerCAmelCase : List[Any] = dataset_tokenized.map(_A , batched=_A , batch_size=10_00 , num_proc=4 ) lowerCAmelCase : Union[str, Any] = 0 lowerCAmelCase : Tuple = 0 for shard in range(0 , len(_A ) , args.shard_size ): lowerCAmelCase : Optional[Any] = grouped_dataset[shard : shard + args.shard_size] lowerCAmelCase : List[str] = len(dataset_snapshot['input_ids'] ) lowerCAmelCase : Union[str, Any] = os.path.join(_A , F"dataset-{shard_count}-{records_containing}.tfrecord" ) lowerCAmelCase : List[Any] = get_serialized_examples(_A ) with tf.io.TFRecordWriter(_A ) as out_file: for i in range(len(_A ) ): lowerCAmelCase : Union[str, Any] = serialized_examples[i] out_file.write(_A ) print('Wrote file {} containing {} records'.format(_A , _A ) ) shard_count += 1 total_records += records_containing with open(F"split-{args.split}-records-count.txt" , 'w' ) as f: print(F"Total {args.split} records: {total_records}" , file=_A ) if __name__ == "__main__": _lowerCAmelCase : List[Any] = parse_args() main(args)
646
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Tuple = logging.get_logger(__name__) _lowerCAmelCase : Union[str, Any] = { """google/bigbird-roberta-base""": """https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json""", """google/bigbird-roberta-large""": """https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json""", """google/bigbird-base-trivia-itc""": """https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json""", # See all BigBird models at https://huggingface.co/models?filter=big_bird } class lowerCAmelCase ( _a ): _lowerCamelCase : Optional[int] = """big_bird""" def __init__( self , snake_case__=5_0358 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu_new" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=4096 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=1e-1_2 , snake_case__=True , snake_case__=0 , snake_case__=1 , snake_case__=2 , snake_case__=66 , snake_case__="block_sparse" , snake_case__=True , snake_case__=False , snake_case__=64 , snake_case__=3 , snake_case__=None , **snake_case__ , ): super().__init__( pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , sep_token_id=snake_case_ , **snake_case_ , ) lowerCAmelCase : Optional[Any] = vocab_size lowerCAmelCase : List[Any] = max_position_embeddings lowerCAmelCase : Union[str, Any] = hidden_size lowerCAmelCase : Dict = num_hidden_layers lowerCAmelCase : Dict = num_attention_heads lowerCAmelCase : List[str] = intermediate_size lowerCAmelCase : List[str] = hidden_act lowerCAmelCase : Tuple = hidden_dropout_prob lowerCAmelCase : Any = attention_probs_dropout_prob lowerCAmelCase : Any = initializer_range lowerCAmelCase : int = type_vocab_size lowerCAmelCase : Optional[int] = layer_norm_eps lowerCAmelCase : List[Any] = use_cache lowerCAmelCase : str = rescale_embeddings lowerCAmelCase : Union[str, Any] = attention_type lowerCAmelCase : Dict = use_bias lowerCAmelCase : Optional[int] = block_size lowerCAmelCase : Any = num_random_blocks lowerCAmelCase : Union[str, Any] = classifier_dropout class lowerCAmelCase ( _a ): @property def lowercase ( self ): if self.task == "multiple-choice": lowerCAmelCase : List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase : Tuple = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
720
'''simple docstring''' import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() _lowerCAmelCase : List[str] = logging.get_logger('transformers.models.speecht5') def __UpperCamelCase ( _A : Any , _A : Dict , _A : Any ) -> Union[str, Any]: """simple docstring""" hf_model.apply_weight_norm() lowerCAmelCase : int = checkpoint['input_conv.weight_g'] lowerCAmelCase : Optional[int] = checkpoint['input_conv.weight_v'] lowerCAmelCase : Dict = checkpoint['input_conv.bias'] for i in range(len(config.upsample_rates ) ): lowerCAmelCase : Optional[Any] = checkpoint[F"upsamples.{i}.1.weight_g"] lowerCAmelCase : str = checkpoint[F"upsamples.{i}.1.weight_v"] lowerCAmelCase : str = checkpoint[F"upsamples.{i}.1.bias"] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): lowerCAmelCase : int = checkpoint[F"blocks.{i}.convs1.{j}.1.weight_g"] lowerCAmelCase : str = checkpoint[F"blocks.{i}.convs1.{j}.1.weight_v"] lowerCAmelCase : int = checkpoint[F"blocks.{i}.convs1.{j}.1.bias"] lowerCAmelCase : Optional[Any] = checkpoint[F"blocks.{i}.convs2.{j}.1.weight_g"] lowerCAmelCase : Tuple = checkpoint[F"blocks.{i}.convs2.{j}.1.weight_v"] lowerCAmelCase : Tuple = checkpoint[F"blocks.{i}.convs2.{j}.1.bias"] lowerCAmelCase : List[Any] = checkpoint['output_conv.1.weight_g'] lowerCAmelCase : List[str] = checkpoint['output_conv.1.weight_v'] lowerCAmelCase : Optional[Any] = checkpoint['output_conv.1.bias'] hf_model.remove_weight_norm() @torch.no_grad() def __UpperCamelCase ( _A : Dict , _A : Union[str, Any] , _A : List[Any] , _A : Any=None , _A : Any=None , ) -> Dict: """simple docstring""" if config_path is not None: lowerCAmelCase : Dict = SpeechTaHifiGanConfig.from_pretrained(_A ) else: lowerCAmelCase : Union[str, Any] = SpeechTaHifiGanConfig() lowerCAmelCase : List[Any] = SpeechTaHifiGan(_A ) lowerCAmelCase : List[str] = torch.load(_A ) load_weights(orig_checkpoint['model']['generator'] , _A , _A ) lowerCAmelCase : Tuple = np.load(_A ) lowerCAmelCase : List[Any] = stats[0].reshape(-1 ) lowerCAmelCase : int = stats[1].reshape(-1 ) lowerCAmelCase : Union[str, Any] = torch.from_numpy(_A ).float() lowerCAmelCase : int = torch.from_numpy(_A ).float() model.save_pretrained(_A ) if repo_id: print('Pushing to the hub...' ) model.push_to_hub(_A ) if __name__ == "__main__": _lowerCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--stats_path', required=True, default=None, type=str, help='Path to stats.npy file') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) _lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
646
0
'''simple docstring''' from pathlib import Path import fire from tqdm import tqdm def __UpperCamelCase ( _A : Any="ro" , _A : Union[str, Any]="en" , _A : Union[str, Any]="wmt16" , _A : int=None ) -> Union[str, Any]: """simple docstring""" try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError('run pip install datasets' ) lowerCAmelCase : Tuple = F"{src_lang}-{tgt_lang}" print(F"Converting {dataset}-{pair}" ) lowerCAmelCase : str = datasets.load_dataset(__UpperCamelCase , __UpperCamelCase ) if save_dir is None: lowerCAmelCase : List[Any] = F"{dataset}-{pair}" lowerCAmelCase : List[str] = Path(__UpperCamelCase ) save_dir.mkdir(exist_ok=__UpperCamelCase ) for split in ds.keys(): print(F"Splitting {split} with {ds[split].num_rows} records" ) # to save to val.source, val.target like summary datasets lowerCAmelCase : Union[str, Any] = """val""" if split == """validation""" else split lowerCAmelCase : List[str] = save_dir.joinpath(F"{fn}.source" ) lowerCAmelCase : Optional[Any] = save_dir.joinpath(F"{fn}.target" ) lowerCAmelCase : List[str] = src_path.open('w+' ) lowerCAmelCase : Dict = tgt_path.open('w+' ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): lowerCAmelCase : int = x["""translation"""] src_fp.write(ex[src_lang] + '\n' ) tgt_fp.write(ex[tgt_lang] + '\n' ) print(F"Saved {dataset} dataset to {save_dir}" ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
721
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets _lowerCAmelCase : Dict = '\\n@inproceedings{popovic-2015-chrf,\n title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",\n month = sep,\n year = "2015",\n address = "Lisbon, Portugal",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W15-3049",\n doi = "10.18653/v1/W15-3049",\n pages = "392--395",\n}\n@inproceedings{popovic-2017-chrf,\n title = "chr{F}++: words helping character n-grams",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Second Conference on Machine Translation",\n month = sep,\n year = "2017",\n address = "Copenhagen, Denmark",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W17-4770",\n doi = "10.18653/v1/W17-4770",\n pages = "612--618",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' _lowerCAmelCase : Optional[Any] = '\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n' _lowerCAmelCase : List[Any] = '\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n \'score\' (float): The chrF (chrF++) score,\n \'char_order\' (int): The character n-gram order,\n \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n \'beta\' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase ( datasets.Metric ): def lowercase ( self ): if version.parse(scb.__version__ ) < version.parse('1.4.12' ): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/mjpost/sacreBLEU#chrf--chrf' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/mjpost/sacreBLEU#chrf--chrf'] , reference_urls=[ 'https://github.com/m-popovic/chrF', ] , ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ = CHRF.CHAR_ORDER , snake_case__ = CHRF.WORD_ORDER , snake_case__ = CHRF.BETA , snake_case__ = False , snake_case__ = False , snake_case__ = False , ): lowerCAmelCase : List[str] = len(references[0] ) if any(len(snake_case__ ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) lowerCAmelCase : List[str] = [[refs[i] for refs in references] for i in range(snake_case__ )] lowerCAmelCase : Union[str, Any] = CHRF(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase : Dict = sb_chrf.corpus_score(snake_case__ , snake_case__ ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
646
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _lowerCAmelCase : str = { 'configuration_roberta_prelayernorm': [ 'ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RobertaPreLayerNormConfig', 'RobertaPreLayerNormOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Tuple = [ 'ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST', 'RobertaPreLayerNormForCausalLM', 'RobertaPreLayerNormForMaskedLM', 'RobertaPreLayerNormForMultipleChoice', 'RobertaPreLayerNormForQuestionAnswering', 'RobertaPreLayerNormForSequenceClassification', 'RobertaPreLayerNormForTokenClassification', 'RobertaPreLayerNormModel', 'RobertaPreLayerNormPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : str = [ 'TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRobertaPreLayerNormForCausalLM', 'TFRobertaPreLayerNormForMaskedLM', 'TFRobertaPreLayerNormForMultipleChoice', 'TFRobertaPreLayerNormForQuestionAnswering', 'TFRobertaPreLayerNormForSequenceClassification', 'TFRobertaPreLayerNormForTokenClassification', 'TFRobertaPreLayerNormMainLayer', 'TFRobertaPreLayerNormModel', 'TFRobertaPreLayerNormPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : int = [ 'FlaxRobertaPreLayerNormForCausalLM', 'FlaxRobertaPreLayerNormForMaskedLM', 'FlaxRobertaPreLayerNormForMultipleChoice', 'FlaxRobertaPreLayerNormForQuestionAnswering', 'FlaxRobertaPreLayerNormForSequenceClassification', 'FlaxRobertaPreLayerNormForTokenClassification', 'FlaxRobertaPreLayerNormModel', 'FlaxRobertaPreLayerNormPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys _lowerCAmelCase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
700
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : str = logging.get_logger(__name__) _lowerCAmelCase : Tuple = { 's-JoL/Open-Llama-V1': 'https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json', } class lowerCAmelCase ( a ): _lowerCamelCase : Union[str, Any] = """open-llama""" def __init__( self , snake_case__=10_0000 , snake_case__=4096 , snake_case__=1_1008 , snake_case__=32 , snake_case__=32 , snake_case__="silu" , snake_case__=2048 , snake_case__=0.0_2 , snake_case__=1e-6 , snake_case__=True , snake_case__=0 , snake_case__=1 , snake_case__=2 , snake_case__=False , snake_case__=True , snake_case__=0.1 , snake_case__=0.1 , snake_case__=True , snake_case__=True , snake_case__=None , **snake_case__ , ): lowerCAmelCase : Tuple = vocab_size lowerCAmelCase : Optional[Any] = max_position_embeddings lowerCAmelCase : List[Any] = hidden_size lowerCAmelCase : List[Any] = intermediate_size lowerCAmelCase : Tuple = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : str = rms_norm_eps lowerCAmelCase : Optional[int] = use_cache lowerCAmelCase : Dict = kwargs.pop( 'use_memorry_efficient_attention' , snake_case__ ) lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : Optional[Any] = attention_dropout_prob lowerCAmelCase : Union[str, Any] = use_stable_embedding lowerCAmelCase : Tuple = shared_input_output_embedding lowerCAmelCase : Tuple = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , tie_word_embeddings=snake_case__ , **snake_case__ , ) def lowercase ( self ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , snake_case__ ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' f"got {self.rope_scaling}" ) lowerCAmelCase : List[Any] = self.rope_scaling.get('type' , snake_case__ ) lowerCAmelCase : List[str] = self.rope_scaling.get('factor' , snake_case__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(snake_case__ , snake_case__ ) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
646
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : int = logging.get_logger(__name__) _lowerCAmelCase : str = { 'microsoft/cvt-13': 'https://huggingface.co/microsoft/cvt-13/resolve/main/config.json', # See all Cvt models at https://huggingface.co/models?filter=cvt } class lowerCAmelCase ( lowercase__ ): _lowerCamelCase : Any = 'cvt' def __init__( self , snake_case__=3 , snake_case__=[7, 3, 3] , snake_case__=[4, 2, 2] , snake_case__=[2, 1, 1] , snake_case__=[64, 192, 384] , snake_case__=[1, 3, 6] , snake_case__=[1, 2, 10] , snake_case__=[4.0, 4.0, 4.0] , snake_case__=[0.0, 0.0, 0.0] , snake_case__=[0.0, 0.0, 0.0] , snake_case__=[0.0, 0.0, 0.1] , snake_case__=[True, True, True] , snake_case__=[False, False, True] , snake_case__=["dw_bn", "dw_bn", "dw_bn"] , snake_case__=[3, 3, 3] , snake_case__=[1, 1, 1] , snake_case__=[2, 2, 2] , snake_case__=[1, 1, 1] , snake_case__=[1, 1, 1] , snake_case__=0.0_2 , snake_case__=1e-1_2 , **snake_case__ , ): super().__init__(**snake_case__ ) lowerCAmelCase : str = num_channels lowerCAmelCase : int = patch_sizes lowerCAmelCase : str = patch_stride lowerCAmelCase : str = patch_padding lowerCAmelCase : int = embed_dim lowerCAmelCase : Dict = num_heads lowerCAmelCase : Union[str, Any] = depth lowerCAmelCase : str = mlp_ratio lowerCAmelCase : Any = attention_drop_rate lowerCAmelCase : Optional[int] = drop_rate lowerCAmelCase : Tuple = drop_path_rate lowerCAmelCase : Optional[Any] = qkv_bias lowerCAmelCase : Any = cls_token lowerCAmelCase : Any = qkv_projection_method lowerCAmelCase : Any = kernel_qkv lowerCAmelCase : str = padding_kv lowerCAmelCase : int = stride_kv lowerCAmelCase : Optional[Any] = padding_q lowerCAmelCase : List[str] = stride_q lowerCAmelCase : int = initializer_range lowerCAmelCase : List[Any] = layer_norm_eps
701
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) _lowerCAmelCase : Dict = { 'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class lowerCAmelCase ( a ): _lowerCamelCase : Any = """deformable_detr""" _lowerCamelCase : List[str] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , snake_case__=True , snake_case__=None , snake_case__=3 , snake_case__=300 , snake_case__=1024 , snake_case__=6 , snake_case__=1024 , snake_case__=8 , snake_case__=6 , snake_case__=1024 , snake_case__=8 , snake_case__=0.0 , snake_case__=True , snake_case__="relu" , snake_case__=256 , snake_case__=0.1 , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.0_2 , snake_case__=1.0 , snake_case__=True , snake_case__=False , snake_case__="sine" , snake_case__="resnet50" , snake_case__=True , snake_case__=False , snake_case__=4 , snake_case__=4 , snake_case__=4 , snake_case__=False , snake_case__=300 , snake_case__=False , snake_case__=1 , snake_case__=5 , snake_case__=2 , snake_case__=1 , snake_case__=1 , snake_case__=5 , snake_case__=2 , snake_case__=0.1 , snake_case__=0.2_5 , snake_case__=False , **snake_case__ , ): if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) lowerCAmelCase : Optional[int] = CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : List[str] = backbone_config.get('model_type' ) lowerCAmelCase : str = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase : Optional[Any] = config_class.from_dict(snake_case__ ) lowerCAmelCase : Union[str, Any] = use_timm_backbone lowerCAmelCase : List[Any] = backbone_config lowerCAmelCase : Any = num_channels lowerCAmelCase : Tuple = num_queries lowerCAmelCase : Dict = max_position_embeddings lowerCAmelCase : int = d_model lowerCAmelCase : List[str] = encoder_ffn_dim lowerCAmelCase : List[str] = encoder_layers lowerCAmelCase : int = encoder_attention_heads lowerCAmelCase : str = decoder_ffn_dim lowerCAmelCase : str = decoder_layers lowerCAmelCase : Dict = decoder_attention_heads lowerCAmelCase : str = dropout lowerCAmelCase : List[str] = attention_dropout lowerCAmelCase : Union[str, Any] = activation_dropout lowerCAmelCase : str = activation_function lowerCAmelCase : Any = init_std lowerCAmelCase : Any = init_xavier_std lowerCAmelCase : Dict = encoder_layerdrop lowerCAmelCase : int = auxiliary_loss lowerCAmelCase : Optional[Any] = position_embedding_type lowerCAmelCase : List[str] = backbone lowerCAmelCase : int = use_pretrained_backbone lowerCAmelCase : int = dilation # deformable attributes lowerCAmelCase : List[str] = num_feature_levels lowerCAmelCase : List[str] = encoder_n_points lowerCAmelCase : Union[str, Any] = decoder_n_points lowerCAmelCase : Tuple = two_stage lowerCAmelCase : Dict = two_stage_num_proposals lowerCAmelCase : Union[str, Any] = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.' ) # Hungarian matcher lowerCAmelCase : Union[str, Any] = class_cost lowerCAmelCase : Dict = bbox_cost lowerCAmelCase : List[Any] = giou_cost # Loss coefficients lowerCAmelCase : Dict = mask_loss_coefficient lowerCAmelCase : Any = dice_loss_coefficient lowerCAmelCase : str = bbox_loss_coefficient lowerCAmelCase : Tuple = giou_loss_coefficient lowerCAmelCase : List[str] = eos_coefficient lowerCAmelCase : Any = focal_alpha lowerCAmelCase : Dict = disable_custom_kernels super().__init__(is_encoder_decoder=snake_case__ , **snake_case__ ) @property def lowercase ( self ): return self.encoder_attention_heads @property def lowercase ( self ): return self.d_model def lowercase ( self ): lowerCAmelCase : Union[str, Any] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: lowerCAmelCase : List[Any] = self.backbone_config.to_dict() lowerCAmelCase : str = self.__class__.model_type return output
646
0
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax _lowerCAmelCase : Tuple = logging.get_logger(__name__) @add_end_docstrings(a ) class lowerCAmelCase ( a ): def __init__( self , **snake_case__ ): super().__init__(**snake_case__ ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self , snake_case__ , **snake_case__ ): return super().__call__(snake_case__ , **snake_case__ ) def lowercase ( self , **snake_case__ ): lowerCAmelCase : Union[str, Any] = {} if "candidate_labels" in kwargs: lowerCAmelCase : Tuple = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: lowerCAmelCase : Any = kwargs['hypothesis_template'] return preprocess_params, {}, {} def lowercase ( self , snake_case__ , snake_case__=None , snake_case__="This is a photo of {}." ): lowerCAmelCase : str = load_image(snake_case__ ) lowerCAmelCase : Tuple = self.image_processor(images=[image] , return_tensors=self.framework ) lowerCAmelCase : Optional[Any] = candidate_labels lowerCAmelCase : Tuple = [hypothesis_template.format(snake_case__ ) for x in candidate_labels] lowerCAmelCase : str = self.tokenizer(snake_case__ , return_tensors=self.framework , padding=snake_case__ ) lowerCAmelCase : Union[str, Any] = [text_inputs] return inputs def lowercase ( self , snake_case__ ): lowerCAmelCase : Optional[int] = model_inputs.pop('candidate_labels' ) lowerCAmelCase : List[Any] = model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0] , snake_case__ ): lowerCAmelCase : Tuple = text_inputs[0] else: # Batching case. lowerCAmelCase : Union[str, Any] = text_inputs[0][0] lowerCAmelCase : Union[str, Any] = self.model(**snake_case__ , **snake_case__ ) lowerCAmelCase : Union[str, Any] = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_image, } return model_outputs def lowercase ( self , snake_case__ ): lowerCAmelCase : Any = model_outputs.pop('candidate_labels' ) lowerCAmelCase : Optional[int] = model_outputs['logits'][0] if self.framework == "pt": lowerCAmelCase : int = logits.softmax(dim=-1 ).squeeze(-1 ) lowerCAmelCase : Tuple = probs.tolist() if not isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Tuple = [scores] elif self.framework == "tf": lowerCAmelCase : Union[str, Any] = stable_softmax(snake_case__ , axis=-1 ) lowerCAmelCase : List[str] = probs.numpy().tolist() else: raise ValueError(f"Unsupported framework: {self.framework}" ) lowerCAmelCase : str = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(snake_case__ , snake_case__ ) , key=lambda snake_case__ : -x[0] ) ] return result
702
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece_no_bos.model') @require_sentencepiece @require_tokenizers class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : str = PegasusTokenizer _lowerCamelCase : Union[str, Any] = PegasusTokenizerFast _lowerCamelCase : Optional[Any] = True _lowerCamelCase : Optional[Any] = True def lowercase ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : List[Any] = PegasusTokenizer(snake_case__ ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase ( self ): return PegasusTokenizer.from_pretrained('google/pegasus-large' ) def lowercase ( self , **snake_case__ ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def lowercase ( self , snake_case__ ): return ("This is a test", "This is a test") def lowercase ( self ): lowerCAmelCase : Optional[int] = '</s>' lowerCAmelCase : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '</s>' ) self.assertEqual(vocab_keys[-1] , 'v' ) self.assertEqual(len(snake_case__ ) , 1103 ) def lowercase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def lowercase ( self ): lowerCAmelCase : List[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : List[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : Optional[Any] = ( 'Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important' ' </s> <pad> <pad> <pad>' ) lowerCAmelCase : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] lowerCAmelCase : Optional[int] = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Any = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowerCAmelCase : List[str] = '<mask_1> To ensure a <mask_2> flow of bank resolutions.' lowerCAmelCase : Optional[Any] = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1] lowerCAmelCase : Optional[Any] = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Optional[Any] = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 lowerCAmelCase : List[Any] = 'To ensure a smooth flow of bank resolutions.' lowerCAmelCase : Optional[int] = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1] lowerCAmelCase : Any = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def lowercase ( self ): lowerCAmelCase : Union[str, Any] = ['This is going to be way too long.' * 150, 'short example'] lowerCAmelCase : int = ['not super long but more than 5 tokens', 'tiny'] lowerCAmelCase : Dict = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) lowerCAmelCase : Dict = self._large_tokenizer( text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(snake_case__ ) == 2 # input_ids, attention_mask. @slow def lowercase ( self ): # fmt: off lowerCAmelCase : Tuple = {'input_ids': [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name='google/bigbird-pegasus-large-arxiv' , revision='ba85d0851d708441f91440d509690f1ab6353415' , ) @require_sentencepiece @require_tokenizers class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : Optional[Any] = PegasusTokenizer _lowerCamelCase : str = PegasusTokenizerFast _lowerCamelCase : Tuple = True _lowerCamelCase : int = True def lowercase ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : int = PegasusTokenizer(snake_case__ , offset=0 , mask_token_sent=snake_case__ , mask_token='[MASK]' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase ( self ): return PegasusTokenizer.from_pretrained('google/bigbird-pegasus-large-arxiv' ) def lowercase ( self , **snake_case__ ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def lowercase ( self , snake_case__ ): return ("This is a test", "This is a test") def lowercase ( self ): lowerCAmelCase : Tuple = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : Union[str, Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : List[str] = ( 'Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>' ' <pad> <pad> <pad>' ) lowerCAmelCase : Dict = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] lowerCAmelCase : Union[str, Any] = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) @require_torch def lowercase ( self ): lowerCAmelCase : Optional[int] = ['This is going to be way too long.' * 1000, 'short example'] lowerCAmelCase : Union[str, Any] = ['not super long but more than 5 tokens', 'tiny'] lowerCAmelCase : List[str] = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) lowerCAmelCase : List[str] = self._large_tokenizer( text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(snake_case__ ) == 2 # input_ids, attention_mask. def lowercase ( self ): lowerCAmelCase : List[str] = ( 'This is an example string that is used to test the original TF implementation against the HF' ' implementation' ) lowerCAmelCase : Tuple = self._large_tokenizer(snake_case__ ).input_ids self.assertListEqual( snake_case__ , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
646
0
'''simple docstring''' def __UpperCamelCase ( _A : int = 10**12 ) -> List[str]: """simple docstring""" lowerCAmelCase : List[Any] = 1 lowerCAmelCase : Any = 0 lowerCAmelCase : Dict = 1 lowerCAmelCase : Dict = 1 while numerator <= 2 * min_total - 1: prev_numerator += 2 * numerator numerator += 2 * prev_numerator prev_denominator += 2 * denominator denominator += 2 * prev_denominator return (denominator + 1) // 2 if __name__ == "__main__": print(f"""{solution() = }""")
703
'''simple docstring''' import math import sys import cva import numpy as np def __UpperCamelCase ( _A : np.ndarray , _A : float ) -> np.ndarray: """simple docstring""" lowerCAmelCase : Union[str, Any] = math.sqrt(_A ) lowerCAmelCase : Union[str, Any] = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def __UpperCamelCase ( _A : np.ndarray , _A : int , _A : int , _A : int ) -> np.ndarray: """simple docstring""" lowerCAmelCase : int = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def __UpperCamelCase ( _A : int , _A : float ) -> np.ndarray: """simple docstring""" lowerCAmelCase : Dict = np.zeros((kernel_size, kernel_size) ) for i in range(0 , _A ): for j in range(0 , _A ): lowerCAmelCase : Optional[int] = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(_A , _A ) def __UpperCamelCase ( _A : np.ndarray , _A : float , _A : float , _A : int , ) -> np.ndarray: """simple docstring""" lowerCAmelCase : str = np.zeros(img.shape ) lowerCAmelCase : int = get_gauss_kernel(_A , _A ) lowerCAmelCase , lowerCAmelCase : Dict = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): lowerCAmelCase : int = get_slice(_A , _A , _A , _A ) lowerCAmelCase : Any = img_s - img_s[kernel_size // 2, kernel_size // 2] lowerCAmelCase : str = vec_gaussian(_A , _A ) lowerCAmelCase : Optional[int] = np.multiply(_A , _A ) lowerCAmelCase : str = np.multiply(_A , _A ) lowerCAmelCase : Union[str, Any] = np.sum(_A ) / np.sum(_A ) lowerCAmelCase : Tuple = val return imga def __UpperCamelCase ( _A : list ) -> tuple: """simple docstring""" lowerCAmelCase : List[Any] = args[1] if args[1:] else '../image_data/lena.jpg' lowerCAmelCase : Any = float(args[2] ) if args[2:] else 1.0 lowerCAmelCase : Union[str, Any] = float(args[3] ) if args[3:] else 1.0 if args[4:]: lowerCAmelCase : int = int(args[4] ) lowerCAmelCase : Optional[Any] = kernel_size + abs(kernel_size % 2 - 1 ) else: lowerCAmelCase : Optional[int] = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Any = parse_args(sys.argv) _lowerCAmelCase : str = cva.imread(filename, 0) cva.imshow('input image', img) _lowerCAmelCase : Union[str, Any] = img / 255 _lowerCAmelCase : List[str] = out.astype('float32') _lowerCAmelCase : Optional[int] = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) _lowerCAmelCase : Union[str, Any] = out * 255 _lowerCAmelCase : Optional[Any] = np.uinta(out) cva.imshow('output image', out) cva.waitKey(0) cva.destroyAllWindows()
646
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCAmelCase : Optional[Any] = {"configuration_xlnet": ["XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : List[Any] = ["XLNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Any = ["XLNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[int] = [ "XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "XLNetForMultipleChoice", "XLNetForQuestionAnswering", "XLNetForQuestionAnsweringSimple", "XLNetForSequenceClassification", "XLNetForTokenClassification", "XLNetLMHeadModel", "XLNetModel", "XLNetPreTrainedModel", "load_tf_weights_in_xlnet", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Dict = [ "TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLNetForMultipleChoice", "TFXLNetForQuestionAnsweringSimple", "TFXLNetForSequenceClassification", "TFXLNetForTokenClassification", "TFXLNetLMHeadModel", "TFXLNetMainLayer", "TFXLNetModel", "TFXLNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys _lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
704
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowerCAmelCase : int = { 'configuration_nezha': ['NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NezhaConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Tuple = [ 'NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST', 'NezhaForNextSentencePrediction', 'NezhaForMaskedLM', 'NezhaForPreTraining', 'NezhaForMultipleChoice', 'NezhaForQuestionAnswering', 'NezhaForSequenceClassification', 'NezhaForTokenClassification', 'NezhaModel', 'NezhaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys _lowerCAmelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
646
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCAmelCase : Union[str, Any] = { 'configuration_albert': ['ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AlbertConfig', 'AlbertOnnxConfig'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Dict = ['AlbertTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Any = ['AlbertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : List[Any] = [ 'ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'AlbertForMaskedLM', 'AlbertForMultipleChoice', 'AlbertForPreTraining', 'AlbertForQuestionAnswering', 'AlbertForSequenceClassification', 'AlbertForTokenClassification', 'AlbertModel', 'AlbertPreTrainedModel', 'load_tf_weights_in_albert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : List[Any] = [ 'TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFAlbertForMaskedLM', 'TFAlbertForMultipleChoice', 'TFAlbertForPreTraining', 'TFAlbertForQuestionAnswering', 'TFAlbertForSequenceClassification', 'TFAlbertForTokenClassification', 'TFAlbertMainLayer', 'TFAlbertModel', 'TFAlbertPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[int] = [ 'FlaxAlbertForMaskedLM', 'FlaxAlbertForMultipleChoice', 'FlaxAlbertForPreTraining', 'FlaxAlbertForQuestionAnswering', 'FlaxAlbertForSequenceClassification', 'FlaxAlbertForTokenClassification', 'FlaxAlbertModel', 'FlaxAlbertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert import AlbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert_fast import AlbertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_albert import ( ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, AlbertPreTrainedModel, load_tf_weights_in_albert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_albert import ( TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFAlbertForMaskedLM, TFAlbertForMultipleChoice, TFAlbertForPreTraining, TFAlbertForQuestionAnswering, TFAlbertForSequenceClassification, TFAlbertForTokenClassification, TFAlbertMainLayer, TFAlbertModel, TFAlbertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, FlaxAlbertPreTrainedModel, ) else: import sys _lowerCAmelCase : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
705
'''simple docstring''' from typing import Any class lowerCAmelCase : def __init__( self , snake_case__ ): lowerCAmelCase : Optional[int] = data lowerCAmelCase : Optional[Any] = None def __repr__( self ): return f"Node({self.data})" class lowerCAmelCase : def __init__( self ): lowerCAmelCase : Dict = None def __iter__( self ): lowerCAmelCase : Optional[Any] = self.head while node: yield node.data lowerCAmelCase : Optional[int] = node.next def __len__( self ): return sum(1 for _ in self ) def __repr__( self ): return "->".join([str(snake_case__ ) for item in self] ) def __getitem__( self , snake_case__ ): if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , snake_case__ , snake_case__ ): if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) lowerCAmelCase : Any = self.head for _ in range(snake_case__ ): lowerCAmelCase : List[str] = current.next lowerCAmelCase : int = data def lowercase ( self , snake_case__ ): self.insert_nth(len(self ) , snake_case__ ) def lowercase ( self , snake_case__ ): self.insert_nth(0 , snake_case__ ) def lowercase ( self , snake_case__ , snake_case__ ): if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) lowerCAmelCase : List[str] = Node(snake_case__ ) if self.head is None: lowerCAmelCase : int = new_node elif index == 0: lowerCAmelCase : List[Any] = self.head # link new_node to head lowerCAmelCase : List[Any] = new_node else: lowerCAmelCase : List[Any] = self.head for _ in range(index - 1 ): lowerCAmelCase : Union[str, Any] = temp.next lowerCAmelCase : Any = temp.next lowerCAmelCase : str = new_node def lowercase ( self ): # print every node data print(self ) def lowercase ( self ): return self.delete_nth(0 ) def lowercase ( self ): # delete from tail return self.delete_nth(len(self ) - 1 ) def lowercase ( self , snake_case__ = 0 ): if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) lowerCAmelCase : List[str] = self.head # default first node if index == 0: lowerCAmelCase : Tuple = self.head.next else: lowerCAmelCase : Dict = self.head for _ in range(index - 1 ): lowerCAmelCase : Tuple = temp.next lowerCAmelCase : Dict = temp.next lowerCAmelCase : Tuple = temp.next.next return delete_node.data def lowercase ( self ): return self.head is None def lowercase ( self ): lowerCAmelCase : List[Any] = None lowerCAmelCase : Any = self.head while current: # Store the current node's next node. lowerCAmelCase : List[str] = current.next # Make the current node's next point backwards lowerCAmelCase : int = prev # Make the previous node be the current node lowerCAmelCase : int = current # Make the current node the next node (to progress iteration) lowerCAmelCase : Optional[Any] = next_node # Return prev in order to put the head at the end lowerCAmelCase : List[Any] = prev def __UpperCamelCase ( ) -> None: """simple docstring""" lowerCAmelCase : Tuple = LinkedList() assert linked_list.is_empty() is True assert str(_A ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(_A ) == i linked_list.insert_nth(_A , i + 1 ) assert str(_A ) == "->".join(str(_A ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(_A ) == "->".join(str(_A ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(_A ) == 9 assert str(_A ) == "->".join(str(_A ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): lowerCAmelCase : Optional[Any] = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(_A ) == "->".join(str(_A ) for i in range(-8 , 1 ) ) def __UpperCamelCase ( ) -> None: """simple docstring""" lowerCAmelCase : Optional[int] = [ -9, 1_00, Node(77_34_51_12 ), 'dlrow olleH', 7, 55_55, 0, -1_92.5_55_55, 'Hello, world!', 77.9, Node(10 ), None, None, 12.20, ] lowerCAmelCase : Dict = LinkedList() for i in test_input: linked_list.insert_tail(_A ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(_A ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head lowerCAmelCase : Optional[Any] = linked_list.delete_head() assert result == -9 assert ( str(_A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail lowerCAmelCase : List[str] = linked_list.delete_tail() assert result == 12.2 assert ( str(_A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list lowerCAmelCase : List[str] = linked_list.delete_nth(10 ) assert result is None assert ( str(_A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(_A ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(_A ) assert ( str(_A ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(_A ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def __UpperCamelCase ( ) -> List[Any]: """simple docstring""" from doctest import testmod testmod() lowerCAmelCase : Optional[Any] = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(_A ) print('\nReading/changing Node data using indexing:' ) print(F"Element at Position 1: {linked_list[1]}" ) lowerCAmelCase : Tuple = input('Enter New Value: ' ).strip() print('New list:' ) print(_A ) print(F"length of linked_list is : {len(_A )}" ) if __name__ == "__main__": main()
646
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _lowerCAmelCase : Dict = { 'configuration_owlvit': [ 'OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'OwlViTConfig', 'OwlViTOnnxConfig', 'OwlViTTextConfig', 'OwlViTVisionConfig', ], 'processing_owlvit': ['OwlViTProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Union[str, Any] = ['OwlViTFeatureExtractor'] _lowerCAmelCase : str = ['OwlViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Any = [ 'OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'OwlViTModel', 'OwlViTPreTrainedModel', 'OwlViTTextModel', 'OwlViTVisionModel', 'OwlViTForObjectDetection', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys _lowerCAmelCase : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
706
'''simple docstring''' _lowerCAmelCase : List[str] = {str(digit): digit**5 for digit in range(10)} def __UpperCamelCase ( _A : int ) -> int: """simple docstring""" return sum(DIGITS_FIFTH_POWER[digit] for digit in str(_A ) ) def __UpperCamelCase ( ) -> int: """simple docstring""" return sum( number for number in range(10_00 , 1_00_00_00 ) if number == digits_fifth_powers_sum(_A ) ) if __name__ == "__main__": print(solution())
646
0
'''simple docstring''' import math from collections.abc import Iterator from itertools import takewhile def __UpperCamelCase ( _A : Union[str, Any] ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __UpperCamelCase ( ) -> Iterator[int]: """simple docstring""" lowerCAmelCase : Any = 2 while True: if is_prime(__snake_case ): yield num num += 1 def __UpperCamelCase ( _A : int = 2_00_00_00 ) -> int: """simple docstring""" return sum(takewhile(lambda _A : x < n , prime_generator() ) ) if __name__ == "__main__": print(f"""{solution() = }""")
707
'''simple docstring''' def __UpperCamelCase ( _A : List[str] ) -> Optional[Any]: """simple docstring""" if not head: return True # split the list to two parts lowerCAmelCase , lowerCAmelCase : str = head.next, head while fast and fast.next: lowerCAmelCase : Optional[int] = fast.next.next lowerCAmelCase : int = slow.next lowerCAmelCase : int = slow.next lowerCAmelCase : Optional[Any] = None # Don't forget here! But forget still works! # reverse the second part lowerCAmelCase : List[Any] = None while second: lowerCAmelCase : List[Any] = second.next lowerCAmelCase : Union[str, Any] = node lowerCAmelCase : Optional[Any] = second lowerCAmelCase : Any = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False lowerCAmelCase : Optional[Any] = node.next lowerCAmelCase : Tuple = head.next return True def __UpperCamelCase ( _A : Optional[Any] ) -> Optional[int]: """simple docstring""" if not head or not head.next: return True # 1. Get the midpoint (slow) lowerCAmelCase : Optional[int] = head while fast and fast.next: lowerCAmelCase , lowerCAmelCase : Optional[Any] = fast.next.next, slow.next # 2. Push the second half into the stack lowerCAmelCase : Tuple = [slow.val] while slow.next: lowerCAmelCase : Tuple = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False lowerCAmelCase : Union[str, Any] = cur.next return True def __UpperCamelCase ( _A : Tuple ) -> Optional[int]: """simple docstring""" if not head or not head.next: return True lowerCAmelCase : Optional[int] = {} lowerCAmelCase : int = 0 while head: if head.val in d: d[head.val].append(_A ) else: lowerCAmelCase : Any = [pos] lowerCAmelCase : int = head.next pos += 1 lowerCAmelCase : str = pos - 1 lowerCAmelCase : Optional[Any] = 0 for v in d.values(): if len(_A ) % 2 != 0: middle += 1 else: lowerCAmelCase : Any = 0 for i in range(0 , len(_A ) ): if v[i] + v[len(_A ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
646
0
'''simple docstring''' import re from filelock import FileLock try: import nltk _lowerCAmelCase : Any = True except (ImportError, ModuleNotFoundError): _lowerCAmelCase : Optional[Any] = False if NLTK_AVAILABLE: with FileLock('.lock') as lock: nltk.download('punkt', quiet=True) def __UpperCamelCase ( _A : str ) -> str: """simple docstring""" re.sub('<n>' , '' , UpperCAmelCase__ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(UpperCAmelCase__ ) )
708
'''simple docstring''' import math def __UpperCamelCase ( _A : int = 1_00 ) -> int: """simple docstring""" lowerCAmelCase : List[Any] = sum(i * i for i in range(1 , n + 1 ) ) lowerCAmelCase : Optional[Any] = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f"""{solution() = }""")
646
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : List[Any] = logging.get_logger(__name__) _lowerCAmelCase : Dict = { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/config.json''', '''funnel-transformer/small-base''': '''https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json''', '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/config.json''', '''funnel-transformer/medium-base''': '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json''', '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/config.json''', '''funnel-transformer/large-base''': '''https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json''', '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json''', '''funnel-transformer/xlarge-base''': '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json''', } class lowerCAmelCase ( a__ ): _lowerCamelCase : Dict = """funnel""" _lowerCamelCase : Any = { """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", } def __init__( self , snake_case__=3_0522 , snake_case__=[4, 4, 4] , snake_case__=None , snake_case__=2 , snake_case__=768 , snake_case__=12 , snake_case__=64 , snake_case__=3072 , snake_case__="gelu_new" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.0 , snake_case__=0.1 , snake_case__=None , snake_case__=1e-9 , snake_case__="mean" , snake_case__="relative_shift" , snake_case__=True , snake_case__=True , snake_case__=True , **snake_case__ , ): lowerCAmelCase : Tuple = vocab_size lowerCAmelCase : List[Any] = block_sizes lowerCAmelCase : Dict = [1] * len(lowerCAmelCase__ ) if block_repeats is None else block_repeats assert len(lowerCAmelCase__ ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." lowerCAmelCase : Dict = num_decoder_layers lowerCAmelCase : Optional[int] = d_model lowerCAmelCase : str = n_head lowerCAmelCase : Optional[Any] = d_head lowerCAmelCase : Union[str, Any] = d_inner lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : List[str] = hidden_dropout lowerCAmelCase : Any = attention_dropout lowerCAmelCase : Optional[int] = activation_dropout lowerCAmelCase : List[str] = initializer_range lowerCAmelCase : List[str] = initializer_std lowerCAmelCase : Any = layer_norm_eps assert pooling_type in [ "mean", "max", ], f"Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported." lowerCAmelCase : Optional[int] = pooling_type assert attention_type in [ "relative_shift", "factorized", ], f"Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported." lowerCAmelCase : int = attention_type lowerCAmelCase : Optional[Any] = separate_cls lowerCAmelCase : List[str] = truncate_seq lowerCAmelCase : str = pool_q_only super().__init__(**lowerCAmelCase__ ) @property def lowercase ( self ): return sum(self.block_sizes ) @num_hidden_layers.setter def lowercase ( self , snake_case__ ): raise NotImplementedError( 'This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.' ) @property def lowercase ( self ): return len(self.block_sizes ) @num_blocks.setter def lowercase ( self , snake_case__ ): raise NotImplementedError('This model does not support the setting of `num_blocks`. Please set `block_sizes`.' )
709
'''simple docstring''' import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece_with_bytefallback.model') @require_sentencepiece @require_tokenizers class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : Tuple = GPTSwaTokenizer _lowerCamelCase : str = False _lowerCamelCase : Dict = True _lowerCamelCase : Optional[Any] = False def lowercase ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : Tuple = GPTSwaTokenizer(snake_case__ , eos_token='<unk>' , bos_token='<unk>' , pad_token='<unk>' ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase ( self , snake_case__ ): lowerCAmelCase : List[Any] = 'This is a test' lowerCAmelCase : List[Any] = 'This is a test' return input_text, output_text def lowercase ( self ): lowerCAmelCase : Tuple = '<s>' lowerCAmelCase : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def lowercase ( self ): lowerCAmelCase : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(snake_case__ ) , 2000 ) def lowercase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 2000 ) def lowercase ( self ): lowerCAmelCase : List[Any] = GPTSwaTokenizer(snake_case__ ) lowerCAmelCase : Optional[Any] = tokenizer.tokenize('This is a test' ) self.assertListEqual(snake_case__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , [465, 287, 265, 631, 842] ) lowerCAmelCase : Tuple = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) # fmt: off self.assertListEqual( snake_case__ , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] , ) # fmt: on lowerCAmelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual( snake_case__ , [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] , ) lowerCAmelCase : int = tokenizer.convert_ids_to_tokens(snake_case__ ) # fmt: off self.assertListEqual( snake_case__ , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] ) # fmt: on def lowercase ( self ): lowerCAmelCase : str = GPTSwaTokenizer(snake_case__ ) lowerCAmelCase : Optional[int] = ['This is a test', 'I was born in 92000, and this is falsé.'] lowerCAmelCase : Tuple = [ [465, 287, 265, 631, 842], [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(snake_case__ , snake_case__ ): self.assertListEqual(tokenizer.encode_fast(snake_case__ ) , snake_case__ ) # Test that decode_fast returns the input text for text, token_ids in zip(snake_case__ , snake_case__ ): self.assertEqual(tokenizer.decode_fast(snake_case__ ) , snake_case__ ) @slow def lowercase ( self ): lowerCAmelCase : str = [ '<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')', 'Hey there, how are you doing this fine day?', 'This is a text with a trailing spaces followed by a dot .', 'Häj sväjs lillebrör! =)', 'Det är inget fel på Mr. Cool', ] # fmt: off lowerCAmelCase : Tuple = {'input_ids': [[6_3423, 5, 6811, 1_4954, 282, 816, 3821, 6_3466, 6_3425, 6_3462, 18, 6_3978, 678, 301, 1320, 6_3423, 6_3455, 6_3458, 18, 6_3982, 4246, 3940, 1901, 4_7789, 5547, 1_8994], [1_9630, 1100, 6_3446, 1342, 633, 544, 4488, 593, 5102, 2416, 6_3495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1652, 428, 268, 1936, 515, 268, 5_8593, 2_2413, 9106, 546, 268, 3_3213, 6_3979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_5130, 6_3450, 924, 6_3449, 2249, 4062, 1558, 318, 6_3504, 2_1498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2827, 2559, 332, 6575, 6_3443, 2_6801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name='AI-Sweden/gpt-sw3-126m' , sequences=snake_case__ , )
646
0
'''simple docstring''' import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): _lowerCAmelCase : List[str] = yaml.safe_load( '\\nname: ""\nallow_empty: false\nallow_empty_text: true\nsubsections:\n - name: "Dataset Card for X" # First-level markdown heading\n allow_empty: false\n allow_empty_text: true\n subsections:\n - name: "Table of Contents"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: "Dataset Description"\n allow_empty: false\n allow_empty_text: false\n subsections:\n - name: "Dataset Summary"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: "Supported Tasks and Leaderboards"\n allow_empty: true\n allow_empty_text: true\n subsections: null\n - name: Languages\n allow_empty: false\n allow_empty_text: true\n subsections: null\n' ) _lowerCAmelCase : List[Any] = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } _lowerCAmelCase : Dict = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' _lowerCAmelCase : Any = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. #### Extra Ignored Subsection ### Supported Tasks and Leaderboards ### Languages Language Text ''' _lowerCAmelCase : str = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Extra Ignored Subsection''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], } ], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } _lowerCAmelCase : Tuple = '''\ --- --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' _lowerCAmelCase : Optional[int] = ( '''The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.''' ) _lowerCAmelCase : Optional[int] = '''\ # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' _lowerCAmelCase : Tuple = ( '''The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.''' ) _lowerCAmelCase : Optional[int] = '''\ --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' _lowerCAmelCase : str = '''The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.''' _lowerCAmelCase : Optional[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary ### Supported Tasks and Leaderboards ### Languages Language Text ''' _lowerCAmelCase : Dict = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).''' _lowerCAmelCase : str = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ''' _lowerCAmelCase : List[str] = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.''' _lowerCAmelCase : int = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Languages Language Text ''' _lowerCAmelCase : List[str] = '''The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.''' _lowerCAmelCase : Optional[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages ''' _lowerCAmelCase : int = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.''' _lowerCAmelCase : Optional[Any] = '''\ --- language: - zh - en --- ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' _lowerCAmelCase : Tuple = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.''' _lowerCAmelCase : int = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text # Dataset Card My Dataset ''' _lowerCAmelCase : Dict = '''The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.''' _lowerCAmelCase : Dict = '''\ --- language: - zh - en --- # Dataset Card My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' _lowerCAmelCase : str = '''The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.''' _lowerCAmelCase : str = '''''' _lowerCAmelCase : List[str] = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.''' _lowerCAmelCase : Optional[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' _lowerCAmelCase : List[Any] = '''The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.''' @pytest.mark.parametrize( 'readme_md, expected_dict' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def __UpperCamelCase ( _A : Union[str, Any] , _A : Optional[Any] ) -> Optional[Any]: """simple docstring""" assert ReadMe.from_string(UpperCAmelCase__ , UpperCAmelCase__ ).to_dict() == expected_dict @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def __UpperCamelCase ( _A : Dict , _A : int ) -> Any: """simple docstring""" with pytest.raises(UpperCAmelCase__ , match=re.escape(expected_error.format(path='root' ) ) ): lowerCAmelCase : Dict = ReadMe.from_string(UpperCAmelCase__ , UpperCAmelCase__ ) readme.validate() @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def __UpperCamelCase ( _A : str , _A : Optional[Any] ) -> List[Any]: """simple docstring""" with pytest.raises(UpperCAmelCase__ , match=re.escape(expected_error.format(path='root' ) ) ): ReadMe.from_string(UpperCAmelCase__ , UpperCAmelCase__ ) @pytest.mark.parametrize( 'readme_md,' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def __UpperCamelCase ( _A : str ) -> Union[str, Any]: """simple docstring""" ReadMe.from_string(UpperCAmelCase__ , UpperCAmelCase__ , suppress_parsing_errors=UpperCAmelCase__ ) @pytest.mark.parametrize( 'readme_md, expected_dict' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def __UpperCamelCase ( _A : List[str] , _A : int ) -> Any: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase : Dict = Path(UpperCAmelCase__ ) / 'README.md' with open(UpperCAmelCase__ , 'w+' ) as readme_file: readme_file.write(UpperCAmelCase__ ) lowerCAmelCase : List[str] = ReadMe.from_readme(UpperCAmelCase__ , UpperCAmelCase__ ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def __UpperCamelCase ( _A : Optional[int] , _A : str ) -> List[str]: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase : int = Path(UpperCAmelCase__ ) / 'README.md' with open(UpperCAmelCase__ , 'w+' ) as readme_file: readme_file.write(UpperCAmelCase__ ) lowerCAmelCase : Optional[int] = expected_error.format(path=UpperCAmelCase__ ) with pytest.raises(UpperCAmelCase__ , match=re.escape(UpperCAmelCase__ ) ): lowerCAmelCase : Optional[Any] = ReadMe.from_readme(UpperCAmelCase__ , UpperCAmelCase__ ) readme.validate() @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def __UpperCamelCase ( _A : Optional[Any] , _A : int ) -> str: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase : Optional[Any] = Path(UpperCAmelCase__ ) / 'README.md' with open(UpperCAmelCase__ , 'w+' ) as readme_file: readme_file.write(UpperCAmelCase__ ) lowerCAmelCase : Dict = expected_error.format(path=UpperCAmelCase__ ) with pytest.raises(UpperCAmelCase__ , match=re.escape(UpperCAmelCase__ ) ): ReadMe.from_readme(UpperCAmelCase__ , UpperCAmelCase__ ) @pytest.mark.parametrize( 'readme_md,' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def __UpperCamelCase ( _A : Optional[Any] ) -> List[Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase : Union[str, Any] = Path(UpperCAmelCase__ ) / 'README.md' with open(UpperCAmelCase__ , 'w+' ) as readme_file: readme_file.write(UpperCAmelCase__ ) ReadMe.from_readme(UpperCAmelCase__ , UpperCAmelCase__ , suppress_parsing_errors=UpperCAmelCase__ )
710
'''simple docstring''' def __UpperCamelCase ( _A : int ) -> bool: """simple docstring""" return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
646
0
'''simple docstring''' import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class lowerCAmelCase ( __UpperCAmelCase ): def lowercase ( self ): lowerCAmelCase : Optional[Any] = tempfile.mkdtemp() lowerCAmelCase : str = 8 # DPR tok lowerCAmelCase : str = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] lowerCAmelCase : Optional[int] = os.path.join(self.tmpdirname , 'dpr_tokenizer' ) os.makedirs(UpperCAmelCase_ , exist_ok=UpperCAmelCase_ ) lowerCAmelCase : Dict = os.path.join(UpperCAmelCase_ , DPR_VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) # BART tok lowerCAmelCase : Tuple = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] lowerCAmelCase : Optional[Any] = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_ ) ) ) ) lowerCAmelCase : Union[str, Any] = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] lowerCAmelCase : int = {'unk_token': '<unk>'} lowerCAmelCase : Tuple = os.path.join(self.tmpdirname , 'bart_tokenizer' ) os.makedirs(UpperCAmelCase_ , exist_ok=UpperCAmelCase_ ) lowerCAmelCase : Tuple = os.path.join(UpperCAmelCase_ , BART_VOCAB_FILES_NAMES['vocab_file'] ) lowerCAmelCase : Tuple = os.path.join(UpperCAmelCase_ , BART_VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(UpperCAmelCase_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(UpperCAmelCase_ ) ) def lowercase ( self ): return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'dpr_tokenizer' ) ) def lowercase ( self ): return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'dpr_tokenizer' ) ) def lowercase ( self ): return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'bart_tokenizer' ) ) def lowercase ( self ): shutil.rmtree(self.tmpdirname ) def lowercase ( self ): lowerCAmelCase : Dict = Dataset.from_dict( { 'id': ['0', '1'], 'text': ['foo', 'bar'], 'title': ['Foo', 'Bar'], 'embeddings': [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index('embeddings' , string_factory='Flat' , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def lowercase ( self ): lowerCAmelCase : Optional[Any] = self.get_dummy_dataset() lowerCAmelCase : Union[str, Any] = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch('transformers.models.rag.retrieval_rag.load_dataset' ) as mock_load_dataset: lowerCAmelCase : Any = dataset lowerCAmelCase : int = RagRetriever( UpperCAmelCase_ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def lowercase ( self , snake_case__ ): lowerCAmelCase : List[str] = self.get_dummy_dataset() lowerCAmelCase : Tuple = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='custom' , ) if from_disk: lowerCAmelCase : int = os.path.join(self.tmpdirname , 'dataset' ) lowerCAmelCase : int = os.path.join(self.tmpdirname , 'index.faiss' ) dataset.get_index('embeddings' ).save(os.path.join(self.tmpdirname , 'index.faiss' ) ) dataset.drop_index('embeddings' ) dataset.save_to_disk(os.path.join(self.tmpdirname , 'dataset' ) ) del dataset lowerCAmelCase : Any = RagRetriever( UpperCAmelCase_ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: lowerCAmelCase : Tuple = RagRetriever( UpperCAmelCase_ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , UpperCAmelCase_ ) , ) return retriever def lowercase ( self ): lowerCAmelCase : Union[str, Any] = Dataset.from_dict( { 'id': ['0', '1'], 'text': ['foo', 'bar'], 'title': ['Foo', 'Bar'], 'embeddings': [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index('embeddings' , string_factory='Flat' , metric_type=faiss.METRIC_INNER_PRODUCT ) lowerCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname , 'hf_bert_base.hnswSQ8_correct_phi_128.c_index' ) dataset.save_faiss_index('embeddings' , index_file_name + '.index.dpr' ) pickle.dump(dataset['id'] , open(index_file_name + '.index_meta.dpr' , 'wb' ) ) lowerCAmelCase : Dict = os.path.join(self.tmpdirname , 'psgs_w100.tsv.pkl' ) lowerCAmelCase : int = {sample['id']: [sample['text'], sample['title']] for sample in dataset} pickle.dump(UpperCAmelCase_ , open(UpperCAmelCase_ , 'wb' ) ) lowerCAmelCase : Optional[Any] = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='legacy' , index_path=self.tmpdirname , ) lowerCAmelCase : str = RagRetriever( UpperCAmelCase_ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def lowercase ( self ): lowerCAmelCase : Dict = 1 lowerCAmelCase : Any = self.get_dummy_canonical_hf_index_retriever() lowerCAmelCase : Optional[int] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : int = retriever.retrieve(UpperCAmelCase_ , n_docs=UpperCAmelCase_ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(UpperCAmelCase_ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['embeddings', 'id', 'text', 'title'] ) self.assertEqual(len(doc_dicts[0]['id'] ) , UpperCAmelCase_ ) self.assertEqual(doc_dicts[0]['id'][0] , '1' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['id'][0] , '0' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def lowercase ( self ): lowerCAmelCase : str = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch('transformers.models.rag.retrieval_rag.load_dataset' ) as mock_load_dataset: lowerCAmelCase : Tuple = self.get_dummy_dataset() retriever.save_pretrained(UpperCAmelCase_ ) lowerCAmelCase : Dict = RagRetriever.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowerCAmelCase : Dict = retriever.retrieve(UpperCAmelCase_ , n_docs=1 ) self.assertTrue(out is not None ) def lowercase ( self ): lowerCAmelCase : Tuple = 1 lowerCAmelCase : Optional[Any] = self.get_dummy_custom_hf_index_retriever(from_disk=UpperCAmelCase_ ) lowerCAmelCase : str = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[int] = retriever.retrieve(UpperCAmelCase_ , n_docs=UpperCAmelCase_ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(UpperCAmelCase_ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['embeddings', 'id', 'text', 'title'] ) self.assertEqual(len(doc_dicts[0]['id'] ) , UpperCAmelCase_ ) self.assertEqual(doc_dicts[0]['id'][0] , '1' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['id'][0] , '0' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def lowercase ( self ): lowerCAmelCase : List[str] = self.get_dummy_custom_hf_index_retriever(from_disk=UpperCAmelCase_ ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = RagRetriever.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowerCAmelCase : List[Any] = retriever.retrieve(UpperCAmelCase_ , n_docs=1 ) self.assertTrue(out is not None ) def lowercase ( self ): lowerCAmelCase : List[str] = 1 lowerCAmelCase : Any = self.get_dummy_custom_hf_index_retriever(from_disk=UpperCAmelCase_ ) lowerCAmelCase : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : str = retriever.retrieve(UpperCAmelCase_ , n_docs=UpperCAmelCase_ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(UpperCAmelCase_ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['embeddings', 'id', 'text', 'title'] ) self.assertEqual(len(doc_dicts[0]['id'] ) , UpperCAmelCase_ ) self.assertEqual(doc_dicts[0]['id'][0] , '1' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['id'][0] , '0' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def lowercase ( self ): lowerCAmelCase : List[str] = self.get_dummy_custom_hf_index_retriever(from_disk=UpperCAmelCase_ ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = RagRetriever.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Any = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowerCAmelCase : Tuple = retriever.retrieve(UpperCAmelCase_ , n_docs=1 ) self.assertTrue(out is not None ) def lowercase ( self ): lowerCAmelCase : Tuple = 1 lowerCAmelCase : Optional[int] = self.get_dummy_legacy_index_retriever() lowerCAmelCase : Union[str, Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Any = retriever.retrieve(UpperCAmelCase_ , n_docs=UpperCAmelCase_ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(UpperCAmelCase_ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['text', 'title'] ) self.assertEqual(len(doc_dicts[0]['text'] ) , UpperCAmelCase_ ) self.assertEqual(doc_dicts[0]['text'][0] , 'bar' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['text'][0] , 'foo' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def lowercase ( self ): lowerCAmelCase : Optional[Any] = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(UpperCAmelCase_ ) lowerCAmelCase : Any = RagRetriever.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : List[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowerCAmelCase : Union[str, Any] = retriever.retrieve(UpperCAmelCase_ , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def lowercase ( self ): import torch lowerCAmelCase : Optional[int] = 1 lowerCAmelCase : Union[str, Any] = self.get_dummy_canonical_hf_index_retriever() lowerCAmelCase : Any = [[5, 7], [10, 11]] lowerCAmelCase : Optional[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowerCAmelCase : List[Any] = retriever(UpperCAmelCase_ , UpperCAmelCase_ , prefix=retriever.config.generator.prefix , n_docs=UpperCAmelCase_ ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[Any] = ( out['context_input_ids'], out['context_attention_mask'], out['retrieved_doc_embeds'], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , np.ndarray ) lowerCAmelCase : Tuple = retriever( UpperCAmelCase_ , UpperCAmelCase_ , prefix=retriever.config.generator.prefix , n_docs=UpperCAmelCase_ , return_tensors='pt' , ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : int = ( # noqa: F841 out['context_input_ids'], out['context_attention_mask'], out['retrieved_doc_embeds'], out['doc_ids'], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(UpperCAmelCase_ , torch.Tensor ) self.assertIsInstance(UpperCAmelCase_ , torch.Tensor ) self.assertIsInstance(UpperCAmelCase_ , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def lowercase ( self ): lowerCAmelCase : int = self.get_dpr_ctx_encoder_tokenizer() lowerCAmelCase : List[Any] = 1 lowerCAmelCase : str = self.get_dummy_custom_hf_index_retriever(from_disk=UpperCAmelCase_ ) retriever.set_ctx_encoder_tokenizer(UpperCAmelCase_ ) lowerCAmelCase : Any = [[5, 7], [10, 11]] lowerCAmelCase : Optional[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowerCAmelCase : str = retriever(UpperCAmelCase_ , UpperCAmelCase_ , prefix=retriever.config.generator.prefix , n_docs=UpperCAmelCase_ ) self.assertEqual( len(UpperCAmelCase_ ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ('tokenized_doc_ids', 'tokenized_doc_attention_mask') ) , UpperCAmelCase_ ) # check for doc token related keys in dictionary.
711
'''simple docstring''' import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( 'files' , [ ['full:README.md', 'dataset_infos.json'], ['empty:README.md', 'dataset_infos.json'], ['dataset_infos.json'], ['full:README.md'], ] , ) def __UpperCamelCase ( _A : str , _A : List[Any] ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase : Optional[int] = tmp_path_factory.mktemp('dset_infos_dir' ) if "full:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('---\ndataset_info:\n dataset_size: 42\n---' ) if "empty:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / 'dataset_infos.json' , 'w' ) as f: f.write('{"default": {"dataset_size": 42}}' ) lowerCAmelCase : Union[str, Any] = DatasetInfosDict.from_directory(_A ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( 'dataset_info' , [ DatasetInfo(), DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ), ] , ) def __UpperCamelCase ( _A : str , _A : DatasetInfo ) -> Optional[int]: """simple docstring""" lowerCAmelCase : str = str(_A ) dataset_info.write_to_directory(_A ) lowerCAmelCase : List[str] = DatasetInfo.from_directory(_A ) assert dataset_info == reloaded assert os.path.exists(os.path.join(_A , 'dataset_info.json' ) ) def __UpperCamelCase ( ) -> List[str]: """simple docstring""" lowerCAmelCase : Tuple = DatasetInfo( description='foo' , citation='bar' , homepage='https://foo.bar' , license='CC0' , features=Features({'a': Value('int32' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train', 'num_examples': 42}] , download_checksums={} , download_size=13_37 , post_processing_size=4_42 , dataset_size=12_34 , size_in_bytes=13_37 + 4_42 + 12_34 , ) lowerCAmelCase : Optional[int] = dataset_info._to_yaml_dict() assert sorted(_A ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) lowerCAmelCase : Any = yaml.safe_dump(_A ) lowerCAmelCase : int = yaml.safe_load(_A ) assert dataset_info_yaml_dict == reloaded def __UpperCamelCase ( ) -> Dict: """simple docstring""" lowerCAmelCase : Union[str, Any] = DatasetInfo() lowerCAmelCase : List[Any] = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( 'dataset_infos_dict' , [ DatasetInfosDict(), DatasetInfosDict({'default': DatasetInfo()} ), DatasetInfosDict({'my_config_name': DatasetInfo()} ), DatasetInfosDict( { 'default': DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ) } ), DatasetInfosDict( { 'v1': DatasetInfo(dataset_size=42 ), 'v2': DatasetInfo(dataset_size=13_37 ), } ), ] , ) def __UpperCamelCase ( _A : Tuple , _A : DatasetInfosDict ) -> List[Any]: """simple docstring""" lowerCAmelCase : Tuple = str(_A ) dataset_infos_dict.write_to_directory(_A ) lowerCAmelCase : List[str] = DatasetInfosDict.from_directory(_A ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): lowerCAmelCase : Tuple = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml lowerCAmelCase : Optional[Any] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(_A , 'README.md' ) )
646
0
from scipy.stats import pearsonr import datasets _lowerCAmelCase : Tuple = '\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n' _lowerCAmelCase : Any = '\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n' _lowerCAmelCase : Tuple = '\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase ( datasets.Metric ): def lowercase ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('float' ), 'references': datasets.Value('float' ), } ) , reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'] , ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__=False ): if return_pvalue: lowerCAmelCase : List[Any] = pearsonr(UpperCamelCase__ , UpperCamelCase__ ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(UpperCamelCase__ , UpperCamelCase__ )[0] )}
712
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCAmelCase ( a ): def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): super().__init__() if safety_checker is None: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" ' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered' ' results in services or applications open to the public. Both the diffusers team and Hugging Face' ' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling' ' it only for use-cases that involve analyzing network behavior or auditing its results. For more' ' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .' ) self.register_modules( speech_model=snake_case__ , speech_processor=snake_case__ , vae=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , unet=snake_case__ , scheduler=snake_case__ , feature_extractor=snake_case__ , ) def lowercase ( self , snake_case__ = "auto" ): if slice_size == "auto": lowerCAmelCase : Union[str, Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(snake_case__ ) def lowercase ( self ): self.enable_attention_slicing(snake_case__ ) @torch.no_grad() def __call__( self , snake_case__ , snake_case__=1_6000 , snake_case__ = 512 , snake_case__ = 512 , snake_case__ = 50 , snake_case__ = 7.5 , snake_case__ = None , snake_case__ = 1 , snake_case__ = 0.0 , snake_case__ = None , snake_case__ = None , snake_case__ = "pil" , snake_case__ = True , snake_case__ = None , snake_case__ = 1 , **snake_case__ , ): lowerCAmelCase : List[str] = self.speech_processor.feature_extractor( snake_case__ , return_tensors='pt' , sampling_rate=snake_case__ ).input_features.to(self.device ) lowerCAmelCase : Optional[Any] = self.speech_model.generate(snake_case__ , max_length=48_0000 ) lowerCAmelCase : str = self.speech_processor.tokenizer.batch_decode(snake_case__ , skip_special_tokens=snake_case__ , normalize=snake_case__ )[ 0 ] if isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = 1 elif isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = len(snake_case__ ) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(snake_case__ )}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(snake_case__ , snake_case__ ) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(snake_case__ )}." ) # get prompt text embeddings lowerCAmelCase : str = self.tokenizer( snake_case__ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) lowerCAmelCase : Tuple = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowerCAmelCase : str = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) lowerCAmelCase : Union[str, Any] = text_input_ids[:, : self.tokenizer.model_max_length] lowerCAmelCase : Union[str, Any] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : int = text_embeddings.shape lowerCAmelCase : Any = text_embeddings.repeat(1 , snake_case__ , 1 ) lowerCAmelCase : Optional[int] = text_embeddings.view(bs_embed * num_images_per_prompt , snake_case__ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowerCAmelCase : List[str] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowerCAmelCase : List[str] if negative_prompt is None: lowerCAmelCase : Any = [''] * batch_size elif type(snake_case__ ) is not type(snake_case__ ): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(snake_case__ )} !=" f" {type(snake_case__ )}." ) elif isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = [negative_prompt] elif batch_size != len(snake_case__ ): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(snake_case__ )}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" ' the batch size of `prompt`.' ) else: lowerCAmelCase : Dict = negative_prompt lowerCAmelCase : Optional[int] = text_input_ids.shape[-1] lowerCAmelCase : int = self.tokenizer( snake_case__ , padding='max_length' , max_length=snake_case__ , truncation=snake_case__ , return_tensors='pt' , ) lowerCAmelCase : Union[str, Any] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowerCAmelCase : List[Any] = uncond_embeddings.shape[1] lowerCAmelCase : List[str] = uncond_embeddings.repeat(1 , snake_case__ , 1 ) lowerCAmelCase : Optional[Any] = uncond_embeddings.view(batch_size * num_images_per_prompt , snake_case__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCAmelCase : List[str] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowerCAmelCase : Union[str, Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowerCAmelCase : Dict = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowerCAmelCase : str = torch.randn(snake_case__ , generator=snake_case__ , device='cpu' , dtype=snake_case__ ).to( self.device ) else: lowerCAmelCase : Tuple = torch.randn(snake_case__ , generator=snake_case__ , device=self.device , dtype=snake_case__ ) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) lowerCAmelCase : str = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(snake_case__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowerCAmelCase : Union[str, Any] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowerCAmelCase : Any = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowerCAmelCase : Tuple = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCAmelCase : Union[str, Any] = {} if accepts_eta: lowerCAmelCase : int = eta for i, t in enumerate(self.progress_bar(snake_case__ ) ): # expand the latents if we are doing classifier free guidance lowerCAmelCase : Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCAmelCase : Tuple = self.scheduler.scale_model_input(snake_case__ , snake_case__ ) # predict the noise residual lowerCAmelCase : List[str] = self.unet(snake_case__ , snake_case__ , encoder_hidden_states=snake_case__ ).sample # perform guidance if do_classifier_free_guidance: lowerCAmelCase , lowerCAmelCase : Dict = noise_pred.chunk(2 ) lowerCAmelCase : Tuple = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowerCAmelCase : int = self.scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase : List[Any] = 1 / 0.1_8_2_1_5 * latents lowerCAmelCase : Dict = self.vae.decode(snake_case__ ).sample lowerCAmelCase : List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowerCAmelCase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowerCAmelCase : Dict = self.numpy_to_pil(snake_case__ ) if not return_dict: return image return StableDiffusionPipelineOutput(images=snake_case__ , nsfw_content_detected=snake_case__ )
646
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) def __UpperCamelCase ( _A : List[Any] ) -> int: """simple docstring""" if "resnet-50" in model_name: lowerCAmelCase : List[Any] = ResNetConfig.from_pretrained('microsoft/resnet-50' ) elif "resnet-101" in model_name: lowerCAmelCase : List[str] = ResNetConfig.from_pretrained('microsoft/resnet-101' ) else: raise ValueError('Model name should include either resnet50 or resnet101' ) lowerCAmelCase : Optional[int] = DetrConfig(use_timm_backbone=__UpperCamelCase , backbone_config=__UpperCamelCase ) # set label attributes lowerCAmelCase : Optional[int] = 'panoptic' in model_name if is_panoptic: lowerCAmelCase : Union[str, Any] = 2_50 else: lowerCAmelCase : Optional[int] = 91 lowerCAmelCase : Optional[int] = 'huggingface/label-files' lowerCAmelCase : Optional[int] = 'coco-detection-id2label.json' lowerCAmelCase : int = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type='dataset' ) , 'r' ) ) lowerCAmelCase : str = {int(__UpperCamelCase ): v for k, v in idalabel.items()} lowerCAmelCase : Union[str, Any] = idalabel lowerCAmelCase : List[Any] = {v: k for k, v in idalabel.items()} return config, is_panoptic def __UpperCamelCase ( _A : List[Any] ) -> List[Any]: """simple docstring""" lowerCAmelCase : Optional[Any] = [] # stem # fmt: off rename_keys.append(('backbone.0.body.conv1.weight', 'backbone.conv_encoder.model.embedder.embedder.convolution.weight') ) rename_keys.append(('backbone.0.body.bn1.weight', 'backbone.conv_encoder.model.embedder.embedder.normalization.weight') ) rename_keys.append(('backbone.0.body.bn1.bias', 'backbone.conv_encoder.model.embedder.embedder.normalization.bias') ) rename_keys.append(('backbone.0.body.bn1.running_mean', 'backbone.conv_encoder.model.embedder.embedder.normalization.running_mean') ) rename_keys.append(('backbone.0.body.bn1.running_var', 'backbone.conv_encoder.model.embedder.embedder.normalization.running_var') ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight", ) ) rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight", ) ) rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias", ) ) rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean", ) ) rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var", ) ) # 3 convs for i in range(3 ): rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight", ) ) rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight", ) ) rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias", ) ) rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean", ) ) rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var", ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( F"transformer.encoder.layers.{i}.self_attn.out_proj.weight", F"encoder.layers.{i}.self_attn.out_proj.weight", ) ) rename_keys.append( (F"transformer.encoder.layers.{i}.self_attn.out_proj.bias", F"encoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear1.weight", F"encoder.layers.{i}.fc1.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear1.bias", F"encoder.layers.{i}.fc1.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear2.weight", F"encoder.layers.{i}.fc2.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear2.bias", F"encoder.layers.{i}.fc2.bias") ) rename_keys.append( (F"transformer.encoder.layers.{i}.norm1.weight", F"encoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append( (F"transformer.encoder.layers.{i}.norm1.bias", F"encoder.layers.{i}.self_attn_layer_norm.bias") ) rename_keys.append( (F"transformer.encoder.layers.{i}.norm2.weight", F"encoder.layers.{i}.final_layer_norm.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.norm2.bias", F"encoder.layers.{i}.final_layer_norm.bias") ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( F"transformer.decoder.layers.{i}.self_attn.out_proj.weight", F"decoder.layers.{i}.self_attn.out_proj.weight", ) ) rename_keys.append( (F"transformer.decoder.layers.{i}.self_attn.out_proj.bias", F"decoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append( ( F"transformer.decoder.layers.{i}.multihead_attn.out_proj.weight", F"decoder.layers.{i}.encoder_attn.out_proj.weight", ) ) rename_keys.append( ( F"transformer.decoder.layers.{i}.multihead_attn.out_proj.bias", F"decoder.layers.{i}.encoder_attn.out_proj.bias", ) ) rename_keys.append((F"transformer.decoder.layers.{i}.linear1.weight", F"decoder.layers.{i}.fc1.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear1.bias", F"decoder.layers.{i}.fc1.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear2.weight", F"decoder.layers.{i}.fc2.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear2.bias", F"decoder.layers.{i}.fc2.bias") ) rename_keys.append( (F"transformer.decoder.layers.{i}.norm1.weight", F"decoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append( (F"transformer.decoder.layers.{i}.norm1.bias", F"decoder.layers.{i}.self_attn_layer_norm.bias") ) rename_keys.append( (F"transformer.decoder.layers.{i}.norm2.weight", F"decoder.layers.{i}.encoder_attn_layer_norm.weight") ) rename_keys.append( (F"transformer.decoder.layers.{i}.norm2.bias", F"decoder.layers.{i}.encoder_attn_layer_norm.bias") ) rename_keys.append( (F"transformer.decoder.layers.{i}.norm3.weight", F"decoder.layers.{i}.final_layer_norm.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm3.bias", F"decoder.layers.{i}.final_layer_norm.bias") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ] ) return rename_keys def __UpperCamelCase ( _A : str , _A : List[str] , _A : List[str] ) -> Optional[int]: """simple docstring""" lowerCAmelCase : Optional[int] = state_dict.pop(__UpperCamelCase ) lowerCAmelCase : Tuple = val def __UpperCamelCase ( _A : Tuple , _A : int=False ) -> Optional[Any]: """simple docstring""" lowerCAmelCase : int = '' if is_panoptic: lowerCAmelCase : Dict = 'detr.' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) lowerCAmelCase : Tuple = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight" ) lowerCAmelCase : Any = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase : List[str] = in_proj_weight[:2_56, :] lowerCAmelCase : Tuple = in_proj_bias[:2_56] lowerCAmelCase : Dict = in_proj_weight[2_56:5_12, :] lowerCAmelCase : List[Any] = in_proj_bias[2_56:5_12] lowerCAmelCase : Union[str, Any] = in_proj_weight[-2_56:, :] lowerCAmelCase : List[Any] = in_proj_bias[-2_56:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention lowerCAmelCase : List[str] = state_dict.pop(F"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight" ) lowerCAmelCase : Union[str, Any] = state_dict.pop(F"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase : Dict = in_proj_weight[:2_56, :] lowerCAmelCase : Dict = in_proj_bias[:2_56] lowerCAmelCase : str = in_proj_weight[2_56:5_12, :] lowerCAmelCase : Tuple = in_proj_bias[2_56:5_12] lowerCAmelCase : Any = in_proj_weight[-2_56:, :] lowerCAmelCase : Union[str, Any] = in_proj_bias[-2_56:] # read in weights + bias of input projection layer of cross-attention lowerCAmelCase : Optional[Any] = state_dict.pop( F"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight" ) lowerCAmelCase : Optional[Any] = state_dict.pop(F"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias" ) # next, add query, keys and values (in that order) of cross-attention to the state dict lowerCAmelCase : Union[str, Any] = in_proj_weight_cross_attn[:2_56, :] lowerCAmelCase : List[Any] = in_proj_bias_cross_attn[:2_56] lowerCAmelCase : Optional[int] = in_proj_weight_cross_attn[2_56:5_12, :] lowerCAmelCase : str = in_proj_bias_cross_attn[2_56:5_12] lowerCAmelCase : List[Any] = in_proj_weight_cross_attn[-2_56:, :] lowerCAmelCase : int = in_proj_bias_cross_attn[-2_56:] def __UpperCamelCase ( ) -> Optional[Any]: """simple docstring""" lowerCAmelCase : List[str] = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCAmelCase : str = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ) return im @torch.no_grad() def __UpperCamelCase ( _A : List[Any] , _A : List[str]=None , _A : Any=False ) -> Optional[Any]: """simple docstring""" lowerCAmelCase , lowerCAmelCase : int = get_detr_config(__UpperCamelCase ) # load original model from torch hub lowerCAmelCase : Any = { 'detr-resnet-50': 'detr_resnet50', 'detr-resnet-101': 'detr_resnet101', } logger.info(F"Converting model {model_name}..." ) lowerCAmelCase : str = torch.hub.load('facebookresearch/detr' , model_name_to_original_name[model_name] , pretrained=__UpperCamelCase ).eval() lowerCAmelCase : Optional[Any] = detr.state_dict() # rename keys for src, dest in create_rename_keys(__UpperCamelCase ): if is_panoptic: lowerCAmelCase : Any = 'detr.' + src rename_key(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # query, key and value matrices need special treatment read_in_q_k_v(__UpperCamelCase , is_panoptic=__UpperCamelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them lowerCAmelCase : Dict = 'detr.model.' if is_panoptic else 'model.' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('detr' ) and not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ) ): lowerCAmelCase : List[Any] = state_dict.pop(__UpperCamelCase ) lowerCAmelCase : Dict = val elif "class_labels_classifier" in key or "bbox_predictor" in key: lowerCAmelCase : Optional[int] = state_dict.pop(__UpperCamelCase ) lowerCAmelCase : Dict = val elif key.startswith('bbox_attention' ) or key.startswith('mask_head' ): continue else: lowerCAmelCase : Optional[int] = state_dict.pop(__UpperCamelCase ) lowerCAmelCase : List[Any] = val else: if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ): lowerCAmelCase : int = state_dict.pop(__UpperCamelCase ) lowerCAmelCase : List[Any] = val # finally, create HuggingFace model and load state dict lowerCAmelCase : Any = DetrForSegmentation(__UpperCamelCase ) if is_panoptic else DetrForObjectDetection(__UpperCamelCase ) model.load_state_dict(__UpperCamelCase ) model.eval() # verify our conversion on an image lowerCAmelCase : Any = 'coco_panoptic' if is_panoptic else 'coco_detection' lowerCAmelCase : Any = DetrImageProcessor(format=__UpperCamelCase ) lowerCAmelCase : Tuple = processor(images=prepare_img() , return_tensors='pt' ) lowerCAmelCase : List[str] = encoding['pixel_values'] lowerCAmelCase : int = detr(__UpperCamelCase ) lowerCAmelCase : Any = model(__UpperCamelCase ) assert torch.allclose(outputs.logits , original_outputs['pred_logits'] , atol=1e-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs['pred_boxes'] , atol=1e-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['pred_masks'] , atol=1e-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) processor.save_pretrained(__UpperCamelCase ) if push_to_hub: # Upload model and image processor to the hub logger.info('Uploading PyTorch model and image processor to the hub...' ) model.push_to_hub(F"nielsr/{model_name}" ) processor.push_to_hub(F"nielsr/{model_name}" ) if __name__ == "__main__": _lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument( '--model_name', default='detr-resnet-50', type=str, choices=['detr-resnet-50', 'detr-resnet-101'], help='Name of the DETR model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument('--push_to_hub', action='store_true', help='Whether to push the model to the hub or not.') _lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
713
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : List[Any] = LDMTextToImagePipeline _lowerCamelCase : Optional[Any] = TEXT_TO_IMAGE_PARAMS - { """negative_prompt""", """negative_prompt_embeds""", """cross_attention_kwargs""", """prompt_embeds""", } _lowerCamelCase : List[str] = PipelineTesterMixin.required_optional_params - { """num_images_per_prompt""", """callback""", """callback_steps""", } _lowerCamelCase : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS _lowerCamelCase : Optional[int] = False def lowercase ( self ): torch.manual_seed(0 ) lowerCAmelCase : Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) lowerCAmelCase : int = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , ) torch.manual_seed(0 ) lowerCAmelCase : str = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') , up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') , latent_channels=4 , ) torch.manual_seed(0 ) lowerCAmelCase : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowerCAmelCase : str = CLIPTextModel(snake_case__ ) lowerCAmelCase : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCAmelCase : List[Any] = { 'unet': unet, 'scheduler': scheduler, 'vqvae': vae, 'bert': text_encoder, 'tokenizer': tokenizer, } return components def lowercase ( self , snake_case__ , snake_case__=0 ): if str(snake_case__ ).startswith('mps' ): lowerCAmelCase : Optional[int] = torch.manual_seed(snake_case__ ) else: lowerCAmelCase : str = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) lowerCAmelCase : Tuple = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase ( self ): lowerCAmelCase : List[str] = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase : Optional[Any] = self.get_dummy_components() lowerCAmelCase : Optional[Any] = LDMTextToImagePipeline(**snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Tuple = self.get_dummy_inputs(snake_case__ ) lowerCAmelCase : Union[str, Any] = pipe(**snake_case__ ).images lowerCAmelCase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) lowerCAmelCase : List[Any] = np.array([0.6_1_0_1, 0.6_1_5_6, 0.5_6_2_2, 0.4_8_9_5, 0.6_6_6_1, 0.3_8_0_4, 0.5_7_4_8, 0.6_1_3_6, 0.5_0_1_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self , snake_case__ , snake_case__=torch.floataa , snake_case__=0 ): lowerCAmelCase : List[str] = torch.manual_seed(snake_case__ ) lowerCAmelCase : int = np.random.RandomState(snake_case__ ).standard_normal((1, 4, 32, 32) ) lowerCAmelCase : Optional[Any] = torch.from_numpy(snake_case__ ).to(device=snake_case__ , dtype=snake_case__ ) lowerCAmelCase : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase ( self ): lowerCAmelCase : Tuple = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Optional[Any] = self.get_inputs(snake_case__ ) lowerCAmelCase : List[Any] = pipe(**snake_case__ ).images lowerCAmelCase : str = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) lowerCAmelCase : Tuple = np.array([0.5_1_8_2_5, 0.5_2_8_5_0, 0.5_2_5_4_3, 0.5_4_2_5_8, 0.5_2_3_0_4, 0.5_2_5_6_9, 0.5_4_3_6_3, 0.5_5_2_7_6, 0.5_6_8_7_8] ) lowerCAmelCase : int = np.abs(expected_slice - image_slice ).max() assert max_diff < 1e-3 @nightly @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self , snake_case__ , snake_case__=torch.floataa , snake_case__=0 ): lowerCAmelCase : List[str] = torch.manual_seed(snake_case__ ) lowerCAmelCase : Any = np.random.RandomState(snake_case__ ).standard_normal((1, 4, 32, 32) ) lowerCAmelCase : List[Any] = torch.from_numpy(snake_case__ ).to(device=snake_case__ , dtype=snake_case__ ) lowerCAmelCase : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase ( self ): lowerCAmelCase : Optional[int] = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : int = self.get_inputs(snake_case__ ) lowerCAmelCase : Optional[int] = pipe(**snake_case__ ).images[0] lowerCAmelCase : Optional[int] = load_numpy( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy' ) lowerCAmelCase : List[str] = np.abs(expected_image - image ).max() assert max_diff < 1e-3
646
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _lowerCAmelCase : Union[str, Any] = { 'configuration_owlvit': [ 'OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'OwlViTConfig', 'OwlViTOnnxConfig', 'OwlViTTextConfig', 'OwlViTVisionConfig', ], 'processing_owlvit': ['OwlViTProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Tuple = ['OwlViTFeatureExtractor'] _lowerCAmelCase : List[str] = ['OwlViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : List[str] = [ 'OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'OwlViTModel', 'OwlViTPreTrainedModel', 'OwlViTTextModel', 'OwlViTVisionModel', 'OwlViTForObjectDetection', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys _lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
714
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Tuple = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { 'facebook/xmod-base': 'https://huggingface.co/facebook/xmod-base/resolve/main/config.json', 'facebook/xmod-large-prenorm': 'https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json', 'facebook/xmod-base-13-125k': 'https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json', 'facebook/xmod-base-30-125k': 'https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json', 'facebook/xmod-base-30-195k': 'https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json', 'facebook/xmod-base-60-125k': 'https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json', 'facebook/xmod-base-60-265k': 'https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json', 'facebook/xmod-base-75-125k': 'https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json', 'facebook/xmod-base-75-269k': 'https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json', } class lowerCAmelCase ( a ): _lowerCamelCase : int = """xmod""" def __init__( self , snake_case__=3_0522 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=1e-1_2 , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__="absolute" , snake_case__=True , snake_case__=None , snake_case__=False , snake_case__=2 , snake_case__=False , snake_case__=True , snake_case__=True , snake_case__=("en_XX",) , snake_case__=None , **snake_case__ , ): super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) lowerCAmelCase : Dict = vocab_size lowerCAmelCase : Optional[Any] = hidden_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob lowerCAmelCase : str = max_position_embeddings lowerCAmelCase : int = type_vocab_size lowerCAmelCase : List[Any] = initializer_range lowerCAmelCase : Any = layer_norm_eps lowerCAmelCase : Dict = position_embedding_type lowerCAmelCase : Optional[Any] = use_cache lowerCAmelCase : Union[str, Any] = classifier_dropout lowerCAmelCase : int = pre_norm lowerCAmelCase : Optional[Any] = adapter_reduction_factor lowerCAmelCase : Any = adapter_layer_norm lowerCAmelCase : Dict = adapter_reuse_layer_norm lowerCAmelCase : Any = ln_before_adapter lowerCAmelCase : Optional[Any] = list(snake_case__ ) lowerCAmelCase : List[Any] = default_language class lowerCAmelCase ( a ): @property def lowercase ( self ): if self.task == "multiple-choice": lowerCAmelCase : List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase : Optional[int] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
646
0
'''simple docstring''' def __UpperCamelCase ( _A : str = 50 ) -> str: """simple docstring""" lowerCAmelCase : Union[str, Any] = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(f"""{solution() = }""")
715
'''simple docstring''' import argparse import os import re _lowerCAmelCase : Dict = 'src/diffusers' # Pattern that looks at the indentation in a line. _lowerCAmelCase : str = re.compile(r'^(\s*)\S') # Pattern that matches `"key":" and puts `key` in group 0. _lowerCAmelCase : Any = re.compile(r'^\s*"([^"]+)":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. _lowerCAmelCase : List[Any] = re.compile(r'^\s*_import_structure\["([^"]+)"\]') # Pattern that matches `"key",` and puts `key` in group 0. _lowerCAmelCase : int = re.compile(r'^\s*"([^"]+)",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. _lowerCAmelCase : Optional[Any] = re.compile(r'\[([^\]]+)\]') def __UpperCamelCase ( _A : Union[str, Any] ) -> Dict: """simple docstring""" lowerCAmelCase : Any = _re_indent.search(_A ) return "" if search is None else search.groups()[0] def __UpperCamelCase ( _A : Dict , _A : Any="" , _A : List[str]=None , _A : Any=None ) -> Tuple: """simple docstring""" lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Tuple = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(_A ): index += 1 lowerCAmelCase : Optional[int] = ['\n'.join(lines[:index] )] else: lowerCAmelCase : int = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowerCAmelCase : Tuple = [lines[index]] index += 1 while index < len(_A ) and (end_prompt is None or not lines[index].startswith(_A )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(_A ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(_A ) ) if index < len(_A ) - 1: lowerCAmelCase : List[Any] = [lines[index + 1]] index += 1 else: lowerCAmelCase : int = [] else: blocks.append('\n'.join(_A ) ) lowerCAmelCase : Any = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(_A ) > 0: blocks.append('\n'.join(_A ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(_A ): blocks.append('\n'.join(lines[index:] ) ) return blocks def __UpperCamelCase ( _A : Dict ) -> List[Any]: """simple docstring""" def _inner(_A : Tuple ): return key(_A ).lower().replace('_' , '' ) return _inner def __UpperCamelCase ( _A : Union[str, Any] , _A : Any=None ) -> Optional[Any]: """simple docstring""" def noop(_A : Any ): return x if key is None: lowerCAmelCase : List[str] = noop # Constants are all uppercase, they go first. lowerCAmelCase : str = [obj for obj in objects if key(_A ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowerCAmelCase : List[str] = [obj for obj in objects if key(_A )[0].isupper() and not key(_A ).isupper()] # Functions begin with a lowercase, they go last. lowerCAmelCase : Optional[Any] = [obj for obj in objects if not key(_A )[0].isupper()] lowerCAmelCase : Tuple = ignore_underscore(_A ) return sorted(_A , key=_A ) + sorted(_A , key=_A ) + sorted(_A , key=_A ) def __UpperCamelCase ( _A : Union[str, Any] ) -> int: """simple docstring""" def _replace(_A : List[Any] ): lowerCAmelCase : List[Any] = match.groups()[0] if "," not in imports: return F"[{imports}]" lowerCAmelCase : Dict = [part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase : List[str] = keys[:-1] return "[" + ", ".join([F"\"{k}\"" for k in sort_objects(_A )] ) + "]" lowerCAmelCase : Optional[int] = import_statement.split('\n' ) if len(_A ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowerCAmelCase : Optional[Any] = 2 if lines[1].strip() == '[' else 1 lowerCAmelCase : List[str] = [(i, _re_strip_line.search(_A ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowerCAmelCase : Optional[Any] = sort_objects(_A , key=lambda _A : x[1] ) lowerCAmelCase : Dict = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(_A ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowerCAmelCase : Optional[int] = _re_bracket_content.sub(_replace , lines[1] ) else: lowerCAmelCase : List[Any] = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase : int = keys[:-1] lowerCAmelCase : Tuple = get_indent(lines[1] ) + ', '.join([F"\"{k}\"" for k in sort_objects(_A )] ) return "\n".join(_A ) else: # Finally we have to deal with imports fitting on one line lowerCAmelCase : Union[str, Any] = _re_bracket_content.sub(_replace , _A ) return import_statement def __UpperCamelCase ( _A : str , _A : Tuple=True ) -> Optional[Any]: """simple docstring""" with open(_A , 'r' ) as f: lowerCAmelCase : Optional[int] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowerCAmelCase : List[Any] = split_code_in_indented_blocks( _A , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(_A ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowerCAmelCase : List[str] = main_blocks[block_idx] lowerCAmelCase : Union[str, Any] = block.split('\n' ) # Get to the start of the imports. lowerCAmelCase : Optional[Any] = 0 while line_idx < len(_A ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowerCAmelCase : Optional[Any] = len(_A ) else: line_idx += 1 if line_idx >= len(_A ): continue # Ignore beginning and last line: they don't contain anything. lowerCAmelCase : str = '\n'.join(block_lines[line_idx:-1] ) lowerCAmelCase : str = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowerCAmelCase : Optional[Any] = split_code_in_indented_blocks(_A , indent_level=_A ) # We have two categories of import key: list or _import_structure[key].append/extend lowerCAmelCase : Union[str, Any] = _re_direct_key if '_import_structure' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowerCAmelCase : int = [(pattern.search(_A ).groups()[0] if pattern.search(_A ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowerCAmelCase : Dict = [(i, key) for i, key in enumerate(_A ) if key is not None] lowerCAmelCase : List[Any] = [x[0] for x in sorted(_A , key=lambda _A : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowerCAmelCase : int = 0 lowerCAmelCase : Dict = [] for i in range(len(_A ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: lowerCAmelCase : str = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(_A ) count += 1 # And we put our main block back together with its first and last line. lowerCAmelCase : str = '\n'.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(_A ): if check_only: return True else: print(F"Overwriting {file}." ) with open(_A , 'w' ) as f: f.write('\n'.join(_A ) ) def __UpperCamelCase ( _A : Tuple=True ) -> Any: """simple docstring""" lowerCAmelCase : Tuple = [] for root, _, files in os.walk(_A ): if "__init__.py" in files: lowerCAmelCase : Any = sort_imports(os.path.join(_A , '__init__.py' ) , check_only=_A ) if result: lowerCAmelCase : Optional[Any] = [os.path.join(_A , '__init__.py' )] if len(_A ) > 0: raise ValueError(F"Would overwrite {len(_A )} files, run `make style`." ) if __name__ == "__main__": _lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') _lowerCAmelCase : Optional[int] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
646
0
'''simple docstring''' import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class lowerCAmelCase ( __snake_case ): def __init__( self ): lowerCAmelCase : Any = [] def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , **snake_case__ ): self.events.append('on_init_end' ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , **snake_case__ ): self.events.append('on_train_begin' ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , **snake_case__ ): self.events.append('on_train_end' ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , **snake_case__ ): self.events.append('on_epoch_begin' ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , **snake_case__ ): self.events.append('on_epoch_end' ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , **snake_case__ ): self.events.append('on_step_begin' ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , **snake_case__ ): self.events.append('on_step_end' ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , **snake_case__ ): self.events.append('on_evaluate' ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , **snake_case__ ): self.events.append('on_predict' ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , **snake_case__ ): self.events.append('on_save' ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , **snake_case__ ): self.events.append('on_log' ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , **snake_case__ ): self.events.append('on_prediction_step' ) @require_torch class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): lowerCAmelCase : Any = tempfile.mkdtemp() def lowercase ( self ): shutil.rmtree(self.output_dir ) def lowercase ( self , snake_case__=0 , snake_case__=0 , snake_case__=64 , snake_case__=64 , snake_case__=None , snake_case__=False , **snake_case__ ): lowerCAmelCase : Dict = RegressionDataset(length=A_ ) lowerCAmelCase : int = RegressionDataset(length=A_ ) lowerCAmelCase : List[Any] = RegressionModelConfig(a=A_ , b=A_ ) lowerCAmelCase : Any = RegressionPreTrainedModel(A_ ) lowerCAmelCase : Any = TrainingArguments(self.output_dir , disable_tqdm=A_ , report_to=[] , **A_ ) return Trainer( A_ , A_ , train_dataset=A_ , eval_dataset=A_ , callbacks=A_ , ) def lowercase ( self , snake_case__ , snake_case__ ): self.assertEqual(len(A_ ) , len(A_ ) ) # Order doesn't matter lowerCAmelCase : Optional[int] = sorted(A_ , key=lambda snake_case__ : cb.__name__ if isinstance(A_ , A_ ) else cb.__class__.__name__ ) lowerCAmelCase : Optional[Any] = sorted(A_ , key=lambda snake_case__ : cb.__name__ if isinstance(A_ , A_ ) else cb.__class__.__name__ ) for cba, cba in zip(A_ , A_ ): if isinstance(A_ , A_ ) and isinstance(A_ , A_ ): self.assertEqual(A_ , A_ ) elif isinstance(A_ , A_ ) and not isinstance(A_ , A_ ): self.assertEqual(A_ , cba.__class__ ) elif not isinstance(A_ , A_ ) and isinstance(A_ , A_ ): self.assertEqual(cba.__class__ , A_ ) else: self.assertEqual(A_ , A_ ) def lowercase ( self , snake_case__ ): lowerCAmelCase : Any = ["on_init_end", "on_train_begin"] lowerCAmelCase : int = 0 lowerCAmelCase : str = len(trainer.get_eval_dataloader() ) lowerCAmelCase : Tuple = ["on_prediction_step"] * len(trainer.get_eval_dataloader() ) + ["on_log", "on_evaluate"] for _ in range(trainer.state.num_train_epochs ): expected_events.append('on_epoch_begin' ) for _ in range(A_ ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append('on_log' ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append('on_save' ) expected_events.append('on_epoch_end' ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def lowercase ( self ): lowerCAmelCase : Union[str, Any] = self.get_trainer() lowerCAmelCase : Any = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , A_ ) # Callbacks passed at init are added to the default callbacks lowerCAmelCase : List[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(A_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , A_ ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback lowerCAmelCase : List[str] = self.get_trainer(disable_tqdm=A_ ) lowerCAmelCase : Union[str, Any] = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , A_ ) def lowercase ( self ): lowerCAmelCase : Optional[Any] = DEFAULT_CALLBACKS.copy() + [ProgressCallback] lowerCAmelCase : Any = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(A_ ) expected_callbacks.remove(A_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , A_ ) lowerCAmelCase : List[Any] = self.get_trainer() lowerCAmelCase : Optional[int] = trainer.pop_callback(A_ ) self.assertEqual(cb.__class__ , A_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , A_ ) trainer.add_callback(A_ ) expected_callbacks.insert(0 , A_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , A_ ) # We can also add, pop, or remove by instance lowerCAmelCase : Dict = self.get_trainer() lowerCAmelCase : int = trainer.callback_handler.callbacks[0] trainer.remove_callback(A_ ) expected_callbacks.remove(A_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , A_ ) lowerCAmelCase : List[Any] = self.get_trainer() lowerCAmelCase : Tuple = trainer.callback_handler.callbacks[0] lowerCAmelCase : Optional[Any] = trainer.pop_callback(A_ ) self.assertEqual(A_ , A_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , A_ ) trainer.add_callback(A_ ) expected_callbacks.insert(0 , A_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , A_ ) def lowercase ( self ): import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action='ignore' , category=A_ ) lowerCAmelCase : str = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() lowerCAmelCase : List[str] = trainer.callback_handler.callbacks[-2].events self.assertEqual(A_ , self.get_expected_events(A_ ) ) # Independent log/save/eval lowerCAmelCase : int = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() lowerCAmelCase : Any = trainer.callback_handler.callbacks[-2].events self.assertEqual(A_ , self.get_expected_events(A_ ) ) lowerCAmelCase : Union[str, Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() lowerCAmelCase : int = trainer.callback_handler.callbacks[-2].events self.assertEqual(A_ , self.get_expected_events(A_ ) ) lowerCAmelCase : Tuple = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy='steps' ) trainer.train() lowerCAmelCase : str = trainer.callback_handler.callbacks[-2].events self.assertEqual(A_ , self.get_expected_events(A_ ) ) lowerCAmelCase : Dict = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy='epoch' ) trainer.train() lowerCAmelCase : str = trainer.callback_handler.callbacks[-2].events self.assertEqual(A_ , self.get_expected_events(A_ ) ) # A bit of everything lowerCAmelCase : Optional[Any] = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy='steps' , ) trainer.train() lowerCAmelCase : List[Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(A_ , self.get_expected_events(A_ ) ) # warning should be emitted for duplicated callbacks with patch('transformers.trainer_callback.logger.warning' ) as warn_mock: lowerCAmelCase : Dict = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(A_ ) in warn_mock.call_args[0][0]
716
'''simple docstring''' import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class lowerCAmelCase : def __init__( self , snake_case__ , snake_case__=13 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=99 , snake_case__=64 , snake_case__=32 , snake_case__=5 , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=16 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=3 , snake_case__=4 , snake_case__=None , ): lowerCAmelCase : str = parent lowerCAmelCase : Optional[int] = batch_size lowerCAmelCase : Optional[Any] = seq_length lowerCAmelCase : Optional[Any] = is_training lowerCAmelCase : Dict = use_input_mask lowerCAmelCase : Tuple = use_token_type_ids lowerCAmelCase : int = use_labels lowerCAmelCase : int = vocab_size lowerCAmelCase : Any = hidden_size lowerCAmelCase : Optional[Any] = embedding_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : List[str] = num_attention_heads lowerCAmelCase : List[Any] = intermediate_size lowerCAmelCase : Dict = hidden_act lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : int = attention_probs_dropout_prob lowerCAmelCase : List[Any] = max_position_embeddings lowerCAmelCase : int = type_vocab_size lowerCAmelCase : List[str] = type_sequence_label_size lowerCAmelCase : Dict = initializer_range lowerCAmelCase : Any = num_labels lowerCAmelCase : str = num_choices lowerCAmelCase : int = scope def lowercase ( self ): lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Union[str, Any] = None if self.use_input_mask: lowerCAmelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : Optional[int] = None if self.use_token_type_ids: lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : Optional[Any] = None lowerCAmelCase : Optional[Any] = None lowerCAmelCase : Dict = None if self.use_labels: lowerCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase ( self ): return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case__ , initializer_range=self.initializer_range , ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = MobileBertModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : int = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) lowerCAmelCase : Optional[int] = model(snake_case__ , token_type_ids=snake_case__ ) lowerCAmelCase : Optional[Any] = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : int = MobileBertForMaskedLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : str = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = MobileBertForNextSentencePrediction(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : str = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : List[Any] = MobileBertForPreTraining(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Tuple = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , next_sentence_label=snake_case__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = MobileBertForQuestionAnswering(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : List[str] = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = self.num_labels lowerCAmelCase : List[Any] = MobileBertForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = self.num_labels lowerCAmelCase : int = MobileBertForTokenClassification(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : List[str] = self.num_choices lowerCAmelCase : Any = MobileBertForMultipleChoice(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : int = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : List[str] = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase ( self ): lowerCAmelCase : Any = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) : Optional[Any] = config_and_inputs lowerCAmelCase : List[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase ( a , a , unittest.TestCase ): _lowerCamelCase : List[str] = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) _lowerCamelCase : Tuple = ( { """feature-extraction""": MobileBertModel, """fill-mask""": MobileBertForMaskedLM, """question-answering""": MobileBertForQuestionAnswering, """text-classification""": MobileBertForSequenceClassification, """token-classification""": MobileBertForTokenClassification, """zero-shot""": MobileBertForSequenceClassification, } if is_torch_available() else {} ) _lowerCamelCase : str = True def lowercase ( self , snake_case__ , snake_case__ , snake_case__=False ): lowerCAmelCase : int = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if return_labels: if model_class in get_values(snake_case__ ): lowerCAmelCase : str = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=snake_case__ ) lowerCAmelCase : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case__ ) return inputs_dict def lowercase ( self ): lowerCAmelCase : List[Any] = MobileBertModelTester(self ) lowerCAmelCase : Dict = ConfigTester(self , config_class=snake_case__ , hidden_size=37 ) def lowercase ( self ): self.config_tester.run_common_tests() def lowercase ( self ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*snake_case__ ) def __UpperCamelCase ( _A : Optional[Any] ) -> Optional[int]: """simple docstring""" return torch.tensor( _A , dtype=torch.long , device=_A , ) _lowerCAmelCase : Union[str, Any] = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase ( unittest.TestCase ): @slow def lowercase ( self ): lowerCAmelCase : List[str] = MobileBertModel.from_pretrained('google/mobilebert-uncased' ).to(snake_case__ ) lowerCAmelCase : List[Any] = _long_tensor([[101, 7110, 1005, 1056, 2023, 1_1333, 1_7413, 1029, 102]] ) with torch.no_grad(): lowerCAmelCase : Tuple = model(snake_case__ )[0] lowerCAmelCase : List[Any] = torch.Size((1, 9, 512) ) self.assertEqual(output.shape , snake_case__ ) lowerCAmelCase : Union[str, Any] = torch.tensor( [ [ [-2.4_7_3_6_5_2_6e0_7, 8.2_6_9_1_6_5_6e0_4, 1.6_5_2_1_8_3_8e0_5], [-5.7_5_4_1_7_0_4e-0_1, 3.9_0_5_6_0_2_2e0_0, 4.4_0_1_1_5_0_7e0_0], [2.6_0_4_7_3_5_9e0_0, 1.5_6_7_7_6_5_2e0_0, -1.7_3_2_4_1_8_8e-0_1], ] ] , device=snake_case__ , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE lowerCAmelCase : List[str] = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) lowerCAmelCase : Dict = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
646
0
'''simple docstring''' from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : Dict[Optional[str], Type[Formatter]] = {} _lowerCAmelCase : Dict[Optional[str], str] = {} _lowerCAmelCase : Dict[Optional[str], Exception] = {} def __UpperCamelCase ( _A : type , _A : Optional[str] , _A : Optional[List[str]] = None , ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase : Optional[Any] = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( F"Overwriting format type \'{format_type}\' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})" ) lowerCAmelCase : int = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( F"Overwriting format type alias \'{alias}\' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})" ) lowerCAmelCase : Union[str, Any] = format_type def __UpperCamelCase ( _A : Exception , _A : Optional[str] , _A : Optional[List[str]] = None ) -> Dict: """simple docstring""" lowerCAmelCase : Optional[Any] = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): lowerCAmelCase : Optional[Any] = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=['python']) _register_formatter(ArrowFormatter, 'arrow', aliases=['pa', 'pyarrow']) _register_formatter(NumpyFormatter, 'numpy', aliases=['np']) _register_formatter(PandasFormatter, 'pandas', aliases=['pd']) _register_formatter(CustomFormatter, 'custom') if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, 'torch', aliases=['pt', 'pytorch']) else: _lowerCAmelCase : Optional[int] = ValueError('PyTorch needs to be installed to be able to return PyTorch tensors.') _register_unavailable_formatter(_torch_error, 'torch', aliases=['pt', 'pytorch']) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, 'tensorflow', aliases=['tf']) else: _lowerCAmelCase : str = ValueError('Tensorflow needs to be installed to be able to return Tensorflow tensors.') _register_unavailable_formatter(_tf_error, 'tensorflow', aliases=['tf']) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, 'jax', aliases=[]) else: _lowerCAmelCase : Any = ValueError('JAX needs to be installed to be able to return JAX arrays.') _register_unavailable_formatter(_jax_error, 'jax', aliases=[]) def __UpperCamelCase ( _A : Optional[str] ) -> str: """simple docstring""" if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def __UpperCamelCase ( _A : Optional[str] , **_A : Tuple ) -> Any: """simple docstring""" lowerCAmelCase : int = get_format_type_from_alias(_A ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**_A ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( F"Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got \'{format_type}\'" )
717
'''simple docstring''' import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __UpperCamelCase ( _A : Dict ) -> int: """simple docstring""" lowerCAmelCase : Tuple = [] embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight", F"stage{idx}.patch_embed.proj.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias", F"stage{idx}.patch_embed.proj.bias", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight", F"stage{idx}.patch_embed.norm.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias", F"stage{idx}.patch_embed.norm.bias", ) ) return embed def __UpperCamelCase ( _A : List[Any] , _A : Dict ) -> Any: """simple docstring""" lowerCAmelCase : str = [] attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight", F"stage{idx}.blocks.{cnt}.attn.proj_q.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias", F"stage{idx}.blocks.{cnt}.attn.proj_q.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight", F"stage{idx}.blocks.{cnt}.attn.proj_k.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias", F"stage{idx}.blocks.{cnt}.attn.proj_k.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight", F"stage{idx}.blocks.{cnt}.attn.proj_v.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias", F"stage{idx}.blocks.{cnt}.attn.proj_v.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight", F"stage{idx}.blocks.{cnt}.attn.proj.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias", F"stage{idx}.blocks.{cnt}.attn.proj.bias", ) ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc2.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight", F"stage{idx}.blocks.{cnt}.norm1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias", F"stage{idx}.blocks.{cnt}.norm1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight", F"stage{idx}.blocks.{cnt}.norm2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias", F"stage{idx}.blocks.{cnt}.norm2.bias") ) return attention_weights def __UpperCamelCase ( _A : Optional[int] ) -> Optional[int]: """simple docstring""" lowerCAmelCase : Optional[int] = [] token.append((F"cvt.encoder.stages.{idx}.cls_token", 'stage2.cls_token') ) return token def __UpperCamelCase ( ) -> int: """simple docstring""" lowerCAmelCase : List[Any] = [] head.append(('layernorm.weight', 'norm.weight') ) head.append(('layernorm.bias', 'norm.bias') ) head.append(('classifier.weight', 'head.weight') ) head.append(('classifier.bias', 'head.bias') ) return head def __UpperCamelCase ( _A : str , _A : Optional[Any] , _A : Dict , _A : str ) -> Optional[int]: """simple docstring""" lowerCAmelCase : List[str] = 'imagenet-1k-id2label.json' lowerCAmelCase : Tuple = 10_00 lowerCAmelCase : str = 'huggingface/label-files' lowerCAmelCase : List[Any] = num_labels lowerCAmelCase : Any = json.load(open(cached_download(hf_hub_url(_A , _A , repo_type='dataset' ) ) , 'r' ) ) lowerCAmelCase : List[str] = {int(_A ): v for k, v in idalabel.items()} lowerCAmelCase : List[str] = idalabel lowerCAmelCase : str = {v: k for k, v in idalabel.items()} lowerCAmelCase : int = CvtConfig(num_labels=_A , idalabel=_A , labelaid=_A ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13": lowerCAmelCase : List[str] = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21": lowerCAmelCase : Tuple = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: lowerCAmelCase : Any = [2, 2, 20] lowerCAmelCase : List[str] = [3, 12, 16] lowerCAmelCase : List[Any] = [1_92, 7_68, 10_24] lowerCAmelCase : Union[str, Any] = CvtForImageClassification(_A ) lowerCAmelCase : str = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) lowerCAmelCase : Optional[Any] = image_size lowerCAmelCase : List[Any] = torch.load(_A , map_location=torch.device('cpu' ) ) lowerCAmelCase : str = OrderedDict() lowerCAmelCase : int = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: lowerCAmelCase : List[str] = list_of_state_dict + cls_token(_A ) lowerCAmelCase : Optional[Any] = list_of_state_dict + embeddings(_A ) for cnt in range(config.depth[idx] ): lowerCAmelCase : List[Any] = list_of_state_dict + attention(_A , _A ) lowerCAmelCase : List[str] = list_of_state_dict + final() for gg in list_of_state_dict: print(_A ) for i in range(len(_A ) ): lowerCAmelCase : Tuple = original_weights[list_of_state_dict[i][1]] model.load_state_dict(_A ) model.save_pretrained(_A ) image_processor.save_pretrained(_A ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": _lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '--cvt_model', default='cvt-w24', type=str, help='Name of the cvt model you\'d like to convert.', ) parser.add_argument( '--image_size', default=384, type=int, help='Input Image Size', ) parser.add_argument( '--cvt_file_name', default=r'cvtmodels\CvT-w24-384x384-IN-22k.pth', type=str, help='Input Image Size', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) _lowerCAmelCase : str = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
646
0
'''simple docstring''' import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): lowerCAmelCase : int = [ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertTrue(is_safetensors_compatible(lowerCamelCase__ ) ) def lowercase ( self ): lowerCAmelCase : Optional[int] = [ "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertTrue(is_safetensors_compatible(lowerCamelCase__ ) ) def lowercase ( self ): lowerCAmelCase : List[str] = [ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", "unet/diffusion_pytorch_model.bin", # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(lowerCamelCase__ ) ) def lowercase ( self ): lowerCAmelCase : Optional[int] = [ "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", ] self.assertTrue(is_safetensors_compatible(lowerCamelCase__ ) ) def lowercase ( self ): lowerCAmelCase : str = [ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", # Removed: 'text_encoder/model.safetensors', "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertFalse(is_safetensors_compatible(lowerCamelCase__ ) ) def lowercase ( self ): lowerCAmelCase : List[Any] = [ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] lowerCAmelCase : int = "fp16" self.assertTrue(is_safetensors_compatible(lowerCamelCase__ , variant=lowerCamelCase__ ) ) def lowercase ( self ): lowerCAmelCase : List[str] = [ "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] lowerCAmelCase : List[str] = "fp16" self.assertTrue(is_safetensors_compatible(lowerCamelCase__ , variant=lowerCamelCase__ ) ) def lowercase ( self ): lowerCAmelCase : int = [ "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] lowerCAmelCase : Optional[int] = "fp16" self.assertTrue(is_safetensors_compatible(lowerCamelCase__ , variant=lowerCamelCase__ ) ) def lowercase ( self ): lowerCAmelCase : Optional[Any] = [ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", "unet/diffusion_pytorch_model.fp16.bin", # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowerCAmelCase : Optional[Any] = "fp16" self.assertFalse(is_safetensors_compatible(lowerCamelCase__ , variant=lowerCamelCase__ ) ) def lowercase ( self ): lowerCAmelCase : List[Any] = [ "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", ] lowerCAmelCase : Union[str, Any] = "fp16" self.assertTrue(is_safetensors_compatible(lowerCamelCase__ , variant=lowerCamelCase__ ) ) def lowercase ( self ): lowerCAmelCase : Tuple = [ "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", ] lowerCAmelCase : Optional[int] = "fp16" self.assertTrue(is_safetensors_compatible(lowerCamelCase__ , variant=lowerCamelCase__ ) ) def lowercase ( self ): lowerCAmelCase : List[Any] = [ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", # 'text_encoder/model.fp16.safetensors', "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] lowerCAmelCase : int = "fp16" self.assertFalse(is_safetensors_compatible(lowerCamelCase__ , variant=lowerCamelCase__ ) )
718
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Any = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { 'xlm-roberta-base': 'https://huggingface.co/xlm-roberta-base/resolve/main/config.json', 'xlm-roberta-large': 'https://huggingface.co/xlm-roberta-large/resolve/main/config.json', 'xlm-roberta-large-finetuned-conll02-dutch': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll02-spanish': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-english': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-german': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json' ), } class lowerCAmelCase ( a ): _lowerCamelCase : List[str] = """xlm-roberta""" def __init__( self , snake_case__=3_0522 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=1e-1_2 , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__="absolute" , snake_case__=True , snake_case__=None , **snake_case__ , ): super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) lowerCAmelCase : Optional[Any] = vocab_size lowerCAmelCase : Optional[Any] = hidden_size lowerCAmelCase : Optional[Any] = num_hidden_layers lowerCAmelCase : Any = num_attention_heads lowerCAmelCase : Optional[int] = hidden_act lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : Dict = hidden_dropout_prob lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob lowerCAmelCase : Optional[Any] = max_position_embeddings lowerCAmelCase : Optional[int] = type_vocab_size lowerCAmelCase : int = initializer_range lowerCAmelCase : List[Any] = layer_norm_eps lowerCAmelCase : Union[str, Any] = position_embedding_type lowerCAmelCase : Union[str, Any] = use_cache lowerCAmelCase : List[str] = classifier_dropout class lowerCAmelCase ( a ): @property def lowercase ( self ): if self.task == "multiple-choice": lowerCAmelCase : str = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase : Optional[int] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
646
0
'''simple docstring''' def __UpperCamelCase ( _A : List[Any] = 10_00 ) -> int: """simple docstring""" return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
719
'''simple docstring''' import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer _lowerCAmelCase : List[Any] = logging.getLogger(__name__) def __UpperCamelCase ( ) -> Any: """simple docstring""" lowerCAmelCase : str = argparse.ArgumentParser( description='Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.' ) parser.add_argument( '--dataset_name' , type=_A , default='wikitext' , help='Name of the training. Explore datasets at: hf.co/datasets.' , ) parser.add_argument( '--dataset_config' , type=_A , default='wikitext-103-raw-v1' , help='Configuration name of the dataset.' ) parser.add_argument( '--tokenizer_name_or_path' , type=_A , default='sayakpaul/unigram-tokenizer-wikitext' , help='Tokenizer identifier. Can be a local filepath or a Hub identifier.' , ) parser.add_argument( '--shard_size' , type=_A , default=10_00 , help='Number of entries to go in a single shard.' , ) parser.add_argument('--split' , type=_A , default='train' , choices=['train', 'test', 'validation'] ) parser.add_argument( '--limit' , default=_A , type=_A , help='Limit the number of shards (used for debugging).' , ) parser.add_argument( '--max_length' , type=_A , default=5_12 , help='Maximum sequence length. For training on TPUs, it helps to have a maximum' ' sequence length that is a multiple of 8.' , ) parser.add_argument( '--output_dir' , default='tf-tpu' , type=_A , help='Output directory where the TFRecord shards will be saved. If the' ' path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord' ' shards will be directly saved to a Google Cloud Storage bucket.' , ) lowerCAmelCase : Any = parser.parse_args() return args def __UpperCamelCase ( _A : Optional[int] ) -> int: """simple docstring""" def fn(_A : Tuple ): return tokenizer(examples['text'] ) return fn def __UpperCamelCase ( _A : int ) -> int: """simple docstring""" lowerCAmelCase : Tuple = [] for i in range(len(tokenized_data['input_ids'] ) ): lowerCAmelCase : Optional[Any] = { 'input_ids': tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data['input_ids'][i] ) ), 'attention_mask': tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data['attention_mask'][i] ) ), } lowerCAmelCase : Any = tf.train.Features(feature=_A ) lowerCAmelCase : List[str] = tf.train.Example(features=_A ) lowerCAmelCase : Tuple = example.SerializeToString() records.append(_A ) return records def __UpperCamelCase ( _A : int ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase : Union[str, Any] = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: lowerCAmelCase : Optional[Any] = min(len(_A ) , args.limit ) lowerCAmelCase : Dict = dataset.select(range(_A ) ) print(F"Limiting the dataset to {args.limit} entries." ) lowerCAmelCase : str = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) lowerCAmelCase : Any = os.path.join(args.output_dir , args.split ) if not os.path.exists(_A ): os.makedirs(_A ) else: lowerCAmelCase : List[Any] = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. lowerCAmelCase : Any = tokenize_function(_A ) lowerCAmelCase : Optional[int] = dataset.map(_A , batched=_A , num_proc=4 , remove_columns=['text'] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(_A : str ): # Concatenate all texts. lowerCAmelCase : Optional[int] = {k: sum(examples[k] , [] ) for k in examples.keys()} lowerCAmelCase : str = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 lowerCAmelCase : List[Any] = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. lowerCAmelCase : str = { k: [t[i : i + args.max_length] for i in range(0 , _A , args.max_length )] for k, t in concatenated_examples.items() } return result lowerCAmelCase : List[Any] = dataset_tokenized.map(_A , batched=_A , batch_size=10_00 , num_proc=4 ) lowerCAmelCase : Union[str, Any] = 0 lowerCAmelCase : Tuple = 0 for shard in range(0 , len(_A ) , args.shard_size ): lowerCAmelCase : Optional[Any] = grouped_dataset[shard : shard + args.shard_size] lowerCAmelCase : List[str] = len(dataset_snapshot['input_ids'] ) lowerCAmelCase : Union[str, Any] = os.path.join(_A , F"dataset-{shard_count}-{records_containing}.tfrecord" ) lowerCAmelCase : List[Any] = get_serialized_examples(_A ) with tf.io.TFRecordWriter(_A ) as out_file: for i in range(len(_A ) ): lowerCAmelCase : Union[str, Any] = serialized_examples[i] out_file.write(_A ) print('Wrote file {} containing {} records'.format(_A , _A ) ) shard_count += 1 total_records += records_containing with open(F"split-{args.split}-records-count.txt" , 'w' ) as f: print(F"Total {args.split} records: {total_records}" , file=_A ) if __name__ == "__main__": _lowerCAmelCase : List[Any] = parse_args() main(args)
646
0
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) _lowerCAmelCase : int = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} _lowerCAmelCase : Dict = { 'vocab_file': { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json', 'allenai/longformer-large-4096': ( 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json' ), 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json' ), }, 'merges_file': { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt', 'allenai/longformer-large-4096': ( 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt' ), 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt' ), }, } _lowerCAmelCase : Any = { 'allenai/longformer-base-4096': 4096, 'allenai/longformer-large-4096': 4096, 'allenai/longformer-large-4096-finetuned-triviaqa': 4096, 'allenai/longformer-base-4096-extra.pos.embd.only': 4096, 'allenai/longformer-large-4096-extra.pos.embd.only': 4096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __UpperCamelCase ( ) -> List[str]: """simple docstring""" lowerCAmelCase : Optional[Any] = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) lowerCAmelCase : Any = bs[:] lowerCAmelCase : Optional[int] = 0 for b in range(2**8 ): if b not in bs: bs.append(UpperCamelCase__ ) cs.append(2**8 + n ) n += 1 lowerCAmelCase : Tuple = [chr(UpperCamelCase__ ) for n in cs] return dict(zip(UpperCamelCase__ , UpperCamelCase__ ) ) def __UpperCamelCase ( _A : Tuple ) -> Optional[Any]: """simple docstring""" lowerCAmelCase : Tuple = set() lowerCAmelCase : Optional[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCAmelCase : List[Any] = char return pairs class lowerCAmelCase ( __lowercase ): _lowerCamelCase : Dict = VOCAB_FILES_NAMES _lowerCamelCase : Dict = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase : Optional[Any] = ['''input_ids''', '''attention_mask'''] def __init__( self , snake_case__ , snake_case__ , snake_case__="replace" , snake_case__="<s>" , snake_case__="</s>" , snake_case__="</s>" , snake_case__="<s>" , snake_case__="<unk>" , snake_case__="<pad>" , snake_case__="<mask>" , snake_case__=False , **snake_case__ , ): lowerCAmelCase : List[str] = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else bos_token lowerCAmelCase : Union[str, Any] = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else eos_token lowerCAmelCase : Optional[int] = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else sep_token lowerCAmelCase : List[str] = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else cls_token lowerCAmelCase : Any = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else unk_token lowerCAmelCase : Union[str, Any] = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase : Union[str, Any] = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else mask_token super().__init__( errors=__a , bos_token=__a , eos_token=__a , unk_token=__a , sep_token=__a , cls_token=__a , pad_token=__a , mask_token=__a , add_prefix_space=__a , **__a , ) with open(__a , encoding='utf-8' ) as vocab_handle: lowerCAmelCase : Optional[int] = json.load(__a ) lowerCAmelCase : int = {v: k for k, v in self.encoder.items()} lowerCAmelCase : Union[str, Any] = errors # how to handle errors in decoding lowerCAmelCase : Any = bytes_to_unicode() lowerCAmelCase : int = {v: k for k, v in self.byte_encoder.items()} with open(__a , encoding='utf-8' ) as merges_handle: lowerCAmelCase : Any = merges_handle.read().split('\n' )[1:-1] lowerCAmelCase : Dict = [tuple(merge.split() ) for merge in bpe_merges] lowerCAmelCase : Dict = dict(zip(__a , range(len(__a ) ) ) ) lowerCAmelCase : Optional[int] = {} lowerCAmelCase : Tuple = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCAmelCase : Dict = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property def lowercase ( self ): return len(self.encoder ) def lowercase ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def lowercase ( self , snake_case__ ): if token in self.cache: return self.cache[token] lowerCAmelCase : Any = tuple(__a ) lowerCAmelCase : Dict = get_pairs(__a ) if not pairs: return token while True: lowerCAmelCase : List[str] = min(__a , key=lambda snake_case__ : self.bpe_ranks.get(__a , float('inf' ) ) ) if bigram not in self.bpe_ranks: break lowerCAmelCase : Optional[Any] = bigram lowerCAmelCase : Union[str, Any] = [] lowerCAmelCase : Optional[Any] = 0 while i < len(__a ): try: lowerCAmelCase : Optional[Any] = word.index(__a , __a ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCAmelCase : Any = j if word[i] == first and i < len(__a ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCAmelCase : Optional[int] = tuple(__a ) lowerCAmelCase : List[str] = new_word if len(__a ) == 1: break else: lowerCAmelCase : Union[str, Any] = get_pairs(__a ) lowerCAmelCase : Union[str, Any] = """ """.join(__a ) lowerCAmelCase : Dict = word return word def lowercase ( self , snake_case__ ): lowerCAmelCase : int = [] for token in re.findall(self.pat , __a ): lowerCAmelCase : str = """""".join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__a ).split(' ' ) ) return bpe_tokens def lowercase ( self , snake_case__ ): return self.encoder.get(__a , self.encoder.get(self.unk_token ) ) def lowercase ( self , snake_case__ ): return self.decoder.get(__a ) def lowercase ( self , snake_case__ ): lowerCAmelCase : Union[str, Any] = """""".join(__a ) lowerCAmelCase : Optional[int] = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def lowercase ( self , snake_case__ , snake_case__ = None ): if not os.path.isdir(__a ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return lowerCAmelCase : int = os.path.join( __a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) lowerCAmelCase : Optional[int] = os.path.join( __a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(__a , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__a , ensure_ascii=__a ) + '\n' ) lowerCAmelCase : List[Any] = 0 with open(__a , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda snake_case__ : kv[1] ): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." ' Please check that the tokenizer is not corrupted!' ) lowerCAmelCase : Tuple = token_index writer.write(' '.join(__a ) + '\n' ) index += 1 return vocab_file, merge_file def lowercase ( self , snake_case__ , snake_case__ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase : Any = [self.cls_token_id] lowerCAmelCase : Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase ( self , snake_case__ , snake_case__ = None , snake_case__ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__a , token_ids_a=__a , already_has_special_tokens=__a ) if token_ids_a is None: return [1] + ([0] * len(__a )) + [1] return [1] + ([0] * len(__a )) + [1, 1] + ([0] * len(__a )) + [1] def lowercase ( self , snake_case__ , snake_case__ = None ): lowerCAmelCase : int = [self.sep_token_id] lowerCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase ( self , snake_case__ , snake_case__=False , **snake_case__ ): lowerCAmelCase : Optional[Any] = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__a ) > 0 and not text[0].isspace()): lowerCAmelCase : str = """ """ + text return (text, kwargs)
720
'''simple docstring''' import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() _lowerCAmelCase : List[str] = logging.get_logger('transformers.models.speecht5') def __UpperCamelCase ( _A : Any , _A : Dict , _A : Any ) -> Union[str, Any]: """simple docstring""" hf_model.apply_weight_norm() lowerCAmelCase : int = checkpoint['input_conv.weight_g'] lowerCAmelCase : Optional[int] = checkpoint['input_conv.weight_v'] lowerCAmelCase : Dict = checkpoint['input_conv.bias'] for i in range(len(config.upsample_rates ) ): lowerCAmelCase : Optional[Any] = checkpoint[F"upsamples.{i}.1.weight_g"] lowerCAmelCase : str = checkpoint[F"upsamples.{i}.1.weight_v"] lowerCAmelCase : str = checkpoint[F"upsamples.{i}.1.bias"] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): lowerCAmelCase : int = checkpoint[F"blocks.{i}.convs1.{j}.1.weight_g"] lowerCAmelCase : str = checkpoint[F"blocks.{i}.convs1.{j}.1.weight_v"] lowerCAmelCase : int = checkpoint[F"blocks.{i}.convs1.{j}.1.bias"] lowerCAmelCase : Optional[Any] = checkpoint[F"blocks.{i}.convs2.{j}.1.weight_g"] lowerCAmelCase : Tuple = checkpoint[F"blocks.{i}.convs2.{j}.1.weight_v"] lowerCAmelCase : Tuple = checkpoint[F"blocks.{i}.convs2.{j}.1.bias"] lowerCAmelCase : List[Any] = checkpoint['output_conv.1.weight_g'] lowerCAmelCase : List[str] = checkpoint['output_conv.1.weight_v'] lowerCAmelCase : Optional[Any] = checkpoint['output_conv.1.bias'] hf_model.remove_weight_norm() @torch.no_grad() def __UpperCamelCase ( _A : Dict , _A : Union[str, Any] , _A : List[Any] , _A : Any=None , _A : Any=None , ) -> Dict: """simple docstring""" if config_path is not None: lowerCAmelCase : Dict = SpeechTaHifiGanConfig.from_pretrained(_A ) else: lowerCAmelCase : Union[str, Any] = SpeechTaHifiGanConfig() lowerCAmelCase : List[Any] = SpeechTaHifiGan(_A ) lowerCAmelCase : List[str] = torch.load(_A ) load_weights(orig_checkpoint['model']['generator'] , _A , _A ) lowerCAmelCase : Tuple = np.load(_A ) lowerCAmelCase : List[Any] = stats[0].reshape(-1 ) lowerCAmelCase : int = stats[1].reshape(-1 ) lowerCAmelCase : Union[str, Any] = torch.from_numpy(_A ).float() lowerCAmelCase : int = torch.from_numpy(_A ).float() model.save_pretrained(_A ) if repo_id: print('Pushing to the hub...' ) model.push_to_hub(_A ) if __name__ == "__main__": _lowerCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--stats_path', required=True, default=None, type=str, help='Path to stats.npy file') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) _lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
646
0
'''simple docstring''' from collections.abc import Callable def __UpperCamelCase ( _A : Callable[[float], float] , _A : float , _A : float ) -> Any: """simple docstring""" lowerCAmelCase : int = a lowerCAmelCase : List[str] = b if function(_UpperCamelCase ) == 0: # one of the a or b is a root for the function return a elif function(_UpperCamelCase ) == 0: return b elif ( function(_UpperCamelCase ) * function(_UpperCamelCase ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('could not find root in given interval.' ) else: lowerCAmelCase : Union[str, Any] = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(_UpperCamelCase ) == 0: return mid elif function(_UpperCamelCase ) * function(_UpperCamelCase ) < 0: lowerCAmelCase : int = mid else: lowerCAmelCase : List[Any] = mid lowerCAmelCase : int = start + (end - start) / 2.0 return mid def __UpperCamelCase ( _A : float ) -> Dict: """simple docstring""" return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1000)) import doctest doctest.testmod()
721
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets _lowerCAmelCase : Dict = '\\n@inproceedings{popovic-2015-chrf,\n title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",\n month = sep,\n year = "2015",\n address = "Lisbon, Portugal",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W15-3049",\n doi = "10.18653/v1/W15-3049",\n pages = "392--395",\n}\n@inproceedings{popovic-2017-chrf,\n title = "chr{F}++: words helping character n-grams",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Second Conference on Machine Translation",\n month = sep,\n year = "2017",\n address = "Copenhagen, Denmark",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W17-4770",\n doi = "10.18653/v1/W17-4770",\n pages = "612--618",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' _lowerCAmelCase : Optional[Any] = '\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n' _lowerCAmelCase : List[Any] = '\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n \'score\' (float): The chrF (chrF++) score,\n \'char_order\' (int): The character n-gram order,\n \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n \'beta\' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase ( datasets.Metric ): def lowercase ( self ): if version.parse(scb.__version__ ) < version.parse('1.4.12' ): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/mjpost/sacreBLEU#chrf--chrf' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/mjpost/sacreBLEU#chrf--chrf'] , reference_urls=[ 'https://github.com/m-popovic/chrF', ] , ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ = CHRF.CHAR_ORDER , snake_case__ = CHRF.WORD_ORDER , snake_case__ = CHRF.BETA , snake_case__ = False , snake_case__ = False , snake_case__ = False , ): lowerCAmelCase : List[str] = len(references[0] ) if any(len(snake_case__ ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) lowerCAmelCase : List[str] = [[refs[i] for refs in references] for i in range(snake_case__ )] lowerCAmelCase : Union[str, Any] = CHRF(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase : Dict = sb_chrf.corpus_score(snake_case__ , snake_case__ ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
646
0
'''simple docstring''' from __future__ import annotations from math import pow, sqrt def __UpperCamelCase ( _A : float , _A : float , _A : float ) -> dict[str, float]: """simple docstring""" if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if resistance == 0: return {"resistance": sqrt(pow(_A , 2 ) - pow(_A , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(_A , 2 ) - pow(_A , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(_A , 2 ) + pow(_A , 2 ) )} else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
700
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : str = logging.get_logger(__name__) _lowerCAmelCase : Tuple = { 's-JoL/Open-Llama-V1': 'https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json', } class lowerCAmelCase ( a ): _lowerCamelCase : Union[str, Any] = """open-llama""" def __init__( self , snake_case__=10_0000 , snake_case__=4096 , snake_case__=1_1008 , snake_case__=32 , snake_case__=32 , snake_case__="silu" , snake_case__=2048 , snake_case__=0.0_2 , snake_case__=1e-6 , snake_case__=True , snake_case__=0 , snake_case__=1 , snake_case__=2 , snake_case__=False , snake_case__=True , snake_case__=0.1 , snake_case__=0.1 , snake_case__=True , snake_case__=True , snake_case__=None , **snake_case__ , ): lowerCAmelCase : Tuple = vocab_size lowerCAmelCase : Optional[Any] = max_position_embeddings lowerCAmelCase : List[Any] = hidden_size lowerCAmelCase : List[Any] = intermediate_size lowerCAmelCase : Tuple = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : str = rms_norm_eps lowerCAmelCase : Optional[int] = use_cache lowerCAmelCase : Dict = kwargs.pop( 'use_memorry_efficient_attention' , snake_case__ ) lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : Optional[Any] = attention_dropout_prob lowerCAmelCase : Union[str, Any] = use_stable_embedding lowerCAmelCase : Tuple = shared_input_output_embedding lowerCAmelCase : Tuple = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , tie_word_embeddings=snake_case__ , **snake_case__ , ) def lowercase ( self ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , snake_case__ ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' f"got {self.rope_scaling}" ) lowerCAmelCase : List[Any] = self.rope_scaling.get('type' , snake_case__ ) lowerCAmelCase : List[str] = self.rope_scaling.get('factor' , snake_case__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(snake_case__ , snake_case__ ) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
646
0
_lowerCAmelCase : Union[str, Any] = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] _lowerCAmelCase : Optional[Any] = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] _lowerCAmelCase : int = { 0: 'Sunday', 1: 'Monday', 2: 'Tuesday', 3: 'Wednesday', 4: 'Thursday', 5: 'Friday', 6: 'Saturday', } def __UpperCamelCase ( _A : Optional[int] , _A : Union[str, Any] , _A : List[Any] ) -> str: """simple docstring""" assert len(str(_SCREAMING_SNAKE_CASE ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: lowerCAmelCase : Any = year // 1_00 lowerCAmelCase : Any = (5 * (century % 4) + 2) % 7 lowerCAmelCase : int = year % 1_00 lowerCAmelCase : Optional[int] = centurian % 12 lowerCAmelCase : Tuple = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 lowerCAmelCase : List[str] = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 4_00) == 0) else DOOMSDAY_LEAP[month - 1] ) lowerCAmelCase : Dict = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
701
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) _lowerCAmelCase : Dict = { 'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class lowerCAmelCase ( a ): _lowerCamelCase : Any = """deformable_detr""" _lowerCamelCase : List[str] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , snake_case__=True , snake_case__=None , snake_case__=3 , snake_case__=300 , snake_case__=1024 , snake_case__=6 , snake_case__=1024 , snake_case__=8 , snake_case__=6 , snake_case__=1024 , snake_case__=8 , snake_case__=0.0 , snake_case__=True , snake_case__="relu" , snake_case__=256 , snake_case__=0.1 , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.0_2 , snake_case__=1.0 , snake_case__=True , snake_case__=False , snake_case__="sine" , snake_case__="resnet50" , snake_case__=True , snake_case__=False , snake_case__=4 , snake_case__=4 , snake_case__=4 , snake_case__=False , snake_case__=300 , snake_case__=False , snake_case__=1 , snake_case__=5 , snake_case__=2 , snake_case__=1 , snake_case__=1 , snake_case__=5 , snake_case__=2 , snake_case__=0.1 , snake_case__=0.2_5 , snake_case__=False , **snake_case__ , ): if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) lowerCAmelCase : Optional[int] = CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : List[str] = backbone_config.get('model_type' ) lowerCAmelCase : str = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase : Optional[Any] = config_class.from_dict(snake_case__ ) lowerCAmelCase : Union[str, Any] = use_timm_backbone lowerCAmelCase : List[Any] = backbone_config lowerCAmelCase : Any = num_channels lowerCAmelCase : Tuple = num_queries lowerCAmelCase : Dict = max_position_embeddings lowerCAmelCase : int = d_model lowerCAmelCase : List[str] = encoder_ffn_dim lowerCAmelCase : List[str] = encoder_layers lowerCAmelCase : int = encoder_attention_heads lowerCAmelCase : str = decoder_ffn_dim lowerCAmelCase : str = decoder_layers lowerCAmelCase : Dict = decoder_attention_heads lowerCAmelCase : str = dropout lowerCAmelCase : List[str] = attention_dropout lowerCAmelCase : Union[str, Any] = activation_dropout lowerCAmelCase : str = activation_function lowerCAmelCase : Any = init_std lowerCAmelCase : Any = init_xavier_std lowerCAmelCase : Dict = encoder_layerdrop lowerCAmelCase : int = auxiliary_loss lowerCAmelCase : Optional[Any] = position_embedding_type lowerCAmelCase : List[str] = backbone lowerCAmelCase : int = use_pretrained_backbone lowerCAmelCase : int = dilation # deformable attributes lowerCAmelCase : List[str] = num_feature_levels lowerCAmelCase : List[str] = encoder_n_points lowerCAmelCase : Union[str, Any] = decoder_n_points lowerCAmelCase : Tuple = two_stage lowerCAmelCase : Dict = two_stage_num_proposals lowerCAmelCase : Union[str, Any] = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.' ) # Hungarian matcher lowerCAmelCase : Union[str, Any] = class_cost lowerCAmelCase : Dict = bbox_cost lowerCAmelCase : List[Any] = giou_cost # Loss coefficients lowerCAmelCase : Dict = mask_loss_coefficient lowerCAmelCase : Any = dice_loss_coefficient lowerCAmelCase : str = bbox_loss_coefficient lowerCAmelCase : Tuple = giou_loss_coefficient lowerCAmelCase : List[str] = eos_coefficient lowerCAmelCase : Any = focal_alpha lowerCAmelCase : Dict = disable_custom_kernels super().__init__(is_encoder_decoder=snake_case__ , **snake_case__ ) @property def lowercase ( self ): return self.encoder_attention_heads @property def lowercase ( self ): return self.d_model def lowercase ( self ): lowerCAmelCase : Union[str, Any] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: lowerCAmelCase : List[Any] = self.backbone_config.to_dict() lowerCAmelCase : str = self.__class__.model_type return output
646
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowerCAmelCase : List[Any] = logging.get_logger(__name__) _lowerCAmelCase : List[Any] = {'vocab_file': 'sentencepiece.bpe.model'} _lowerCAmelCase : Dict = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, } _lowerCAmelCase : Dict = { 'moussaKam/mbarthez': 1024, 'moussaKam/barthez': 1024, 'moussaKam/barthez-orangesum-title': 1024, } _lowerCAmelCase : Optional[Any] = '▁' class lowerCAmelCase ( __snake_case ): _lowerCamelCase : Any = VOCAB_FILES_NAMES _lowerCamelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase : Any = ["""input_ids""", """attention_mask"""] def __init__( self , snake_case__ , snake_case__="<s>" , snake_case__="</s>" , snake_case__="</s>" , snake_case__="<s>" , snake_case__="<unk>" , snake_case__="<pad>" , snake_case__="<mask>" , snake_case__ = None , **snake_case__ , ): lowerCAmelCase : Dict = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else mask_token lowerCAmelCase : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , unk_token=__UpperCamelCase , sep_token=__UpperCamelCase , cls_token=__UpperCamelCase , pad_token=__UpperCamelCase , mask_token=__UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCamelCase , ) lowerCAmelCase : List[Any] = vocab_file lowerCAmelCase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__UpperCamelCase ) ) lowerCAmelCase : int = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} lowerCAmelCase : Dict = len(self.sp_model ) - 1 lowerCAmelCase : Tuple = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def lowercase ( self , snake_case__ , snake_case__ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase : str = [self.cls_token_id] lowerCAmelCase : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase ( self , snake_case__ , snake_case__ = None , snake_case__ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCamelCase , token_ids_a=__UpperCamelCase , already_has_special_tokens=__UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__UpperCamelCase )) + [1] return [1] + ([0] * len(__UpperCamelCase )) + [1, 1] + ([0] * len(__UpperCamelCase )) + [1] def lowercase ( self , snake_case__ , snake_case__ = None ): lowerCAmelCase : Dict = [self.sep_token_id] lowerCAmelCase : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowercase ( self ): return len(self.sp_model ) def lowercase ( self ): lowerCAmelCase : Optional[Any] = {self.convert_ids_to_tokens(__UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowercase ( self , snake_case__ ): return self.sp_model.encode(__UpperCamelCase , out_type=__UpperCamelCase ) def lowercase ( self , snake_case__ ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCAmelCase : str = self.sp_model.PieceToId(__UpperCamelCase ) return spm_id if spm_id else self.unk_token_id def lowercase ( self , snake_case__ ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(__UpperCamelCase ) def lowercase ( self , snake_case__ ): lowerCAmelCase : int = [] lowerCAmelCase : Union[str, Any] = '' lowerCAmelCase : Union[str, Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__UpperCamelCase ) + token lowerCAmelCase : Union[str, Any] = True lowerCAmelCase : List[Any] = [] else: current_sub_tokens.append(__UpperCamelCase ) lowerCAmelCase : int = False out_string += self.sp_model.decode(__UpperCamelCase ) return out_string.strip() def __getstate__( self ): lowerCAmelCase : int = self.__dict__.copy() lowerCAmelCase : List[str] = None return state def __setstate__( self , snake_case__ ): lowerCAmelCase : int = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowerCAmelCase : List[Any] = {} lowerCAmelCase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase ( self , snake_case__ , snake_case__ = None ): if not os.path.isdir(__UpperCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return lowerCAmelCase : Any = os.path.join( __UpperCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCamelCase , 'wb' ) as fi: lowerCAmelCase : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(__UpperCamelCase ) return (out_vocab_file,)
702
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece_no_bos.model') @require_sentencepiece @require_tokenizers class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : str = PegasusTokenizer _lowerCamelCase : Union[str, Any] = PegasusTokenizerFast _lowerCamelCase : Optional[Any] = True _lowerCamelCase : Optional[Any] = True def lowercase ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : List[Any] = PegasusTokenizer(snake_case__ ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase ( self ): return PegasusTokenizer.from_pretrained('google/pegasus-large' ) def lowercase ( self , **snake_case__ ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def lowercase ( self , snake_case__ ): return ("This is a test", "This is a test") def lowercase ( self ): lowerCAmelCase : Optional[int] = '</s>' lowerCAmelCase : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '</s>' ) self.assertEqual(vocab_keys[-1] , 'v' ) self.assertEqual(len(snake_case__ ) , 1103 ) def lowercase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def lowercase ( self ): lowerCAmelCase : List[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : List[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : Optional[Any] = ( 'Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important' ' </s> <pad> <pad> <pad>' ) lowerCAmelCase : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] lowerCAmelCase : Optional[int] = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Any = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowerCAmelCase : List[str] = '<mask_1> To ensure a <mask_2> flow of bank resolutions.' lowerCAmelCase : Optional[Any] = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1] lowerCAmelCase : Optional[Any] = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Optional[Any] = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 lowerCAmelCase : List[Any] = 'To ensure a smooth flow of bank resolutions.' lowerCAmelCase : Optional[int] = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1] lowerCAmelCase : Any = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def lowercase ( self ): lowerCAmelCase : Union[str, Any] = ['This is going to be way too long.' * 150, 'short example'] lowerCAmelCase : int = ['not super long but more than 5 tokens', 'tiny'] lowerCAmelCase : Dict = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) lowerCAmelCase : Dict = self._large_tokenizer( text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(snake_case__ ) == 2 # input_ids, attention_mask. @slow def lowercase ( self ): # fmt: off lowerCAmelCase : Tuple = {'input_ids': [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name='google/bigbird-pegasus-large-arxiv' , revision='ba85d0851d708441f91440d509690f1ab6353415' , ) @require_sentencepiece @require_tokenizers class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : Optional[Any] = PegasusTokenizer _lowerCamelCase : str = PegasusTokenizerFast _lowerCamelCase : Tuple = True _lowerCamelCase : int = True def lowercase ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : int = PegasusTokenizer(snake_case__ , offset=0 , mask_token_sent=snake_case__ , mask_token='[MASK]' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase ( self ): return PegasusTokenizer.from_pretrained('google/bigbird-pegasus-large-arxiv' ) def lowercase ( self , **snake_case__ ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def lowercase ( self , snake_case__ ): return ("This is a test", "This is a test") def lowercase ( self ): lowerCAmelCase : Tuple = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : Union[str, Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : List[str] = ( 'Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>' ' <pad> <pad> <pad>' ) lowerCAmelCase : Dict = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] lowerCAmelCase : Union[str, Any] = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) @require_torch def lowercase ( self ): lowerCAmelCase : Optional[int] = ['This is going to be way too long.' * 1000, 'short example'] lowerCAmelCase : Union[str, Any] = ['not super long but more than 5 tokens', 'tiny'] lowerCAmelCase : List[str] = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) lowerCAmelCase : List[str] = self._large_tokenizer( text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(snake_case__ ) == 2 # input_ids, attention_mask. def lowercase ( self ): lowerCAmelCase : List[str] = ( 'This is an example string that is used to test the original TF implementation against the HF' ' implementation' ) lowerCAmelCase : Tuple = self._large_tokenizer(snake_case__ ).input_ids self.assertListEqual( snake_case__ , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
646
0
'''simple docstring''' from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm _lowerCAmelCase : Tuple = logging.get_logger(__name__) @dataclass class lowerCAmelCase ( a__ ): _lowerCamelCase : Any = [ """no_inference""", """no_cuda""", """no_tpu""", """no_speed""", """no_memory""", """no_env_print""", """no_multi_process""", ] def __init__( self , **snake_case__ ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: lowerCAmelCase : Optional[int] = deprecated_arg[3:] setattr(self , lowercase__ , not kwargs.pop(lowercase__ ) ) logger.warning( f"{deprecated_arg} is depreciated. Please use --no_{positive_arg} or" f" {positive_arg}={kwargs[positive_arg]}" ) lowerCAmelCase : Optional[Any] = kwargs.pop('torchscript' , self.torchscript ) lowerCAmelCase : Dict = kwargs.pop('torch_xla_tpu_print_metrics' , self.torch_xla_tpu_print_metrics ) lowerCAmelCase : Tuple = kwargs.pop('fp16_opt_level' , self.fpaa_opt_level ) super().__init__(**lowercase__ ) _lowerCamelCase : bool = field(default=a__ , metadata={"""help""": """Trace the models using torchscript"""} ) _lowerCamelCase : bool = field(default=a__ , metadata={"""help""": """Print Xla/PyTorch tpu metrics"""} ) _lowerCamelCase : str = field( default="""O1""" , metadata={ """help""": ( """For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. """ """See details at https://nvidia.github.io/apex/amp.html""" ) } , ) @cached_property def lowercase ( self ): requires_backends(self , ['torch'] ) logger.info('PyTorch: setting up devices' ) if not self.cuda: lowerCAmelCase : List[str] = torch.device('cpu' ) lowerCAmelCase : int = 0 elif is_torch_tpu_available(): lowerCAmelCase : Tuple = xm.xla_device() lowerCAmelCase : int = 0 else: lowerCAmelCase : Union[str, Any] = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) lowerCAmelCase : Optional[Any] = torch.cuda.device_count() return device, n_gpu @property def lowercase ( self ): return is_torch_tpu_available() and self.tpu @property def lowercase ( self ): requires_backends(self , ['torch'] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def lowercase ( self ): requires_backends(self , ['torch'] ) return self._setup_devices[0] @property def lowercase ( self ): requires_backends(self , ['torch'] ) return self._setup_devices[1] @property def lowercase ( self ): return self.n_gpu > 0
703
'''simple docstring''' import math import sys import cva import numpy as np def __UpperCamelCase ( _A : np.ndarray , _A : float ) -> np.ndarray: """simple docstring""" lowerCAmelCase : Union[str, Any] = math.sqrt(_A ) lowerCAmelCase : Union[str, Any] = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def __UpperCamelCase ( _A : np.ndarray , _A : int , _A : int , _A : int ) -> np.ndarray: """simple docstring""" lowerCAmelCase : int = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def __UpperCamelCase ( _A : int , _A : float ) -> np.ndarray: """simple docstring""" lowerCAmelCase : Dict = np.zeros((kernel_size, kernel_size) ) for i in range(0 , _A ): for j in range(0 , _A ): lowerCAmelCase : Optional[int] = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(_A , _A ) def __UpperCamelCase ( _A : np.ndarray , _A : float , _A : float , _A : int , ) -> np.ndarray: """simple docstring""" lowerCAmelCase : str = np.zeros(img.shape ) lowerCAmelCase : int = get_gauss_kernel(_A , _A ) lowerCAmelCase , lowerCAmelCase : Dict = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): lowerCAmelCase : int = get_slice(_A , _A , _A , _A ) lowerCAmelCase : Any = img_s - img_s[kernel_size // 2, kernel_size // 2] lowerCAmelCase : str = vec_gaussian(_A , _A ) lowerCAmelCase : Optional[int] = np.multiply(_A , _A ) lowerCAmelCase : str = np.multiply(_A , _A ) lowerCAmelCase : Union[str, Any] = np.sum(_A ) / np.sum(_A ) lowerCAmelCase : Tuple = val return imga def __UpperCamelCase ( _A : list ) -> tuple: """simple docstring""" lowerCAmelCase : List[Any] = args[1] if args[1:] else '../image_data/lena.jpg' lowerCAmelCase : Any = float(args[2] ) if args[2:] else 1.0 lowerCAmelCase : Union[str, Any] = float(args[3] ) if args[3:] else 1.0 if args[4:]: lowerCAmelCase : int = int(args[4] ) lowerCAmelCase : Optional[Any] = kernel_size + abs(kernel_size % 2 - 1 ) else: lowerCAmelCase : Optional[int] = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Any = parse_args(sys.argv) _lowerCAmelCase : str = cva.imread(filename, 0) cva.imshow('input image', img) _lowerCAmelCase : Union[str, Any] = img / 255 _lowerCAmelCase : List[str] = out.astype('float32') _lowerCAmelCase : Optional[int] = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) _lowerCAmelCase : Union[str, Any] = out * 255 _lowerCAmelCase : Optional[Any] = np.uinta(out) cva.imshow('output image', out) cva.waitKey(0) cva.destroyAllWindows()
646
0
'''simple docstring''' import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers _lowerCAmelCase : Union[str, Any] = 'python tqdm regex requests packaging filelock numpy tokenizers'.split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append('dataclasses') if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append('importlib_metadata') for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f"""can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py""") def __UpperCamelCase ( _A : List[str] , _A : Any=None ) -> List[Any]: """simple docstring""" require_version(deps[pkg] , SCREAMING_SNAKE_CASE__ )
704
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowerCAmelCase : int = { 'configuration_nezha': ['NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NezhaConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Tuple = [ 'NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST', 'NezhaForNextSentencePrediction', 'NezhaForMaskedLM', 'NezhaForPreTraining', 'NezhaForMultipleChoice', 'NezhaForQuestionAnswering', 'NezhaForSequenceClassification', 'NezhaForTokenClassification', 'NezhaModel', 'NezhaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys _lowerCAmelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
646
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Tuple = logging.get_logger(__name__) _lowerCAmelCase : Optional[Any] = { 'facebook/data2vec-text-base': 'https://huggingface.co/data2vec/resolve/main/config.json', } class lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _lowerCamelCase : Tuple = """data2vec-text""" def __init__( self , snake_case__=3_0522 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=1e-1_2 , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__="absolute" , snake_case__=True , snake_case__=None , **snake_case__ , ): super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) lowerCAmelCase : Tuple = vocab_size lowerCAmelCase : Dict = hidden_size lowerCAmelCase : List[Any] = num_hidden_layers lowerCAmelCase : List[str] = num_attention_heads lowerCAmelCase : Union[str, Any] = hidden_act lowerCAmelCase : Optional[Any] = intermediate_size lowerCAmelCase : str = hidden_dropout_prob lowerCAmelCase : Tuple = attention_probs_dropout_prob lowerCAmelCase : Any = max_position_embeddings lowerCAmelCase : int = type_vocab_size lowerCAmelCase : Any = initializer_range lowerCAmelCase : Optional[Any] = layer_norm_eps lowerCAmelCase : List[str] = position_embedding_type lowerCAmelCase : Tuple = use_cache lowerCAmelCase : List[Any] = classifier_dropout class lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): @property def lowercase ( self ): if self.task == "multiple-choice": lowerCAmelCase : Dict = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCAmelCase : Union[str, Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
705
'''simple docstring''' from typing import Any class lowerCAmelCase : def __init__( self , snake_case__ ): lowerCAmelCase : Optional[int] = data lowerCAmelCase : Optional[Any] = None def __repr__( self ): return f"Node({self.data})" class lowerCAmelCase : def __init__( self ): lowerCAmelCase : Dict = None def __iter__( self ): lowerCAmelCase : Optional[Any] = self.head while node: yield node.data lowerCAmelCase : Optional[int] = node.next def __len__( self ): return sum(1 for _ in self ) def __repr__( self ): return "->".join([str(snake_case__ ) for item in self] ) def __getitem__( self , snake_case__ ): if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , snake_case__ , snake_case__ ): if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) lowerCAmelCase : Any = self.head for _ in range(snake_case__ ): lowerCAmelCase : List[str] = current.next lowerCAmelCase : int = data def lowercase ( self , snake_case__ ): self.insert_nth(len(self ) , snake_case__ ) def lowercase ( self , snake_case__ ): self.insert_nth(0 , snake_case__ ) def lowercase ( self , snake_case__ , snake_case__ ): if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) lowerCAmelCase : List[str] = Node(snake_case__ ) if self.head is None: lowerCAmelCase : int = new_node elif index == 0: lowerCAmelCase : List[Any] = self.head # link new_node to head lowerCAmelCase : List[Any] = new_node else: lowerCAmelCase : List[Any] = self.head for _ in range(index - 1 ): lowerCAmelCase : Union[str, Any] = temp.next lowerCAmelCase : Any = temp.next lowerCAmelCase : str = new_node def lowercase ( self ): # print every node data print(self ) def lowercase ( self ): return self.delete_nth(0 ) def lowercase ( self ): # delete from tail return self.delete_nth(len(self ) - 1 ) def lowercase ( self , snake_case__ = 0 ): if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) lowerCAmelCase : List[str] = self.head # default first node if index == 0: lowerCAmelCase : Tuple = self.head.next else: lowerCAmelCase : Dict = self.head for _ in range(index - 1 ): lowerCAmelCase : Tuple = temp.next lowerCAmelCase : Dict = temp.next lowerCAmelCase : Tuple = temp.next.next return delete_node.data def lowercase ( self ): return self.head is None def lowercase ( self ): lowerCAmelCase : List[Any] = None lowerCAmelCase : Any = self.head while current: # Store the current node's next node. lowerCAmelCase : List[str] = current.next # Make the current node's next point backwards lowerCAmelCase : int = prev # Make the previous node be the current node lowerCAmelCase : int = current # Make the current node the next node (to progress iteration) lowerCAmelCase : Optional[Any] = next_node # Return prev in order to put the head at the end lowerCAmelCase : List[Any] = prev def __UpperCamelCase ( ) -> None: """simple docstring""" lowerCAmelCase : Tuple = LinkedList() assert linked_list.is_empty() is True assert str(_A ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(_A ) == i linked_list.insert_nth(_A , i + 1 ) assert str(_A ) == "->".join(str(_A ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(_A ) == "->".join(str(_A ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(_A ) == 9 assert str(_A ) == "->".join(str(_A ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): lowerCAmelCase : Optional[Any] = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(_A ) == "->".join(str(_A ) for i in range(-8 , 1 ) ) def __UpperCamelCase ( ) -> None: """simple docstring""" lowerCAmelCase : Optional[int] = [ -9, 1_00, Node(77_34_51_12 ), 'dlrow olleH', 7, 55_55, 0, -1_92.5_55_55, 'Hello, world!', 77.9, Node(10 ), None, None, 12.20, ] lowerCAmelCase : Dict = LinkedList() for i in test_input: linked_list.insert_tail(_A ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(_A ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head lowerCAmelCase : Optional[Any] = linked_list.delete_head() assert result == -9 assert ( str(_A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail lowerCAmelCase : List[str] = linked_list.delete_tail() assert result == 12.2 assert ( str(_A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list lowerCAmelCase : List[str] = linked_list.delete_nth(10 ) assert result is None assert ( str(_A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(_A ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(_A ) assert ( str(_A ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(_A ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def __UpperCamelCase ( ) -> List[Any]: """simple docstring""" from doctest import testmod testmod() lowerCAmelCase : Optional[Any] = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(_A ) print('\nReading/changing Node data using indexing:' ) print(F"Element at Position 1: {linked_list[1]}" ) lowerCAmelCase : Tuple = input('Enter New Value: ' ).strip() print('New list:' ) print(_A ) print(F"length of linked_list is : {len(_A )}" ) if __name__ == "__main__": main()
646
0
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def __UpperCamelCase ( _A : Tuple ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase , lowerCAmelCase : Union[str, Any] = image.size lowerCAmelCase , lowerCAmelCase : Union[str, Any] = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 lowerCAmelCase : Tuple = image.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) lowerCAmelCase : str = np.array(_A ).astype(np.floataa ) / 2_55.0 lowerCAmelCase : Union[str, Any] = image[None].transpose(0 , 3 , 1 , 2 ) lowerCAmelCase : Tuple = torch.from_numpy(_A ) return 2.0 * image - 1.0 class lowerCAmelCase ( a ): def __init__( self , snake_case__ , snake_case__ , snake_case__ , ): super().__init__() self.register_modules(vqvae=snake_case__ , unet=snake_case__ , scheduler=snake_case__ ) @torch.no_grad() def __call__( self , snake_case__ = None , snake_case__ = 1 , snake_case__ = 100 , snake_case__ = 0.0 , snake_case__ = None , snake_case__ = "pil" , snake_case__ = True , ): if isinstance(snake_case__ , PIL.Image.Image ): lowerCAmelCase : str = 1 elif isinstance(snake_case__ , torch.Tensor ): lowerCAmelCase : Any = image.shape[0] else: raise ValueError(f"`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(snake_case__ )}" ) if isinstance(snake_case__ , PIL.Image.Image ): lowerCAmelCase : List[str] = preprocess(snake_case__ ) lowerCAmelCase , lowerCAmelCase : List[str] = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image lowerCAmelCase : Optional[Any] = (batch_size, self.unet.config.in_channels // 2, height, width) lowerCAmelCase : List[Any] = next(self.unet.parameters() ).dtype lowerCAmelCase : Any = randn_tensor(snake_case__ , generator=snake_case__ , device=self.device , dtype=snake_case__ ) lowerCAmelCase : Optional[Any] = image.to(device=self.device , dtype=snake_case__ ) # set timesteps and move to the correct device self.scheduler.set_timesteps(snake_case__ , device=self.device ) lowerCAmelCase : str = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler lowerCAmelCase : Union[str, Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowerCAmelCase : Optional[Any] = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCAmelCase : List[str] = {} if accepts_eta: lowerCAmelCase : Union[str, Any] = eta for t in self.progress_bar(snake_case__ ): # concat latents and low resolution image in the channel dimension. lowerCAmelCase : Optional[Any] = torch.cat([latents, image] , dim=1 ) lowerCAmelCase : List[Any] = self.scheduler.scale_model_input(snake_case__ , snake_case__ ) # predict the noise residual lowerCAmelCase : List[str] = self.unet(snake_case__ , snake_case__ ).sample # compute the previous noisy sample x_t -> x_t-1 lowerCAmelCase : Any = self.scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample # decode the image latents with the VQVAE lowerCAmelCase : Optional[Any] = self.vqvae.decode(snake_case__ ).sample lowerCAmelCase : List[str] = torch.clamp(snake_case__ , -1.0 , 1.0 ) lowerCAmelCase : Union[str, Any] = image / 2 + 0.5 lowerCAmelCase : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase : str = self.numpy_to_pil(snake_case__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=snake_case__ )
706
'''simple docstring''' _lowerCAmelCase : List[str] = {str(digit): digit**5 for digit in range(10)} def __UpperCamelCase ( _A : int ) -> int: """simple docstring""" return sum(DIGITS_FIFTH_POWER[digit] for digit in str(_A ) ) def __UpperCamelCase ( ) -> int: """simple docstring""" return sum( number for number in range(10_00 , 1_00_00_00 ) if number == digits_fifth_powers_sum(_A ) ) if __name__ == "__main__": print(solution())
646
0
'''simple docstring''' from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent _lowerCAmelCase : Tuple = {'UserAgent': UserAgent().random} def __UpperCamelCase ( _A : Tuple ) -> dict: """simple docstring""" lowerCAmelCase : int = script.contents[0] lowerCAmelCase : List[str] = json.loads(data[data.find('{\"config\"' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class lowerCAmelCase : def __init__( self , snake_case__ ): lowerCAmelCase : Union[str, Any] = f"https://www.instagram.com/{username}/" lowerCAmelCase : Dict = self.get_json() def lowercase ( self ): lowerCAmelCase : Optional[Any] = requests.get(self.url , headers=__a ).text lowerCAmelCase : str = BeautifulSoup(__a , 'html.parser' ).find_all('script' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self ): return f"{self.__class__.__name__}(\'{self.username}\')" def __str__( self ): return f"{self.fullname} ({self.username}) is {self.biography}" @property def lowercase ( self ): return self.user_data["username"] @property def lowercase ( self ): return self.user_data["full_name"] @property def lowercase ( self ): return self.user_data["biography"] @property def lowercase ( self ): return self.user_data["business_email"] @property def lowercase ( self ): return self.user_data["external_url"] @property def lowercase ( self ): return self.user_data["edge_followed_by"]["count"] @property def lowercase ( self ): return self.user_data["edge_follow"]["count"] @property def lowercase ( self ): return self.user_data["edge_owner_to_timeline_media"]["count"] @property def lowercase ( self ): return self.user_data["profile_pic_url_hd"] @property def lowercase ( self ): return self.user_data["is_verified"] @property def lowercase ( self ): return self.user_data["is_private"] def __UpperCamelCase ( _A : Optional[Any] = "github" ) -> None: """simple docstring""" import os if os.environ.get('CI' ): return # test failing on GitHub Actions lowerCAmelCase : Optional[Any] = InstagramUser(lowercase_ ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , lowercase_ ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 1_50 assert instagram_user.number_of_followers > 12_00_00 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('https://instagram.' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : Tuple = InstagramUser('github') print(instagram_user) print(f"""{instagram_user.number_of_posts = }""") print(f"""{instagram_user.number_of_followers = }""") print(f"""{instagram_user.number_of_followings = }""") print(f"""{instagram_user.email = }""") print(f"""{instagram_user.website = }""") print(f"""{instagram_user.profile_picture_url = }""") print(f"""{instagram_user.is_verified = }""") print(f"""{instagram_user.is_private = }""")
707
'''simple docstring''' def __UpperCamelCase ( _A : List[str] ) -> Optional[Any]: """simple docstring""" if not head: return True # split the list to two parts lowerCAmelCase , lowerCAmelCase : str = head.next, head while fast and fast.next: lowerCAmelCase : Optional[int] = fast.next.next lowerCAmelCase : int = slow.next lowerCAmelCase : int = slow.next lowerCAmelCase : Optional[Any] = None # Don't forget here! But forget still works! # reverse the second part lowerCAmelCase : List[Any] = None while second: lowerCAmelCase : List[Any] = second.next lowerCAmelCase : Union[str, Any] = node lowerCAmelCase : Optional[Any] = second lowerCAmelCase : Any = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False lowerCAmelCase : Optional[Any] = node.next lowerCAmelCase : Tuple = head.next return True def __UpperCamelCase ( _A : Optional[Any] ) -> Optional[int]: """simple docstring""" if not head or not head.next: return True # 1. Get the midpoint (slow) lowerCAmelCase : Optional[int] = head while fast and fast.next: lowerCAmelCase , lowerCAmelCase : Optional[Any] = fast.next.next, slow.next # 2. Push the second half into the stack lowerCAmelCase : Tuple = [slow.val] while slow.next: lowerCAmelCase : Tuple = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False lowerCAmelCase : Union[str, Any] = cur.next return True def __UpperCamelCase ( _A : Tuple ) -> Optional[int]: """simple docstring""" if not head or not head.next: return True lowerCAmelCase : Optional[int] = {} lowerCAmelCase : int = 0 while head: if head.val in d: d[head.val].append(_A ) else: lowerCAmelCase : Any = [pos] lowerCAmelCase : int = head.next pos += 1 lowerCAmelCase : str = pos - 1 lowerCAmelCase : Optional[Any] = 0 for v in d.values(): if len(_A ) % 2 != 0: middle += 1 else: lowerCAmelCase : Any = 0 for i in range(0 , len(_A ) ): if v[i] + v[len(_A ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
646
0