code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging _UpperCamelCase : Optional[Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class UpperCAmelCase_ ( _a): lowerCamelCase__ : Optional[Any] = ["pixel_values"] def __init__( self , a = True , a = None , a = PILImageResampling.BICUBIC , a = True , a = None , a = True , a = 1 / 2_5_5 , a = True , a = None , a = None , a = True , **a , ) -> None: super().__init__(**a ) lowercase__ : Union[str, Any] = size if size is not None else {'shortest_edge': 2_2_4} lowercase__ : Tuple = get_size_dict(a , default_to_square=a ) lowercase__ : List[str] = crop_size if crop_size is not None else {'height': 2_2_4, 'width': 2_2_4} lowercase__ : Optional[int] = get_size_dict(a , default_to_square=a , param_name='crop_size' ) lowercase__ : Union[str, Any] = do_resize lowercase__ : List[str] = size lowercase__ : Optional[int] = resample lowercase__ : Tuple = do_center_crop lowercase__ : Tuple = crop_size lowercase__ : Dict = do_rescale lowercase__ : Any = rescale_factor lowercase__ : Dict = do_normalize lowercase__ : List[str] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowercase__ : Any = image_std if image_std is not None else OPENAI_CLIP_STD lowercase__ : List[Any] = do_convert_rgb def _UpperCAmelCase ( self , a , a , a = PILImageResampling.BICUBIC , a = None , **a , ) -> np.ndarray: lowercase__ : Optional[Any] = get_size_dict(a , default_to_square=a ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) lowercase__ : List[Any] = get_resize_output_image_size(a , size=size['shortest_edge'] , default_to_square=a ) return resize(a , size=a , resample=a , data_format=a , **a ) def _UpperCAmelCase ( self , a , a , a = None , **a , ) -> np.ndarray: lowercase__ : Tuple = get_size_dict(a ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(a , size=(size['height'], size['width']) , data_format=a , **a ) def _UpperCAmelCase ( self , a , a , a = None , **a , ) -> int: return rescale(a , scale=a , data_format=a , **a ) def _UpperCAmelCase ( self , a , a , a , a = None , **a , ) -> np.ndarray: return normalize(a , mean=a , std=a , data_format=a , **a ) def _UpperCAmelCase ( self , a , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = ChannelDimension.FIRST , **a , ) -> PIL.Image.Image: lowercase__ : int = do_resize if do_resize is not None else self.do_resize lowercase__ : Union[str, Any] = size if size is not None else self.size lowercase__ : Any = get_size_dict(a , param_name='size' , default_to_square=a ) lowercase__ : str = resample if resample is not None else self.resample lowercase__ : Any = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase__ : Optional[Any] = crop_size if crop_size is not None else self.crop_size lowercase__ : str = get_size_dict(a , param_name='crop_size' , default_to_square=a ) lowercase__ : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale lowercase__ : int = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ : Any = do_normalize if do_normalize is not None else self.do_normalize lowercase__ : List[Any] = image_mean if image_mean is not None else self.image_mean lowercase__ : Union[str, Any] = image_std if image_std is not None else self.image_std lowercase__ : str = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowercase__ : int = make_list_of_images(a ) if not valid_images(a ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowercase__ : int = [convert_to_rgb(a ) for image in images] # All transformations expect numpy arrays. lowercase__ : Optional[Any] = [to_numpy_array(a ) for image in images] if do_resize: lowercase__ : Any = [self.resize(image=a , size=a , resample=a ) for image in images] if do_center_crop: lowercase__ : Optional[Any] = [self.center_crop(image=a , size=a ) for image in images] if do_rescale: lowercase__ : Dict = [self.rescale(image=a , scale=a ) for image in images] if do_normalize: lowercase__ : List[Any] = [self.normalize(image=a , mean=a , std=a ) for image in images] lowercase__ : str = [to_channel_dimension_format(a , a ) for image in images] lowercase__ : Tuple = {'pixel_values': images} return BatchFeature(data=a , tensor_type=a )
716
"""simple docstring""" import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler _UpperCamelCase : int = 16 _UpperCamelCase : Union[str, Any] = 32 def a_ ( _lowerCAmelCase : Tuple ): '''simple docstring''' return int(x / 2**20 ) class UpperCAmelCase_ : def __enter__( self ) -> Union[str, Any]: gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero lowercase__ : List[str] = torch.cuda.memory_allocated() return self def __exit__( self , *a ) -> Any: gc.collect() torch.cuda.empty_cache() lowercase__ : Optional[Any] = torch.cuda.memory_allocated() lowercase__ : Union[str, Any] = torch.cuda.max_memory_allocated() lowercase__ : List[Any] = bamb(self.end - self.begin ) lowercase__ : List[Any] = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def a_ ( _lowerCAmelCase : Accelerator , _lowerCAmelCase : int = 16 , _lowerCAmelCase : str = "bert-base-cased" , _lowerCAmelCase : int = 320 , _lowerCAmelCase : int = 160 , ): '''simple docstring''' lowercase__ : List[Any] = AutoTokenizer.from_pretrained(_lowerCAmelCase ) lowercase__ : Union[str, Any] = load_dataset( 'glue' , 'mrpc' , split={'train': f"""train[:{n_train}]""", 'validation': f"""validation[:{n_val}]"""} ) def tokenize_function(_lowerCAmelCase : int ): # max_length=None => use the model max length (it's actually the default) lowercase__ : List[str] = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowercase__ : Union[str, Any] = datasets.map( _lowerCAmelCase , batched=_lowerCAmelCase , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=_lowerCAmelCase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ : Union[str, Any] = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(_lowerCAmelCase : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_lowerCAmelCase , padding='max_length' , max_length=128 , return_tensors='pt' ) return tokenizer.pad(_lowerCAmelCase , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. lowercase__ : Dict = DataLoader( tokenized_datasets['train'] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase ) lowercase__ : Dict = DataLoader( tokenized_datasets['validation'] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase ) return train_dataloader, eval_dataloader def a_ ( _lowerCAmelCase : Any , _lowerCAmelCase : List[str] ): '''simple docstring''' lowercase__ : List[Any] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ : Optional[int] = config['lr'] lowercase__ : Optional[Any] = int(config['num_epochs'] ) lowercase__ : Optional[Any] = int(config['seed'] ) lowercase__ : int = int(config['batch_size'] ) lowercase__ : Union[str, Any] = args.model_name_or_path set_seed(_lowerCAmelCase ) lowercase__ , lowercase__ : Tuple = get_dataloaders(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , args.n_train , args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ : List[Any] = AutoModelForSequenceClassification.from_pretrained(_lowerCAmelCase , return_dict=_lowerCAmelCase ) # Instantiate optimizer lowercase__ : List[Any] = ( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowercase__ : Optional[Any] = optimizer_cls(params=model.parameters() , lr=_lowerCAmelCase ) if accelerator.state.deepspeed_plugin is not None: lowercase__ : Optional[Any] = accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: lowercase__ : List[Any] = 1 lowercase__ : List[Any] = (len(_lowerCAmelCase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowercase__ : Optional[int] = get_linear_schedule_with_warmup( optimizer=_lowerCAmelCase , num_warmup_steps=0 , num_training_steps=_lowerCAmelCase , ) else: lowercase__ : Tuple = DummyScheduler(_lowerCAmelCase , total_num_steps=_lowerCAmelCase , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Dict = accelerator.prepare( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # We need to keep track of how many total steps we have iterated over lowercase__ : Optional[int] = 0 # We also need to keep track of the stating epoch so files are named properly lowercase__ : Tuple = 0 # Now we train the model lowercase__ : Optional[Any] = {} for epoch in range(_lowerCAmelCase , _lowerCAmelCase ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(_lowerCAmelCase ): lowercase__ : List[Any] = model(**_lowerCAmelCase ) lowercase__ : Dict = outputs.loss lowercase__ : int = loss / gradient_accumulation_steps accelerator.backward(_lowerCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print('Memory before entering the train : {}'.format(bamb(tracemalloc.begin ) ) ) accelerator.print('Memory consumed at the end of the train (end-begin): {}'.format(tracemalloc.used ) ) accelerator.print('Peak Memory consumed during the train (max-begin): {}'.format(tracemalloc.peaked ) ) accelerator.print( 'Total Peak Memory consumed during the train (max): {}'.format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) lowercase__ : int = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[f"""epoch-{epoch}"""] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , 'peak_memory_utilization.json' ) , 'w' ) as f: json.dump(_lowerCAmelCase , _lowerCAmelCase ) def a_ ( ): '''simple docstring''' lowercase__ : int = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path' , type=_lowerCAmelCase , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=_lowerCAmelCase , ) parser.add_argument( '--output_dir' , type=_lowerCAmelCase , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--peak_memory_upper_bound' , type=_lowerCAmelCase , default=_lowerCAmelCase , help='The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.' , ) parser.add_argument( '--n_train' , type=_lowerCAmelCase , default=320 , help='Number of training examples to use.' , ) parser.add_argument( '--n_val' , type=_lowerCAmelCase , default=160 , help='Number of validation examples to use.' , ) parser.add_argument( '--num_epochs' , type=_lowerCAmelCase , default=1 , help='Number of train epochs.' , ) lowercase__ : Any = parser.parse_args() lowercase__ : Optional[Any] = {'lr': 2E-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16} training_function(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": main()
645
0
"""simple docstring""" import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever _UpperCamelCase : Dict = logging.getLogger(__name__) class UpperCAmelCase_ ( _a): def __init__( self , a , a , a , a=None ) -> Optional[int]: super().__init__( a , question_encoder_tokenizer=a , generator_tokenizer=a , index=a , init_retrieval=a , ) lowercase__ : Any = None def _UpperCAmelCase ( self , a ) -> int: logger.info('initializing retrieval' ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info('dist initialized' ) # needs to be set manually lowercase__ : int = self._infer_socket_ifname() # avoid clash with the NCCL port lowercase__ : int = str(distributed_port + 1 ) lowercase__ : str = dist.new_group(ranks=a , backend='gloo' ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info('dist not initialized / main' ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def _UpperCAmelCase ( self ) -> Optional[Any]: return dist.get_rank(group=self.process_group ) == 0 def _UpperCAmelCase ( self , a , a , a=torch.floataa ) -> str: lowercase__ : str = torch.empty(a , dtype=a ) dist.scatter(a , src=0 , scatter_list=a , group=self.process_group ) return target_tensor def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : Optional[int] = psutil.net_if_addrs() # a hacky way to deal with varying network interface names lowercase__ : List[str] = next((addr for addr in addrs if addr.startswith('e' )) , a ) return ifname def _UpperCAmelCase ( self , a , a ) -> Tuple[np.ndarray, List[dict]]: # single GPU training if not dist.is_initialized(): lowercase__ : Tuple = self._main_retrieve(a , a ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(a ) # distributed training lowercase__ : List[Any] = dist.get_world_size(group=self.process_group ) # gather logic lowercase__ : List[Any] = None if self._is_main(): lowercase__ : str = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(a )] dist.gather(torch.tensor(a ) , dst=0 , gather_list=a , group=self.process_group ) # scatter logic lowercase__ : List[str] = question_hidden_states.shape[0] lowercase__ : List[str] = [] lowercase__ : List[str] = [] if self._is_main(): assert len(a ) == world_size lowercase__ : List[str] = self._main_retrieve(torch.cat(a ).numpy() , a ) lowercase__ : Any = torch.tensor(a ), torch.tensor(a ) lowercase__ : Any = self._chunk_tensor(a , a ) lowercase__ : Tuple = self._chunk_tensor(a , a ) lowercase__ : int = self._scattered(a , [n_queries, n_docs] , target_type=torch.intaa ) lowercase__ : List[str] = self._scattered(a , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(a )
717
"""simple docstring""" def a_ ( _lowerCAmelCase : str ): '''simple docstring''' lowercase__ : Any = [0] * len(_lowerCAmelCase ) for i in range(1 , len(_lowerCAmelCase ) ): # use last results for better performance - dynamic programming lowercase__ : List[str] = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: lowercase__ : Dict = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 lowercase__ : Union[str, Any] = j return prefix_result def a_ ( _lowerCAmelCase : str ): '''simple docstring''' return max(prefix_function(_lowerCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod()
645
0
"""simple docstring""" from math import sqrt def a_ ( _lowerCAmelCase : int ): '''simple docstring''' assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and ( number >= 0 ), "'number' must been an int and positive" lowercase__ : List[str] = True # 0 and 1 are none primes. if number <= 1: lowercase__ : int = False for divisor in range(2 , int(round(sqrt(_lowerCAmelCase ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: lowercase__ : List[str] = False break # precondition assert isinstance(_lowerCAmelCase , _lowerCAmelCase ), "'status' must been from type bool" return status def a_ ( _lowerCAmelCase : Optional[Any] ): '''simple docstring''' assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N lowercase__ : int = list(range(2 , n + 1 ) ) lowercase__ : Dict = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(_lowerCAmelCase ) ): for j in range(i + 1 , len(_lowerCAmelCase ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): lowercase__ : Tuple = 0 # filters actual prime numbers. lowercase__ : List[Any] = [x for x in begin_list if x != 0] # precondition assert isinstance(_lowerCAmelCase , _lowerCAmelCase ), "'ans' must been from type list" return ans def a_ ( _lowerCAmelCase : Any ): '''simple docstring''' assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (n > 2), "'N' must been an int and > 2" lowercase__ : List[Any] = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(_lowerCAmelCase ): ans.append(_lowerCAmelCase ) # precondition assert isinstance(_lowerCAmelCase , _lowerCAmelCase ), "'ans' must been from type list" return ans def a_ ( _lowerCAmelCase : str ): '''simple docstring''' assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and number >= 0, "'number' must been an int and >= 0" lowercase__ : Any = [] # this list will be returns of the function. # potential prime number factors. lowercase__ : List[Any] = 2 lowercase__ : List[str] = number if number == 0 or number == 1: ans.append(_lowerCAmelCase ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(_lowerCAmelCase ): while quotient != 1: if is_prime(_lowerCAmelCase ) and (quotient % factor == 0): ans.append(_lowerCAmelCase ) quotient /= factor else: factor += 1 else: ans.append(_lowerCAmelCase ) # precondition assert isinstance(_lowerCAmelCase , _lowerCAmelCase ), "'ans' must been from type list" return ans def a_ ( _lowerCAmelCase : Union[str, Any] ): '''simple docstring''' assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowercase__ : List[str] = 0 # prime factorization of 'number' lowercase__ : str = prime_factorization(_lowerCAmelCase ) lowercase__ : Dict = max(_lowerCAmelCase ) # precondition assert isinstance(_lowerCAmelCase , _lowerCAmelCase ), "'ans' must been from type int" return ans def a_ ( _lowerCAmelCase : str ): '''simple docstring''' assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowercase__ : int = 0 # prime factorization of 'number' lowercase__ : Any = prime_factorization(_lowerCAmelCase ) lowercase__ : str = min(_lowerCAmelCase ) # precondition assert isinstance(_lowerCAmelCase , _lowerCAmelCase ), "'ans' must been from type int" return ans def a_ ( _lowerCAmelCase : Optional[Any] ): '''simple docstring''' assert isinstance(_lowerCAmelCase , _lowerCAmelCase ), "'number' must been an int" assert isinstance(number % 2 == 0 , _lowerCAmelCase ), "compare bust been from type bool" return number % 2 == 0 def a_ ( _lowerCAmelCase : Any ): '''simple docstring''' assert isinstance(_lowerCAmelCase , _lowerCAmelCase ), "'number' must been an int" assert isinstance(number % 2 != 0 , _lowerCAmelCase ), "compare bust been from type bool" return number % 2 != 0 def a_ ( _lowerCAmelCase : Tuple ): '''simple docstring''' assert ( isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (number > 2) and is_even(_lowerCAmelCase ) ), "'number' must been an int, even and > 2" lowercase__ : Dict = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' lowercase__ : Optional[Any] = get_prime_numbers(_lowerCAmelCase ) lowercase__ : Optional[int] = len(_lowerCAmelCase ) # run variable for while-loops. lowercase__ : List[Any] = 0 lowercase__ : Any = None # exit variable. for break up the loops lowercase__ : List[Any] = True while i < len_pn and loop: lowercase__ : Dict = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: lowercase__ : Optional[Any] = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (len(_lowerCAmelCase ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def a_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Dict ): '''simple docstring''' assert ( isinstance(_lowerCAmelCase , _lowerCAmelCase ) and isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." lowercase__ : List[Any] = 0 while numbera != 0: lowercase__ : Union[str, Any] = numbera % numbera lowercase__ : Any = numbera lowercase__ : Any = rest # precondition assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def a_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str ): '''simple docstring''' assert ( isinstance(_lowerCAmelCase , _lowerCAmelCase ) and isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." lowercase__ : Tuple = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' lowercase__ : int = prime_factorization(_lowerCAmelCase ) lowercase__ : Dict = prime_factorization(_lowerCAmelCase ) elif numbera == 1 or numbera == 1: lowercase__ : Any = [] lowercase__ : Tuple = [] lowercase__ : Tuple = max(_lowerCAmelCase , _lowerCAmelCase ) lowercase__ : str = 0 lowercase__ : List[Any] = 0 lowercase__ : List[Any] = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: lowercase__ : Tuple = prime_fac_a.count(_lowerCAmelCase ) lowercase__ : List[str] = prime_fac_a.count(_lowerCAmelCase ) for _ in range(max(_lowerCAmelCase , _lowerCAmelCase ) ): ans *= n else: lowercase__ : Optional[Any] = prime_fac_a.count(_lowerCAmelCase ) for _ in range(_lowerCAmelCase ): ans *= n done.append(_lowerCAmelCase ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: lowercase__ : int = prime_fac_a.count(_lowerCAmelCase ) for _ in range(_lowerCAmelCase ): ans *= n done.append(_lowerCAmelCase ) # precondition assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def a_ ( _lowerCAmelCase : List[Any] ): '''simple docstring''' assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (n >= 0), "'number' must been a positive int" lowercase__ : int = 0 lowercase__ : List[Any] = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(_lowerCAmelCase ): ans += 1 # precondition assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and is_prime( _lowerCAmelCase ), "'ans' must been a prime number and from type int" return ans def a_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any] ): '''simple docstring''' assert ( is_prime(_lowerCAmelCase ) and is_prime(_lowerCAmelCase ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" lowercase__ : List[str] = p_number_a + 1 # jump to the next number lowercase__ : Union[str, Any] = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(_lowerCAmelCase ): number += 1 while number < p_number_a: ans.append(_lowerCAmelCase ) number += 1 # fetch the next prime number. while not is_prime(_lowerCAmelCase ): number += 1 # precondition assert ( isinstance(_lowerCAmelCase , _lowerCAmelCase ) and ans[0] != p_number_a and ans[len(_lowerCAmelCase ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def a_ ( _lowerCAmelCase : Optional[int] ): '''simple docstring''' assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (n >= 1), "'n' must been int and >= 1" lowercase__ : Any = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(_lowerCAmelCase ) # precondition assert ans[0] == 1 and ans[len(_lowerCAmelCase ) - 1] == n, "Error in function getDivisiors(...)" return ans def a_ ( _lowerCAmelCase : Tuple ): '''simple docstring''' assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and ( number > 1 ), "'number' must been an int and >= 1" lowercase__ : int = get_divisors(_lowerCAmelCase ) # precondition assert ( isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (divisors[0] == 1) and (divisors[len(_lowerCAmelCase ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def a_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any ): '''simple docstring''' assert ( isinstance(_lowerCAmelCase , _lowerCAmelCase ) and isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. lowercase__ : Dict = gcd(abs(_lowerCAmelCase ) , abs(_lowerCAmelCase ) ) # precondition assert ( isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def a_ ( _lowerCAmelCase : Dict ): '''simple docstring''' assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (n >= 0), "'n' must been a int and >= 0" lowercase__ : Optional[Any] = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def a_ ( _lowerCAmelCase : int ): '''simple docstring''' assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (n >= 0), "'n' must been an int and >= 0" lowercase__ : Union[str, Any] = 0 lowercase__ : Optional[Any] = 1 lowercase__ : Union[str, Any] = 1 # this will be return for _ in range(n - 1 ): lowercase__ : Optional[int] = ans ans += fiba lowercase__ : List[Any] = tmp return ans
718
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class UpperCAmelCase_ ( unittest.TestCase): def __init__( self , a , a=7 , a=3 , a=1_8 , a=3_0 , a=4_0_0 , a=True , a=None , a=True , a=None , a=True , ) -> List[str]: lowercase__ : Tuple = size if size is not None else {'shortest_edge': 2_0} lowercase__ : Union[str, Any] = crop_size if crop_size is not None else {'height': 1_8, 'width': 1_8} lowercase__ : Optional[int] = parent lowercase__ : Optional[int] = batch_size lowercase__ : str = num_channels lowercase__ : Any = image_size lowercase__ : Optional[Any] = min_resolution lowercase__ : int = max_resolution lowercase__ : List[Any] = do_resize lowercase__ : List[str] = size lowercase__ : str = do_center_crop lowercase__ : List[Any] = crop_size lowercase__ : Union[str, Any] = do_flip_channel_order def _UpperCAmelCase ( self ) -> int: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class UpperCAmelCase_ ( _a , unittest.TestCase): lowerCamelCase__ : Optional[Any] = MobileViTImageProcessor if is_vision_available() else None def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : Tuple = MobileViTImageProcessingTester(self ) @property def _UpperCAmelCase ( self ) -> int: return self.image_processor_tester.prepare_image_processor_dict() def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a , 'do_resize' ) ) self.assertTrue(hasattr(a , 'size' ) ) self.assertTrue(hasattr(a , 'do_center_crop' ) ) self.assertTrue(hasattr(a , 'center_crop' ) ) self.assertTrue(hasattr(a , 'do_flip_channel_order' ) ) def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 2_0} ) self.assertEqual(image_processor.crop_size , {'height': 1_8, 'width': 1_8} ) lowercase__ : str = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {'shortest_edge': 4_2} ) self.assertEqual(image_processor.crop_size , {'height': 8_4, 'width': 8_4} ) def _UpperCAmelCase ( self ) -> Tuple: pass def _UpperCAmelCase ( self ) -> str: # Initialize image_processing lowercase__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a ) for image in image_inputs: self.assertIsInstance(a , Image.Image ) # Test not batched input lowercase__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowercase__ : List[Any] = image_processing(a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def _UpperCAmelCase ( self ) -> Tuple: # Initialize image_processing lowercase__ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , numpify=a ) for image in image_inputs: self.assertIsInstance(a , np.ndarray ) # Test not batched input lowercase__ : List[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowercase__ : Any = image_processing(a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def _UpperCAmelCase ( self ) -> Dict: # Initialize image_processing lowercase__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , torchify=a ) for image in image_inputs: self.assertIsInstance(a , torch.Tensor ) # Test not batched input lowercase__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowercase__ : Tuple = image_processing(a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
645
0
"""simple docstring""" import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def a_ ( _lowerCAmelCase : List[str] ): '''simple docstring''' lowercase__ : str = model.config lowercase__ : Optional[int] = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) lowercase__ : Optional[int] = MBartConfig( is_decoder=_lowerCAmelCase , is_encoder_decoder=_lowerCAmelCase , add_cross_attention=_lowerCAmelCase , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=_lowerCAmelCase , add_final_layer_norm=_lowerCAmelCase , ) return encoder_config, decoder_config def a_ ( _lowerCAmelCase : int ): '''simple docstring''' if "encoder.model" in name: lowercase__ : str = name.replace('encoder.model' , 'encoder' ) if "decoder.model" in name: lowercase__ : Any = name.replace('decoder.model' , 'decoder' ) if "patch_embed.proj" in name: lowercase__ : Optional[Any] = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: lowercase__ : List[str] = name.replace('patch_embed.norm' , 'embeddings.norm' ) if name.startswith('encoder' ): if "layers" in name: lowercase__ : str = 'encoder.' + name if "attn.proj" in name: lowercase__ : List[Any] = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name and "mask" not in name: lowercase__ : str = name.replace('attn' , 'attention.self' ) if "norm1" in name: lowercase__ : Optional[Any] = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: lowercase__ : int = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: lowercase__ : List[str] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: lowercase__ : Any = name.replace('mlp.fc2' , 'output.dense' ) if name == "encoder.norm.weight": lowercase__ : List[str] = 'encoder.layernorm.weight' if name == "encoder.norm.bias": lowercase__ : List[Any] = 'encoder.layernorm.bias' return name def a_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int] ): '''simple docstring''' for key in orig_state_dict.copy().keys(): lowercase__ : Dict = orig_state_dict.pop(_lowerCAmelCase ) if "qkv" in key: lowercase__ : str = key.split('.' ) lowercase__ : int = int(key_split[3] ) lowercase__ : Tuple = int(key_split[5] ) lowercase__ : Any = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowercase__ : Optional[Any] = val[:dim, :] lowercase__ : List[Any] = val[dim : dim * 2, :] lowercase__ : Tuple = val[-dim:, :] else: lowercase__ : Union[str, Any] = val[:dim] lowercase__ : List[str] = val[dim : dim * 2] lowercase__ : Tuple = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: lowercase__ : List[Any] = val return orig_state_dict def a_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : List[Any]=False ): '''simple docstring''' lowercase__ : Optional[Any] = DonutModel.from_pretrained(_lowerCAmelCase ).eval() # load HuggingFace model lowercase__ : Dict = get_configs(_lowerCAmelCase ) lowercase__ : Dict = DonutSwinModel(_lowerCAmelCase ) lowercase__ : str = MBartForCausalLM(_lowerCAmelCase ) lowercase__ : Union[str, Any] = VisionEncoderDecoderModel(encoder=_lowerCAmelCase , decoder=_lowerCAmelCase ) model.eval() lowercase__ : int = original_model.state_dict() lowercase__ : Optional[int] = convert_state_dict(_lowerCAmelCase , _lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) # verify results on scanned document lowercase__ : Union[str, Any] = load_dataset('hf-internal-testing/example-documents' ) lowercase__ : str = dataset['test'][0]['image'].convert('RGB' ) lowercase__ : List[Any] = XLMRobertaTokenizerFast.from_pretrained(_lowerCAmelCase , from_slow=_lowerCAmelCase ) lowercase__ : Any = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) lowercase__ : List[str] = DonutProcessor(_lowerCAmelCase , _lowerCAmelCase ) lowercase__ : int = processor(_lowerCAmelCase , return_tensors='pt' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": lowercase__ : Dict = '<s_docvqa><s_question>{user_input}</s_question><s_answer>' lowercase__ : Tuple = 'When is the coffee break?' lowercase__ : str = task_prompt.replace('{user_input}' , _lowerCAmelCase ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": lowercase__ : Union[str, Any] = '<s_rvlcdip>' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: lowercase__ : List[Any] = '<s_cord>' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": lowercase__ : Optional[int] = 's_cord-v2>' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": lowercase__ : Optional[int] = '<s_zhtrainticket>' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt lowercase__ : str = 'hello world' else: raise ValueError('Model name not supported' ) lowercase__ : str = original_model.decoder.tokenizer(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , return_tensors='pt' )[ 'input_ids' ] lowercase__ : Optional[int] = original_model.encoder.model.patch_embed(_lowerCAmelCase ) lowercase__ : str = model.encoder.embeddings(_lowerCAmelCase ) assert torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) # verify encoder hidden states lowercase__ : Union[str, Any] = original_model.encoder(_lowerCAmelCase ) lowercase__ : Optional[Any] = model.encoder(_lowerCAmelCase ).last_hidden_state assert torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-2 ) # verify decoder hidden states lowercase__ : Tuple = original_model(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).logits lowercase__ : str = model(_lowerCAmelCase , decoder_input_ids=_lowerCAmelCase ).logits assert torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCAmelCase ) processor.save_pretrained(_lowerCAmelCase ) if push_to_hub: model.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' ) processor.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' ) if __name__ == "__main__": _UpperCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="naver-clova-ix/donut-base-finetuned-docvqa", required=False, type=str, help="Name of the original model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, required=False, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub.", ) _UpperCamelCase : int = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
719
"""simple docstring""" import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class UpperCAmelCase_ ( unittest.TestCase): def __init__( self , a , a=1_3 , a=7 , a=True , a=True , a=True , a=True , a=9_9 , a=3_2 , a=5 , a=4 , a=3_7 , a="gelu" , a=0.1 , a=0.1 , a=5_1_2 , a=1_6 , a=2 , a=0.02 , a=4 , ) -> Dict: lowercase__ : Optional[Any] = parent lowercase__ : Dict = batch_size lowercase__ : List[Any] = seq_length lowercase__ : int = is_training lowercase__ : str = use_attention_mask lowercase__ : Dict = use_token_type_ids lowercase__ : Optional[int] = use_labels lowercase__ : Tuple = vocab_size lowercase__ : List[str] = hidden_size lowercase__ : Union[str, Any] = num_hidden_layers lowercase__ : int = num_attention_heads lowercase__ : Dict = intermediate_size lowercase__ : List[str] = hidden_act lowercase__ : Dict = hidden_dropout_prob lowercase__ : Tuple = attention_probs_dropout_prob lowercase__ : List[str] = max_position_embeddings lowercase__ : int = type_vocab_size lowercase__ : List[str] = type_sequence_label_size lowercase__ : Union[str, Any] = initializer_range lowercase__ : Optional[int] = num_choices def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ : str = None if self.use_attention_mask: lowercase__ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ : List[str] = None if self.use_token_type_ids: lowercase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__ : Any = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _UpperCAmelCase ( self ) -> Any: lowercase__ : Optional[int] = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ : Tuple = config_and_inputs lowercase__ : Union[str, Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class UpperCAmelCase_ ( _a , unittest.TestCase): lowerCamelCase__ : Tuple = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : Union[str, Any] = FlaxAlbertModelTester(self ) @slow def _UpperCAmelCase ( self ) -> str: for model_class_name in self.all_model_classes: lowercase__ : str = model_class_name.from_pretrained('albert-base-v2' ) lowercase__ : Tuple = model(np.ones((1, 1) ) ) self.assertIsNotNone(a ) @require_flax class UpperCAmelCase_ ( unittest.TestCase): @slow def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : str = FlaxAlbertModel.from_pretrained('albert-base-v2' ) lowercase__ : Optional[int] = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) lowercase__ : Optional[Any] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) lowercase__ : Any = model(a , attention_mask=a )[0] lowercase__ : Tuple = (1, 1_1, 7_6_8) self.assertEqual(output.shape , a ) lowercase__ : Optional[Any] = np.array( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , a , atol=1e-4 ) )
645
0
"""simple docstring""" class UpperCAmelCase_ : def __init__( self , a ) -> Tuple: # we need a list not a string, so do something to change the type lowercase__ : int = arr.split(',' ) def _UpperCAmelCase ( self ) -> Any: lowercase__ : Optional[Any] = [int(self.array[0] )] * len(self.array ) lowercase__ : Union[str, Any] = [int(self.array[0] )] * len(self.array ) for i in range(1 , len(self.array ) ): lowercase__ : Optional[int] = max( int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) ) lowercase__ : Any = max(sum_value[i] , rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": _UpperCamelCase : str = input("please input some numbers:") _UpperCamelCase : List[Any] = SubArray(whole_array) _UpperCamelCase : Any = array.solve_sub_array() print(("the results is:", re))
720
"""simple docstring""" from collections.abc import Sequence def a_ ( _lowerCAmelCase : Sequence[float] , _lowerCAmelCase : float ): '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(_lowerCAmelCase ) ) def a_ ( _lowerCAmelCase : Sequence[float] , _lowerCAmelCase : float ): '''simple docstring''' lowercase__ : int = 0.0 for coeff in reversed(_lowerCAmelCase ): lowercase__ : List[Any] = result * x + coeff return result if __name__ == "__main__": _UpperCamelCase : int = (0.0, 0.0, 5.0, 9.3, 7.0) _UpperCamelCase : Dict = 1_0.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
645
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class UpperCAmelCase_ ( metaclass=_a): lowerCamelCase__ : Optional[int] = ["speech"] def __init__( self , *a , **a ) -> Dict: requires_backends(self , ['speech'] ) class UpperCAmelCase_ ( metaclass=_a): lowerCamelCase__ : Any = ["speech"] def __init__( self , *a , **a ) -> int: requires_backends(self , ['speech'] )
721
"""simple docstring""" import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path _UpperCamelCase : Any = [ {"dataset": "wikipedia", "config_name": "20220301.de"}, {"dataset": "wikipedia", "config_name": "20220301.en"}, {"dataset": "wikipedia", "config_name": "20220301.fr"}, {"dataset": "wikipedia", "config_name": "20220301.frr"}, {"dataset": "wikipedia", "config_name": "20220301.it"}, {"dataset": "wikipedia", "config_name": "20220301.simple"}, {"dataset": "snli", "config_name": "plain_text"}, {"dataset": "eli5", "config_name": "LFQA_reddit"}, {"dataset": "wiki40b", "config_name": "en"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.compressed"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.no_index"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.multiset.no_index"}, {"dataset": "natural_questions", "config_name": "default"}, ] def a_ ( _lowerCAmelCase : Optional[Any]=True ): '''simple docstring''' if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=_a)) class UpperCAmelCase_ ( _a): lowerCamelCase__ : str = None lowerCamelCase__ : Optional[Any] = None def _UpperCAmelCase ( self , a , a ) -> List[Any]: with TemporaryDirectory() as tmp_dir: lowercase__ : List[str] = dataset_module_factory(a , cache_dir=a ) lowercase__ : List[Any] = import_main_class(dataset_module.module_path , dataset=a ) lowercase__ : DatasetBuilder = builder_cls( cache_dir=a , config_name=a , hash=dataset_module.hash , ) lowercase__ : Union[str, Any] = '/'.join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=a ).replace(os.sep , '/' ), config.DATASET_INFO_FILENAME, ] ) lowercase__ : Union[str, Any] = cached_path(a , cache_dir=a ) self.assertTrue(os.path.exists(a ) ) @pytest.mark.integration def a_ ( _lowerCAmelCase : str ): '''simple docstring''' lowercase__ : Union[str, Any] = tmp_path_factory.mktemp('test_hf_gcp' ) / 'test_wikipedia_simple' lowercase__ : int = dataset_module_factory('wikipedia' , cache_dir=_lowerCAmelCase ) lowercase__ : Optional[int] = import_main_class(dataset_module.module_path ) lowercase__ : DatasetBuilder = builder_cls( cache_dir=_lowerCAmelCase , config_name='20220301.frr' , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam lowercase__ : Optional[int] = None builder_instance.download_and_prepare() lowercase__ : Optional[int] = builder_instance.as_dataset() assert ds @pytest.mark.integration def a_ ( _lowerCAmelCase : Optional[Any] ): '''simple docstring''' lowercase__ : Optional[int] = dataset_module_factory('wikipedia' , cache_dir=_lowerCAmelCase ) lowercase__ : List[str] = import_main_class(dataset_module.module_path , dataset=_lowerCAmelCase ) lowercase__ : DatasetBuilder = builder_cls( cache_dir=_lowerCAmelCase , config_name='20220301.frr' , hash=dataset_module.hash , ) lowercase__ : Union[str, Any] = builder_instance.as_streaming_dataset() assert ds assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert "train" in ds assert isinstance(ds['train'] , _lowerCAmelCase ) assert next(iter(ds['train'] ) )
645
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCAmelCase_ ( _a , unittest.TestCase): lowerCamelCase__ : str = KandinskyImgaImgPipeline lowerCamelCase__ : List[str] = ["prompt", "image_embeds", "negative_image_embeds", "image"] lowerCamelCase__ : Optional[int] = [ "prompt", "negative_prompt", "image_embeds", "negative_image_embeds", "image", ] lowerCamelCase__ : Union[str, Any] = [ "generator", "height", "width", "strength", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] lowerCamelCase__ : Optional[int] = False @property def _UpperCAmelCase ( self ) -> List[str]: return 3_2 @property def _UpperCAmelCase ( self ) -> List[Any]: return 3_2 @property def _UpperCAmelCase ( self ) -> Optional[int]: return self.time_input_dim @property def _UpperCAmelCase ( self ) -> Union[str, Any]: return self.time_input_dim * 4 @property def _UpperCAmelCase ( self ) -> int: return 1_0_0 @property def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : int = XLMRobertaTokenizerFast.from_pretrained('YiYiXu/tiny-random-mclip-base' ) return tokenizer @property def _UpperCAmelCase ( self ) -> Optional[int]: torch.manual_seed(0 ) lowercase__ : Optional[Any] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_0_0_5 , ) lowercase__ : Tuple = MultilingualCLIP(a ) lowercase__ : List[str] = text_encoder.eval() return text_encoder @property def _UpperCAmelCase ( self ) -> Optional[Any]: torch.manual_seed(0 ) lowercase__ : List[str] = { 'in_channels': 4, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'text_image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'text_image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } lowercase__ : Any = UNetaDConditionModel(**a ) return model @property def _UpperCAmelCase ( self ) -> Optional[Any]: return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _UpperCAmelCase ( self ) -> Union[str, Any]: torch.manual_seed(0 ) lowercase__ : Any = VQModel(**self.dummy_movq_kwargs ) return model def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : List[Any] = self.dummy_text_encoder lowercase__ : int = self.dummy_tokenizer lowercase__ : Tuple = self.dummy_unet lowercase__ : Tuple = self.dummy_movq lowercase__ : Union[str, Any] = { 'num_train_timesteps': 1_0_0_0, 'beta_schedule': 'linear', 'beta_start': 0.00_085, 'beta_end': 0.012, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } lowercase__ : Dict = DDIMScheduler(**a ) lowercase__ : int = { 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def _UpperCAmelCase ( self , a , a=0 ) -> Tuple: lowercase__ : Any = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(a ) ).to(a ) lowercase__ : List[str] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(a ) # create init_image lowercase__ : str = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(a ) ).to(a ) lowercase__ : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase__ : List[Any] = Image.fromarray(np.uinta(a ) ).convert('RGB' ).resize((2_5_6, 2_5_6) ) if str(a ).startswith('mps' ): lowercase__ : Tuple = torch.manual_seed(a ) else: lowercase__ : Tuple = torch.Generator(device=a ).manual_seed(a ) lowercase__ : str = { 'prompt': 'horse', 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 6_4, 'width': 6_4, 'num_inference_steps': 1_0, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Any = 'cpu' lowercase__ : List[str] = self.get_dummy_components() lowercase__ : List[str] = self.pipeline_class(**a ) lowercase__ : Dict = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowercase__ : Optional[int] = pipe(**self.get_dummy_inputs(a ) ) lowercase__ : Tuple = output.images lowercase__ : Union[str, Any] = pipe( **self.get_dummy_inputs(a ) , return_dict=a , )[0] lowercase__ : Dict = image[0, -3:, -3:, -1] lowercase__ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) lowercase__ : Tuple = np.array( [0.61_474_943, 0.6_073_539, 0.43_308_544, 0.5_928_269, 0.47_493_595, 0.46_755_973, 0.4_613_838, 0.45_368_797, 0.50_119_233] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase): def _UpperCAmelCase ( self ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase ( self ) -> int: lowercase__ : Optional[int] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/kandinsky_img2img_frog.npy' ) lowercase__ : Tuple = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) lowercase__ : str = 'A red cartoon frog, 4k' lowercase__ : Dict = KandinskyPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-prior' , torch_dtype=torch.floataa ) pipe_prior.to(a ) lowercase__ : int = KandinskyImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1' , torch_dtype=torch.floataa ) lowercase__ : Union[str, Any] = pipeline.to(a ) pipeline.set_progress_bar_config(disable=a ) lowercase__ : str = torch.Generator(device='cpu' ).manual_seed(0 ) lowercase__ : str = pipe_prior( a , generator=a , num_inference_steps=5 , negative_prompt='' , ).to_tuple() lowercase__ : Optional[Any] = pipeline( a , image=a , image_embeds=a , negative_image_embeds=a , generator=a , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , strength=0.2 , output_type='np' , ) lowercase__ : Union[str, Any] = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(a , a )
700
"""simple docstring""" import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def a_ ( _lowerCAmelCase : dict ): '''simple docstring''' return (data["data"], data["target"]) def a_ ( _lowerCAmelCase : np.ndarray , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : np.ndarray ): '''simple docstring''' lowercase__ : Any = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(_lowerCAmelCase , _lowerCAmelCase ) # Predict target for test data lowercase__ : str = xgb.predict(_lowerCAmelCase ) lowercase__ : Union[str, Any] = predictions.reshape(len(_lowerCAmelCase ) , 1 ) return predictions def a_ ( ): '''simple docstring''' lowercase__ : Optional[Any] = fetch_california_housing() lowercase__ , lowercase__ : str = data_handling(_lowerCAmelCase ) lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = train_test_split( _lowerCAmelCase , _lowerCAmelCase , test_size=0.2_5 , random_state=1 ) lowercase__ : Any = xgboost(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Error printing print(f"""Mean Absolute Error : {mean_absolute_error(_lowerCAmelCase , _lowerCAmelCase )}""" ) print(f"""Mean Square Error : {mean_squared_error(_lowerCAmelCase , _lowerCAmelCase )}""" ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
645
0
"""simple docstring""" import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _UpperCamelCase : Union[str, Any] = 16 _UpperCamelCase : Optional[Any] = 32 def a_ ( _lowerCAmelCase : Accelerator , _lowerCAmelCase : DatasetDict , _lowerCAmelCase : List[int] , _lowerCAmelCase : List[int] , _lowerCAmelCase : int = 16 ): '''simple docstring''' lowercase__ : int = AutoTokenizer.from_pretrained('bert-base-cased' ) lowercase__ : str = DatasetDict( { 'train': dataset['train'].select(_lowerCAmelCase ), 'validation': dataset['train'].select(_lowerCAmelCase ), 'test': dataset['validation'], } ) def tokenize_function(_lowerCAmelCase : Dict ): # max_length=None => use the model max length (it's actually the default) lowercase__ : List[Any] = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase__ : Union[str, Any] = datasets.map( _lowerCAmelCase , batched=_lowerCAmelCase , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ : Any = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(_lowerCAmelCase : List[str] ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase__ : Tuple = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase__ : Optional[Any] = 16 elif accelerator.mixed_precision != "no": lowercase__ : Dict = 8 else: lowercase__ : Optional[int] = None return tokenizer.pad( _lowerCAmelCase , padding='longest' , max_length=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_tensors='pt' , ) # Instantiate dataloaders. lowercase__ : List[str] = DataLoader( tokenized_datasets['train'] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase ) lowercase__ : str = DataLoader( tokenized_datasets['validation'] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase ) lowercase__ : Dict = DataLoader( tokenized_datasets['test'] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase ) return train_dataloader, eval_dataloader, test_dataloader def a_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict ): '''simple docstring''' lowercase__ : Optional[Any] = [] # Download the dataset lowercase__ : Optional[Any] = load_dataset('glue' , 'mrpc' ) # Create our splits lowercase__ : List[str] = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator lowercase__ : List[str] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ : int = config['lr'] lowercase__ : Optional[int] = int(config['num_epochs'] ) lowercase__ : Optional[Any] = int(config['seed'] ) lowercase__ : Optional[int] = int(config['batch_size'] ) lowercase__ : Union[str, Any] = evaluate.load('glue' , 'mrpc' ) # If the batch size is too big we use gradient accumulation lowercase__ : Tuple = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: lowercase__ : Dict = batch_size // MAX_GPU_BATCH_SIZE lowercase__ : Dict = MAX_GPU_BATCH_SIZE set_seed(_lowerCAmelCase ) # New Code # # Create our folds: lowercase__ : Optional[Any] = kfold.split(np.zeros(datasets['train'].num_rows ) , datasets['train']['label'] ) lowercase__ : Optional[Any] = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(_lowerCAmelCase ): lowercase__ : Optional[int] = get_fold_dataloaders( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ : Any = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=_lowerCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase__ : Any = model.to(accelerator.device ) # Instantiate optimizer lowercase__ : Tuple = AdamW(params=model.parameters() , lr=_lowerCAmelCase ) # Instantiate scheduler lowercase__ : Dict = get_linear_schedule_with_warmup( optimizer=_lowerCAmelCase , num_warmup_steps=100 , num_training_steps=(len(_lowerCAmelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ : List[str] = accelerator.prepare( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Now we train the model for epoch in range(_lowerCAmelCase ): model.train() for step, batch in enumerate(_lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowercase__ : List[str] = model(**_lowerCAmelCase ) lowercase__ : Dict = outputs.loss lowercase__ : List[Any] = loss / gradient_accumulation_steps accelerator.backward(_lowerCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ : str = model(**_lowerCAmelCase ) lowercase__ : str = outputs.logits.argmax(dim=-1 ) lowercase__ : str = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=_lowerCAmelCase , references=_lowerCAmelCase , ) lowercase__ : Optional[int] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , _lowerCAmelCase ) # New Code # # We also run predictions on the test set at the very end lowercase__ : Optional[int] = [] for step, batch in enumerate(_lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ : Any = model(**_lowerCAmelCase ) lowercase__ : Optional[Any] = outputs.logits lowercase__ : Optional[int] = accelerator.gather_for_metrics((predictions, batch['labels']) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(_lowerCAmelCase , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: lowercase__ : Tuple = torch.cat(_lowerCAmelCase , dim=0 ) lowercase__ : Optional[int] = torch.stack(_lowerCAmelCase , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) lowercase__ : Optional[int] = metric.compute(predictions=_lowerCAmelCase , references=_lowerCAmelCase ) accelerator.print('Average test metrics from all folds:' , _lowerCAmelCase ) def a_ ( ): '''simple docstring''' lowercase__ : Tuple = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=_lowerCAmelCase , default=_lowerCAmelCase , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) # New Code # parser.add_argument('--num_folds' , type=_lowerCAmelCase , default=3 , help='The number of splits to perform across the dataset' ) lowercase__ : List[Any] = parser.parse_args() lowercase__ : Optional[int] = {'lr': 2E-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": main()
701
"""simple docstring""" import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class UpperCAmelCase_ : def __init__( self , a , a=1_3 , a=1_0 , a=3 , a=2 , a=2 , a=2 , a=True , a=True , a=3_2 , a=5 , a=4 , a=3_7 , a="gelu" , a=0.1 , a=0.1 , a=1_0 , a=0.02 , a=0.9 , a=None , ) -> Optional[Any]: lowercase__ : str = parent lowercase__ : int = batch_size lowercase__ : Union[str, Any] = image_size lowercase__ : Optional[Any] = num_channels lowercase__ : Dict = patch_size lowercase__ : Tuple = tubelet_size lowercase__ : Optional[int] = num_frames lowercase__ : Optional[int] = is_training lowercase__ : int = use_labels lowercase__ : Optional[int] = hidden_size lowercase__ : Union[str, Any] = num_hidden_layers lowercase__ : Optional[int] = num_attention_heads lowercase__ : Any = intermediate_size lowercase__ : str = hidden_act lowercase__ : List[Any] = hidden_dropout_prob lowercase__ : str = attention_probs_dropout_prob lowercase__ : Union[str, Any] = type_sequence_label_size lowercase__ : List[Any] = initializer_range lowercase__ : str = mask_ratio lowercase__ : Optional[Any] = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame lowercase__ : Optional[Any] = (image_size // patch_size) ** 2 lowercase__ : str = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos lowercase__ : str = int(mask_ratio * self.seq_length ) def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : int = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) lowercase__ : int = None if self.use_labels: lowercase__ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ : Dict = self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self ) -> Tuple: return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a , initializer_range=self.initializer_range , ) def _UpperCAmelCase ( self , a , a , a ) -> Optional[int]: lowercase__ : Dict = VideoMAEModel(config=a ) model.to(a ) model.eval() lowercase__ : Tuple = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self , a , a , a ) -> Union[str, Any]: lowercase__ : str = VideoMAEForPreTraining(a ) model.to(a ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowercase__ : Any = torch.ones((self.num_masks,) ) lowercase__ : str = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) lowercase__ : Optional[int] = mask.expand(self.batch_size , -1 ).bool() lowercase__ : str = model(a , a ) # model only returns predictions for masked patches lowercase__ : str = mask.sum().item() lowercase__ : int = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def _UpperCAmelCase ( self ) -> str: lowercase__ : Dict = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = config_and_inputs lowercase__ : List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _a , _a , unittest.TestCase): lowerCamelCase__ : Tuple = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) lowerCamelCase__ : Optional[int] = ( {"feature-extraction": VideoMAEModel, "video-classification": VideoMAEForVideoClassification} if is_torch_available() else {} ) lowerCamelCase__ : Any = False lowerCamelCase__ : Any = False lowerCamelCase__ : Union[str, Any] = False lowerCamelCase__ : str = False def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Optional[Any] = VideoMAEModelTester(self ) lowercase__ : Optional[Any] = ConfigTester(self , config_class=a , has_text_modality=a , hidden_size=3_7 ) def _UpperCAmelCase ( self , a , a , a=False ) -> Optional[int]: lowercase__ : Union[str, Any] = copy.deepcopy(a ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowercase__ : Optional[Any] = torch.ones((self.model_tester.num_masks,) ) lowercase__ : Any = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) lowercase__ : Any = mask.expand(self.model_tester.batch_size , -1 ).bool() lowercase__ : Union[str, Any] = bool_masked_pos.to(a ) if return_labels: if model_class in [ *get_values(a ), ]: lowercase__ : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a ) return inputs_dict def _UpperCAmelCase ( self ) -> Tuple: self.config_tester.run_common_tests() @unittest.skip(reason='VideoMAE does not use inputs_embeds' ) def _UpperCAmelCase ( self ) -> Dict: pass def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : int = model_class(a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase__ : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a , nn.Linear ) ) def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[str] = model_class(a ) lowercase__ : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Optional[Any] = [*signature.parameters.keys()] lowercase__ : int = ['pixel_values'] self.assertListEqual(arg_names[:1] , a ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*a ) @slow def _UpperCAmelCase ( self ) -> str: for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : List[Any] = VideoMAEModel.from_pretrained(a ) self.assertIsNotNone(a ) def _UpperCAmelCase ( self ) -> Optional[Any]: if not self.has_attentions: pass else: lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : str = True for model_class in self.all_model_classes: lowercase__ : Union[str, Any] = self.model_tester.seq_length - self.model_tester.num_masks lowercase__ : Any = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) lowercase__ : Optional[Any] = True lowercase__ : int = False lowercase__ : Any = True lowercase__ : List[str] = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : Optional[int] = model(**self._prepare_for_class(a , a ) ) lowercase__ : Dict = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase__ : str = True lowercase__ : List[str] = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : List[Any] = model(**self._prepare_for_class(a , a ) ) lowercase__ : Optional[Any] = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowercase__ : List[str] = len(a ) # Check attention is always last and order is fine lowercase__ : Optional[int] = True lowercase__ : List[str] = True lowercase__ : int = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : List[str] = model(**self._prepare_for_class(a , a ) ) self.assertEqual(out_len + 1 , len(a ) ) lowercase__ : int = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def _UpperCAmelCase ( self ) -> Optional[int]: def check_hidden_states_output(a , a , a ): lowercase__ : Optional[int] = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : Optional[Any] = model(**self._prepare_for_class(a , a ) ) lowercase__ : Optional[int] = outputs.hidden_states lowercase__ : List[Any] = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(a ) , a ) lowercase__ : Optional[Any] = self.model_tester.seq_length - self.model_tester.num_masks lowercase__ : Union[str, Any] = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowercase__ , lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Tuple = True check_hidden_states_output(a , a , a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : Union[str, Any] = True check_hidden_states_output(a , a , a ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _UpperCAmelCase ( self ) -> List[Any]: pass def a_ ( ): '''simple docstring''' lowercase__ : int = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename='eating_spaghetti.npy' , repo_type='dataset' ) lowercase__ : str = np.load(_lowerCAmelCase ) return list(_lowerCAmelCase ) @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase): @cached_property def _UpperCAmelCase ( self ) -> Optional[Any]: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def _UpperCAmelCase ( self ) -> int: lowercase__ : Dict = VideoMAEForVideoClassification.from_pretrained('MCG-NJU/videomae-base-finetuned-kinetics' ).to( a ) lowercase__ : str = self.default_image_processor lowercase__ : List[str] = prepare_video() lowercase__ : int = image_processor(a , return_tensors='pt' ).to(a ) # forward pass with torch.no_grad(): lowercase__ : Union[str, Any] = model(**a ) # verify the logits lowercase__ : str = torch.Size((1, 4_0_0) ) self.assertEqual(outputs.logits.shape , a ) lowercase__ : List[Any] = torch.tensor([0.3_669, -0.0_688, -0.2_421] ).to(a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a , atol=1e-4 ) ) @slow def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Optional[int] = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short' ).to(a ) lowercase__ : Optional[Any] = self.default_image_processor lowercase__ : List[str] = prepare_video() lowercase__ : str = image_processor(a , return_tensors='pt' ).to(a ) # add boolean mask, indicating which patches to mask lowercase__ : Union[str, Any] = hf_hub_download(repo_id='hf-internal-testing/bool-masked-pos' , filename='bool_masked_pos.pt' ) lowercase__ : str = torch.load(a ) # forward pass with torch.no_grad(): lowercase__ : List[Any] = model(**a ) # verify the logits lowercase__ : Dict = torch.Size([1, 1_4_0_8, 1_5_3_6] ) lowercase__ : List[str] = torch.tensor( [[0.7_994, 0.9_612, 0.8_508], [0.7_401, 0.8_958, 0.8_302], [0.5_862, 0.7_468, 0.7_325]] , device=a ) self.assertEqual(outputs.logits.shape , a ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , a , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) lowercase__ : List[Any] = torch.tensor([0.5_142] , device=a ) self.assertTrue(torch.allclose(outputs.loss , a , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) lowercase__ : Tuple = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short' , norm_pix_loss=a ).to( a ) with torch.no_grad(): lowercase__ : Any = model(**a ) lowercase__ : List[Any] = torch.tensor(torch.tensor([0.6_469] ) , device=a ) self.assertTrue(torch.allclose(outputs.loss , a , atol=1e-4 ) )
645
0
"""simple docstring""" import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def a_ ( _lowerCAmelCase : Tuple ): '''simple docstring''' lowercase__ : str = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(_lowerCAmelCase , _lowerCAmelCase ) def a_ ( _lowerCAmelCase : Optional[Any] ): '''simple docstring''' lowercase__ : Optional[Any] = emb.weight.shape lowercase__ : Optional[int] = nn.Linear(_lowerCAmelCase , _lowerCAmelCase , bias=_lowerCAmelCase ) lowercase__ : Dict = emb.weight.data return lin_layer def a_ ( _lowerCAmelCase : Union[str, Any] ): '''simple docstring''' lowercase__ : Optional[Any] = torch.load(_lowerCAmelCase , map_location='cpu' ) lowercase__ : Optional[int] = mam_aaa['args'] or mam_aaa['cfg']['model'] lowercase__ : Union[str, Any] = mam_aaa['model'] remove_ignore_keys_(_lowerCAmelCase ) lowercase__ : Tuple = state_dict['encoder.embed_tokens.weight'].shape[0] lowercase__ : Optional[int] = MaMaaaConfig( vocab_size=_lowerCAmelCase , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='relu' , ) lowercase__ : List[Any] = state_dict['decoder.embed_tokens.weight'] lowercase__ : List[str] = MaMaaaForConditionalGeneration(_lowerCAmelCase ) model.model.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) lowercase__ : Optional[int] = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": _UpperCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument("fairseq_path", type=str, help="path to a model.pt on local filesystem.") parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") _UpperCamelCase : List[Any] = parser.parse_args() _UpperCamelCase : Tuple = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
702
"""simple docstring""" import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() _UpperCamelCase : Dict = logging.get_logger(__name__) _UpperCamelCase : List[Any] = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "encoder.layer_norm_for_extract": "layer_norm_for_extract", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "label_embs_concat": "label_embeddings_concat", "mask_emb": "masked_spec_embed", "spk_proj": "speaker_proj", } _UpperCamelCase : List[str] = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "label_embeddings_concat", "speaker_proj", "layer_norm_for_extract", ] def a_ ( _lowerCAmelCase : Any , _lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple ): '''simple docstring''' for attribute in key.split('.' ): lowercase__ : Dict = getattr(_lowerCAmelCase , _lowerCAmelCase ) if weight_type is not None: lowercase__ : Optional[int] = getattr(_lowerCAmelCase , _lowerCAmelCase ).shape else: lowercase__ : Optional[int] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowercase__ : Optional[Any] = value elif weight_type == "weight_g": lowercase__ : Dict = value elif weight_type == "weight_v": lowercase__ : List[str] = value elif weight_type == "bias": lowercase__ : Optional[Any] = value else: lowercase__ : List[str] = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def a_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] ): '''simple docstring''' lowercase__ : Tuple = [] lowercase__ : List[str] = fairseq_model.state_dict() lowercase__ : Union[str, Any] = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): lowercase__ : Optional[int] = False if "conv_layers" in name: load_conv_layer( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , hf_model.config.feat_extract_norm == 'group' , ) lowercase__ : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): lowercase__ : List[Any] = 'unispeech_sat.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('.' )[:-1] ) != key): # special case since naming is very similar continue lowercase__ : int = True if "*" in mapped_key: lowercase__ : Optional[int] = name.split(_lowerCAmelCase )[0].split('.' )[-2] lowercase__ : List[str] = mapped_key.replace('*' , _lowerCAmelCase ) if "weight_g" in name: lowercase__ : List[Any] = 'weight_g' elif "weight_v" in name: lowercase__ : int = 'weight_v' elif "bias" in name: lowercase__ : Dict = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj lowercase__ : Union[str, Any] = 'weight' else: lowercase__ : int = None set_recursively(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) continue if not is_used: unused_weights.append(_lowerCAmelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def a_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : Dict ): '''simple docstring''' lowercase__ : int = full_name.split('conv_layers.' )[-1] lowercase__ : int = name.split('.' ) lowercase__ : int = int(items[0] ) lowercase__ : Dict = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowercase__ : Union[str, Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowercase__ : Optional[int] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) lowercase__ : List[Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) lowercase__ : int = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_lowerCAmelCase ) @torch.no_grad() def a_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : str=None , _lowerCAmelCase : Tuple=True ): '''simple docstring''' if config_path is not None: lowercase__ : Any = UniSpeechSatConfig.from_pretrained(_lowerCAmelCase ) else: lowercase__ : Any = UniSpeechSatConfig() lowercase__ : Union[str, Any] = '' if is_finetuned: lowercase__ : Optional[Any] = UniSpeechSatForCTC(_lowerCAmelCase ) else: lowercase__ : List[Any] = UniSpeechSatForPreTraining(_lowerCAmelCase ) lowercase__ , lowercase__ , lowercase__ : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) lowercase__ : Union[str, Any] = model[0].eval() recursively_load_weights(_lowerCAmelCase , _lowerCAmelCase ) hf_wavavec.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": _UpperCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _UpperCamelCase : str = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
645
0
"""simple docstring""" import argparse import hashlib # hashlib is only used inside the Test class import struct class UpperCAmelCase_ : def __init__( self , a ) -> Optional[Any]: lowercase__ : List[Any] = data lowercase__ : Optional[int] = [0X67_452_301, 0XEF_CDA_B89, 0X98_BAD_CFE, 0X10_325_476, 0XC3_D2E_1F0] @staticmethod def _UpperCAmelCase ( a , a ) -> Tuple: return ((n << b) | (n >> (3_2 - b))) & 0XFF_FFF_FFF def _UpperCAmelCase ( self ) -> int: lowercase__ : Dict = b'\x80' + b'\x00' * (6_3 - (len(self.data ) + 8) % 6_4) lowercase__ : Dict = self.data + padding + struct.pack('>Q' , 8 * len(self.data ) ) return padded_data def _UpperCAmelCase ( self ) -> List[Any]: return [ self.padded_data[i : i + 6_4] for i in range(0 , len(self.padded_data ) , 6_4 ) ] def _UpperCAmelCase ( self , a ) -> Optional[Any]: lowercase__ : Optional[Any] = list(struct.unpack('>16L' , a ) ) + [0] * 6_4 for i in range(1_6 , 8_0 ): lowercase__ : Optional[Any] = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 1_4] ^ w[i - 1_6]) , 1 ) return w def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ : Union[str, Any] = self.padding() lowercase__ : int = self.split_blocks() for block in self.blocks: lowercase__ : Tuple = self.expand_block(a ) lowercase__ : List[Any] = self.h for i in range(0 , 8_0 ): if 0 <= i < 2_0: lowercase__ : Tuple = (b & c) | ((~b) & d) lowercase__ : Any = 0X5A_827_999 elif 2_0 <= i < 4_0: lowercase__ : Tuple = b ^ c ^ d lowercase__ : int = 0X6E_D9E_BA1 elif 4_0 <= i < 6_0: lowercase__ : Any = (b & c) | (b & d) | (c & d) lowercase__ : Optional[int] = 0X8F_1BB_CDC elif 6_0 <= i < 8_0: lowercase__ : Any = b ^ c ^ d lowercase__ : List[Any] = 0XCA_62C_1D6 lowercase__ : Dict = ( self.rotate(a , 5 ) + f + e + k + expanded_block[i] & 0XFF_FFF_FFF, a, self.rotate(a , 3_0 ), c, d, ) lowercase__ : Optional[int] = ( self.h[0] + a & 0XFF_FFF_FFF, self.h[1] + b & 0XFF_FFF_FFF, self.h[2] + c & 0XFF_FFF_FFF, self.h[3] + d & 0XFF_FFF_FFF, self.h[4] + e & 0XFF_FFF_FFF, ) return ("{:08x}" * 5).format(*self.h ) def a_ ( ): '''simple docstring''' lowercase__ : int = B'Test String' assert SHAaHash(_lowerCAmelCase ).final_hash() == hashlib.shaa(_lowerCAmelCase ).hexdigest() # noqa: S324 def a_ ( ): '''simple docstring''' lowercase__ : List[str] = argparse.ArgumentParser(description='Process some strings or files' ) parser.add_argument( '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument('--file' , dest='input_file' , help='Hash contents of a file' ) lowercase__ : List[str] = parser.parse_args() lowercase__ : Dict = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: lowercase__ : Optional[Any] = f.read() else: lowercase__ : Optional[Any] = bytes(_lowerCAmelCase , 'utf-8' ) print(SHAaHash(_lowerCAmelCase ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
703
"""simple docstring""" import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class UpperCAmelCase_ : def __init__( self , a , a=1_3 , a=3_2 , a=2 , a=3 , a=1_6 , a=[1, 2, 1] , a=[2, 2, 4] , a=2 , a=2.0 , a=True , a=0.0 , a=0.0 , a=0.1 , a="gelu" , a=False , a=True , a=0.02 , a=1e-5 , a=True , a=None , a=True , a=1_0 , a=8 , a=["stage1", "stage2", "stage3"] , a=[1, 2, 3] , ) -> int: lowercase__ : int = parent lowercase__ : Union[str, Any] = batch_size lowercase__ : Dict = image_size lowercase__ : str = patch_size lowercase__ : Optional[Any] = num_channels lowercase__ : List[str] = embed_dim lowercase__ : Any = depths lowercase__ : Dict = num_heads lowercase__ : List[str] = window_size lowercase__ : int = mlp_ratio lowercase__ : Tuple = qkv_bias lowercase__ : Union[str, Any] = hidden_dropout_prob lowercase__ : str = attention_probs_dropout_prob lowercase__ : Tuple = drop_path_rate lowercase__ : List[str] = hidden_act lowercase__ : Optional[Any] = use_absolute_embeddings lowercase__ : Optional[Any] = patch_norm lowercase__ : Any = layer_norm_eps lowercase__ : List[Any] = initializer_range lowercase__ : List[str] = is_training lowercase__ : int = scope lowercase__ : Optional[int] = use_labels lowercase__ : List[Any] = type_sequence_label_size lowercase__ : List[str] = encoder_stride lowercase__ : Optional[Any] = out_features lowercase__ : Dict = out_indices def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : Optional[Any] = None if self.use_labels: lowercase__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ : Tuple = self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self ) -> Union[str, Any]: return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def _UpperCAmelCase ( self , a , a , a ) -> Dict: lowercase__ : Tuple = MaskFormerSwinModel(config=a ) model.to(a ) model.eval() lowercase__ : str = model(a ) lowercase__ : str = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowercase__ : Dict = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def _UpperCAmelCase ( self , a , a , a ) -> Optional[int]: lowercase__ : List[Any] = MaskFormerSwinBackbone(config=a ) model.to(a ) model.eval() lowercase__ : int = model(a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [1_3, 1_6, 1_6, 1_6] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [1_6, 3_2, 6_4] ) # verify ValueError with self.parent.assertRaises(a ): lowercase__ : Dict = ['stem'] lowercase__ : List[str] = MaskFormerSwinBackbone(config=a ) def _UpperCAmelCase ( self ) -> str: lowercase__ : int = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Tuple = config_and_inputs lowercase__ : Union[str, Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _a , _a , unittest.TestCase): lowerCamelCase__ : Optional[int] = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) lowerCamelCase__ : List[str] = {"feature-extraction": MaskFormerSwinModel} if is_torch_available() else {} lowerCamelCase__ : str = False lowerCamelCase__ : Dict = False lowerCamelCase__ : Any = False lowerCamelCase__ : Dict = False lowerCamelCase__ : int = False def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : str = MaskFormerSwinModelTester(self ) lowercase__ : Tuple = ConfigTester(self , config_class=a , embed_dim=3_7 ) @require_torch_multi_gpu @unittest.skip( reason=( '`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with' ' `nn.DataParallel`' ) ) def _UpperCAmelCase ( self ) -> Optional[int]: pass def _UpperCAmelCase ( self ) -> Tuple: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _UpperCAmelCase ( self ) -> str: return def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*a ) @unittest.skip('Swin does not use inputs_embeds' ) def _UpperCAmelCase ( self ) -> Tuple: pass @unittest.skip('Swin does not support feedforward chunking' ) def _UpperCAmelCase ( self ) -> Tuple: pass def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[str] = model_class(a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase__ : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a , nn.Linear ) ) def _UpperCAmelCase ( self ) -> str: lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Any = model_class(a ) lowercase__ : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Optional[Any] = [*signature.parameters.keys()] lowercase__ : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , a ) @unittest.skip(reason='MaskFormerSwin is only used as backbone and doesn\'t support output_attentions' ) def _UpperCAmelCase ( self ) -> List[Any]: pass @unittest.skip(reason='MaskFormerSwin is only used as an internal backbone' ) def _UpperCAmelCase ( self ) -> int: pass def _UpperCAmelCase ( self , a , a , a , a ) -> Tuple: lowercase__ : Dict = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : str = model(**self._prepare_for_class(a , a ) ) lowercase__ : List[Any] = outputs.hidden_states lowercase__ : str = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(a ) , a ) # Swin has a different seq_length lowercase__ : Dict = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase__ : Tuple = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ , lowercase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : List[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: lowercase__ : List[str] = True self.check_hidden_states_output(a , a , a , a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : List[str] = True self.check_hidden_states_output(a , a , a , a ) def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Union[str, Any] = 3 lowercase__ : str = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowercase__ : Tuple = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase__ : Optional[int] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowercase__ : List[str] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: lowercase__ : List[str] = True self.check_hidden_states_output(a , a , a , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : int = True self.check_hidden_states_output(a , a , a , (padded_height, padded_width) ) @unittest.skip(reason='MaskFormerSwin doesn\'t have pretrained checkpoints' ) def _UpperCAmelCase ( self ) -> Optional[int]: pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def _UpperCAmelCase ( self ) -> Any: pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def _UpperCAmelCase ( self ) -> Any: pass def _UpperCAmelCase ( self ) -> Any: lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(a ): lowercase__ : Union[str, Any] = 0 return t def check_equivalence(a , a , a , a={} ): with torch.no_grad(): lowercase__ : Optional[Any] = model(**a , return_dict=a , **a ) lowercase__ : Optional[int] = model(**a , return_dict=a , **a ).to_tuple() def recursive_check(a , a ): if isinstance(a , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(a , a ): recursive_check(a , a ) elif isinstance(a , a ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(a , a ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(a ) , set_nan_tensor_to_zero(a ) , atol=1e-5 ) , msg=( 'Tuple and dict output are not equal. Difference:' f""" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:""" f""" {torch.isnan(a ).any()} and `inf`: {torch.isinf(a )}. Dict has""" f""" `nan`: {torch.isnan(a ).any()} and `inf`: {torch.isinf(a )}.""" ) , ) recursive_check(a , a ) for model_class in self.all_model_classes: lowercase__ : Any = model_class(a ) model.to(a ) model.eval() lowercase__ : Tuple = self._prepare_for_class(a , a ) lowercase__ : Optional[Any] = self._prepare_for_class(a , a ) check_equivalence(a , a , a ) lowercase__ : Any = self._prepare_for_class(a , a , return_labels=a ) lowercase__ : List[Any] = self._prepare_for_class(a , a , return_labels=a ) check_equivalence(a , a , a ) lowercase__ : Any = self._prepare_for_class(a , a ) lowercase__ : int = self._prepare_for_class(a , a ) check_equivalence(a , a , a , {'output_hidden_states': True} ) lowercase__ : Dict = self._prepare_for_class(a , a , return_labels=a ) lowercase__ : Optional[int] = self._prepare_for_class(a , a , return_labels=a ) check_equivalence(a , a , a , {'output_hidden_states': True} ) @require_torch class UpperCAmelCase_ ( unittest.TestCase , _a): lowerCamelCase__ : Dict = (MaskFormerSwinBackbone,) if is_torch_available() else () lowerCamelCase__ : Optional[int] = MaskFormerSwinConfig def _UpperCAmelCase ( self ) -> Dict: lowercase__ : Optional[int] = MaskFormerSwinModelTester(self ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : int = inputs_dict['pixel_values'].shape[0] for backbone_class in self.all_model_classes: lowercase__ : Optional[Any] = backbone_class(a ) backbone.to(a ) backbone.eval() lowercase__ : Union[str, Any] = backbone(**a ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , a ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True lowercase__ : List[str] = backbone(**a , output_hidden_states=a ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) lowercase__ , lowercase__ , lowercase__ : int = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: lowercase__ : List[Any] = backbone(**a , output_attentions=a ) self.assertIsNotNone(outputs.attentions )
645
0
"""simple docstring""" from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES _UpperCamelCase : Tuple = logging.get_logger(__name__) _UpperCamelCase : Tuple = OrderedDict( [ # Base model mapping ("albert", "FlaxAlbertModel"), ("bart", "FlaxBartModel"), ("beit", "FlaxBeitModel"), ("bert", "FlaxBertModel"), ("big_bird", "FlaxBigBirdModel"), ("blenderbot", "FlaxBlenderbotModel"), ("blenderbot-small", "FlaxBlenderbotSmallModel"), ("clip", "FlaxCLIPModel"), ("distilbert", "FlaxDistilBertModel"), ("electra", "FlaxElectraModel"), ("gpt-sw3", "FlaxGPT2Model"), ("gpt2", "FlaxGPT2Model"), ("gpt_neo", "FlaxGPTNeoModel"), ("gptj", "FlaxGPTJModel"), ("longt5", "FlaxLongT5Model"), ("marian", "FlaxMarianModel"), ("mbart", "FlaxMBartModel"), ("mt5", "FlaxMT5Model"), ("opt", "FlaxOPTModel"), ("pegasus", "FlaxPegasusModel"), ("regnet", "FlaxRegNetModel"), ("resnet", "FlaxResNetModel"), ("roberta", "FlaxRobertaModel"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormModel"), ("roformer", "FlaxRoFormerModel"), ("t5", "FlaxT5Model"), ("vision-text-dual-encoder", "FlaxVisionTextDualEncoderModel"), ("vit", "FlaxViTModel"), ("wav2vec2", "FlaxWav2Vec2Model"), ("whisper", "FlaxWhisperModel"), ("xglm", "FlaxXGLMModel"), ("xlm-roberta", "FlaxXLMRobertaModel"), ] ) _UpperCamelCase : str = OrderedDict( [ # Model for pre-training mapping ("albert", "FlaxAlbertForPreTraining"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForPreTraining"), ("big_bird", "FlaxBigBirdForPreTraining"), ("electra", "FlaxElectraForPreTraining"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("t5", "FlaxT5ForConditionalGeneration"), ("wav2vec2", "FlaxWav2Vec2ForPreTraining"), ("whisper", "FlaxWhisperForConditionalGeneration"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) _UpperCamelCase : int = OrderedDict( [ # Model for Masked LM mapping ("albert", "FlaxAlbertForMaskedLM"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForMaskedLM"), ("big_bird", "FlaxBigBirdForMaskedLM"), ("distilbert", "FlaxDistilBertForMaskedLM"), ("electra", "FlaxElectraForMaskedLM"), ("mbart", "FlaxMBartForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) _UpperCamelCase : List[Any] = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ("bart", "FlaxBartForConditionalGeneration"), ("blenderbot", "FlaxBlenderbotForConditionalGeneration"), ("blenderbot-small", "FlaxBlenderbotSmallForConditionalGeneration"), ("encoder-decoder", "FlaxEncoderDecoderModel"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("marian", "FlaxMarianMTModel"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("pegasus", "FlaxPegasusForConditionalGeneration"), ("t5", "FlaxT5ForConditionalGeneration"), ] ) _UpperCamelCase : Optional[int] = OrderedDict( [ # Model for Image-classsification ("beit", "FlaxBeitForImageClassification"), ("regnet", "FlaxRegNetForImageClassification"), ("resnet", "FlaxResNetForImageClassification"), ("vit", "FlaxViTForImageClassification"), ] ) _UpperCamelCase : List[str] = OrderedDict( [ ("vision-encoder-decoder", "FlaxVisionEncoderDecoderModel"), ] ) _UpperCamelCase : List[Any] = OrderedDict( [ # Model for Causal LM mapping ("bart", "FlaxBartForCausalLM"), ("bert", "FlaxBertForCausalLM"), ("big_bird", "FlaxBigBirdForCausalLM"), ("electra", "FlaxElectraForCausalLM"), ("gpt-sw3", "FlaxGPT2LMHeadModel"), ("gpt2", "FlaxGPT2LMHeadModel"), ("gpt_neo", "FlaxGPTNeoForCausalLM"), ("gptj", "FlaxGPTJForCausalLM"), ("opt", "FlaxOPTForCausalLM"), ("roberta", "FlaxRobertaForCausalLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForCausalLM"), ("xglm", "FlaxXGLMForCausalLM"), ("xlm-roberta", "FlaxXLMRobertaForCausalLM"), ] ) _UpperCamelCase : Optional[Any] = OrderedDict( [ # Model for Sequence Classification mapping ("albert", "FlaxAlbertForSequenceClassification"), ("bart", "FlaxBartForSequenceClassification"), ("bert", "FlaxBertForSequenceClassification"), ("big_bird", "FlaxBigBirdForSequenceClassification"), ("distilbert", "FlaxDistilBertForSequenceClassification"), ("electra", "FlaxElectraForSequenceClassification"), ("mbart", "FlaxMBartForSequenceClassification"), ("roberta", "FlaxRobertaForSequenceClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForSequenceClassification"), ("roformer", "FlaxRoFormerForSequenceClassification"), ("xlm-roberta", "FlaxXLMRobertaForSequenceClassification"), ] ) _UpperCamelCase : Optional[int] = OrderedDict( [ # Model for Question Answering mapping ("albert", "FlaxAlbertForQuestionAnswering"), ("bart", "FlaxBartForQuestionAnswering"), ("bert", "FlaxBertForQuestionAnswering"), ("big_bird", "FlaxBigBirdForQuestionAnswering"), ("distilbert", "FlaxDistilBertForQuestionAnswering"), ("electra", "FlaxElectraForQuestionAnswering"), ("mbart", "FlaxMBartForQuestionAnswering"), ("roberta", "FlaxRobertaForQuestionAnswering"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForQuestionAnswering"), ("roformer", "FlaxRoFormerForQuestionAnswering"), ("xlm-roberta", "FlaxXLMRobertaForQuestionAnswering"), ] ) _UpperCamelCase : Tuple = OrderedDict( [ # Model for Token Classification mapping ("albert", "FlaxAlbertForTokenClassification"), ("bert", "FlaxBertForTokenClassification"), ("big_bird", "FlaxBigBirdForTokenClassification"), ("distilbert", "FlaxDistilBertForTokenClassification"), ("electra", "FlaxElectraForTokenClassification"), ("roberta", "FlaxRobertaForTokenClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForTokenClassification"), ("roformer", "FlaxRoFormerForTokenClassification"), ("xlm-roberta", "FlaxXLMRobertaForTokenClassification"), ] ) _UpperCamelCase : str = OrderedDict( [ # Model for Multiple Choice mapping ("albert", "FlaxAlbertForMultipleChoice"), ("bert", "FlaxBertForMultipleChoice"), ("big_bird", "FlaxBigBirdForMultipleChoice"), ("distilbert", "FlaxDistilBertForMultipleChoice"), ("electra", "FlaxElectraForMultipleChoice"), ("roberta", "FlaxRobertaForMultipleChoice"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMultipleChoice"), ("roformer", "FlaxRoFormerForMultipleChoice"), ("xlm-roberta", "FlaxXLMRobertaForMultipleChoice"), ] ) _UpperCamelCase : Optional[int] = OrderedDict( [ ("bert", "FlaxBertForNextSentencePrediction"), ] ) _UpperCamelCase : Optional[int] = OrderedDict( [ ("speech-encoder-decoder", "FlaxSpeechEncoderDecoderModel"), ("whisper", "FlaxWhisperForConditionalGeneration"), ] ) _UpperCamelCase : List[Any] = OrderedDict( [ ("whisper", "FlaxWhisperForAudioClassification"), ] ) _UpperCamelCase : str = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) _UpperCamelCase : str = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) _UpperCamelCase : str = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) _UpperCamelCase : Dict = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) _UpperCamelCase : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) _UpperCamelCase : Tuple = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) _UpperCamelCase : str = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) _UpperCamelCase : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) _UpperCamelCase : Optional[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) _UpperCamelCase : Optional[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) _UpperCamelCase : Union[str, Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) _UpperCamelCase : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) _UpperCamelCase : str = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) _UpperCamelCase : str = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class UpperCAmelCase_ ( _BaseAutoModelClass): lowerCamelCase__ : Union[str, Any] = FLAX_MODEL_MAPPING _UpperCamelCase : Optional[Any] = auto_class_update(FlaxAutoModel) class UpperCAmelCase_ ( _BaseAutoModelClass): lowerCamelCase__ : Optional[int] = FLAX_MODEL_FOR_PRETRAINING_MAPPING _UpperCamelCase : Tuple = auto_class_update(FlaxAutoModelForPreTraining, head_doc="pretraining") class UpperCAmelCase_ ( _BaseAutoModelClass): lowerCamelCase__ : str = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING _UpperCamelCase : Union[str, Any] = auto_class_update(FlaxAutoModelForCausalLM, head_doc="causal language modeling") class UpperCAmelCase_ ( _BaseAutoModelClass): lowerCamelCase__ : Any = FLAX_MODEL_FOR_MASKED_LM_MAPPING _UpperCamelCase : str = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="masked language modeling") class UpperCAmelCase_ ( _BaseAutoModelClass): lowerCamelCase__ : Optional[int] = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _UpperCamelCase : Tuple = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc="sequence-to-sequence language modeling", checkpoint_for_example="t5-base" ) class UpperCAmelCase_ ( _BaseAutoModelClass): lowerCamelCase__ : Union[str, Any] = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _UpperCamelCase : Optional[Any] = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc="sequence classification" ) class UpperCAmelCase_ ( _BaseAutoModelClass): lowerCamelCase__ : str = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING _UpperCamelCase : Union[str, Any] = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="question answering") class UpperCAmelCase_ ( _BaseAutoModelClass): lowerCamelCase__ : Tuple = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING _UpperCamelCase : Optional[Any] = auto_class_update( FlaxAutoModelForTokenClassification, head_doc="token classification" ) class UpperCAmelCase_ ( _BaseAutoModelClass): lowerCamelCase__ : Any = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING _UpperCamelCase : List[Any] = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="multiple choice") class UpperCAmelCase_ ( _BaseAutoModelClass): lowerCamelCase__ : Optional[int] = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING _UpperCamelCase : List[Any] = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc="next sentence prediction" ) class UpperCAmelCase_ ( _BaseAutoModelClass): lowerCamelCase__ : Optional[int] = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING _UpperCamelCase : int = auto_class_update( FlaxAutoModelForImageClassification, head_doc="image classification" ) class UpperCAmelCase_ ( _BaseAutoModelClass): lowerCamelCase__ : Union[str, Any] = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING _UpperCamelCase : Union[str, Any] = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="vision-to-text modeling") class UpperCAmelCase_ ( _BaseAutoModelClass): lowerCamelCase__ : List[str] = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING _UpperCamelCase : Optional[int] = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc="sequence-to-sequence speech-to-text modeling" )
704
"""simple docstring""" import math def a_ ( _lowerCAmelCase : int = 100 ): '''simple docstring''' lowercase__ : Union[str, Any] = sum(i * i for i in range(1 , n + 1 ) ) lowercase__ : str = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f'''{solution() = }''')
645
0
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _UpperCamelCase : Optional[int] = logging.get_logger(__name__) _UpperCamelCase : Dict = { "SenseTime/deformable-detr": "https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json", # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class UpperCAmelCase_ ( _a): lowerCamelCase__ : str = "deformable_detr" lowerCamelCase__ : List[Any] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , a=True , a=None , a=3 , a=3_0_0 , a=1_0_2_4 , a=6 , a=1_0_2_4 , a=8 , a=6 , a=1_0_2_4 , a=8 , a=0.0 , a=True , a="relu" , a=2_5_6 , a=0.1 , a=0.0 , a=0.0 , a=0.02 , a=1.0 , a=True , a=False , a="sine" , a="resnet50" , a=True , a=False , a=4 , a=4 , a=4 , a=False , a=3_0_0 , a=False , a=1 , a=5 , a=2 , a=1 , a=1 , a=5 , a=2 , a=0.1 , a=0.25 , a=False , **a , ) -> Any: if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) lowercase__ : List[Any] = CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(a , a ): lowercase__ : Union[str, Any] = backbone_config.get('model_type' ) lowercase__ : List[Any] = CONFIG_MAPPING[backbone_model_type] lowercase__ : Union[str, Any] = config_class.from_dict(a ) lowercase__ : List[Any] = use_timm_backbone lowercase__ : int = backbone_config lowercase__ : Optional[int] = num_channels lowercase__ : Optional[Any] = num_queries lowercase__ : List[Any] = max_position_embeddings lowercase__ : List[str] = d_model lowercase__ : List[str] = encoder_ffn_dim lowercase__ : List[str] = encoder_layers lowercase__ : List[Any] = encoder_attention_heads lowercase__ : str = decoder_ffn_dim lowercase__ : Optional[Any] = decoder_layers lowercase__ : List[Any] = decoder_attention_heads lowercase__ : Optional[Any] = dropout lowercase__ : int = attention_dropout lowercase__ : Union[str, Any] = activation_dropout lowercase__ : Tuple = activation_function lowercase__ : Optional[int] = init_std lowercase__ : List[str] = init_xavier_std lowercase__ : Tuple = encoder_layerdrop lowercase__ : List[str] = auxiliary_loss lowercase__ : Tuple = position_embedding_type lowercase__ : Tuple = backbone lowercase__ : List[Any] = use_pretrained_backbone lowercase__ : List[Any] = dilation # deformable attributes lowercase__ : Dict = num_feature_levels lowercase__ : Optional[Any] = encoder_n_points lowercase__ : Union[str, Any] = decoder_n_points lowercase__ : List[Any] = two_stage lowercase__ : str = two_stage_num_proposals lowercase__ : Optional[int] = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.' ) # Hungarian matcher lowercase__ : int = class_cost lowercase__ : List[Any] = bbox_cost lowercase__ : Optional[Any] = giou_cost # Loss coefficients lowercase__ : List[Any] = mask_loss_coefficient lowercase__ : List[Any] = dice_loss_coefficient lowercase__ : Tuple = bbox_loss_coefficient lowercase__ : int = giou_loss_coefficient lowercase__ : Any = eos_coefficient lowercase__ : str = focal_alpha lowercase__ : Any = disable_custom_kernels super().__init__(is_encoder_decoder=a , **a ) @property def _UpperCAmelCase ( self ) -> int: return self.encoder_attention_heads @property def _UpperCAmelCase ( self ) -> int: return self.d_model def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : Dict = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: lowercase__ : Optional[Any] = self.backbone_config.to_dict() lowercase__ : Optional[Any] = self.__class__.model_type return output
705
"""simple docstring""" import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class UpperCAmelCase_ ( unittest.TestCase): def _UpperCAmelCase ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() def _UpperCAmelCase ( self ) -> Tuple: lowercase__ , lowercase__ : str = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-canny' , from_pt=a , dtype=jnp.bfloataa ) lowercase__ , lowercase__ : List[str] = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , controlnet=a , from_pt=a , dtype=jnp.bfloataa ) lowercase__ : List[Any] = controlnet_params lowercase__ : int = 'bird' lowercase__ : List[Any] = jax.device_count() lowercase__ : Dict = pipe.prepare_text_inputs([prompts] * num_samples ) lowercase__ : Union[str, Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png' ) lowercase__ : Optional[int] = pipe.prepare_image_inputs([canny_image] * num_samples ) lowercase__ : List[Any] = jax.random.PRNGKey(0 ) lowercase__ : Tuple = jax.random.split(a , jax.device_count() ) lowercase__ : str = replicate(a ) lowercase__ : List[str] = shard(a ) lowercase__ : Dict = shard(a ) lowercase__ : List[Any] = pipe( prompt_ids=a , image=a , params=a , prng_seed=a , num_inference_steps=5_0 , jit=a , ).images assert images.shape == (jax.device_count(), 1, 7_6_8, 5_1_2, 3) lowercase__ : Any = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowercase__ : Tuple = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] lowercase__ : int = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowercase__ : Optional[Any] = jnp.array( [0.167_969, 0.116_699, 0.081_543, 0.154_297, 0.132_812, 0.108_887, 0.169_922, 0.169_922, 0.205_078] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def _UpperCAmelCase ( self ) -> List[str]: lowercase__ , lowercase__ : int = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-openpose' , from_pt=a , dtype=jnp.bfloataa ) lowercase__ , lowercase__ : Optional[Any] = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , controlnet=a , from_pt=a , dtype=jnp.bfloataa ) lowercase__ : Optional[Any] = controlnet_params lowercase__ : List[Any] = 'Chef in the kitchen' lowercase__ : List[str] = jax.device_count() lowercase__ : Dict = pipe.prepare_text_inputs([prompts] * num_samples ) lowercase__ : Optional[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png' ) lowercase__ : Optional[int] = pipe.prepare_image_inputs([pose_image] * num_samples ) lowercase__ : List[str] = jax.random.PRNGKey(0 ) lowercase__ : str = jax.random.split(a , jax.device_count() ) lowercase__ : Optional[Any] = replicate(a ) lowercase__ : Optional[Any] = shard(a ) lowercase__ : List[Any] = shard(a ) lowercase__ : List[Any] = pipe( prompt_ids=a , image=a , params=a , prng_seed=a , num_inference_steps=5_0 , jit=a , ).images assert images.shape == (jax.device_count(), 1, 7_6_8, 5_1_2, 3) lowercase__ : Union[str, Any] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowercase__ : List[str] = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] lowercase__ : Optional[int] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowercase__ : str = jnp.array( [[0.271_484, 0.261_719, 0.275_391, 0.277_344, 0.279_297, 0.291_016, 0.294_922, 0.302_734, 0.302_734]] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
645
0
"""simple docstring""" import os def a_ ( _lowerCAmelCase : List[str] ): '''simple docstring''' lowercase__ : List[str] = len(grid[0] ) lowercase__ : Optional[int] = len(_lowerCAmelCase ) lowercase__ : Dict = 0 lowercase__ : Union[str, Any] = 0 lowercase__ : List[Any] = 0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(_lowerCAmelCase ): for j in range(n_rows - 3 ): lowercase__ : Optional[Any] = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] lowercase__ : Optional[Any] = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: lowercase__ : Optional[Any] = ( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: lowercase__ : Optional[Any] = ( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) lowercase__ : List[Any] = max( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if max_product > largest: lowercase__ : Dict = max_product return largest def a_ ( ): '''simple docstring''' lowercase__ : List[str] = [] with open(os.path.dirname(_lowerCAmelCase ) + '/grid.txt' ) as file: for line in file: grid.append(line.strip('\n' ).split(' ' ) ) lowercase__ : Dict = [[int(_lowerCAmelCase ) for i in grid[j]] for j in range(len(_lowerCAmelCase ) )] return largest_product(_lowerCAmelCase ) if __name__ == "__main__": print(solution())
706
"""simple docstring""" from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
645
0
"""simple docstring""" from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCAmelCase_ ( _a): lowerCamelCase__ : Tuple = ["image_processor", "tokenizer"] lowerCamelCase__ : Optional[int] = "AutoImageProcessor" lowerCamelCase__ : Dict = "AutoTokenizer" def __init__( self , a , a ) -> Any: super().__init__(a , a ) lowercase__ : Optional[Any] = self.image_processor def __call__( self , a=None , a=None , a=None , **a ) -> Tuple: if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: lowercase__ : List[str] = self.tokenizer(a , return_tensors=a , **a ) if images is not None: lowercase__ : Optional[int] = self.image_processor(a , return_tensors=a , **a ) if text is not None and images is not None: lowercase__ : str = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a ) , tensor_type=a ) def _UpperCAmelCase ( self , *a , **a ) -> Optional[Any]: return self.tokenizer.batch_decode(*a , **a ) def _UpperCAmelCase ( self , *a , **a ) -> Optional[int]: return self.tokenizer.decode(*a , **a ) @property def _UpperCAmelCase ( self ) -> Optional[Any]: return ["input_ids", "attention_mask", "pixel_values"]
707
"""simple docstring""" import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase): @slow def _UpperCAmelCase ( self ) -> str: lowercase__ : Optional[Any] = AutoImageProcessor.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' ) lowercase__ : Union[str, Any] = AutoModelForImageClassification.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' ) model.to(a ) from datasets import load_dataset lowercase__ : str = load_dataset('nielsr/rvlcdip-demo' ) lowercase__ : Tuple = dataset['train'][0]['image'].convert('RGB' ) lowercase__ : int = image_processor(a , return_tensors='pt' ).to(a ) # forward pass with torch.no_grad(): lowercase__ : List[str] = model(**a ) lowercase__ : List[Any] = outputs.logits lowercase__ : Union[str, Any] = torch.Size((1, 1_6) ) self.assertEqual(logits.shape , a ) lowercase__ : Tuple = torch.tensor( [-0.4_158, -0.4_092, -0.4_347] , device=a , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , a , atol=1e-4 ) )
645
0
"""simple docstring""" def a_ ( _lowerCAmelCase : str ): lowercase__ : Any = [0] * len(_lowerCAmelCase ) for i in range(1 , len(_lowerCAmelCase ) ): # use last results for better performance - dynamic programming lowercase__ : List[str] = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: lowercase__ : Dict = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 lowercase__ : Union[str, Any] = j return prefix_result def a_ ( _lowerCAmelCase : str ): return max(prefix_function(_lowerCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod()
708
"""simple docstring""" import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class UpperCAmelCase_ : @staticmethod def _UpperCAmelCase ( *a , **a ) -> int: pass def a_ ( _lowerCAmelCase : Image ): '''simple docstring''' lowercase__ : List[str] = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class UpperCAmelCase_ ( unittest.TestCase): lowerCamelCase__ : Union[str, Any] = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def _UpperCAmelCase ( self , a , a , a ) -> Dict: lowercase__ : Union[str, Any] = DepthEstimationPipeline(model=a , image_processor=a ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def _UpperCAmelCase ( self , a , a ) -> Optional[int]: lowercase__ : Tuple = depth_estimator('./tests/fixtures/tests_samples/COCO/000000039769.png' ) self.assertEqual({'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )} , a ) import datasets lowercase__ : Tuple = datasets.load_dataset('hf-internal-testing/fixtures_image_utils' , 'image' , split='test' ) lowercase__ : List[Any] = depth_estimator( [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] ) self.assertEqual( [ {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, ] , a , ) @require_tf @unittest.skip('Depth estimation is not implemented in TF' ) def _UpperCAmelCase ( self ) -> Optional[int]: pass @slow @require_torch def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Tuple = 'Intel/dpt-large' lowercase__ : Optional[int] = pipeline('depth-estimation' , model=a ) lowercase__ : List[Any] = depth_estimator('http://images.cocodataset.org/val2017/000000039769.jpg' ) lowercase__ : Optional[Any] = hashimage(outputs['depth'] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['predicted_depth'].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs['predicted_depth'].min().item() ) , 2.662 ) @require_torch def _UpperCAmelCase ( self ) -> Optional[int]: # This is highly irregular to have no small tests. self.skipTest('There is not hf-internal-testing tiny model for either GLPN nor DPT' )
645
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor _UpperCamelCase : Optional[Any] = logging.get_logger(__name__) class UpperCAmelCase_ ( _a): def __init__( self , *a , **a ) -> None: warnings.warn( 'The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use ChineseCLIPImageProcessor instead.' , a , ) super().__init__(*a , **a )
709
"""simple docstring""" import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class UpperCAmelCase_ ( _a): def __init__( self ) -> Any: lowercase__ : Tuple = [] def _UpperCAmelCase ( self , a , a , a , **a ) -> Any: self.events.append('on_init_end' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Optional[int]: self.events.append('on_train_begin' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> List[str]: self.events.append('on_train_end' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> int: self.events.append('on_epoch_begin' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Optional[Any]: self.events.append('on_epoch_end' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> int: self.events.append('on_step_begin' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> str: self.events.append('on_step_end' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> int: self.events.append('on_evaluate' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Tuple: self.events.append('on_predict' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Union[str, Any]: self.events.append('on_save' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> List[str]: self.events.append('on_log' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Any: self.events.append('on_prediction_step' ) @require_torch class UpperCAmelCase_ ( unittest.TestCase): def _UpperCAmelCase ( self ) -> str: lowercase__ : str = tempfile.mkdtemp() def _UpperCAmelCase ( self ) -> Dict: shutil.rmtree(self.output_dir ) def _UpperCAmelCase ( self , a=0 , a=0 , a=6_4 , a=6_4 , a=None , a=False , **a ) -> int: # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. lowercase__ : str = RegressionDataset(length=a ) lowercase__ : Any = RegressionDataset(length=a ) lowercase__ : Optional[Any] = RegressionModelConfig(a=a , b=a ) lowercase__ : Union[str, Any] = RegressionPreTrainedModel(a ) lowercase__ : Tuple = TrainingArguments(self.output_dir , disable_tqdm=a , report_to=[] , **a ) return Trainer( a , a , train_dataset=a , eval_dataset=a , callbacks=a , ) def _UpperCAmelCase ( self , a , a ) -> Union[str, Any]: self.assertEqual(len(a ) , len(a ) ) # Order doesn't matter lowercase__ : Optional[int] = sorted(a , key=lambda a : cb.__name__ if isinstance(a , a ) else cb.__class__.__name__ ) lowercase__ : Tuple = sorted(a , key=lambda a : cb.__name__ if isinstance(a , a ) else cb.__class__.__name__ ) for cba, cba in zip(a , a ): if isinstance(a , a ) and isinstance(a , a ): self.assertEqual(a , a ) elif isinstance(a , a ) and not isinstance(a , a ): self.assertEqual(a , cba.__class__ ) elif not isinstance(a , a ) and isinstance(a , a ): self.assertEqual(cba.__class__ , a ) else: self.assertEqual(a , a ) def _UpperCAmelCase ( self , a ) -> Optional[Any]: lowercase__ : Dict = ['on_init_end', 'on_train_begin'] lowercase__ : List[Any] = 0 lowercase__ : Optional[int] = len(trainer.get_eval_dataloader() ) lowercase__ : Tuple = ['on_prediction_step'] * len(trainer.get_eval_dataloader() ) + ['on_log', 'on_evaluate'] for _ in range(trainer.state.num_train_epochs ): expected_events.append('on_epoch_begin' ) for _ in range(a ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append('on_log' ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append('on_save' ) expected_events.append('on_epoch_end' ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : int = self.get_trainer() lowercase__ : str = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) # Callbacks passed at init are added to the default callbacks lowercase__ : str = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback lowercase__ : List[Any] = self.get_trainer(disable_tqdm=a ) lowercase__ : Optional[Any] = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) def _UpperCAmelCase ( self ) -> Any: lowercase__ : int = DEFAULT_CALLBACKS.copy() + [ProgressCallback] lowercase__ : List[str] = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(a ) expected_callbacks.remove(a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) lowercase__ : Optional[Any] = self.get_trainer() lowercase__ : List[Any] = trainer.pop_callback(a ) self.assertEqual(cb.__class__ , a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) trainer.add_callback(a ) expected_callbacks.insert(0 , a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) # We can also add, pop, or remove by instance lowercase__ : int = self.get_trainer() lowercase__ : List[str] = trainer.callback_handler.callbacks[0] trainer.remove_callback(a ) expected_callbacks.remove(a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) lowercase__ : Tuple = self.get_trainer() lowercase__ : Dict = trainer.callback_handler.callbacks[0] lowercase__ : Union[str, Any] = trainer.pop_callback(a ) self.assertEqual(a , a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) trainer.add_callback(a ) expected_callbacks.insert(0 , a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) def _UpperCAmelCase ( self ) -> Tuple: import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action='ignore' , category=a ) lowercase__ : Optional[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() lowercase__ : Any = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) # Independent log/save/eval lowercase__ : List[str] = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() lowercase__ : int = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) lowercase__ : Union[str, Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() lowercase__ : Union[str, Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) lowercase__ : List[str] = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy='steps' ) trainer.train() lowercase__ : Optional[int] = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) lowercase__ : int = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy='epoch' ) trainer.train() lowercase__ : str = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) # A bit of everything lowercase__ : Any = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=1_0 , eval_steps=5 , evaluation_strategy='steps' , ) trainer.train() lowercase__ : Any = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) # warning should be emitted for duplicated callbacks with patch('transformers.trainer_callback.logger.warning' ) as warn_mock: lowercase__ : str = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(a ) in warn_mock.call_args[0][0]
645
0
"""simple docstring""" import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType _UpperCamelCase : Optional[Any] =logging.get_logger(__name__) class UpperCAmelCase_ ( _a): lowerCamelCase__ : str = "vision-encoder-decoder" lowerCamelCase__ : Tuple = True def __init__( self , **a ) -> Any: super().__init__(**a ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( f"""A configuraton of type {self.model_type} cannot be instantiated because """ f"""not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}""" ) lowercase__ : int = kwargs.pop('encoder' ) lowercase__ : Optional[Any] = encoder_config.pop('model_type' ) lowercase__ : Dict = kwargs.pop('decoder' ) lowercase__ : Dict = decoder_config.pop('model_type' ) lowercase__ : Optional[Any] = AutoConfig.for_model(a , **a ) lowercase__ : str = AutoConfig.for_model(a , **a ) lowercase__ : List[str] = True @classmethod def _UpperCAmelCase ( cls , a , a , **a ) -> PretrainedConfig: logger.info('Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' ) lowercase__ : Optional[Any] = True lowercase__ : str = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **a ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : Optional[Any] = copy.deepcopy(self.__dict__ ) lowercase__ : List[Any] = self.encoder.to_dict() lowercase__ : Optional[int] = self.decoder.to_dict() lowercase__ : List[Any] = self.__class__.model_type return output class UpperCAmelCase_ ( _a): lowerCamelCase__ : int = version.parse("1.11") @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def _UpperCAmelCase ( self ) -> float: return 1e-4 @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict({'last_hidden_state': {0: 'batch', 1: 'encoder_sequence'}} ) class UpperCAmelCase_ ( _a): @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: lowercase__ : Tuple = OrderedDict() lowercase__ : Dict = {0: 'batch', 1: 'past_decoder_sequence + sequence'} lowercase__ : Union[str, Any] = {0: 'batch', 1: 'past_decoder_sequence + sequence'} lowercase__ : Optional[int] = {0: 'batch', 1: 'encoder_sequence'} return common_inputs def _UpperCAmelCase ( self , a , a = -1 , a = -1 , a = False , a = None , ) -> Mapping[str, Any]: import torch lowercase__ : List[Any] = OrderedDict() lowercase__ : Dict = super().generate_dummy_inputs( a , batch_size=a , seq_length=a , is_pair=a , framework=a ) lowercase__ : Dict = dummy_input['input_ids'].shape lowercase__ : int = (batch, encoder_sequence, self._config.encoder_hidden_size) lowercase__ : Tuple = dummy_input.pop('input_ids' ) lowercase__ : List[Any] = dummy_input.pop('attention_mask' ) lowercase__ : str = torch.zeros(a ) return common_inputs class UpperCAmelCase_ ( _a): @property def _UpperCAmelCase ( self ) -> None: pass def _UpperCAmelCase ( self , a ) -> OnnxConfig: return VisionEncoderDecoderEncoderOnnxConfig(a ) def _UpperCAmelCase ( self , a , a , a = "default" ) -> OnnxConfig: lowercase__ : Dict = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(a , a )
710
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _UpperCamelCase : str = { "configuration_gpt_neo": ["GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoConfig", "GPTNeoOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Tuple = [ "GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoForCausalLM", "GPTNeoForQuestionAnswering", "GPTNeoForSequenceClassification", "GPTNeoForTokenClassification", "GPTNeoModel", "GPTNeoPreTrainedModel", "load_tf_weights_in_gpt_neo", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Dict = [ "FlaxGPTNeoForCausalLM", "FlaxGPTNeoModel", "FlaxGPTNeoPreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys _UpperCamelCase : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
645
0
"""simple docstring""" from __future__ import annotations def a_ ( _lowerCAmelCase : list[float] , _lowerCAmelCase : Any ): '''simple docstring''' print(f"""Vertex\tShortest Distance from vertex {src}""" ) for i, d in enumerate(_lowerCAmelCase ): print(f"""{i}\t\t{d}""" ) def a_ ( _lowerCAmelCase : list[dict[str, int]] , _lowerCAmelCase : list[float] , _lowerCAmelCase : int ): '''simple docstring''' for j in range(_lowerCAmelCase ): lowercase__ : Optional[Any] = (graph[j][k] for k in ['src', 'dst', 'weight']) if distance[u] != float('inf' ) and distance[u] + w < distance[v]: return True return False def a_ ( _lowerCAmelCase : list[dict[str, int]] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ): '''simple docstring''' lowercase__ : Union[str, Any] = [float('inf' )] * vertex_count lowercase__ : Optional[int] = 0.0 for _ in range(vertex_count - 1 ): for j in range(_lowerCAmelCase ): lowercase__ : Dict = (graph[j][k] for k in ['src', 'dst', 'weight']) if distance[u] != float('inf' ) and distance[u] + w < distance[v]: lowercase__ : str = distance[u] + w lowercase__ : List[Any] = check_negative_cycle(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if negative_cycle_exists: raise Exception('Negative cycle found' ) return distance if __name__ == "__main__": import doctest doctest.testmod() _UpperCamelCase : int = int(input("Enter number of vertices: ").strip()) _UpperCamelCase : Union[str, Any] = int(input("Enter number of edges: ").strip()) _UpperCamelCase : list[dict[str, int]] = [{} for _ in range(E)] for i in range(E): print("Edge ", i + 1) _UpperCamelCase : Optional[int] = ( int(x) for x in input("Enter source, destination, weight: ").strip().split(" ") ) _UpperCamelCase : List[Any] = {"src": src, "dst": dest, "weight": weight} _UpperCamelCase : Tuple = int(input("\nEnter shortest path source:").strip()) _UpperCamelCase : str = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
711
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class UpperCAmelCase_ ( unittest.TestCase): def _UpperCAmelCase ( self , a ) -> str: for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss'] ): lowercase__ : str = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(a ) def _UpperCAmelCase ( self ) -> int: lowercase__ : Dict = 'sshleifer/tiny-gpt2' lowercase__ : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=a , multi_process=a , ) lowercase__ : str = TensorFlowBenchmark(a ) lowercase__ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> int: lowercase__ : List[str] = 'sgugger/tiny-distilbert-classification' lowercase__ : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , only_pretrain_model=a , ) lowercase__ : Optional[Any] = TensorFlowBenchmark(a ) lowercase__ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : Optional[int] = 'sshleifer/tiny-gpt2' lowercase__ : Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , ) lowercase__ : Optional[Any] = TensorFlowBenchmark(a ) lowercase__ : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : Any = 'sshleifer/tiny-gpt2' lowercase__ : List[Any] = AutoConfig.from_pretrained(a ) lowercase__ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=a , multi_process=a , ) lowercase__ : Tuple = TensorFlowBenchmark(a , [config] ) lowercase__ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> int: lowercase__ : Optional[Any] = 'sshleifer/tiny-gpt2' lowercase__ : List[str] = AutoConfig.from_pretrained(a ) lowercase__ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , ) lowercase__ : List[str] = TensorFlowBenchmark(a , [config] ) lowercase__ : Any = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Optional[Any] = 'sshleifer/tiny-gpt2' lowercase__ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , ) lowercase__ : Optional[Any] = TensorFlowBenchmark(a ) lowercase__ : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _UpperCAmelCase ( self ) -> str: lowercase__ : Optional[Any] = 'sshleifer/tiny-gpt2' lowercase__ : Optional[int] = AutoConfig.from_pretrained(a ) lowercase__ : str = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , ) lowercase__ : str = TensorFlowBenchmark(a , [config] ) lowercase__ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : List[str] = 'patrickvonplaten/t5-tiny-random' lowercase__ : Any = AutoConfig.from_pretrained(a ) lowercase__ : List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , ) lowercase__ : int = TensorFlowBenchmark(a , configs=[config] ) lowercase__ : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU' ) ) == 0 , 'Cannot do xla on CPU.' ) def _UpperCAmelCase ( self ) -> Any: lowercase__ : Any = 'sshleifer/tiny-gpt2' lowercase__ : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , use_xla=a , multi_process=a , ) lowercase__ : Any = TensorFlowBenchmark(a ) lowercase__ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Any = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ : List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=a , save_to_csv=a , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(a , 'inf_time.csv' ) , inference_memory_csv_file=os.path.join(a , 'inf_mem.csv' ) , env_info_csv_file=os.path.join(a , 'env.csv' ) , multi_process=a , ) lowercase__ : Union[str, Any] = TensorFlowBenchmark(a ) benchmark.run() self.assertTrue(Path(os.path.join(a , 'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(a , 'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(a , 'env.csv' ) ).exists() ) def _UpperCAmelCase ( self ) -> Dict: lowercase__ : Tuple = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(a ): self.assertTrue(hasattr(a , 'sequential' ) ) self.assertTrue(hasattr(a , 'cumulative' ) ) self.assertTrue(hasattr(a , 'current' ) ) self.assertTrue(hasattr(a , 'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=a , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(a , 'log.txt' ) , log_print=a , trace_memory_line_by_line=a , eager_mode=a , multi_process=a , ) lowercase__ : Optional[int] = TensorFlowBenchmark(a ) lowercase__ : Optional[Any] = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(a , 'log.txt' ) ).exists() )
645
0
"""simple docstring""" def a_ ( _lowerCAmelCase : int ): '''simple docstring''' lowercase__ : list[list[int]] = [[0 for _ in range(_lowerCAmelCase )] for _ in range(m + 1 )] for i in range(m + 1 ): lowercase__ : Dict = 1 for n in range(m + 1 ): for k in range(1 , _lowerCAmelCase ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: _UpperCamelCase : List[str] = int(input("Enter a number: ").strip()) print(partition(n)) except ValueError: print("Please enter a number.") else: try: _UpperCamelCase : Any = int(sys.argv[1]) print(partition(n)) except ValueError: print("Please pass a number.")
712
"""simple docstring""" import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class UpperCAmelCase_ ( _a): def __init__( self , a , a=1_3 , a=7 , a=True , a=True , a=False , a=True , a=9_9 , a=3_2 , a=5 , a=4 , a=3_7 , a="gelu" , a=0.1 , a=0.1 , a=5_1_2 , a=1_6 , a=2 , a=0.02 , a=3 , a=4 , a=None , ) -> Any: lowercase__ : Tuple = parent lowercase__ : List[Any] = batch_size lowercase__ : List[Any] = seq_length lowercase__ : List[Any] = is_training lowercase__ : Optional[Any] = use_input_mask lowercase__ : Optional[int] = use_token_type_ids lowercase__ : int = use_labels lowercase__ : Tuple = vocab_size lowercase__ : int = hidden_size lowercase__ : Any = num_hidden_layers lowercase__ : List[str] = num_attention_heads lowercase__ : Optional[Any] = intermediate_size lowercase__ : Optional[Any] = hidden_act lowercase__ : List[str] = hidden_dropout_prob lowercase__ : List[Any] = attention_probs_dropout_prob lowercase__ : List[Any] = max_position_embeddings lowercase__ : List[str] = type_vocab_size lowercase__ : Tuple = type_sequence_label_size lowercase__ : List[Any] = initializer_range lowercase__ : str = num_labels lowercase__ : Tuple = num_choices lowercase__ : str = scope def _UpperCAmelCase ( self ) -> Any: lowercase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ : str = None if self.use_input_mask: lowercase__ : Any = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ : Dict = None lowercase__ : Optional[Any] = None lowercase__ : int = None if self.use_labels: lowercase__ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__ : Dict = ids_tensor([self.batch_size] , self.num_choices ) lowercase__ : List[Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCAmelCase ( self ) -> Optional[int]: return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> Dict: lowercase__ : Tuple = DistilBertModel(config=a ) model.to(a ) model.eval() lowercase__ : Any = model(a , a ) lowercase__ : str = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> Dict: lowercase__ : Optional[int] = DistilBertForMaskedLM(config=a ) model.to(a ) model.eval() lowercase__ : Union[str, Any] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> int: lowercase__ : Tuple = DistilBertForQuestionAnswering(config=a ) model.to(a ) model.eval() lowercase__ : Tuple = model( a , attention_mask=a , start_positions=a , end_positions=a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> List[str]: lowercase__ : int = self.num_labels lowercase__ : Dict = DistilBertForSequenceClassification(a ) model.to(a ) model.eval() lowercase__ : Optional[Any] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> Any: lowercase__ : Any = self.num_labels lowercase__ : List[str] = DistilBertForTokenClassification(config=a ) model.to(a ) model.eval() lowercase__ : Any = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> Tuple: lowercase__ : List[Any] = self.num_choices lowercase__ : Any = DistilBertForMultipleChoice(config=a ) model.to(a ) model.eval() lowercase__ : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ : Optional[int] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ : int = model( a , attention_mask=a , labels=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _UpperCAmelCase ( self ) -> str: lowercase__ : Union[str, Any] = self.prepare_config_and_inputs() ((lowercase__) , (lowercase__) , (lowercase__) , (lowercase__) , (lowercase__) , (lowercase__)) : List[str] = config_and_inputs lowercase__ : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _a , _a , unittest.TestCase): lowerCamelCase__ : List[str] = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) lowerCamelCase__ : str = ( { "feature-extraction": DistilBertModel, "fill-mask": DistilBertForMaskedLM, "question-answering": DistilBertForQuestionAnswering, "text-classification": DistilBertForSequenceClassification, "token-classification": DistilBertForTokenClassification, "zero-shot": DistilBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ : Optional[int] = True lowerCamelCase__ : Any = True lowerCamelCase__ : List[Any] = True lowerCamelCase__ : Optional[Any] = True def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : str = DistilBertModelTester(self ) lowercase__ : int = ConfigTester(self , config_class=a , dim=3_7 ) def _UpperCAmelCase ( self ) -> Dict: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*a ) def _UpperCAmelCase ( self ) -> Any: lowercase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*a ) def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*a ) def _UpperCAmelCase ( self ) -> int: lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*a ) def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*a ) def _UpperCAmelCase ( self ) -> str: lowercase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*a ) @slow def _UpperCAmelCase ( self ) -> str: for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : str = DistilBertModel.from_pretrained(a ) self.assertIsNotNone(a ) @slow @require_torch_gpu def _UpperCAmelCase ( self ) -> Any: lowercase__ , lowercase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return lowercase__ : Optional[int] = True lowercase__ : Union[str, Any] = model_class(config=a ) lowercase__ : int = self._prepare_for_class(a , a ) lowercase__ : Tuple = torch.jit.trace( a , (inputs_dict['input_ids'].to('cpu' ), inputs_dict['attention_mask'].to('cpu' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a , os.path.join(a , 'traced_model.pt' ) ) lowercase__ : Optional[int] = torch.jit.load(os.path.join(a , 'traced_model.pt' ) , map_location=a ) loaded(inputs_dict['input_ids'].to(a ) , inputs_dict['attention_mask'].to(a ) ) @require_torch class UpperCAmelCase_ ( unittest.TestCase): @slow def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : int = DistilBertModel.from_pretrained('distilbert-base-uncased' ) lowercase__ : Union[str, Any] = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) lowercase__ : Optional[Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowercase__ : Optional[Any] = model(a , attention_mask=a )[0] lowercase__ : Tuple = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , a ) lowercase__ : List[Any] = torch.tensor( [[[-0.1_639, 0.3_299, 0.1_648], [-0.1_746, 0.3_289, 0.1_710], [-0.1_884, 0.3_357, 0.1_810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a , atol=1e-4 ) )
645
0
"""simple docstring""" from string import ascii_uppercase _UpperCamelCase : Dict = {str(ord(c) - 55): c for c in ascii_uppercase} def a_ ( _lowerCAmelCase : int , _lowerCAmelCase : int ): '''simple docstring''' if isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError('int() can\'t convert non-string with explicit base' ) if num < 0: raise ValueError('parameter must be positive int' ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError('\'str\' object cannot be interpreted as an integer' ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError('\'float\' object cannot be interpreted as an integer' ) if base in (0, 1): raise ValueError('base must be >= 2' ) if base > 36: raise ValueError('base must be <= 36' ) lowercase__ : str = '' lowercase__ : List[Any] = 0 lowercase__ : Optional[int] = 0 while div != 1: lowercase__ : List[str] = divmod(_lowerCAmelCase , _lowerCAmelCase ) if base >= 11 and 9 < mod < 36: lowercase__ : List[str] = ALPHABET_VALUES[str(_lowerCAmelCase )] else: lowercase__ : List[Any] = str(_lowerCAmelCase ) new_value += actual_value lowercase__ : Optional[int] = num // base lowercase__ : List[Any] = div if div == 0: return str(new_value[::-1] ) elif div == 1: new_value += str(_lowerCAmelCase ) return str(new_value[::-1] ) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 37): for num in range(10_00): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
713
"""simple docstring""" from __future__ import annotations def a_ ( _lowerCAmelCase : float , _lowerCAmelCase : float , _lowerCAmelCase : float , ): '''simple docstring''' if (stress, tangential_force, area).count(0 ) != 1: raise ValueError('You cannot supply more or less than 2 values' ) elif stress < 0: raise ValueError('Stress cannot be negative' ) elif tangential_force < 0: raise ValueError('Tangential Force cannot be negative' ) elif area < 0: raise ValueError('Area cannot be negative' ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
645
0
"""simple docstring""" import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class UpperCAmelCase_ ( _a): def __init__( self ) -> Any: lowercase__ : Tuple = [] def _UpperCAmelCase ( self , a , a , a , **a ) -> Any: self.events.append('on_init_end' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Optional[int]: self.events.append('on_train_begin' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> List[str]: self.events.append('on_train_end' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> int: self.events.append('on_epoch_begin' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Optional[Any]: self.events.append('on_epoch_end' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> int: self.events.append('on_step_begin' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> str: self.events.append('on_step_end' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> int: self.events.append('on_evaluate' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Tuple: self.events.append('on_predict' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Union[str, Any]: self.events.append('on_save' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> List[str]: self.events.append('on_log' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Any: self.events.append('on_prediction_step' ) @require_torch class UpperCAmelCase_ ( unittest.TestCase): def _UpperCAmelCase ( self ) -> str: lowercase__ : str = tempfile.mkdtemp() def _UpperCAmelCase ( self ) -> Dict: shutil.rmtree(self.output_dir ) def _UpperCAmelCase ( self , a=0 , a=0 , a=6_4 , a=6_4 , a=None , a=False , **a ) -> int: # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. lowercase__ : str = RegressionDataset(length=a ) lowercase__ : Any = RegressionDataset(length=a ) lowercase__ : Optional[Any] = RegressionModelConfig(a=a , b=a ) lowercase__ : Union[str, Any] = RegressionPreTrainedModel(a ) lowercase__ : Tuple = TrainingArguments(self.output_dir , disable_tqdm=a , report_to=[] , **a ) return Trainer( a , a , train_dataset=a , eval_dataset=a , callbacks=a , ) def _UpperCAmelCase ( self , a , a ) -> Union[str, Any]: self.assertEqual(len(a ) , len(a ) ) # Order doesn't matter lowercase__ : Optional[int] = sorted(a , key=lambda a : cb.__name__ if isinstance(a , a ) else cb.__class__.__name__ ) lowercase__ : Tuple = sorted(a , key=lambda a : cb.__name__ if isinstance(a , a ) else cb.__class__.__name__ ) for cba, cba in zip(a , a ): if isinstance(a , a ) and isinstance(a , a ): self.assertEqual(a , a ) elif isinstance(a , a ) and not isinstance(a , a ): self.assertEqual(a , cba.__class__ ) elif not isinstance(a , a ) and isinstance(a , a ): self.assertEqual(cba.__class__ , a ) else: self.assertEqual(a , a ) def _UpperCAmelCase ( self , a ) -> Optional[Any]: lowercase__ : Dict = ['on_init_end', 'on_train_begin'] lowercase__ : List[Any] = 0 lowercase__ : Optional[int] = len(trainer.get_eval_dataloader() ) lowercase__ : Tuple = ['on_prediction_step'] * len(trainer.get_eval_dataloader() ) + ['on_log', 'on_evaluate'] for _ in range(trainer.state.num_train_epochs ): expected_events.append('on_epoch_begin' ) for _ in range(a ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append('on_log' ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append('on_save' ) expected_events.append('on_epoch_end' ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : int = self.get_trainer() lowercase__ : str = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) # Callbacks passed at init are added to the default callbacks lowercase__ : str = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback lowercase__ : List[Any] = self.get_trainer(disable_tqdm=a ) lowercase__ : Optional[Any] = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) def _UpperCAmelCase ( self ) -> Any: lowercase__ : int = DEFAULT_CALLBACKS.copy() + [ProgressCallback] lowercase__ : List[str] = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(a ) expected_callbacks.remove(a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) lowercase__ : Optional[Any] = self.get_trainer() lowercase__ : List[Any] = trainer.pop_callback(a ) self.assertEqual(cb.__class__ , a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) trainer.add_callback(a ) expected_callbacks.insert(0 , a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) # We can also add, pop, or remove by instance lowercase__ : int = self.get_trainer() lowercase__ : List[str] = trainer.callback_handler.callbacks[0] trainer.remove_callback(a ) expected_callbacks.remove(a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) lowercase__ : Tuple = self.get_trainer() lowercase__ : Dict = trainer.callback_handler.callbacks[0] lowercase__ : Union[str, Any] = trainer.pop_callback(a ) self.assertEqual(a , a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) trainer.add_callback(a ) expected_callbacks.insert(0 , a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) def _UpperCAmelCase ( self ) -> Tuple: import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action='ignore' , category=a ) lowercase__ : Optional[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() lowercase__ : Any = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) # Independent log/save/eval lowercase__ : List[str] = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() lowercase__ : int = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) lowercase__ : Union[str, Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() lowercase__ : Union[str, Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) lowercase__ : List[str] = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy='steps' ) trainer.train() lowercase__ : Optional[int] = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) lowercase__ : int = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy='epoch' ) trainer.train() lowercase__ : str = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) # A bit of everything lowercase__ : Any = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=1_0 , eval_steps=5 , evaluation_strategy='steps' , ) trainer.train() lowercase__ : Any = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) # warning should be emitted for duplicated callbacks with patch('transformers.trainer_callback.logger.warning' ) as warn_mock: lowercase__ : str = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(a ) in warn_mock.call_args[0][0]
714
"""simple docstring""" import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase_ : def __init__( self , a , a=1_3 , a=[3_0, 3_0] , a=2 , a=3 , a=True , a=True , a=3_2 , a=5 , a=4 , a=3_7 , a="gelu" , a=0.1 , a=0.1 , a=1_0 , a=0.02 , a=3 , a=None , a=8 , a=1_0 , ) -> Any: lowercase__ : List[str] = parent lowercase__ : Optional[Any] = batch_size lowercase__ : Optional[int] = image_size lowercase__ : List[Any] = patch_size lowercase__ : Optional[Any] = num_channels lowercase__ : str = is_training lowercase__ : Optional[Any] = use_labels lowercase__ : Optional[Any] = hidden_size lowercase__ : Dict = num_hidden_layers lowercase__ : Optional[Any] = num_attention_heads lowercase__ : Dict = intermediate_size lowercase__ : List[Any] = hidden_act lowercase__ : List[Any] = hidden_dropout_prob lowercase__ : Any = attention_probs_dropout_prob lowercase__ : Any = type_sequence_label_size lowercase__ : Dict = initializer_range lowercase__ : Union[str, Any] = num_labels lowercase__ : Tuple = scope lowercase__ : Tuple = n_targets lowercase__ : Optional[int] = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens lowercase__ : Optional[Any] = (image_size[1] // patch_size) * (image_size[0] // patch_size) lowercase__ : Tuple = num_patches + 1 + self.num_detection_tokens def _UpperCAmelCase ( self ) -> Any: lowercase__ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) lowercase__ : Tuple = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) lowercase__ : int = [] for i in range(self.batch_size ): lowercase__ : Optional[Any] = {} lowercase__ : Any = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=a ) lowercase__ : List[str] = torch.rand(self.n_targets , 4 , device=a ) labels.append(a ) lowercase__ : Tuple = self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self ) -> List[Any]: return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def _UpperCAmelCase ( self , a , a , a ) -> int: lowercase__ : List[str] = YolosModel(config=a ) model.to(a ) model.eval() lowercase__ : List[Any] = model(a ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def _UpperCAmelCase ( self , a , a , a ) -> Union[str, Any]: lowercase__ : str = YolosForObjectDetection(a ) model.to(a ) model.eval() lowercase__ : Dict = model(pixel_values=a ) lowercase__ : Tuple = model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) lowercase__ : str = model(pixel_values=a , labels=a ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : int = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Any = config_and_inputs lowercase__ : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _a , _a , unittest.TestCase): lowerCamelCase__ : Optional[int] = (YolosModel, YolosForObjectDetection) if is_torch_available() else () lowerCamelCase__ : List[str] = ( {"feature-extraction": YolosModel, "object-detection": YolosForObjectDetection} if is_torch_available() else {} ) lowerCamelCase__ : List[Any] = False lowerCamelCase__ : Dict = False lowerCamelCase__ : Tuple = False lowerCamelCase__ : Union[str, Any] = False def _UpperCAmelCase ( self , a , a , a=False ) -> Dict: lowercase__ : List[str] = super()._prepare_for_class(a , a , return_labels=a ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": lowercase__ : Optional[Any] = [] for i in range(self.model_tester.batch_size ): lowercase__ : Dict = {} lowercase__ : Dict = torch.ones( size=(self.model_tester.n_targets,) , device=a , dtype=torch.long ) lowercase__ : Optional[Any] = torch.ones( self.model_tester.n_targets , 4 , device=a , dtype=torch.float ) labels.append(a ) lowercase__ : Union[str, Any] = labels return inputs_dict def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : Dict = YolosModelTester(self ) lowercase__ : Optional[int] = ConfigTester(self , config_class=a , has_text_modality=a , hidden_size=3_7 ) def _UpperCAmelCase ( self ) -> str: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Optional[Any]: # YOLOS does not use inputs_embeds pass def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[str] = model_class(a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase__ : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a , nn.Linear ) ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : int = model_class(a ) lowercase__ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Tuple = [*signature.parameters.keys()] lowercase__ : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , a ) def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _UpperCAmelCase ( self ) -> Dict: lowercase__ , lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Dict = True # in YOLOS, the seq_len is different lowercase__ : Tuple = self.model_tester.expected_seq_len for model_class in self.all_model_classes: lowercase__ : Optional[int] = True lowercase__ : str = False lowercase__ : str = True lowercase__ : List[str] = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : Any = model(**self._prepare_for_class(a , a ) ) lowercase__ : str = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase__ : Optional[int] = True lowercase__ : List[Any] = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : Union[str, Any] = model(**self._prepare_for_class(a , a ) ) lowercase__ : List[str] = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowercase__ : Dict = len(a ) # Check attention is always last and order is fine lowercase__ : Any = True lowercase__ : int = True lowercase__ : int = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : Any = model(**self._prepare_for_class(a , a ) ) lowercase__ : Optional[Any] = 1 self.assertEqual(out_len + added_hidden_states , len(a ) ) lowercase__ : Tuple = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def _UpperCAmelCase ( self ) -> List[str]: def check_hidden_states_output(a , a , a ): lowercase__ : str = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : int = model(**self._prepare_for_class(a , a ) ) lowercase__ : int = outputs.hidden_states lowercase__ : Any = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(a ) , a ) # YOLOS has a different seq_length lowercase__ : Optional[int] = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowercase__ , lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Any = True check_hidden_states_output(a , a , a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : List[Any] = True check_hidden_states_output(a , a , a ) def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*a ) @slow def _UpperCAmelCase ( self ) -> Union[str, Any]: for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : int = YolosModel.from_pretrained(a ) self.assertIsNotNone(a ) def a_ ( ): '''simple docstring''' lowercase__ : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase): @cached_property def _UpperCAmelCase ( self ) -> Union[str, Any]: return AutoImageProcessor.from_pretrained('hustvl/yolos-small' ) if is_vision_available() else None @slow def _UpperCAmelCase ( self ) -> int: lowercase__ : Dict = YolosForObjectDetection.from_pretrained('hustvl/yolos-small' ).to(a ) lowercase__ : Tuple = self.default_image_processor lowercase__ : Optional[int] = prepare_img() lowercase__ : int = image_processor(images=a , return_tensors='pt' ).to(a ) # forward pass with torch.no_grad(): lowercase__ : int = model(inputs.pixel_values ) # verify outputs lowercase__ : Tuple = torch.Size((1, 1_0_0, 9_2) ) self.assertEqual(outputs.logits.shape , a ) lowercase__ : Any = torch.tensor( [[-24.0_248, -10.3_024, -14.8_290], [-42.0_392, -16.8_200, -27.4_334], [-27.2_743, -11.8_154, -18.7_148]] , device=a , ) lowercase__ : List[str] = torch.tensor( [[0.2_559, 0.5_455, 0.4_706], [0.2_989, 0.7_279, 0.1_875], [0.7_732, 0.4_017, 0.4_462]] , device=a ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , a , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , a , atol=1e-4 ) ) # verify postprocessing lowercase__ : Optional[Any] = image_processor.post_process_object_detection( a , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] lowercase__ : str = torch.tensor([0.9_994, 0.9_790, 0.9_964, 0.9_972, 0.9_861] ).to(a ) lowercase__ : Any = [7_5, 7_5, 1_7, 6_3, 1_7] lowercase__ : Optional[int] = torch.tensor([335.0_609, 79.3_848, 375.4_216, 187.2_495] ).to(a ) self.assertEqual(len(results['scores'] ) , 5 ) self.assertTrue(torch.allclose(results['scores'] , a , atol=1e-4 ) ) self.assertSequenceEqual(results['labels'].tolist() , a ) self.assertTrue(torch.allclose(results['boxes'][0, :] , a ) )
645
0
"""simple docstring""" import sys _UpperCamelCase : Any = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def a_ ( _lowerCAmelCase : str ): '''simple docstring''' lowercase__ : Dict = 1 for digit in s: product *= int(_lowerCAmelCase ) return product def a_ ( _lowerCAmelCase : str = N ): '''simple docstring''' lowercase__ : List[str] = -sys.maxsize - 1 lowercase__ : List[Any] = n[:13] lowercase__ : Tuple = 13 while cur_index < len(_lowerCAmelCase ) - 13: if int(n[cur_index] ) >= int(substr[0] ): lowercase__ : Any = substr[1:] + n[cur_index] cur_index += 1 else: lowercase__ : Dict = max(_lowerCAmelCase , str_eval(_lowerCAmelCase ) ) lowercase__ : int = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(f'''{solution() = }''')
715
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch _UpperCamelCase : int = logging.get_logger(__name__) @dataclass class UpperCAmelCase_ : def __init__( self , a=False , a=False , a=6.0 , a=None , a=False , a=False , a=None , a="fp4" , a=False , **a , ) -> Tuple: lowercase__ : str = load_in_abit lowercase__ : str = load_in_abit lowercase__ : List[str] = llm_inta_threshold lowercase__ : Dict = llm_inta_skip_modules lowercase__ : Tuple = llm_inta_enable_fpaa_cpu_offload lowercase__ : Any = llm_inta_has_fpaa_weight lowercase__ : Any = bnb_abit_quant_type lowercase__ : Dict = bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: lowercase__ : Dict = torch.floataa elif isinstance(a , a ): lowercase__ : Any = getattr(a , a ) elif isinstance(a , torch.dtype ): lowercase__ : Any = bnb_abit_compute_dtype else: raise ValueError('bnb_4bit_compute_dtype must be a string or a torch.dtype' ) self.post_init() def _UpperCAmelCase ( self ) -> str: if not isinstance(self.llm_inta_threshold , a ): raise ValueError('llm_int8_threshold must be a float' ) if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , a ): raise ValueError('llm_int8_skip_modules must be a list of strings' ) if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , a ): raise ValueError('llm_int8_enable_fp32_cpu_offload must be a boolean' ) if not isinstance(self.llm_inta_has_fpaa_weight , a ): raise ValueError('llm_int8_has_fp16_weight must be a boolean' ) if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype ): raise ValueError('bnb_4bit_compute_dtype must be torch.dtype' ) if not isinstance(self.bnb_abit_quant_type , a ): raise ValueError('bnb_4bit_quant_type must be a string' ) if not isinstance(self.bnb_abit_use_double_quant , a ): raise ValueError('bnb_4bit_use_double_quant must be a boolean' ) if self.load_in_abit and not version.parse(importlib.metadata.version('bitsandbytes' ) ) >= version.parse( '0.39.0' ): raise ValueError( '4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version' ) def _UpperCAmelCase ( self ) -> Tuple: return self.load_in_abit or self.load_in_abit def _UpperCAmelCase ( self ) -> List[str]: if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def _UpperCAmelCase ( cls , a , a , **a ) -> Optional[Any]: lowercase__ : List[Any] = cls(**a ) lowercase__ : Union[str, Any] = [] for key, value in kwargs.items(): if hasattr(a , a ): setattr(a , a , a ) to_remove.append(a ) for key in to_remove: kwargs.pop(a , a ) if return_unused_kwargs: return config, kwargs else: return config def _UpperCAmelCase ( self , a ) -> Dict: with open(a , 'w' , encoding='utf-8' ) as writer: lowercase__ : Any = self.to_dict() lowercase__ : str = json.dumps(a , indent=2 , sort_keys=a ) + '\n' writer.write(a ) def _UpperCAmelCase ( self ) -> Dict[str, Any]: lowercase__ : Optional[Any] = copy.deepcopy(self.__dict__ ) lowercase__ : Any = str(output['bnb_4bit_compute_dtype'] ).split('.' )[1] return output def __repr__( self ) -> Dict: return f"""{self.__class__.__name__} {self.to_json_string()}""" def _UpperCAmelCase ( self , a = True ) -> str: if use_diff is True: lowercase__ : List[Any] = self.to_diff_dict() else: lowercase__ : List[str] = self.to_dict() return json.dumps(a , indent=2 , sort_keys=a ) + "\n" def _UpperCAmelCase ( self ) -> Dict[str, Any]: lowercase__ : Tuple = self.to_dict() # get the default config dict lowercase__ : Optional[Any] = BitsAndBytesConfig().to_dict() lowercase__ : int = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: lowercase__ : Optional[int] = value return serializable_config_dict
645
0
"""simple docstring""" from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal _UpperCamelCase : str = logging.get_logger(__name__) _UpperCamelCase : Optional[int] = TypeVar("DatasetType", Dataset, IterableDataset) def a_ ( _lowerCAmelCase : List[DatasetType] , _lowerCAmelCase : Optional[List[float]] = None , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : Optional[DatasetInfo] = None , _lowerCAmelCase : Optional[NamedSplit] = None , _lowerCAmelCase : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ): '''simple docstring''' from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('Unable to interleave an empty list of datasets.' ) for i, dataset in enumerate(_lowerCAmelCase ): if not isinstance(_lowerCAmelCase , (Dataset, IterableDataset) ): if isinstance(_lowerCAmelCase , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ 'is an empty dataset dictionary.' ) raise ValueError( f"""Dataset at position {i} has at least one split: {list(_lowerCAmelCase )}\n""" f"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(_lowerCAmelCase ) )}']""" ) raise ValueError( f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_lowerCAmelCase ).__name__}.""" ) if i == 0: lowercase__ : Union[str, Any] = ( (Dataset, IterableDataset) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else (IterableDataset, Dataset) ) elif not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise ValueError( f"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(f"""{stopping_strategy} is not supported. Please enter a valid stopping_strategy.""" ) if dataset_type is Dataset: return _interleave_map_style_datasets( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , info=_lowerCAmelCase , split=_lowerCAmelCase , stopping_strategy=_lowerCAmelCase ) else: return _interleave_iterable_datasets( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , info=_lowerCAmelCase , split=_lowerCAmelCase , stopping_strategy=_lowerCAmelCase ) def a_ ( _lowerCAmelCase : List[DatasetType] , _lowerCAmelCase : Optional[DatasetInfo] = None , _lowerCAmelCase : Optional[NamedSplit] = None , _lowerCAmelCase : int = 0 , ): '''simple docstring''' if not dsets: raise ValueError('Unable to concatenate an empty list of datasets.' ) for i, dataset in enumerate(_lowerCAmelCase ): if not isinstance(_lowerCAmelCase , (Dataset, IterableDataset) ): if isinstance(_lowerCAmelCase , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ 'is an empty dataset dictionary.' ) raise ValueError( f"""Dataset at position {i} has at least one split: {list(_lowerCAmelCase )}\n""" f"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(_lowerCAmelCase ) )}']""" ) raise ValueError( f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_lowerCAmelCase ).__name__}.""" ) if i == 0: lowercase__ : Dict = ( (Dataset, IterableDataset) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else (IterableDataset, Dataset) ) elif not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise ValueError( f"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if dataset_type is Dataset: return _concatenate_map_style_datasets(_lowerCAmelCase , info=_lowerCAmelCase , split=_lowerCAmelCase , axis=_lowerCAmelCase ) else: return _concatenate_iterable_datasets(_lowerCAmelCase , info=_lowerCAmelCase , split=_lowerCAmelCase , axis=_lowerCAmelCase )
716
"""simple docstring""" import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler _UpperCamelCase : int = 16 _UpperCamelCase : Union[str, Any] = 32 def a_ ( _lowerCAmelCase : Tuple ): '''simple docstring''' return int(x / 2**20 ) class UpperCAmelCase_ : def __enter__( self ) -> Union[str, Any]: gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero lowercase__ : List[str] = torch.cuda.memory_allocated() return self def __exit__( self , *a ) -> Any: gc.collect() torch.cuda.empty_cache() lowercase__ : Optional[Any] = torch.cuda.memory_allocated() lowercase__ : Union[str, Any] = torch.cuda.max_memory_allocated() lowercase__ : List[Any] = bamb(self.end - self.begin ) lowercase__ : List[Any] = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def a_ ( _lowerCAmelCase : Accelerator , _lowerCAmelCase : int = 16 , _lowerCAmelCase : str = "bert-base-cased" , _lowerCAmelCase : int = 320 , _lowerCAmelCase : int = 160 , ): '''simple docstring''' lowercase__ : List[Any] = AutoTokenizer.from_pretrained(_lowerCAmelCase ) lowercase__ : Union[str, Any] = load_dataset( 'glue' , 'mrpc' , split={'train': f"""train[:{n_train}]""", 'validation': f"""validation[:{n_val}]"""} ) def tokenize_function(_lowerCAmelCase : int ): # max_length=None => use the model max length (it's actually the default) lowercase__ : List[str] = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowercase__ : Union[str, Any] = datasets.map( _lowerCAmelCase , batched=_lowerCAmelCase , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=_lowerCAmelCase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ : Union[str, Any] = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(_lowerCAmelCase : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_lowerCAmelCase , padding='max_length' , max_length=128 , return_tensors='pt' ) return tokenizer.pad(_lowerCAmelCase , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. lowercase__ : Dict = DataLoader( tokenized_datasets['train'] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase ) lowercase__ : Dict = DataLoader( tokenized_datasets['validation'] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase ) return train_dataloader, eval_dataloader def a_ ( _lowerCAmelCase : Any , _lowerCAmelCase : List[str] ): '''simple docstring''' lowercase__ : List[Any] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ : Optional[int] = config['lr'] lowercase__ : Optional[Any] = int(config['num_epochs'] ) lowercase__ : Optional[Any] = int(config['seed'] ) lowercase__ : int = int(config['batch_size'] ) lowercase__ : Union[str, Any] = args.model_name_or_path set_seed(_lowerCAmelCase ) lowercase__ , lowercase__ : Tuple = get_dataloaders(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , args.n_train , args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ : List[Any] = AutoModelForSequenceClassification.from_pretrained(_lowerCAmelCase , return_dict=_lowerCAmelCase ) # Instantiate optimizer lowercase__ : List[Any] = ( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowercase__ : Optional[Any] = optimizer_cls(params=model.parameters() , lr=_lowerCAmelCase ) if accelerator.state.deepspeed_plugin is not None: lowercase__ : Optional[Any] = accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: lowercase__ : List[Any] = 1 lowercase__ : List[Any] = (len(_lowerCAmelCase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowercase__ : Optional[int] = get_linear_schedule_with_warmup( optimizer=_lowerCAmelCase , num_warmup_steps=0 , num_training_steps=_lowerCAmelCase , ) else: lowercase__ : Tuple = DummyScheduler(_lowerCAmelCase , total_num_steps=_lowerCAmelCase , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Dict = accelerator.prepare( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # We need to keep track of how many total steps we have iterated over lowercase__ : Optional[int] = 0 # We also need to keep track of the stating epoch so files are named properly lowercase__ : Tuple = 0 # Now we train the model lowercase__ : Optional[Any] = {} for epoch in range(_lowerCAmelCase , _lowerCAmelCase ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(_lowerCAmelCase ): lowercase__ : List[Any] = model(**_lowerCAmelCase ) lowercase__ : Dict = outputs.loss lowercase__ : int = loss / gradient_accumulation_steps accelerator.backward(_lowerCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print('Memory before entering the train : {}'.format(bamb(tracemalloc.begin ) ) ) accelerator.print('Memory consumed at the end of the train (end-begin): {}'.format(tracemalloc.used ) ) accelerator.print('Peak Memory consumed during the train (max-begin): {}'.format(tracemalloc.peaked ) ) accelerator.print( 'Total Peak Memory consumed during the train (max): {}'.format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) lowercase__ : int = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[f"""epoch-{epoch}"""] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , 'peak_memory_utilization.json' ) , 'w' ) as f: json.dump(_lowerCAmelCase , _lowerCAmelCase ) def a_ ( ): '''simple docstring''' lowercase__ : int = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path' , type=_lowerCAmelCase , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=_lowerCAmelCase , ) parser.add_argument( '--output_dir' , type=_lowerCAmelCase , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--peak_memory_upper_bound' , type=_lowerCAmelCase , default=_lowerCAmelCase , help='The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.' , ) parser.add_argument( '--n_train' , type=_lowerCAmelCase , default=320 , help='Number of training examples to use.' , ) parser.add_argument( '--n_val' , type=_lowerCAmelCase , default=160 , help='Number of validation examples to use.' , ) parser.add_argument( '--num_epochs' , type=_lowerCAmelCase , default=1 , help='Number of train epochs.' , ) lowercase__ : Any = parser.parse_args() lowercase__ : Optional[Any] = {'lr': 2E-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16} training_function(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": main()
645
0
"""simple docstring""" from __future__ import annotations def a_ ( _lowerCAmelCase : list ): '''simple docstring''' if len(_lowerCAmelCase ) == 0: return [] lowercase__ : List[str] = min(_lowerCAmelCase ), max(_lowerCAmelCase ) lowercase__ : Any = int(max_value - min_value ) + 1 lowercase__ : list[list] = [[] for _ in range(_lowerCAmelCase )] for i in my_list: buckets[int(i - min_value )].append(_lowerCAmelCase ) return [v for bucket in buckets for v in sorted(_lowerCAmelCase )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
717
"""simple docstring""" def a_ ( _lowerCAmelCase : str ): '''simple docstring''' lowercase__ : Any = [0] * len(_lowerCAmelCase ) for i in range(1 , len(_lowerCAmelCase ) ): # use last results for better performance - dynamic programming lowercase__ : List[str] = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: lowercase__ : Dict = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 lowercase__ : Union[str, Any] = j return prefix_result def a_ ( _lowerCAmelCase : str ): '''simple docstring''' return max(prefix_function(_lowerCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod()
645
0
"""simple docstring""" from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig _UpperCamelCase : Optional[Any] = logging.get_logger(__name__) # General docstring _UpperCamelCase : Optional[int] = "ResNetConfig" # Base docstring _UpperCamelCase : List[str] = "microsoft/resnet-50" _UpperCamelCase : Any = [1, 20_48, 7, 7] # Image classification docstring _UpperCamelCase : str = "microsoft/resnet-50" _UpperCamelCase : Any = "tiger cat" _UpperCamelCase : Any = [ "microsoft/resnet-50", # See all resnet models at https://huggingface.co/models?filter=resnet ] class UpperCAmelCase_ ( nn.Module): def __init__( self , a , a , a = 3 , a = 1 , a = "relu" ) -> Tuple: super().__init__() lowercase__ : List[Any] = nn.Convad( a , a , kernel_size=a , stride=a , padding=kernel_size // 2 , bias=a ) lowercase__ : List[str] = nn.BatchNormad(a ) lowercase__ : str = ACTaFN[activation] if activation is not None else nn.Identity() def _UpperCAmelCase ( self , a ) -> Tensor: lowercase__ : Dict = self.convolution(a ) lowercase__ : Any = self.normalization(a ) lowercase__ : Any = self.activation(a ) return hidden_state class UpperCAmelCase_ ( nn.Module): def __init__( self , a ) -> Tuple: super().__init__() lowercase__ : List[Any] = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) lowercase__ : Union[str, Any] = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) lowercase__ : Any = config.num_channels def _UpperCAmelCase ( self , a ) -> Tensor: lowercase__ : Optional[Any] = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) lowercase__ : Dict = self.embedder(a ) lowercase__ : Dict = self.pooler(a ) return embedding class UpperCAmelCase_ ( nn.Module): def __init__( self , a , a , a = 2 ) -> List[str]: super().__init__() lowercase__ : Union[str, Any] = nn.Convad(a , a , kernel_size=1 , stride=a , bias=a ) lowercase__ : Union[str, Any] = nn.BatchNormad(a ) def _UpperCAmelCase ( self , a ) -> Tensor: lowercase__ : Union[str, Any] = self.convolution(a ) lowercase__ : Optional[Any] = self.normalization(a ) return hidden_state class UpperCAmelCase_ ( nn.Module): def __init__( self , a , a , a = 1 , a = "relu" ) -> Dict: super().__init__() lowercase__ : Optional[Any] = in_channels != out_channels or stride != 1 lowercase__ : Union[str, Any] = ( ResNetShortCut(a , a , stride=a ) if should_apply_shortcut else nn.Identity() ) lowercase__ : List[Any] = nn.Sequential( ResNetConvLayer(a , a , stride=a ) , ResNetConvLayer(a , a , activation=a ) , ) lowercase__ : Dict = ACTaFN[activation] def _UpperCAmelCase ( self , a ) -> List[Any]: lowercase__ : List[str] = hidden_state lowercase__ : int = self.layer(a ) lowercase__ : Tuple = self.shortcut(a ) hidden_state += residual lowercase__ : Tuple = self.activation(a ) return hidden_state class UpperCAmelCase_ ( nn.Module): def __init__( self , a , a , a = 1 , a = "relu" , a = 4 ) -> Any: super().__init__() lowercase__ : List[Any] = in_channels != out_channels or stride != 1 lowercase__ : int = out_channels // reduction lowercase__ : Tuple = ( ResNetShortCut(a , a , stride=a ) if should_apply_shortcut else nn.Identity() ) lowercase__ : Any = nn.Sequential( ResNetConvLayer(a , a , kernel_size=1 ) , ResNetConvLayer(a , a , stride=a ) , ResNetConvLayer(a , a , kernel_size=1 , activation=a ) , ) lowercase__ : str = ACTaFN[activation] def _UpperCAmelCase ( self , a ) -> Any: lowercase__ : Optional[int] = hidden_state lowercase__ : str = self.layer(a ) lowercase__ : List[Any] = self.shortcut(a ) hidden_state += residual lowercase__ : List[Any] = self.activation(a ) return hidden_state class UpperCAmelCase_ ( nn.Module): def __init__( self , a , a , a , a = 2 , a = 2 , ) -> Union[str, Any]: super().__init__() lowercase__ : Dict = ResNetBottleNeckLayer if config.layer_type == 'bottleneck' else ResNetBasicLayer lowercase__ : List[Any] = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(a , a , stride=a , activation=config.hidden_act ) , *[layer(a , a , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def _UpperCAmelCase ( self , a ) -> Tensor: lowercase__ : str = input for layer in self.layers: lowercase__ : Tuple = layer(a ) return hidden_state class UpperCAmelCase_ ( nn.Module): def __init__( self , a ) -> Optional[Any]: super().__init__() lowercase__ : Tuple = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( a , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) lowercase__ : Optional[int] = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(a , config.depths[1:] ): self.stages.append(ResNetStage(a , a , a , depth=a ) ) def _UpperCAmelCase ( self , a , a = False , a = True ) -> BaseModelOutputWithNoAttention: lowercase__ : Union[str, Any] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowercase__ : int = hidden_states + (hidden_state,) lowercase__ : Optional[int] = stage_module(a ) if output_hidden_states: lowercase__ : Tuple = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=a , hidden_states=a , ) class UpperCAmelCase_ ( _a): lowerCamelCase__ : Tuple = ResNetConfig lowerCamelCase__ : Union[str, Any] = "resnet" lowerCamelCase__ : int = "pixel_values" lowerCamelCase__ : Any = True def _UpperCAmelCase ( self , a ) -> Union[str, Any]: if isinstance(a , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu' ) elif isinstance(a , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def _UpperCAmelCase ( self , a , a=False ) -> int: if isinstance(a , a ): lowercase__ : Any = value _UpperCamelCase : str = r"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`ResNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" _UpperCamelCase : Tuple = r"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( "The bare ResNet model outputting raw features without any specific head on top." , _a , ) class UpperCAmelCase_ ( _a): def __init__( self , a ) -> List[Any]: super().__init__(a ) lowercase__ : str = config lowercase__ : Dict = ResNetEmbeddings(a ) lowercase__ : Dict = ResNetEncoder(a ) lowercase__ : str = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(a ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=a , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _UpperCAmelCase ( self , a , a = None , a = None ) -> BaseModelOutputWithPoolingAndNoAttention: lowercase__ : List[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase__ : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ : Tuple = self.embedder(a ) lowercase__ : int = self.encoder( a , output_hidden_states=a , return_dict=a ) lowercase__ : Optional[int] = encoder_outputs[0] lowercase__ : Optional[Any] = self.pooler(a ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=a , pooler_output=a , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( "\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , _a , ) class UpperCAmelCase_ ( _a): def __init__( self , a ) -> List[Any]: super().__init__(a ) lowercase__ : Any = config.num_labels lowercase__ : Dict = ResNetModel(a ) # classification head lowercase__ : Optional[Any] = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(a ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=a , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _UpperCAmelCase ( self , a = None , a = None , a = None , a = None , ) -> ImageClassifierOutputWithNoAttention: lowercase__ : Dict = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ : Dict = self.resnet(a , output_hidden_states=a , return_dict=a ) lowercase__ : Union[str, Any] = outputs.pooler_output if return_dict else outputs[1] lowercase__ : Tuple = self.classifier(a ) lowercase__ : List[str] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowercase__ : List[Any] = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowercase__ : Union[str, Any] = 'single_label_classification' else: lowercase__ : Optional[int] = 'multi_label_classification' if self.config.problem_type == "regression": lowercase__ : Any = MSELoss() if self.num_labels == 1: lowercase__ : Any = loss_fct(logits.squeeze() , labels.squeeze() ) else: lowercase__ : Dict = loss_fct(a , a ) elif self.config.problem_type == "single_label_classification": lowercase__ : List[str] = CrossEntropyLoss() lowercase__ : List[str] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowercase__ : Optional[int] = BCEWithLogitsLoss() lowercase__ : List[str] = loss_fct(a , a ) if not return_dict: lowercase__ : List[Any] = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=a , logits=a , hidden_states=outputs.hidden_states ) @add_start_docstrings( "\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n " , _a , ) class UpperCAmelCase_ ( _a , _a): def __init__( self , a ) -> Any: super().__init__(a ) super()._init_backbone(a ) lowercase__ : List[str] = [config.embedding_size] + config.hidden_sizes lowercase__ : Tuple = ResNetEmbeddings(a ) lowercase__ : Optional[Any] = ResNetEncoder(a ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(a ) @replace_return_docstrings(output_type=a , config_class=_CONFIG_FOR_DOC ) def _UpperCAmelCase ( self , a , a = None , a = None ) -> BackboneOutput: lowercase__ : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase__ : List[str] = self.embedder(a ) lowercase__ : List[str] = self.encoder(a , output_hidden_states=a , return_dict=a ) lowercase__ : Union[str, Any] = outputs.hidden_states lowercase__ : Dict = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: lowercase__ : List[Any] = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=a , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=a , )
718
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class UpperCAmelCase_ ( unittest.TestCase): def __init__( self , a , a=7 , a=3 , a=1_8 , a=3_0 , a=4_0_0 , a=True , a=None , a=True , a=None , a=True , ) -> List[str]: lowercase__ : Tuple = size if size is not None else {'shortest_edge': 2_0} lowercase__ : Union[str, Any] = crop_size if crop_size is not None else {'height': 1_8, 'width': 1_8} lowercase__ : Optional[int] = parent lowercase__ : Optional[int] = batch_size lowercase__ : str = num_channels lowercase__ : Any = image_size lowercase__ : Optional[Any] = min_resolution lowercase__ : int = max_resolution lowercase__ : List[Any] = do_resize lowercase__ : List[str] = size lowercase__ : str = do_center_crop lowercase__ : List[Any] = crop_size lowercase__ : Union[str, Any] = do_flip_channel_order def _UpperCAmelCase ( self ) -> int: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class UpperCAmelCase_ ( _a , unittest.TestCase): lowerCamelCase__ : Optional[Any] = MobileViTImageProcessor if is_vision_available() else None def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : Tuple = MobileViTImageProcessingTester(self ) @property def _UpperCAmelCase ( self ) -> int: return self.image_processor_tester.prepare_image_processor_dict() def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a , 'do_resize' ) ) self.assertTrue(hasattr(a , 'size' ) ) self.assertTrue(hasattr(a , 'do_center_crop' ) ) self.assertTrue(hasattr(a , 'center_crop' ) ) self.assertTrue(hasattr(a , 'do_flip_channel_order' ) ) def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 2_0} ) self.assertEqual(image_processor.crop_size , {'height': 1_8, 'width': 1_8} ) lowercase__ : str = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {'shortest_edge': 4_2} ) self.assertEqual(image_processor.crop_size , {'height': 8_4, 'width': 8_4} ) def _UpperCAmelCase ( self ) -> Tuple: pass def _UpperCAmelCase ( self ) -> str: # Initialize image_processing lowercase__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a ) for image in image_inputs: self.assertIsInstance(a , Image.Image ) # Test not batched input lowercase__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowercase__ : List[Any] = image_processing(a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def _UpperCAmelCase ( self ) -> Tuple: # Initialize image_processing lowercase__ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , numpify=a ) for image in image_inputs: self.assertIsInstance(a , np.ndarray ) # Test not batched input lowercase__ : List[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowercase__ : Any = image_processing(a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def _UpperCAmelCase ( self ) -> Dict: # Initialize image_processing lowercase__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , torchify=a ) for image in image_inputs: self.assertIsInstance(a , torch.Tensor ) # Test not batched input lowercase__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowercase__ : Tuple = image_processing(a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
645
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCAmelCase_ ( _a , unittest.TestCase): lowerCamelCase__ : List[str] = KandinskyVaaControlnetPipeline lowerCamelCase__ : List[str] = ["image_embeds", "negative_image_embeds", "hint"] lowerCamelCase__ : Tuple = ["image_embeds", "negative_image_embeds", "hint"] lowerCamelCase__ : List[str] = [ "generator", "height", "width", "latents", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] lowerCamelCase__ : Optional[Any] = False @property def _UpperCAmelCase ( self ) -> Union[str, Any]: return 3_2 @property def _UpperCAmelCase ( self ) -> Optional[int]: return 3_2 @property def _UpperCAmelCase ( self ) -> Union[str, Any]: return self.time_input_dim @property def _UpperCAmelCase ( self ) -> Union[str, Any]: return self.time_input_dim * 4 @property def _UpperCAmelCase ( self ) -> Any: return 1_0_0 @property def _UpperCAmelCase ( self ) -> str: torch.manual_seed(0 ) lowercase__ : List[str] = { 'in_channels': 8, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image_hint', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } lowercase__ : List[Any] = UNetaDConditionModel(**a ) return model @property def _UpperCAmelCase ( self ) -> List[Any]: return { "block_out_channels": [3_2, 3_2, 6_4, 6_4], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def _UpperCAmelCase ( self ) -> str: torch.manual_seed(0 ) lowercase__ : Tuple = VQModel(**self.dummy_movq_kwargs ) return model def _UpperCAmelCase ( self ) -> int: lowercase__ : Tuple = self.dummy_unet lowercase__ : Tuple = self.dummy_movq lowercase__ : Dict = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='linear' , beta_start=0.00_085 , beta_end=0.012 , clip_sample=a , set_alpha_to_one=a , steps_offset=1 , prediction_type='epsilon' , thresholding=a , ) lowercase__ : Any = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def _UpperCAmelCase ( self , a , a=0 ) -> List[str]: lowercase__ : Tuple = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(a ) ).to(a ) lowercase__ : Any = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( a ) # create hint lowercase__ : Union[str, Any] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(a ) ).to(a ) if str(a ).startswith('mps' ): lowercase__ : str = torch.manual_seed(a ) else: lowercase__ : str = torch.Generator(device=a ).manual_seed(a ) lowercase__ : List[Any] = { 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'hint': hint, 'generator': generator, 'height': 6_4, 'width': 6_4, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : List[str] = 'cpu' lowercase__ : Any = self.get_dummy_components() lowercase__ : int = self.pipeline_class(**a ) lowercase__ : str = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowercase__ : Tuple = pipe(**self.get_dummy_inputs(a ) ) lowercase__ : Optional[Any] = output.images lowercase__ : Dict = pipe( **self.get_dummy_inputs(a ) , return_dict=a , )[0] lowercase__ : Dict = image[0, -3:, -3:, -1] lowercase__ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) lowercase__ : str = np.array( [0.6_959_826, 0.868_279, 0.7_558_092, 0.68_769_467, 0.85_805_804, 0.65_977_496, 0.44_885_302, 0.5_959_111, 0.4_251_595] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase): def _UpperCAmelCase ( self ) -> List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : str = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy' ) lowercase__ : Tuple = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/hint_image_cat.png' ) lowercase__ : Optional[int] = torch.from_numpy(np.array(a ) ).float() / 255.0 lowercase__ : str = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) lowercase__ : str = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(a ) lowercase__ : Optional[Any] = KandinskyVaaControlnetPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-controlnet-depth' , torch_dtype=torch.floataa ) lowercase__ : str = pipeline.to(a ) pipeline.set_progress_bar_config(disable=a ) lowercase__ : Optional[int] = 'A robot, 4k photo' lowercase__ : int = torch.Generator(device='cuda' ).manual_seed(0 ) lowercase__ : Optional[int] = pipe_prior( a , generator=a , num_inference_steps=5 , negative_prompt='' , ).to_tuple() lowercase__ : Tuple = torch.Generator(device='cuda' ).manual_seed(0 ) lowercase__ : Dict = pipeline( image_embeds=a , negative_image_embeds=a , hint=a , generator=a , num_inference_steps=1_0_0 , output_type='np' , ) lowercase__ : Dict = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert_mean_pixel_difference(a , a )
719
"""simple docstring""" import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class UpperCAmelCase_ ( unittest.TestCase): def __init__( self , a , a=1_3 , a=7 , a=True , a=True , a=True , a=True , a=9_9 , a=3_2 , a=5 , a=4 , a=3_7 , a="gelu" , a=0.1 , a=0.1 , a=5_1_2 , a=1_6 , a=2 , a=0.02 , a=4 , ) -> Dict: lowercase__ : Optional[Any] = parent lowercase__ : Dict = batch_size lowercase__ : List[Any] = seq_length lowercase__ : int = is_training lowercase__ : str = use_attention_mask lowercase__ : Dict = use_token_type_ids lowercase__ : Optional[int] = use_labels lowercase__ : Tuple = vocab_size lowercase__ : List[str] = hidden_size lowercase__ : Union[str, Any] = num_hidden_layers lowercase__ : int = num_attention_heads lowercase__ : Dict = intermediate_size lowercase__ : List[str] = hidden_act lowercase__ : Dict = hidden_dropout_prob lowercase__ : Tuple = attention_probs_dropout_prob lowercase__ : List[str] = max_position_embeddings lowercase__ : int = type_vocab_size lowercase__ : List[str] = type_sequence_label_size lowercase__ : Union[str, Any] = initializer_range lowercase__ : Optional[int] = num_choices def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ : str = None if self.use_attention_mask: lowercase__ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ : List[str] = None if self.use_token_type_ids: lowercase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__ : Any = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _UpperCAmelCase ( self ) -> Any: lowercase__ : Optional[int] = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ : Tuple = config_and_inputs lowercase__ : Union[str, Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class UpperCAmelCase_ ( _a , unittest.TestCase): lowerCamelCase__ : Tuple = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : Union[str, Any] = FlaxAlbertModelTester(self ) @slow def _UpperCAmelCase ( self ) -> str: for model_class_name in self.all_model_classes: lowercase__ : str = model_class_name.from_pretrained('albert-base-v2' ) lowercase__ : Tuple = model(np.ones((1, 1) ) ) self.assertIsNotNone(a ) @require_flax class UpperCAmelCase_ ( unittest.TestCase): @slow def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : str = FlaxAlbertModel.from_pretrained('albert-base-v2' ) lowercase__ : Optional[int] = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) lowercase__ : Optional[Any] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) lowercase__ : Any = model(a , attention_mask=a )[0] lowercase__ : Tuple = (1, 1_1, 7_6_8) self.assertEqual(output.shape , a ) lowercase__ : Optional[Any] = np.array( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , a , atol=1e-4 ) )
645
0
"""simple docstring""" import os import string import sys _UpperCamelCase : str = 1 << 8 _UpperCamelCase : List[Any] = { "tab": ord("\t"), "newline": ord("\r"), "esc": 27, "up": 65 + ARROW_KEY_FLAG, "down": 66 + ARROW_KEY_FLAG, "right": 67 + ARROW_KEY_FLAG, "left": 68 + ARROW_KEY_FLAG, "mod_int": 91, "undefined": sys.maxsize, "interrupt": 3, "insert": 50, "delete": 51, "pg_up": 53, "pg_down": 54, } _UpperCamelCase : Union[str, Any] = KEYMAP["up"] _UpperCamelCase : List[str] = KEYMAP["left"] if sys.platform == "win32": _UpperCamelCase : List[Any] = [] _UpperCamelCase : Optional[Any] = { b"\xe0H": KEYMAP["up"] - ARROW_KEY_FLAG, b"\x00H": KEYMAP["up"] - ARROW_KEY_FLAG, b"\xe0P": KEYMAP["down"] - ARROW_KEY_FLAG, b"\x00P": KEYMAP["down"] - ARROW_KEY_FLAG, b"\xe0M": KEYMAP["right"] - ARROW_KEY_FLAG, b"\x00M": KEYMAP["right"] - ARROW_KEY_FLAG, b"\xe0K": KEYMAP["left"] - ARROW_KEY_FLAG, b"\x00K": KEYMAP["left"] - ARROW_KEY_FLAG, } for i in range(10): _UpperCamelCase : Tuple = ord(str(i)) def a_ ( ): '''simple docstring''' if os.name == "nt": import msvcrt lowercase__ : Optional[Any] = 'mbcs' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(_lowerCAmelCase ) == 0: # Read the keystroke lowercase__ : Optional[int] = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): lowercase__ : Optional[Any] = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: lowercase__ : Tuple = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) ) WIN_CH_BUFFER.append(_lowerCAmelCase ) if ord(_lowerCAmelCase ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) lowercase__ : Optional[Any] = chr(KEYMAP['esc'] ) except KeyError: lowercase__ : str = cha[1] else: lowercase__ : Optional[int] = ch.decode(_lowerCAmelCase ) else: lowercase__ : int = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty lowercase__ : List[str] = sys.stdin.fileno() lowercase__ : List[Any] = termios.tcgetattr(_lowerCAmelCase ) try: tty.setraw(_lowerCAmelCase ) lowercase__ : Tuple = sys.stdin.read(1 ) finally: termios.tcsetattr(_lowerCAmelCase , termios.TCSADRAIN , _lowerCAmelCase ) return ch def a_ ( ): '''simple docstring''' lowercase__ : Optional[int] = get_raw_chars() if ord(_lowerCAmelCase ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(_lowerCAmelCase ) == KEYMAP["esc"]: lowercase__ : Any = get_raw_chars() if ord(_lowerCAmelCase ) == KEYMAP["mod_int"]: lowercase__ : Tuple = get_raw_chars() if ord(_lowerCAmelCase ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(_lowerCAmelCase ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(_lowerCAmelCase ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
720
"""simple docstring""" from collections.abc import Sequence def a_ ( _lowerCAmelCase : Sequence[float] , _lowerCAmelCase : float ): '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(_lowerCAmelCase ) ) def a_ ( _lowerCAmelCase : Sequence[float] , _lowerCAmelCase : float ): '''simple docstring''' lowercase__ : int = 0.0 for coeff in reversed(_lowerCAmelCase ): lowercase__ : List[Any] = result * x + coeff return result if __name__ == "__main__": _UpperCamelCase : int = (0.0, 0.0, 5.0, 9.3, 7.0) _UpperCamelCase : Dict = 1_0.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
645
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _UpperCamelCase : Any = { "configuration_data2vec_audio": ["DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecAudioConfig"], "configuration_data2vec_text": [ "DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecTextConfig", "Data2VecTextOnnxConfig", ], "configuration_data2vec_vision": [ "DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecVisionConfig", "Data2VecVisionOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Union[str, Any] = [ "DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecAudioForAudioFrameClassification", "Data2VecAudioForCTC", "Data2VecAudioForSequenceClassification", "Data2VecAudioForXVector", "Data2VecAudioModel", "Data2VecAudioPreTrainedModel", ] _UpperCamelCase : int = [ "DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecTextForCausalLM", "Data2VecTextForMaskedLM", "Data2VecTextForMultipleChoice", "Data2VecTextForQuestionAnswering", "Data2VecTextForSequenceClassification", "Data2VecTextForTokenClassification", "Data2VecTextModel", "Data2VecTextPreTrainedModel", ] _UpperCamelCase : Any = [ "DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecVisionForImageClassification", "Data2VecVisionForMaskedImageModeling", "Data2VecVisionForSemanticSegmentation", "Data2VecVisionModel", "Data2VecVisionPreTrainedModel", ] if is_tf_available(): _UpperCamelCase : Optional[int] = [ "TFData2VecVisionForImageClassification", "TFData2VecVisionForSemanticSegmentation", "TFData2VecVisionModel", "TFData2VecVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys _UpperCamelCase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
721
"""simple docstring""" import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path _UpperCamelCase : Any = [ {"dataset": "wikipedia", "config_name": "20220301.de"}, {"dataset": "wikipedia", "config_name": "20220301.en"}, {"dataset": "wikipedia", "config_name": "20220301.fr"}, {"dataset": "wikipedia", "config_name": "20220301.frr"}, {"dataset": "wikipedia", "config_name": "20220301.it"}, {"dataset": "wikipedia", "config_name": "20220301.simple"}, {"dataset": "snli", "config_name": "plain_text"}, {"dataset": "eli5", "config_name": "LFQA_reddit"}, {"dataset": "wiki40b", "config_name": "en"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.compressed"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.no_index"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.multiset.no_index"}, {"dataset": "natural_questions", "config_name": "default"}, ] def a_ ( _lowerCAmelCase : Optional[Any]=True ): '''simple docstring''' if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=_a)) class UpperCAmelCase_ ( _a): lowerCamelCase__ : str = None lowerCamelCase__ : Optional[Any] = None def _UpperCAmelCase ( self , a , a ) -> List[Any]: with TemporaryDirectory() as tmp_dir: lowercase__ : List[str] = dataset_module_factory(a , cache_dir=a ) lowercase__ : List[Any] = import_main_class(dataset_module.module_path , dataset=a ) lowercase__ : DatasetBuilder = builder_cls( cache_dir=a , config_name=a , hash=dataset_module.hash , ) lowercase__ : Union[str, Any] = '/'.join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=a ).replace(os.sep , '/' ), config.DATASET_INFO_FILENAME, ] ) lowercase__ : Union[str, Any] = cached_path(a , cache_dir=a ) self.assertTrue(os.path.exists(a ) ) @pytest.mark.integration def a_ ( _lowerCAmelCase : str ): '''simple docstring''' lowercase__ : Union[str, Any] = tmp_path_factory.mktemp('test_hf_gcp' ) / 'test_wikipedia_simple' lowercase__ : int = dataset_module_factory('wikipedia' , cache_dir=_lowerCAmelCase ) lowercase__ : Optional[int] = import_main_class(dataset_module.module_path ) lowercase__ : DatasetBuilder = builder_cls( cache_dir=_lowerCAmelCase , config_name='20220301.frr' , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam lowercase__ : Optional[int] = None builder_instance.download_and_prepare() lowercase__ : Optional[int] = builder_instance.as_dataset() assert ds @pytest.mark.integration def a_ ( _lowerCAmelCase : Optional[Any] ): '''simple docstring''' lowercase__ : Optional[int] = dataset_module_factory('wikipedia' , cache_dir=_lowerCAmelCase ) lowercase__ : List[str] = import_main_class(dataset_module.module_path , dataset=_lowerCAmelCase ) lowercase__ : DatasetBuilder = builder_cls( cache_dir=_lowerCAmelCase , config_name='20220301.frr' , hash=dataset_module.hash , ) lowercase__ : Union[str, Any] = builder_instance.as_streaming_dataset() assert ds assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert "train" in ds assert isinstance(ds['train'] , _lowerCAmelCase ) assert next(iter(ds['train'] ) )
645
0
'''simple docstring''' def __UpperCamelCase ( _A : int = 1_00 ) -> int: """simple docstring""" lowerCAmelCase : Any = 0 lowerCAmelCase : Optional[Any] = 0 for i in range(1 , n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(f"""{solution() = }""")
646
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : str = logging.get_logger(__name__) _lowerCAmelCase : Tuple = { 's-JoL/Open-Llama-V1': 'https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json', } class lowerCAmelCase ( a ): _lowerCamelCase : Union[str, Any] = """open-llama""" def __init__( self , snake_case__=10_0000 , snake_case__=4096 , snake_case__=1_1008 , snake_case__=32 , snake_case__=32 , snake_case__="silu" , snake_case__=2048 , snake_case__=0.0_2 , snake_case__=1e-6 , snake_case__=True , snake_case__=0 , snake_case__=1 , snake_case__=2 , snake_case__=False , snake_case__=True , snake_case__=0.1 , snake_case__=0.1 , snake_case__=True , snake_case__=True , snake_case__=None , **snake_case__ , ): lowerCAmelCase : Tuple = vocab_size lowerCAmelCase : Optional[Any] = max_position_embeddings lowerCAmelCase : List[Any] = hidden_size lowerCAmelCase : List[Any] = intermediate_size lowerCAmelCase : Tuple = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : str = rms_norm_eps lowerCAmelCase : Optional[int] = use_cache lowerCAmelCase : Dict = kwargs.pop( 'use_memorry_efficient_attention' , snake_case__ ) lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : Optional[Any] = attention_dropout_prob lowerCAmelCase : Union[str, Any] = use_stable_embedding lowerCAmelCase : Tuple = shared_input_output_embedding lowerCAmelCase : Tuple = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , tie_word_embeddings=snake_case__ , **snake_case__ , ) def lowercase ( self ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , snake_case__ ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' f"got {self.rope_scaling}" ) lowerCAmelCase : List[Any] = self.rope_scaling.get('type' , snake_case__ ) lowerCAmelCase : List[str] = self.rope_scaling.get('factor' , snake_case__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(snake_case__ , snake_case__ ) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
646
1
'''simple docstring''' def __UpperCamelCase ( _A : int = 1_00_00_00 ) -> int: """simple docstring""" lowerCAmelCase : Dict = 1 lowerCAmelCase : Optional[Any] = 1 lowerCAmelCase : List[str] = {1: 1} for inputa in range(2 , _A ): lowerCAmelCase : str = 0 lowerCAmelCase : List[Any] = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: lowerCAmelCase : Dict = (3 * number) + 1 counter += 1 if inputa not in counters: lowerCAmelCase : int = counter if counter > pre_counter: lowerCAmelCase : Any = inputa lowerCAmelCase : Dict = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
646
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) _lowerCAmelCase : Dict = { 'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class lowerCAmelCase ( a ): _lowerCamelCase : Any = """deformable_detr""" _lowerCamelCase : List[str] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , snake_case__=True , snake_case__=None , snake_case__=3 , snake_case__=300 , snake_case__=1024 , snake_case__=6 , snake_case__=1024 , snake_case__=8 , snake_case__=6 , snake_case__=1024 , snake_case__=8 , snake_case__=0.0 , snake_case__=True , snake_case__="relu" , snake_case__=256 , snake_case__=0.1 , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.0_2 , snake_case__=1.0 , snake_case__=True , snake_case__=False , snake_case__="sine" , snake_case__="resnet50" , snake_case__=True , snake_case__=False , snake_case__=4 , snake_case__=4 , snake_case__=4 , snake_case__=False , snake_case__=300 , snake_case__=False , snake_case__=1 , snake_case__=5 , snake_case__=2 , snake_case__=1 , snake_case__=1 , snake_case__=5 , snake_case__=2 , snake_case__=0.1 , snake_case__=0.2_5 , snake_case__=False , **snake_case__ , ): if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) lowerCAmelCase : Optional[int] = CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : List[str] = backbone_config.get('model_type' ) lowerCAmelCase : str = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase : Optional[Any] = config_class.from_dict(snake_case__ ) lowerCAmelCase : Union[str, Any] = use_timm_backbone lowerCAmelCase : List[Any] = backbone_config lowerCAmelCase : Any = num_channels lowerCAmelCase : Tuple = num_queries lowerCAmelCase : Dict = max_position_embeddings lowerCAmelCase : int = d_model lowerCAmelCase : List[str] = encoder_ffn_dim lowerCAmelCase : List[str] = encoder_layers lowerCAmelCase : int = encoder_attention_heads lowerCAmelCase : str = decoder_ffn_dim lowerCAmelCase : str = decoder_layers lowerCAmelCase : Dict = decoder_attention_heads lowerCAmelCase : str = dropout lowerCAmelCase : List[str] = attention_dropout lowerCAmelCase : Union[str, Any] = activation_dropout lowerCAmelCase : str = activation_function lowerCAmelCase : Any = init_std lowerCAmelCase : Any = init_xavier_std lowerCAmelCase : Dict = encoder_layerdrop lowerCAmelCase : int = auxiliary_loss lowerCAmelCase : Optional[Any] = position_embedding_type lowerCAmelCase : List[str] = backbone lowerCAmelCase : int = use_pretrained_backbone lowerCAmelCase : int = dilation # deformable attributes lowerCAmelCase : List[str] = num_feature_levels lowerCAmelCase : List[str] = encoder_n_points lowerCAmelCase : Union[str, Any] = decoder_n_points lowerCAmelCase : Tuple = two_stage lowerCAmelCase : Dict = two_stage_num_proposals lowerCAmelCase : Union[str, Any] = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.' ) # Hungarian matcher lowerCAmelCase : Union[str, Any] = class_cost lowerCAmelCase : Dict = bbox_cost lowerCAmelCase : List[Any] = giou_cost # Loss coefficients lowerCAmelCase : Dict = mask_loss_coefficient lowerCAmelCase : Any = dice_loss_coefficient lowerCAmelCase : str = bbox_loss_coefficient lowerCAmelCase : Tuple = giou_loss_coefficient lowerCAmelCase : List[str] = eos_coefficient lowerCAmelCase : Any = focal_alpha lowerCAmelCase : Dict = disable_custom_kernels super().__init__(is_encoder_decoder=snake_case__ , **snake_case__ ) @property def lowercase ( self ): return self.encoder_attention_heads @property def lowercase ( self ): return self.d_model def lowercase ( self ): lowerCAmelCase : Union[str, Any] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: lowerCAmelCase : List[Any] = self.backbone_config.to_dict() lowerCAmelCase : str = self.__class__.model_type return output
646
1
'''simple docstring''' from pathlib import Path import fire from tqdm import tqdm def __UpperCamelCase ( _A : Optional[int]="ro" , _A : Optional[int]="en" , _A : Tuple="wmt16" , _A : Dict=None ) -> None: """simple docstring""" try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError('run pip install datasets' ) lowerCAmelCase : int = F"{src_lang}-{tgt_lang}" print(F"Converting {dataset}-{pair}" ) lowerCAmelCase : Union[str, Any] = datasets.load_dataset(_A , _A ) if save_dir is None: lowerCAmelCase : Optional[int] = F"{dataset}-{pair}" lowerCAmelCase : int = Path(_A ) save_dir.mkdir(exist_ok=_A ) for split in ds.keys(): print(F"Splitting {split} with {ds[split].num_rows} records" ) # to save to val.source, val.target like summary datasets lowerCAmelCase : str = 'val' if split == 'validation' else split lowerCAmelCase : Dict = save_dir.joinpath(F"{fn}.source" ) lowerCAmelCase : Optional[int] = save_dir.joinpath(F"{fn}.target" ) lowerCAmelCase : List[str] = src_path.open('w+' ) lowerCAmelCase : Union[str, Any] = tgt_path.open('w+' ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): lowerCAmelCase : str = x['translation'] src_fp.write(ex[src_lang] + '\n' ) tgt_fp.write(ex[tgt_lang] + '\n' ) print(F"Saved {dataset} dataset to {save_dir}" ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
646
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece_no_bos.model') @require_sentencepiece @require_tokenizers class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : str = PegasusTokenizer _lowerCamelCase : Union[str, Any] = PegasusTokenizerFast _lowerCamelCase : Optional[Any] = True _lowerCamelCase : Optional[Any] = True def lowercase ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : List[Any] = PegasusTokenizer(snake_case__ ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase ( self ): return PegasusTokenizer.from_pretrained('google/pegasus-large' ) def lowercase ( self , **snake_case__ ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def lowercase ( self , snake_case__ ): return ("This is a test", "This is a test") def lowercase ( self ): lowerCAmelCase : Optional[int] = '</s>' lowerCAmelCase : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '</s>' ) self.assertEqual(vocab_keys[-1] , 'v' ) self.assertEqual(len(snake_case__ ) , 1103 ) def lowercase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def lowercase ( self ): lowerCAmelCase : List[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : List[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : Optional[Any] = ( 'Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important' ' </s> <pad> <pad> <pad>' ) lowerCAmelCase : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] lowerCAmelCase : Optional[int] = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Any = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowerCAmelCase : List[str] = '<mask_1> To ensure a <mask_2> flow of bank resolutions.' lowerCAmelCase : Optional[Any] = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1] lowerCAmelCase : Optional[Any] = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Optional[Any] = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 lowerCAmelCase : List[Any] = 'To ensure a smooth flow of bank resolutions.' lowerCAmelCase : Optional[int] = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1] lowerCAmelCase : Any = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def lowercase ( self ): lowerCAmelCase : Union[str, Any] = ['This is going to be way too long.' * 150, 'short example'] lowerCAmelCase : int = ['not super long but more than 5 tokens', 'tiny'] lowerCAmelCase : Dict = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) lowerCAmelCase : Dict = self._large_tokenizer( text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(snake_case__ ) == 2 # input_ids, attention_mask. @slow def lowercase ( self ): # fmt: off lowerCAmelCase : Tuple = {'input_ids': [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name='google/bigbird-pegasus-large-arxiv' , revision='ba85d0851d708441f91440d509690f1ab6353415' , ) @require_sentencepiece @require_tokenizers class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : Optional[Any] = PegasusTokenizer _lowerCamelCase : str = PegasusTokenizerFast _lowerCamelCase : Tuple = True _lowerCamelCase : int = True def lowercase ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : int = PegasusTokenizer(snake_case__ , offset=0 , mask_token_sent=snake_case__ , mask_token='[MASK]' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase ( self ): return PegasusTokenizer.from_pretrained('google/bigbird-pegasus-large-arxiv' ) def lowercase ( self , **snake_case__ ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def lowercase ( self , snake_case__ ): return ("This is a test", "This is a test") def lowercase ( self ): lowerCAmelCase : Tuple = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : Union[str, Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : List[str] = ( 'Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>' ' <pad> <pad> <pad>' ) lowerCAmelCase : Dict = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] lowerCAmelCase : Union[str, Any] = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) @require_torch def lowercase ( self ): lowerCAmelCase : Optional[int] = ['This is going to be way too long.' * 1000, 'short example'] lowerCAmelCase : Union[str, Any] = ['not super long but more than 5 tokens', 'tiny'] lowerCAmelCase : List[str] = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) lowerCAmelCase : List[str] = self._large_tokenizer( text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(snake_case__ ) == 2 # input_ids, attention_mask. def lowercase ( self ): lowerCAmelCase : List[str] = ( 'This is an example string that is used to test the original TF implementation against the HF' ' implementation' ) lowerCAmelCase : Tuple = self._large_tokenizer(snake_case__ ).input_ids self.assertListEqual( snake_case__ , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
646
1
'''simple docstring''' # Imports import numpy as np class lowerCAmelCase : def __init__( self , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=None ): self.set_matricies(red=snake_case__ , green=snake_case__ , blue=snake_case__ , red_edge=snake_case__ , nir=snake_case__ ) def lowercase ( self , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=None ): if red is not None: lowerCAmelCase : List[Any] = red if green is not None: lowerCAmelCase : Tuple = green if blue is not None: lowerCAmelCase : Optional[int] = blue if red_edge is not None: lowerCAmelCase : Tuple = red_edge if nir is not None: lowerCAmelCase : Any = nir return True def lowercase ( self , snake_case__="" , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=None ): self.set_matricies(red=snake_case__ , green=snake_case__ , blue=snake_case__ , red_edge=snake_case__ , nir=snake_case__ ) lowerCAmelCase : Any = { 'ARVI2': self.arvaa, 'CCCI': self.ccci, 'CVI': self.cvi, 'GLI': self.gli, 'NDVI': self.ndvi, 'BNDVI': self.bndvi, 'redEdgeNDVI': self.red_edge_ndvi, 'GNDVI': self.gndvi, 'GBNDVI': self.gbndvi, 'GRNDVI': self.grndvi, 'RBNDVI': self.rbndvi, 'PNDVI': self.pndvi, 'ATSAVI': self.atsavi, 'BWDRVI': self.bwdrvi, 'CIgreen': self.ci_green, 'CIrededge': self.ci_rededge, 'CI': self.ci, 'CTVI': self.ctvi, 'GDVI': self.gdvi, 'EVI': self.evi, 'GEMI': self.gemi, 'GOSAVI': self.gosavi, 'GSAVI': self.gsavi, 'Hue': self.hue, 'IVI': self.ivi, 'IPVI': self.ipvi, 'I': self.i, 'RVI': self.rvi, 'MRVI': self.mrvi, 'MSAVI': self.m_savi, 'NormG': self.norm_g, 'NormNIR': self.norm_nir, 'NormR': self.norm_r, 'NGRDI': self.ngrdi, 'RI': self.ri, 'S': self.s, 'IF': self._if, 'DVI': self.dvi, 'TVI': self.tvi, 'NDRE': self.ndre, } try: return funcs[index]() except KeyError: print('Index not in the list!' ) return False def lowercase ( self ): return -0.1_8 + (1.1_7 * ((self.nir - self.red) / (self.nir + self.red))) def lowercase ( self ): return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def lowercase ( self ): return self.nir * (self.red / (self.green**2)) def lowercase ( self ): return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def lowercase ( self ): return (self.nir - self.red) / (self.nir + self.red) def lowercase ( self ): return (self.nir - self.blue) / (self.nir + self.blue) def lowercase ( self ): return (self.redEdge - self.red) / (self.redEdge + self.red) def lowercase ( self ): return (self.nir - self.green) / (self.nir + self.green) def lowercase ( self ): return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def lowercase ( self ): return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def lowercase ( self ): return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def lowercase ( self ): return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def lowercase ( self , snake_case__=0.0_8 , snake_case__=1.2_2 , snake_case__=0.0_3 ): return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def lowercase ( self ): return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def lowercase ( self ): return (self.nir / self.green) - 1 def lowercase ( self ): return (self.nir / self.redEdge) - 1 def lowercase ( self ): return (self.red - self.blue) / self.red def lowercase ( self ): lowerCAmelCase : Optional[int] = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def lowercase ( self ): return self.nir - self.green def lowercase ( self ): return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def lowercase ( self ): lowerCAmelCase : int = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.2_5 * n) - (self.red - 0.1_2_5) / (1 - self.red) def lowercase ( self , snake_case__=0.1_6 ): return (self.nir - self.green) / (self.nir + self.green + y) def lowercase ( self , snake_case__=0.5 ): return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def lowercase ( self ): return np.arctan( ((2 * self.red - self.green - self.blue) / 3_0.5) * (self.green - self.blue) ) def lowercase ( self , snake_case__=None , snake_case__=None ): return (self.nir - b) / (a * self.red) def lowercase ( self ): return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def lowercase ( self ): return (self.red + self.green + self.blue) / 3_0.5 def lowercase ( self ): return self.nir / self.red def lowercase ( self ): return (self.rvi() - 1) / (self.rvi() + 1) def lowercase ( self ): return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def lowercase ( self ): return self.green / (self.nir + self.red + self.green) def lowercase ( self ): return self.nir / (self.nir + self.red + self.green) def lowercase ( self ): return self.red / (self.nir + self.red + self.green) def lowercase ( self ): return (self.green - self.red) / (self.green + self.red) def lowercase ( self ): return (self.red - self.green) / (self.red + self.green) def lowercase ( self ): lowerCAmelCase : List[str] = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) lowerCAmelCase : List[str] = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def lowercase ( self ): return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def lowercase ( self ): return self.nir / self.red def lowercase ( self ): return (self.ndvi() + 0.5) ** (1 / 2) def lowercase ( self ): return (self.nir - self.redEdge) / (self.nir + self.redEdge)
646
'''simple docstring''' import math import sys import cva import numpy as np def __UpperCamelCase ( _A : np.ndarray , _A : float ) -> np.ndarray: """simple docstring""" lowerCAmelCase : Union[str, Any] = math.sqrt(_A ) lowerCAmelCase : Union[str, Any] = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def __UpperCamelCase ( _A : np.ndarray , _A : int , _A : int , _A : int ) -> np.ndarray: """simple docstring""" lowerCAmelCase : int = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def __UpperCamelCase ( _A : int , _A : float ) -> np.ndarray: """simple docstring""" lowerCAmelCase : Dict = np.zeros((kernel_size, kernel_size) ) for i in range(0 , _A ): for j in range(0 , _A ): lowerCAmelCase : Optional[int] = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(_A , _A ) def __UpperCamelCase ( _A : np.ndarray , _A : float , _A : float , _A : int , ) -> np.ndarray: """simple docstring""" lowerCAmelCase : str = np.zeros(img.shape ) lowerCAmelCase : int = get_gauss_kernel(_A , _A ) lowerCAmelCase , lowerCAmelCase : Dict = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): lowerCAmelCase : int = get_slice(_A , _A , _A , _A ) lowerCAmelCase : Any = img_s - img_s[kernel_size // 2, kernel_size // 2] lowerCAmelCase : str = vec_gaussian(_A , _A ) lowerCAmelCase : Optional[int] = np.multiply(_A , _A ) lowerCAmelCase : str = np.multiply(_A , _A ) lowerCAmelCase : Union[str, Any] = np.sum(_A ) / np.sum(_A ) lowerCAmelCase : Tuple = val return imga def __UpperCamelCase ( _A : list ) -> tuple: """simple docstring""" lowerCAmelCase : List[Any] = args[1] if args[1:] else '../image_data/lena.jpg' lowerCAmelCase : Any = float(args[2] ) if args[2:] else 1.0 lowerCAmelCase : Union[str, Any] = float(args[3] ) if args[3:] else 1.0 if args[4:]: lowerCAmelCase : int = int(args[4] ) lowerCAmelCase : Optional[Any] = kernel_size + abs(kernel_size % 2 - 1 ) else: lowerCAmelCase : Optional[int] = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Any = parse_args(sys.argv) _lowerCAmelCase : str = cva.imread(filename, 0) cva.imshow('input image', img) _lowerCAmelCase : Union[str, Any] = img / 255 _lowerCAmelCase : List[str] = out.astype('float32') _lowerCAmelCase : Optional[int] = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) _lowerCAmelCase : Union[str, Any] = out * 255 _lowerCAmelCase : Optional[Any] = np.uinta(out) cva.imshow('output image', out) cva.waitKey(0) cva.destroyAllWindows()
646
1
'''simple docstring''' from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo _lowerCAmelCase : Optional[int] = '\\n@misc{wu2016googles,\n title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n' _lowerCAmelCase : Tuple = '\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe \'GLEU score\'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore\'s range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n' _lowerCAmelCase : Optional[Any] = '\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n \'google_bleu\': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results["google_bleu"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results["google_bleu"], 2))\n 0.4\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase ( datasets.Metric ): def lowercase ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ), } ) , ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ = 1 , snake_case__ = 4 , ): return { "google_bleu": gleu_score.corpus_gleu( list_of_references=snake_case__ , hypotheses=snake_case__ , min_len=snake_case__ , max_len=snake_case__ ) }
646
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowerCAmelCase : int = { 'configuration_nezha': ['NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NezhaConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Tuple = [ 'NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST', 'NezhaForNextSentencePrediction', 'NezhaForMaskedLM', 'NezhaForPreTraining', 'NezhaForMultipleChoice', 'NezhaForQuestionAnswering', 'NezhaForSequenceClassification', 'NezhaForTokenClassification', 'NezhaModel', 'NezhaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys _lowerCAmelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
646
1
'''simple docstring''' import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler _lowerCAmelCase : int = 16 _lowerCAmelCase : Any = 32 def __UpperCamelCase ( _A : Accelerator , _A : int = 16 , _A : str = "bert-base-cased" ) -> Any: """simple docstring""" lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained(_A ) lowerCAmelCase : Union[str, Any] = load_dataset('glue' , 'mrpc' ) def tokenize_function(_A : Any ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase : Union[str, Any] = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=_A , max_length=_A ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowerCAmelCase : Optional[int] = datasets.map( _A , batched=_A , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=_A ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase : str = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(_A : List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_A , padding='max_length' , max_length=1_28 , return_tensors='pt' ) return tokenizer.pad(_A , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. lowerCAmelCase : str = DataLoader( tokenized_datasets['train'] , shuffle=_A , collate_fn=_A , batch_size=_A ) lowerCAmelCase : List[str] = DataLoader( tokenized_datasets['validation'] , shuffle=_A , collate_fn=_A , batch_size=_A ) return train_dataloader, eval_dataloader def __UpperCamelCase ( _A : Optional[int] , _A : List[Any] , _A : Dict , _A : Optional[Any] ) -> int: """simple docstring""" model.eval() lowerCAmelCase : Optional[Any] = 0 for step, batch in enumerate(_A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCAmelCase : List[str] = model(**_A ) lowerCAmelCase : List[str] = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times lowerCAmelCase , lowerCAmelCase : Dict = accelerator.gather( (predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(_A ) - 1: lowerCAmelCase : Tuple = predictions[: len(eval_dataloader.dataset ) - samples_seen] lowerCAmelCase : Optional[Any] = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=_A , references=_A , ) lowerCAmelCase : Any = metric.compute() return eval_metric["accuracy"] def __UpperCamelCase ( _A : Optional[Any] , _A : Optional[int] ) -> str: """simple docstring""" lowerCAmelCase : Tuple = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase : List[str] = config['lr'] lowerCAmelCase : Tuple = int(config['num_epochs'] ) lowerCAmelCase : Optional[Any] = int(config['seed'] ) lowerCAmelCase : Union[str, Any] = int(config['batch_size'] ) lowerCAmelCase : Dict = args.model_name_or_path set_seed(_A ) lowerCAmelCase , lowerCAmelCase : str = get_dataloaders(_A , _A , _A ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase : int = AutoModelForSequenceClassification.from_pretrained(_A , return_dict=_A ) # Instantiate optimizer lowerCAmelCase : Optional[int] = ( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowerCAmelCase : Optional[int] = optimizer_cls(params=model.parameters() , lr=_A ) if accelerator.state.deepspeed_plugin is not None: lowerCAmelCase : Union[str, Any] = accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: lowerCAmelCase : Optional[int] = 1 lowerCAmelCase : Any = (len(_A ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowerCAmelCase : int = get_linear_schedule_with_warmup( optimizer=_A , num_warmup_steps=0 , num_training_steps=_A , ) else: lowerCAmelCase : Any = DummyScheduler(_A , total_num_steps=_A , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[Any] = accelerator.prepare( _A , _A , _A , _A , _A ) # We need to keep track of how many total steps we have iterated over lowerCAmelCase : List[Any] = 0 # We also need to keep track of the stating epoch so files are named properly lowerCAmelCase : Union[str, Any] = 0 lowerCAmelCase : Dict = evaluate.load('glue' , 'mrpc' ) lowerCAmelCase : Optional[Any] = num_epochs if args.partial_train_epoch is not None: lowerCAmelCase : Optional[Any] = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) lowerCAmelCase : List[Any] = args.resume_from_checkpoint.split('epoch_' )[1] lowerCAmelCase : Optional[int] = '' for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break lowerCAmelCase : Any = int(_A ) + 1 lowerCAmelCase : str = evaluation_loop(_A , _A , _A , _A ) accelerator.print('resumed checkpoint performance:' , _A ) accelerator.print('resumed checkpoint\'s scheduler\'s lr:' , lr_scheduler.get_lr()[0] ) accelerator.print('resumed optimizers\'s lr:' , optimizer.param_groups[0]['lr'] ) with open(os.path.join(args.output_dir , F"state_{starting_epoch-1}.json" ) , 'r' ) as f: lowerCAmelCase : Any = json.load(_A ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model lowerCAmelCase : Optional[Any] = {} for epoch in range(_A , _A ): model.train() for step, batch in enumerate(_A ): lowerCAmelCase : List[Any] = model(**_A ) lowerCAmelCase : str = outputs.loss lowerCAmelCase : Any = loss / gradient_accumulation_steps accelerator.backward(_A ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 lowerCAmelCase : Optional[int] = F"epoch_{epoch}" lowerCAmelCase : str = os.path.join(args.output_dir , _A ) accelerator.save_state(_A ) lowerCAmelCase : List[str] = evaluation_loop(_A , _A , _A , _A ) lowerCAmelCase : Tuple = accuracy lowerCAmelCase : Tuple = lr_scheduler.get_lr()[0] lowerCAmelCase : Optional[Any] = optimizer.param_groups[0]['lr'] lowerCAmelCase : int = epoch lowerCAmelCase : List[str] = overall_step accelerator.print(F"epoch {epoch}:" , _A ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , F"state_{epoch}.json" ) , 'w' ) as f: json.dump(_A , _A ) def __UpperCamelCase ( ) -> Any: """simple docstring""" lowerCAmelCase : str = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path' , type=_A , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=_A , ) parser.add_argument( '--output_dir' , type=_A , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--resume_from_checkpoint' , type=_A , default=_A , help='If the training should continue from a checkpoint folder.' , ) parser.add_argument( '--partial_train_epoch' , type=_A , default=_A , help='If passed, the training will stop after this number of epochs.' , ) parser.add_argument( '--num_epochs' , type=_A , default=2 , help='Number of train epochs.' , ) lowerCAmelCase : Tuple = parser.parse_args() lowerCAmelCase : List[str] = {'lr': 2e-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16} training_function(_A , _A ) if __name__ == "__main__": main()
646
'''simple docstring''' from typing import Any class lowerCAmelCase : def __init__( self , snake_case__ ): lowerCAmelCase : Optional[int] = data lowerCAmelCase : Optional[Any] = None def __repr__( self ): return f"Node({self.data})" class lowerCAmelCase : def __init__( self ): lowerCAmelCase : Dict = None def __iter__( self ): lowerCAmelCase : Optional[Any] = self.head while node: yield node.data lowerCAmelCase : Optional[int] = node.next def __len__( self ): return sum(1 for _ in self ) def __repr__( self ): return "->".join([str(snake_case__ ) for item in self] ) def __getitem__( self , snake_case__ ): if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , snake_case__ , snake_case__ ): if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) lowerCAmelCase : Any = self.head for _ in range(snake_case__ ): lowerCAmelCase : List[str] = current.next lowerCAmelCase : int = data def lowercase ( self , snake_case__ ): self.insert_nth(len(self ) , snake_case__ ) def lowercase ( self , snake_case__ ): self.insert_nth(0 , snake_case__ ) def lowercase ( self , snake_case__ , snake_case__ ): if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) lowerCAmelCase : List[str] = Node(snake_case__ ) if self.head is None: lowerCAmelCase : int = new_node elif index == 0: lowerCAmelCase : List[Any] = self.head # link new_node to head lowerCAmelCase : List[Any] = new_node else: lowerCAmelCase : List[Any] = self.head for _ in range(index - 1 ): lowerCAmelCase : Union[str, Any] = temp.next lowerCAmelCase : Any = temp.next lowerCAmelCase : str = new_node def lowercase ( self ): # print every node data print(self ) def lowercase ( self ): return self.delete_nth(0 ) def lowercase ( self ): # delete from tail return self.delete_nth(len(self ) - 1 ) def lowercase ( self , snake_case__ = 0 ): if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) lowerCAmelCase : List[str] = self.head # default first node if index == 0: lowerCAmelCase : Tuple = self.head.next else: lowerCAmelCase : Dict = self.head for _ in range(index - 1 ): lowerCAmelCase : Tuple = temp.next lowerCAmelCase : Dict = temp.next lowerCAmelCase : Tuple = temp.next.next return delete_node.data def lowercase ( self ): return self.head is None def lowercase ( self ): lowerCAmelCase : List[Any] = None lowerCAmelCase : Any = self.head while current: # Store the current node's next node. lowerCAmelCase : List[str] = current.next # Make the current node's next point backwards lowerCAmelCase : int = prev # Make the previous node be the current node lowerCAmelCase : int = current # Make the current node the next node (to progress iteration) lowerCAmelCase : Optional[Any] = next_node # Return prev in order to put the head at the end lowerCAmelCase : List[Any] = prev def __UpperCamelCase ( ) -> None: """simple docstring""" lowerCAmelCase : Tuple = LinkedList() assert linked_list.is_empty() is True assert str(_A ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(_A ) == i linked_list.insert_nth(_A , i + 1 ) assert str(_A ) == "->".join(str(_A ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(_A ) == "->".join(str(_A ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(_A ) == 9 assert str(_A ) == "->".join(str(_A ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): lowerCAmelCase : Optional[Any] = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(_A ) == "->".join(str(_A ) for i in range(-8 , 1 ) ) def __UpperCamelCase ( ) -> None: """simple docstring""" lowerCAmelCase : Optional[int] = [ -9, 1_00, Node(77_34_51_12 ), 'dlrow olleH', 7, 55_55, 0, -1_92.5_55_55, 'Hello, world!', 77.9, Node(10 ), None, None, 12.20, ] lowerCAmelCase : Dict = LinkedList() for i in test_input: linked_list.insert_tail(_A ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(_A ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head lowerCAmelCase : Optional[Any] = linked_list.delete_head() assert result == -9 assert ( str(_A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail lowerCAmelCase : List[str] = linked_list.delete_tail() assert result == 12.2 assert ( str(_A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list lowerCAmelCase : List[str] = linked_list.delete_nth(10 ) assert result is None assert ( str(_A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(_A ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(_A ) assert ( str(_A ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(_A ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def __UpperCamelCase ( ) -> List[Any]: """simple docstring""" from doctest import testmod testmod() lowerCAmelCase : Optional[Any] = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(_A ) print('\nReading/changing Node data using indexing:' ) print(F"Element at Position 1: {linked_list[1]}" ) lowerCAmelCase : Tuple = input('Enter New Value: ' ).strip() print('New list:' ) print(_A ) print(F"length of linked_list is : {len(_A )}" ) if __name__ == "__main__": main()
646
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class lowerCAmelCase ( a ): _lowerCamelCase : str = """openai/whisper-base""" _lowerCamelCase : int = ( """This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the """ """transcribed text.""" ) _lowerCamelCase : int = """transcriber""" _lowerCamelCase : List[str] = WhisperProcessor _lowerCamelCase : Optional[int] = WhisperForConditionalGeneration _lowerCamelCase : List[Any] = ["""audio"""] _lowerCamelCase : List[str] = ["""text"""] def lowercase ( self , snake_case__ ): return self.pre_processor(snake_case__ , return_tensors='pt' ).input_features def lowercase ( self , snake_case__ ): return self.model.generate(inputs=snake_case__ ) def lowercase ( self , snake_case__ ): return self.pre_processor.batch_decode(snake_case__ , skip_special_tokens=snake_case__ )[0]
646
'''simple docstring''' _lowerCAmelCase : List[str] = {str(digit): digit**5 for digit in range(10)} def __UpperCamelCase ( _A : int ) -> int: """simple docstring""" return sum(DIGITS_FIFTH_POWER[digit] for digit in str(_A ) ) def __UpperCamelCase ( ) -> int: """simple docstring""" return sum( number for number in range(10_00 , 1_00_00_00 ) if number == digits_fifth_powers_sum(_A ) ) if __name__ == "__main__": print(solution())
646
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCAmelCase ( a , a , unittest.TestCase ): _lowerCamelCase : int = CycleDiffusionPipeline _lowerCamelCase : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { """negative_prompt""", """height""", """width""", """negative_prompt_embeds""", } _lowerCamelCase : Optional[int] = PipelineTesterMixin.required_optional_params - {"""latents"""} _lowerCamelCase : Tuple = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""source_prompt"""} ) _lowerCamelCase : Tuple = IMAGE_TO_IMAGE_IMAGE_PARAMS _lowerCamelCase : str = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowercase ( self ): torch.manual_seed(0 ) lowerCAmelCase : Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) lowerCAmelCase : str = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , num_train_timesteps=1000 , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , ) torch.manual_seed(0 ) lowerCAmelCase : List[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) lowerCAmelCase : Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowerCAmelCase : Dict = CLIPTextModel(snake_case__ ) lowerCAmelCase : Optional[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCAmelCase : List[Any] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def lowercase ( self , snake_case__ , snake_case__=0 ): lowerCAmelCase : List[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) lowerCAmelCase : Dict = image / 2 + 0.5 if str(snake_case__ ).startswith('mps' ): lowerCAmelCase : Optional[Any] = torch.manual_seed(snake_case__ ) else: lowerCAmelCase : Dict = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) lowerCAmelCase : str = { 'prompt': 'An astronaut riding an elephant', 'source_prompt': 'An astronaut riding a horse', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'eta': 0.1, 'strength': 0.8, 'guidance_scale': 3, 'source_guidance_scale': 1, 'output_type': 'numpy', } return inputs def lowercase ( self ): lowerCAmelCase : str = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase : Union[str, Any] = self.get_dummy_components() lowerCAmelCase : Optional[int] = CycleDiffusionPipeline(**snake_case__ ) lowerCAmelCase : str = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Tuple = self.get_dummy_inputs(snake_case__ ) lowerCAmelCase : Optional[Any] = pipe(**snake_case__ ) lowerCAmelCase : Optional[Any] = output.images lowerCAmelCase : Optional[Any] = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) lowerCAmelCase : Optional[Any] = np.array([0.4_4_5_9, 0.4_9_4_3, 0.4_5_4_4, 0.6_6_4_3, 0.5_4_7_4, 0.4_3_2_7, 0.5_7_0_1, 0.5_9_5_9, 0.5_1_7_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def lowercase ( self ): lowerCAmelCase : Any = self.get_dummy_components() for name, module in components.items(): if hasattr(snake_case__ , 'half' ): lowerCAmelCase : Optional[int] = module.half() lowerCAmelCase : List[str] = CycleDiffusionPipeline(**snake_case__ ) lowerCAmelCase : List[str] = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Union[str, Any] = self.get_dummy_inputs(snake_case__ ) lowerCAmelCase : List[str] = pipe(**snake_case__ ) lowerCAmelCase : List[Any] = output.images lowerCAmelCase : Tuple = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) lowerCAmelCase : Tuple = np.array([0.3_5_0_6, 0.4_5_4_3, 0.4_4_6, 0.4_5_7_5, 0.5_1_9_5, 0.4_1_5_5, 0.5_2_7_3, 0.5_1_8, 0.4_1_1_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def lowercase ( self ): return super().test_save_load_local() @unittest.skip('non-deterministic pipeline' ) def lowercase ( self ): return super().test_inference_batch_single_identical() @skip_mps def lowercase ( self ): return super().test_dict_tuple_outputs_equivalent() @skip_mps def lowercase ( self ): return super().test_save_load_optional_components() @skip_mps def lowercase ( self ): return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self ): lowerCAmelCase : List[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/cycle-diffusion/black_colored_car.png' ) lowerCAmelCase : Optional[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy' ) lowerCAmelCase : List[Any] = init_image.resize((512, 512) ) lowerCAmelCase : List[str] = 'CompVis/stable-diffusion-v1-4' lowerCAmelCase : List[Any] = DDIMScheduler.from_pretrained(snake_case__ , subfolder='scheduler' ) lowerCAmelCase : int = CycleDiffusionPipeline.from_pretrained( snake_case__ , scheduler=snake_case__ , safety_checker=snake_case__ , torch_dtype=torch.floataa , revision='fp16' ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing() lowerCAmelCase : Optional[Any] = 'A black colored car' lowerCAmelCase : Union[str, Any] = 'A blue colored car' lowerCAmelCase : Dict = torch.manual_seed(0 ) lowerCAmelCase : Any = pipe( prompt=snake_case__ , source_prompt=snake_case__ , image=snake_case__ , num_inference_steps=100 , eta=0.1 , strength=0.8_5 , guidance_scale=3 , source_guidance_scale=1 , generator=snake_case__ , output_type='np' , ) lowerCAmelCase : Dict = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5e-1 def lowercase ( self ): lowerCAmelCase : Optional[int] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/cycle-diffusion/black_colored_car.png' ) lowerCAmelCase : str = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy' ) lowerCAmelCase : Union[str, Any] = init_image.resize((512, 512) ) lowerCAmelCase : str = 'CompVis/stable-diffusion-v1-4' lowerCAmelCase : Optional[int] = DDIMScheduler.from_pretrained(snake_case__ , subfolder='scheduler' ) lowerCAmelCase : Optional[Any] = CycleDiffusionPipeline.from_pretrained(snake_case__ , scheduler=snake_case__ , safety_checker=snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing() lowerCAmelCase : Tuple = 'A black colored car' lowerCAmelCase : List[Any] = 'A blue colored car' lowerCAmelCase : Union[str, Any] = torch.manual_seed(0 ) lowerCAmelCase : Dict = pipe( prompt=snake_case__ , source_prompt=snake_case__ , image=snake_case__ , num_inference_steps=100 , eta=0.1 , strength=0.8_5 , guidance_scale=3 , source_guidance_scale=1 , generator=snake_case__ , output_type='np' , ) lowerCAmelCase : Dict = output.images assert np.abs(image - expected_image ).max() < 2e-2
646
'''simple docstring''' def __UpperCamelCase ( _A : List[str] ) -> Optional[Any]: """simple docstring""" if not head: return True # split the list to two parts lowerCAmelCase , lowerCAmelCase : str = head.next, head while fast and fast.next: lowerCAmelCase : Optional[int] = fast.next.next lowerCAmelCase : int = slow.next lowerCAmelCase : int = slow.next lowerCAmelCase : Optional[Any] = None # Don't forget here! But forget still works! # reverse the second part lowerCAmelCase : List[Any] = None while second: lowerCAmelCase : List[Any] = second.next lowerCAmelCase : Union[str, Any] = node lowerCAmelCase : Optional[Any] = second lowerCAmelCase : Any = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False lowerCAmelCase : Optional[Any] = node.next lowerCAmelCase : Tuple = head.next return True def __UpperCamelCase ( _A : Optional[Any] ) -> Optional[int]: """simple docstring""" if not head or not head.next: return True # 1. Get the midpoint (slow) lowerCAmelCase : Optional[int] = head while fast and fast.next: lowerCAmelCase , lowerCAmelCase : Optional[Any] = fast.next.next, slow.next # 2. Push the second half into the stack lowerCAmelCase : Tuple = [slow.val] while slow.next: lowerCAmelCase : Tuple = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False lowerCAmelCase : Union[str, Any] = cur.next return True def __UpperCamelCase ( _A : Tuple ) -> Optional[int]: """simple docstring""" if not head or not head.next: return True lowerCAmelCase : Optional[int] = {} lowerCAmelCase : int = 0 while head: if head.val in d: d[head.val].append(_A ) else: lowerCAmelCase : Any = [pos] lowerCAmelCase : int = head.next pos += 1 lowerCAmelCase : str = pos - 1 lowerCAmelCase : Optional[Any] = 0 for v in d.values(): if len(_A ) % 2 != 0: middle += 1 else: lowerCAmelCase : Any = 0 for i in range(0 , len(_A ) ): if v[i] + v[len(_A ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
646
1
'''simple docstring''' from __future__ import annotations _lowerCAmelCase : Dict = list[tuple[int, int]] _lowerCAmelCase : Any = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _lowerCAmelCase : str = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class lowerCAmelCase : def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): lowerCAmelCase : Any = pos_x lowerCAmelCase : Optional[int] = pos_y lowerCAmelCase : int = (pos_y, pos_x) lowerCAmelCase : Dict = goal_x lowerCAmelCase : str = goal_y lowerCAmelCase : Optional[Any] = g_cost lowerCAmelCase : Optional[Any] = parent lowerCAmelCase : Union[str, Any] = self.calculate_heuristic() def lowercase ( self ): lowerCAmelCase : Optional[Any] = abs(self.pos_x - self.goal_x ) lowerCAmelCase : Optional[Any] = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self , snake_case__ ): return self.f_cost < other.f_cost class lowerCAmelCase : def __init__( self , snake_case__ , snake_case__ ): lowerCAmelCase : Optional[Any] = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , snake_case__ ) lowerCAmelCase : List[str] = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9999 , snake_case__ ) lowerCAmelCase : List[Any] = [self.start] lowerCAmelCase : list[Node] = [] lowerCAmelCase : List[str] = False def lowercase ( self ): while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() lowerCAmelCase : int = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: lowerCAmelCase : Optional[Any] = True return self.retrace_path(snake_case__ ) self.closed_nodes.append(snake_case__ ) lowerCAmelCase : str = self.get_successors(snake_case__ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(snake_case__ ) else: # retrieve the best current path lowerCAmelCase : Any = self.open_nodes.pop(self.open_nodes.index(snake_case__ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(snake_case__ ) else: self.open_nodes.append(snake_case__ ) if not self.reached: return [self.start.pos] return None def lowercase ( self , snake_case__ ): lowerCAmelCase : Union[str, Any] = [] for action in delta: lowerCAmelCase : List[str] = parent.pos_x + action[1] lowerCAmelCase : Optional[int] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(snake_case__ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( snake_case__ , snake_case__ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , snake_case__ , ) ) return successors def lowercase ( self , snake_case__ ): lowerCAmelCase : List[Any] = node lowerCAmelCase : int = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) lowerCAmelCase : Tuple = current_node.parent path.reverse() return path if __name__ == "__main__": _lowerCAmelCase : Tuple = (0, 0) _lowerCAmelCase : Tuple = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print('------') _lowerCAmelCase : List[str] = GreedyBestFirst(init, goal) _lowerCAmelCase : Dict = greedy_bf.search() if path: for pos_x, pos_y in path: _lowerCAmelCase : List[str] = 2 for elem in grid: print(elem)
646
'''simple docstring''' import math def __UpperCamelCase ( _A : int = 1_00 ) -> int: """simple docstring""" lowerCAmelCase : List[Any] = sum(i * i for i in range(1 , n + 1 ) ) lowerCAmelCase : Optional[Any] = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f"""{solution() = }""")
646
1
'''simple docstring''' import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase : def __init__( self , snake_case__ , snake_case__=13 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=False , snake_case__=False , snake_case__=False , snake_case__=2 , snake_case__=99 , snake_case__=0 , snake_case__=32 , snake_case__=5 , snake_case__=4 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=2 , snake_case__=4 , snake_case__="last" , snake_case__=True , snake_case__=None , snake_case__=0 , ): lowerCAmelCase : List[Any] = parent lowerCAmelCase : Optional[Any] = batch_size lowerCAmelCase : int = seq_length lowerCAmelCase : Optional[int] = is_training lowerCAmelCase : Optional[int] = use_input_lengths lowerCAmelCase : Any = use_token_type_ids lowerCAmelCase : List[str] = use_labels lowerCAmelCase : List[Any] = gelu_activation lowerCAmelCase : Tuple = sinusoidal_embeddings lowerCAmelCase : Union[str, Any] = causal lowerCAmelCase : int = asm lowerCAmelCase : Union[str, Any] = n_langs lowerCAmelCase : Union[str, Any] = vocab_size lowerCAmelCase : int = n_special lowerCAmelCase : Tuple = hidden_size lowerCAmelCase : List[Any] = num_hidden_layers lowerCAmelCase : Union[str, Any] = num_attention_heads lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : Dict = attention_probs_dropout_prob lowerCAmelCase : Tuple = max_position_embeddings lowerCAmelCase : Dict = type_sequence_label_size lowerCAmelCase : List[Any] = initializer_range lowerCAmelCase : int = num_labels lowerCAmelCase : Union[str, Any] = num_choices lowerCAmelCase : str = summary_type lowerCAmelCase : Optional[Any] = use_proj lowerCAmelCase : Optional[Any] = scope lowerCAmelCase : Optional[int] = bos_token_id def lowercase ( self ): lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : Any = None if self.use_input_lengths: lowerCAmelCase : Tuple = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowerCAmelCase : Any = None if self.use_token_type_ids: lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) lowerCAmelCase : List[Any] = None lowerCAmelCase : List[str] = None lowerCAmelCase : Optional[int] = None if self.use_labels: lowerCAmelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : List[Any] = ids_tensor([self.batch_size] , 2 ).float() lowerCAmelCase : Dict = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : Union[str, Any] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def lowercase ( self ): return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): lowerCAmelCase : Union[str, Any] = XLMModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Union[str, Any] = model(snake_case__ , lengths=snake_case__ , langs=snake_case__ ) lowerCAmelCase : List[Any] = model(snake_case__ , langs=snake_case__ ) lowerCAmelCase : List[str] = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): lowerCAmelCase : List[str] = XLMWithLMHeadModel(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Union[str, Any] = model(snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): lowerCAmelCase : Optional[int] = XLMForQuestionAnsweringSimple(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : List[Any] = model(snake_case__ ) lowerCAmelCase : Union[str, Any] = model(snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ ) lowerCAmelCase : Dict = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): lowerCAmelCase : List[Any] = XLMForQuestionAnswering(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Tuple = model(snake_case__ ) lowerCAmelCase : int = model( snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , cls_index=snake_case__ , is_impossible=snake_case__ , p_mask=snake_case__ , ) lowerCAmelCase : List[str] = model( snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , cls_index=snake_case__ , is_impossible=snake_case__ , ) ((lowerCAmelCase) , ) : Any = result_with_labels.to_tuple() lowerCAmelCase : Any = model(snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ ) ((lowerCAmelCase) , ) : Optional[int] = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): lowerCAmelCase : Optional[Any] = XLMForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : List[Any] = model(snake_case__ ) lowerCAmelCase : List[Any] = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): lowerCAmelCase : str = self.num_labels lowerCAmelCase : Union[str, Any] = XLMForTokenClassification(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): lowerCAmelCase : str = self.num_choices lowerCAmelCase : Dict = XLMForMultipleChoice(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : List[str] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : List[Any] = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase ( self ): lowerCAmelCase : Dict = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) : Any = config_and_inputs lowerCAmelCase : int = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class lowerCAmelCase ( a , a , a , unittest.TestCase ): _lowerCamelCase : int = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) _lowerCamelCase : List[str] = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _lowerCamelCase : Optional[Any] = ( { """feature-extraction""": XLMModel, """fill-mask""": XLMWithLMHeadModel, """question-answering""": XLMForQuestionAnsweringSimple, """text-classification""": XLMForSequenceClassification, """text-generation""": XLMWithLMHeadModel, """token-classification""": XLMForTokenClassification, """zero-shot""": XLMForSequenceClassification, } if is_torch_available() else {} ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def lowercase ( self , snake_case__ , snake_case__ , snake_case__=False ): lowerCAmelCase : str = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": lowerCAmelCase : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case__ ) lowerCAmelCase : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case__ ) return inputs_dict def lowercase ( self ): lowerCAmelCase : Optional[int] = XLMModelTester(self ) lowerCAmelCase : int = ConfigTester(self , config_class=snake_case__ , emb_dim=37 ) def lowercase ( self ): self.config_tester.run_common_tests() def lowercase ( self ): lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*snake_case__ ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=False , snake_case__=1 ): self.assertIsInstance(snake_case__ , snake_case__ ) self.assertListEqual( [isinstance(snake_case__ , snake_case__ ) for iter_attentions in attentions] , [True] * len(snake_case__ ) ) self.assertEqual(len(snake_case__ ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(snake_case__ ): # adds PAD dummy token lowerCAmelCase : Union[str, Any] = min_length + idx + 1 lowerCAmelCase : str = min_length + idx + 1 lowerCAmelCase : Optional[int] = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(snake_case__ ) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=False , snake_case__=1 ): self.assertIsInstance(snake_case__ , snake_case__ ) self.assertListEqual( [isinstance(snake_case__ , snake_case__ ) for iter_hidden_states in hidden_states] , [True] * len(snake_case__ ) , ) self.assertEqual(len(snake_case__ ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(snake_case__ ): # adds PAD dummy token lowerCAmelCase : Dict = min_length + idx + 1 lowerCAmelCase : List[str] = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(snake_case__ ) , ) pass @slow def lowercase ( self ): for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : List[str] = XLMModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) @require_torch class lowerCAmelCase ( unittest.TestCase ): @slow def lowercase ( self ): lowerCAmelCase : Optional[Any] = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(snake_case__ ) lowerCAmelCase : int = torch.tensor([[14, 447]] , dtype=torch.long , device=snake_case__ ) # the president lowerCAmelCase : Any = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference lowerCAmelCase : Any = model.generate(snake_case__ , do_sample=snake_case__ ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , snake_case__ )
646
'''simple docstring''' import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece_with_bytefallback.model') @require_sentencepiece @require_tokenizers class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : Tuple = GPTSwaTokenizer _lowerCamelCase : str = False _lowerCamelCase : Dict = True _lowerCamelCase : Optional[Any] = False def lowercase ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : Tuple = GPTSwaTokenizer(snake_case__ , eos_token='<unk>' , bos_token='<unk>' , pad_token='<unk>' ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase ( self , snake_case__ ): lowerCAmelCase : List[Any] = 'This is a test' lowerCAmelCase : List[Any] = 'This is a test' return input_text, output_text def lowercase ( self ): lowerCAmelCase : Tuple = '<s>' lowerCAmelCase : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def lowercase ( self ): lowerCAmelCase : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(snake_case__ ) , 2000 ) def lowercase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 2000 ) def lowercase ( self ): lowerCAmelCase : List[Any] = GPTSwaTokenizer(snake_case__ ) lowerCAmelCase : Optional[Any] = tokenizer.tokenize('This is a test' ) self.assertListEqual(snake_case__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , [465, 287, 265, 631, 842] ) lowerCAmelCase : Tuple = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) # fmt: off self.assertListEqual( snake_case__ , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] , ) # fmt: on lowerCAmelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual( snake_case__ , [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] , ) lowerCAmelCase : int = tokenizer.convert_ids_to_tokens(snake_case__ ) # fmt: off self.assertListEqual( snake_case__ , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] ) # fmt: on def lowercase ( self ): lowerCAmelCase : str = GPTSwaTokenizer(snake_case__ ) lowerCAmelCase : Optional[int] = ['This is a test', 'I was born in 92000, and this is falsé.'] lowerCAmelCase : Tuple = [ [465, 287, 265, 631, 842], [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(snake_case__ , snake_case__ ): self.assertListEqual(tokenizer.encode_fast(snake_case__ ) , snake_case__ ) # Test that decode_fast returns the input text for text, token_ids in zip(snake_case__ , snake_case__ ): self.assertEqual(tokenizer.decode_fast(snake_case__ ) , snake_case__ ) @slow def lowercase ( self ): lowerCAmelCase : str = [ '<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')', 'Hey there, how are you doing this fine day?', 'This is a text with a trailing spaces followed by a dot .', 'Häj sväjs lillebrör! =)', 'Det är inget fel på Mr. Cool', ] # fmt: off lowerCAmelCase : Tuple = {'input_ids': [[6_3423, 5, 6811, 1_4954, 282, 816, 3821, 6_3466, 6_3425, 6_3462, 18, 6_3978, 678, 301, 1320, 6_3423, 6_3455, 6_3458, 18, 6_3982, 4246, 3940, 1901, 4_7789, 5547, 1_8994], [1_9630, 1100, 6_3446, 1342, 633, 544, 4488, 593, 5102, 2416, 6_3495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1652, 428, 268, 1936, 515, 268, 5_8593, 2_2413, 9106, 546, 268, 3_3213, 6_3979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_5130, 6_3450, 924, 6_3449, 2249, 4062, 1558, 318, 6_3504, 2_1498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2827, 2559, 332, 6575, 6_3443, 2_6801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name='AI-Sweden/gpt-sw3-126m' , sequences=snake_case__ , )
646
1
'''simple docstring''' import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) _lowerCAmelCase : Dict = logging.getLogger() _lowerCAmelCase : Union[str, Any] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class lowerCAmelCase ( a ): def lowercase ( self , snake_case__ ): os.makedirs(snake_case__ , exist_ok=snake_case__ ) lowerCAmelCase : Optional[Any] = {'source': 'What is love ?', 'target': 'life'} lowerCAmelCase : str = {'train': 12, 'val': 2, 'test': 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: lowerCAmelCase : int = '\n'.join([contents[field]] * n_lines[split] ) with open(os.path.join(snake_case__ , f"{split}.{field}" ) , 'w' ) as f: f.write(snake_case__ ) def lowercase ( self , snake_case__ , snake_case__ = "pytorch" ): lowerCAmelCase : List[str] = self.get_auto_remove_tmp_dir() lowerCAmelCase : Any = os.path.join(snake_case__ , 'output' ) lowerCAmelCase : Optional[Any] = os.path.join(snake_case__ , 'data' ) self._create_dummy_data(data_dir=snake_case__ ) lowerCAmelCase : List[str] = f"\n --data_dir {data_dir} \\n --output_dir {output_dir} \\n --model_name_or_path facebook/rag-sequence-base \\n --model_type rag_sequence \\n --do_train \\n --do_predict \\n --n_val -1 \\n --val_check_interval 1.0 \\n --train_batch_size 2 \\n --eval_batch_size 1 \\n --max_source_length 25 \\n --max_target_length 25 \\n --val_max_target_length 25 \\n --test_max_target_length 25 \\n --label_smoothing 0.1 \\n --dropout 0.1 \\n --attention_dropout 0.1 \\n --weight_decay 0.001 \\n --adam_epsilon 1e-08 \\n --max_grad_norm 0.1 \\n --lr_scheduler polynomial \\n --learning_rate 3e-04 \\n --num_train_epochs 1 \\n --warmup_steps 4 \\n --gradient_accumulation_steps 1 \\n --distributed-port 8787 \\n --use_dummy_dataset 1 \\n --distributed_retriever {distributed_retriever} \\n ".split() if gpus > 0: testargs.append(f"--gpus={gpus}" ) if is_apex_available(): testargs.append('--fp16' ) else: testargs.append('--gpus=0' ) testargs.append('--distributed_backend=ddp_cpu' ) testargs.append('--num_processes=2' ) lowerCAmelCase : Union[str, Any] = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(snake_case__ , env=self.get_env() ) lowerCAmelCase : Tuple = os.path.join(snake_case__ , 'metrics.json' ) with open(snake_case__ ) as f: lowerCAmelCase : List[str] = json.load(snake_case__ ) return result @require_torch_gpu def lowercase ( self ): lowerCAmelCase : List[Any] = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu def lowercase ( self ): lowerCAmelCase : List[Any] = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_gpu @require_ray def lowercase ( self ): lowerCAmelCase : Union[str, Any] = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu @require_ray def lowercase ( self ): lowerCAmelCase : Tuple = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 )
646
'''simple docstring''' def __UpperCamelCase ( _A : int ) -> bool: """simple docstring""" return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
646
1
'''simple docstring''' from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class lowerCAmelCase ( a ): def __init__( self , snake_case__ , snake_case__ = None , snake_case__ = None , snake_case__ = False , snake_case__ = False , snake_case__ = None , snake_case__ = None , **snake_case__ , ): super().__init__( features=snake_case__ , cache_dir=snake_case__ , keep_in_memory=snake_case__ , streaming=snake_case__ , num_proc=snake_case__ , **snake_case__ , ) lowerCAmelCase : List[str] = Generator( cache_dir=snake_case__ , features=snake_case__ , generator=snake_case__ , gen_kwargs=snake_case__ , **snake_case__ , ) def lowercase ( self ): # Build iterable dataset if self.streaming: lowerCAmelCase : Dict = self.builder.as_streaming_dataset(split='train' ) # Build regular (map-style) dataset else: lowerCAmelCase : List[Any] = None lowerCAmelCase : Optional[int] = None lowerCAmelCase : Any = None lowerCAmelCase : int = None self.builder.download_and_prepare( download_config=snake_case__ , download_mode=snake_case__ , verification_mode=snake_case__ , base_path=snake_case__ , num_proc=self.num_proc , ) lowerCAmelCase : Optional[int] = self.builder.as_dataset( split='train' , verification_mode=snake_case__ , in_memory=self.keep_in_memory ) return dataset
646
'''simple docstring''' import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( 'files' , [ ['full:README.md', 'dataset_infos.json'], ['empty:README.md', 'dataset_infos.json'], ['dataset_infos.json'], ['full:README.md'], ] , ) def __UpperCamelCase ( _A : str , _A : List[Any] ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase : Optional[int] = tmp_path_factory.mktemp('dset_infos_dir' ) if "full:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('---\ndataset_info:\n dataset_size: 42\n---' ) if "empty:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / 'dataset_infos.json' , 'w' ) as f: f.write('{"default": {"dataset_size": 42}}' ) lowerCAmelCase : Union[str, Any] = DatasetInfosDict.from_directory(_A ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( 'dataset_info' , [ DatasetInfo(), DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ), ] , ) def __UpperCamelCase ( _A : str , _A : DatasetInfo ) -> Optional[int]: """simple docstring""" lowerCAmelCase : str = str(_A ) dataset_info.write_to_directory(_A ) lowerCAmelCase : List[str] = DatasetInfo.from_directory(_A ) assert dataset_info == reloaded assert os.path.exists(os.path.join(_A , 'dataset_info.json' ) ) def __UpperCamelCase ( ) -> List[str]: """simple docstring""" lowerCAmelCase : Tuple = DatasetInfo( description='foo' , citation='bar' , homepage='https://foo.bar' , license='CC0' , features=Features({'a': Value('int32' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train', 'num_examples': 42}] , download_checksums={} , download_size=13_37 , post_processing_size=4_42 , dataset_size=12_34 , size_in_bytes=13_37 + 4_42 + 12_34 , ) lowerCAmelCase : Optional[int] = dataset_info._to_yaml_dict() assert sorted(_A ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) lowerCAmelCase : Any = yaml.safe_dump(_A ) lowerCAmelCase : int = yaml.safe_load(_A ) assert dataset_info_yaml_dict == reloaded def __UpperCamelCase ( ) -> Dict: """simple docstring""" lowerCAmelCase : Union[str, Any] = DatasetInfo() lowerCAmelCase : List[Any] = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( 'dataset_infos_dict' , [ DatasetInfosDict(), DatasetInfosDict({'default': DatasetInfo()} ), DatasetInfosDict({'my_config_name': DatasetInfo()} ), DatasetInfosDict( { 'default': DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ) } ), DatasetInfosDict( { 'v1': DatasetInfo(dataset_size=42 ), 'v2': DatasetInfo(dataset_size=13_37 ), } ), ] , ) def __UpperCamelCase ( _A : Tuple , _A : DatasetInfosDict ) -> List[Any]: """simple docstring""" lowerCAmelCase : Tuple = str(_A ) dataset_infos_dict.write_to_directory(_A ) lowerCAmelCase : List[str] = DatasetInfosDict.from_directory(_A ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): lowerCAmelCase : Tuple = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml lowerCAmelCase : Optional[Any] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(_A , 'README.md' ) )
646
1
'''simple docstring''' _lowerCAmelCase : dict[tuple[int, int, int], int] = {} def __UpperCamelCase ( _A : int , _A : int , _A : int ) -> int: """simple docstring""" if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on lowerCAmelCase : Union[str, Any] = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one lowerCAmelCase : str = _calculate(days - 1 , _A , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 lowerCAmelCase : Tuple = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter lowerCAmelCase : int = _calculate(days - 1 , _A , 0 ) lowerCAmelCase : Any = state_late + state_absent + state_ontime lowerCAmelCase : Any = prizestrings return prizestrings def __UpperCamelCase ( _A : int = 30 ) -> int: """simple docstring""" return _calculate(_A , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
646
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCAmelCase ( a ): def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): super().__init__() if safety_checker is None: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" ' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered' ' results in services or applications open to the public. Both the diffusers team and Hugging Face' ' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling' ' it only for use-cases that involve analyzing network behavior or auditing its results. For more' ' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .' ) self.register_modules( speech_model=snake_case__ , speech_processor=snake_case__ , vae=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , unet=snake_case__ , scheduler=snake_case__ , feature_extractor=snake_case__ , ) def lowercase ( self , snake_case__ = "auto" ): if slice_size == "auto": lowerCAmelCase : Union[str, Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(snake_case__ ) def lowercase ( self ): self.enable_attention_slicing(snake_case__ ) @torch.no_grad() def __call__( self , snake_case__ , snake_case__=1_6000 , snake_case__ = 512 , snake_case__ = 512 , snake_case__ = 50 , snake_case__ = 7.5 , snake_case__ = None , snake_case__ = 1 , snake_case__ = 0.0 , snake_case__ = None , snake_case__ = None , snake_case__ = "pil" , snake_case__ = True , snake_case__ = None , snake_case__ = 1 , **snake_case__ , ): lowerCAmelCase : List[str] = self.speech_processor.feature_extractor( snake_case__ , return_tensors='pt' , sampling_rate=snake_case__ ).input_features.to(self.device ) lowerCAmelCase : Optional[Any] = self.speech_model.generate(snake_case__ , max_length=48_0000 ) lowerCAmelCase : str = self.speech_processor.tokenizer.batch_decode(snake_case__ , skip_special_tokens=snake_case__ , normalize=snake_case__ )[ 0 ] if isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = 1 elif isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = len(snake_case__ ) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(snake_case__ )}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(snake_case__ , snake_case__ ) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(snake_case__ )}." ) # get prompt text embeddings lowerCAmelCase : str = self.tokenizer( snake_case__ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) lowerCAmelCase : Tuple = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowerCAmelCase : str = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) lowerCAmelCase : Union[str, Any] = text_input_ids[:, : self.tokenizer.model_max_length] lowerCAmelCase : Union[str, Any] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : int = text_embeddings.shape lowerCAmelCase : Any = text_embeddings.repeat(1 , snake_case__ , 1 ) lowerCAmelCase : Optional[int] = text_embeddings.view(bs_embed * num_images_per_prompt , snake_case__ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowerCAmelCase : List[str] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowerCAmelCase : List[str] if negative_prompt is None: lowerCAmelCase : Any = [''] * batch_size elif type(snake_case__ ) is not type(snake_case__ ): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(snake_case__ )} !=" f" {type(snake_case__ )}." ) elif isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = [negative_prompt] elif batch_size != len(snake_case__ ): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(snake_case__ )}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" ' the batch size of `prompt`.' ) else: lowerCAmelCase : Dict = negative_prompt lowerCAmelCase : Optional[int] = text_input_ids.shape[-1] lowerCAmelCase : int = self.tokenizer( snake_case__ , padding='max_length' , max_length=snake_case__ , truncation=snake_case__ , return_tensors='pt' , ) lowerCAmelCase : Union[str, Any] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowerCAmelCase : List[Any] = uncond_embeddings.shape[1] lowerCAmelCase : List[str] = uncond_embeddings.repeat(1 , snake_case__ , 1 ) lowerCAmelCase : Optional[Any] = uncond_embeddings.view(batch_size * num_images_per_prompt , snake_case__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCAmelCase : List[str] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowerCAmelCase : Union[str, Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowerCAmelCase : Dict = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowerCAmelCase : str = torch.randn(snake_case__ , generator=snake_case__ , device='cpu' , dtype=snake_case__ ).to( self.device ) else: lowerCAmelCase : Tuple = torch.randn(snake_case__ , generator=snake_case__ , device=self.device , dtype=snake_case__ ) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) lowerCAmelCase : str = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(snake_case__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowerCAmelCase : Union[str, Any] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowerCAmelCase : Any = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowerCAmelCase : Tuple = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCAmelCase : Union[str, Any] = {} if accepts_eta: lowerCAmelCase : int = eta for i, t in enumerate(self.progress_bar(snake_case__ ) ): # expand the latents if we are doing classifier free guidance lowerCAmelCase : Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCAmelCase : Tuple = self.scheduler.scale_model_input(snake_case__ , snake_case__ ) # predict the noise residual lowerCAmelCase : List[str] = self.unet(snake_case__ , snake_case__ , encoder_hidden_states=snake_case__ ).sample # perform guidance if do_classifier_free_guidance: lowerCAmelCase , lowerCAmelCase : Dict = noise_pred.chunk(2 ) lowerCAmelCase : Tuple = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowerCAmelCase : int = self.scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase : List[Any] = 1 / 0.1_8_2_1_5 * latents lowerCAmelCase : Dict = self.vae.decode(snake_case__ ).sample lowerCAmelCase : List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowerCAmelCase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowerCAmelCase : Dict = self.numpy_to_pil(snake_case__ ) if not return_dict: return image return StableDiffusionPipelineOutput(images=snake_case__ , nsfw_content_detected=snake_case__ )
646
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Any = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { 'xlm-roberta-base': 'https://huggingface.co/xlm-roberta-base/resolve/main/config.json', 'xlm-roberta-large': 'https://huggingface.co/xlm-roberta-large/resolve/main/config.json', 'xlm-roberta-large-finetuned-conll02-dutch': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll02-spanish': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-english': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-german': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json' ), } class lowerCAmelCase ( a ): _lowerCamelCase : List[str] = """xlm-roberta""" def __init__( self , snake_case__=3_0522 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=1e-1_2 , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__="absolute" , snake_case__=True , snake_case__=None , **snake_case__ , ): super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) lowerCAmelCase : Optional[Any] = vocab_size lowerCAmelCase : Optional[Any] = hidden_size lowerCAmelCase : Optional[Any] = num_hidden_layers lowerCAmelCase : Any = num_attention_heads lowerCAmelCase : Optional[int] = hidden_act lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : Dict = hidden_dropout_prob lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob lowerCAmelCase : Optional[Any] = max_position_embeddings lowerCAmelCase : Optional[int] = type_vocab_size lowerCAmelCase : int = initializer_range lowerCAmelCase : List[Any] = layer_norm_eps lowerCAmelCase : Union[str, Any] = position_embedding_type lowerCAmelCase : Union[str, Any] = use_cache lowerCAmelCase : List[str] = classifier_dropout class lowerCAmelCase ( a ): @property def lowercase ( self ): if self.task == "multiple-choice": lowerCAmelCase : str = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase : Optional[int] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
646
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : List[Any] = LDMTextToImagePipeline _lowerCamelCase : Optional[Any] = TEXT_TO_IMAGE_PARAMS - { """negative_prompt""", """negative_prompt_embeds""", """cross_attention_kwargs""", """prompt_embeds""", } _lowerCamelCase : List[str] = PipelineTesterMixin.required_optional_params - { """num_images_per_prompt""", """callback""", """callback_steps""", } _lowerCamelCase : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS _lowerCamelCase : Optional[int] = False def lowercase ( self ): torch.manual_seed(0 ) lowerCAmelCase : Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) lowerCAmelCase : int = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , ) torch.manual_seed(0 ) lowerCAmelCase : str = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') , up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') , latent_channels=4 , ) torch.manual_seed(0 ) lowerCAmelCase : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowerCAmelCase : str = CLIPTextModel(snake_case__ ) lowerCAmelCase : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCAmelCase : List[Any] = { 'unet': unet, 'scheduler': scheduler, 'vqvae': vae, 'bert': text_encoder, 'tokenizer': tokenizer, } return components def lowercase ( self , snake_case__ , snake_case__=0 ): if str(snake_case__ ).startswith('mps' ): lowerCAmelCase : Optional[int] = torch.manual_seed(snake_case__ ) else: lowerCAmelCase : str = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) lowerCAmelCase : Tuple = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase ( self ): lowerCAmelCase : List[str] = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase : Optional[Any] = self.get_dummy_components() lowerCAmelCase : Optional[Any] = LDMTextToImagePipeline(**snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Tuple = self.get_dummy_inputs(snake_case__ ) lowerCAmelCase : Union[str, Any] = pipe(**snake_case__ ).images lowerCAmelCase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) lowerCAmelCase : List[Any] = np.array([0.6_1_0_1, 0.6_1_5_6, 0.5_6_2_2, 0.4_8_9_5, 0.6_6_6_1, 0.3_8_0_4, 0.5_7_4_8, 0.6_1_3_6, 0.5_0_1_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self , snake_case__ , snake_case__=torch.floataa , snake_case__=0 ): lowerCAmelCase : List[str] = torch.manual_seed(snake_case__ ) lowerCAmelCase : int = np.random.RandomState(snake_case__ ).standard_normal((1, 4, 32, 32) ) lowerCAmelCase : Optional[Any] = torch.from_numpy(snake_case__ ).to(device=snake_case__ , dtype=snake_case__ ) lowerCAmelCase : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase ( self ): lowerCAmelCase : Tuple = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Optional[Any] = self.get_inputs(snake_case__ ) lowerCAmelCase : List[Any] = pipe(**snake_case__ ).images lowerCAmelCase : str = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) lowerCAmelCase : Tuple = np.array([0.5_1_8_2_5, 0.5_2_8_5_0, 0.5_2_5_4_3, 0.5_4_2_5_8, 0.5_2_3_0_4, 0.5_2_5_6_9, 0.5_4_3_6_3, 0.5_5_2_7_6, 0.5_6_8_7_8] ) lowerCAmelCase : int = np.abs(expected_slice - image_slice ).max() assert max_diff < 1e-3 @nightly @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self , snake_case__ , snake_case__=torch.floataa , snake_case__=0 ): lowerCAmelCase : List[str] = torch.manual_seed(snake_case__ ) lowerCAmelCase : Any = np.random.RandomState(snake_case__ ).standard_normal((1, 4, 32, 32) ) lowerCAmelCase : List[Any] = torch.from_numpy(snake_case__ ).to(device=snake_case__ , dtype=snake_case__ ) lowerCAmelCase : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase ( self ): lowerCAmelCase : Optional[int] = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : int = self.get_inputs(snake_case__ ) lowerCAmelCase : Optional[int] = pipe(**snake_case__ ).images[0] lowerCAmelCase : Optional[int] = load_numpy( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy' ) lowerCAmelCase : List[str] = np.abs(expected_image - image ).max() assert max_diff < 1e-3
646
1
'''simple docstring''' import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) _lowerCAmelCase : Optional[int] = getLogger(__name__) def __UpperCamelCase ( _A : Union[str, Any] , _A : str , _A : str , _A : int = 8 , _A : int = 10_24 , _A : List[str]="val" , _A : Optional[int]=None , _A : Optional[int]=False , _A : Optional[int]="summarization" , _A : Any=None , _A : Optional[Any]=1 , _A : Dict = None , _A : List[str]="" , **_A : Dict , ) -> Dict: """simple docstring""" lowerCAmelCase : List[Any] = str(_A ) assert local_rank is not None torch.distributed.init_process_group(backend='nccl' , rank=_A ) lowerCAmelCase : int = Path(_A ) lowerCAmelCase : Optional[int] = save_dir.joinpath(F"rank_{local_rank}_output.json" ) torch.cuda.set_device(_A ) lowerCAmelCase : int = AutoModelForSeqaSeqLM.from_pretrained(_A ).cuda() if fpaa: lowerCAmelCase : Optional[int] = model.half() # determine if we need to increase num_beams use_task_specific_params(_A , _A ) # update config with task specific params lowerCAmelCase : Optional[Any] = generate_kwargs.pop('num_beams' , model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: lowerCAmelCase : Optional[Any] = num_return_sequences lowerCAmelCase : Any = AutoTokenizer.from_pretrained(_A ) logger.info(F"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type. if max_source_length is None: lowerCAmelCase : List[str] = tokenizer.model_max_length if prefix is None: lowerCAmelCase : Optional[int] = prefix or getattr(model.config , 'prefix' , '' ) or '' lowerCAmelCase : Any = SeqaSeqDataset( _A , _A , _A , max_target_length=10_24 , type_path=_A , n_obs=_A , prefix=_A , **_A , ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. lowerCAmelCase : Tuple = ds.make_sortish_sampler(_A , distributed=_A , add_extra_examples=_A , shuffle=_A ) lowerCAmelCase : Optional[int] = DataLoader(_A , sampler=_A , batch_size=_A , collate_fn=ds.collate_fn ) lowerCAmelCase : Union[str, Any] = [] for batch in tqdm(_A ): lowerCAmelCase : Optional[Any] = model.generate( input_ids=batch['input_ids'].to(model.device ) , attention_mask=batch['attention_mask'].to(model.device ) , num_return_sequences=_A , num_beams=_A , **_A , ) lowerCAmelCase : Dict = tokenizer.batch_decode(_A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A ) lowerCAmelCase : Union[str, Any] = batch['ids'] if num_return_sequences > 1: lowerCAmelCase : int = chunks(_A , _A ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(_A ): results.append({'pred': pred, 'id': ids[i].item()} ) save_json(_A , _A ) return results, sampler.num_replicas def __UpperCamelCase ( ) -> int: """simple docstring""" lowerCAmelCase : Optional[Any] = argparse.ArgumentParser( epilog='Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate' ) parser.add_argument('--data_dir' , type=_A , help='like cnn_dm/test.source' ) parser.add_argument( '--model_name' , type=_A , help='like facebook/bart-large-cnn,t5-base, etc.' , default='sshleifer/distilbart-xsum-12-3' , ) parser.add_argument('--save_dir' , type=_A , help='where to save' , default='tmp_gen' ) parser.add_argument('--max_source_length' , type=_A , default=_A ) parser.add_argument( '--type_path' , type=_A , default='test' , help='which subset to evaluate typically train/val/test' ) parser.add_argument('--task' , type=_A , default='summarization' , help='used for task_specific_params + metrics' ) parser.add_argument('--bs' , type=_A , default=8 , required=_A , help='batch size' ) parser.add_argument( '--local_rank' , type=_A , default=-1 , required=_A , help='should be passed by distributed.launch' ) parser.add_argument( '--n_obs' , type=_A , default=_A , required=_A , help='How many observations. Defaults to all.' ) parser.add_argument( '--num_return_sequences' , type=_A , default=1 , required=_A , help='How many sequences to return' ) parser.add_argument( '--sync_timeout' , type=_A , default=6_00 , required=_A , help='How long should master process wait for other processes to finish.' , ) parser.add_argument('--src_lang' , type=_A , default=_A , required=_A ) parser.add_argument('--tgt_lang' , type=_A , default=_A , required=_A ) parser.add_argument( '--prefix' , type=_A , required=_A , default=_A , help='will be added to the begininng of src examples' ) parser.add_argument('--fp16' , action='store_true' ) parser.add_argument('--debug' , action='store_true' ) lowerCAmelCase : Dict = time.time() lowerCAmelCase , lowerCAmelCase : Any = parser.parse_known_args() lowerCAmelCase : int = parse_numeric_n_bool_cl_kwargs(_A ) if generate_kwargs and args.local_rank <= 0: print(F"parsed the following generate kwargs: {generate_kwargs}" ) lowerCAmelCase : List[Any] = Path(args.save_dir + '_tmp' ) Path(_A ).mkdir(exist_ok=_A ) # this handles locking. lowerCAmelCase : Any = list(json_save_dir.glob('rank_*.json' ) ) if intermediate_files: raise ValueError(F"Found files at {json_save_dir} please move or remove them." ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. lowerCAmelCase : Dict = {} if args.src_lang is not None: lowerCAmelCase : List[Any] = args.src_lang if args.tgt_lang is not None: lowerCAmelCase : Optional[int] = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=_A ) lowerCAmelCase , lowerCAmelCase : List[str] = eval_data_dir( args.data_dir , _A , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=_A , **_A , ) if args.local_rank <= 0: lowerCAmelCase : int = Path(args.save_dir ) save_dir.mkdir(exist_ok=_A ) lowerCAmelCase : Dict = gather_results_from_each_node(_A , _A , args.sync_timeout ) lowerCAmelCase : str = combine_partial_results(_A ) if args.num_return_sequences > 1: lowerCAmelCase : List[str] = save_dir.joinpath('pseudolabel_results.json' ) print(F"Saving aggregated results at {save_path}, intermediate in {json_save_dir}/" ) save_json(_A , _A ) return lowerCAmelCase : List[str] = Path(args.data_dir ).joinpath(args.type_path + '.target' ) with open(_A ) as f: lowerCAmelCase : Optional[Any] = [x.rstrip() for x in f.readlines()][: len(_A )] # Calculate metrics, save metrics, and save _generations.txt lowerCAmelCase : Tuple = 'translation' in args.task lowerCAmelCase : str = calculate_bleu if calc_bleu else calculate_rouge lowerCAmelCase : Optional[Any] = 'bleu' if calc_bleu else 'rouge' lowerCAmelCase : Dict = score_fn(_A , _A ) lowerCAmelCase : Dict = len(_A ) lowerCAmelCase : Optional[Any] = time.time() - start_time lowerCAmelCase : List[str] = round(runtime / metrics['n_obs'] , 4 ) lowerCAmelCase : Any = num_replicas # TODO(@stas00): add whatever metadata to metrics lowerCAmelCase : str = save_dir.joinpath(F"{args.type_path}_{metric_name}.json" ) save_json(_A , _A , indent=_A ) print(_A ) write_txt_file(_A , save_dir.joinpath(F"{args.type_path}_generations.txt" ) ) if args.debug: write_txt_file(_A , save_dir.joinpath(F"{args.type_path}.target" ) ) else: shutil.rmtree(_A ) def __UpperCamelCase ( _A : Optional[Any] ) -> List: """simple docstring""" lowerCAmelCase : Union[str, Any] = [] for partial_result in partial_results: records.extend(_A ) lowerCAmelCase : List[Any] = sorted(_A , key=lambda _A : x["id"] ) lowerCAmelCase : Union[str, Any] = [x['pred'] for x in records] return preds def __UpperCamelCase ( _A : str , _A : Union[str, Any] , _A : List[Any] ) -> List[Dict[str, List]]: """simple docstring""" lowerCAmelCase : List[str] = time.time() logger.info('waiting for all nodes to finish' ) lowerCAmelCase : Optional[int] = None while (time.time() - start_wait) < timeout: lowerCAmelCase : Optional[int] = list(save_dir.glob('rank_*.json' ) ) if len(_A ) < num_replicas: continue try: # make sure all json files are fully saved lowerCAmelCase : Union[str, Any] = lmap(_A , _A ) return json_data except JSONDecodeError: continue else: raise TimeoutError('Rank 0 gave up on waiting for other processes' ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
646
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Tuple = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { 'facebook/xmod-base': 'https://huggingface.co/facebook/xmod-base/resolve/main/config.json', 'facebook/xmod-large-prenorm': 'https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json', 'facebook/xmod-base-13-125k': 'https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json', 'facebook/xmod-base-30-125k': 'https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json', 'facebook/xmod-base-30-195k': 'https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json', 'facebook/xmod-base-60-125k': 'https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json', 'facebook/xmod-base-60-265k': 'https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json', 'facebook/xmod-base-75-125k': 'https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json', 'facebook/xmod-base-75-269k': 'https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json', } class lowerCAmelCase ( a ): _lowerCamelCase : int = """xmod""" def __init__( self , snake_case__=3_0522 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=1e-1_2 , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__="absolute" , snake_case__=True , snake_case__=None , snake_case__=False , snake_case__=2 , snake_case__=False , snake_case__=True , snake_case__=True , snake_case__=("en_XX",) , snake_case__=None , **snake_case__ , ): super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) lowerCAmelCase : Dict = vocab_size lowerCAmelCase : Optional[Any] = hidden_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob lowerCAmelCase : str = max_position_embeddings lowerCAmelCase : int = type_vocab_size lowerCAmelCase : List[Any] = initializer_range lowerCAmelCase : Any = layer_norm_eps lowerCAmelCase : Dict = position_embedding_type lowerCAmelCase : Optional[Any] = use_cache lowerCAmelCase : Union[str, Any] = classifier_dropout lowerCAmelCase : int = pre_norm lowerCAmelCase : Optional[Any] = adapter_reduction_factor lowerCAmelCase : Any = adapter_layer_norm lowerCAmelCase : Dict = adapter_reuse_layer_norm lowerCAmelCase : Any = ln_before_adapter lowerCAmelCase : Optional[Any] = list(snake_case__ ) lowerCAmelCase : List[Any] = default_language class lowerCAmelCase ( a ): @property def lowercase ( self ): if self.task == "multiple-choice": lowerCAmelCase : List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase : Optional[int] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
646
1
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) _lowerCAmelCase : Dict = { 'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class lowerCAmelCase ( a ): _lowerCamelCase : Any = """deformable_detr""" _lowerCamelCase : List[str] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , snake_case__=True , snake_case__=None , snake_case__=3 , snake_case__=300 , snake_case__=1024 , snake_case__=6 , snake_case__=1024 , snake_case__=8 , snake_case__=6 , snake_case__=1024 , snake_case__=8 , snake_case__=0.0 , snake_case__=True , snake_case__="relu" , snake_case__=256 , snake_case__=0.1 , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.0_2 , snake_case__=1.0 , snake_case__=True , snake_case__=False , snake_case__="sine" , snake_case__="resnet50" , snake_case__=True , snake_case__=False , snake_case__=4 , snake_case__=4 , snake_case__=4 , snake_case__=False , snake_case__=300 , snake_case__=False , snake_case__=1 , snake_case__=5 , snake_case__=2 , snake_case__=1 , snake_case__=1 , snake_case__=5 , snake_case__=2 , snake_case__=0.1 , snake_case__=0.2_5 , snake_case__=False , **snake_case__ , ): if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) lowerCAmelCase : Optional[int] = CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : List[str] = backbone_config.get('model_type' ) lowerCAmelCase : str = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase : Optional[Any] = config_class.from_dict(snake_case__ ) lowerCAmelCase : Union[str, Any] = use_timm_backbone lowerCAmelCase : List[Any] = backbone_config lowerCAmelCase : Any = num_channels lowerCAmelCase : Tuple = num_queries lowerCAmelCase : Dict = max_position_embeddings lowerCAmelCase : int = d_model lowerCAmelCase : List[str] = encoder_ffn_dim lowerCAmelCase : List[str] = encoder_layers lowerCAmelCase : int = encoder_attention_heads lowerCAmelCase : str = decoder_ffn_dim lowerCAmelCase : str = decoder_layers lowerCAmelCase : Dict = decoder_attention_heads lowerCAmelCase : str = dropout lowerCAmelCase : List[str] = attention_dropout lowerCAmelCase : Union[str, Any] = activation_dropout lowerCAmelCase : str = activation_function lowerCAmelCase : Any = init_std lowerCAmelCase : Any = init_xavier_std lowerCAmelCase : Dict = encoder_layerdrop lowerCAmelCase : int = auxiliary_loss lowerCAmelCase : Optional[Any] = position_embedding_type lowerCAmelCase : List[str] = backbone lowerCAmelCase : int = use_pretrained_backbone lowerCAmelCase : int = dilation # deformable attributes lowerCAmelCase : List[str] = num_feature_levels lowerCAmelCase : List[str] = encoder_n_points lowerCAmelCase : Union[str, Any] = decoder_n_points lowerCAmelCase : Tuple = two_stage lowerCAmelCase : Dict = two_stage_num_proposals lowerCAmelCase : Union[str, Any] = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.' ) # Hungarian matcher lowerCAmelCase : Union[str, Any] = class_cost lowerCAmelCase : Dict = bbox_cost lowerCAmelCase : List[Any] = giou_cost # Loss coefficients lowerCAmelCase : Dict = mask_loss_coefficient lowerCAmelCase : Any = dice_loss_coefficient lowerCAmelCase : str = bbox_loss_coefficient lowerCAmelCase : Tuple = giou_loss_coefficient lowerCAmelCase : List[str] = eos_coefficient lowerCAmelCase : Any = focal_alpha lowerCAmelCase : Dict = disable_custom_kernels super().__init__(is_encoder_decoder=snake_case__ , **snake_case__ ) @property def lowercase ( self ): return self.encoder_attention_heads @property def lowercase ( self ): return self.d_model def lowercase ( self ): lowerCAmelCase : Union[str, Any] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: lowerCAmelCase : List[Any] = self.backbone_config.to_dict() lowerCAmelCase : str = self.__class__.model_type return output
646
'''simple docstring''' import argparse import os import re _lowerCAmelCase : Dict = 'src/diffusers' # Pattern that looks at the indentation in a line. _lowerCAmelCase : str = re.compile(r'^(\s*)\S') # Pattern that matches `"key":" and puts `key` in group 0. _lowerCAmelCase : Any = re.compile(r'^\s*"([^"]+)":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. _lowerCAmelCase : List[Any] = re.compile(r'^\s*_import_structure\["([^"]+)"\]') # Pattern that matches `"key",` and puts `key` in group 0. _lowerCAmelCase : int = re.compile(r'^\s*"([^"]+)",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. _lowerCAmelCase : Optional[Any] = re.compile(r'\[([^\]]+)\]') def __UpperCamelCase ( _A : Union[str, Any] ) -> Dict: """simple docstring""" lowerCAmelCase : Any = _re_indent.search(_A ) return "" if search is None else search.groups()[0] def __UpperCamelCase ( _A : Dict , _A : Any="" , _A : List[str]=None , _A : Any=None ) -> Tuple: """simple docstring""" lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Tuple = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(_A ): index += 1 lowerCAmelCase : Optional[int] = ['\n'.join(lines[:index] )] else: lowerCAmelCase : int = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowerCAmelCase : Tuple = [lines[index]] index += 1 while index < len(_A ) and (end_prompt is None or not lines[index].startswith(_A )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(_A ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(_A ) ) if index < len(_A ) - 1: lowerCAmelCase : List[Any] = [lines[index + 1]] index += 1 else: lowerCAmelCase : int = [] else: blocks.append('\n'.join(_A ) ) lowerCAmelCase : Any = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(_A ) > 0: blocks.append('\n'.join(_A ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(_A ): blocks.append('\n'.join(lines[index:] ) ) return blocks def __UpperCamelCase ( _A : Dict ) -> List[Any]: """simple docstring""" def _inner(_A : Tuple ): return key(_A ).lower().replace('_' , '' ) return _inner def __UpperCamelCase ( _A : Union[str, Any] , _A : Any=None ) -> Optional[Any]: """simple docstring""" def noop(_A : Any ): return x if key is None: lowerCAmelCase : List[str] = noop # Constants are all uppercase, they go first. lowerCAmelCase : str = [obj for obj in objects if key(_A ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowerCAmelCase : List[str] = [obj for obj in objects if key(_A )[0].isupper() and not key(_A ).isupper()] # Functions begin with a lowercase, they go last. lowerCAmelCase : Optional[Any] = [obj for obj in objects if not key(_A )[0].isupper()] lowerCAmelCase : Tuple = ignore_underscore(_A ) return sorted(_A , key=_A ) + sorted(_A , key=_A ) + sorted(_A , key=_A ) def __UpperCamelCase ( _A : Union[str, Any] ) -> int: """simple docstring""" def _replace(_A : List[Any] ): lowerCAmelCase : List[Any] = match.groups()[0] if "," not in imports: return F"[{imports}]" lowerCAmelCase : Dict = [part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase : List[str] = keys[:-1] return "[" + ", ".join([F"\"{k}\"" for k in sort_objects(_A )] ) + "]" lowerCAmelCase : Optional[int] = import_statement.split('\n' ) if len(_A ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowerCAmelCase : Optional[Any] = 2 if lines[1].strip() == '[' else 1 lowerCAmelCase : List[str] = [(i, _re_strip_line.search(_A ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowerCAmelCase : Optional[Any] = sort_objects(_A , key=lambda _A : x[1] ) lowerCAmelCase : Dict = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(_A ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowerCAmelCase : Optional[int] = _re_bracket_content.sub(_replace , lines[1] ) else: lowerCAmelCase : List[Any] = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase : int = keys[:-1] lowerCAmelCase : Tuple = get_indent(lines[1] ) + ', '.join([F"\"{k}\"" for k in sort_objects(_A )] ) return "\n".join(_A ) else: # Finally we have to deal with imports fitting on one line lowerCAmelCase : Union[str, Any] = _re_bracket_content.sub(_replace , _A ) return import_statement def __UpperCamelCase ( _A : str , _A : Tuple=True ) -> Optional[Any]: """simple docstring""" with open(_A , 'r' ) as f: lowerCAmelCase : Optional[int] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowerCAmelCase : List[Any] = split_code_in_indented_blocks( _A , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(_A ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowerCAmelCase : List[str] = main_blocks[block_idx] lowerCAmelCase : Union[str, Any] = block.split('\n' ) # Get to the start of the imports. lowerCAmelCase : Optional[Any] = 0 while line_idx < len(_A ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowerCAmelCase : Optional[Any] = len(_A ) else: line_idx += 1 if line_idx >= len(_A ): continue # Ignore beginning and last line: they don't contain anything. lowerCAmelCase : str = '\n'.join(block_lines[line_idx:-1] ) lowerCAmelCase : str = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowerCAmelCase : Optional[Any] = split_code_in_indented_blocks(_A , indent_level=_A ) # We have two categories of import key: list or _import_structure[key].append/extend lowerCAmelCase : Union[str, Any] = _re_direct_key if '_import_structure' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowerCAmelCase : int = [(pattern.search(_A ).groups()[0] if pattern.search(_A ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowerCAmelCase : Dict = [(i, key) for i, key in enumerate(_A ) if key is not None] lowerCAmelCase : List[Any] = [x[0] for x in sorted(_A , key=lambda _A : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowerCAmelCase : int = 0 lowerCAmelCase : Dict = [] for i in range(len(_A ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: lowerCAmelCase : str = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(_A ) count += 1 # And we put our main block back together with its first and last line. lowerCAmelCase : str = '\n'.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(_A ): if check_only: return True else: print(F"Overwriting {file}." ) with open(_A , 'w' ) as f: f.write('\n'.join(_A ) ) def __UpperCamelCase ( _A : Tuple=True ) -> Any: """simple docstring""" lowerCAmelCase : Tuple = [] for root, _, files in os.walk(_A ): if "__init__.py" in files: lowerCAmelCase : Any = sort_imports(os.path.join(_A , '__init__.py' ) , check_only=_A ) if result: lowerCAmelCase : Optional[Any] = [os.path.join(_A , '__init__.py' )] if len(_A ) > 0: raise ValueError(F"Would overwrite {len(_A )} files, run `make style`." ) if __name__ == "__main__": _lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') _lowerCAmelCase : Optional[int] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
646
1
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : str = logging.get_logger(__name__) _lowerCAmelCase : Optional[Any] = { 'microsoft/unispeech-sat-base-100h-libri-ft': ( 'https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class lowerCAmelCase ( a ): _lowerCamelCase : Optional[int] = """unispeech-sat""" def __init__( self , snake_case__=32 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.0_2 , snake_case__=1e-5 , snake_case__="group" , snake_case__="gelu" , snake_case__=(512, 512, 512, 512, 512, 512, 512) , snake_case__=(5, 2, 2, 2, 2, 2, 2) , snake_case__=(10, 3, 3, 3, 3, 2, 2) , snake_case__=False , snake_case__=128 , snake_case__=16 , snake_case__=False , snake_case__=True , snake_case__=0.0_5 , snake_case__=10 , snake_case__=2 , snake_case__=0.0 , snake_case__=10 , snake_case__=0 , snake_case__=320 , snake_case__=2 , snake_case__=0.1 , snake_case__=100 , snake_case__=256 , snake_case__=256 , snake_case__=0.1 , snake_case__="mean" , snake_case__=False , snake_case__=False , snake_case__=256 , snake_case__=(512, 512, 512, 512, 1500) , snake_case__=(5, 3, 3, 1, 1) , snake_case__=(1, 2, 3, 1, 1) , snake_case__=512 , snake_case__=0 , snake_case__=1 , snake_case__=2 , snake_case__=504 , **snake_case__ , ): super().__init__(**snake_case__ , pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ ) lowerCAmelCase : str = hidden_size lowerCAmelCase : int = feat_extract_norm lowerCAmelCase : Dict = feat_extract_activation lowerCAmelCase : List[Any] = list(snake_case__ ) lowerCAmelCase : Dict = list(snake_case__ ) lowerCAmelCase : Dict = list(snake_case__ ) lowerCAmelCase : str = conv_bias lowerCAmelCase : Optional[Any] = num_conv_pos_embeddings lowerCAmelCase : str = num_conv_pos_embedding_groups lowerCAmelCase : Optional[int] = len(self.conv_dim ) lowerCAmelCase : Any = num_hidden_layers lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : Union[str, Any] = hidden_act lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : str = hidden_dropout lowerCAmelCase : str = attention_dropout lowerCAmelCase : Any = activation_dropout lowerCAmelCase : Any = feat_proj_dropout lowerCAmelCase : Tuple = final_dropout lowerCAmelCase : Optional[Any] = layerdrop lowerCAmelCase : Dict = layer_norm_eps lowerCAmelCase : List[str] = initializer_range lowerCAmelCase : List[Any] = vocab_size lowerCAmelCase : List[str] = num_clusters lowerCAmelCase : Tuple = do_stable_layer_norm lowerCAmelCase : Tuple = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' f" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," f" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCAmelCase : str = apply_spec_augment lowerCAmelCase : List[str] = mask_time_prob lowerCAmelCase : List[Any] = mask_time_length lowerCAmelCase : Optional[Any] = mask_time_min_masks lowerCAmelCase : Dict = mask_feature_prob lowerCAmelCase : Union[str, Any] = mask_feature_length lowerCAmelCase : List[str] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowerCAmelCase : Union[str, Any] = num_codevectors_per_group lowerCAmelCase : int = num_codevector_groups lowerCAmelCase : Tuple = contrastive_logits_temperature lowerCAmelCase : Dict = feat_quantizer_dropout lowerCAmelCase : List[str] = num_negatives lowerCAmelCase : List[Any] = codevector_dim lowerCAmelCase : str = proj_codevector_dim lowerCAmelCase : Union[str, Any] = diversity_loss_weight # ctc loss lowerCAmelCase : Optional[Any] = ctc_loss_reduction lowerCAmelCase : List[Any] = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. lowerCAmelCase : Dict = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. lowerCAmelCase : Union[str, Any] = list(snake_case__ ) lowerCAmelCase : Any = list(snake_case__ ) lowerCAmelCase : int = list(snake_case__ ) lowerCAmelCase : Optional[int] = xvector_output_dim @property def lowercase ( self ): return functools.reduce(operator.mul , self.conv_stride , 1 )
646
'''simple docstring''' import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class lowerCAmelCase : def __init__( self , snake_case__ , snake_case__=13 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=99 , snake_case__=64 , snake_case__=32 , snake_case__=5 , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=16 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=3 , snake_case__=4 , snake_case__=None , ): lowerCAmelCase : str = parent lowerCAmelCase : Optional[int] = batch_size lowerCAmelCase : Optional[Any] = seq_length lowerCAmelCase : Optional[Any] = is_training lowerCAmelCase : Dict = use_input_mask lowerCAmelCase : Tuple = use_token_type_ids lowerCAmelCase : int = use_labels lowerCAmelCase : int = vocab_size lowerCAmelCase : Any = hidden_size lowerCAmelCase : Optional[Any] = embedding_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : List[str] = num_attention_heads lowerCAmelCase : List[Any] = intermediate_size lowerCAmelCase : Dict = hidden_act lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : int = attention_probs_dropout_prob lowerCAmelCase : List[Any] = max_position_embeddings lowerCAmelCase : int = type_vocab_size lowerCAmelCase : List[str] = type_sequence_label_size lowerCAmelCase : Dict = initializer_range lowerCAmelCase : Any = num_labels lowerCAmelCase : str = num_choices lowerCAmelCase : int = scope def lowercase ( self ): lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Union[str, Any] = None if self.use_input_mask: lowerCAmelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : Optional[int] = None if self.use_token_type_ids: lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : Optional[Any] = None lowerCAmelCase : Optional[Any] = None lowerCAmelCase : Dict = None if self.use_labels: lowerCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase ( self ): return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case__ , initializer_range=self.initializer_range , ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = MobileBertModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : int = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) lowerCAmelCase : Optional[int] = model(snake_case__ , token_type_ids=snake_case__ ) lowerCAmelCase : Optional[Any] = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : int = MobileBertForMaskedLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : str = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = MobileBertForNextSentencePrediction(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : str = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : List[Any] = MobileBertForPreTraining(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Tuple = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , next_sentence_label=snake_case__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = MobileBertForQuestionAnswering(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : List[str] = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = self.num_labels lowerCAmelCase : List[Any] = MobileBertForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = self.num_labels lowerCAmelCase : int = MobileBertForTokenClassification(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : List[str] = self.num_choices lowerCAmelCase : Any = MobileBertForMultipleChoice(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : int = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : List[str] = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase ( self ): lowerCAmelCase : Any = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) : Optional[Any] = config_and_inputs lowerCAmelCase : List[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase ( a , a , unittest.TestCase ): _lowerCamelCase : List[str] = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) _lowerCamelCase : Tuple = ( { """feature-extraction""": MobileBertModel, """fill-mask""": MobileBertForMaskedLM, """question-answering""": MobileBertForQuestionAnswering, """text-classification""": MobileBertForSequenceClassification, """token-classification""": MobileBertForTokenClassification, """zero-shot""": MobileBertForSequenceClassification, } if is_torch_available() else {} ) _lowerCamelCase : str = True def lowercase ( self , snake_case__ , snake_case__ , snake_case__=False ): lowerCAmelCase : int = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if return_labels: if model_class in get_values(snake_case__ ): lowerCAmelCase : str = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=snake_case__ ) lowerCAmelCase : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case__ ) return inputs_dict def lowercase ( self ): lowerCAmelCase : List[Any] = MobileBertModelTester(self ) lowerCAmelCase : Dict = ConfigTester(self , config_class=snake_case__ , hidden_size=37 ) def lowercase ( self ): self.config_tester.run_common_tests() def lowercase ( self ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*snake_case__ ) def __UpperCamelCase ( _A : Optional[Any] ) -> Optional[int]: """simple docstring""" return torch.tensor( _A , dtype=torch.long , device=_A , ) _lowerCAmelCase : Union[str, Any] = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase ( unittest.TestCase ): @slow def lowercase ( self ): lowerCAmelCase : List[str] = MobileBertModel.from_pretrained('google/mobilebert-uncased' ).to(snake_case__ ) lowerCAmelCase : List[Any] = _long_tensor([[101, 7110, 1005, 1056, 2023, 1_1333, 1_7413, 1029, 102]] ) with torch.no_grad(): lowerCAmelCase : Tuple = model(snake_case__ )[0] lowerCAmelCase : List[Any] = torch.Size((1, 9, 512) ) self.assertEqual(output.shape , snake_case__ ) lowerCAmelCase : Union[str, Any] = torch.tensor( [ [ [-2.4_7_3_6_5_2_6e0_7, 8.2_6_9_1_6_5_6e0_4, 1.6_5_2_1_8_3_8e0_5], [-5.7_5_4_1_7_0_4e-0_1, 3.9_0_5_6_0_2_2e0_0, 4.4_0_1_1_5_0_7e0_0], [2.6_0_4_7_3_5_9e0_0, 1.5_6_7_7_6_5_2e0_0, -1.7_3_2_4_1_8_8e-0_1], ] ] , device=snake_case__ , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE lowerCAmelCase : List[str] = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) lowerCAmelCase : Dict = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
646
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : List[Any] = { 'unc-nlp/lxmert-base-uncased': 'https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json', } class lowerCAmelCase ( a ): _lowerCamelCase : Optional[Any] = """lxmert""" _lowerCamelCase : List[Any] = {} def __init__( self , snake_case__=3_0522 , snake_case__=768 , snake_case__=12 , snake_case__=9500 , snake_case__=1600 , snake_case__=400 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=1e-1_2 , snake_case__=9 , snake_case__=5 , snake_case__=5 , snake_case__=2048 , snake_case__=4 , snake_case__=6.6_7 , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=True , **snake_case__ , ): lowerCAmelCase : Tuple = vocab_size lowerCAmelCase : str = hidden_size lowerCAmelCase : Optional[Any] = num_attention_heads lowerCAmelCase : Dict = hidden_act lowerCAmelCase : List[str] = intermediate_size lowerCAmelCase : List[Any] = hidden_dropout_prob lowerCAmelCase : List[Any] = attention_probs_dropout_prob lowerCAmelCase : str = max_position_embeddings lowerCAmelCase : Union[str, Any] = type_vocab_size lowerCAmelCase : List[str] = initializer_range lowerCAmelCase : Dict = layer_norm_eps lowerCAmelCase : List[Any] = num_qa_labels lowerCAmelCase : Dict = num_object_labels lowerCAmelCase : str = num_attr_labels lowerCAmelCase : Union[str, Any] = l_layers lowerCAmelCase : int = x_layers lowerCAmelCase : Dict = r_layers lowerCAmelCase : int = visual_feat_dim lowerCAmelCase : Union[str, Any] = visual_pos_dim lowerCAmelCase : List[Any] = visual_loss_normalizer lowerCAmelCase : Dict = task_matched lowerCAmelCase : List[str] = task_mask_lm lowerCAmelCase : str = task_obj_predict lowerCAmelCase : Optional[int] = task_qa lowerCAmelCase : int = visual_obj_loss lowerCAmelCase : Dict = visual_attr_loss lowerCAmelCase : str = visual_feat_loss lowerCAmelCase : Optional[Any] = {'vision': r_layers, 'cross_encoder': x_layers, 'language': l_layers} super().__init__(**snake_case__ )
646
'''simple docstring''' import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __UpperCamelCase ( _A : Dict ) -> int: """simple docstring""" lowerCAmelCase : Tuple = [] embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight", F"stage{idx}.patch_embed.proj.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias", F"stage{idx}.patch_embed.proj.bias", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight", F"stage{idx}.patch_embed.norm.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias", F"stage{idx}.patch_embed.norm.bias", ) ) return embed def __UpperCamelCase ( _A : List[Any] , _A : Dict ) -> Any: """simple docstring""" lowerCAmelCase : str = [] attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight", F"stage{idx}.blocks.{cnt}.attn.proj_q.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias", F"stage{idx}.blocks.{cnt}.attn.proj_q.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight", F"stage{idx}.blocks.{cnt}.attn.proj_k.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias", F"stage{idx}.blocks.{cnt}.attn.proj_k.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight", F"stage{idx}.blocks.{cnt}.attn.proj_v.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias", F"stage{idx}.blocks.{cnt}.attn.proj_v.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight", F"stage{idx}.blocks.{cnt}.attn.proj.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias", F"stage{idx}.blocks.{cnt}.attn.proj.bias", ) ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc2.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight", F"stage{idx}.blocks.{cnt}.norm1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias", F"stage{idx}.blocks.{cnt}.norm1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight", F"stage{idx}.blocks.{cnt}.norm2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias", F"stage{idx}.blocks.{cnt}.norm2.bias") ) return attention_weights def __UpperCamelCase ( _A : Optional[int] ) -> Optional[int]: """simple docstring""" lowerCAmelCase : Optional[int] = [] token.append((F"cvt.encoder.stages.{idx}.cls_token", 'stage2.cls_token') ) return token def __UpperCamelCase ( ) -> int: """simple docstring""" lowerCAmelCase : List[Any] = [] head.append(('layernorm.weight', 'norm.weight') ) head.append(('layernorm.bias', 'norm.bias') ) head.append(('classifier.weight', 'head.weight') ) head.append(('classifier.bias', 'head.bias') ) return head def __UpperCamelCase ( _A : str , _A : Optional[Any] , _A : Dict , _A : str ) -> Optional[int]: """simple docstring""" lowerCAmelCase : List[str] = 'imagenet-1k-id2label.json' lowerCAmelCase : Tuple = 10_00 lowerCAmelCase : str = 'huggingface/label-files' lowerCAmelCase : List[Any] = num_labels lowerCAmelCase : Any = json.load(open(cached_download(hf_hub_url(_A , _A , repo_type='dataset' ) ) , 'r' ) ) lowerCAmelCase : List[str] = {int(_A ): v for k, v in idalabel.items()} lowerCAmelCase : List[str] = idalabel lowerCAmelCase : str = {v: k for k, v in idalabel.items()} lowerCAmelCase : int = CvtConfig(num_labels=_A , idalabel=_A , labelaid=_A ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13": lowerCAmelCase : List[str] = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21": lowerCAmelCase : Tuple = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: lowerCAmelCase : Any = [2, 2, 20] lowerCAmelCase : List[str] = [3, 12, 16] lowerCAmelCase : List[Any] = [1_92, 7_68, 10_24] lowerCAmelCase : Union[str, Any] = CvtForImageClassification(_A ) lowerCAmelCase : str = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) lowerCAmelCase : Optional[Any] = image_size lowerCAmelCase : List[Any] = torch.load(_A , map_location=torch.device('cpu' ) ) lowerCAmelCase : str = OrderedDict() lowerCAmelCase : int = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: lowerCAmelCase : List[str] = list_of_state_dict + cls_token(_A ) lowerCAmelCase : Optional[Any] = list_of_state_dict + embeddings(_A ) for cnt in range(config.depth[idx] ): lowerCAmelCase : List[Any] = list_of_state_dict + attention(_A , _A ) lowerCAmelCase : List[str] = list_of_state_dict + final() for gg in list_of_state_dict: print(_A ) for i in range(len(_A ) ): lowerCAmelCase : Tuple = original_weights[list_of_state_dict[i][1]] model.load_state_dict(_A ) model.save_pretrained(_A ) image_processor.save_pretrained(_A ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": _lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '--cvt_model', default='cvt-w24', type=str, help='Name of the cvt model you\'d like to convert.', ) parser.add_argument( '--image_size', default=384, type=int, help='Input Image Size', ) parser.add_argument( '--cvt_file_name', default=r'cvtmodels\CvT-w24-384x384-IN-22k.pth', type=str, help='Input Image Size', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) _lowerCAmelCase : str = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
646
1
'''simple docstring''' import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece.model') _lowerCAmelCase : Tuple = get_tests_dir('fixtures/test_sentencepiece_bpe.model') _lowerCAmelCase : Tuple = 'pt' if is_torch_available() else 'tf' @require_sentencepiece @require_tokenizers class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : Any = CamembertTokenizer _lowerCamelCase : Optional[int] = CamembertTokenizerFast _lowerCamelCase : Optional[Any] = True _lowerCamelCase : List[Any] = True def lowercase ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : Tuple = CamembertTokenizer(snake_case__ ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase ( self ): lowerCAmelCase : str = '<pad>' lowerCAmelCase : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Tuple = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>NOTUSED' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(snake_case__ ) , 1004 ) def lowercase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1005 ) def lowercase ( self ): lowerCAmelCase : List[str] = CamembertTokenizer(snake_case__ ) tokenizer.save_pretrained(self.tmpdirname ) lowerCAmelCase : Optional[int] = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) lowerCAmelCase : Union[str, Any] = 'I was born in 92000, and this is falsé.' lowerCAmelCase : Optional[int] = tokenizer.encode(snake_case__ ) lowerCAmelCase : List[Any] = rust_tokenizer.encode(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) lowerCAmelCase : List[str] = tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) lowerCAmelCase : str = rust_tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) lowerCAmelCase : List[Any] = tokenizer.convert_ids_to_tokens(snake_case__ ) lowerCAmelCase : Any = rust_tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) def lowercase ( self ): if not self.test_rust_tokenizer: return lowerCAmelCase : str = self.get_tokenizer() lowerCAmelCase : str = self.get_rust_tokenizer() lowerCAmelCase : str = 'I was born in 92000, and this is falsé.' lowerCAmelCase : List[str] = tokenizer.tokenize(snake_case__ ) lowerCAmelCase : int = rust_tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) lowerCAmelCase : Optional[int] = tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) lowerCAmelCase : Tuple = rust_tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) lowerCAmelCase : Dict = self.get_rust_tokenizer() lowerCAmelCase : Any = tokenizer.encode(snake_case__ ) lowerCAmelCase : Dict = rust_tokenizer.encode(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) @slow def lowercase ( self ): # fmt: off lowerCAmelCase : List[Any] = {'input_ids': [[5, 54, 7196, 297, 30, 23, 776, 18, 11, 3215, 3705, 8252, 22, 3164, 1181, 2116, 29, 16, 813, 25, 791, 3314, 20, 3446, 38, 2_7575, 120, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 468, 17, 11, 9088, 20, 1517, 8, 2_2804, 1_8818, 10, 38, 629, 607, 607, 142, 19, 7196, 867, 56, 1_0326, 24, 2267, 20, 416, 5072, 1_5612, 233, 734, 7, 2399, 27, 16, 3015, 1649, 7, 24, 20, 4338, 2399, 27, 13, 3400, 14, 13, 6189, 8, 930, 9, 6]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. lowerCAmelCase : Dict = [ 'Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ' 'utilisé principalement dans le domaine du traitement automatique des langues (TAL).', 'À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ' 'pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ' 'telles que la traduction et la synthèse de texte.', ] self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name='camembert-base' , revision='3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf' , sequences=snake_case__ , )
646
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Any = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { 'xlm-roberta-base': 'https://huggingface.co/xlm-roberta-base/resolve/main/config.json', 'xlm-roberta-large': 'https://huggingface.co/xlm-roberta-large/resolve/main/config.json', 'xlm-roberta-large-finetuned-conll02-dutch': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll02-spanish': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-english': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-german': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json' ), } class lowerCAmelCase ( a ): _lowerCamelCase : List[str] = """xlm-roberta""" def __init__( self , snake_case__=3_0522 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=1e-1_2 , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__="absolute" , snake_case__=True , snake_case__=None , **snake_case__ , ): super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) lowerCAmelCase : Optional[Any] = vocab_size lowerCAmelCase : Optional[Any] = hidden_size lowerCAmelCase : Optional[Any] = num_hidden_layers lowerCAmelCase : Any = num_attention_heads lowerCAmelCase : Optional[int] = hidden_act lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : Dict = hidden_dropout_prob lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob lowerCAmelCase : Optional[Any] = max_position_embeddings lowerCAmelCase : Optional[int] = type_vocab_size lowerCAmelCase : int = initializer_range lowerCAmelCase : List[Any] = layer_norm_eps lowerCAmelCase : Union[str, Any] = position_embedding_type lowerCAmelCase : Union[str, Any] = use_cache lowerCAmelCase : List[str] = classifier_dropout class lowerCAmelCase ( a ): @property def lowercase ( self ): if self.task == "multiple-choice": lowerCAmelCase : str = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase : Optional[int] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
646
1
'''simple docstring''' import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : Dict = logging.get_logger() @dataclass class lowerCAmelCase : _lowerCamelCase : nn.Module _lowerCamelCase : List[nn.Module] = field(default_factory=a ) _lowerCamelCase : list = field(default_factory=a ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Optional[Any] = len(list(m.modules() ) ) == 1 or isinstance(snake_case__ , nn.Convad ) or isinstance(snake_case__ , nn.BatchNormad ) if has_not_submodules: self.traced.append(snake_case__ ) def __call__( self , snake_case__ ): for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(snake_case__ ) [x.remove() for x in self.handles] return self @property def lowercase ( self ): # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda snake_case__ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class lowerCAmelCase : _lowerCamelCase : nn.Module _lowerCamelCase : nn.Module _lowerCamelCase : int = 0 _lowerCamelCase : List = field(default_factory=a ) _lowerCamelCase : List = field(default_factory=a ) def __call__( self , snake_case__ ): lowerCAmelCase : Union[str, Any] = Tracker(self.dest )(snake_case__ ).parametrized lowerCAmelCase : Optional[Any] = Tracker(self.src )(snake_case__ ).parametrized lowerCAmelCase : Optional[Any] = list(filter(lambda snake_case__ : type(snake_case__ ) not in self.src_skip , snake_case__ ) ) lowerCAmelCase : List[Any] = list(filter(lambda snake_case__ : type(snake_case__ ) not in self.dest_skip , snake_case__ ) ) if len(snake_case__ ) != len(snake_case__ ): raise Exception( f"Numbers of operations are different. Source module has {len(snake_case__ )} operations while" f" destination module has {len(snake_case__ )}." ) for dest_m, src_m in zip(snake_case__ , snake_case__ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f"Transfered from={src_m} to={dest_m}" ) def __UpperCamelCase ( _A : str , _A : ResNetConfig , _A : Path , _A : bool = True ) -> Optional[Any]: """simple docstring""" print(F"Converting {name}..." ) with torch.no_grad(): lowerCAmelCase : Any = timm.create_model(_A , pretrained=_A ).eval() lowerCAmelCase : Optional[int] = ResNetForImageClassification(_A ).eval() lowerCAmelCase : Optional[Any] = ModuleTransfer(src=_A , dest=_A ) lowerCAmelCase : List[Any] = torch.randn((1, 3, 2_24, 2_24) ) module_transfer(_A ) assert torch.allclose(from_model(_A ) , our_model(_A ).logits ), "The model logits don't match the original one." lowerCAmelCase : Union[str, Any] = F"resnet{'-'.join(name.split('resnet' ) )}" print(_A ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='Add model' , use_temp_dir=_A , ) # we can use the convnext one lowerCAmelCase : Dict = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='Add image processor' , use_temp_dir=_A , ) print(F"Pushed {checkpoint_name}" ) def __UpperCamelCase ( _A : Path , _A : str = None , _A : bool = True ) -> str: """simple docstring""" lowerCAmelCase : Optional[int] = 'imagenet-1k-id2label.json' lowerCAmelCase : Dict = 10_00 lowerCAmelCase : List[Any] = (1, num_labels) lowerCAmelCase : Any = 'huggingface/label-files' lowerCAmelCase : Tuple = num_labels lowerCAmelCase : List[Any] = json.load(open(hf_hub_download(_A , _A , repo_type='dataset' ) , 'r' ) ) lowerCAmelCase : Any = {int(_A ): v for k, v in idalabel.items()} lowerCAmelCase : Tuple = idalabel lowerCAmelCase : Dict = {v: k for k, v in idalabel.items()} lowerCAmelCase : Dict = partial(_A , num_labels=_A , idalabel=_A , labelaid=_A ) lowerCAmelCase : str = { 'resnet18': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 1_28, 2_56, 5_12] , layer_type='basic' ), 'resnet26': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type='bottleneck' ), 'resnet34': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 1_28, 2_56, 5_12] , layer_type='basic' ), 'resnet50': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type='bottleneck' ), 'resnet101': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type='bottleneck' ), 'resnet152': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type='bottleneck' ), } if model_name: convert_weight_and_push(_A , names_to_config[model_name] , _A , _A ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(_A , _A , _A , _A ) return config, expected_shape if __name__ == "__main__": _lowerCAmelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help=( 'The name of the model you wish to convert, it must be one of the supported resnet* architecture,' ' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=Path, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=True, type=bool, required=False, help='If True, push model and image processor to the hub.', ) _lowerCAmelCase : List[Any] = parser.parse_args() _lowerCAmelCase : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
646
'''simple docstring''' import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer _lowerCAmelCase : List[Any] = logging.getLogger(__name__) def __UpperCamelCase ( ) -> Any: """simple docstring""" lowerCAmelCase : str = argparse.ArgumentParser( description='Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.' ) parser.add_argument( '--dataset_name' , type=_A , default='wikitext' , help='Name of the training. Explore datasets at: hf.co/datasets.' , ) parser.add_argument( '--dataset_config' , type=_A , default='wikitext-103-raw-v1' , help='Configuration name of the dataset.' ) parser.add_argument( '--tokenizer_name_or_path' , type=_A , default='sayakpaul/unigram-tokenizer-wikitext' , help='Tokenizer identifier. Can be a local filepath or a Hub identifier.' , ) parser.add_argument( '--shard_size' , type=_A , default=10_00 , help='Number of entries to go in a single shard.' , ) parser.add_argument('--split' , type=_A , default='train' , choices=['train', 'test', 'validation'] ) parser.add_argument( '--limit' , default=_A , type=_A , help='Limit the number of shards (used for debugging).' , ) parser.add_argument( '--max_length' , type=_A , default=5_12 , help='Maximum sequence length. For training on TPUs, it helps to have a maximum' ' sequence length that is a multiple of 8.' , ) parser.add_argument( '--output_dir' , default='tf-tpu' , type=_A , help='Output directory where the TFRecord shards will be saved. If the' ' path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord' ' shards will be directly saved to a Google Cloud Storage bucket.' , ) lowerCAmelCase : Any = parser.parse_args() return args def __UpperCamelCase ( _A : Optional[int] ) -> int: """simple docstring""" def fn(_A : Tuple ): return tokenizer(examples['text'] ) return fn def __UpperCamelCase ( _A : int ) -> int: """simple docstring""" lowerCAmelCase : Tuple = [] for i in range(len(tokenized_data['input_ids'] ) ): lowerCAmelCase : Optional[Any] = { 'input_ids': tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data['input_ids'][i] ) ), 'attention_mask': tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data['attention_mask'][i] ) ), } lowerCAmelCase : Any = tf.train.Features(feature=_A ) lowerCAmelCase : List[str] = tf.train.Example(features=_A ) lowerCAmelCase : Tuple = example.SerializeToString() records.append(_A ) return records def __UpperCamelCase ( _A : int ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase : Union[str, Any] = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: lowerCAmelCase : Optional[Any] = min(len(_A ) , args.limit ) lowerCAmelCase : Dict = dataset.select(range(_A ) ) print(F"Limiting the dataset to {args.limit} entries." ) lowerCAmelCase : str = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) lowerCAmelCase : Any = os.path.join(args.output_dir , args.split ) if not os.path.exists(_A ): os.makedirs(_A ) else: lowerCAmelCase : List[Any] = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. lowerCAmelCase : Any = tokenize_function(_A ) lowerCAmelCase : Optional[int] = dataset.map(_A , batched=_A , num_proc=4 , remove_columns=['text'] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(_A : str ): # Concatenate all texts. lowerCAmelCase : Optional[int] = {k: sum(examples[k] , [] ) for k in examples.keys()} lowerCAmelCase : str = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 lowerCAmelCase : List[Any] = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. lowerCAmelCase : str = { k: [t[i : i + args.max_length] for i in range(0 , _A , args.max_length )] for k, t in concatenated_examples.items() } return result lowerCAmelCase : List[Any] = dataset_tokenized.map(_A , batched=_A , batch_size=10_00 , num_proc=4 ) lowerCAmelCase : Union[str, Any] = 0 lowerCAmelCase : Tuple = 0 for shard in range(0 , len(_A ) , args.shard_size ): lowerCAmelCase : Optional[Any] = grouped_dataset[shard : shard + args.shard_size] lowerCAmelCase : List[str] = len(dataset_snapshot['input_ids'] ) lowerCAmelCase : Union[str, Any] = os.path.join(_A , F"dataset-{shard_count}-{records_containing}.tfrecord" ) lowerCAmelCase : List[Any] = get_serialized_examples(_A ) with tf.io.TFRecordWriter(_A ) as out_file: for i in range(len(_A ) ): lowerCAmelCase : Union[str, Any] = serialized_examples[i] out_file.write(_A ) print('Wrote file {} containing {} records'.format(_A , _A ) ) shard_count += 1 total_records += records_containing with open(F"split-{args.split}-records-count.txt" , 'w' ) as f: print(F"Total {args.split} records: {total_records}" , file=_A ) if __name__ == "__main__": _lowerCAmelCase : List[Any] = parse_args() main(args)
646
1
'''simple docstring''' import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : Any = OpenAIGPTTokenizer _lowerCamelCase : Optional[Any] = OpenAIGPTTokenizerFast _lowerCamelCase : Optional[int] = True _lowerCamelCase : int = False def lowercase ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCAmelCase : List[Any] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] lowerCAmelCase : Tuple = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) lowerCAmelCase : int = ['#version: 0.2', 'l o', 'lo w', 'e r</w>', ''] lowerCAmelCase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowerCAmelCase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' ) as fp: fp.write(json.dumps(snake_case__ ) ) with open(self.merges_file , 'w' ) as fp: fp.write('\n'.join(snake_case__ ) ) def lowercase ( self , snake_case__ ): return "lower newer", "lower newer" def lowercase ( self ): lowerCAmelCase : Optional[int] = OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) lowerCAmelCase : Union[str, Any] = 'lower' lowerCAmelCase : List[str] = ['low', 'er</w>'] lowerCAmelCase : Union[str, Any] = tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) lowerCAmelCase : Dict = tokens + ['<unk>'] lowerCAmelCase : List[str] = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , snake_case__ ) def lowercase ( self , snake_case__=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCAmelCase : List[str] = self.rust_tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) # Simple input lowerCAmelCase : Any = 'This is a simple input' lowerCAmelCase : int = ['This is a simple input 1', 'This is a simple input 2'] lowerCAmelCase : Dict = ('This is a simple input', 'This is a pair') lowerCAmelCase : List[Any] = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(snake_case__ , tokenizer_r.encode , snake_case__ , max_length=snake_case__ , padding='max_length' ) # Simple input self.assertRaises(snake_case__ , tokenizer_r.encode_plus , snake_case__ , max_length=snake_case__ , padding='max_length' ) # Simple input self.assertRaises( snake_case__ , tokenizer_r.batch_encode_plus , snake_case__ , max_length=snake_case__ , padding='max_length' , ) # Pair input self.assertRaises(snake_case__ , tokenizer_r.encode , snake_case__ , max_length=snake_case__ , padding='max_length' ) # Pair input self.assertRaises(snake_case__ , tokenizer_r.encode_plus , snake_case__ , max_length=snake_case__ , padding='max_length' ) # Pair input self.assertRaises( snake_case__ , tokenizer_r.batch_encode_plus , snake_case__ , max_length=snake_case__ , padding='max_length' , ) def lowercase ( self ): pass @require_ftfy @require_spacy @require_tokenizers class lowerCAmelCase ( a ): pass
646
'''simple docstring''' import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() _lowerCAmelCase : List[str] = logging.get_logger('transformers.models.speecht5') def __UpperCamelCase ( _A : Any , _A : Dict , _A : Any ) -> Union[str, Any]: """simple docstring""" hf_model.apply_weight_norm() lowerCAmelCase : int = checkpoint['input_conv.weight_g'] lowerCAmelCase : Optional[int] = checkpoint['input_conv.weight_v'] lowerCAmelCase : Dict = checkpoint['input_conv.bias'] for i in range(len(config.upsample_rates ) ): lowerCAmelCase : Optional[Any] = checkpoint[F"upsamples.{i}.1.weight_g"] lowerCAmelCase : str = checkpoint[F"upsamples.{i}.1.weight_v"] lowerCAmelCase : str = checkpoint[F"upsamples.{i}.1.bias"] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): lowerCAmelCase : int = checkpoint[F"blocks.{i}.convs1.{j}.1.weight_g"] lowerCAmelCase : str = checkpoint[F"blocks.{i}.convs1.{j}.1.weight_v"] lowerCAmelCase : int = checkpoint[F"blocks.{i}.convs1.{j}.1.bias"] lowerCAmelCase : Optional[Any] = checkpoint[F"blocks.{i}.convs2.{j}.1.weight_g"] lowerCAmelCase : Tuple = checkpoint[F"blocks.{i}.convs2.{j}.1.weight_v"] lowerCAmelCase : Tuple = checkpoint[F"blocks.{i}.convs2.{j}.1.bias"] lowerCAmelCase : List[Any] = checkpoint['output_conv.1.weight_g'] lowerCAmelCase : List[str] = checkpoint['output_conv.1.weight_v'] lowerCAmelCase : Optional[Any] = checkpoint['output_conv.1.bias'] hf_model.remove_weight_norm() @torch.no_grad() def __UpperCamelCase ( _A : Dict , _A : Union[str, Any] , _A : List[Any] , _A : Any=None , _A : Any=None , ) -> Dict: """simple docstring""" if config_path is not None: lowerCAmelCase : Dict = SpeechTaHifiGanConfig.from_pretrained(_A ) else: lowerCAmelCase : Union[str, Any] = SpeechTaHifiGanConfig() lowerCAmelCase : List[Any] = SpeechTaHifiGan(_A ) lowerCAmelCase : List[str] = torch.load(_A ) load_weights(orig_checkpoint['model']['generator'] , _A , _A ) lowerCAmelCase : Tuple = np.load(_A ) lowerCAmelCase : List[Any] = stats[0].reshape(-1 ) lowerCAmelCase : int = stats[1].reshape(-1 ) lowerCAmelCase : Union[str, Any] = torch.from_numpy(_A ).float() lowerCAmelCase : int = torch.from_numpy(_A ).float() model.save_pretrained(_A ) if repo_id: print('Pushing to the hub...' ) model.push_to_hub(_A ) if __name__ == "__main__": _lowerCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--stats_path', required=True, default=None, type=str, help='Path to stats.npy file') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) _lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
646
1
'''simple docstring''' import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) _lowerCAmelCase : Dict = pytest.mark.integration @pytest.mark.parametrize('path' , ['paws', 'csv'] ) def __UpperCamelCase ( _A : str , _A : Dict ) -> Tuple: """simple docstring""" inspect_dataset(_A , _A ) lowerCAmelCase : str = path + '.py' assert script_name in os.listdir(_A ) assert "__pycache__" not in os.listdir(_A ) @pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.parametrize('path' , ['accuracy'] ) def __UpperCamelCase ( _A : List[str] , _A : str ) -> Optional[int]: """simple docstring""" inspect_metric(_A , _A ) lowerCAmelCase : Tuple = path + '.py' assert script_name in os.listdir(_A ) assert "__pycache__" not in os.listdir(_A ) @pytest.mark.parametrize( 'path, config_name, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def __UpperCamelCase ( _A : Optional[int] , _A : str , _A : Tuple ) -> Optional[Any]: """simple docstring""" lowerCAmelCase : Tuple = get_dataset_config_info(_A , config_name=_A ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def __UpperCamelCase ( _A : List[Any] , _A : Tuple , _A : int ) -> Union[str, Any]: """simple docstring""" with pytest.raises(_A ): get_dataset_config_info(_A , config_name=_A ) @pytest.mark.parametrize( 'path, expected' , [ ('squad', 'plain_text'), ('acronym_identification', 'default'), ('lhoestq/squad', 'plain_text'), ('lhoestq/test', 'default'), ('lhoestq/demo1', 'lhoestq--demo1'), ('dalle-mini/wit', 'dalle-mini--wit'), ] , ) def __UpperCamelCase ( _A : Tuple , _A : Optional[Any] ) -> Any: """simple docstring""" lowerCAmelCase : Dict = get_dataset_config_names(_A ) assert expected in config_names @pytest.mark.parametrize( 'path, expected_configs, expected_splits_in_first_config' , [ ('squad', ['plain_text'], ['train', 'validation']), ('dalle-mini/wit', ['dalle-mini--wit'], ['train']), ('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']), ] , ) def __UpperCamelCase ( _A : Dict , _A : List[Any] , _A : Optional[int] ) -> Any: """simple docstring""" lowerCAmelCase : Optional[int] = get_dataset_infos(_A ) assert list(infos.keys() ) == expected_configs lowerCAmelCase : Union[str, Any] = expected_configs[0] assert expected_config in infos lowerCAmelCase : Dict = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( 'path, expected_config, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def __UpperCamelCase ( _A : Optional[int] , _A : Union[str, Any] , _A : List[Any] ) -> Optional[int]: """simple docstring""" lowerCAmelCase : Optional[int] = get_dataset_infos(_A ) assert expected_config in infos lowerCAmelCase : Optional[int] = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def __UpperCamelCase ( _A : str , _A : int , _A : Optional[int] ) -> List[Any]: """simple docstring""" with pytest.raises(_A ): get_dataset_split_names(_A , config_name=_A )
646
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets _lowerCAmelCase : Dict = '\\n@inproceedings{popovic-2015-chrf,\n title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",\n month = sep,\n year = "2015",\n address = "Lisbon, Portugal",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W15-3049",\n doi = "10.18653/v1/W15-3049",\n pages = "392--395",\n}\n@inproceedings{popovic-2017-chrf,\n title = "chr{F}++: words helping character n-grams",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Second Conference on Machine Translation",\n month = sep,\n year = "2017",\n address = "Copenhagen, Denmark",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W17-4770",\n doi = "10.18653/v1/W17-4770",\n pages = "612--618",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' _lowerCAmelCase : Optional[Any] = '\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n' _lowerCAmelCase : List[Any] = '\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n \'score\' (float): The chrF (chrF++) score,\n \'char_order\' (int): The character n-gram order,\n \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n \'beta\' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase ( datasets.Metric ): def lowercase ( self ): if version.parse(scb.__version__ ) < version.parse('1.4.12' ): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/mjpost/sacreBLEU#chrf--chrf' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/mjpost/sacreBLEU#chrf--chrf'] , reference_urls=[ 'https://github.com/m-popovic/chrF', ] , ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ = CHRF.CHAR_ORDER , snake_case__ = CHRF.WORD_ORDER , snake_case__ = CHRF.BETA , snake_case__ = False , snake_case__ = False , snake_case__ = False , ): lowerCAmelCase : List[str] = len(references[0] ) if any(len(snake_case__ ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) lowerCAmelCase : List[str] = [[refs[i] for refs in references] for i in range(snake_case__ )] lowerCAmelCase : Union[str, Any] = CHRF(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase : Dict = sb_chrf.corpus_score(snake_case__ , snake_case__ ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
646
1
'''simple docstring''' import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor _lowerCAmelCase : int = logging.getLogger(__name__) _lowerCAmelCase : int = 50 # max width of layer names _lowerCAmelCase : Any = 70 # max width of quantizer names def __UpperCamelCase ( _A : Optional[Any] ) -> List[str]: """simple docstring""" lowerCAmelCase : List[Any] = parser.add_argument_group('quant_trainer arguments' ) group.add_argument('--wprec' , type=_A , default=8 , help='weight precision' ) group.add_argument('--aprec' , type=_A , default=8 , help='activation precision' ) group.add_argument('--quant-per-tensor' , action='store_true' , help='per tensor weight scaling' ) group.add_argument('--quant-disable' , action='store_true' , help='disable all quantizers' ) group.add_argument('--quant-disable-embeddings' , action='store_true' , help='disable all embeddings quantizers' ) group.add_argument('--quant-disable-keyword' , type=_A , nargs='+' , help='disable quantizers by keyword' ) group.add_argument('--quant-disable-layer-module' , type=_A , help='disable quantizers by keyword under layer.' ) group.add_argument('--quant-enable-layer-module' , type=_A , help='enable quantizers by keyword under layer' ) group.add_argument('--calibrator' , default='max' , help='which quantization range calibrator to use' ) group.add_argument('--percentile' , default=_A , type=_A , help='percentile for PercentileCalibrator' ) group.add_argument('--fuse-qkv' , action='store_true' , help='use the same scale factor for qkv' ) group.add_argument('--clip-gelu' , metavar='N' , type=_A , help='clip gelu output maximum value to N' ) group.add_argument( '--recalibrate-weights' , action='store_true' , help=( 'recalibrate weight amaxes by taking the max of the weights.' ' amaxes will be computed with the current quantization granularity (axis).' ) , ) def __UpperCamelCase ( _A : Union[str, Any] ) -> int: """simple docstring""" if args.calibrator == "max": lowerCAmelCase : Any = 'max' elif args.calibrator == "percentile": if args.percentile is None: raise ValueError('Specify --percentile when using percentile calibrator' ) lowerCAmelCase : List[Any] = 'histogram' elif args.calibrator == "mse": lowerCAmelCase : str = 'histogram' else: raise ValueError(F"Invalid calibrator {args.calibrator}" ) lowerCAmelCase : List[str] = QuantDescriptor(num_bits=args.aprec , calib_method=_A ) lowerCAmelCase : Optional[Any] = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(_A ) quant_nn.QuantLinear.set_default_quant_desc_weight(_A ) def __UpperCamelCase ( _A : int , _A : Dict , _A : int=False , _A : Any=False ) -> Optional[int]: """simple docstring""" logger.info('Configuring Model for Quantization' ) logger.info(F"using quantization package {pytorch_quantization.__file__}" ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(_A , ['embeddings'] , which='weight' , _disabled=_A ) if args.quant_disable: set_quantizer_by_name(_A , [''] , _disabled=_A ) if args.quant_disable_keyword: set_quantizer_by_name(_A , args.quant_disable_keyword , _disabled=_A ) if args.quant_disable_layer_module: set_quantizer_by_name(_A , [r'layer.\d+.' + args.quant_disable_layer_module] , _disabled=_A ) if args.quant_enable_layer_module: set_quantizer_by_name(_A , [r'layer.\d+.' + args.quant_enable_layer_module] , _disabled=_A ) if args.recalibrate_weights: recalibrate_weights(_A ) if args.fuse_qkv: fuse_qkv(_A , _A ) if args.clip_gelu: clip_gelu(_A , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(_A ) def __UpperCamelCase ( _A : List[str] ) -> List[str]: """simple docstring""" logger.info('Enabling Calibration' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(F"{name:80}: {module}" ) def __UpperCamelCase ( _A : str , _A : Optional[Any] ) -> str: """simple docstring""" logger.info('Loading calibrated amax' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax('percentile' , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(_A ) def __UpperCamelCase ( _A : Optional[int] , _A : Optional[Any] ) -> Any: """simple docstring""" def fusea(_A : Optional[int] , _A : List[Any] , _A : Any ): for mod in [qq, qk, qv]: if not hasattr(_A , '_amax' ): print(' WARNING: NO AMAX BUFFER' ) return lowerCAmelCase : Optional[Any] = qq._amax.detach().item() lowerCAmelCase : Union[str, Any] = qk._amax.detach().item() lowerCAmelCase : Tuple = qv._amax.detach().item() lowerCAmelCase : Union[str, Any] = max(_A , _A , _A ) qq._amax.fill_(_A ) qk._amax.fill_(_A ) qv._amax.fill_(_A ) logger.info(F" q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}" ) for name, mod in model.named_modules(): if name.endswith('.attention.self' ): logger.info(F"FUSE_QKV: {name:{name_width}}" ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def __UpperCamelCase ( _A : Dict , _A : List[Any] ) -> int: """simple docstring""" for name, mod in model.named_modules(): if name.endswith('.output.dense' ) and not name.endswith('attention.output.dense' ): lowerCAmelCase : Optional[Any] = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=_A ) lowerCAmelCase : Optional[Any] = mod._input_quantizer._amax.data.detach().item() logger.info(F"CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}" ) def __UpperCamelCase ( _A : List[str] ) -> int: """simple docstring""" for name, mod in model.named_modules(): if hasattr(_A , '_weight_quantizer' ) and mod._weight_quantizer.axis is not None: lowerCAmelCase : List[str] = mod.weight.shape[0] lowerCAmelCase : Any = mod._weight_quantizer._amax.detach() lowerCAmelCase : Union[str, Any] = torch.ones(_A , dtype=amax.dtype , device=amax.device ) * amax print(F"expanding {name} {amax} -> {mod._weight_quantizer._amax}" ) def __UpperCamelCase ( _A : Union[str, Any] ) -> Optional[Any]: """simple docstring""" for name, mod in model.named_modules(): if hasattr(_A , '_weight_quantizer' ): if not hasattr(mod.weight_quantizer , '_amax' ): print('RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER' ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) lowerCAmelCase : Optional[Any] = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) lowerCAmelCase : Optional[Any] = set(range(len(mod.weight.size() ) ) ) - axis_set lowerCAmelCase : List[Any] = pytorch_quantization.utils.reduce_amax(mod.weight , axis=_A , keepdims=_A ).detach() logger.info(F"RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}" ) lowerCAmelCase : Optional[Any] = amax def __UpperCamelCase ( _A : Optional[Any] , _A : Any=25 , _A : Optional[Any]=1_80 , _A : str=None ) -> List[Any]: """simple docstring""" if ignore is None: lowerCAmelCase : List[Any] = [] elif not isinstance(_A , _A ): lowerCAmelCase : Dict = [ignore] lowerCAmelCase : Optional[int] = 0 for name, mod in model.named_modules(): if not hasattr(_A , 'weight' ): continue lowerCAmelCase : str = max(_A , len(_A ) ) for name, mod in model.named_modules(): lowerCAmelCase : Union[str, Any] = getattr(_A , '_input_quantizer' , _A ) lowerCAmelCase : Any = getattr(_A , '_weight_quantizer' , _A ) if not hasattr(_A , 'weight' ): continue if type(_A ) in ignore: continue if [True for s in ignore if type(_A ) is str and s in name]: continue lowerCAmelCase : Any = F"Act:{input_q.extra_repr()}" lowerCAmelCase : Optional[Any] = F"Wgt:{weight_q.extra_repr()}" lowerCAmelCase : Tuple = F"{name:{name_width}} {act_str} {wgt_str}" if len(_A ) <= line_width: logger.info(_A ) else: logger.info(F"{name:{name_width}} {act_str}" ) logger.info(F"{' ':{name_width}} {wgt_str}" ) def __UpperCamelCase ( _A : Any ) -> List[str]: """simple docstring""" lowerCAmelCase : int = 0 for name, mod in model.named_modules(): if isinstance(_A , pytorch_quantization.nn.TensorQuantizer ): print(F"{name:80} {mod}" ) count += 1 print(F"{count} TensorQuantizers found in model" ) def __UpperCamelCase ( _A : Any , _A : Optional[int] , _A : int , _A : Optional[int] , _A : str ) -> Dict: """simple docstring""" lowerCAmelCase : Optional[int] = getattr(_A , _A , _A ) if quantizer_mod is not None: assert hasattr(_A , _A ) setattr(_A , _A , _A ) else: logger.warning(F"{name} has no {quantizer}" ) def __UpperCamelCase ( _A : int , _A : Tuple , _A : List[Any]="both" , **_A : int ) -> List[str]: """simple docstring""" lowerCAmelCase : Any = F"Warning: changing {which} quantizers of {name:{qname_width}}" for k, v in kwargs.items(): s += F" {k}={v}" if which in ["input", "both"]: set_quantizer(_A , _A , '_input_quantizer' , _A , _A ) if which in ["weight", "both"]: set_quantizer(_A , _A , '_weight_quantizer' , _A , _A ) logger.info(_A ) def __UpperCamelCase ( _A : int , _A : Optional[Any] , **_A : Any ) -> Dict: """simple docstring""" for name, mod in model.named_modules(): if hasattr(_A , '_input_quantizer' ) or hasattr(_A , '_weight_quantizer' ): for n in names: if re.search(_A , _A ): set_quantizers(_A , _A , **_A ) elif name.endswith('_quantizer' ): for n in names: if re.search(_A , _A ): lowerCAmelCase : Dict = F"Warning: changing {name:{name_width}}" for k, v in kwargs.items(): s += F" {k}={v}" setattr(_A , _A , _A ) logger.info(_A )
646
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : str = logging.get_logger(__name__) _lowerCAmelCase : Tuple = { 's-JoL/Open-Llama-V1': 'https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json', } class lowerCAmelCase ( a ): _lowerCamelCase : Union[str, Any] = """open-llama""" def __init__( self , snake_case__=10_0000 , snake_case__=4096 , snake_case__=1_1008 , snake_case__=32 , snake_case__=32 , snake_case__="silu" , snake_case__=2048 , snake_case__=0.0_2 , snake_case__=1e-6 , snake_case__=True , snake_case__=0 , snake_case__=1 , snake_case__=2 , snake_case__=False , snake_case__=True , snake_case__=0.1 , snake_case__=0.1 , snake_case__=True , snake_case__=True , snake_case__=None , **snake_case__ , ): lowerCAmelCase : Tuple = vocab_size lowerCAmelCase : Optional[Any] = max_position_embeddings lowerCAmelCase : List[Any] = hidden_size lowerCAmelCase : List[Any] = intermediate_size lowerCAmelCase : Tuple = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : str = rms_norm_eps lowerCAmelCase : Optional[int] = use_cache lowerCAmelCase : Dict = kwargs.pop( 'use_memorry_efficient_attention' , snake_case__ ) lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : Optional[Any] = attention_dropout_prob lowerCAmelCase : Union[str, Any] = use_stable_embedding lowerCAmelCase : Tuple = shared_input_output_embedding lowerCAmelCase : Tuple = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , tie_word_embeddings=snake_case__ , **snake_case__ , ) def lowercase ( self ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , snake_case__ ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' f"got {self.rope_scaling}" ) lowerCAmelCase : List[Any] = self.rope_scaling.get('type' , snake_case__ ) lowerCAmelCase : List[str] = self.rope_scaling.get('factor' , snake_case__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(snake_case__ , snake_case__ ) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
646
1
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType _lowerCAmelCase : int = logging.get_logger(__name__) _lowerCAmelCase : int = { 'microsoft/deberta-v2-xlarge': 'https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json', 'microsoft/deberta-v2-xxlarge': 'https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json', 'microsoft/deberta-v2-xlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json' ), 'microsoft/deberta-v2-xxlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json' ), } class lowerCAmelCase ( a ): _lowerCamelCase : Tuple = """deberta-v2""" def __init__( self , snake_case__=12_8100 , snake_case__=1536 , snake_case__=24 , snake_case__=24 , snake_case__=6144 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=0 , snake_case__=0.0_2 , snake_case__=1e-7 , snake_case__=False , snake_case__=-1 , snake_case__=0 , snake_case__=True , snake_case__=None , snake_case__=0 , snake_case__="gelu" , **snake_case__ , ): super().__init__(**snake_case__ ) lowerCAmelCase : str = hidden_size lowerCAmelCase : Tuple = num_hidden_layers lowerCAmelCase : Union[str, Any] = num_attention_heads lowerCAmelCase : Tuple = intermediate_size lowerCAmelCase : Dict = hidden_act lowerCAmelCase : int = hidden_dropout_prob lowerCAmelCase : Any = attention_probs_dropout_prob lowerCAmelCase : Tuple = max_position_embeddings lowerCAmelCase : Tuple = type_vocab_size lowerCAmelCase : str = initializer_range lowerCAmelCase : Any = relative_attention lowerCAmelCase : Dict = max_relative_positions lowerCAmelCase : int = pad_token_id lowerCAmelCase : Union[str, Any] = position_biased_input # Backwards compatibility if type(snake_case__ ) == str: lowerCAmelCase : int = [x.strip() for x in pos_att_type.lower().split('|' )] lowerCAmelCase : List[str] = pos_att_type lowerCAmelCase : Optional[Any] = vocab_size lowerCAmelCase : Tuple = layer_norm_eps lowerCAmelCase : Dict = kwargs.get('pooler_hidden_size' , snake_case__ ) lowerCAmelCase : Optional[int] = pooler_dropout lowerCAmelCase : Optional[Any] = pooler_hidden_act class lowerCAmelCase ( a ): @property def lowercase ( self ): if self.task == "multiple-choice": lowerCAmelCase : str = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase : Union[str, Any] = {0: 'batch', 1: 'sequence'} if self._config.type_vocab_size > 0: return OrderedDict( [('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis)] ) else: return OrderedDict([('input_ids', dynamic_axis), ('attention_mask', dynamic_axis)] ) @property def lowercase ( self ): return 12 def lowercase ( self , snake_case__ , snake_case__ = -1 , snake_case__ = -1 , snake_case__ = -1 , snake_case__ = False , snake_case__ = None , snake_case__ = 3 , snake_case__ = 40 , snake_case__ = 40 , snake_case__ = None , ): lowerCAmelCase : Tuple = super().generate_dummy_inputs(preprocessor=snake_case__ , framework=snake_case__ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
646
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) _lowerCAmelCase : Dict = { 'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class lowerCAmelCase ( a ): _lowerCamelCase : Any = """deformable_detr""" _lowerCamelCase : List[str] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , snake_case__=True , snake_case__=None , snake_case__=3 , snake_case__=300 , snake_case__=1024 , snake_case__=6 , snake_case__=1024 , snake_case__=8 , snake_case__=6 , snake_case__=1024 , snake_case__=8 , snake_case__=0.0 , snake_case__=True , snake_case__="relu" , snake_case__=256 , snake_case__=0.1 , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.0_2 , snake_case__=1.0 , snake_case__=True , snake_case__=False , snake_case__="sine" , snake_case__="resnet50" , snake_case__=True , snake_case__=False , snake_case__=4 , snake_case__=4 , snake_case__=4 , snake_case__=False , snake_case__=300 , snake_case__=False , snake_case__=1 , snake_case__=5 , snake_case__=2 , snake_case__=1 , snake_case__=1 , snake_case__=5 , snake_case__=2 , snake_case__=0.1 , snake_case__=0.2_5 , snake_case__=False , **snake_case__ , ): if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) lowerCAmelCase : Optional[int] = CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : List[str] = backbone_config.get('model_type' ) lowerCAmelCase : str = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase : Optional[Any] = config_class.from_dict(snake_case__ ) lowerCAmelCase : Union[str, Any] = use_timm_backbone lowerCAmelCase : List[Any] = backbone_config lowerCAmelCase : Any = num_channels lowerCAmelCase : Tuple = num_queries lowerCAmelCase : Dict = max_position_embeddings lowerCAmelCase : int = d_model lowerCAmelCase : List[str] = encoder_ffn_dim lowerCAmelCase : List[str] = encoder_layers lowerCAmelCase : int = encoder_attention_heads lowerCAmelCase : str = decoder_ffn_dim lowerCAmelCase : str = decoder_layers lowerCAmelCase : Dict = decoder_attention_heads lowerCAmelCase : str = dropout lowerCAmelCase : List[str] = attention_dropout lowerCAmelCase : Union[str, Any] = activation_dropout lowerCAmelCase : str = activation_function lowerCAmelCase : Any = init_std lowerCAmelCase : Any = init_xavier_std lowerCAmelCase : Dict = encoder_layerdrop lowerCAmelCase : int = auxiliary_loss lowerCAmelCase : Optional[Any] = position_embedding_type lowerCAmelCase : List[str] = backbone lowerCAmelCase : int = use_pretrained_backbone lowerCAmelCase : int = dilation # deformable attributes lowerCAmelCase : List[str] = num_feature_levels lowerCAmelCase : List[str] = encoder_n_points lowerCAmelCase : Union[str, Any] = decoder_n_points lowerCAmelCase : Tuple = two_stage lowerCAmelCase : Dict = two_stage_num_proposals lowerCAmelCase : Union[str, Any] = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.' ) # Hungarian matcher lowerCAmelCase : Union[str, Any] = class_cost lowerCAmelCase : Dict = bbox_cost lowerCAmelCase : List[Any] = giou_cost # Loss coefficients lowerCAmelCase : Dict = mask_loss_coefficient lowerCAmelCase : Any = dice_loss_coefficient lowerCAmelCase : str = bbox_loss_coefficient lowerCAmelCase : Tuple = giou_loss_coefficient lowerCAmelCase : List[str] = eos_coefficient lowerCAmelCase : Any = focal_alpha lowerCAmelCase : Dict = disable_custom_kernels super().__init__(is_encoder_decoder=snake_case__ , **snake_case__ ) @property def lowercase ( self ): return self.encoder_attention_heads @property def lowercase ( self ): return self.d_model def lowercase ( self ): lowerCAmelCase : Union[str, Any] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: lowerCAmelCase : List[Any] = self.backbone_config.to_dict() lowerCAmelCase : str = self.__class__.model_type return output
646
1
'''simple docstring''' import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification _lowerCAmelCase : Union[str, Any] = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co _lowerCAmelCase : Optional[Any] = 'main' # Default branch name _lowerCAmelCase : Optional[Any] = 'f2c752cfc5c0ab6f4bdec59acea69eefbee381c2' # One particular commit (not the top of `main`) _lowerCAmelCase : Tuple = 'aaaaaaa' # This commit does not exist, so we should 404. _lowerCAmelCase : Union[str, Any] = 'd9e9f15bc825e4b2c9249e9578f884bbcb5e3684' # Sha-1 of config.json on the top of `main`, for checking purposes _lowerCAmelCase : int = '4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3' @contextlib.contextmanager def __UpperCamelCase ( ) -> Union[str, Any]: """simple docstring""" print('Welcome!' ) yield print('Bye!' ) @contextlib.contextmanager def __UpperCamelCase ( ) -> Any: """simple docstring""" print('Bonjour!' ) yield print('Au revoir!' ) class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): # If the spec is missing, importlib would not be able to import the module dynamically. assert transformers.__spec__ is not None assert importlib.util.find_spec('transformers' ) is not None class lowerCAmelCase ( unittest.TestCase ): @unittest.mock.patch('sys.stdout' , new_callable=io.StringIO ) def lowercase ( self , snake_case__ ): with ContextManagers([] ): print('Transformers are awesome!' ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , 'Transformers are awesome!\n' ) @unittest.mock.patch('sys.stdout' , new_callable=io.StringIO ) def lowercase ( self , snake_case__ ): with ContextManagers([context_en()] ): print('Transformers are awesome!' ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , 'Welcome!\nTransformers are awesome!\nBye!\n' ) @unittest.mock.patch('sys.stdout' , new_callable=io.StringIO ) def lowercase ( self , snake_case__ ): with ContextManagers([context_fr(), context_en()] ): print('Transformers are awesome!' ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , 'Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n' ) @require_torch def lowercase ( self ): self.assertEqual(find_labels(snake_case__ ) , ['labels'] ) self.assertEqual(find_labels(snake_case__ ) , ['labels', 'next_sentence_label'] ) self.assertEqual(find_labels(snake_case__ ) , ['start_positions', 'end_positions'] ) class lowerCAmelCase ( a ): pass self.assertEqual(find_labels(snake_case__ ) , ['labels'] ) @require_tf def lowercase ( self ): self.assertEqual(find_labels(snake_case__ ) , ['labels'] ) self.assertEqual(find_labels(snake_case__ ) , ['labels', 'next_sentence_label'] ) self.assertEqual(find_labels(snake_case__ ) , ['start_positions', 'end_positions'] ) class lowerCAmelCase ( a ): pass self.assertEqual(find_labels(snake_case__ ) , ['labels'] ) @require_flax def lowercase ( self ): # Flax models don't have labels self.assertEqual(find_labels(snake_case__ ) , [] ) self.assertEqual(find_labels(snake_case__ ) , [] ) self.assertEqual(find_labels(snake_case__ ) , [] ) class lowerCAmelCase ( a ): pass self.assertEqual(find_labels(snake_case__ ) , [] )
646
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece_no_bos.model') @require_sentencepiece @require_tokenizers class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : str = PegasusTokenizer _lowerCamelCase : Union[str, Any] = PegasusTokenizerFast _lowerCamelCase : Optional[Any] = True _lowerCamelCase : Optional[Any] = True def lowercase ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : List[Any] = PegasusTokenizer(snake_case__ ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase ( self ): return PegasusTokenizer.from_pretrained('google/pegasus-large' ) def lowercase ( self , **snake_case__ ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def lowercase ( self , snake_case__ ): return ("This is a test", "This is a test") def lowercase ( self ): lowerCAmelCase : Optional[int] = '</s>' lowerCAmelCase : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '</s>' ) self.assertEqual(vocab_keys[-1] , 'v' ) self.assertEqual(len(snake_case__ ) , 1103 ) def lowercase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def lowercase ( self ): lowerCAmelCase : List[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : List[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : Optional[Any] = ( 'Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important' ' </s> <pad> <pad> <pad>' ) lowerCAmelCase : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] lowerCAmelCase : Optional[int] = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Any = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowerCAmelCase : List[str] = '<mask_1> To ensure a <mask_2> flow of bank resolutions.' lowerCAmelCase : Optional[Any] = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1] lowerCAmelCase : Optional[Any] = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Optional[Any] = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 lowerCAmelCase : List[Any] = 'To ensure a smooth flow of bank resolutions.' lowerCAmelCase : Optional[int] = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1] lowerCAmelCase : Any = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def lowercase ( self ): lowerCAmelCase : Union[str, Any] = ['This is going to be way too long.' * 150, 'short example'] lowerCAmelCase : int = ['not super long but more than 5 tokens', 'tiny'] lowerCAmelCase : Dict = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) lowerCAmelCase : Dict = self._large_tokenizer( text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(snake_case__ ) == 2 # input_ids, attention_mask. @slow def lowercase ( self ): # fmt: off lowerCAmelCase : Tuple = {'input_ids': [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name='google/bigbird-pegasus-large-arxiv' , revision='ba85d0851d708441f91440d509690f1ab6353415' , ) @require_sentencepiece @require_tokenizers class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : Optional[Any] = PegasusTokenizer _lowerCamelCase : str = PegasusTokenizerFast _lowerCamelCase : Tuple = True _lowerCamelCase : int = True def lowercase ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : int = PegasusTokenizer(snake_case__ , offset=0 , mask_token_sent=snake_case__ , mask_token='[MASK]' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase ( self ): return PegasusTokenizer.from_pretrained('google/bigbird-pegasus-large-arxiv' ) def lowercase ( self , **snake_case__ ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def lowercase ( self , snake_case__ ): return ("This is a test", "This is a test") def lowercase ( self ): lowerCAmelCase : Tuple = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : Union[str, Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : List[str] = ( 'Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>' ' <pad> <pad> <pad>' ) lowerCAmelCase : Dict = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] lowerCAmelCase : Union[str, Any] = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) @require_torch def lowercase ( self ): lowerCAmelCase : Optional[int] = ['This is going to be way too long.' * 1000, 'short example'] lowerCAmelCase : Union[str, Any] = ['not super long but more than 5 tokens', 'tiny'] lowerCAmelCase : List[str] = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) lowerCAmelCase : List[str] = self._large_tokenizer( text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(snake_case__ ) == 2 # input_ids, attention_mask. def lowercase ( self ): lowerCAmelCase : List[str] = ( 'This is an example string that is used to test the original TF implementation against the HF' ' implementation' ) lowerCAmelCase : Tuple = self._large_tokenizer(snake_case__ ).input_ids self.assertListEqual( snake_case__ , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
646
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : List[str] = KandinskyVaaImgaImgPipeline _lowerCamelCase : int = ["""image_embeds""", """negative_image_embeds""", """image"""] _lowerCamelCase : Any = [ """image_embeds""", """negative_image_embeds""", """image""", ] _lowerCamelCase : Any = [ """generator""", """height""", """width""", """strength""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] _lowerCamelCase : Dict = False @property def lowercase ( self ): return 32 @property def lowercase ( self ): return 32 @property def lowercase ( self ): return self.time_input_dim @property def lowercase ( self ): return self.time_input_dim * 4 @property def lowercase ( self ): return 100 @property def lowercase ( self ): torch.manual_seed(0 ) lowerCAmelCase : List[Any] = { 'in_channels': 4, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } lowerCAmelCase : Union[str, Any] = UNetaDConditionModel(**snake_case__ ) return model @property def lowercase ( self ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowercase ( self ): torch.manual_seed(0 ) lowerCAmelCase : Any = VQModel(**self.dummy_movq_kwargs ) return model def lowercase ( self ): lowerCAmelCase : Optional[int] = self.dummy_unet lowerCAmelCase : Tuple = self.dummy_movq lowerCAmelCase : List[Any] = { 'num_train_timesteps': 1000, 'beta_schedule': 'linear', 'beta_start': 0.0_0_0_8_5, 'beta_end': 0.0_1_2, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } lowerCAmelCase : List[Any] = DDIMScheduler(**snake_case__ ) lowerCAmelCase : Optional[int] = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def lowercase ( self , snake_case__ , snake_case__=0 ): lowerCAmelCase : Dict = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) lowerCAmelCase : List[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( snake_case__ ) # create init_image lowerCAmelCase : Optional[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) lowerCAmelCase : Tuple = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase : Dict = Image.fromarray(np.uinta(snake_case__ ) ).convert('RGB' ).resize((256, 256) ) if str(snake_case__ ).startswith('mps' ): lowerCAmelCase : Union[str, Any] = torch.manual_seed(snake_case__ ) else: lowerCAmelCase : Union[str, Any] = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) lowerCAmelCase : str = { 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 10, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def lowercase ( self ): lowerCAmelCase : Union[str, Any] = 'cpu' lowerCAmelCase : Optional[int] = self.get_dummy_components() lowerCAmelCase : Tuple = self.pipeline_class(**snake_case__ ) lowerCAmelCase : str = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Union[str, Any] = pipe(**self.get_dummy_inputs(snake_case__ ) ) lowerCAmelCase : int = output.images lowerCAmelCase : Tuple = pipe( **self.get_dummy_inputs(snake_case__ ) , return_dict=snake_case__ , )[0] lowerCAmelCase : str = image[0, -3:, -3:, -1] lowerCAmelCase : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase : Tuple = np.array( [0.6_1_9_9_7_7_8, 0.6_3_9_8_4_4_0_6, 0.4_6_1_4_5_7_8_5, 0.6_2_9_4_4_9_8_4, 0.5_6_2_2_2_1_5, 0.4_7_3_0_6_1_3_2, 0.4_7_4_4_1_4_5_6, 0.4_6_0_7_6_0_6, 0.4_8_7_1_9_2_6_3] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self ): lowerCAmelCase : Tuple = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_img2img_frog.npy' ) lowerCAmelCase : Optional[int] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) lowerCAmelCase : Optional[Any] = 'A red cartoon frog, 4k' lowerCAmelCase : List[str] = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(snake_case__ ) lowerCAmelCase : Any = KandinskyVaaImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-decoder' , torch_dtype=torch.floataa ) lowerCAmelCase : Optional[int] = pipeline.to(snake_case__ ) pipeline.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : int = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCAmelCase , lowerCAmelCase : Dict = pipe_prior( snake_case__ , generator=snake_case__ , num_inference_steps=5 , negative_prompt='' , ).to_tuple() lowerCAmelCase : Optional[int] = pipeline( image=snake_case__ , image_embeds=snake_case__ , negative_image_embeds=snake_case__ , generator=snake_case__ , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='np' , ) lowerCAmelCase : Optional[int] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(snake_case__ , snake_case__ )
646
'''simple docstring''' import math import sys import cva import numpy as np def __UpperCamelCase ( _A : np.ndarray , _A : float ) -> np.ndarray: """simple docstring""" lowerCAmelCase : Union[str, Any] = math.sqrt(_A ) lowerCAmelCase : Union[str, Any] = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def __UpperCamelCase ( _A : np.ndarray , _A : int , _A : int , _A : int ) -> np.ndarray: """simple docstring""" lowerCAmelCase : int = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def __UpperCamelCase ( _A : int , _A : float ) -> np.ndarray: """simple docstring""" lowerCAmelCase : Dict = np.zeros((kernel_size, kernel_size) ) for i in range(0 , _A ): for j in range(0 , _A ): lowerCAmelCase : Optional[int] = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(_A , _A ) def __UpperCamelCase ( _A : np.ndarray , _A : float , _A : float , _A : int , ) -> np.ndarray: """simple docstring""" lowerCAmelCase : str = np.zeros(img.shape ) lowerCAmelCase : int = get_gauss_kernel(_A , _A ) lowerCAmelCase , lowerCAmelCase : Dict = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): lowerCAmelCase : int = get_slice(_A , _A , _A , _A ) lowerCAmelCase : Any = img_s - img_s[kernel_size // 2, kernel_size // 2] lowerCAmelCase : str = vec_gaussian(_A , _A ) lowerCAmelCase : Optional[int] = np.multiply(_A , _A ) lowerCAmelCase : str = np.multiply(_A , _A ) lowerCAmelCase : Union[str, Any] = np.sum(_A ) / np.sum(_A ) lowerCAmelCase : Tuple = val return imga def __UpperCamelCase ( _A : list ) -> tuple: """simple docstring""" lowerCAmelCase : List[Any] = args[1] if args[1:] else '../image_data/lena.jpg' lowerCAmelCase : Any = float(args[2] ) if args[2:] else 1.0 lowerCAmelCase : Union[str, Any] = float(args[3] ) if args[3:] else 1.0 if args[4:]: lowerCAmelCase : int = int(args[4] ) lowerCAmelCase : Optional[Any] = kernel_size + abs(kernel_size % 2 - 1 ) else: lowerCAmelCase : Optional[int] = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Any = parse_args(sys.argv) _lowerCAmelCase : str = cva.imread(filename, 0) cva.imshow('input image', img) _lowerCAmelCase : Union[str, Any] = img / 255 _lowerCAmelCase : List[str] = out.astype('float32') _lowerCAmelCase : Optional[int] = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) _lowerCAmelCase : Union[str, Any] = out * 255 _lowerCAmelCase : Optional[Any] = np.uinta(out) cva.imshow('output image', out) cva.waitKey(0) cva.destroyAllWindows()
646
1
'''simple docstring''' import math from datetime import datetime, timedelta def __UpperCamelCase ( _A : int ) -> datetime: """simple docstring""" lowerCAmelCase : Optional[int] = year % 19 lowerCAmelCase : Optional[Any] = year % 4 lowerCAmelCase : List[Any] = year % 7 lowerCAmelCase : List[Any] = math.floor(year / 1_00 ) lowerCAmelCase : List[str] = math.floor((13 + 8 * leap_day_inhibits) / 25 ) lowerCAmelCase : Any = leap_day_inhibits / 4 lowerCAmelCase : int = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 lowerCAmelCase : Any = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 lowerCAmelCase : Tuple = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon lowerCAmelCase : List[Any] = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(_A , 4 , 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(_A , 4 , 18 ) else: return datetime(_A , 3 , 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1994, 2000, 2010, 2021, 2023): _lowerCAmelCase : List[str] = 'will be' if year > datetime.now().year else 'was' print(f"""Easter in {year} {tense} {gauss_easter(year)}""")
646
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowerCAmelCase : int = { 'configuration_nezha': ['NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NezhaConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Tuple = [ 'NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST', 'NezhaForNextSentencePrediction', 'NezhaForMaskedLM', 'NezhaForPreTraining', 'NezhaForMultipleChoice', 'NezhaForQuestionAnswering', 'NezhaForSequenceClassification', 'NezhaForTokenClassification', 'NezhaModel', 'NezhaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys _lowerCAmelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
646
1
'''simple docstring''' def __UpperCamelCase ( _A : int , _A : list[int] , _A : int ) -> int: """simple docstring""" def count_of_possible_combinations(_A : int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(_A ) def __UpperCamelCase ( _A : int , _A : list[int] , _A : int ) -> int: """simple docstring""" def count_of_possible_combinations_with_dp_array( _A : int , _A : list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] lowerCAmelCase : List[Any] = sum( count_of_possible_combinations_with_dp_array(target - item , _A ) for item in array ) lowerCAmelCase : Tuple = answer return answer lowerCAmelCase : Optional[Any] = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(_A , _A ) def __UpperCamelCase ( _A : int , _A : list[int] , _A : int ) -> int: """simple docstring""" lowerCAmelCase : List[Any] = [0] * (target + 1) lowerCAmelCase : Any = 1 for i in range(1 , target + 1 ): for j in range(_A ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : List[str] = 3 _lowerCAmelCase : Union[str, Any] = 5 _lowerCAmelCase : Tuple = [1, 2, 5] print(combination_sum_iv(n, array, target))
646
'''simple docstring''' from typing import Any class lowerCAmelCase : def __init__( self , snake_case__ ): lowerCAmelCase : Optional[int] = data lowerCAmelCase : Optional[Any] = None def __repr__( self ): return f"Node({self.data})" class lowerCAmelCase : def __init__( self ): lowerCAmelCase : Dict = None def __iter__( self ): lowerCAmelCase : Optional[Any] = self.head while node: yield node.data lowerCAmelCase : Optional[int] = node.next def __len__( self ): return sum(1 for _ in self ) def __repr__( self ): return "->".join([str(snake_case__ ) for item in self] ) def __getitem__( self , snake_case__ ): if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , snake_case__ , snake_case__ ): if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) lowerCAmelCase : Any = self.head for _ in range(snake_case__ ): lowerCAmelCase : List[str] = current.next lowerCAmelCase : int = data def lowercase ( self , snake_case__ ): self.insert_nth(len(self ) , snake_case__ ) def lowercase ( self , snake_case__ ): self.insert_nth(0 , snake_case__ ) def lowercase ( self , snake_case__ , snake_case__ ): if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) lowerCAmelCase : List[str] = Node(snake_case__ ) if self.head is None: lowerCAmelCase : int = new_node elif index == 0: lowerCAmelCase : List[Any] = self.head # link new_node to head lowerCAmelCase : List[Any] = new_node else: lowerCAmelCase : List[Any] = self.head for _ in range(index - 1 ): lowerCAmelCase : Union[str, Any] = temp.next lowerCAmelCase : Any = temp.next lowerCAmelCase : str = new_node def lowercase ( self ): # print every node data print(self ) def lowercase ( self ): return self.delete_nth(0 ) def lowercase ( self ): # delete from tail return self.delete_nth(len(self ) - 1 ) def lowercase ( self , snake_case__ = 0 ): if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) lowerCAmelCase : List[str] = self.head # default first node if index == 0: lowerCAmelCase : Tuple = self.head.next else: lowerCAmelCase : Dict = self.head for _ in range(index - 1 ): lowerCAmelCase : Tuple = temp.next lowerCAmelCase : Dict = temp.next lowerCAmelCase : Tuple = temp.next.next return delete_node.data def lowercase ( self ): return self.head is None def lowercase ( self ): lowerCAmelCase : List[Any] = None lowerCAmelCase : Any = self.head while current: # Store the current node's next node. lowerCAmelCase : List[str] = current.next # Make the current node's next point backwards lowerCAmelCase : int = prev # Make the previous node be the current node lowerCAmelCase : int = current # Make the current node the next node (to progress iteration) lowerCAmelCase : Optional[Any] = next_node # Return prev in order to put the head at the end lowerCAmelCase : List[Any] = prev def __UpperCamelCase ( ) -> None: """simple docstring""" lowerCAmelCase : Tuple = LinkedList() assert linked_list.is_empty() is True assert str(_A ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(_A ) == i linked_list.insert_nth(_A , i + 1 ) assert str(_A ) == "->".join(str(_A ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(_A ) == "->".join(str(_A ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(_A ) == 9 assert str(_A ) == "->".join(str(_A ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): lowerCAmelCase : Optional[Any] = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(_A ) == "->".join(str(_A ) for i in range(-8 , 1 ) ) def __UpperCamelCase ( ) -> None: """simple docstring""" lowerCAmelCase : Optional[int] = [ -9, 1_00, Node(77_34_51_12 ), 'dlrow olleH', 7, 55_55, 0, -1_92.5_55_55, 'Hello, world!', 77.9, Node(10 ), None, None, 12.20, ] lowerCAmelCase : Dict = LinkedList() for i in test_input: linked_list.insert_tail(_A ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(_A ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head lowerCAmelCase : Optional[Any] = linked_list.delete_head() assert result == -9 assert ( str(_A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail lowerCAmelCase : List[str] = linked_list.delete_tail() assert result == 12.2 assert ( str(_A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list lowerCAmelCase : List[str] = linked_list.delete_nth(10 ) assert result is None assert ( str(_A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(_A ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(_A ) assert ( str(_A ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(_A ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def __UpperCamelCase ( ) -> List[Any]: """simple docstring""" from doctest import testmod testmod() lowerCAmelCase : Optional[Any] = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(_A ) print('\nReading/changing Node data using indexing:' ) print(F"Element at Position 1: {linked_list[1]}" ) lowerCAmelCase : Tuple = input('Enter New Value: ' ).strip() print('New list:' ) print(_A ) print(F"length of linked_list is : {len(_A )}" ) if __name__ == "__main__": main()
646
1
'''simple docstring''' import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class lowerCAmelCase ( unittest.TestCase ): def __init__( self , snake_case__ , snake_case__ = True , snake_case__ = None , snake_case__ = 32 , snake_case__ = True , snake_case__ = 1 / 255 , snake_case__ = True , snake_case__ = True , snake_case__ = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , snake_case__ = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , snake_case__ = True , snake_case__=7 , snake_case__=30 , snake_case__=400 , snake_case__=3 , ): lowerCAmelCase : Tuple = parent lowerCAmelCase : Union[str, Any] = do_resize lowerCAmelCase : List[Any] = size if size is not None else {'shortest_edge': 288} lowerCAmelCase : str = size_divisor lowerCAmelCase : Optional[int] = do_rescale lowerCAmelCase : List[Any] = rescale_factor lowerCAmelCase : Tuple = do_normalize lowerCAmelCase : Union[str, Any] = do_center_crop lowerCAmelCase : str = image_mean lowerCAmelCase : List[str] = image_std lowerCAmelCase : Dict = do_pad lowerCAmelCase : List[Any] = batch_size lowerCAmelCase : Optional[int] = num_channels lowerCAmelCase : str = min_resolution lowerCAmelCase : Union[str, Any] = max_resolution def lowercase ( self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def lowercase ( self , snake_case__ , snake_case__=False ): if not batched: lowerCAmelCase : Optional[int] = self.size['shortest_edge'] lowerCAmelCase : Union[str, Any] = image_inputs[0] if isinstance(snake_case__ , Image.Image ): lowerCAmelCase , lowerCAmelCase : Optional[Any] = image.size else: lowerCAmelCase , lowerCAmelCase : Optional[Any] = image.shape[1], image.shape[2] lowerCAmelCase : int = size / min(snake_case__ , snake_case__ ) if h < w: lowerCAmelCase , lowerCAmelCase : int = size, scale * w else: lowerCAmelCase , lowerCAmelCase : str = scale * h, size lowerCAmelCase : str = int((1333 / 800) * size ) if max(snake_case__ , snake_case__ ) > max_size: lowerCAmelCase : Dict = max_size / max(snake_case__ , snake_case__ ) lowerCAmelCase : List[str] = newh * scale lowerCAmelCase : Any = neww * scale lowerCAmelCase , lowerCAmelCase : List[str] = int(newh + 0.5 ), int(neww + 0.5 ) lowerCAmelCase , lowerCAmelCase : Tuple = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: lowerCAmelCase : Optional[int] = [] for image in image_inputs: lowerCAmelCase , lowerCAmelCase : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCAmelCase : Optional[Any] = max(snake_case__ , key=lambda snake_case__ : item[0] )[0] lowerCAmelCase : str = max(snake_case__ , key=lambda snake_case__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : int = BridgeTowerImageProcessor if is_vision_available() else None def lowercase ( self ): lowerCAmelCase : Dict = BridgeTowerImageProcessingTester(self ) @property def lowercase ( self ): return self.image_processor_tester.prepare_image_processor_dict() def lowercase ( self ): lowerCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ , 'image_mean' ) ) self.assertTrue(hasattr(snake_case__ , 'image_std' ) ) self.assertTrue(hasattr(snake_case__ , 'do_normalize' ) ) self.assertTrue(hasattr(snake_case__ , 'do_resize' ) ) self.assertTrue(hasattr(snake_case__ , 'size' ) ) self.assertTrue(hasattr(snake_case__ , 'size_divisor' ) ) def lowercase ( self ): pass def lowercase ( self ): # Initialize image processor lowerCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , Image.Image ) # Test not batched input lowerCAmelCase : Any = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values lowerCAmelCase , lowerCAmelCase : Tuple = self.image_processor_tester.get_expected_values(snake_case__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase : Union[str, Any] = image_processing(snake_case__ , return_tensors='pt' ).pixel_values lowerCAmelCase , lowerCAmelCase : Optional[int] = self.image_processor_tester.get_expected_values(snake_case__ , batched=snake_case__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase ( self ): # Initialize image processor lowerCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , numpify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , np.ndarray ) # Test not batched input lowerCAmelCase : int = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values lowerCAmelCase , lowerCAmelCase : Any = self.image_processor_tester.get_expected_values(snake_case__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase : Optional[int] = image_processing(snake_case__ , return_tensors='pt' ).pixel_values lowerCAmelCase , lowerCAmelCase : Any = self.image_processor_tester.get_expected_values(snake_case__ , batched=snake_case__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase ( self ): # Initialize image processor lowerCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , torchify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , torch.Tensor ) # Test not batched input lowerCAmelCase : Dict = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values lowerCAmelCase , lowerCAmelCase : int = self.image_processor_tester.get_expected_values(snake_case__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase : Optional[Any] = image_processing(snake_case__ , return_tensors='pt' ).pixel_values lowerCAmelCase , lowerCAmelCase : Union[str, Any] = self.image_processor_tester.get_expected_values(snake_case__ , batched=snake_case__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
646
'''simple docstring''' _lowerCAmelCase : List[str] = {str(digit): digit**5 for digit in range(10)} def __UpperCamelCase ( _A : int ) -> int: """simple docstring""" return sum(DIGITS_FIFTH_POWER[digit] for digit in str(_A ) ) def __UpperCamelCase ( ) -> int: """simple docstring""" return sum( number for number in range(10_00 , 1_00_00_00 ) if number == digits_fifth_powers_sum(_A ) ) if __name__ == "__main__": print(solution())
646
1
'''simple docstring''' from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image _lowerCAmelCase : Optional[Any] = ['text', 'image', 'audio'] def __UpperCamelCase ( _A : List[str] ) -> Optional[int]: """simple docstring""" lowerCAmelCase : List[Any] = [] for input_type in input_types: if input_type == "text": inputs.append('Text input' ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png' ).resize((5_12, 5_12) ) ) elif input_type == "audio": inputs.append(torch.ones(30_00 ) ) elif isinstance(_A , _A ): inputs.append(create_inputs(_A ) ) else: raise ValueError(F"Invalid type requested: {input_type}" ) return inputs def __UpperCamelCase ( _A : List ) -> Any: """simple docstring""" lowerCAmelCase : List[str] = [] for output in outputs: if isinstance(_A , (str, AgentText) ): output_types.append('text' ) elif isinstance(_A , (Image.Image, AgentImage) ): output_types.append('image' ) elif isinstance(_A , (torch.Tensor, AgentAudio) ): output_types.append('audio' ) else: raise ValueError(F"Invalid output: {output}" ) return output_types @is_tool_test class lowerCAmelCase : def lowercase ( self ): self.assertTrue(hasattr(self.tool , 'inputs' ) ) self.assertTrue(hasattr(self.tool , 'outputs' ) ) lowerCAmelCase : Dict = self.tool.inputs for _input in inputs: if isinstance(_input , snake_case__ ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) lowerCAmelCase : Dict = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def lowercase ( self ): lowerCAmelCase : str = create_inputs(self.tool.inputs ) lowerCAmelCase : Any = self.tool(*snake_case__ ) # There is a single output if len(self.tool.outputs ) == 1: lowerCAmelCase : Dict = [outputs] self.assertListEqual(output_types(snake_case__ ) , self.tool.outputs ) def lowercase ( self ): self.assertTrue(hasattr(self.tool , 'description' ) ) self.assertTrue(hasattr(self.tool , 'default_checkpoint' ) ) self.assertTrue(self.tool.description.startswith('This is a tool that' ) ) def lowercase ( self ): lowerCAmelCase : List[Any] = create_inputs(self.tool.inputs ) lowerCAmelCase : Union[str, Any] = self.tool(*snake_case__ ) if not isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Tuple = [outputs] self.assertEqual(len(snake_case__ ) , len(self.tool.outputs ) ) for output, output_type in zip(snake_case__ , self.tool.outputs ): lowerCAmelCase : Optional[Any] = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(snake_case__ , snake_case__ ) ) def lowercase ( self ): lowerCAmelCase : str = create_inputs(self.tool.inputs ) lowerCAmelCase : Tuple = [] for _input, input_type in zip(snake_case__ , self.tool.inputs ): if isinstance(snake_case__ , snake_case__ ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error lowerCAmelCase : Dict = self.tool(*snake_case__ ) if not isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = [outputs] self.assertEqual(len(snake_case__ ) , len(self.tool.outputs ) )
646
'''simple docstring''' def __UpperCamelCase ( _A : List[str] ) -> Optional[Any]: """simple docstring""" if not head: return True # split the list to two parts lowerCAmelCase , lowerCAmelCase : str = head.next, head while fast and fast.next: lowerCAmelCase : Optional[int] = fast.next.next lowerCAmelCase : int = slow.next lowerCAmelCase : int = slow.next lowerCAmelCase : Optional[Any] = None # Don't forget here! But forget still works! # reverse the second part lowerCAmelCase : List[Any] = None while second: lowerCAmelCase : List[Any] = second.next lowerCAmelCase : Union[str, Any] = node lowerCAmelCase : Optional[Any] = second lowerCAmelCase : Any = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False lowerCAmelCase : Optional[Any] = node.next lowerCAmelCase : Tuple = head.next return True def __UpperCamelCase ( _A : Optional[Any] ) -> Optional[int]: """simple docstring""" if not head or not head.next: return True # 1. Get the midpoint (slow) lowerCAmelCase : Optional[int] = head while fast and fast.next: lowerCAmelCase , lowerCAmelCase : Optional[Any] = fast.next.next, slow.next # 2. Push the second half into the stack lowerCAmelCase : Tuple = [slow.val] while slow.next: lowerCAmelCase : Tuple = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False lowerCAmelCase : Union[str, Any] = cur.next return True def __UpperCamelCase ( _A : Tuple ) -> Optional[int]: """simple docstring""" if not head or not head.next: return True lowerCAmelCase : Optional[int] = {} lowerCAmelCase : int = 0 while head: if head.val in d: d[head.val].append(_A ) else: lowerCAmelCase : Any = [pos] lowerCAmelCase : int = head.next pos += 1 lowerCAmelCase : str = pos - 1 lowerCAmelCase : Optional[Any] = 0 for v in d.values(): if len(_A ) % 2 != 0: middle += 1 else: lowerCAmelCase : Any = 0 for i in range(0 , len(_A ) ): if v[i] + v[len(_A ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
646
1
'''simple docstring''' from bisect import bisect from itertools import accumulate def __UpperCamelCase ( _A : Optional[Any] , _A : Tuple , _A : Dict , _A : List[Any] ) -> int: """simple docstring""" lowerCAmelCase : str = sorted(zip(_A , _A ) , key=lambda _A : x[0] / x[1] , reverse=_A ) lowerCAmelCase , lowerCAmelCase : Tuple = [i[0] for i in r], [i[1] for i in r] lowerCAmelCase : Optional[int] = list(accumulate(_A ) ) lowerCAmelCase : Optional[int] = bisect(_A , _A ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
646
'''simple docstring''' import math def __UpperCamelCase ( _A : int = 1_00 ) -> int: """simple docstring""" lowerCAmelCase : List[Any] = sum(i * i for i in range(1 , n + 1 ) ) lowerCAmelCase : Optional[Any] = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f"""{solution() = }""")
646
1
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : List[Any] = LDMTextToImagePipeline _lowerCamelCase : Optional[Any] = TEXT_TO_IMAGE_PARAMS - { """negative_prompt""", """negative_prompt_embeds""", """cross_attention_kwargs""", """prompt_embeds""", } _lowerCamelCase : List[str] = PipelineTesterMixin.required_optional_params - { """num_images_per_prompt""", """callback""", """callback_steps""", } _lowerCamelCase : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS _lowerCamelCase : Optional[int] = False def lowercase ( self ): torch.manual_seed(0 ) lowerCAmelCase : Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) lowerCAmelCase : int = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , ) torch.manual_seed(0 ) lowerCAmelCase : str = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') , up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') , latent_channels=4 , ) torch.manual_seed(0 ) lowerCAmelCase : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowerCAmelCase : str = CLIPTextModel(snake_case__ ) lowerCAmelCase : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCAmelCase : List[Any] = { 'unet': unet, 'scheduler': scheduler, 'vqvae': vae, 'bert': text_encoder, 'tokenizer': tokenizer, } return components def lowercase ( self , snake_case__ , snake_case__=0 ): if str(snake_case__ ).startswith('mps' ): lowerCAmelCase : Optional[int] = torch.manual_seed(snake_case__ ) else: lowerCAmelCase : str = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) lowerCAmelCase : Tuple = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase ( self ): lowerCAmelCase : List[str] = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase : Optional[Any] = self.get_dummy_components() lowerCAmelCase : Optional[Any] = LDMTextToImagePipeline(**snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Tuple = self.get_dummy_inputs(snake_case__ ) lowerCAmelCase : Union[str, Any] = pipe(**snake_case__ ).images lowerCAmelCase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) lowerCAmelCase : List[Any] = np.array([0.6_1_0_1, 0.6_1_5_6, 0.5_6_2_2, 0.4_8_9_5, 0.6_6_6_1, 0.3_8_0_4, 0.5_7_4_8, 0.6_1_3_6, 0.5_0_1_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self , snake_case__ , snake_case__=torch.floataa , snake_case__=0 ): lowerCAmelCase : List[str] = torch.manual_seed(snake_case__ ) lowerCAmelCase : int = np.random.RandomState(snake_case__ ).standard_normal((1, 4, 32, 32) ) lowerCAmelCase : Optional[Any] = torch.from_numpy(snake_case__ ).to(device=snake_case__ , dtype=snake_case__ ) lowerCAmelCase : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase ( self ): lowerCAmelCase : Tuple = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Optional[Any] = self.get_inputs(snake_case__ ) lowerCAmelCase : List[Any] = pipe(**snake_case__ ).images lowerCAmelCase : str = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) lowerCAmelCase : Tuple = np.array([0.5_1_8_2_5, 0.5_2_8_5_0, 0.5_2_5_4_3, 0.5_4_2_5_8, 0.5_2_3_0_4, 0.5_2_5_6_9, 0.5_4_3_6_3, 0.5_5_2_7_6, 0.5_6_8_7_8] ) lowerCAmelCase : int = np.abs(expected_slice - image_slice ).max() assert max_diff < 1e-3 @nightly @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self , snake_case__ , snake_case__=torch.floataa , snake_case__=0 ): lowerCAmelCase : List[str] = torch.manual_seed(snake_case__ ) lowerCAmelCase : Any = np.random.RandomState(snake_case__ ).standard_normal((1, 4, 32, 32) ) lowerCAmelCase : List[Any] = torch.from_numpy(snake_case__ ).to(device=snake_case__ , dtype=snake_case__ ) lowerCAmelCase : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase ( self ): lowerCAmelCase : Optional[int] = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : int = self.get_inputs(snake_case__ ) lowerCAmelCase : Optional[int] = pipe(**snake_case__ ).images[0] lowerCAmelCase : Optional[int] = load_numpy( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy' ) lowerCAmelCase : List[str] = np.abs(expected_image - image ).max() assert max_diff < 1e-3
646
'''simple docstring''' import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece_with_bytefallback.model') @require_sentencepiece @require_tokenizers class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : Tuple = GPTSwaTokenizer _lowerCamelCase : str = False _lowerCamelCase : Dict = True _lowerCamelCase : Optional[Any] = False def lowercase ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : Tuple = GPTSwaTokenizer(snake_case__ , eos_token='<unk>' , bos_token='<unk>' , pad_token='<unk>' ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase ( self , snake_case__ ): lowerCAmelCase : List[Any] = 'This is a test' lowerCAmelCase : List[Any] = 'This is a test' return input_text, output_text def lowercase ( self ): lowerCAmelCase : Tuple = '<s>' lowerCAmelCase : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def lowercase ( self ): lowerCAmelCase : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(snake_case__ ) , 2000 ) def lowercase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 2000 ) def lowercase ( self ): lowerCAmelCase : List[Any] = GPTSwaTokenizer(snake_case__ ) lowerCAmelCase : Optional[Any] = tokenizer.tokenize('This is a test' ) self.assertListEqual(snake_case__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , [465, 287, 265, 631, 842] ) lowerCAmelCase : Tuple = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) # fmt: off self.assertListEqual( snake_case__ , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] , ) # fmt: on lowerCAmelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual( snake_case__ , [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] , ) lowerCAmelCase : int = tokenizer.convert_ids_to_tokens(snake_case__ ) # fmt: off self.assertListEqual( snake_case__ , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] ) # fmt: on def lowercase ( self ): lowerCAmelCase : str = GPTSwaTokenizer(snake_case__ ) lowerCAmelCase : Optional[int] = ['This is a test', 'I was born in 92000, and this is falsé.'] lowerCAmelCase : Tuple = [ [465, 287, 265, 631, 842], [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(snake_case__ , snake_case__ ): self.assertListEqual(tokenizer.encode_fast(snake_case__ ) , snake_case__ ) # Test that decode_fast returns the input text for text, token_ids in zip(snake_case__ , snake_case__ ): self.assertEqual(tokenizer.decode_fast(snake_case__ ) , snake_case__ ) @slow def lowercase ( self ): lowerCAmelCase : str = [ '<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')', 'Hey there, how are you doing this fine day?', 'This is a text with a trailing spaces followed by a dot .', 'Häj sväjs lillebrör! =)', 'Det är inget fel på Mr. Cool', ] # fmt: off lowerCAmelCase : Tuple = {'input_ids': [[6_3423, 5, 6811, 1_4954, 282, 816, 3821, 6_3466, 6_3425, 6_3462, 18, 6_3978, 678, 301, 1320, 6_3423, 6_3455, 6_3458, 18, 6_3982, 4246, 3940, 1901, 4_7789, 5547, 1_8994], [1_9630, 1100, 6_3446, 1342, 633, 544, 4488, 593, 5102, 2416, 6_3495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1652, 428, 268, 1936, 515, 268, 5_8593, 2_2413, 9106, 546, 268, 3_3213, 6_3979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_5130, 6_3450, 924, 6_3449, 2249, 4062, 1558, 318, 6_3504, 2_1498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2827, 2559, 332, 6575, 6_3443, 2_6801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name='AI-Sweden/gpt-sw3-126m' , sequences=snake_case__ , )
646
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase : List[Any] = { 'configuration_git': ['GIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GitConfig', 'GitVisionConfig'], 'processing_git': ['GitProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : int = [ 'GIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GitForCausalLM', 'GitModel', 'GitPreTrainedModel', 'GitVisionModel', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys _lowerCAmelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
646
'''simple docstring''' def __UpperCamelCase ( _A : int ) -> bool: """simple docstring""" return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
646
1
'''simple docstring''' import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class lowerCAmelCase : def __init__( self , snake_case__ , snake_case__=99 , snake_case__=13 , snake_case__=16 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=False , snake_case__=True , snake_case__=2 , snake_case__=32 , snake_case__=4 , snake_case__=4 , snake_case__=30 , snake_case__=0 , snake_case__=1 , snake_case__=2 , snake_case__=None , ): lowerCAmelCase : Any = parent lowerCAmelCase : List[Any] = batch_size lowerCAmelCase : Optional[int] = decoder_seq_length # For common tests lowerCAmelCase : str = self.decoder_seq_length lowerCAmelCase : Tuple = is_training lowerCAmelCase : Union[str, Any] = use_attention_mask lowerCAmelCase : Optional[int] = use_labels lowerCAmelCase : List[str] = vocab_size lowerCAmelCase : Union[str, Any] = d_model lowerCAmelCase : Union[str, Any] = d_model lowerCAmelCase : List[Any] = decoder_layers lowerCAmelCase : List[str] = decoder_layers lowerCAmelCase : Any = decoder_ffn_dim lowerCAmelCase : Optional[int] = decoder_attention_heads lowerCAmelCase : Union[str, Any] = decoder_attention_heads lowerCAmelCase : Union[str, Any] = eos_token_id lowerCAmelCase : Optional[int] = bos_token_id lowerCAmelCase : Union[str, Any] = pad_token_id lowerCAmelCase : str = decoder_start_token_id lowerCAmelCase : int = use_cache lowerCAmelCase : Tuple = max_position_embeddings lowerCAmelCase : Optional[int] = None lowerCAmelCase : int = decoder_seq_length lowerCAmelCase : int = 2 lowerCAmelCase : Optional[int] = 1 def lowercase ( self ): lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) lowerCAmelCase : Dict = None if self.use_attention_mask: lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) lowerCAmelCase : Union[str, Any] = None if self.use_labels: lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) lowerCAmelCase : Optional[Any] = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): lowerCAmelCase : List[Any] = True lowerCAmelCase : Union[str, Any] = TrOCRDecoder(config=snake_case__ ).to(snake_case__ ).eval() lowerCAmelCase : List[Any] = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass lowerCAmelCase : Any = model(snake_case__ , use_cache=snake_case__ ) lowerCAmelCase : List[Any] = model(snake_case__ ) lowerCAmelCase : List[str] = model(snake_case__ , use_cache=snake_case__ ) self.parent.assertTrue(len(snake_case__ ) == len(snake_case__ ) ) self.parent.assertTrue(len(snake_case__ ) == len(snake_case__ ) + 1 ) lowerCAmelCase : Optional[int] = outputs['past_key_values'] # create hypothetical next token and extent to next_input_ids lowerCAmelCase : Tuple = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and lowerCAmelCase : Any = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase : Any = model(snake_case__ )['last_hidden_state'] lowerCAmelCase : Tuple = model(snake_case__ , past_key_values=snake_case__ )['last_hidden_state'] # select random slice lowerCAmelCase : Dict = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase : Union[str, Any] = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() lowerCAmelCase : Union[str, Any] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(snake_case__ , snake_case__ , atol=1e-3 ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : str = config_and_inputs lowerCAmelCase : List[Any] = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_torch class lowerCAmelCase ( a , a , a , unittest.TestCase ): _lowerCamelCase : List[Any] = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () _lowerCamelCase : int = (TrOCRForCausalLM,) if is_torch_available() else () _lowerCamelCase : List[Any] = {"""text-generation""": TrOCRForCausalLM} if is_torch_available() else {} _lowerCamelCase : str = True _lowerCamelCase : int = False def lowercase ( self ): lowerCAmelCase : List[Any] = TrOCRStandaloneDecoderModelTester(self , is_training=snake_case__ ) lowerCAmelCase : Optional[Any] = ConfigTester(self , config_class=snake_case__ ) def lowercase ( self ): pass def lowercase ( self ): pass def lowercase ( self ): pass def lowercase ( self ): self.config_tester.run_common_tests() def lowercase ( self ): lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*snake_case__ ) def lowercase ( self ): return @unittest.skip('The model doesn\'t support left padding' ) # and it's not used enough to be worth fixing :) def lowercase ( self ): pass
646
'''simple docstring''' import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( 'files' , [ ['full:README.md', 'dataset_infos.json'], ['empty:README.md', 'dataset_infos.json'], ['dataset_infos.json'], ['full:README.md'], ] , ) def __UpperCamelCase ( _A : str , _A : List[Any] ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase : Optional[int] = tmp_path_factory.mktemp('dset_infos_dir' ) if "full:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('---\ndataset_info:\n dataset_size: 42\n---' ) if "empty:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / 'dataset_infos.json' , 'w' ) as f: f.write('{"default": {"dataset_size": 42}}' ) lowerCAmelCase : Union[str, Any] = DatasetInfosDict.from_directory(_A ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( 'dataset_info' , [ DatasetInfo(), DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ), ] , ) def __UpperCamelCase ( _A : str , _A : DatasetInfo ) -> Optional[int]: """simple docstring""" lowerCAmelCase : str = str(_A ) dataset_info.write_to_directory(_A ) lowerCAmelCase : List[str] = DatasetInfo.from_directory(_A ) assert dataset_info == reloaded assert os.path.exists(os.path.join(_A , 'dataset_info.json' ) ) def __UpperCamelCase ( ) -> List[str]: """simple docstring""" lowerCAmelCase : Tuple = DatasetInfo( description='foo' , citation='bar' , homepage='https://foo.bar' , license='CC0' , features=Features({'a': Value('int32' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train', 'num_examples': 42}] , download_checksums={} , download_size=13_37 , post_processing_size=4_42 , dataset_size=12_34 , size_in_bytes=13_37 + 4_42 + 12_34 , ) lowerCAmelCase : Optional[int] = dataset_info._to_yaml_dict() assert sorted(_A ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) lowerCAmelCase : Any = yaml.safe_dump(_A ) lowerCAmelCase : int = yaml.safe_load(_A ) assert dataset_info_yaml_dict == reloaded def __UpperCamelCase ( ) -> Dict: """simple docstring""" lowerCAmelCase : Union[str, Any] = DatasetInfo() lowerCAmelCase : List[Any] = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( 'dataset_infos_dict' , [ DatasetInfosDict(), DatasetInfosDict({'default': DatasetInfo()} ), DatasetInfosDict({'my_config_name': DatasetInfo()} ), DatasetInfosDict( { 'default': DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ) } ), DatasetInfosDict( { 'v1': DatasetInfo(dataset_size=42 ), 'v2': DatasetInfo(dataset_size=13_37 ), } ), ] , ) def __UpperCamelCase ( _A : Tuple , _A : DatasetInfosDict ) -> List[Any]: """simple docstring""" lowerCAmelCase : Tuple = str(_A ) dataset_infos_dict.write_to_directory(_A ) lowerCAmelCase : List[str] = DatasetInfosDict.from_directory(_A ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): lowerCAmelCase : Tuple = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml lowerCAmelCase : Optional[Any] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(_A , 'README.md' ) )
646
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : str = logging.get_logger(__name__) _lowerCAmelCase : Tuple = { 's-JoL/Open-Llama-V1': 'https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json', } class lowerCAmelCase ( a ): _lowerCamelCase : Union[str, Any] = """open-llama""" def __init__( self , snake_case__=10_0000 , snake_case__=4096 , snake_case__=1_1008 , snake_case__=32 , snake_case__=32 , snake_case__="silu" , snake_case__=2048 , snake_case__=0.0_2 , snake_case__=1e-6 , snake_case__=True , snake_case__=0 , snake_case__=1 , snake_case__=2 , snake_case__=False , snake_case__=True , snake_case__=0.1 , snake_case__=0.1 , snake_case__=True , snake_case__=True , snake_case__=None , **snake_case__ , ): lowerCAmelCase : Tuple = vocab_size lowerCAmelCase : Optional[Any] = max_position_embeddings lowerCAmelCase : List[Any] = hidden_size lowerCAmelCase : List[Any] = intermediate_size lowerCAmelCase : Tuple = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : str = rms_norm_eps lowerCAmelCase : Optional[int] = use_cache lowerCAmelCase : Dict = kwargs.pop( 'use_memorry_efficient_attention' , snake_case__ ) lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : Optional[Any] = attention_dropout_prob lowerCAmelCase : Union[str, Any] = use_stable_embedding lowerCAmelCase : Tuple = shared_input_output_embedding lowerCAmelCase : Tuple = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , tie_word_embeddings=snake_case__ , **snake_case__ , ) def lowercase ( self ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , snake_case__ ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' f"got {self.rope_scaling}" ) lowerCAmelCase : List[Any] = self.rope_scaling.get('type' , snake_case__ ) lowerCAmelCase : List[str] = self.rope_scaling.get('factor' , snake_case__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(snake_case__ , snake_case__ ) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
646
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCAmelCase ( a ): def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): super().__init__() if safety_checker is None: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" ' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered' ' results in services or applications open to the public. Both the diffusers team and Hugging Face' ' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling' ' it only for use-cases that involve analyzing network behavior or auditing its results. For more' ' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .' ) self.register_modules( speech_model=snake_case__ , speech_processor=snake_case__ , vae=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , unet=snake_case__ , scheduler=snake_case__ , feature_extractor=snake_case__ , ) def lowercase ( self , snake_case__ = "auto" ): if slice_size == "auto": lowerCAmelCase : Union[str, Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(snake_case__ ) def lowercase ( self ): self.enable_attention_slicing(snake_case__ ) @torch.no_grad() def __call__( self , snake_case__ , snake_case__=1_6000 , snake_case__ = 512 , snake_case__ = 512 , snake_case__ = 50 , snake_case__ = 7.5 , snake_case__ = None , snake_case__ = 1 , snake_case__ = 0.0 , snake_case__ = None , snake_case__ = None , snake_case__ = "pil" , snake_case__ = True , snake_case__ = None , snake_case__ = 1 , **snake_case__ , ): lowerCAmelCase : List[str] = self.speech_processor.feature_extractor( snake_case__ , return_tensors='pt' , sampling_rate=snake_case__ ).input_features.to(self.device ) lowerCAmelCase : Optional[Any] = self.speech_model.generate(snake_case__ , max_length=48_0000 ) lowerCAmelCase : str = self.speech_processor.tokenizer.batch_decode(snake_case__ , skip_special_tokens=snake_case__ , normalize=snake_case__ )[ 0 ] if isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = 1 elif isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = len(snake_case__ ) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(snake_case__ )}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(snake_case__ , snake_case__ ) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(snake_case__ )}." ) # get prompt text embeddings lowerCAmelCase : str = self.tokenizer( snake_case__ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) lowerCAmelCase : Tuple = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowerCAmelCase : str = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) lowerCAmelCase : Union[str, Any] = text_input_ids[:, : self.tokenizer.model_max_length] lowerCAmelCase : Union[str, Any] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : int = text_embeddings.shape lowerCAmelCase : Any = text_embeddings.repeat(1 , snake_case__ , 1 ) lowerCAmelCase : Optional[int] = text_embeddings.view(bs_embed * num_images_per_prompt , snake_case__ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowerCAmelCase : List[str] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowerCAmelCase : List[str] if negative_prompt is None: lowerCAmelCase : Any = [''] * batch_size elif type(snake_case__ ) is not type(snake_case__ ): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(snake_case__ )} !=" f" {type(snake_case__ )}." ) elif isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = [negative_prompt] elif batch_size != len(snake_case__ ): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(snake_case__ )}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" ' the batch size of `prompt`.' ) else: lowerCAmelCase : Dict = negative_prompt lowerCAmelCase : Optional[int] = text_input_ids.shape[-1] lowerCAmelCase : int = self.tokenizer( snake_case__ , padding='max_length' , max_length=snake_case__ , truncation=snake_case__ , return_tensors='pt' , ) lowerCAmelCase : Union[str, Any] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowerCAmelCase : List[Any] = uncond_embeddings.shape[1] lowerCAmelCase : List[str] = uncond_embeddings.repeat(1 , snake_case__ , 1 ) lowerCAmelCase : Optional[Any] = uncond_embeddings.view(batch_size * num_images_per_prompt , snake_case__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCAmelCase : List[str] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowerCAmelCase : Union[str, Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowerCAmelCase : Dict = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowerCAmelCase : str = torch.randn(snake_case__ , generator=snake_case__ , device='cpu' , dtype=snake_case__ ).to( self.device ) else: lowerCAmelCase : Tuple = torch.randn(snake_case__ , generator=snake_case__ , device=self.device , dtype=snake_case__ ) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) lowerCAmelCase : str = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(snake_case__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowerCAmelCase : Union[str, Any] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowerCAmelCase : Any = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowerCAmelCase : Tuple = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCAmelCase : Union[str, Any] = {} if accepts_eta: lowerCAmelCase : int = eta for i, t in enumerate(self.progress_bar(snake_case__ ) ): # expand the latents if we are doing classifier free guidance lowerCAmelCase : Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCAmelCase : Tuple = self.scheduler.scale_model_input(snake_case__ , snake_case__ ) # predict the noise residual lowerCAmelCase : List[str] = self.unet(snake_case__ , snake_case__ , encoder_hidden_states=snake_case__ ).sample # perform guidance if do_classifier_free_guidance: lowerCAmelCase , lowerCAmelCase : Dict = noise_pred.chunk(2 ) lowerCAmelCase : Tuple = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowerCAmelCase : int = self.scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase : List[Any] = 1 / 0.1_8_2_1_5 * latents lowerCAmelCase : Dict = self.vae.decode(snake_case__ ).sample lowerCAmelCase : List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowerCAmelCase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowerCAmelCase : Dict = self.numpy_to_pil(snake_case__ ) if not return_dict: return image return StableDiffusionPipelineOutput(images=snake_case__ , nsfw_content_detected=snake_case__ )
646
1
'''simple docstring''' def __UpperCamelCase ( _A : list[int] ) -> list[list[int]]: """simple docstring""" lowerCAmelCase : Optional[int] = [] if len(_A ) == 1: return [nums.copy()] for _ in range(len(_A ) ): lowerCAmelCase : Optional[Any] = nums.pop(0 ) lowerCAmelCase : Optional[Any] = permute(_A ) for perm in permutations: perm.append(_A ) result.extend(_A ) nums.append(_A ) return result def __UpperCamelCase ( _A : Union[str, Any] ) -> Tuple: """simple docstring""" def backtrack(_A : List[Any] ): if start == len(_A ) - 1: output.append(nums[:] ) else: for i in range(_A , len(_A ) ): lowerCAmelCase , lowerCAmelCase : Optional[Any] = nums[i], nums[start] backtrack(start + 1 ) lowerCAmelCase , lowerCAmelCase : Optional[Any] = nums[i], nums[start] # backtrack lowerCAmelCase : Optional[Any] = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function _lowerCAmelCase : Tuple = permutea([1, 2, 3]) print(res) doctest.testmod()
646
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : List[Any] = LDMTextToImagePipeline _lowerCamelCase : Optional[Any] = TEXT_TO_IMAGE_PARAMS - { """negative_prompt""", """negative_prompt_embeds""", """cross_attention_kwargs""", """prompt_embeds""", } _lowerCamelCase : List[str] = PipelineTesterMixin.required_optional_params - { """num_images_per_prompt""", """callback""", """callback_steps""", } _lowerCamelCase : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS _lowerCamelCase : Optional[int] = False def lowercase ( self ): torch.manual_seed(0 ) lowerCAmelCase : Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) lowerCAmelCase : int = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , ) torch.manual_seed(0 ) lowerCAmelCase : str = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') , up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') , latent_channels=4 , ) torch.manual_seed(0 ) lowerCAmelCase : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowerCAmelCase : str = CLIPTextModel(snake_case__ ) lowerCAmelCase : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCAmelCase : List[Any] = { 'unet': unet, 'scheduler': scheduler, 'vqvae': vae, 'bert': text_encoder, 'tokenizer': tokenizer, } return components def lowercase ( self , snake_case__ , snake_case__=0 ): if str(snake_case__ ).startswith('mps' ): lowerCAmelCase : Optional[int] = torch.manual_seed(snake_case__ ) else: lowerCAmelCase : str = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) lowerCAmelCase : Tuple = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase ( self ): lowerCAmelCase : List[str] = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase : Optional[Any] = self.get_dummy_components() lowerCAmelCase : Optional[Any] = LDMTextToImagePipeline(**snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Tuple = self.get_dummy_inputs(snake_case__ ) lowerCAmelCase : Union[str, Any] = pipe(**snake_case__ ).images lowerCAmelCase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) lowerCAmelCase : List[Any] = np.array([0.6_1_0_1, 0.6_1_5_6, 0.5_6_2_2, 0.4_8_9_5, 0.6_6_6_1, 0.3_8_0_4, 0.5_7_4_8, 0.6_1_3_6, 0.5_0_1_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self , snake_case__ , snake_case__=torch.floataa , snake_case__=0 ): lowerCAmelCase : List[str] = torch.manual_seed(snake_case__ ) lowerCAmelCase : int = np.random.RandomState(snake_case__ ).standard_normal((1, 4, 32, 32) ) lowerCAmelCase : Optional[Any] = torch.from_numpy(snake_case__ ).to(device=snake_case__ , dtype=snake_case__ ) lowerCAmelCase : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase ( self ): lowerCAmelCase : Tuple = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Optional[Any] = self.get_inputs(snake_case__ ) lowerCAmelCase : List[Any] = pipe(**snake_case__ ).images lowerCAmelCase : str = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) lowerCAmelCase : Tuple = np.array([0.5_1_8_2_5, 0.5_2_8_5_0, 0.5_2_5_4_3, 0.5_4_2_5_8, 0.5_2_3_0_4, 0.5_2_5_6_9, 0.5_4_3_6_3, 0.5_5_2_7_6, 0.5_6_8_7_8] ) lowerCAmelCase : int = np.abs(expected_slice - image_slice ).max() assert max_diff < 1e-3 @nightly @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self , snake_case__ , snake_case__=torch.floataa , snake_case__=0 ): lowerCAmelCase : List[str] = torch.manual_seed(snake_case__ ) lowerCAmelCase : Any = np.random.RandomState(snake_case__ ).standard_normal((1, 4, 32, 32) ) lowerCAmelCase : List[Any] = torch.from_numpy(snake_case__ ).to(device=snake_case__ , dtype=snake_case__ ) lowerCAmelCase : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase ( self ): lowerCAmelCase : Optional[int] = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : int = self.get_inputs(snake_case__ ) lowerCAmelCase : Optional[int] = pipe(**snake_case__ ).images[0] lowerCAmelCase : Optional[int] = load_numpy( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy' ) lowerCAmelCase : List[str] = np.abs(expected_image - image ).max() assert max_diff < 1e-3
646
1
'''simple docstring''' def __UpperCamelCase ( _A : int , _A : int ) -> int: """simple docstring""" lowerCAmelCase : Dict = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): lowerCAmelCase : Any = n - k # Calculate C(n,k) for i in range(_A ): result *= n - i result //= i + 1 return result def __UpperCamelCase ( _A : int ) -> int: """simple docstring""" return binomial_coefficient(2 * node_count , _A ) // (node_count + 1) def __UpperCamelCase ( _A : int ) -> int: """simple docstring""" if n < 0: raise ValueError('factorial() not defined for negative values' ) lowerCAmelCase : int = 1 for i in range(1 , n + 1 ): result *= i return result def __UpperCamelCase ( _A : int ) -> int: """simple docstring""" return catalan_number(_A ) * factorial(_A ) if __name__ == "__main__": _lowerCAmelCase : int = int(input('Enter the number of nodes: ').strip() or 0) if node_count <= 0: raise ValueError('We need some nodes to work with.') print( f"""Given {node_count} nodes, there are {binary_tree_count(node_count)} """ f"""binary trees and {catalan_number(node_count)} binary search trees.""" )
646
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Tuple = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { 'facebook/xmod-base': 'https://huggingface.co/facebook/xmod-base/resolve/main/config.json', 'facebook/xmod-large-prenorm': 'https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json', 'facebook/xmod-base-13-125k': 'https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json', 'facebook/xmod-base-30-125k': 'https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json', 'facebook/xmod-base-30-195k': 'https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json', 'facebook/xmod-base-60-125k': 'https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json', 'facebook/xmod-base-60-265k': 'https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json', 'facebook/xmod-base-75-125k': 'https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json', 'facebook/xmod-base-75-269k': 'https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json', } class lowerCAmelCase ( a ): _lowerCamelCase : int = """xmod""" def __init__( self , snake_case__=3_0522 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=1e-1_2 , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__="absolute" , snake_case__=True , snake_case__=None , snake_case__=False , snake_case__=2 , snake_case__=False , snake_case__=True , snake_case__=True , snake_case__=("en_XX",) , snake_case__=None , **snake_case__ , ): super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) lowerCAmelCase : Dict = vocab_size lowerCAmelCase : Optional[Any] = hidden_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob lowerCAmelCase : str = max_position_embeddings lowerCAmelCase : int = type_vocab_size lowerCAmelCase : List[Any] = initializer_range lowerCAmelCase : Any = layer_norm_eps lowerCAmelCase : Dict = position_embedding_type lowerCAmelCase : Optional[Any] = use_cache lowerCAmelCase : Union[str, Any] = classifier_dropout lowerCAmelCase : int = pre_norm lowerCAmelCase : Optional[Any] = adapter_reduction_factor lowerCAmelCase : Any = adapter_layer_norm lowerCAmelCase : Dict = adapter_reuse_layer_norm lowerCAmelCase : Any = ln_before_adapter lowerCAmelCase : Optional[Any] = list(snake_case__ ) lowerCAmelCase : List[Any] = default_language class lowerCAmelCase ( a ): @property def lowercase ( self ): if self.task == "multiple-choice": lowerCAmelCase : List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase : Optional[int] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
646
1
'''simple docstring''' def __UpperCamelCase ( _A : float , _A : float ) -> float: """simple docstring""" return price * (1 + tax_rate) if __name__ == "__main__": print(f"""{price_plus_tax(100, 0.2_5) = }""") print(f"""{price_plus_tax(1_2_5.5_0, 0.0_5) = }""")
646
'''simple docstring''' import argparse import os import re _lowerCAmelCase : Dict = 'src/diffusers' # Pattern that looks at the indentation in a line. _lowerCAmelCase : str = re.compile(r'^(\s*)\S') # Pattern that matches `"key":" and puts `key` in group 0. _lowerCAmelCase : Any = re.compile(r'^\s*"([^"]+)":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. _lowerCAmelCase : List[Any] = re.compile(r'^\s*_import_structure\["([^"]+)"\]') # Pattern that matches `"key",` and puts `key` in group 0. _lowerCAmelCase : int = re.compile(r'^\s*"([^"]+)",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. _lowerCAmelCase : Optional[Any] = re.compile(r'\[([^\]]+)\]') def __UpperCamelCase ( _A : Union[str, Any] ) -> Dict: """simple docstring""" lowerCAmelCase : Any = _re_indent.search(_A ) return "" if search is None else search.groups()[0] def __UpperCamelCase ( _A : Dict , _A : Any="" , _A : List[str]=None , _A : Any=None ) -> Tuple: """simple docstring""" lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Tuple = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(_A ): index += 1 lowerCAmelCase : Optional[int] = ['\n'.join(lines[:index] )] else: lowerCAmelCase : int = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowerCAmelCase : Tuple = [lines[index]] index += 1 while index < len(_A ) and (end_prompt is None or not lines[index].startswith(_A )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(_A ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(_A ) ) if index < len(_A ) - 1: lowerCAmelCase : List[Any] = [lines[index + 1]] index += 1 else: lowerCAmelCase : int = [] else: blocks.append('\n'.join(_A ) ) lowerCAmelCase : Any = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(_A ) > 0: blocks.append('\n'.join(_A ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(_A ): blocks.append('\n'.join(lines[index:] ) ) return blocks def __UpperCamelCase ( _A : Dict ) -> List[Any]: """simple docstring""" def _inner(_A : Tuple ): return key(_A ).lower().replace('_' , '' ) return _inner def __UpperCamelCase ( _A : Union[str, Any] , _A : Any=None ) -> Optional[Any]: """simple docstring""" def noop(_A : Any ): return x if key is None: lowerCAmelCase : List[str] = noop # Constants are all uppercase, they go first. lowerCAmelCase : str = [obj for obj in objects if key(_A ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowerCAmelCase : List[str] = [obj for obj in objects if key(_A )[0].isupper() and not key(_A ).isupper()] # Functions begin with a lowercase, they go last. lowerCAmelCase : Optional[Any] = [obj for obj in objects if not key(_A )[0].isupper()] lowerCAmelCase : Tuple = ignore_underscore(_A ) return sorted(_A , key=_A ) + sorted(_A , key=_A ) + sorted(_A , key=_A ) def __UpperCamelCase ( _A : Union[str, Any] ) -> int: """simple docstring""" def _replace(_A : List[Any] ): lowerCAmelCase : List[Any] = match.groups()[0] if "," not in imports: return F"[{imports}]" lowerCAmelCase : Dict = [part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase : List[str] = keys[:-1] return "[" + ", ".join([F"\"{k}\"" for k in sort_objects(_A )] ) + "]" lowerCAmelCase : Optional[int] = import_statement.split('\n' ) if len(_A ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowerCAmelCase : Optional[Any] = 2 if lines[1].strip() == '[' else 1 lowerCAmelCase : List[str] = [(i, _re_strip_line.search(_A ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowerCAmelCase : Optional[Any] = sort_objects(_A , key=lambda _A : x[1] ) lowerCAmelCase : Dict = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(_A ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowerCAmelCase : Optional[int] = _re_bracket_content.sub(_replace , lines[1] ) else: lowerCAmelCase : List[Any] = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase : int = keys[:-1] lowerCAmelCase : Tuple = get_indent(lines[1] ) + ', '.join([F"\"{k}\"" for k in sort_objects(_A )] ) return "\n".join(_A ) else: # Finally we have to deal with imports fitting on one line lowerCAmelCase : Union[str, Any] = _re_bracket_content.sub(_replace , _A ) return import_statement def __UpperCamelCase ( _A : str , _A : Tuple=True ) -> Optional[Any]: """simple docstring""" with open(_A , 'r' ) as f: lowerCAmelCase : Optional[int] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowerCAmelCase : List[Any] = split_code_in_indented_blocks( _A , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(_A ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowerCAmelCase : List[str] = main_blocks[block_idx] lowerCAmelCase : Union[str, Any] = block.split('\n' ) # Get to the start of the imports. lowerCAmelCase : Optional[Any] = 0 while line_idx < len(_A ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowerCAmelCase : Optional[Any] = len(_A ) else: line_idx += 1 if line_idx >= len(_A ): continue # Ignore beginning and last line: they don't contain anything. lowerCAmelCase : str = '\n'.join(block_lines[line_idx:-1] ) lowerCAmelCase : str = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowerCAmelCase : Optional[Any] = split_code_in_indented_blocks(_A , indent_level=_A ) # We have two categories of import key: list or _import_structure[key].append/extend lowerCAmelCase : Union[str, Any] = _re_direct_key if '_import_structure' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowerCAmelCase : int = [(pattern.search(_A ).groups()[0] if pattern.search(_A ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowerCAmelCase : Dict = [(i, key) for i, key in enumerate(_A ) if key is not None] lowerCAmelCase : List[Any] = [x[0] for x in sorted(_A , key=lambda _A : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowerCAmelCase : int = 0 lowerCAmelCase : Dict = [] for i in range(len(_A ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: lowerCAmelCase : str = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(_A ) count += 1 # And we put our main block back together with its first and last line. lowerCAmelCase : str = '\n'.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(_A ): if check_only: return True else: print(F"Overwriting {file}." ) with open(_A , 'w' ) as f: f.write('\n'.join(_A ) ) def __UpperCamelCase ( _A : Tuple=True ) -> Any: """simple docstring""" lowerCAmelCase : Tuple = [] for root, _, files in os.walk(_A ): if "__init__.py" in files: lowerCAmelCase : Any = sort_imports(os.path.join(_A , '__init__.py' ) , check_only=_A ) if result: lowerCAmelCase : Optional[Any] = [os.path.join(_A , '__init__.py' )] if len(_A ) > 0: raise ValueError(F"Would overwrite {len(_A )} files, run `make style`." ) if __name__ == "__main__": _lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') _lowerCAmelCase : Optional[int] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
646
1
'''simple docstring''' # Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar _lowerCAmelCase : Dict = TypeVar('T') class lowerCAmelCase ( Generic[T] ): def __init__( self , snake_case__ = True ): lowerCAmelCase : dict[T, list[T]] = {} # dictionary of lists lowerCAmelCase : str = directed def lowercase ( self , snake_case__ , snake_case__ ): if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(snake_case__ ) self.adj_list[destination_vertex].append(snake_case__ ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(snake_case__ ) lowerCAmelCase : Dict = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(snake_case__ ) lowerCAmelCase : Optional[int] = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: lowerCAmelCase : Dict = [destination_vertex] lowerCAmelCase : Tuple = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(snake_case__ ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(snake_case__ ) lowerCAmelCase : Optional[int] = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: lowerCAmelCase : Optional[Any] = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: lowerCAmelCase : Dict = [destination_vertex] lowerCAmelCase : str = [] return self def __repr__( self ): return pformat(self.adj_list )
646
'''simple docstring''' import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class lowerCAmelCase : def __init__( self , snake_case__ , snake_case__=13 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=99 , snake_case__=64 , snake_case__=32 , snake_case__=5 , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=16 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=3 , snake_case__=4 , snake_case__=None , ): lowerCAmelCase : str = parent lowerCAmelCase : Optional[int] = batch_size lowerCAmelCase : Optional[Any] = seq_length lowerCAmelCase : Optional[Any] = is_training lowerCAmelCase : Dict = use_input_mask lowerCAmelCase : Tuple = use_token_type_ids lowerCAmelCase : int = use_labels lowerCAmelCase : int = vocab_size lowerCAmelCase : Any = hidden_size lowerCAmelCase : Optional[Any] = embedding_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : List[str] = num_attention_heads lowerCAmelCase : List[Any] = intermediate_size lowerCAmelCase : Dict = hidden_act lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : int = attention_probs_dropout_prob lowerCAmelCase : List[Any] = max_position_embeddings lowerCAmelCase : int = type_vocab_size lowerCAmelCase : List[str] = type_sequence_label_size lowerCAmelCase : Dict = initializer_range lowerCAmelCase : Any = num_labels lowerCAmelCase : str = num_choices lowerCAmelCase : int = scope def lowercase ( self ): lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Union[str, Any] = None if self.use_input_mask: lowerCAmelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : Optional[int] = None if self.use_token_type_ids: lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : Optional[Any] = None lowerCAmelCase : Optional[Any] = None lowerCAmelCase : Dict = None if self.use_labels: lowerCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase ( self ): return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case__ , initializer_range=self.initializer_range , ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = MobileBertModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : int = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) lowerCAmelCase : Optional[int] = model(snake_case__ , token_type_ids=snake_case__ ) lowerCAmelCase : Optional[Any] = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : int = MobileBertForMaskedLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : str = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = MobileBertForNextSentencePrediction(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : str = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : List[Any] = MobileBertForPreTraining(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Tuple = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , next_sentence_label=snake_case__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = MobileBertForQuestionAnswering(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : List[str] = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = self.num_labels lowerCAmelCase : List[Any] = MobileBertForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = self.num_labels lowerCAmelCase : int = MobileBertForTokenClassification(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : List[str] = self.num_choices lowerCAmelCase : Any = MobileBertForMultipleChoice(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : int = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : List[str] = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase ( self ): lowerCAmelCase : Any = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) : Optional[Any] = config_and_inputs lowerCAmelCase : List[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase ( a , a , unittest.TestCase ): _lowerCamelCase : List[str] = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) _lowerCamelCase : Tuple = ( { """feature-extraction""": MobileBertModel, """fill-mask""": MobileBertForMaskedLM, """question-answering""": MobileBertForQuestionAnswering, """text-classification""": MobileBertForSequenceClassification, """token-classification""": MobileBertForTokenClassification, """zero-shot""": MobileBertForSequenceClassification, } if is_torch_available() else {} ) _lowerCamelCase : str = True def lowercase ( self , snake_case__ , snake_case__ , snake_case__=False ): lowerCAmelCase : int = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if return_labels: if model_class in get_values(snake_case__ ): lowerCAmelCase : str = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=snake_case__ ) lowerCAmelCase : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case__ ) return inputs_dict def lowercase ( self ): lowerCAmelCase : List[Any] = MobileBertModelTester(self ) lowerCAmelCase : Dict = ConfigTester(self , config_class=snake_case__ , hidden_size=37 ) def lowercase ( self ): self.config_tester.run_common_tests() def lowercase ( self ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*snake_case__ ) def __UpperCamelCase ( _A : Optional[Any] ) -> Optional[int]: """simple docstring""" return torch.tensor( _A , dtype=torch.long , device=_A , ) _lowerCAmelCase : Union[str, Any] = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase ( unittest.TestCase ): @slow def lowercase ( self ): lowerCAmelCase : List[str] = MobileBertModel.from_pretrained('google/mobilebert-uncased' ).to(snake_case__ ) lowerCAmelCase : List[Any] = _long_tensor([[101, 7110, 1005, 1056, 2023, 1_1333, 1_7413, 1029, 102]] ) with torch.no_grad(): lowerCAmelCase : Tuple = model(snake_case__ )[0] lowerCAmelCase : List[Any] = torch.Size((1, 9, 512) ) self.assertEqual(output.shape , snake_case__ ) lowerCAmelCase : Union[str, Any] = torch.tensor( [ [ [-2.4_7_3_6_5_2_6e0_7, 8.2_6_9_1_6_5_6e0_4, 1.6_5_2_1_8_3_8e0_5], [-5.7_5_4_1_7_0_4e-0_1, 3.9_0_5_6_0_2_2e0_0, 4.4_0_1_1_5_0_7e0_0], [2.6_0_4_7_3_5_9e0_0, 1.5_6_7_7_6_5_2e0_0, -1.7_3_2_4_1_8_8e-0_1], ] ] , device=snake_case__ , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE lowerCAmelCase : List[str] = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) lowerCAmelCase : Dict = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
646
1
'''simple docstring''' from __future__ import annotations _lowerCAmelCase : Any = 1.6021E-19 # units = C def __UpperCamelCase ( _A : float , _A : float , _A : float , ) -> tuple[str, float]: """simple docstring""" if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError('You cannot supply more or less than 2 values' ) elif conductivity < 0: raise ValueError('Conductivity cannot be negative' ) elif electron_conc < 0: raise ValueError('Electron concentration cannot be negative' ) elif mobility < 0: raise ValueError('mobility cannot be negative' ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
646
'''simple docstring''' import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __UpperCamelCase ( _A : Dict ) -> int: """simple docstring""" lowerCAmelCase : Tuple = [] embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight", F"stage{idx}.patch_embed.proj.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias", F"stage{idx}.patch_embed.proj.bias", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight", F"stage{idx}.patch_embed.norm.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias", F"stage{idx}.patch_embed.norm.bias", ) ) return embed def __UpperCamelCase ( _A : List[Any] , _A : Dict ) -> Any: """simple docstring""" lowerCAmelCase : str = [] attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight", F"stage{idx}.blocks.{cnt}.attn.proj_q.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias", F"stage{idx}.blocks.{cnt}.attn.proj_q.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight", F"stage{idx}.blocks.{cnt}.attn.proj_k.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias", F"stage{idx}.blocks.{cnt}.attn.proj_k.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight", F"stage{idx}.blocks.{cnt}.attn.proj_v.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias", F"stage{idx}.blocks.{cnt}.attn.proj_v.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight", F"stage{idx}.blocks.{cnt}.attn.proj.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias", F"stage{idx}.blocks.{cnt}.attn.proj.bias", ) ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc2.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight", F"stage{idx}.blocks.{cnt}.norm1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias", F"stage{idx}.blocks.{cnt}.norm1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight", F"stage{idx}.blocks.{cnt}.norm2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias", F"stage{idx}.blocks.{cnt}.norm2.bias") ) return attention_weights def __UpperCamelCase ( _A : Optional[int] ) -> Optional[int]: """simple docstring""" lowerCAmelCase : Optional[int] = [] token.append((F"cvt.encoder.stages.{idx}.cls_token", 'stage2.cls_token') ) return token def __UpperCamelCase ( ) -> int: """simple docstring""" lowerCAmelCase : List[Any] = [] head.append(('layernorm.weight', 'norm.weight') ) head.append(('layernorm.bias', 'norm.bias') ) head.append(('classifier.weight', 'head.weight') ) head.append(('classifier.bias', 'head.bias') ) return head def __UpperCamelCase ( _A : str , _A : Optional[Any] , _A : Dict , _A : str ) -> Optional[int]: """simple docstring""" lowerCAmelCase : List[str] = 'imagenet-1k-id2label.json' lowerCAmelCase : Tuple = 10_00 lowerCAmelCase : str = 'huggingface/label-files' lowerCAmelCase : List[Any] = num_labels lowerCAmelCase : Any = json.load(open(cached_download(hf_hub_url(_A , _A , repo_type='dataset' ) ) , 'r' ) ) lowerCAmelCase : List[str] = {int(_A ): v for k, v in idalabel.items()} lowerCAmelCase : List[str] = idalabel lowerCAmelCase : str = {v: k for k, v in idalabel.items()} lowerCAmelCase : int = CvtConfig(num_labels=_A , idalabel=_A , labelaid=_A ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13": lowerCAmelCase : List[str] = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21": lowerCAmelCase : Tuple = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: lowerCAmelCase : Any = [2, 2, 20] lowerCAmelCase : List[str] = [3, 12, 16] lowerCAmelCase : List[Any] = [1_92, 7_68, 10_24] lowerCAmelCase : Union[str, Any] = CvtForImageClassification(_A ) lowerCAmelCase : str = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) lowerCAmelCase : Optional[Any] = image_size lowerCAmelCase : List[Any] = torch.load(_A , map_location=torch.device('cpu' ) ) lowerCAmelCase : str = OrderedDict() lowerCAmelCase : int = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: lowerCAmelCase : List[str] = list_of_state_dict + cls_token(_A ) lowerCAmelCase : Optional[Any] = list_of_state_dict + embeddings(_A ) for cnt in range(config.depth[idx] ): lowerCAmelCase : List[Any] = list_of_state_dict + attention(_A , _A ) lowerCAmelCase : List[str] = list_of_state_dict + final() for gg in list_of_state_dict: print(_A ) for i in range(len(_A ) ): lowerCAmelCase : Tuple = original_weights[list_of_state_dict[i][1]] model.load_state_dict(_A ) model.save_pretrained(_A ) image_processor.save_pretrained(_A ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": _lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '--cvt_model', default='cvt-w24', type=str, help='Name of the cvt model you\'d like to convert.', ) parser.add_argument( '--image_size', default=384, type=int, help='Input Image Size', ) parser.add_argument( '--cvt_file_name', default=r'cvtmodels\CvT-w24-384x384-IN-22k.pth', type=str, help='Input Image Size', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) _lowerCAmelCase : str = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
646
1
'''simple docstring''' import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCAmelCase : def __init__( self , snake_case__ , snake_case__=13 , snake_case__=32 , snake_case__=3 , snake_case__=4 , snake_case__=[10, 20, 30, 40] , snake_case__=[2, 2, 3, 2] , snake_case__=True , snake_case__=True , snake_case__=37 , snake_case__="gelu" , snake_case__=10 , snake_case__=0.0_2 , snake_case__=["stage2", "stage3", "stage4"] , snake_case__=[2, 3, 4] , snake_case__=None , ): lowerCAmelCase : Union[str, Any] = parent lowerCAmelCase : Tuple = batch_size lowerCAmelCase : List[Any] = image_size lowerCAmelCase : List[Any] = num_channels lowerCAmelCase : Optional[int] = num_stages lowerCAmelCase : str = hidden_sizes lowerCAmelCase : str = depths lowerCAmelCase : List[str] = is_training lowerCAmelCase : List[Any] = use_labels lowerCAmelCase : str = intermediate_size lowerCAmelCase : List[str] = hidden_act lowerCAmelCase : Union[str, Any] = num_labels lowerCAmelCase : Optional[Any] = initializer_range lowerCAmelCase : Tuple = out_features lowerCAmelCase : List[Any] = out_indices lowerCAmelCase : Optional[int] = scope def lowercase ( self ): lowerCAmelCase : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase : Any = None if self.use_labels: lowerCAmelCase : Dict = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase : Any = self.get_config() return config, pixel_values, labels def lowercase ( self ): return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=snake_case__ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : str = ConvNextModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : str = model(snake_case__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : List[str] = ConvNextForImageClassification(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : int = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : List[Any] = ConvNextBackbone(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Tuple = model(snake_case__ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None lowerCAmelCase : Dict = None lowerCAmelCase : Any = ConvNextBackbone(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : List[Any] = model(snake_case__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowercase ( self ): lowerCAmelCase : Tuple = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[int] = config_and_inputs lowerCAmelCase : List[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase ( a , a , unittest.TestCase ): _lowerCamelCase : Any = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) _lowerCamelCase : Union[str, Any] = ( {"""feature-extraction""": ConvNextModel, """image-classification""": ConvNextForImageClassification} if is_torch_available() else {} ) _lowerCamelCase : Union[str, Any] = True _lowerCamelCase : List[str] = False _lowerCamelCase : Dict = False _lowerCamelCase : str = False _lowerCamelCase : List[str] = False def lowercase ( self ): lowerCAmelCase : List[Any] = ConvNextModelTester(self ) lowerCAmelCase : Optional[Any] = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=37 ) def lowercase ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase ( self ): return @unittest.skip(reason='ConvNext does not use inputs_embeds' ) def lowercase ( self ): pass @unittest.skip(reason='ConvNext does not support input and output embeddings' ) def lowercase ( self ): pass @unittest.skip(reason='ConvNext does not use feedforward chunking' ) def lowercase ( self ): pass def lowercase ( self ): lowerCAmelCase , lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : str = model_class(snake_case__ ) lowerCAmelCase : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase : List[str] = [*signature.parameters.keys()] lowerCAmelCase : int = ['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case__ ) def lowercase ( self ): lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*snake_case__ ) def lowercase ( self ): def check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Optional[Any] = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): lowerCAmelCase : Dict = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) lowerCAmelCase : Tuple = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase : List[str] = self.model_tester.num_stages self.assertEqual(len(snake_case__ ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCAmelCase , lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : int = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase : Tuple = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) @slow def lowercase ( self ): for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : Union[str, Any] = ConvNextModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def __UpperCamelCase ( ) -> int: """simple docstring""" lowerCAmelCase : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowerCAmelCase ( unittest.TestCase ): @cached_property def lowercase ( self ): return AutoImageProcessor.from_pretrained('facebook/convnext-tiny-224' ) if is_vision_available() else None @slow def lowercase ( self ): lowerCAmelCase : Optional[int] = ConvNextForImageClassification.from_pretrained('facebook/convnext-tiny-224' ).to(snake_case__ ) lowerCAmelCase : Union[str, Any] = self.default_image_processor lowerCAmelCase : str = prepare_img() lowerCAmelCase : Union[str, Any] = image_processor(images=snake_case__ , return_tensors='pt' ).to(snake_case__ ) # forward pass with torch.no_grad(): lowerCAmelCase : Union[str, Any] = model(**snake_case__ ) # verify the logits lowerCAmelCase : Optional[int] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , snake_case__ ) lowerCAmelCase : Any = torch.tensor([-0.0_2_6_0, -0.4_7_3_9, 0.1_9_1_1] ).to(snake_case__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case__ , atol=1e-4 ) ) @require_torch class lowerCAmelCase ( unittest.TestCase , a ): _lowerCamelCase : int = (ConvNextBackbone,) if is_torch_available() else () _lowerCamelCase : int = ConvNextConfig _lowerCamelCase : int = False def lowercase ( self ): lowerCAmelCase : str = ConvNextModelTester(self )
646
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Any = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { 'xlm-roberta-base': 'https://huggingface.co/xlm-roberta-base/resolve/main/config.json', 'xlm-roberta-large': 'https://huggingface.co/xlm-roberta-large/resolve/main/config.json', 'xlm-roberta-large-finetuned-conll02-dutch': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll02-spanish': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-english': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-german': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json' ), } class lowerCAmelCase ( a ): _lowerCamelCase : List[str] = """xlm-roberta""" def __init__( self , snake_case__=3_0522 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=1e-1_2 , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__="absolute" , snake_case__=True , snake_case__=None , **snake_case__ , ): super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) lowerCAmelCase : Optional[Any] = vocab_size lowerCAmelCase : Optional[Any] = hidden_size lowerCAmelCase : Optional[Any] = num_hidden_layers lowerCAmelCase : Any = num_attention_heads lowerCAmelCase : Optional[int] = hidden_act lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : Dict = hidden_dropout_prob lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob lowerCAmelCase : Optional[Any] = max_position_embeddings lowerCAmelCase : Optional[int] = type_vocab_size lowerCAmelCase : int = initializer_range lowerCAmelCase : List[Any] = layer_norm_eps lowerCAmelCase : Union[str, Any] = position_embedding_type lowerCAmelCase : Union[str, Any] = use_cache lowerCAmelCase : List[str] = classifier_dropout class lowerCAmelCase ( a ): @property def lowercase ( self ): if self.task == "multiple-choice": lowerCAmelCase : str = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase : Optional[int] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
646
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _lowerCAmelCase : Dict = { 'configuration_blip': [ 'BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlipConfig', 'BlipTextConfig', 'BlipVisionConfig', ], 'processing_blip': ['BlipProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Dict = ['BlipImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Union[str, Any] = [ 'BLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlipModel', 'BlipPreTrainedModel', 'BlipForConditionalGeneration', 'BlipForQuestionAnswering', 'BlipVisionModel', 'BlipTextModel', 'BlipForImageTextRetrieval', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : List[str] = [ 'TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFBlipModel', 'TFBlipPreTrainedModel', 'TFBlipForConditionalGeneration', 'TFBlipForQuestionAnswering', 'TFBlipVisionModel', 'TFBlipTextModel', 'TFBlipForImageTextRetrieval', ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys _lowerCAmelCase : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
646
'''simple docstring''' import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer _lowerCAmelCase : List[Any] = logging.getLogger(__name__) def __UpperCamelCase ( ) -> Any: """simple docstring""" lowerCAmelCase : str = argparse.ArgumentParser( description='Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.' ) parser.add_argument( '--dataset_name' , type=_A , default='wikitext' , help='Name of the training. Explore datasets at: hf.co/datasets.' , ) parser.add_argument( '--dataset_config' , type=_A , default='wikitext-103-raw-v1' , help='Configuration name of the dataset.' ) parser.add_argument( '--tokenizer_name_or_path' , type=_A , default='sayakpaul/unigram-tokenizer-wikitext' , help='Tokenizer identifier. Can be a local filepath or a Hub identifier.' , ) parser.add_argument( '--shard_size' , type=_A , default=10_00 , help='Number of entries to go in a single shard.' , ) parser.add_argument('--split' , type=_A , default='train' , choices=['train', 'test', 'validation'] ) parser.add_argument( '--limit' , default=_A , type=_A , help='Limit the number of shards (used for debugging).' , ) parser.add_argument( '--max_length' , type=_A , default=5_12 , help='Maximum sequence length. For training on TPUs, it helps to have a maximum' ' sequence length that is a multiple of 8.' , ) parser.add_argument( '--output_dir' , default='tf-tpu' , type=_A , help='Output directory where the TFRecord shards will be saved. If the' ' path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord' ' shards will be directly saved to a Google Cloud Storage bucket.' , ) lowerCAmelCase : Any = parser.parse_args() return args def __UpperCamelCase ( _A : Optional[int] ) -> int: """simple docstring""" def fn(_A : Tuple ): return tokenizer(examples['text'] ) return fn def __UpperCamelCase ( _A : int ) -> int: """simple docstring""" lowerCAmelCase : Tuple = [] for i in range(len(tokenized_data['input_ids'] ) ): lowerCAmelCase : Optional[Any] = { 'input_ids': tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data['input_ids'][i] ) ), 'attention_mask': tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data['attention_mask'][i] ) ), } lowerCAmelCase : Any = tf.train.Features(feature=_A ) lowerCAmelCase : List[str] = tf.train.Example(features=_A ) lowerCAmelCase : Tuple = example.SerializeToString() records.append(_A ) return records def __UpperCamelCase ( _A : int ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase : Union[str, Any] = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: lowerCAmelCase : Optional[Any] = min(len(_A ) , args.limit ) lowerCAmelCase : Dict = dataset.select(range(_A ) ) print(F"Limiting the dataset to {args.limit} entries." ) lowerCAmelCase : str = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) lowerCAmelCase : Any = os.path.join(args.output_dir , args.split ) if not os.path.exists(_A ): os.makedirs(_A ) else: lowerCAmelCase : List[Any] = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. lowerCAmelCase : Any = tokenize_function(_A ) lowerCAmelCase : Optional[int] = dataset.map(_A , batched=_A , num_proc=4 , remove_columns=['text'] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(_A : str ): # Concatenate all texts. lowerCAmelCase : Optional[int] = {k: sum(examples[k] , [] ) for k in examples.keys()} lowerCAmelCase : str = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 lowerCAmelCase : List[Any] = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. lowerCAmelCase : str = { k: [t[i : i + args.max_length] for i in range(0 , _A , args.max_length )] for k, t in concatenated_examples.items() } return result lowerCAmelCase : List[Any] = dataset_tokenized.map(_A , batched=_A , batch_size=10_00 , num_proc=4 ) lowerCAmelCase : Union[str, Any] = 0 lowerCAmelCase : Tuple = 0 for shard in range(0 , len(_A ) , args.shard_size ): lowerCAmelCase : Optional[Any] = grouped_dataset[shard : shard + args.shard_size] lowerCAmelCase : List[str] = len(dataset_snapshot['input_ids'] ) lowerCAmelCase : Union[str, Any] = os.path.join(_A , F"dataset-{shard_count}-{records_containing}.tfrecord" ) lowerCAmelCase : List[Any] = get_serialized_examples(_A ) with tf.io.TFRecordWriter(_A ) as out_file: for i in range(len(_A ) ): lowerCAmelCase : Union[str, Any] = serialized_examples[i] out_file.write(_A ) print('Wrote file {} containing {} records'.format(_A , _A ) ) shard_count += 1 total_records += records_containing with open(F"split-{args.split}-records-count.txt" , 'w' ) as f: print(F"Total {args.split} records: {total_records}" , file=_A ) if __name__ == "__main__": _lowerCAmelCase : List[Any] = parse_args() main(args)
646
1
'''simple docstring''' import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def __UpperCamelCase ( _A : Any , _A : List[str] ) -> List[Any]: """simple docstring""" lowerCAmelCase : Optional[Any] = XCLIPTextConfig() # derive patch size from model name lowerCAmelCase : str = model_name.find('patch' ) lowerCAmelCase : Tuple = int(model_name[start_idx + len('patch' ) : start_idx + len('patch' ) + 2] ) lowerCAmelCase : List[Any] = XCLIPVisionConfig(patch_size=_A , num_frames=_A ) if "large" in model_name: lowerCAmelCase : List[Any] = 7_68 lowerCAmelCase : List[str] = 30_72 lowerCAmelCase : Dict = 12 lowerCAmelCase : Tuple = 10_24 lowerCAmelCase : Any = 40_96 lowerCAmelCase : str = 16 lowerCAmelCase : Union[str, Any] = 24 lowerCAmelCase : Union[str, Any] = 7_68 lowerCAmelCase : Optional[Any] = 30_72 if model_name == "xclip-large-patch14-16-frames": lowerCAmelCase : Optional[Any] = 3_36 lowerCAmelCase : Tuple = XCLIPConfig.from_text_vision_configs(_A , _A ) if "large" in model_name: lowerCAmelCase : int = 7_68 return config def __UpperCamelCase ( _A : Union[str, Any] ) -> Optional[int]: """simple docstring""" if name == "token_embedding.weight": lowerCAmelCase : Optional[Any] = name.replace('token_embedding.weight' , 'text_model.embeddings.token_embedding.weight' ) if name == "positional_embedding": lowerCAmelCase : Dict = name.replace('positional_embedding' , 'text_model.embeddings.position_embedding.weight' ) if "ln_1" in name: lowerCAmelCase : Optional[Any] = name.replace('ln_1' , 'layer_norm1' ) if "ln_2" in name: lowerCAmelCase : List[Any] = name.replace('ln_2' , 'layer_norm2' ) if "c_fc" in name: lowerCAmelCase : Dict = name.replace('c_fc' , 'fc1' ) if "c_proj" in name: lowerCAmelCase : Dict = name.replace('c_proj' , 'fc2' ) if name.startswith('transformer.resblocks' ): lowerCAmelCase : Tuple = name.replace('transformer.resblocks' , 'text_model.encoder.layers' ) if "attn.out_proj" in name and "message" not in name: lowerCAmelCase : Optional[Any] = name.replace('attn.out_proj' , 'self_attn.out_proj' ) if "ln_final" in name: lowerCAmelCase : List[Any] = name.replace('ln_final' , 'text_model.final_layer_norm' ) # visual encoder if name == "visual.class_embedding": lowerCAmelCase : int = name.replace('visual.class_embedding' , 'vision_model.embeddings.class_embedding' ) if name == "visual.positional_embedding": lowerCAmelCase : Union[str, Any] = name.replace('visual.positional_embedding' , 'vision_model.embeddings.position_embedding.weight' ) if name.startswith('visual.transformer.resblocks' ): lowerCAmelCase : int = name.replace('visual.transformer.resblocks' , 'vision_model.encoder.layers' ) if "visual.conv1" in name: lowerCAmelCase : str = name.replace('visual.conv1' , 'vision_model.embeddings.patch_embedding' ) if "visual.ln_pre" in name: lowerCAmelCase : List[Any] = name.replace('visual.ln_pre' , 'vision_model.pre_layernorm' ) if "visual.ln_post" in name: lowerCAmelCase : List[str] = name.replace('visual.ln_post' , 'vision_model.post_layernorm' ) if "visual.proj" in name: lowerCAmelCase : int = name.replace('visual.proj' , 'visual_projection.weight' ) if "text_projection" in name: lowerCAmelCase : List[Any] = name.replace('text_projection' , 'text_projection.weight' ) # things on top if "prompts_visual_proj" in name: lowerCAmelCase : str = name.replace('prompts_visual_proj' , 'prompts_visual_projection' ) if "prompts_visual_ln" in name: lowerCAmelCase : str = name.replace('prompts_visual_ln' , 'prompts_visual_layernorm' ) # mit if name == "mit.positional_embedding": lowerCAmelCase : str = name.replace('positional' , 'position' ) if name.startswith('mit.resblocks' ): lowerCAmelCase : str = name.replace('mit.resblocks' , 'mit.encoder.layers' ) # prompts generator if name.startswith('prompts_generator.norm' ): lowerCAmelCase : List[str] = name.replace('prompts_generator.norm' , 'prompts_generator.layernorm' ) return name def __UpperCamelCase ( _A : Optional[int] , _A : Any ) -> str: """simple docstring""" for key in orig_state_dict.copy().keys(): lowerCAmelCase : List[str] = orig_state_dict.pop(_A ) if "attn.in_proj" in key: lowerCAmelCase : Optional[int] = key.split('.' ) if key.startswith('visual' ): lowerCAmelCase : str = key_split[3] lowerCAmelCase : int = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: lowerCAmelCase : Optional[Any] = val[ :dim, : ] lowerCAmelCase : Dict = val[ dim : dim * 2, : ] lowerCAmelCase : int = val[ -dim:, : ] else: lowerCAmelCase : int = val[ :dim ] lowerCAmelCase : Union[str, Any] = val[ dim : dim * 2 ] lowerCAmelCase : Optional[int] = val[ -dim: ] else: if "weight" in key: lowerCAmelCase : Any = val[ :dim, : ] lowerCAmelCase : List[str] = val[ dim : dim * 2, : ] lowerCAmelCase : str = val[ -dim:, : ] else: lowerCAmelCase : int = val[:dim] lowerCAmelCase : List[Any] = val[ dim : dim * 2 ] lowerCAmelCase : str = val[-dim:] elif key.startswith('mit' ): lowerCAmelCase : List[Any] = key_split[2] lowerCAmelCase : Union[str, Any] = config.vision_config.mit_hidden_size if "weight" in key: lowerCAmelCase : List[str] = val[:dim, :] lowerCAmelCase : str = val[dim : dim * 2, :] lowerCAmelCase : Tuple = val[-dim:, :] else: lowerCAmelCase : Optional[int] = val[:dim] lowerCAmelCase : str = val[dim : dim * 2] lowerCAmelCase : int = val[-dim:] else: lowerCAmelCase : str = key_split[2] lowerCAmelCase : str = config.text_config.hidden_size if "weight" in key: lowerCAmelCase : Union[str, Any] = val[:dim, :] lowerCAmelCase : Union[str, Any] = val[ dim : dim * 2, : ] lowerCAmelCase : Tuple = val[-dim:, :] else: lowerCAmelCase : Union[str, Any] = val[:dim] lowerCAmelCase : Dict = val[ dim : dim * 2 ] lowerCAmelCase : Optional[int] = val[-dim:] else: lowerCAmelCase : int = rename_key(_A ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: lowerCAmelCase : Dict = val.T lowerCAmelCase : Optional[Any] = val return orig_state_dict def __UpperCamelCase ( _A : Any ) -> Optional[Any]: """simple docstring""" if num_frames == 8: lowerCAmelCase : Dict = 'eating_spaghetti_8_frames.npy' elif num_frames == 16: lowerCAmelCase : Union[str, Any] = 'eating_spaghetti.npy' elif num_frames == 32: lowerCAmelCase : Optional[int] = 'eating_spaghetti_32_frames.npy' lowerCAmelCase : List[Any] = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename=_A , repo_type='dataset' , ) lowerCAmelCase : Any = np.load(_A ) return list(_A ) def __UpperCamelCase ( _A : Optional[Any] , _A : Union[str, Any]=None , _A : Dict=False ) -> List[str]: """simple docstring""" lowerCAmelCase : int = { # fully supervised kinetics-400 checkpoints 'xclip-base-patch32': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth', 'xclip-base-patch32-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth' ), 'xclip-base-patch16': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth', 'xclip-base-patch16-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth' ), 'xclip-large-patch14': 'https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb', 'xclip-large-patch14-16-frames': 'https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f', # fully supervised kinetics-600 checkpoints 'xclip-base-patch16-kinetics-600': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth' ), 'xclip-base-patch16-kinetics-600-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth' ), 'xclip-large-patch14-kinetics-600': 'https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be', # few shot 'xclip-base-patch16-hmdb-2-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth' ), 'xclip-base-patch16-hmdb-4-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth' ), 'xclip-base-patch16-hmdb-8-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth' ), 'xclip-base-patch16-hmdb-16-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth' ), 'xclip-base-patch16-ucf-2-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth' ), 'xclip-base-patch16-ucf-4-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth' ), 'xclip-base-patch16-ucf-8-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth' ), 'xclip-base-patch16-ucf-16-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth' ), # zero shot 'xclip-base-patch16-zero-shot': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth', } lowerCAmelCase : Any = model_to_url[model_name] lowerCAmelCase : Optional[Any] = 8 if "16-frames" in model_name: lowerCAmelCase : Union[str, Any] = 16 elif "shot" in model_name: lowerCAmelCase : Optional[Any] = 32 lowerCAmelCase : Dict = get_xclip_config(_A , _A ) lowerCAmelCase : Tuple = XCLIPModel(_A ) model.eval() if "drive" in checkpoint_url: lowerCAmelCase : Union[str, Any] = 'pytorch_model.bin' gdown.cached_download(_A , _A , quiet=_A ) lowerCAmelCase : Optional[Any] = torch.load(_A , map_location='cpu' )['model'] else: lowerCAmelCase : List[str] = torch.hub.load_state_dict_from_url(_A )['model'] lowerCAmelCase : Optional[int] = convert_state_dict(_A , _A ) lowerCAmelCase : int = XCLIPModel(_A ) lowerCAmelCase , lowerCAmelCase : Union[str, Any] = model.load_state_dict(_A , strict=_A ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() lowerCAmelCase : int = 3_36 if model_name == 'xclip-large-patch14-16-frames' else 2_24 lowerCAmelCase : Dict = VideoMAEImageProcessor(size=_A ) lowerCAmelCase : Optional[int] = CLIPTokenizer.from_pretrained('openai/clip-vit-base-patch32' ) lowerCAmelCase : Union[str, Any] = CLIPTokenizerFast.from_pretrained('openai/clip-vit-base-patch32' ) lowerCAmelCase : Optional[int] = XCLIPProcessor(image_processor=_A , tokenizer=_A ) lowerCAmelCase : Dict = prepare_video(_A ) lowerCAmelCase : List[str] = processor( text=['playing sports', 'eating spaghetti', 'go shopping'] , videos=_A , return_tensors='pt' , padding=_A ) print('Shape of pixel values:' , inputs.pixel_values.shape ) with torch.no_grad(): lowerCAmelCase : Any = model(**_A ) # Verify outputs lowerCAmelCase : str = outputs.logits_per_video lowerCAmelCase : List[str] = logits_per_video.softmax(dim=1 ) print('Probs:' , _A ) # kinetics-400 if model_name == "xclip-base-patch32": lowerCAmelCase : Any = torch.tensor([[0.00_19, 0.99_51, 0.00_30]] ) elif model_name == "xclip-base-patch32-16-frames": lowerCAmelCase : str = torch.tensor([[7.0_999e-04, 9.9_883e-01, 4.5_580e-04]] ) elif model_name == "xclip-base-patch16": lowerCAmelCase : Union[str, Any] = torch.tensor([[0.00_83, 0.96_81, 0.02_36]] ) elif model_name == "xclip-base-patch16-16-frames": lowerCAmelCase : Optional[Any] = torch.tensor([[7.6_937e-04, 9.9_728e-01, 1.9_473e-03]] ) elif model_name == "xclip-large-patch14": lowerCAmelCase : List[str] = torch.tensor([[0.00_62, 0.98_64, 0.00_75]] ) elif model_name == "xclip-large-patch14-16-frames": lowerCAmelCase : str = torch.tensor([[3.3_877e-04, 9.9_937e-01, 2.8_888e-04]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": lowerCAmelCase : Optional[Any] = torch.tensor([[0.05_55, 0.89_14, 0.05_31]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": lowerCAmelCase : str = torch.tensor([[3.8_554e-04, 9.9_929e-01, 3.2_754e-04]] ) elif model_name == "xclip-large-patch14-kinetics-600": lowerCAmelCase : str = torch.tensor([[0.00_36, 0.99_20, 0.00_45]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": lowerCAmelCase : Tuple = torch.tensor([[7.1_890e-06, 9.9_994e-01, 5.6_559e-05]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": lowerCAmelCase : List[str] = torch.tensor([[1.0_320e-05, 9.9_993e-01, 6.2_435e-05]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": lowerCAmelCase : Optional[int] = torch.tensor([[4.1_377e-06, 9.9_990e-01, 9.8_386e-05]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": lowerCAmelCase : List[Any] = torch.tensor([[4.1_347e-05, 9.9_962e-01, 3.3_411e-04]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": lowerCAmelCase : Union[str, Any] = torch.tensor([[8.5_857e-05, 9.9_928e-01, 6.3_291e-04]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": lowerCAmelCase : Optional[Any] = torch.tensor([[8.5_857e-05, 9.9_928e-01, 6.3_291e-04]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": lowerCAmelCase : Optional[Any] = torch.tensor([[0.00_27, 0.99_04, 0.00_70]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": lowerCAmelCase : Any = torch.tensor([[9.8_219e-04, 9.9_593e-01, 3.0_863e-03]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": lowerCAmelCase : List[str] = torch.tensor([[3.5_082e-04, 9.9_785e-01, 1.7_966e-03]] ) else: raise ValueError(F"Model name {model_name} not supported" ) assert torch.allclose(_A , _A , atol=1e-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_A ) if push_to_hub: print('Pushing model, processor and slow tokenizer files to the hub...' ) model.push_to_hub(_A , organization='nielsr' ) processor.push_to_hub(_A , organization='nielsr' ) slow_tokenizer.push_to_hub(_A , organization='nielsr' ) if __name__ == "__main__": _lowerCAmelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='xclip-base-patch32', type=str, help='Name of the model.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _lowerCAmelCase : Dict = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
646
'''simple docstring''' import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() _lowerCAmelCase : List[str] = logging.get_logger('transformers.models.speecht5') def __UpperCamelCase ( _A : Any , _A : Dict , _A : Any ) -> Union[str, Any]: """simple docstring""" hf_model.apply_weight_norm() lowerCAmelCase : int = checkpoint['input_conv.weight_g'] lowerCAmelCase : Optional[int] = checkpoint['input_conv.weight_v'] lowerCAmelCase : Dict = checkpoint['input_conv.bias'] for i in range(len(config.upsample_rates ) ): lowerCAmelCase : Optional[Any] = checkpoint[F"upsamples.{i}.1.weight_g"] lowerCAmelCase : str = checkpoint[F"upsamples.{i}.1.weight_v"] lowerCAmelCase : str = checkpoint[F"upsamples.{i}.1.bias"] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): lowerCAmelCase : int = checkpoint[F"blocks.{i}.convs1.{j}.1.weight_g"] lowerCAmelCase : str = checkpoint[F"blocks.{i}.convs1.{j}.1.weight_v"] lowerCAmelCase : int = checkpoint[F"blocks.{i}.convs1.{j}.1.bias"] lowerCAmelCase : Optional[Any] = checkpoint[F"blocks.{i}.convs2.{j}.1.weight_g"] lowerCAmelCase : Tuple = checkpoint[F"blocks.{i}.convs2.{j}.1.weight_v"] lowerCAmelCase : Tuple = checkpoint[F"blocks.{i}.convs2.{j}.1.bias"] lowerCAmelCase : List[Any] = checkpoint['output_conv.1.weight_g'] lowerCAmelCase : List[str] = checkpoint['output_conv.1.weight_v'] lowerCAmelCase : Optional[Any] = checkpoint['output_conv.1.bias'] hf_model.remove_weight_norm() @torch.no_grad() def __UpperCamelCase ( _A : Dict , _A : Union[str, Any] , _A : List[Any] , _A : Any=None , _A : Any=None , ) -> Dict: """simple docstring""" if config_path is not None: lowerCAmelCase : Dict = SpeechTaHifiGanConfig.from_pretrained(_A ) else: lowerCAmelCase : Union[str, Any] = SpeechTaHifiGanConfig() lowerCAmelCase : List[Any] = SpeechTaHifiGan(_A ) lowerCAmelCase : List[str] = torch.load(_A ) load_weights(orig_checkpoint['model']['generator'] , _A , _A ) lowerCAmelCase : Tuple = np.load(_A ) lowerCAmelCase : List[Any] = stats[0].reshape(-1 ) lowerCAmelCase : int = stats[1].reshape(-1 ) lowerCAmelCase : Union[str, Any] = torch.from_numpy(_A ).float() lowerCAmelCase : int = torch.from_numpy(_A ).float() model.save_pretrained(_A ) if repo_id: print('Pushing to the hub...' ) model.push_to_hub(_A ) if __name__ == "__main__": _lowerCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--stats_path', required=True, default=None, type=str, help='Path to stats.npy file') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) _lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
646
1
'''simple docstring''' class lowerCAmelCase : def __init__( self , snake_case__ ): # we need a list not a string, so do something to change the type lowerCAmelCase : List[str] = arr.split(',' ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = [int(self.array[0] )] * len(self.array ) lowerCAmelCase : Tuple = [int(self.array[0] )] * len(self.array ) for i in range(1 , len(self.array ) ): lowerCAmelCase : Dict = max( int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) ) lowerCAmelCase : Optional[Any] = max(sum_value[i] , rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": _lowerCAmelCase : Optional[int] = input('please input some numbers:') _lowerCAmelCase : Tuple = SubArray(whole_array) _lowerCAmelCase : Union[str, Any] = array.solve_sub_array() print(('the results is:', re))
646
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets _lowerCAmelCase : Dict = '\\n@inproceedings{popovic-2015-chrf,\n title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",\n month = sep,\n year = "2015",\n address = "Lisbon, Portugal",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W15-3049",\n doi = "10.18653/v1/W15-3049",\n pages = "392--395",\n}\n@inproceedings{popovic-2017-chrf,\n title = "chr{F}++: words helping character n-grams",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Second Conference on Machine Translation",\n month = sep,\n year = "2017",\n address = "Copenhagen, Denmark",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W17-4770",\n doi = "10.18653/v1/W17-4770",\n pages = "612--618",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' _lowerCAmelCase : Optional[Any] = '\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n' _lowerCAmelCase : List[Any] = '\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n \'score\' (float): The chrF (chrF++) score,\n \'char_order\' (int): The character n-gram order,\n \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n \'beta\' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase ( datasets.Metric ): def lowercase ( self ): if version.parse(scb.__version__ ) < version.parse('1.4.12' ): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/mjpost/sacreBLEU#chrf--chrf' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/mjpost/sacreBLEU#chrf--chrf'] , reference_urls=[ 'https://github.com/m-popovic/chrF', ] , ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ = CHRF.CHAR_ORDER , snake_case__ = CHRF.WORD_ORDER , snake_case__ = CHRF.BETA , snake_case__ = False , snake_case__ = False , snake_case__ = False , ): lowerCAmelCase : List[str] = len(references[0] ) if any(len(snake_case__ ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) lowerCAmelCase : List[str] = [[refs[i] for refs in references] for i in range(snake_case__ )] lowerCAmelCase : Union[str, Any] = CHRF(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase : Dict = sb_chrf.corpus_score(snake_case__ , snake_case__ ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
646
1
'''simple docstring''' import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) _lowerCAmelCase : Tuple = logging.getLogger(__name__) def __UpperCamelCase ( _A : Optional[int] , _A : Tuple ) -> str: """simple docstring""" lowerCAmelCase : Optional[Any] = np.argmax(_A , axis=1 ) return np.sum(outputs == labels ) def __UpperCamelCase ( _A : List[Any] ) -> List[Any]: """simple docstring""" with open(_A , encoding='utf_8' ) as f: lowerCAmelCase : Tuple = csv.reader(_A ) lowerCAmelCase : List[str] = [] next(_A ) # skip the first line for line in tqdm(_A ): output.append((' '.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def __UpperCamelCase ( _A : Any , _A : Tuple , _A : Any , _A : Union[str, Any] , _A : Any , _A : Optional[int] ) -> List[Any]: """simple docstring""" lowerCAmelCase : List[Any] = [] for dataset in encoded_datasets: lowerCAmelCase : Optional[Any] = len(_A ) lowerCAmelCase : Optional[int] = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) lowerCAmelCase : Tuple = np.zeros((n_batch, 2) , dtype=np.intaa ) lowerCAmelCase : int = np.full((n_batch, 2, input_len) , fill_value=-1_00 , dtype=np.intaa ) lowerCAmelCase : Any = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(_A ): lowerCAmelCase : Optional[Any] = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowerCAmelCase : str = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowerCAmelCase : Any = with_conta lowerCAmelCase : List[str] = with_conta lowerCAmelCase : Dict = len(_A ) - 1 lowerCAmelCase : Any = len(_A ) - 1 lowerCAmelCase : Optional[Any] = with_conta lowerCAmelCase : Optional[int] = with_conta lowerCAmelCase : int = mc_label lowerCAmelCase : Any = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(_A ) for t in all_inputs ) ) return tensor_datasets def __UpperCamelCase ( ) -> List[str]: """simple docstring""" lowerCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument('--model_name' , type=_A , default='openai-gpt' , help='pretrained model name' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_eval' , action='store_true' , help='Whether to run eval on the dev set.' ) parser.add_argument( '--output_dir' , default=_A , type=_A , required=_A , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument('--train_dataset' , type=_A , default='' ) parser.add_argument('--eval_dataset' , type=_A , default='' ) parser.add_argument('--seed' , type=_A , default=42 ) parser.add_argument('--num_train_epochs' , type=_A , default=3 ) parser.add_argument('--train_batch_size' , type=_A , default=8 ) parser.add_argument('--eval_batch_size' , type=_A , default=16 ) parser.add_argument('--adam_epsilon' , default=1e-8 , type=_A , help='Epsilon for Adam optimizer.' ) parser.add_argument('--max_grad_norm' , type=_A , default=1 ) parser.add_argument( '--max_steps' , default=-1 , type=_A , help=( 'If > 0: set total number of training steps to perform. Override num_train_epochs.' ) , ) parser.add_argument( '--gradient_accumulation_steps' , type=_A , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--learning_rate' , type=_A , default=6.25e-5 ) parser.add_argument('--warmup_steps' , default=0 , type=_A , help='Linear warmup over warmup_steps.' ) parser.add_argument('--lr_schedule' , type=_A , default='warmup_linear' ) parser.add_argument('--weight_decay' , type=_A , default=0.01 ) parser.add_argument('--lm_coef' , type=_A , default=0.9 ) parser.add_argument('--n_valid' , type=_A , default=3_74 ) parser.add_argument('--server_ip' , type=_A , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=_A , default='' , help='Can be used for distant debugging.' ) lowerCAmelCase : Dict = parser.parse_args() print(_A ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=_A ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) lowerCAmelCase : List[Any] = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) lowerCAmelCase : Optional[Any] = torch.cuda.device_count() logger.info('device: {}, n_gpu {}'.format(_A , _A ) ) if not args.do_train and not args.do_eval: raise ValueError('At least one of `do_train` or `do_eval` must be True.' ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset lowerCAmelCase : str = ['_start_', '_delimiter_', '_classify_'] lowerCAmelCase : Optional[Any] = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(_A ) lowerCAmelCase : Union[str, Any] = tokenizer.convert_tokens_to_ids(_A ) lowerCAmelCase : Tuple = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(_A ) ) model.to(_A ) # Load and encode the datasets def tokenize_and_encode(_A : Dict ): if isinstance(_A , _A ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(_A ) ) elif isinstance(_A , _A ): return obj return [tokenize_and_encode(_A ) for o in obj] logger.info('Encoding dataset...' ) lowerCAmelCase : Optional[int] = load_rocstories_dataset(args.train_dataset ) lowerCAmelCase : List[str] = load_rocstories_dataset(args.eval_dataset ) lowerCAmelCase : int = (train_dataset, eval_dataset) lowerCAmelCase : str = tokenize_and_encode(_A ) # Compute the max input length for the Transformer lowerCAmelCase : List[Any] = model.config.n_positions // 2 - 2 lowerCAmelCase : Optional[int] = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) lowerCAmelCase : int = min(_A , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders lowerCAmelCase : Optional[Any] = pre_process_datasets(_A , _A , _A , *_A ) lowerCAmelCase , lowerCAmelCase : List[str] = tensor_datasets[0], tensor_datasets[1] lowerCAmelCase : int = TensorDataset(*_A ) lowerCAmelCase : Tuple = RandomSampler(_A ) lowerCAmelCase : Optional[int] = DataLoader(_A , sampler=_A , batch_size=args.train_batch_size ) lowerCAmelCase : Any = TensorDataset(*_A ) lowerCAmelCase : Union[str, Any] = SequentialSampler(_A ) lowerCAmelCase : Optional[Any] = DataLoader(_A , sampler=_A , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: lowerCAmelCase : List[Any] = args.max_steps lowerCAmelCase : Dict = args.max_steps // (len(_A ) // args.gradient_accumulation_steps) + 1 else: lowerCAmelCase : List[str] = len(_A ) // args.gradient_accumulation_steps * args.num_train_epochs lowerCAmelCase : Optional[int] = list(model.named_parameters() ) lowerCAmelCase : Any = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] lowerCAmelCase : Tuple = [ { 'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], 'weight_decay': args.weight_decay, }, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], 'weight_decay': 0.0}, ] lowerCAmelCase : Dict = AdamW(_A , lr=args.learning_rate , eps=args.adam_epsilon ) lowerCAmelCase : Union[str, Any] = get_linear_schedule_with_warmup( _A , num_warmup_steps=args.warmup_steps , num_training_steps=_A ) if args.do_train: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[Any] = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc='Epoch' ): lowerCAmelCase : Optional[Any] = 0 lowerCAmelCase : int = 0 lowerCAmelCase : Union[str, Any] = tqdm(_A , desc='Training' ) for step, batch in enumerate(_A ): lowerCAmelCase : List[Any] = tuple(t.to(_A ) for t in batch ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[int] = batch lowerCAmelCase : Optional[Any] = model(_A , mc_token_ids=_A , lm_labels=_A , mc_labels=_A ) lowerCAmelCase : List[str] = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() lowerCAmelCase : List[Any] = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 lowerCAmelCase : Tuple = 'Training loss: {:.2e} lr: {:.2e}'.format(_A , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer lowerCAmelCase : Dict = model.module if hasattr(_A , 'module' ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` lowerCAmelCase : int = os.path.join(args.output_dir , _A ) lowerCAmelCase : str = os.path.join(args.output_dir , _A ) torch.save(model_to_save.state_dict() , _A ) model_to_save.config.to_json_file(_A ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned lowerCAmelCase : Tuple = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) lowerCAmelCase : Dict = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(_A ) if args.do_eval: model.eval() lowerCAmelCase , lowerCAmelCase : Tuple = 0, 0 lowerCAmelCase , lowerCAmelCase : Any = 0, 0 for batch in tqdm(_A , desc='Evaluating' ): lowerCAmelCase : Optional[Any] = tuple(t.to(_A ) for t in batch ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Tuple = batch with torch.no_grad(): lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : List[str] = model( _A , mc_token_ids=_A , lm_labels=_A , mc_labels=_A ) lowerCAmelCase : Tuple = mc_logits.detach().cpu().numpy() lowerCAmelCase : Any = mc_labels.to('cpu' ).numpy() lowerCAmelCase : Any = accuracy(_A , _A ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 lowerCAmelCase : Tuple = eval_loss / nb_eval_steps lowerCAmelCase : str = eval_accuracy / nb_eval_examples lowerCAmelCase : Optional[Any] = tr_loss / nb_tr_steps if args.do_train else None lowerCAmelCase : Optional[Any] = {'eval_loss': eval_loss, 'eval_accuracy': eval_accuracy, 'train_loss': train_loss} lowerCAmelCase : Optional[int] = os.path.join(args.output_dir , 'eval_results.txt' ) with open(_A , 'w' ) as writer: logger.info('***** Eval results *****' ) for key in sorted(result.keys() ): logger.info(' %s = %s' , _A , str(result[key] ) ) writer.write('%s = %s\n' % (key, str(result[key] )) ) if __name__ == "__main__": main()
646
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : str = logging.get_logger(__name__) _lowerCAmelCase : Tuple = { 's-JoL/Open-Llama-V1': 'https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json', } class lowerCAmelCase ( a ): _lowerCamelCase : Union[str, Any] = """open-llama""" def __init__( self , snake_case__=10_0000 , snake_case__=4096 , snake_case__=1_1008 , snake_case__=32 , snake_case__=32 , snake_case__="silu" , snake_case__=2048 , snake_case__=0.0_2 , snake_case__=1e-6 , snake_case__=True , snake_case__=0 , snake_case__=1 , snake_case__=2 , snake_case__=False , snake_case__=True , snake_case__=0.1 , snake_case__=0.1 , snake_case__=True , snake_case__=True , snake_case__=None , **snake_case__ , ): lowerCAmelCase : Tuple = vocab_size lowerCAmelCase : Optional[Any] = max_position_embeddings lowerCAmelCase : List[Any] = hidden_size lowerCAmelCase : List[Any] = intermediate_size lowerCAmelCase : Tuple = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : str = rms_norm_eps lowerCAmelCase : Optional[int] = use_cache lowerCAmelCase : Dict = kwargs.pop( 'use_memorry_efficient_attention' , snake_case__ ) lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : Optional[Any] = attention_dropout_prob lowerCAmelCase : Union[str, Any] = use_stable_embedding lowerCAmelCase : Tuple = shared_input_output_embedding lowerCAmelCase : Tuple = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , tie_word_embeddings=snake_case__ , **snake_case__ , ) def lowercase ( self ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , snake_case__ ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' f"got {self.rope_scaling}" ) lowerCAmelCase : List[Any] = self.rope_scaling.get('type' , snake_case__ ) lowerCAmelCase : List[str] = self.rope_scaling.get('factor' , snake_case__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(snake_case__ , snake_case__ ) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
646
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class lowerCAmelCase ( unittest.TestCase ): @slow def lowercase ( self ): lowerCAmelCase : Union[str, Any] = TFCamembertModel.from_pretrained('jplu/tf-camembert-base' ) lowerCAmelCase : Optional[Any] = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 2_5543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" lowerCAmelCase : Tuple = model(snake_case__ )['last_hidden_state'] lowerCAmelCase : Optional[int] = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , snake_case__ ) # compare the actual values for a slice. lowerCAmelCase : str = tf.convert_to_tensor( [[[-0.0_2_5_4, 0.0_2_3_5, 0.1_0_2_7], [0.0_6_0_6, -0.1_8_1_1, -0.0_4_1_8], [-0.1_5_6_1, -0.1_1_2_7, 0.2_6_8_7]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
646
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) _lowerCAmelCase : Dict = { 'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class lowerCAmelCase ( a ): _lowerCamelCase : Any = """deformable_detr""" _lowerCamelCase : List[str] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , snake_case__=True , snake_case__=None , snake_case__=3 , snake_case__=300 , snake_case__=1024 , snake_case__=6 , snake_case__=1024 , snake_case__=8 , snake_case__=6 , snake_case__=1024 , snake_case__=8 , snake_case__=0.0 , snake_case__=True , snake_case__="relu" , snake_case__=256 , snake_case__=0.1 , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.0_2 , snake_case__=1.0 , snake_case__=True , snake_case__=False , snake_case__="sine" , snake_case__="resnet50" , snake_case__=True , snake_case__=False , snake_case__=4 , snake_case__=4 , snake_case__=4 , snake_case__=False , snake_case__=300 , snake_case__=False , snake_case__=1 , snake_case__=5 , snake_case__=2 , snake_case__=1 , snake_case__=1 , snake_case__=5 , snake_case__=2 , snake_case__=0.1 , snake_case__=0.2_5 , snake_case__=False , **snake_case__ , ): if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) lowerCAmelCase : Optional[int] = CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : List[str] = backbone_config.get('model_type' ) lowerCAmelCase : str = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase : Optional[Any] = config_class.from_dict(snake_case__ ) lowerCAmelCase : Union[str, Any] = use_timm_backbone lowerCAmelCase : List[Any] = backbone_config lowerCAmelCase : Any = num_channels lowerCAmelCase : Tuple = num_queries lowerCAmelCase : Dict = max_position_embeddings lowerCAmelCase : int = d_model lowerCAmelCase : List[str] = encoder_ffn_dim lowerCAmelCase : List[str] = encoder_layers lowerCAmelCase : int = encoder_attention_heads lowerCAmelCase : str = decoder_ffn_dim lowerCAmelCase : str = decoder_layers lowerCAmelCase : Dict = decoder_attention_heads lowerCAmelCase : str = dropout lowerCAmelCase : List[str] = attention_dropout lowerCAmelCase : Union[str, Any] = activation_dropout lowerCAmelCase : str = activation_function lowerCAmelCase : Any = init_std lowerCAmelCase : Any = init_xavier_std lowerCAmelCase : Dict = encoder_layerdrop lowerCAmelCase : int = auxiliary_loss lowerCAmelCase : Optional[Any] = position_embedding_type lowerCAmelCase : List[str] = backbone lowerCAmelCase : int = use_pretrained_backbone lowerCAmelCase : int = dilation # deformable attributes lowerCAmelCase : List[str] = num_feature_levels lowerCAmelCase : List[str] = encoder_n_points lowerCAmelCase : Union[str, Any] = decoder_n_points lowerCAmelCase : Tuple = two_stage lowerCAmelCase : Dict = two_stage_num_proposals lowerCAmelCase : Union[str, Any] = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.' ) # Hungarian matcher lowerCAmelCase : Union[str, Any] = class_cost lowerCAmelCase : Dict = bbox_cost lowerCAmelCase : List[Any] = giou_cost # Loss coefficients lowerCAmelCase : Dict = mask_loss_coefficient lowerCAmelCase : Any = dice_loss_coefficient lowerCAmelCase : str = bbox_loss_coefficient lowerCAmelCase : Tuple = giou_loss_coefficient lowerCAmelCase : List[str] = eos_coefficient lowerCAmelCase : Any = focal_alpha lowerCAmelCase : Dict = disable_custom_kernels super().__init__(is_encoder_decoder=snake_case__ , **snake_case__ ) @property def lowercase ( self ): return self.encoder_attention_heads @property def lowercase ( self ): return self.d_model def lowercase ( self ): lowerCAmelCase : Union[str, Any] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: lowerCAmelCase : List[Any] = self.backbone_config.to_dict() lowerCAmelCase : str = self.__class__.model_type return output
646
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : Dict = KandinskyVaaControlnetImgaImgPipeline _lowerCamelCase : int = ["""image_embeds""", """negative_image_embeds""", """image""", """hint"""] _lowerCamelCase : Union[str, Any] = ["""image_embeds""", """negative_image_embeds""", """image""", """hint"""] _lowerCamelCase : Optional[int] = [ """generator""", """height""", """width""", """strength""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] _lowerCamelCase : Any = False @property def lowercase ( self ): return 32 @property def lowercase ( self ): return 32 @property def lowercase ( self ): return self.time_input_dim @property def lowercase ( self ): return self.time_input_dim * 4 @property def lowercase ( self ): return 100 @property def lowercase ( self ): torch.manual_seed(0 ) lowerCAmelCase : Optional[int] = { 'in_channels': 8, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image_hint', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } lowerCAmelCase : int = UNetaDConditionModel(**snake_case__ ) return model @property def lowercase ( self ): return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def lowercase ( self ): torch.manual_seed(0 ) lowerCAmelCase : List[Any] = VQModel(**self.dummy_movq_kwargs ) return model def lowercase ( self ): lowerCAmelCase : Dict = self.dummy_unet lowerCAmelCase : int = self.dummy_movq lowerCAmelCase : str = { 'num_train_timesteps': 1000, 'beta_schedule': 'linear', 'beta_start': 0.0_0_0_8_5, 'beta_end': 0.0_1_2, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } lowerCAmelCase : Dict = DDIMScheduler(**snake_case__ ) lowerCAmelCase : str = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def lowercase ( self , snake_case__ , snake_case__=0 ): lowerCAmelCase : int = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) lowerCAmelCase : Tuple = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( snake_case__ ) # create init_image lowerCAmelCase : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) lowerCAmelCase : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase : int = Image.fromarray(np.uinta(snake_case__ ) ).convert('RGB' ).resize((256, 256) ) # create hint lowerCAmelCase : List[str] = floats_tensor((1, 3, 64, 64) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) if str(snake_case__ ).startswith('mps' ): lowerCAmelCase : Dict = torch.manual_seed(snake_case__ ) else: lowerCAmelCase : str = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) lowerCAmelCase : str = { 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'hint': hint, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 10, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def lowercase ( self ): lowerCAmelCase : Tuple = 'cpu' lowerCAmelCase : int = self.get_dummy_components() lowerCAmelCase : Optional[Any] = self.pipeline_class(**snake_case__ ) lowerCAmelCase : Optional[Any] = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : int = pipe(**self.get_dummy_inputs(snake_case__ ) ) lowerCAmelCase : Any = output.images lowerCAmelCase : str = pipe( **self.get_dummy_inputs(snake_case__ ) , return_dict=snake_case__ , )[0] lowerCAmelCase : int = image[0, -3:, -3:, -1] lowerCAmelCase : List[str] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase : List[Any] = np.array( [0.5_4_9_8_5_0_3_4, 0.5_5_5_0_9_3_6_5, 0.5_2_5_6_1_5_0_4, 0.5_5_7_0_4_9_4, 0.5_5_9_3_8_1_8, 0.5_2_6_3_9_7_9, 0.5_0_2_8_5_6_4_3, 0.5_0_6_9_8_4_6, 0.5_1_1_9_6_7_3_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self ): lowerCAmelCase : Optional[int] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy' ) lowerCAmelCase : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) lowerCAmelCase : List[Any] = init_image.resize((512, 512) ) lowerCAmelCase : str = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/hint_image_cat.png' ) lowerCAmelCase : Union[str, Any] = torch.from_numpy(np.array(snake_case__ ) ).float() / 2_5_5.0 lowerCAmelCase : int = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) lowerCAmelCase : List[str] = 'A robot, 4k photo' lowerCAmelCase : int = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(snake_case__ ) lowerCAmelCase : Union[str, Any] = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-controlnet-depth' , torch_dtype=torch.floataa ) lowerCAmelCase : str = pipeline.to(snake_case__ ) pipeline.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Dict = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCAmelCase , lowerCAmelCase : int = pipe_prior( snake_case__ , image=snake_case__ , strength=0.8_5 , generator=snake_case__ , negative_prompt='' , ).to_tuple() lowerCAmelCase : int = pipeline( image=snake_case__ , image_embeds=snake_case__ , negative_image_embeds=snake_case__ , hint=snake_case__ , generator=snake_case__ , num_inference_steps=100 , height=512 , width=512 , strength=0.5 , output_type='np' , ) lowerCAmelCase : List[str] = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(snake_case__ , snake_case__ )
646
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece_no_bos.model') @require_sentencepiece @require_tokenizers class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : str = PegasusTokenizer _lowerCamelCase : Union[str, Any] = PegasusTokenizerFast _lowerCamelCase : Optional[Any] = True _lowerCamelCase : Optional[Any] = True def lowercase ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : List[Any] = PegasusTokenizer(snake_case__ ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase ( self ): return PegasusTokenizer.from_pretrained('google/pegasus-large' ) def lowercase ( self , **snake_case__ ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def lowercase ( self , snake_case__ ): return ("This is a test", "This is a test") def lowercase ( self ): lowerCAmelCase : Optional[int] = '</s>' lowerCAmelCase : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '</s>' ) self.assertEqual(vocab_keys[-1] , 'v' ) self.assertEqual(len(snake_case__ ) , 1103 ) def lowercase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def lowercase ( self ): lowerCAmelCase : List[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : List[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : Optional[Any] = ( 'Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important' ' </s> <pad> <pad> <pad>' ) lowerCAmelCase : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] lowerCAmelCase : Optional[int] = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Any = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowerCAmelCase : List[str] = '<mask_1> To ensure a <mask_2> flow of bank resolutions.' lowerCAmelCase : Optional[Any] = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1] lowerCAmelCase : Optional[Any] = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Optional[Any] = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 lowerCAmelCase : List[Any] = 'To ensure a smooth flow of bank resolutions.' lowerCAmelCase : Optional[int] = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1] lowerCAmelCase : Any = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def lowercase ( self ): lowerCAmelCase : Union[str, Any] = ['This is going to be way too long.' * 150, 'short example'] lowerCAmelCase : int = ['not super long but more than 5 tokens', 'tiny'] lowerCAmelCase : Dict = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) lowerCAmelCase : Dict = self._large_tokenizer( text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(snake_case__ ) == 2 # input_ids, attention_mask. @slow def lowercase ( self ): # fmt: off lowerCAmelCase : Tuple = {'input_ids': [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name='google/bigbird-pegasus-large-arxiv' , revision='ba85d0851d708441f91440d509690f1ab6353415' , ) @require_sentencepiece @require_tokenizers class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : Optional[Any] = PegasusTokenizer _lowerCamelCase : str = PegasusTokenizerFast _lowerCamelCase : Tuple = True _lowerCamelCase : int = True def lowercase ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : int = PegasusTokenizer(snake_case__ , offset=0 , mask_token_sent=snake_case__ , mask_token='[MASK]' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase ( self ): return PegasusTokenizer.from_pretrained('google/bigbird-pegasus-large-arxiv' ) def lowercase ( self , **snake_case__ ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def lowercase ( self , snake_case__ ): return ("This is a test", "This is a test") def lowercase ( self ): lowerCAmelCase : Tuple = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : Union[str, Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : List[str] = ( 'Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>' ' <pad> <pad> <pad>' ) lowerCAmelCase : Dict = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] lowerCAmelCase : Union[str, Any] = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) @require_torch def lowercase ( self ): lowerCAmelCase : Optional[int] = ['This is going to be way too long.' * 1000, 'short example'] lowerCAmelCase : Union[str, Any] = ['not super long but more than 5 tokens', 'tiny'] lowerCAmelCase : List[str] = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) lowerCAmelCase : List[str] = self._large_tokenizer( text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(snake_case__ ) == 2 # input_ids, attention_mask. def lowercase ( self ): lowerCAmelCase : List[str] = ( 'This is an example string that is used to test the original TF implementation against the HF' ' implementation' ) lowerCAmelCase : Tuple = self._large_tokenizer(snake_case__ ).input_ids self.assertListEqual( snake_case__ , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
646
1
'''simple docstring''' _lowerCAmelCase : Optional[int] = 256 # Modulus to hash a string _lowerCAmelCase : List[Any] = 100_0003 def __UpperCamelCase ( _A : str , _A : str ) -> bool: """simple docstring""" lowerCAmelCase : Tuple = len(_A ) lowerCAmelCase : List[Any] = len(_A ) if p_len > t_len: return False lowerCAmelCase : Any = 0 lowerCAmelCase : List[str] = 0 lowerCAmelCase : List[str] = 1 # Calculating the hash of pattern and substring of text for i in range(_A ): lowerCAmelCase : List[Any] = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus lowerCAmelCase : Tuple = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue lowerCAmelCase : int = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash lowerCAmelCase : Tuple = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def __UpperCamelCase ( ) -> None: """simple docstring""" lowerCAmelCase : List[str] = 'abc1abc12' lowerCAmelCase : Dict = 'alskfjaldsabc1abc1abc12k23adsfabcabc' lowerCAmelCase : Union[str, Any] = 'alskfjaldsk23adsfabcabc' assert rabin_karp(_A , _A ) and not rabin_karp(_A , _A ) # Test 2) lowerCAmelCase : str = 'ABABX' lowerCAmelCase : Optional[Any] = 'ABABZABABYABABX' assert rabin_karp(_A , _A ) # Test 3) lowerCAmelCase : int = 'AAAB' lowerCAmelCase : int = 'ABAAAAAB' assert rabin_karp(_A , _A ) # Test 4) lowerCAmelCase : List[str] = 'abcdabcy' lowerCAmelCase : Tuple = 'abcxabcdabxabcdabcdabcy' assert rabin_karp(_A , _A ) # Test 5) lowerCAmelCase : List[Any] = 'Lü' lowerCAmelCase : Optional[Any] = 'Lüsai' assert rabin_karp(_A , _A ) lowerCAmelCase : Optional[Any] = 'Lue' assert not rabin_karp(_A , _A ) print('Success.' ) if __name__ == "__main__": test_rabin_karp()
646
'''simple docstring''' import math import sys import cva import numpy as np def __UpperCamelCase ( _A : np.ndarray , _A : float ) -> np.ndarray: """simple docstring""" lowerCAmelCase : Union[str, Any] = math.sqrt(_A ) lowerCAmelCase : Union[str, Any] = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def __UpperCamelCase ( _A : np.ndarray , _A : int , _A : int , _A : int ) -> np.ndarray: """simple docstring""" lowerCAmelCase : int = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def __UpperCamelCase ( _A : int , _A : float ) -> np.ndarray: """simple docstring""" lowerCAmelCase : Dict = np.zeros((kernel_size, kernel_size) ) for i in range(0 , _A ): for j in range(0 , _A ): lowerCAmelCase : Optional[int] = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(_A , _A ) def __UpperCamelCase ( _A : np.ndarray , _A : float , _A : float , _A : int , ) -> np.ndarray: """simple docstring""" lowerCAmelCase : str = np.zeros(img.shape ) lowerCAmelCase : int = get_gauss_kernel(_A , _A ) lowerCAmelCase , lowerCAmelCase : Dict = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): lowerCAmelCase : int = get_slice(_A , _A , _A , _A ) lowerCAmelCase : Any = img_s - img_s[kernel_size // 2, kernel_size // 2] lowerCAmelCase : str = vec_gaussian(_A , _A ) lowerCAmelCase : Optional[int] = np.multiply(_A , _A ) lowerCAmelCase : str = np.multiply(_A , _A ) lowerCAmelCase : Union[str, Any] = np.sum(_A ) / np.sum(_A ) lowerCAmelCase : Tuple = val return imga def __UpperCamelCase ( _A : list ) -> tuple: """simple docstring""" lowerCAmelCase : List[Any] = args[1] if args[1:] else '../image_data/lena.jpg' lowerCAmelCase : Any = float(args[2] ) if args[2:] else 1.0 lowerCAmelCase : Union[str, Any] = float(args[3] ) if args[3:] else 1.0 if args[4:]: lowerCAmelCase : int = int(args[4] ) lowerCAmelCase : Optional[Any] = kernel_size + abs(kernel_size % 2 - 1 ) else: lowerCAmelCase : Optional[int] = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Any = parse_args(sys.argv) _lowerCAmelCase : str = cva.imread(filename, 0) cva.imshow('input image', img) _lowerCAmelCase : Union[str, Any] = img / 255 _lowerCAmelCase : List[str] = out.astype('float32') _lowerCAmelCase : Optional[int] = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) _lowerCAmelCase : Union[str, Any] = out * 255 _lowerCAmelCase : Optional[Any] = np.uinta(out) cva.imshow('output image', out) cva.waitKey(0) cva.destroyAllWindows()
646
1
'''simple docstring''' from typing import List, Optional, Union import torch from transformers import ( XLMRobertaTokenizer, ) from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) from .text_encoder import MultilingualCLIP _lowerCAmelCase : List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name _lowerCAmelCase : int = '\n Examples:\n ```py\n >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyPriorPipeline.from_pretrained("kandinsky-community/Kandinsky-2-1-prior")\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "red cat, 4k photo"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> negative_image_emb = out.negative_image_embeds\n\n >>> pipe = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1")\n >>> pipe.to("cuda")\n\n >>> image = pipe(\n ... prompt,\n ... image_embeds=image_emb,\n ... negative_image_embeds=negative_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... ).images\n\n >>> image[0].save("cat.png")\n ```\n' def __UpperCamelCase ( _A : str , _A : List[str] , _A : List[Any]=8 ) -> Dict: """simple docstring""" lowerCAmelCase : int = h // scale_factor**2 if h % scale_factor**2 != 0: new_h += 1 lowerCAmelCase : Optional[Any] = w // scale_factor**2 if w % scale_factor**2 != 0: new_w += 1 return new_h * scale_factor, new_w * scale_factor class lowerCAmelCase ( a ): def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): super().__init__() self.register_modules( text_encoder=snake_case__ , tokenizer=snake_case__ , unet=snake_case__ , scheduler=snake_case__ , movq=snake_case__ , ) lowerCAmelCase : int = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): if latents is None: lowerCAmelCase : Any = randn_tensor(snake_case__ , generator=snake_case__ , device=snake_case__ , dtype=snake_case__ ) else: if latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}" ) lowerCAmelCase : Optional[Any] = latents.to(snake_case__ ) lowerCAmelCase : Optional[int] = latents * scheduler.init_noise_sigma return latents def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=None , ): lowerCAmelCase : Dict = len(snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else 1 # get prompt text embeddings lowerCAmelCase : Union[str, Any] = self.tokenizer( snake_case__ , padding='max_length' , truncation=snake_case__ , max_length=77 , return_attention_mask=snake_case__ , add_special_tokens=snake_case__ , return_tensors='pt' , ) lowerCAmelCase : int = text_inputs.input_ids lowerCAmelCase : Union[str, Any] = self.tokenizer(snake_case__ , padding='longest' , return_tensors='pt' ).input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(snake_case__ , snake_case__ ): lowerCAmelCase : List[Any] = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) lowerCAmelCase : List[Any] = text_input_ids.to(snake_case__ ) lowerCAmelCase : List[str] = text_inputs.attention_mask.to(snake_case__ ) lowerCAmelCase , lowerCAmelCase : Union[str, Any] = self.text_encoder( input_ids=snake_case__ , attention_mask=snake_case__ ) lowerCAmelCase : str = prompt_embeds.repeat_interleave(snake_case__ , dim=0 ) lowerCAmelCase : List[Any] = text_encoder_hidden_states.repeat_interleave(snake_case__ , dim=0 ) lowerCAmelCase : List[str] = text_mask.repeat_interleave(snake_case__ , dim=0 ) if do_classifier_free_guidance: lowerCAmelCase : List[str] if negative_prompt is None: lowerCAmelCase : Optional[Any] = [''] * batch_size elif type(snake_case__ ) is not type(snake_case__ ): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(snake_case__ )} !=" f" {type(snake_case__ )}." ) elif isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Optional[Any] = [negative_prompt] elif batch_size != len(snake_case__ ): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(snake_case__ )}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" ' the batch size of `prompt`.' ) else: lowerCAmelCase : Dict = negative_prompt lowerCAmelCase : int = self.tokenizer( snake_case__ , padding='max_length' , max_length=77 , truncation=snake_case__ , return_attention_mask=snake_case__ , add_special_tokens=snake_case__ , return_tensors='pt' , ) lowerCAmelCase : List[str] = uncond_input.input_ids.to(snake_case__ ) lowerCAmelCase : Optional[Any] = uncond_input.attention_mask.to(snake_case__ ) lowerCAmelCase , lowerCAmelCase : Optional[Any] = self.text_encoder( input_ids=snake_case__ , attention_mask=snake_case__ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowerCAmelCase : Tuple = negative_prompt_embeds.shape[1] lowerCAmelCase : Dict = negative_prompt_embeds.repeat(1 , snake_case__ ) lowerCAmelCase : Union[str, Any] = negative_prompt_embeds.view(batch_size * num_images_per_prompt , snake_case__ ) lowerCAmelCase : List[Any] = uncond_text_encoder_hidden_states.shape[1] lowerCAmelCase : str = uncond_text_encoder_hidden_states.repeat(1 , snake_case__ , 1 ) lowerCAmelCase : Optional[int] = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt , snake_case__ , -1 ) lowerCAmelCase : Any = uncond_text_mask.repeat_interleave(snake_case__ , dim=0 ) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCAmelCase : Dict = torch.cat([negative_prompt_embeds, prompt_embeds] ) lowerCAmelCase : Optional[Any] = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states] ) lowerCAmelCase : List[Any] = torch.cat([uncond_text_mask, text_mask] ) return prompt_embeds, text_encoder_hidden_states, text_mask def lowercase ( self , snake_case__=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) lowerCAmelCase : str = torch.device(f"cuda:{gpu_id}" ) lowerCAmelCase : Any = [ self.unet, self.text_encoder, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(snake_case__ , snake_case__ ) def lowercase ( self , snake_case__=0 ): if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) lowerCAmelCase : List[Any] = torch.device(f"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=snake_case__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowerCAmelCase : Optional[int] = None for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]: lowerCAmelCase , lowerCAmelCase : str = cpu_offload_with_hook(snake_case__ , snake_case__ , prev_module_hook=snake_case__ ) if self.safety_checker is not None: lowerCAmelCase , lowerCAmelCase : Optional[int] = cpu_offload_with_hook(self.safety_checker , snake_case__ , prev_module_hook=snake_case__ ) # We'll offload the last model manually. lowerCAmelCase : int = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowercase ( self ): if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(snake_case__ , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(snake_case__ ) def __call__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , snake_case__ = 512 , snake_case__ = 512 , snake_case__ = 100 , snake_case__ = 4.0 , snake_case__ = 1 , snake_case__ = None , snake_case__ = None , snake_case__ = "pil" , snake_case__ = True , ): if isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Dict = 1 elif isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : int = len(snake_case__ ) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(snake_case__ )}" ) lowerCAmelCase : str = self._execution_device lowerCAmelCase : Any = batch_size * num_images_per_prompt lowerCAmelCase : Dict = guidance_scale > 1.0 lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Any = self._encode_prompt( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) if isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = torch.cat(snake_case__ , dim=0 ) if isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : List[str] = torch.cat(snake_case__ , dim=0 ) if do_classifier_free_guidance: lowerCAmelCase : List[Any] = image_embeds.repeat_interleave(snake_case__ , dim=0 ) lowerCAmelCase : List[str] = negative_image_embeds.repeat_interleave(snake_case__ , dim=0 ) lowerCAmelCase : Optional[Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to( dtype=prompt_embeds.dtype , device=snake_case__ ) self.scheduler.set_timesteps(snake_case__ , device=snake_case__ ) lowerCAmelCase : Tuple = self.scheduler.timesteps lowerCAmelCase : List[str] = self.unet.config.in_channels lowerCAmelCase , lowerCAmelCase : Tuple = get_new_h_w(snake_case__ , snake_case__ , self.movq_scale_factor ) # create initial latent lowerCAmelCase : Dict = self.prepare_latents( (batch_size, num_channels_latents, height, width) , text_encoder_hidden_states.dtype , snake_case__ , snake_case__ , snake_case__ , self.scheduler , ) for i, t in enumerate(self.progress_bar(snake_case__ ) ): # expand the latents if we are doing classifier free guidance lowerCAmelCase : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCAmelCase : Union[str, Any] = {'text_embeds': prompt_embeds, 'image_embeds': image_embeds} lowerCAmelCase : int = self.unet( sample=snake_case__ , timestep=snake_case__ , encoder_hidden_states=snake_case__ , added_cond_kwargs=snake_case__ , return_dict=snake_case__ , )[0] if do_classifier_free_guidance: lowerCAmelCase , lowerCAmelCase : Optional[int] = noise_pred.split(latents.shape[1] , dim=1 ) lowerCAmelCase , lowerCAmelCase : str = noise_pred.chunk(2 ) lowerCAmelCase , lowerCAmelCase : Tuple = variance_pred.chunk(2 ) lowerCAmelCase : str = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowerCAmelCase : List[str] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowerCAmelCase , lowerCAmelCase : str = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowerCAmelCase : Dict = self.scheduler.step( snake_case__ , snake_case__ , snake_case__ , generator=snake_case__ , ).prev_sample # post-processing lowerCAmelCase : Dict = self.movq.decode(snake_case__ , force_not_quantize=snake_case__ )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: lowerCAmelCase : Tuple = image * 0.5 + 0.5 lowerCAmelCase : Union[str, Any] = image.clamp(0 , 1 ) lowerCAmelCase : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowerCAmelCase : int = self.numpy_to_pil(snake_case__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=snake_case__ )
646
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowerCAmelCase : int = { 'configuration_nezha': ['NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NezhaConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Tuple = [ 'NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST', 'NezhaForNextSentencePrediction', 'NezhaForMaskedLM', 'NezhaForPreTraining', 'NezhaForMultipleChoice', 'NezhaForQuestionAnswering', 'NezhaForSequenceClassification', 'NezhaForTokenClassification', 'NezhaModel', 'NezhaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys _lowerCAmelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
646
1
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.17.0.dev0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/text-classification/requirements.txt') _lowerCAmelCase : Optional[Any] = logging.getLogger(__name__) @dataclass class lowerCAmelCase : _lowerCamelCase : Optional[str] = field( default="""tab_fact""" , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) _lowerCamelCase : Optional[str] = field( default="""tab_fact""" , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} , ) _lowerCamelCase : int = field( default=1_024 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) _lowerCamelCase : bool = field( default=a , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) _lowerCamelCase : bool = field( default=a , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) _lowerCamelCase : Optional[int] = field( default=a , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) _lowerCamelCase : Optional[int] = field( default=a , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) _lowerCamelCase : Optional[int] = field( default=a , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of prediction examples to this """ """value if set.""" ) } , ) _lowerCamelCase : Optional[str] = field( default=a , metadata={"""help""": """A csv or a json file containing the training data."""} ) _lowerCamelCase : Optional[str] = field( default=a , metadata={"""help""": """A csv or a json file containing the validation data."""} ) _lowerCamelCase : Optional[str] = field(default=a , metadata={"""help""": """A csv or a json file containing the test data."""} ) def lowercase ( self ): if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('Need either a GLUE task, a training/validation file or a dataset name.' ) else: lowerCAmelCase : Optional[int] = self.train_file.split('.' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." lowerCAmelCase : Optional[int] = self.validation_file.split('.' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class lowerCAmelCase : _lowerCamelCase : str = field( default=a , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) _lowerCamelCase : Optional[str] = field( default=a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) _lowerCamelCase : Optional[str] = field( default=a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) _lowerCamelCase : Optional[str] = field( default=a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) _lowerCamelCase : bool = field( default=a , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) _lowerCamelCase : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) _lowerCamelCase : bool = field( default=a , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def __UpperCamelCase ( ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase : Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[int] = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) lowerCAmelCase : int = training_args.get_process_log_level() logger.setLevel(_A ) datasets.utils.logging.set_verbosity(_A ) transformers.utils.logging.set_verbosity(_A ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(F"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. lowerCAmelCase : Union[str, Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCAmelCase : str = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowerCAmelCase : int = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. lowerCAmelCase : List[str] = {'train': data_args.train_file, 'validation': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: lowerCAmelCase : int = data_args.train_file.split('.' )[-1] lowerCAmelCase : Tuple = data_args.test_file.split('.' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." lowerCAmelCase : str = data_args.test_file else: raise ValueError('Need either a GLUE task or a test file for `do_predict`.' ) for key in data_files.keys(): logger.info(F"load a local file for {key}: {data_files[key]}" ) if data_args.train_file.endswith('.csv' ): # Loading a dataset from local csv files lowerCAmelCase : List[str] = load_dataset('csv' , data_files=_A , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files lowerCAmelCase : Dict = load_dataset('json' , data_files=_A , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels lowerCAmelCase : Union[str, Any] = raw_datasets['train'].features['label'].names lowerCAmelCase : Dict = len(_A ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCAmelCase : str = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_A , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer lowerCAmelCase : Dict = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=_A , ) lowerCAmelCase : Optional[int] = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_A , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: lowerCAmelCase : Optional[Any] = 'max_length' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch lowerCAmelCase : Tuple = False # Some models have set the order of the labels to use, so let's make sure we do use it. lowerCAmelCase : List[Any] = {'Refused': 0, 'Entailed': 1} lowerCAmelCase : Optional[Any] = {0: 'Refused', 1: 'Entailed'} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" F"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) lowerCAmelCase : int = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(_A : str ): # Tokenize the texts def _convert_table_text_to_pandas(_A : Any ): lowerCAmelCase : List[str] = [_table_row.split('#' ) for _table_row in _table_text.strip('\n' ).split('\n' )] lowerCAmelCase : Tuple = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd lowerCAmelCase : List[str] = examples['statement'] lowerCAmelCase : int = list(map(_convert_table_text_to_pandas , examples['table_text'] ) ) lowerCAmelCase : str = tokenizer(_A , _A , padding=_A , max_length=_A , truncation=_A ) lowerCAmelCase : Union[str, Any] = examples['label'] return result with training_args.main_process_first(desc='dataset map pre-processing' ): lowerCAmelCase : Any = raw_datasets.map( _A , batched=_A , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on dataset' , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) lowerCAmelCase : Union[str, Any] = raw_datasets['train'] if data_args.max_train_samples is not None: lowerCAmelCase : Union[str, Any] = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) lowerCAmelCase : int = raw_datasets['validation'] if data_args.max_eval_samples is not None: lowerCAmelCase : List[str] = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('--do_predict requires a test dataset' ) lowerCAmelCase : int = raw_datasets['test'] if data_args.max_predict_samples is not None: lowerCAmelCase : Optional[int] = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(_A ) ) , 3 ): logger.info(F"Sample {index} of the training set: {train_dataset[index]}." ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_A : EvalPrediction ): lowerCAmelCase : Any = p.predictions[0] if isinstance(p.predictions , _A ) else p.predictions lowerCAmelCase : Any = np.argmax(_A , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: lowerCAmelCase : int = default_data_collator elif training_args.fpaa: lowerCAmelCase : Optional[Any] = DataCollatorWithPadding(_A , pad_to_multiple_of=8 ) else: lowerCAmelCase : int = None # Initialize our Trainer lowerCAmelCase : int = Trainer( model=_A , args=_A , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=_A , tokenizer=_A , data_collator=_A , ) # Training if training_args.do_train: lowerCAmelCase : Dict = None if training_args.resume_from_checkpoint is not None: lowerCAmelCase : Tuple = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCAmelCase : List[str] = last_checkpoint lowerCAmelCase : List[Any] = trainer.train(resume_from_checkpoint=_A ) lowerCAmelCase : List[Any] = train_result.metrics lowerCAmelCase : Optional[Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_A ) ) lowerCAmelCase : List[Any] = min(_A , len(_A ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('train' , _A ) trainer.save_metrics('train' , _A ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) lowerCAmelCase : int = trainer.evaluate(eval_dataset=_A ) lowerCAmelCase : str = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_A ) lowerCAmelCase : Optional[int] = min(_A , len(_A ) ) trainer.log_metrics('eval' , _A ) trainer.save_metrics('eval' , _A ) if training_args.do_predict: logger.info('*** Predict ***' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. lowerCAmelCase : Dict = predict_dataset.remove_columns('label' ) lowerCAmelCase : List[str] = trainer.predict(_A , metric_key_prefix='predict' ).predictions lowerCAmelCase : Dict = np.argmax(_A , axis=1 ) lowerCAmelCase : Optional[int] = os.path.join(training_args.output_dir , 'predict_results_tabfact.txt' ) if trainer.is_world_process_zero(): with open(_A , 'w' ) as writer: logger.info('***** Predict Results *****' ) writer.write('index\tprediction\n' ) for index, item in enumerate(_A ): lowerCAmelCase : str = label_list[item] writer.write(F"{index}\t{item}\n" ) lowerCAmelCase : Optional[int] = {'finetuned_from': model_args.model_name_or_path, 'tasks': 'text-classification'} if training_args.push_to_hub: trainer.push_to_hub(**_A ) else: trainer.create_model_card(**_A ) def __UpperCamelCase ( _A : Tuple ) -> Dict: """simple docstring""" main() if __name__ == "__main__": main()
646
'''simple docstring''' from typing import Any class lowerCAmelCase : def __init__( self , snake_case__ ): lowerCAmelCase : Optional[int] = data lowerCAmelCase : Optional[Any] = None def __repr__( self ): return f"Node({self.data})" class lowerCAmelCase : def __init__( self ): lowerCAmelCase : Dict = None def __iter__( self ): lowerCAmelCase : Optional[Any] = self.head while node: yield node.data lowerCAmelCase : Optional[int] = node.next def __len__( self ): return sum(1 for _ in self ) def __repr__( self ): return "->".join([str(snake_case__ ) for item in self] ) def __getitem__( self , snake_case__ ): if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , snake_case__ , snake_case__ ): if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) lowerCAmelCase : Any = self.head for _ in range(snake_case__ ): lowerCAmelCase : List[str] = current.next lowerCAmelCase : int = data def lowercase ( self , snake_case__ ): self.insert_nth(len(self ) , snake_case__ ) def lowercase ( self , snake_case__ ): self.insert_nth(0 , snake_case__ ) def lowercase ( self , snake_case__ , snake_case__ ): if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) lowerCAmelCase : List[str] = Node(snake_case__ ) if self.head is None: lowerCAmelCase : int = new_node elif index == 0: lowerCAmelCase : List[Any] = self.head # link new_node to head lowerCAmelCase : List[Any] = new_node else: lowerCAmelCase : List[Any] = self.head for _ in range(index - 1 ): lowerCAmelCase : Union[str, Any] = temp.next lowerCAmelCase : Any = temp.next lowerCAmelCase : str = new_node def lowercase ( self ): # print every node data print(self ) def lowercase ( self ): return self.delete_nth(0 ) def lowercase ( self ): # delete from tail return self.delete_nth(len(self ) - 1 ) def lowercase ( self , snake_case__ = 0 ): if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) lowerCAmelCase : List[str] = self.head # default first node if index == 0: lowerCAmelCase : Tuple = self.head.next else: lowerCAmelCase : Dict = self.head for _ in range(index - 1 ): lowerCAmelCase : Tuple = temp.next lowerCAmelCase : Dict = temp.next lowerCAmelCase : Tuple = temp.next.next return delete_node.data def lowercase ( self ): return self.head is None def lowercase ( self ): lowerCAmelCase : List[Any] = None lowerCAmelCase : Any = self.head while current: # Store the current node's next node. lowerCAmelCase : List[str] = current.next # Make the current node's next point backwards lowerCAmelCase : int = prev # Make the previous node be the current node lowerCAmelCase : int = current # Make the current node the next node (to progress iteration) lowerCAmelCase : Optional[Any] = next_node # Return prev in order to put the head at the end lowerCAmelCase : List[Any] = prev def __UpperCamelCase ( ) -> None: """simple docstring""" lowerCAmelCase : Tuple = LinkedList() assert linked_list.is_empty() is True assert str(_A ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(_A ) == i linked_list.insert_nth(_A , i + 1 ) assert str(_A ) == "->".join(str(_A ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(_A ) == "->".join(str(_A ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(_A ) == 9 assert str(_A ) == "->".join(str(_A ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): lowerCAmelCase : Optional[Any] = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(_A ) == "->".join(str(_A ) for i in range(-8 , 1 ) ) def __UpperCamelCase ( ) -> None: """simple docstring""" lowerCAmelCase : Optional[int] = [ -9, 1_00, Node(77_34_51_12 ), 'dlrow olleH', 7, 55_55, 0, -1_92.5_55_55, 'Hello, world!', 77.9, Node(10 ), None, None, 12.20, ] lowerCAmelCase : Dict = LinkedList() for i in test_input: linked_list.insert_tail(_A ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(_A ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head lowerCAmelCase : Optional[Any] = linked_list.delete_head() assert result == -9 assert ( str(_A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail lowerCAmelCase : List[str] = linked_list.delete_tail() assert result == 12.2 assert ( str(_A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list lowerCAmelCase : List[str] = linked_list.delete_nth(10 ) assert result is None assert ( str(_A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(_A ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(_A ) assert ( str(_A ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(_A ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def __UpperCamelCase ( ) -> List[Any]: """simple docstring""" from doctest import testmod testmod() lowerCAmelCase : Optional[Any] = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(_A ) print('\nReading/changing Node data using indexing:' ) print(F"Element at Position 1: {linked_list[1]}" ) lowerCAmelCase : Tuple = input('Enter New Value: ' ).strip() print('New list:' ) print(_A ) print(F"length of linked_list is : {len(_A )}" ) if __name__ == "__main__": main()
646
1
'''simple docstring''' import argparse import json from tqdm import tqdm def __UpperCamelCase ( ) -> Any: """simple docstring""" lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--src_path' , type=_A , default='biencoder-nq-dev.json' , help='Path to raw DPR training data' , ) parser.add_argument( '--evaluation_set' , type=_A , help='where to store parsed evaluation_set file' , ) parser.add_argument( '--gold_data_path' , type=_A , help='where to store parsed gold_data_path file' , ) lowerCAmelCase : str = parser.parse_args() with open(args.src_path , 'r' ) as src_file, open(args.evaluation_set , 'w' ) as eval_file, open( args.gold_data_path , 'w' ) as gold_file: lowerCAmelCase : Any = json.load(_A ) for dpr_record in tqdm(_A ): lowerCAmelCase : Dict = dpr_record['question'] lowerCAmelCase : Tuple = [context['title'] for context in dpr_record['positive_ctxs']] eval_file.write(question + '\n' ) gold_file.write('\t'.join(_A ) + '\n' ) if __name__ == "__main__": main()
646
'''simple docstring''' _lowerCAmelCase : List[str] = {str(digit): digit**5 for digit in range(10)} def __UpperCamelCase ( _A : int ) -> int: """simple docstring""" return sum(DIGITS_FIFTH_POWER[digit] for digit in str(_A ) ) def __UpperCamelCase ( ) -> int: """simple docstring""" return sum( number for number in range(10_00 , 1_00_00_00 ) if number == digits_fifth_powers_sum(_A ) ) if __name__ == "__main__": print(solution())
646
1
'''simple docstring''' from typing import Dict, Optional import numpy as np import datasets _lowerCAmelCase : int = '\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n' _lowerCAmelCase : List[str] = '\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric("mean_iou")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mean_iou\': 0.47750000000000004, \'mean_accuracy\': 0.5916666666666666, \'overall_accuracy\': 0.5263157894736842, \'per_category_iou\': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), \'per_category_accuracy\': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n' _lowerCAmelCase : List[str] = '\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}' def __UpperCamelCase ( _A : Any , _A : Optional[Any] , _A : Union[str, Any] , _A : bool , _A : Optional[Dict[int, int]] = None , _A : bool = False , ) -> Any: """simple docstring""" if label_map is not None: for old_id, new_id in label_map.items(): lowerCAmelCase : str = new_id # turn into Numpy arrays lowerCAmelCase : List[str] = np.array(_A ) lowerCAmelCase : List[str] = np.array(_A ) if reduce_labels: lowerCAmelCase : List[Any] = 2_55 lowerCAmelCase : Dict = label - 1 lowerCAmelCase : int = 2_55 lowerCAmelCase : Dict = label != ignore_index lowerCAmelCase : Optional[Any] = np.not_equal(_A , _A ) lowerCAmelCase : List[Any] = pred_label[mask] lowerCAmelCase : Any = np.array(_A )[mask] lowerCAmelCase : List[str] = pred_label[pred_label == label] lowerCAmelCase : Any = np.histogram(_A , bins=_A , range=(0, num_labels - 1) )[0] lowerCAmelCase : Union[str, Any] = np.histogram(_A , bins=_A , range=(0, num_labels - 1) )[0] lowerCAmelCase : int = np.histogram(_A , bins=_A , range=(0, num_labels - 1) )[0] lowerCAmelCase : List[str] = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def __UpperCamelCase ( _A : Optional[int] , _A : Dict , _A : Dict , _A : bool , _A : Optional[Dict[int, int]] = None , _A : bool = False , ) -> Optional[int]: """simple docstring""" lowerCAmelCase : List[str] = np.zeros((num_labels,) , dtype=np.floataa ) lowerCAmelCase : Tuple = np.zeros((num_labels,) , dtype=np.floataa ) lowerCAmelCase : Any = np.zeros((num_labels,) , dtype=np.floataa ) lowerCAmelCase : Tuple = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(_A , _A ): lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Any = intersect_and_union( _A , _A , _A , _A , _A , _A ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def __UpperCamelCase ( _A : Tuple , _A : Dict , _A : Optional[int] , _A : bool , _A : Optional[int] = None , _A : Optional[Dict[int, int]] = None , _A : bool = False , ) -> int: """simple docstring""" lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : List[str] = total_intersect_and_union( _A , _A , _A , _A , _A , _A ) # compute metrics lowerCAmelCase : List[str] = {} lowerCAmelCase : Any = total_area_intersect.sum() / total_area_label.sum() lowerCAmelCase : Optional[Any] = total_area_intersect / total_area_union lowerCAmelCase : Union[str, Any] = total_area_intersect / total_area_label lowerCAmelCase : Tuple = np.nanmean(_A ) lowerCAmelCase : Tuple = np.nanmean(_A ) lowerCAmelCase : int = all_acc lowerCAmelCase : Optional[Any] = iou lowerCAmelCase : str = acc if nan_to_num is not None: lowerCAmelCase : Optional[Any] = {metric: np.nan_to_num(_A , nan=_A ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase ( datasets.Metric ): def lowercase ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { 'predictions': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), 'references': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), } ) , reference_urls=[ 'https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py' ] , ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , snake_case__ = None , snake_case__ = False , ): lowerCAmelCase : Optional[Any] = mean_iou( results=snake_case__ , gt_seg_maps=snake_case__ , num_labels=snake_case__ , ignore_index=snake_case__ , nan_to_num=snake_case__ , label_map=snake_case__ , reduce_labels=snake_case__ , ) return iou_result
646
'''simple docstring''' def __UpperCamelCase ( _A : List[str] ) -> Optional[Any]: """simple docstring""" if not head: return True # split the list to two parts lowerCAmelCase , lowerCAmelCase : str = head.next, head while fast and fast.next: lowerCAmelCase : Optional[int] = fast.next.next lowerCAmelCase : int = slow.next lowerCAmelCase : int = slow.next lowerCAmelCase : Optional[Any] = None # Don't forget here! But forget still works! # reverse the second part lowerCAmelCase : List[Any] = None while second: lowerCAmelCase : List[Any] = second.next lowerCAmelCase : Union[str, Any] = node lowerCAmelCase : Optional[Any] = second lowerCAmelCase : Any = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False lowerCAmelCase : Optional[Any] = node.next lowerCAmelCase : Tuple = head.next return True def __UpperCamelCase ( _A : Optional[Any] ) -> Optional[int]: """simple docstring""" if not head or not head.next: return True # 1. Get the midpoint (slow) lowerCAmelCase : Optional[int] = head while fast and fast.next: lowerCAmelCase , lowerCAmelCase : Optional[Any] = fast.next.next, slow.next # 2. Push the second half into the stack lowerCAmelCase : Tuple = [slow.val] while slow.next: lowerCAmelCase : Tuple = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False lowerCAmelCase : Union[str, Any] = cur.next return True def __UpperCamelCase ( _A : Tuple ) -> Optional[int]: """simple docstring""" if not head or not head.next: return True lowerCAmelCase : Optional[int] = {} lowerCAmelCase : int = 0 while head: if head.val in d: d[head.val].append(_A ) else: lowerCAmelCase : Any = [pos] lowerCAmelCase : int = head.next pos += 1 lowerCAmelCase : str = pos - 1 lowerCAmelCase : Optional[Any] = 0 for v in d.values(): if len(_A ) % 2 != 0: middle += 1 else: lowerCAmelCase : Any = 0 for i in range(0 , len(_A ) ): if v[i] + v[len(_A ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
646
1
'''simple docstring''' from typing import Any class lowerCAmelCase : def __init__( self , snake_case__ ): lowerCAmelCase : Optional[int] = data lowerCAmelCase : Optional[Any] = None def __repr__( self ): return f"Node({self.data})" class lowerCAmelCase : def __init__( self ): lowerCAmelCase : Dict = None def __iter__( self ): lowerCAmelCase : Optional[Any] = self.head while node: yield node.data lowerCAmelCase : Optional[int] = node.next def __len__( self ): return sum(1 for _ in self ) def __repr__( self ): return "->".join([str(snake_case__ ) for item in self] ) def __getitem__( self , snake_case__ ): if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , snake_case__ , snake_case__ ): if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) lowerCAmelCase : Any = self.head for _ in range(snake_case__ ): lowerCAmelCase : List[str] = current.next lowerCAmelCase : int = data def lowercase ( self , snake_case__ ): self.insert_nth(len(self ) , snake_case__ ) def lowercase ( self , snake_case__ ): self.insert_nth(0 , snake_case__ ) def lowercase ( self , snake_case__ , snake_case__ ): if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) lowerCAmelCase : List[str] = Node(snake_case__ ) if self.head is None: lowerCAmelCase : int = new_node elif index == 0: lowerCAmelCase : List[Any] = self.head # link new_node to head lowerCAmelCase : List[Any] = new_node else: lowerCAmelCase : List[Any] = self.head for _ in range(index - 1 ): lowerCAmelCase : Union[str, Any] = temp.next lowerCAmelCase : Any = temp.next lowerCAmelCase : str = new_node def lowercase ( self ): # print every node data print(self ) def lowercase ( self ): return self.delete_nth(0 ) def lowercase ( self ): # delete from tail return self.delete_nth(len(self ) - 1 ) def lowercase ( self , snake_case__ = 0 ): if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) lowerCAmelCase : List[str] = self.head # default first node if index == 0: lowerCAmelCase : Tuple = self.head.next else: lowerCAmelCase : Dict = self.head for _ in range(index - 1 ): lowerCAmelCase : Tuple = temp.next lowerCAmelCase : Dict = temp.next lowerCAmelCase : Tuple = temp.next.next return delete_node.data def lowercase ( self ): return self.head is None def lowercase ( self ): lowerCAmelCase : List[Any] = None lowerCAmelCase : Any = self.head while current: # Store the current node's next node. lowerCAmelCase : List[str] = current.next # Make the current node's next point backwards lowerCAmelCase : int = prev # Make the previous node be the current node lowerCAmelCase : int = current # Make the current node the next node (to progress iteration) lowerCAmelCase : Optional[Any] = next_node # Return prev in order to put the head at the end lowerCAmelCase : List[Any] = prev def __UpperCamelCase ( ) -> None: """simple docstring""" lowerCAmelCase : Tuple = LinkedList() assert linked_list.is_empty() is True assert str(_A ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(_A ) == i linked_list.insert_nth(_A , i + 1 ) assert str(_A ) == "->".join(str(_A ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(_A ) == "->".join(str(_A ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(_A ) == 9 assert str(_A ) == "->".join(str(_A ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): lowerCAmelCase : Optional[Any] = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(_A ) == "->".join(str(_A ) for i in range(-8 , 1 ) ) def __UpperCamelCase ( ) -> None: """simple docstring""" lowerCAmelCase : Optional[int] = [ -9, 1_00, Node(77_34_51_12 ), 'dlrow olleH', 7, 55_55, 0, -1_92.5_55_55, 'Hello, world!', 77.9, Node(10 ), None, None, 12.20, ] lowerCAmelCase : Dict = LinkedList() for i in test_input: linked_list.insert_tail(_A ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(_A ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head lowerCAmelCase : Optional[Any] = linked_list.delete_head() assert result == -9 assert ( str(_A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail lowerCAmelCase : List[str] = linked_list.delete_tail() assert result == 12.2 assert ( str(_A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list lowerCAmelCase : List[str] = linked_list.delete_nth(10 ) assert result is None assert ( str(_A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(_A ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(_A ) assert ( str(_A ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(_A ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def __UpperCamelCase ( ) -> List[Any]: """simple docstring""" from doctest import testmod testmod() lowerCAmelCase : Optional[Any] = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(_A ) print('\nReading/changing Node data using indexing:' ) print(F"Element at Position 1: {linked_list[1]}" ) lowerCAmelCase : Tuple = input('Enter New Value: ' ).strip() print('New list:' ) print(_A ) print(F"length of linked_list is : {len(_A )}" ) if __name__ == "__main__": main()
646
'''simple docstring''' import math def __UpperCamelCase ( _A : int = 1_00 ) -> int: """simple docstring""" lowerCAmelCase : List[Any] = sum(i * i for i in range(1 , n + 1 ) ) lowerCAmelCase : Optional[Any] = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f"""{solution() = }""")
646
1
'''simple docstring''' import argparse import math import traceback import dateutil.parser as date_parser import requests def __UpperCamelCase ( _A : str ) -> str: """simple docstring""" lowerCAmelCase : List[str] = {} lowerCAmelCase : Any = job['started_at'] lowerCAmelCase : List[Any] = job['completed_at'] lowerCAmelCase : Dict = date_parser.parse(_A ) lowerCAmelCase : Union[str, Any] = date_parser.parse(_A ) lowerCAmelCase : str = round((end_datetime - start_datetime).total_seconds() / 60.0 ) lowerCAmelCase : str = start lowerCAmelCase : List[str] = end lowerCAmelCase : str = duration_in_min return job_info def __UpperCamelCase ( _A : Optional[Any] , _A : int=None ) -> str: """simple docstring""" lowerCAmelCase : List[Any] = None if token is not None: lowerCAmelCase : Union[str, Any] = {'Accept': 'application/vnd.github+json', 'Authorization': F"Bearer {token}"} lowerCAmelCase : int = F"https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100" lowerCAmelCase : List[Any] = requests.get(_A , headers=_A ).json() lowerCAmelCase : Optional[int] = {} try: job_time.update({job['name']: extract_time_from_single_job(_A ) for job in result['jobs']} ) lowerCAmelCase : str = math.ceil((result['total_count'] - 1_00) / 1_00 ) for i in range(_A ): lowerCAmelCase : Optional[int] = requests.get(url + F"&page={i + 2}" , headers=_A ).json() job_time.update({job['name']: extract_time_from_single_job(_A ) for job in result['jobs']} ) return job_time except Exception: print(F"Unknown error, could not fetch links:\n{traceback.format_exc()}" ) return {} if __name__ == "__main__": _lowerCAmelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') _lowerCAmelCase : int = parser.parse_args() _lowerCAmelCase : Union[str, Any] = get_job_time(args.workflow_run_id) _lowerCAmelCase : List[str] = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(f"""{k}: {v['duration']}""")
646
'''simple docstring''' import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece_with_bytefallback.model') @require_sentencepiece @require_tokenizers class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : Tuple = GPTSwaTokenizer _lowerCamelCase : str = False _lowerCamelCase : Dict = True _lowerCamelCase : Optional[Any] = False def lowercase ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : Tuple = GPTSwaTokenizer(snake_case__ , eos_token='<unk>' , bos_token='<unk>' , pad_token='<unk>' ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase ( self , snake_case__ ): lowerCAmelCase : List[Any] = 'This is a test' lowerCAmelCase : List[Any] = 'This is a test' return input_text, output_text def lowercase ( self ): lowerCAmelCase : Tuple = '<s>' lowerCAmelCase : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def lowercase ( self ): lowerCAmelCase : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(snake_case__ ) , 2000 ) def lowercase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 2000 ) def lowercase ( self ): lowerCAmelCase : List[Any] = GPTSwaTokenizer(snake_case__ ) lowerCAmelCase : Optional[Any] = tokenizer.tokenize('This is a test' ) self.assertListEqual(snake_case__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , [465, 287, 265, 631, 842] ) lowerCAmelCase : Tuple = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) # fmt: off self.assertListEqual( snake_case__ , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] , ) # fmt: on lowerCAmelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual( snake_case__ , [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] , ) lowerCAmelCase : int = tokenizer.convert_ids_to_tokens(snake_case__ ) # fmt: off self.assertListEqual( snake_case__ , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] ) # fmt: on def lowercase ( self ): lowerCAmelCase : str = GPTSwaTokenizer(snake_case__ ) lowerCAmelCase : Optional[int] = ['This is a test', 'I was born in 92000, and this is falsé.'] lowerCAmelCase : Tuple = [ [465, 287, 265, 631, 842], [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(snake_case__ , snake_case__ ): self.assertListEqual(tokenizer.encode_fast(snake_case__ ) , snake_case__ ) # Test that decode_fast returns the input text for text, token_ids in zip(snake_case__ , snake_case__ ): self.assertEqual(tokenizer.decode_fast(snake_case__ ) , snake_case__ ) @slow def lowercase ( self ): lowerCAmelCase : str = [ '<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')', 'Hey there, how are you doing this fine day?', 'This is a text with a trailing spaces followed by a dot .', 'Häj sväjs lillebrör! =)', 'Det är inget fel på Mr. Cool', ] # fmt: off lowerCAmelCase : Tuple = {'input_ids': [[6_3423, 5, 6811, 1_4954, 282, 816, 3821, 6_3466, 6_3425, 6_3462, 18, 6_3978, 678, 301, 1320, 6_3423, 6_3455, 6_3458, 18, 6_3982, 4246, 3940, 1901, 4_7789, 5547, 1_8994], [1_9630, 1100, 6_3446, 1342, 633, 544, 4488, 593, 5102, 2416, 6_3495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1652, 428, 268, 1936, 515, 268, 5_8593, 2_2413, 9106, 546, 268, 3_3213, 6_3979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_5130, 6_3450, 924, 6_3449, 2249, 4062, 1558, 318, 6_3504, 2_1498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2827, 2559, 332, 6575, 6_3443, 2_6801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name='AI-Sweden/gpt-sw3-126m' , sequences=snake_case__ , )
646
1
'''simple docstring''' import json import os import unittest from typing import Tuple from transformers import WavaVecaPhonemeCTCTokenizer from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput from transformers.testing_utils import require_phonemizer from ...test_tokenization_common import TokenizerTesterMixin @require_phonemizer class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : Tuple = WavaVecaPhonemeCTCTokenizer _lowerCamelCase : int = False def lowercase ( self ): super().setUp() lowerCAmelCase : List[Any] = ( '<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː ' 'ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː ' 'ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 ' 'oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ ' 'pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ ' 'yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ ' 'əʊ S ɡʲ onɡ2 u" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ ' 'ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ ' 'ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ ' 'uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ ' 'ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ ' 'ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ ' 'ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4' ).split(' ' ) lowerCAmelCase : Any = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) lowerCAmelCase : List[str] = {'pad_token': '<pad>', 'unk_token': '<unk>', 'bos_token': '<s>', 'eos_token': '</s>'} lowerCAmelCase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(snake_case__ ) + '\n' ) def lowercase ( self , snake_case__ , snake_case__=False , snake_case__=20 , snake_case__=5 ): lowerCAmelCase : Dict = [(i, tokenizer.decode([i] , clean_up_tokenization_spaces=snake_case__ )) for i in range(len(snake_case__ ) )] lowerCAmelCase : Union[str, Any] = list(filter(lambda snake_case__ : [t[0]] == tokenizer.encode(t[1] , do_phonemize=snake_case__ ) , snake_case__ ) ) if max_length is not None and len(snake_case__ ) > max_length: lowerCAmelCase : Any = toks[:max_length] if min_length is not None and len(snake_case__ ) < min_length and len(snake_case__ ) > 0: while len(snake_case__ ) < min_length: lowerCAmelCase : Any = toks + toks # toks_str = [t[1] for t in toks] lowerCAmelCase : List[Any] = [t[0] for t in toks] # Ensure consistency lowerCAmelCase : Optional[Any] = tokenizer.decode(snake_case__ , clean_up_tokenization_spaces=snake_case__ ) if " " not in output_txt and len(snake_case__ ) > 1: lowerCAmelCase : Optional[Any] = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=snake_case__ ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=snake_case__ ) ) if with_prefix_space: lowerCAmelCase : Optional[Any] = ' ' + output_txt lowerCAmelCase : Tuple = tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) return output_txt, output_ids def lowercase ( self , **snake_case__ ): kwargs.update(self.special_tokens_map ) return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def lowercase ( self ): lowerCAmelCase : Optional[int] = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) # check adding a single token tokenizer.add_tokens('xxx' ) lowerCAmelCase : Union[str, Any] = tokenizer('m xxx ɪ' , do_phonemize=snake_case__ ).input_ids self.assertEqual(snake_case__ , [13, 392, 17] ) # xxx should be last token tokenizer.add_tokens(['aaa', 'bbb', 'ccc'] ) lowerCAmelCase : List[Any] = tokenizer('m aaa ɪ ccc' , do_phonemize=snake_case__ ).input_ids self.assertEqual(snake_case__ , [13, 393, 17, 395] ) # aaa and ccc should be after xxx and 2 after aaa lowerCAmelCase : Optional[int] = tokenizer('maɪ c' , do_phonemize=snake_case__ ).input_ids self.assertEqual(snake_case__ , [3, 200] ) # mai should be <unk> (=3) def lowercase ( self ): lowerCAmelCase : Any = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) lowerCAmelCase : Optional[Any] = 'Hello how are you' lowerCAmelCase : List[str] = tokenizer.phonemize(snake_case__ , phonemizer_lang='en-us' ) self.assertEqual(snake_case__ , 'h ə l oʊ h aʊ ɑːɹ j uː' ) def lowercase ( self ): lowerCAmelCase : Dict = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) lowerCAmelCase : Optional[Any] = 'Hello how are you' lowerCAmelCase : Optional[Any] = tokenizer.phonemize(snake_case__ , phonemizer_lang='en-us' ) self.assertEqual(tokenizer(snake_case__ ).input_ids , tokenizer(snake_case__ , do_phonemize=snake_case__ ).input_ids ) def lowercase ( self ): lowerCAmelCase : str = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) lowerCAmelCase : Any = 'Hello how are you' lowerCAmelCase : List[str] = tokenizer.phonemize(snake_case__ , phonemizer_lang='en-us' ) lowerCAmelCase : Union[str, Any] = tokenizer.decode(tokenizer(snake_case__ ).input_ids ) self.assertEqual(snake_case__ , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Optional[int] = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) lowerCAmelCase : Dict = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98], [24, 22, 5, 24, 22, 5, 77], ] lowerCAmelCase : Any = tokenizer.decode(sample_ids[0] ) lowerCAmelCase : Any = tokenizer.batch_decode(snake_case__ ) self.assertEqual(snake_case__ , batch_tokens[0] ) self.assertEqual(snake_case__ , ['k s ɾ ɾ l ɭʲ', 'j ð s j ð s oːɹ'] ) def lowercase ( self ): lowerCAmelCase : List[Any] = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) lowerCAmelCase : Optional[int] = 'Hello how are you' lowerCAmelCase : List[str] = tokenizer.phonemize(snake_case__ , phonemizer_lang='en-us' ) self.assertEqual(snake_case__ , 'h ə l oʊ | h aʊ | ɑːɹ | j uː |' ) def lowercase ( self ): lowerCAmelCase : List[str] = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) lowerCAmelCase : Any = 'Hello how are you' lowerCAmelCase : List[str] = tokenizer.phonemize(snake_case__ , phonemizer_lang='en-us' ) self.assertEqual(tokenizer(snake_case__ ).input_ids , tokenizer(snake_case__ , do_phonemize=snake_case__ ).input_ids ) def lowercase ( self ): lowerCAmelCase : Optional[Any] = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) # fmt: off lowerCAmelCase : Dict = [ [11, 5, 15, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 15, 8, tokenizer.word_delimiter_token_id, 98], [tokenizer.word_delimiter_token_id, 24, 22, tokenizer.word_delimiter_token_id, 5, 24, 22, 5, 77], ] # fmt: on # decode with word_del_token filter lowerCAmelCase : Any = tokenizer.decode(sample_ids[0] ) lowerCAmelCase : Optional[int] = tokenizer.batch_decode(snake_case__ ) self.assertEqual(snake_case__ , batch_tokens[0] ) self.assertEqual(snake_case__ , ['k s ɾ ɾ l ɭʲ', 'j ð s j ð s oːɹ'] ) # decode with no word_del_token filter lowerCAmelCase : Union[str, Any] = tokenizer.decode(sample_ids[0] , filter_word_delimiter_token=snake_case__ ) lowerCAmelCase : Any = tokenizer.batch_decode(snake_case__ , filter_word_delimiter_token=snake_case__ ) self.assertEqual(snake_case__ , batch_tokens[0] ) self.assertEqual(snake_case__ , ['k s ɾ | ɾ l | ɭʲ', '| j ð | s j ð s oːɹ'] ) def lowercase ( self ): lowerCAmelCase : List[str] = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) lowerCAmelCase : Dict = 'Hello how are you' lowerCAmelCase : Union[str, Any] = tokenizer.phonemize(snake_case__ , phonemizer_lang='en-us' ) lowerCAmelCase : Tuple = tokenizer.decode(tokenizer(snake_case__ ).input_ids , filter_word_delimiter_token=snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Optional[int] = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) lowerCAmelCase : str = 'Hello how are you' lowerCAmelCase : Any = tokenizer.phonemize(snake_case__ , phonemizer_lang='en-us' ) lowerCAmelCase : Tuple = tokenizer.decode(tokenizer(snake_case__ ).input_ids , filter_word_delimiter_token=snake_case__ ) self.assertEqual(' '.join([p.strip() for p in phonemes.split(' |' )] ).strip() , snake_case__ ) def lowercase ( self ): lowerCAmelCase : List[str] = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token=snake_case__ ) lowerCAmelCase : str = 'Hello how are you' lowerCAmelCase : Dict = tokenizer(snake_case__ , phonemizer_lang='en-us' ).input_ids lowerCAmelCase : Optional[Any] = tokenizer(snake_case__ , phonemizer_lang='fr-fr' ).input_ids self.assertNotEqual(snake_case__ , snake_case__ ) lowerCAmelCase : List[Any] = tokenizer.decode(snake_case__ ) lowerCAmelCase : Dict = tokenizer.decode(snake_case__ ) self.assertEqual(snake_case__ , 'h ə l oʊ h aʊ ɑːɹ j uː' ) self.assertEqual(snake_case__ , 'ɛ l o h aʊ a ʁ j u' ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) lowerCAmelCase : List[Any] = 'Hello how Are you' lowerCAmelCase : str = 'hello how are you' lowerCAmelCase : Optional[Any] = tokenizer(snake_case__ ).input_ids lowerCAmelCase : str = tokenizer(snake_case__ ).input_ids self.assertEqual(snake_case__ , snake_case__ ) def lowercase ( self ): lowerCAmelCase : int = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) tokenizer.add_tokens(['!', '?'] ) tokenizer.add_special_tokens({'cls_token': '$$$'} ) # fmt: off lowerCAmelCase : Optional[int] = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98, 392, 392, 393, 392, 392, 393, 394, 394], [24, 22, 5, 24, 22, 5, 77, tokenizer.pad_token_id, 394, 394], ] # fmt: on lowerCAmelCase : Union[str, Any] = tokenizer.batch_decode(snake_case__ ) self.assertEqual(snake_case__ , ['k s ɾ ɾ l ɭʲ!?!? $$$', 'j ð s j ð s oːɹ $$$'] ) @staticmethod def lowercase ( snake_case__ , snake_case__ ): lowerCAmelCase : Any = [d[key] for d in offsets] return retrieved_list def lowercase ( self ): lowerCAmelCase : Dict = self.get_tokenizer(word_delimiter_token='|' ) tokenizer.add_tokens('|' ) # fmt: off # ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ" lowerCAmelCase : List[str] = [11, 5, 5, 5, 15, 15, tokenizer.pad_token_id, 15, 15, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 15, 8, 8, 8, tokenizer.word_delimiter_token_id, 98] # fmt: on lowerCAmelCase : Optional[int] = tokenizer.decode(snake_case__ , output_char_offsets=snake_case__ , filter_word_delimiter_token=snake_case__ ) # check Wav2Vec2CTCTokenizerOutput keys for char self.assertEqual(len(outputs.keys() ) , 2 ) self.assertTrue('text' in outputs ) self.assertTrue('char_offsets' in outputs ) self.assertTrue(isinstance(snake_case__ , snake_case__ ) ) # check that order of chars is correct and identical for both outputs self.assertEqual(' '.join(self.get_from_offsets(outputs['char_offsets'] , 'char' ) ) , outputs.text ) self.assertListEqual( self.get_from_offsets(outputs['char_offsets'] , 'char' ) , ['k', 's', 'ɾ', 'ɾ', '|', 'ɾ', 'l', '|', 'ɭʲ'] ) # check that offsets are actually correct for char # 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token, # 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98 self.assertListEqual( self.get_from_offsets(outputs['char_offsets'] , 'start_offset' ) , [0, 1, 4, 7, 9, 11, 12, 15, 16] ) self.assertListEqual( self.get_from_offsets(outputs['char_offsets'] , 'end_offset' ) , [1, 4, 6, 9, 10, 12, 15, 16, 17] ) def lowercase ( self ): lowerCAmelCase : Any = self.get_tokenizer(word_delimiter_token='|' ) def check_list_tuples_equal(snake_case__ , snake_case__ ): self.assertTrue(isinstance(snake_case__ , snake_case__ ) ) self.assertTrue(isinstance(outputs_list[0] , snake_case__ ) ) # transform list to ModelOutput lowerCAmelCase : List[Any] = WavaVecaPhonemeCTCTokenizerOutput( {k: [d[k] for d in outputs_list] for k in outputs_list[0]} ) self.assertListEqual(outputs_batch['text'] , outputs_batch_a['text'] ) def recursive_check(snake_case__ , snake_case__ ): if isinstance(snake_case__ , snake_case__ ): [recursive_check(snake_case__ , snake_case__ ) for la, la in zip(snake_case__ , snake_case__ )] self.assertEqual(snake_case__ , snake_case__ ) if "char_offsets" in outputs_batch: recursive_check(outputs_batch['char_offsets'] , outputs_batch_a['char_offsets'] ) # fmt: off lowerCAmelCase : List[str] = [ [11, 5, 15, tokenizer.pad_token_id, 15, 4, 8, 98, 32, 32, 32, 32, 4, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34], [24, 22, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 24, 22, 22, 22, 4, 5, 77, tokenizer.pad_token_id, 22, 22, 4, 34, 34, 34, 34], ] # fmt: on # We assume that `decode` works as expected. All we will check now is # the output type is correct and the output is identical to `decode` # char lowerCAmelCase : Optional[Any] = tokenizer.batch_decode(snake_case__ , output_char_offsets=snake_case__ ) lowerCAmelCase : Union[str, Any] = [tokenizer.decode(snake_case__ , output_char_offsets=snake_case__ ) for ids in sample_ids] check_list_tuples_equal(snake_case__ , snake_case__ ) @unittest.skip('Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes' ) def lowercase ( self ): pass @unittest.skip('Wav2Vec2PhonemeTokenizer always puts spaces between phonemes' ) def lowercase ( self ): pass @unittest.skip('encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency' ) def lowercase ( self ): pass @unittest.skip('Wav2Vec2PhonemeModel has no max model length => no testing' ) def lowercase ( self ): pass def lowercase ( self ): lowerCAmelCase : Dict = self.get_tokenizers(do_lower_case=snake_case__ ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): lowerCAmelCase : Tuple = tokenizer.vocab_size lowerCAmelCase : Union[str, Any] = len(snake_case__ ) self.assertNotEqual(snake_case__ , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) lowerCAmelCase : Union[str, Any] = ['aaaaa bbbbbb', 'cccccccccdddddddd'] lowerCAmelCase : Optional[Any] = tokenizer.add_tokens(snake_case__ ) lowerCAmelCase : Tuple = tokenizer.vocab_size lowerCAmelCase : Optional[int] = len(snake_case__ ) self.assertNotEqual(snake_case__ , 0 ) self.assertEqual(snake_case__ , snake_case__ ) self.assertEqual(snake_case__ , len(snake_case__ ) ) self.assertEqual(snake_case__ , all_size + len(snake_case__ ) ) lowerCAmelCase : Union[str, Any] = tokenizer.encode('aaaaa bbbbbb low cccccccccdddddddd l' , add_special_tokens=snake_case__ ) self.assertGreaterEqual(len(snake_case__ ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) lowerCAmelCase : int = {'eos_token': '>>>>|||<||<<|<<', 'pad_token': '<<<<<|||>|>>>>|>'} lowerCAmelCase : Dict = tokenizer.add_special_tokens(snake_case__ ) lowerCAmelCase : str = tokenizer.vocab_size lowerCAmelCase : int = len(snake_case__ ) self.assertNotEqual(snake_case__ , 0 ) self.assertEqual(snake_case__ , snake_case__ ) self.assertEqual(snake_case__ , len(snake_case__ ) ) self.assertEqual(snake_case__ , all_size_a + len(snake_case__ ) ) lowerCAmelCase : Union[str, Any] = tokenizer.encode( '>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l' , add_special_tokens=snake_case__ ) self.assertGreaterEqual(len(snake_case__ ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) @unittest.skip('The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.' ) def lowercase ( self ): pass @unittest.skip('The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.' ) def lowercase ( self ): pass def lowercase ( self ): # The default common tokenizer tests assumes that the output of `convert_tokens_to_string` is a string which # is not the case for Wav2Vec2PhonemeCTCTokenizer. lowerCAmelCase : Optional[int] = self.get_tokenizers(fast=snake_case__ , do_lower_case=snake_case__ ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): lowerCAmelCase : Optional[Any] = ['ð', 'ɪ', 's', 'ɪ', 'z', 'ɐ', 't', 'ɛ', 'k', 's', 't'] lowerCAmelCase : List[str] = tokenizer.convert_tokens_to_string(snake_case__ ) self.assertIsInstance(output['text'] , snake_case__ )
646
'''simple docstring''' def __UpperCamelCase ( _A : int ) -> bool: """simple docstring""" return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
646
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowerCAmelCase : int = { 'configuration_nezha': ['NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NezhaConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Tuple = [ 'NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST', 'NezhaForNextSentencePrediction', 'NezhaForMaskedLM', 'NezhaForPreTraining', 'NezhaForMultipleChoice', 'NezhaForQuestionAnswering', 'NezhaForSequenceClassification', 'NezhaForTokenClassification', 'NezhaModel', 'NezhaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys _lowerCAmelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
646
'''simple docstring''' import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( 'files' , [ ['full:README.md', 'dataset_infos.json'], ['empty:README.md', 'dataset_infos.json'], ['dataset_infos.json'], ['full:README.md'], ] , ) def __UpperCamelCase ( _A : str , _A : List[Any] ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase : Optional[int] = tmp_path_factory.mktemp('dset_infos_dir' ) if "full:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('---\ndataset_info:\n dataset_size: 42\n---' ) if "empty:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / 'dataset_infos.json' , 'w' ) as f: f.write('{"default": {"dataset_size": 42}}' ) lowerCAmelCase : Union[str, Any] = DatasetInfosDict.from_directory(_A ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( 'dataset_info' , [ DatasetInfo(), DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ), ] , ) def __UpperCamelCase ( _A : str , _A : DatasetInfo ) -> Optional[int]: """simple docstring""" lowerCAmelCase : str = str(_A ) dataset_info.write_to_directory(_A ) lowerCAmelCase : List[str] = DatasetInfo.from_directory(_A ) assert dataset_info == reloaded assert os.path.exists(os.path.join(_A , 'dataset_info.json' ) ) def __UpperCamelCase ( ) -> List[str]: """simple docstring""" lowerCAmelCase : Tuple = DatasetInfo( description='foo' , citation='bar' , homepage='https://foo.bar' , license='CC0' , features=Features({'a': Value('int32' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train', 'num_examples': 42}] , download_checksums={} , download_size=13_37 , post_processing_size=4_42 , dataset_size=12_34 , size_in_bytes=13_37 + 4_42 + 12_34 , ) lowerCAmelCase : Optional[int] = dataset_info._to_yaml_dict() assert sorted(_A ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) lowerCAmelCase : Any = yaml.safe_dump(_A ) lowerCAmelCase : int = yaml.safe_load(_A ) assert dataset_info_yaml_dict == reloaded def __UpperCamelCase ( ) -> Dict: """simple docstring""" lowerCAmelCase : Union[str, Any] = DatasetInfo() lowerCAmelCase : List[Any] = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( 'dataset_infos_dict' , [ DatasetInfosDict(), DatasetInfosDict({'default': DatasetInfo()} ), DatasetInfosDict({'my_config_name': DatasetInfo()} ), DatasetInfosDict( { 'default': DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ) } ), DatasetInfosDict( { 'v1': DatasetInfo(dataset_size=42 ), 'v2': DatasetInfo(dataset_size=13_37 ), } ), ] , ) def __UpperCamelCase ( _A : Tuple , _A : DatasetInfosDict ) -> List[Any]: """simple docstring""" lowerCAmelCase : Tuple = str(_A ) dataset_infos_dict.write_to_directory(_A ) lowerCAmelCase : List[str] = DatasetInfosDict.from_directory(_A ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): lowerCAmelCase : Tuple = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml lowerCAmelCase : Optional[Any] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(_A , 'README.md' ) )
646
1
'''simple docstring''' _lowerCAmelCase : List[str] = { 'A': '.-', 'B': '-...', 'C': '-.-.', 'D': '-..', 'E': '.', 'F': '..-.', 'G': '--.', 'H': '....', 'I': '..', 'J': '.---', 'K': '-.-', 'L': '.-..', 'M': '--', 'N': '-.', 'O': '---', 'P': '.--.', 'Q': '--.-', 'R': '.-.', 'S': '...', 'T': '-', 'U': '..-', 'V': '...-', 'W': '.--', 'X': '-..-', 'Y': '-.--', 'Z': '--..', '1': '.----', '2': '..---', '3': '...--', '4': '....-', '5': '.....', '6': '-....', '7': '--...', '8': '---..', '9': '----.', '0': '-----', '&': '.-...', '@': '.--.-.', ':': '---...', ',': '--..--', '.': '.-.-.-', '\'': '.----.', '"': '.-..-.', '?': '..--..', '/': '-..-.', '=': '-...-', '+': '.-.-.', '-': '-....-', '(': '-.--.', ')': '-.--.-', '!': '-.-.--', ' ': '/' } # Exclamation mark is not in ITU-R recommendation # fmt: on _lowerCAmelCase : List[Any] = {value: key for key, value in MORSE_CODE_DICT.items()} def __UpperCamelCase ( _A : str ) -> str: """simple docstring""" return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def __UpperCamelCase ( _A : str ) -> str: """simple docstring""" return "".join(REVERSE_DICT[char] for char in message.split() ) def __UpperCamelCase ( ) -> None: """simple docstring""" lowerCAmelCase : Union[str, Any] = 'Morse code here!' print(_A ) lowerCAmelCase : List[Any] = encrypt(_A ) print(_A ) lowerCAmelCase : Optional[int] = decrypt(_A ) print(_A ) if __name__ == "__main__": main()
646
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCAmelCase ( a ): def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): super().__init__() if safety_checker is None: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" ' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered' ' results in services or applications open to the public. Both the diffusers team and Hugging Face' ' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling' ' it only for use-cases that involve analyzing network behavior or auditing its results. For more' ' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .' ) self.register_modules( speech_model=snake_case__ , speech_processor=snake_case__ , vae=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , unet=snake_case__ , scheduler=snake_case__ , feature_extractor=snake_case__ , ) def lowercase ( self , snake_case__ = "auto" ): if slice_size == "auto": lowerCAmelCase : Union[str, Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(snake_case__ ) def lowercase ( self ): self.enable_attention_slicing(snake_case__ ) @torch.no_grad() def __call__( self , snake_case__ , snake_case__=1_6000 , snake_case__ = 512 , snake_case__ = 512 , snake_case__ = 50 , snake_case__ = 7.5 , snake_case__ = None , snake_case__ = 1 , snake_case__ = 0.0 , snake_case__ = None , snake_case__ = None , snake_case__ = "pil" , snake_case__ = True , snake_case__ = None , snake_case__ = 1 , **snake_case__ , ): lowerCAmelCase : List[str] = self.speech_processor.feature_extractor( snake_case__ , return_tensors='pt' , sampling_rate=snake_case__ ).input_features.to(self.device ) lowerCAmelCase : Optional[Any] = self.speech_model.generate(snake_case__ , max_length=48_0000 ) lowerCAmelCase : str = self.speech_processor.tokenizer.batch_decode(snake_case__ , skip_special_tokens=snake_case__ , normalize=snake_case__ )[ 0 ] if isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = 1 elif isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = len(snake_case__ ) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(snake_case__ )}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(snake_case__ , snake_case__ ) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(snake_case__ )}." ) # get prompt text embeddings lowerCAmelCase : str = self.tokenizer( snake_case__ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) lowerCAmelCase : Tuple = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowerCAmelCase : str = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) lowerCAmelCase : Union[str, Any] = text_input_ids[:, : self.tokenizer.model_max_length] lowerCAmelCase : Union[str, Any] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : int = text_embeddings.shape lowerCAmelCase : Any = text_embeddings.repeat(1 , snake_case__ , 1 ) lowerCAmelCase : Optional[int] = text_embeddings.view(bs_embed * num_images_per_prompt , snake_case__ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowerCAmelCase : List[str] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowerCAmelCase : List[str] if negative_prompt is None: lowerCAmelCase : Any = [''] * batch_size elif type(snake_case__ ) is not type(snake_case__ ): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(snake_case__ )} !=" f" {type(snake_case__ )}." ) elif isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = [negative_prompt] elif batch_size != len(snake_case__ ): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(snake_case__ )}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" ' the batch size of `prompt`.' ) else: lowerCAmelCase : Dict = negative_prompt lowerCAmelCase : Optional[int] = text_input_ids.shape[-1] lowerCAmelCase : int = self.tokenizer( snake_case__ , padding='max_length' , max_length=snake_case__ , truncation=snake_case__ , return_tensors='pt' , ) lowerCAmelCase : Union[str, Any] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowerCAmelCase : List[Any] = uncond_embeddings.shape[1] lowerCAmelCase : List[str] = uncond_embeddings.repeat(1 , snake_case__ , 1 ) lowerCAmelCase : Optional[Any] = uncond_embeddings.view(batch_size * num_images_per_prompt , snake_case__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCAmelCase : List[str] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowerCAmelCase : Union[str, Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowerCAmelCase : Dict = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowerCAmelCase : str = torch.randn(snake_case__ , generator=snake_case__ , device='cpu' , dtype=snake_case__ ).to( self.device ) else: lowerCAmelCase : Tuple = torch.randn(snake_case__ , generator=snake_case__ , device=self.device , dtype=snake_case__ ) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) lowerCAmelCase : str = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(snake_case__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowerCAmelCase : Union[str, Any] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowerCAmelCase : Any = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowerCAmelCase : Tuple = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCAmelCase : Union[str, Any] = {} if accepts_eta: lowerCAmelCase : int = eta for i, t in enumerate(self.progress_bar(snake_case__ ) ): # expand the latents if we are doing classifier free guidance lowerCAmelCase : Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCAmelCase : Tuple = self.scheduler.scale_model_input(snake_case__ , snake_case__ ) # predict the noise residual lowerCAmelCase : List[str] = self.unet(snake_case__ , snake_case__ , encoder_hidden_states=snake_case__ ).sample # perform guidance if do_classifier_free_guidance: lowerCAmelCase , lowerCAmelCase : Dict = noise_pred.chunk(2 ) lowerCAmelCase : Tuple = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowerCAmelCase : int = self.scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase : List[Any] = 1 / 0.1_8_2_1_5 * latents lowerCAmelCase : Dict = self.vae.decode(snake_case__ ).sample lowerCAmelCase : List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowerCAmelCase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowerCAmelCase : Dict = self.numpy_to_pil(snake_case__ ) if not return_dict: return image return StableDiffusionPipelineOutput(images=snake_case__ , nsfw_content_detected=snake_case__ )
646
1
'''simple docstring''' from __future__ import annotations import math import random from typing import Any class lowerCAmelCase : def __init__( self ): lowerCAmelCase : list[Any] = [] lowerCAmelCase : int = 0 lowerCAmelCase : int = 0 def lowercase ( self ): return self.head == self.tail def lowercase ( self , snake_case__ ): self.data.append(snake_case__ ) lowerCAmelCase : int = self.tail + 1 def lowercase ( self ): lowerCAmelCase : Optional[int] = self.data[self.head] lowerCAmelCase : Dict = self.head + 1 return ret def lowercase ( self ): return self.tail - self.head def lowercase ( self ): print(self.data ) print('**************' ) print(self.data[self.head : self.tail] ) class lowerCAmelCase : def __init__( self , snake_case__ ): lowerCAmelCase : Union[str, Any] = data lowerCAmelCase : MyNode | None = None lowerCAmelCase : MyNode | None = None lowerCAmelCase : int = 1 def lowercase ( self ): return self.data def lowercase ( self ): return self.left def lowercase ( self ): return self.right def lowercase ( self ): return self.height def lowercase ( self , snake_case__ ): lowerCAmelCase : List[Any] = data def lowercase ( self , snake_case__ ): lowerCAmelCase : Tuple = node def lowercase ( self , snake_case__ ): lowerCAmelCase : Tuple = node def lowercase ( self , snake_case__ ): lowerCAmelCase : int = height def __UpperCamelCase ( _A : MyNode | None ) -> int: """simple docstring""" if node is None: return 0 return node.get_height() def __UpperCamelCase ( _A : int , _A : int ) -> int: """simple docstring""" if a > b: return a return b def __UpperCamelCase ( _A : MyNode ) -> MyNode: """simple docstring""" print('left rotation node:' , node.get_data() ) lowerCAmelCase : Union[str, Any] = node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(_A ) lowerCAmelCase : Optional[Any] = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(_A ) lowerCAmelCase : Union[str, Any] = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(_A ) return ret def __UpperCamelCase ( _A : MyNode ) -> MyNode: """simple docstring""" print('right rotation node:' , node.get_data() ) lowerCAmelCase : Any = node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(_A ) lowerCAmelCase : Any = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(_A ) lowerCAmelCase : Optional[int] = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(_A ) return ret def __UpperCamelCase ( _A : MyNode ) -> MyNode: """simple docstring""" lowerCAmelCase : Union[str, Any] = node.get_left() assert left_child is not None node.set_left(left_rotation(_A ) ) return right_rotation(_A ) def __UpperCamelCase ( _A : MyNode ) -> MyNode: """simple docstring""" lowerCAmelCase : Dict = node.get_right() assert right_child is not None node.set_right(right_rotation(_A ) ) return left_rotation(_A ) def __UpperCamelCase ( _A : MyNode | None , _A : Any ) -> MyNode | None: """simple docstring""" if node is None: return MyNode(_A ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , _A ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected lowerCAmelCase : Tuple = node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child lowerCAmelCase : Optional[Any] = right_rotation(_A ) else: lowerCAmelCase : str = lr_rotation(_A ) else: node.set_right(insert_node(node.get_right() , _A ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: lowerCAmelCase : int = node.get_right() assert right_child is not None if data < right_child.get_data(): lowerCAmelCase : List[Any] = rl_rotation(_A ) else: lowerCAmelCase : Dict = left_rotation(_A ) lowerCAmelCase : Union[str, Any] = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(_A ) return node def __UpperCamelCase ( _A : MyNode ) -> Any: """simple docstring""" while True: lowerCAmelCase : Tuple = root.get_right() if right_child is None: break lowerCAmelCase : Optional[int] = right_child return root.get_data() def __UpperCamelCase ( _A : MyNode ) -> Any: """simple docstring""" while True: lowerCAmelCase : int = root.get_left() if left_child is None: break lowerCAmelCase : List[Any] = left_child return root.get_data() def __UpperCamelCase ( _A : MyNode , _A : Any ) -> MyNode | None: """simple docstring""" lowerCAmelCase : Tuple = root.get_left() lowerCAmelCase : Optional[Any] = root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: lowerCAmelCase : str = get_left_most(_A ) root.set_data(_A ) root.set_right(del_node(_A , _A ) ) elif left_child is not None: lowerCAmelCase : List[str] = left_child elif right_child is not None: lowerCAmelCase : List[str] = right_child else: return None elif root.get_data() > data: if left_child is None: print('No such data' ) return root else: root.set_left(del_node(_A , _A ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(_A , _A ) ) if get_height(_A ) - get_height(_A ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): lowerCAmelCase : str = left_rotation(_A ) else: lowerCAmelCase : Any = rl_rotation(_A ) elif get_height(_A ) - get_height(_A ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): lowerCAmelCase : List[str] = right_rotation(_A ) else: lowerCAmelCase : List[Any] = lr_rotation(_A ) lowerCAmelCase : Any = my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(_A ) return root class lowerCAmelCase : def __init__( self ): lowerCAmelCase : MyNode | None = None def lowercase ( self ): return get_height(self.root ) def lowercase ( self , snake_case__ ): print('insert:' + str(snake_case__ ) ) lowerCAmelCase : List[str] = insert_node(self.root , snake_case__ ) def lowercase ( self , snake_case__ ): print('delete:' + str(snake_case__ ) ) if self.root is None: print('Tree is empty!' ) return lowerCAmelCase : Union[str, Any] = del_node(self.root , snake_case__ ) def __str__( self , ): # a level traversale, gives a more intuitive look on the tree lowerCAmelCase : List[str] = '' lowerCAmelCase : Union[str, Any] = MyQueue() q.push(self.root ) lowerCAmelCase : List[str] = self.get_height() if layer == 0: return output lowerCAmelCase : str = 0 while not q.is_empty(): lowerCAmelCase : Optional[Any] = q.pop() lowerCAmelCase : Union[str, Any] = ' ' * int(math.pow(2 , layer - 1 ) ) output += space if node is None: output += "*" q.push(snake_case__ ) q.push(snake_case__ ) else: output += str(node.get_data() ) q.push(node.get_left() ) q.push(node.get_right() ) output += space lowerCAmelCase : List[Any] = cnt + 1 for i in range(100 ): if cnt == math.pow(2 , snake_case__ ) - 1: lowerCAmelCase : int = layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def __UpperCamelCase ( ) -> None: """simple docstring""" import doctest doctest.testmod() if __name__ == "__main__": _test() _lowerCAmelCase : int = AVLtree() _lowerCAmelCase : Optional[Any] = list(range(10)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
646
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : List[Any] = LDMTextToImagePipeline _lowerCamelCase : Optional[Any] = TEXT_TO_IMAGE_PARAMS - { """negative_prompt""", """negative_prompt_embeds""", """cross_attention_kwargs""", """prompt_embeds""", } _lowerCamelCase : List[str] = PipelineTesterMixin.required_optional_params - { """num_images_per_prompt""", """callback""", """callback_steps""", } _lowerCamelCase : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS _lowerCamelCase : Optional[int] = False def lowercase ( self ): torch.manual_seed(0 ) lowerCAmelCase : Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) lowerCAmelCase : int = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , ) torch.manual_seed(0 ) lowerCAmelCase : str = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') , up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') , latent_channels=4 , ) torch.manual_seed(0 ) lowerCAmelCase : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowerCAmelCase : str = CLIPTextModel(snake_case__ ) lowerCAmelCase : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCAmelCase : List[Any] = { 'unet': unet, 'scheduler': scheduler, 'vqvae': vae, 'bert': text_encoder, 'tokenizer': tokenizer, } return components def lowercase ( self , snake_case__ , snake_case__=0 ): if str(snake_case__ ).startswith('mps' ): lowerCAmelCase : Optional[int] = torch.manual_seed(snake_case__ ) else: lowerCAmelCase : str = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) lowerCAmelCase : Tuple = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase ( self ): lowerCAmelCase : List[str] = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase : Optional[Any] = self.get_dummy_components() lowerCAmelCase : Optional[Any] = LDMTextToImagePipeline(**snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Tuple = self.get_dummy_inputs(snake_case__ ) lowerCAmelCase : Union[str, Any] = pipe(**snake_case__ ).images lowerCAmelCase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) lowerCAmelCase : List[Any] = np.array([0.6_1_0_1, 0.6_1_5_6, 0.5_6_2_2, 0.4_8_9_5, 0.6_6_6_1, 0.3_8_0_4, 0.5_7_4_8, 0.6_1_3_6, 0.5_0_1_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self , snake_case__ , snake_case__=torch.floataa , snake_case__=0 ): lowerCAmelCase : List[str] = torch.manual_seed(snake_case__ ) lowerCAmelCase : int = np.random.RandomState(snake_case__ ).standard_normal((1, 4, 32, 32) ) lowerCAmelCase : Optional[Any] = torch.from_numpy(snake_case__ ).to(device=snake_case__ , dtype=snake_case__ ) lowerCAmelCase : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase ( self ): lowerCAmelCase : Tuple = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Optional[Any] = self.get_inputs(snake_case__ ) lowerCAmelCase : List[Any] = pipe(**snake_case__ ).images lowerCAmelCase : str = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) lowerCAmelCase : Tuple = np.array([0.5_1_8_2_5, 0.5_2_8_5_0, 0.5_2_5_4_3, 0.5_4_2_5_8, 0.5_2_3_0_4, 0.5_2_5_6_9, 0.5_4_3_6_3, 0.5_5_2_7_6, 0.5_6_8_7_8] ) lowerCAmelCase : int = np.abs(expected_slice - image_slice ).max() assert max_diff < 1e-3 @nightly @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self , snake_case__ , snake_case__=torch.floataa , snake_case__=0 ): lowerCAmelCase : List[str] = torch.manual_seed(snake_case__ ) lowerCAmelCase : Any = np.random.RandomState(snake_case__ ).standard_normal((1, 4, 32, 32) ) lowerCAmelCase : List[Any] = torch.from_numpy(snake_case__ ).to(device=snake_case__ , dtype=snake_case__ ) lowerCAmelCase : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase ( self ): lowerCAmelCase : Optional[int] = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : int = self.get_inputs(snake_case__ ) lowerCAmelCase : Optional[int] = pipe(**snake_case__ ).images[0] lowerCAmelCase : Optional[int] = load_numpy( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy' ) lowerCAmelCase : List[str] = np.abs(expected_image - image ).max() assert max_diff < 1e-3
646
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : str = logging.get_logger(__name__) _lowerCAmelCase : List[Any] = { 'naver-clova-ix/donut-base': 'https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json', # See all Donut models at https://huggingface.co/models?filter=donut-swin } class lowerCAmelCase ( a ): _lowerCamelCase : Tuple = """donut-swin""" _lowerCamelCase : Optional[int] = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self , snake_case__=224 , snake_case__=4 , snake_case__=3 , snake_case__=96 , snake_case__=[2, 2, 6, 2] , snake_case__=[3, 6, 12, 24] , snake_case__=7 , snake_case__=4.0 , snake_case__=True , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.1 , snake_case__="gelu" , snake_case__=False , snake_case__=0.0_2 , snake_case__=1e-5 , **snake_case__ , ): super().__init__(**snake_case__ ) lowerCAmelCase : List[str] = image_size lowerCAmelCase : int = patch_size lowerCAmelCase : str = num_channels lowerCAmelCase : List[str] = embed_dim lowerCAmelCase : Any = depths lowerCAmelCase : Tuple = len(snake_case__ ) lowerCAmelCase : Tuple = num_heads lowerCAmelCase : Dict = window_size lowerCAmelCase : Tuple = mlp_ratio lowerCAmelCase : List[Any] = qkv_bias lowerCAmelCase : Optional[Any] = hidden_dropout_prob lowerCAmelCase : Any = attention_probs_dropout_prob lowerCAmelCase : Dict = drop_path_rate lowerCAmelCase : int = hidden_act lowerCAmelCase : Any = use_absolute_embeddings lowerCAmelCase : Dict = layer_norm_eps lowerCAmelCase : List[str] = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase : Optional[Any] = int(embed_dim * 2 ** (len(snake_case__ ) - 1) )
646
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Tuple = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { 'facebook/xmod-base': 'https://huggingface.co/facebook/xmod-base/resolve/main/config.json', 'facebook/xmod-large-prenorm': 'https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json', 'facebook/xmod-base-13-125k': 'https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json', 'facebook/xmod-base-30-125k': 'https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json', 'facebook/xmod-base-30-195k': 'https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json', 'facebook/xmod-base-60-125k': 'https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json', 'facebook/xmod-base-60-265k': 'https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json', 'facebook/xmod-base-75-125k': 'https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json', 'facebook/xmod-base-75-269k': 'https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json', } class lowerCAmelCase ( a ): _lowerCamelCase : int = """xmod""" def __init__( self , snake_case__=3_0522 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=1e-1_2 , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__="absolute" , snake_case__=True , snake_case__=None , snake_case__=False , snake_case__=2 , snake_case__=False , snake_case__=True , snake_case__=True , snake_case__=("en_XX",) , snake_case__=None , **snake_case__ , ): super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) lowerCAmelCase : Dict = vocab_size lowerCAmelCase : Optional[Any] = hidden_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob lowerCAmelCase : str = max_position_embeddings lowerCAmelCase : int = type_vocab_size lowerCAmelCase : List[Any] = initializer_range lowerCAmelCase : Any = layer_norm_eps lowerCAmelCase : Dict = position_embedding_type lowerCAmelCase : Optional[Any] = use_cache lowerCAmelCase : Union[str, Any] = classifier_dropout lowerCAmelCase : int = pre_norm lowerCAmelCase : Optional[Any] = adapter_reduction_factor lowerCAmelCase : Any = adapter_layer_norm lowerCAmelCase : Dict = adapter_reuse_layer_norm lowerCAmelCase : Any = ln_before_adapter lowerCAmelCase : Optional[Any] = list(snake_case__ ) lowerCAmelCase : List[Any] = default_language class lowerCAmelCase ( a ): @property def lowercase ( self ): if self.task == "multiple-choice": lowerCAmelCase : List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase : Optional[int] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
646
1
'''simple docstring''' import warnings from typing import Dict, List, Optional, Tuple from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowerCAmelCase : List[Any] = logging.get_logger(__name__) class lowerCAmelCase ( a ): _lowerCamelCase : Tuple = ["""input_ids""", """attention_mask"""] def __init__( self , snake_case__="</s>" , snake_case__="<unk>" , snake_case__="<pad>" , snake_case__=125 , snake_case__=None , **snake_case__ , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: lowerCAmelCase : int = [f"<extra_id_{i}>" for i in range(snake_case__ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens lowerCAmelCase : Tuple = len(set(filter(lambda snake_case__ : bool('extra_id' in str(snake_case__ ) ) , snake_case__ ) ) ) if extra_tokens != extra_ids: raise ValueError( f"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are" ' provided to ByT5Tokenizer. In this case the additional_special_tokens must include the' ' extra_ids tokens' ) lowerCAmelCase : int = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else pad_token lowerCAmelCase : int = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else eos_token lowerCAmelCase : str = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else unk_token super().__init__( eos_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , extra_ids=snake_case__ , additional_special_tokens=snake_case__ , **snake_case__ , ) lowerCAmelCase : Dict = extra_ids lowerCAmelCase : Any = 2**8 # utf is 8 bits # define special tokens dict lowerCAmelCase : Dict[int, str] = { self.pad_token: 0, self.eos_token: 1, self.unk_token: 2, } lowerCAmelCase : Any = len(self.special_tokens_encoder ) lowerCAmelCase : int = len(snake_case__ ) for i, token in enumerate(snake_case__ ): lowerCAmelCase : int = self.vocab_size + i - n lowerCAmelCase : Dict[str, int] = {v: k for k, v in self.special_tokens_encoder.items()} @property def lowercase ( self ): return self._utf_vocab_size + self._num_special_tokens + self._extra_ids def lowercase ( self , snake_case__ , snake_case__ = None , snake_case__ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(snake_case__ )) + [1] return ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) + [1] def lowercase ( self , snake_case__ ): if len(snake_case__ ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f"This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated" ' eos tokens being added.' ) return token_ids else: return token_ids + [self.eos_token_id] def lowercase ( self , snake_case__ , snake_case__ = None ): lowerCAmelCase : List[str] = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def lowercase ( self , snake_case__ , snake_case__ = None ): lowerCAmelCase : Dict = self._add_eos_if_not_present(snake_case__ ) if token_ids_a is None: return token_ids_a else: lowerCAmelCase : int = self._add_eos_if_not_present(snake_case__ ) return token_ids_a + token_ids_a def lowercase ( self , snake_case__ ): lowerCAmelCase : Union[str, Any] = [chr(snake_case__ ) for i in text.encode('utf-8' )] return tokens def lowercase ( self , snake_case__ ): if token in self.special_tokens_encoder: lowerCAmelCase : int = self.special_tokens_encoder[token] elif token in self.added_tokens_encoder: lowerCAmelCase : int = self.added_tokens_encoder[token] elif len(snake_case__ ) != 1: lowerCAmelCase : Union[str, Any] = self.unk_token_id else: lowerCAmelCase : Any = ord(snake_case__ ) + self._num_special_tokens return token_id def lowercase ( self , snake_case__ ): if index in self.special_tokens_decoder: lowerCAmelCase : Any = self.special_tokens_decoder[index] else: lowerCAmelCase : int = chr(index - self._num_special_tokens ) return token def lowercase ( self , snake_case__ ): lowerCAmelCase : Dict = B'' for token in tokens: if token in self.special_tokens_decoder: lowerCAmelCase : Dict = self.special_tokens_decoder[token].encode('utf-8' ) elif token in self.added_tokens_decoder: lowerCAmelCase : Any = self.special_tokens_decoder[token].encode('utf-8' ) elif token in self.special_tokens_encoder: lowerCAmelCase : Tuple = token.encode('utf-8' ) elif token in self.added_tokens_encoder: lowerCAmelCase : List[str] = token.encode('utf-8' ) else: lowerCAmelCase : Dict = bytes([ord(snake_case__ )] ) bstring += tok_string lowerCAmelCase : Any = bstring.decode('utf-8' , errors='ignore' ) return string def lowercase ( self , snake_case__ , snake_case__ = None ): return ()
646
'''simple docstring''' import argparse import os import re _lowerCAmelCase : Dict = 'src/diffusers' # Pattern that looks at the indentation in a line. _lowerCAmelCase : str = re.compile(r'^(\s*)\S') # Pattern that matches `"key":" and puts `key` in group 0. _lowerCAmelCase : Any = re.compile(r'^\s*"([^"]+)":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. _lowerCAmelCase : List[Any] = re.compile(r'^\s*_import_structure\["([^"]+)"\]') # Pattern that matches `"key",` and puts `key` in group 0. _lowerCAmelCase : int = re.compile(r'^\s*"([^"]+)",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. _lowerCAmelCase : Optional[Any] = re.compile(r'\[([^\]]+)\]') def __UpperCamelCase ( _A : Union[str, Any] ) -> Dict: """simple docstring""" lowerCAmelCase : Any = _re_indent.search(_A ) return "" if search is None else search.groups()[0] def __UpperCamelCase ( _A : Dict , _A : Any="" , _A : List[str]=None , _A : Any=None ) -> Tuple: """simple docstring""" lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Tuple = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(_A ): index += 1 lowerCAmelCase : Optional[int] = ['\n'.join(lines[:index] )] else: lowerCAmelCase : int = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowerCAmelCase : Tuple = [lines[index]] index += 1 while index < len(_A ) and (end_prompt is None or not lines[index].startswith(_A )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(_A ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(_A ) ) if index < len(_A ) - 1: lowerCAmelCase : List[Any] = [lines[index + 1]] index += 1 else: lowerCAmelCase : int = [] else: blocks.append('\n'.join(_A ) ) lowerCAmelCase : Any = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(_A ) > 0: blocks.append('\n'.join(_A ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(_A ): blocks.append('\n'.join(lines[index:] ) ) return blocks def __UpperCamelCase ( _A : Dict ) -> List[Any]: """simple docstring""" def _inner(_A : Tuple ): return key(_A ).lower().replace('_' , '' ) return _inner def __UpperCamelCase ( _A : Union[str, Any] , _A : Any=None ) -> Optional[Any]: """simple docstring""" def noop(_A : Any ): return x if key is None: lowerCAmelCase : List[str] = noop # Constants are all uppercase, they go first. lowerCAmelCase : str = [obj for obj in objects if key(_A ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowerCAmelCase : List[str] = [obj for obj in objects if key(_A )[0].isupper() and not key(_A ).isupper()] # Functions begin with a lowercase, they go last. lowerCAmelCase : Optional[Any] = [obj for obj in objects if not key(_A )[0].isupper()] lowerCAmelCase : Tuple = ignore_underscore(_A ) return sorted(_A , key=_A ) + sorted(_A , key=_A ) + sorted(_A , key=_A ) def __UpperCamelCase ( _A : Union[str, Any] ) -> int: """simple docstring""" def _replace(_A : List[Any] ): lowerCAmelCase : List[Any] = match.groups()[0] if "," not in imports: return F"[{imports}]" lowerCAmelCase : Dict = [part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase : List[str] = keys[:-1] return "[" + ", ".join([F"\"{k}\"" for k in sort_objects(_A )] ) + "]" lowerCAmelCase : Optional[int] = import_statement.split('\n' ) if len(_A ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowerCAmelCase : Optional[Any] = 2 if lines[1].strip() == '[' else 1 lowerCAmelCase : List[str] = [(i, _re_strip_line.search(_A ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowerCAmelCase : Optional[Any] = sort_objects(_A , key=lambda _A : x[1] ) lowerCAmelCase : Dict = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(_A ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowerCAmelCase : Optional[int] = _re_bracket_content.sub(_replace , lines[1] ) else: lowerCAmelCase : List[Any] = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase : int = keys[:-1] lowerCAmelCase : Tuple = get_indent(lines[1] ) + ', '.join([F"\"{k}\"" for k in sort_objects(_A )] ) return "\n".join(_A ) else: # Finally we have to deal with imports fitting on one line lowerCAmelCase : Union[str, Any] = _re_bracket_content.sub(_replace , _A ) return import_statement def __UpperCamelCase ( _A : str , _A : Tuple=True ) -> Optional[Any]: """simple docstring""" with open(_A , 'r' ) as f: lowerCAmelCase : Optional[int] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowerCAmelCase : List[Any] = split_code_in_indented_blocks( _A , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(_A ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowerCAmelCase : List[str] = main_blocks[block_idx] lowerCAmelCase : Union[str, Any] = block.split('\n' ) # Get to the start of the imports. lowerCAmelCase : Optional[Any] = 0 while line_idx < len(_A ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowerCAmelCase : Optional[Any] = len(_A ) else: line_idx += 1 if line_idx >= len(_A ): continue # Ignore beginning and last line: they don't contain anything. lowerCAmelCase : str = '\n'.join(block_lines[line_idx:-1] ) lowerCAmelCase : str = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowerCAmelCase : Optional[Any] = split_code_in_indented_blocks(_A , indent_level=_A ) # We have two categories of import key: list or _import_structure[key].append/extend lowerCAmelCase : Union[str, Any] = _re_direct_key if '_import_structure' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowerCAmelCase : int = [(pattern.search(_A ).groups()[0] if pattern.search(_A ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowerCAmelCase : Dict = [(i, key) for i, key in enumerate(_A ) if key is not None] lowerCAmelCase : List[Any] = [x[0] for x in sorted(_A , key=lambda _A : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowerCAmelCase : int = 0 lowerCAmelCase : Dict = [] for i in range(len(_A ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: lowerCAmelCase : str = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(_A ) count += 1 # And we put our main block back together with its first and last line. lowerCAmelCase : str = '\n'.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(_A ): if check_only: return True else: print(F"Overwriting {file}." ) with open(_A , 'w' ) as f: f.write('\n'.join(_A ) ) def __UpperCamelCase ( _A : Tuple=True ) -> Any: """simple docstring""" lowerCAmelCase : Tuple = [] for root, _, files in os.walk(_A ): if "__init__.py" in files: lowerCAmelCase : Any = sort_imports(os.path.join(_A , '__init__.py' ) , check_only=_A ) if result: lowerCAmelCase : Optional[Any] = [os.path.join(_A , '__init__.py' )] if len(_A ) > 0: raise ValueError(F"Would overwrite {len(_A )} files, run `make style`." ) if __name__ == "__main__": _lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') _lowerCAmelCase : Optional[int] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
646
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) _lowerCAmelCase : Optional[int] = { 'configuration_perceiver': ['PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PerceiverConfig', 'PerceiverOnnxConfig'], 'tokenization_perceiver': ['PerceiverTokenizer'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : List[str] = ['PerceiverFeatureExtractor'] _lowerCAmelCase : Optional[Any] = ['PerceiverImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[Any] = [ 'PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PerceiverForImageClassificationConvProcessing', 'PerceiverForImageClassificationFourier', 'PerceiverForImageClassificationLearned', 'PerceiverForMaskedLM', 'PerceiverForMultimodalAutoencoding', 'PerceiverForOpticalFlow', 'PerceiverForSequenceClassification', 'PerceiverLayer', 'PerceiverModel', 'PerceiverPreTrainedModel', ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys _lowerCAmelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
646
'''simple docstring''' import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class lowerCAmelCase : def __init__( self , snake_case__ , snake_case__=13 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=99 , snake_case__=64 , snake_case__=32 , snake_case__=5 , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=16 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=3 , snake_case__=4 , snake_case__=None , ): lowerCAmelCase : str = parent lowerCAmelCase : Optional[int] = batch_size lowerCAmelCase : Optional[Any] = seq_length lowerCAmelCase : Optional[Any] = is_training lowerCAmelCase : Dict = use_input_mask lowerCAmelCase : Tuple = use_token_type_ids lowerCAmelCase : int = use_labels lowerCAmelCase : int = vocab_size lowerCAmelCase : Any = hidden_size lowerCAmelCase : Optional[Any] = embedding_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : List[str] = num_attention_heads lowerCAmelCase : List[Any] = intermediate_size lowerCAmelCase : Dict = hidden_act lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : int = attention_probs_dropout_prob lowerCAmelCase : List[Any] = max_position_embeddings lowerCAmelCase : int = type_vocab_size lowerCAmelCase : List[str] = type_sequence_label_size lowerCAmelCase : Dict = initializer_range lowerCAmelCase : Any = num_labels lowerCAmelCase : str = num_choices lowerCAmelCase : int = scope def lowercase ( self ): lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Union[str, Any] = None if self.use_input_mask: lowerCAmelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : Optional[int] = None if self.use_token_type_ids: lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : Optional[Any] = None lowerCAmelCase : Optional[Any] = None lowerCAmelCase : Dict = None if self.use_labels: lowerCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase ( self ): return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case__ , initializer_range=self.initializer_range , ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = MobileBertModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : int = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) lowerCAmelCase : Optional[int] = model(snake_case__ , token_type_ids=snake_case__ ) lowerCAmelCase : Optional[Any] = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : int = MobileBertForMaskedLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : str = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = MobileBertForNextSentencePrediction(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : str = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : List[Any] = MobileBertForPreTraining(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Tuple = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , next_sentence_label=snake_case__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = MobileBertForQuestionAnswering(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : List[str] = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = self.num_labels lowerCAmelCase : List[Any] = MobileBertForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = self.num_labels lowerCAmelCase : int = MobileBertForTokenClassification(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : List[str] = self.num_choices lowerCAmelCase : Any = MobileBertForMultipleChoice(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : int = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : List[str] = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase ( self ): lowerCAmelCase : Any = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) : Optional[Any] = config_and_inputs lowerCAmelCase : List[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase ( a , a , unittest.TestCase ): _lowerCamelCase : List[str] = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) _lowerCamelCase : Tuple = ( { """feature-extraction""": MobileBertModel, """fill-mask""": MobileBertForMaskedLM, """question-answering""": MobileBertForQuestionAnswering, """text-classification""": MobileBertForSequenceClassification, """token-classification""": MobileBertForTokenClassification, """zero-shot""": MobileBertForSequenceClassification, } if is_torch_available() else {} ) _lowerCamelCase : str = True def lowercase ( self , snake_case__ , snake_case__ , snake_case__=False ): lowerCAmelCase : int = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if return_labels: if model_class in get_values(snake_case__ ): lowerCAmelCase : str = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=snake_case__ ) lowerCAmelCase : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case__ ) return inputs_dict def lowercase ( self ): lowerCAmelCase : List[Any] = MobileBertModelTester(self ) lowerCAmelCase : Dict = ConfigTester(self , config_class=snake_case__ , hidden_size=37 ) def lowercase ( self ): self.config_tester.run_common_tests() def lowercase ( self ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*snake_case__ ) def __UpperCamelCase ( _A : Optional[Any] ) -> Optional[int]: """simple docstring""" return torch.tensor( _A , dtype=torch.long , device=_A , ) _lowerCAmelCase : Union[str, Any] = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase ( unittest.TestCase ): @slow def lowercase ( self ): lowerCAmelCase : List[str] = MobileBertModel.from_pretrained('google/mobilebert-uncased' ).to(snake_case__ ) lowerCAmelCase : List[Any] = _long_tensor([[101, 7110, 1005, 1056, 2023, 1_1333, 1_7413, 1029, 102]] ) with torch.no_grad(): lowerCAmelCase : Tuple = model(snake_case__ )[0] lowerCAmelCase : List[Any] = torch.Size((1, 9, 512) ) self.assertEqual(output.shape , snake_case__ ) lowerCAmelCase : Union[str, Any] = torch.tensor( [ [ [-2.4_7_3_6_5_2_6e0_7, 8.2_6_9_1_6_5_6e0_4, 1.6_5_2_1_8_3_8e0_5], [-5.7_5_4_1_7_0_4e-0_1, 3.9_0_5_6_0_2_2e0_0, 4.4_0_1_1_5_0_7e0_0], [2.6_0_4_7_3_5_9e0_0, 1.5_6_7_7_6_5_2e0_0, -1.7_3_2_4_1_8_8e-0_1], ] ] , device=snake_case__ , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE lowerCAmelCase : List[str] = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) lowerCAmelCase : Dict = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
646
1
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): lowerCAmelCase : List[Any] = tempfile.mkdtemp() lowerCAmelCase : Optional[int] = BlipImageProcessor() lowerCAmelCase : Optional[int] = GPTaTokenizer.from_pretrained('hf-internal-testing/tiny-random-GPT2Model' ) lowerCAmelCase : Dict = BertTokenizerFast.from_pretrained('hf-internal-testing/tiny-random-bert' ) lowerCAmelCase : Any = InstructBlipProcessor(snake_case__ , snake_case__ , snake_case__ ) processor.save_pretrained(self.tmpdirname ) def lowercase ( self , **snake_case__ ): return AutoProcessor.from_pretrained(self.tmpdirname , **snake_case__ ).tokenizer def lowercase ( self , **snake_case__ ): return AutoProcessor.from_pretrained(self.tmpdirname , **snake_case__ ).image_processor def lowercase ( self , **snake_case__ ): return AutoProcessor.from_pretrained(self.tmpdirname , **snake_case__ ).qformer_tokenizer def lowercase ( self ): shutil.rmtree(self.tmpdirname ) def lowercase ( self ): lowerCAmelCase : Any = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCAmelCase : Any = [Image.fromarray(np.moveaxis(snake_case__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase ( self ): lowerCAmelCase : List[str] = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase : Optional[Any] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) lowerCAmelCase : Union[str, Any] = self.get_image_processor(do_normalize=snake_case__ , padding_value=1.0 ) lowerCAmelCase : Optional[int] = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=snake_case__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , snake_case__ ) self.assertIsInstance(processor.qformer_tokenizer , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Dict = self.get_image_processor() lowerCAmelCase : Any = self.get_tokenizer() lowerCAmelCase : Dict = self.get_qformer_tokenizer() lowerCAmelCase : Dict = InstructBlipProcessor( tokenizer=snake_case__ , image_processor=snake_case__ , qformer_tokenizer=snake_case__ ) lowerCAmelCase : List[str] = self.prepare_image_inputs() lowerCAmelCase : Union[str, Any] = image_processor(snake_case__ , return_tensors='np' ) lowerCAmelCase : Optional[Any] = processor(images=snake_case__ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = self.get_image_processor() lowerCAmelCase : Tuple = self.get_tokenizer() lowerCAmelCase : Union[str, Any] = self.get_qformer_tokenizer() lowerCAmelCase : Dict = InstructBlipProcessor( tokenizer=snake_case__ , image_processor=snake_case__ , qformer_tokenizer=snake_case__ ) lowerCAmelCase : Any = 'lower newer' lowerCAmelCase : Optional[Any] = processor(text=snake_case__ ) lowerCAmelCase : Union[str, Any] = tokenizer(snake_case__ , return_token_type_ids=snake_case__ ) lowerCAmelCase : Union[str, Any] = qformer_tokenizer(snake_case__ , return_token_type_ids=snake_case__ ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor['qformer_' + key] ) def lowercase ( self ): lowerCAmelCase : List[str] = self.get_image_processor() lowerCAmelCase : List[Any] = self.get_tokenizer() lowerCAmelCase : Optional[int] = self.get_qformer_tokenizer() lowerCAmelCase : str = InstructBlipProcessor( tokenizer=snake_case__ , image_processor=snake_case__ , qformer_tokenizer=snake_case__ ) lowerCAmelCase : Any = 'lower newer' lowerCAmelCase : str = self.prepare_image_inputs() lowerCAmelCase : List[str] = processor(text=snake_case__ , images=snake_case__ ) self.assertListEqual( list(inputs.keys() ) , ['input_ids', 'attention_mask', 'qformer_input_ids', 'qformer_attention_mask', 'pixel_values'] , ) # test if it raises when no input is passed with pytest.raises(snake_case__ ): processor() def lowercase ( self ): lowerCAmelCase : int = self.get_image_processor() lowerCAmelCase : Any = self.get_tokenizer() lowerCAmelCase : Union[str, Any] = self.get_qformer_tokenizer() lowerCAmelCase : Optional[int] = InstructBlipProcessor( tokenizer=snake_case__ , image_processor=snake_case__ , qformer_tokenizer=snake_case__ ) lowerCAmelCase : Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase : Optional[int] = processor.batch_decode(snake_case__ ) lowerCAmelCase : Optional[int] = tokenizer.batch_decode(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = self.get_image_processor() lowerCAmelCase : Any = self.get_tokenizer() lowerCAmelCase : Dict = self.get_qformer_tokenizer() lowerCAmelCase : List[Any] = InstructBlipProcessor( tokenizer=snake_case__ , image_processor=snake_case__ , qformer_tokenizer=snake_case__ ) lowerCAmelCase : Union[str, Any] = 'lower newer' lowerCAmelCase : Union[str, Any] = self.prepare_image_inputs() lowerCAmelCase : Union[str, Any] = processor(text=snake_case__ , images=snake_case__ ) self.assertListEqual( list(inputs.keys() ) , ['input_ids', 'attention_mask', 'qformer_input_ids', 'qformer_attention_mask', 'pixel_values'] , )
646
'''simple docstring''' import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __UpperCamelCase ( _A : Dict ) -> int: """simple docstring""" lowerCAmelCase : Tuple = [] embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight", F"stage{idx}.patch_embed.proj.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias", F"stage{idx}.patch_embed.proj.bias", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight", F"stage{idx}.patch_embed.norm.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias", F"stage{idx}.patch_embed.norm.bias", ) ) return embed def __UpperCamelCase ( _A : List[Any] , _A : Dict ) -> Any: """simple docstring""" lowerCAmelCase : str = [] attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight", F"stage{idx}.blocks.{cnt}.attn.proj_q.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias", F"stage{idx}.blocks.{cnt}.attn.proj_q.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight", F"stage{idx}.blocks.{cnt}.attn.proj_k.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias", F"stage{idx}.blocks.{cnt}.attn.proj_k.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight", F"stage{idx}.blocks.{cnt}.attn.proj_v.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias", F"stage{idx}.blocks.{cnt}.attn.proj_v.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight", F"stage{idx}.blocks.{cnt}.attn.proj.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias", F"stage{idx}.blocks.{cnt}.attn.proj.bias", ) ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc2.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight", F"stage{idx}.blocks.{cnt}.norm1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias", F"stage{idx}.blocks.{cnt}.norm1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight", F"stage{idx}.blocks.{cnt}.norm2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias", F"stage{idx}.blocks.{cnt}.norm2.bias") ) return attention_weights def __UpperCamelCase ( _A : Optional[int] ) -> Optional[int]: """simple docstring""" lowerCAmelCase : Optional[int] = [] token.append((F"cvt.encoder.stages.{idx}.cls_token", 'stage2.cls_token') ) return token def __UpperCamelCase ( ) -> int: """simple docstring""" lowerCAmelCase : List[Any] = [] head.append(('layernorm.weight', 'norm.weight') ) head.append(('layernorm.bias', 'norm.bias') ) head.append(('classifier.weight', 'head.weight') ) head.append(('classifier.bias', 'head.bias') ) return head def __UpperCamelCase ( _A : str , _A : Optional[Any] , _A : Dict , _A : str ) -> Optional[int]: """simple docstring""" lowerCAmelCase : List[str] = 'imagenet-1k-id2label.json' lowerCAmelCase : Tuple = 10_00 lowerCAmelCase : str = 'huggingface/label-files' lowerCAmelCase : List[Any] = num_labels lowerCAmelCase : Any = json.load(open(cached_download(hf_hub_url(_A , _A , repo_type='dataset' ) ) , 'r' ) ) lowerCAmelCase : List[str] = {int(_A ): v for k, v in idalabel.items()} lowerCAmelCase : List[str] = idalabel lowerCAmelCase : str = {v: k for k, v in idalabel.items()} lowerCAmelCase : int = CvtConfig(num_labels=_A , idalabel=_A , labelaid=_A ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13": lowerCAmelCase : List[str] = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21": lowerCAmelCase : Tuple = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: lowerCAmelCase : Any = [2, 2, 20] lowerCAmelCase : List[str] = [3, 12, 16] lowerCAmelCase : List[Any] = [1_92, 7_68, 10_24] lowerCAmelCase : Union[str, Any] = CvtForImageClassification(_A ) lowerCAmelCase : str = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) lowerCAmelCase : Optional[Any] = image_size lowerCAmelCase : List[Any] = torch.load(_A , map_location=torch.device('cpu' ) ) lowerCAmelCase : str = OrderedDict() lowerCAmelCase : int = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: lowerCAmelCase : List[str] = list_of_state_dict + cls_token(_A ) lowerCAmelCase : Optional[Any] = list_of_state_dict + embeddings(_A ) for cnt in range(config.depth[idx] ): lowerCAmelCase : List[Any] = list_of_state_dict + attention(_A , _A ) lowerCAmelCase : List[str] = list_of_state_dict + final() for gg in list_of_state_dict: print(_A ) for i in range(len(_A ) ): lowerCAmelCase : Tuple = original_weights[list_of_state_dict[i][1]] model.load_state_dict(_A ) model.save_pretrained(_A ) image_processor.save_pretrained(_A ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": _lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '--cvt_model', default='cvt-w24', type=str, help='Name of the cvt model you\'d like to convert.', ) parser.add_argument( '--image_size', default=384, type=int, help='Input Image Size', ) parser.add_argument( '--cvt_file_name', default=r'cvtmodels\CvT-w24-384x384-IN-22k.pth', type=str, help='Input Image Size', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) _lowerCAmelCase : str = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
646
1
'''simple docstring''' import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class lowerCAmelCase : _lowerCamelCase : Optional[Union[str, Path]] = None _lowerCamelCase : bool = False _lowerCamelCase : bool = False _lowerCamelCase : bool = False _lowerCamelCase : Optional[Dict] = None _lowerCamelCase : Optional[str] = None _lowerCamelCase : bool = False _lowerCamelCase : bool = False _lowerCamelCase : bool = False _lowerCamelCase : bool = True _lowerCamelCase : Optional[int] = None _lowerCamelCase : int = 1 _lowerCamelCase : Optional[Union[str, bool]] = None _lowerCamelCase : bool = False _lowerCamelCase : Optional[Dict] = None _lowerCamelCase : Optional[str] = None def lowercase ( self ): return self.__class__(**{k: copy.deepcopy(snake_case__ ) for k, v in self.__dict__.items()} )
646
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Any = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { 'xlm-roberta-base': 'https://huggingface.co/xlm-roberta-base/resolve/main/config.json', 'xlm-roberta-large': 'https://huggingface.co/xlm-roberta-large/resolve/main/config.json', 'xlm-roberta-large-finetuned-conll02-dutch': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll02-spanish': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-english': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-german': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json' ), } class lowerCAmelCase ( a ): _lowerCamelCase : List[str] = """xlm-roberta""" def __init__( self , snake_case__=3_0522 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=1e-1_2 , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__="absolute" , snake_case__=True , snake_case__=None , **snake_case__ , ): super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) lowerCAmelCase : Optional[Any] = vocab_size lowerCAmelCase : Optional[Any] = hidden_size lowerCAmelCase : Optional[Any] = num_hidden_layers lowerCAmelCase : Any = num_attention_heads lowerCAmelCase : Optional[int] = hidden_act lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : Dict = hidden_dropout_prob lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob lowerCAmelCase : Optional[Any] = max_position_embeddings lowerCAmelCase : Optional[int] = type_vocab_size lowerCAmelCase : int = initializer_range lowerCAmelCase : List[Any] = layer_norm_eps lowerCAmelCase : Union[str, Any] = position_embedding_type lowerCAmelCase : Union[str, Any] = use_cache lowerCAmelCase : List[str] = classifier_dropout class lowerCAmelCase ( a ): @property def lowercase ( self ): if self.task == "multiple-choice": lowerCAmelCase : str = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase : Optional[int] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
646
1
'''simple docstring''' import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class lowerCAmelCase ( a ): _lowerCamelCase : Union[str, Any] = """""" _lowerCamelCase : str = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) _lowerCamelCase : str = None # compression type in fsspec. ex: "gzip" _lowerCamelCase : str = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self , snake_case__ = "" , snake_case__ = None , snake_case__ = None , **snake_case__ ): super().__init__(self , **snake_case__ ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode lowerCAmelCase : str = fsspec.open( snake_case__ , mode='rb' , protocol=snake_case__ , compression=self.compression , client_kwargs={ 'requote_redirect_url': False, # see https://github.com/huggingface/datasets/pull/5459 'trust_env': True, # Enable reading proxy env variables. **(target_options or {}).pop('client_kwargs' , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) lowerCAmelCase : Tuple = os.path.basename(self.file.path.split('::' )[0] ) lowerCAmelCase : List[Any] = ( self.compressed_name[: self.compressed_name.rindex('.' )] if '.' in self.compressed_name else self.compressed_name ) lowerCAmelCase : List[str] = None @classmethod def lowercase ( cls , snake_case__ ): # compressed file paths are always relative to the archive root return super()._strip_protocol(snake_case__ ).lstrip('/' ) def lowercase ( self ): if self.dir_cache is None: lowerCAmelCase : str = {**self.file.fs.info(self.file.path ), 'name': self.uncompressed_name} lowerCAmelCase : int = {f['name']: f} def lowercase ( self , snake_case__ ): return self.file.open().read() def lowercase ( self , snake_case__ , snake_case__ = "rb" , snake_case__=None , snake_case__=True , snake_case__=None , **snake_case__ , ): lowerCAmelCase : List[str] = self._strip_protocol(snake_case__ ) if mode != "rb": raise ValueError(f"Tried to read with mode {mode} on file {self.file.path} opened with mode 'rb'" ) return self.file.open() class lowerCAmelCase ( a ): _lowerCamelCase : Tuple = """bz2""" _lowerCamelCase : int = """bz2""" _lowerCamelCase : str = """.bz2""" class lowerCAmelCase ( a ): _lowerCamelCase : Union[str, Any] = """gzip""" _lowerCamelCase : Dict = """gzip""" _lowerCamelCase : Optional[int] = """.gz""" class lowerCAmelCase ( a ): _lowerCamelCase : Dict = """lz4""" _lowerCamelCase : Optional[Any] = """lz4""" _lowerCamelCase : List[str] = """.lz4""" class lowerCAmelCase ( a ): _lowerCamelCase : Dict = """xz""" _lowerCamelCase : List[str] = """xz""" _lowerCamelCase : Any = """.xz""" class lowerCAmelCase ( a ): _lowerCamelCase : Tuple = """zstd""" _lowerCamelCase : List[str] = """zstd""" _lowerCamelCase : Optional[int] = """.zst""" def __init__( self , snake_case__ , snake_case__ = "rb" , snake_case__ = None , snake_case__ = None , snake_case__ = DEFAULT_BLOCK_SIZE , **snake_case__ , ): super().__init__( fo=snake_case__ , mode=snake_case__ , target_protocol=snake_case__ , target_options=snake_case__ , block_size=snake_case__ , **snake_case__ , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 lowerCAmelCase : List[str] = self.file.__enter__ class lowerCAmelCase : def __init__( self , snake_case__ ): lowerCAmelCase : Dict = file_ def __enter__( self ): self._file.__enter__() return self def __exit__( self , *snake_case__ , **snake_case__ ): self._file.__exit__(*snake_case__ , **snake_case__ ) def __iter__( self ): return iter(self._file ) def lowercase ( self ): return next(self._file ) def __getattr__( self , snake_case__ ): return getattr(self._file , snake_case__ ) def fixed_enter(*snake_case__ , **snake_case__ ): return WrappedFile(_enter(*snake_case__ , **snake_case__ ) ) lowerCAmelCase : List[Any] = fixed_enter
646
'''simple docstring''' import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer _lowerCAmelCase : List[Any] = logging.getLogger(__name__) def __UpperCamelCase ( ) -> Any: """simple docstring""" lowerCAmelCase : str = argparse.ArgumentParser( description='Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.' ) parser.add_argument( '--dataset_name' , type=_A , default='wikitext' , help='Name of the training. Explore datasets at: hf.co/datasets.' , ) parser.add_argument( '--dataset_config' , type=_A , default='wikitext-103-raw-v1' , help='Configuration name of the dataset.' ) parser.add_argument( '--tokenizer_name_or_path' , type=_A , default='sayakpaul/unigram-tokenizer-wikitext' , help='Tokenizer identifier. Can be a local filepath or a Hub identifier.' , ) parser.add_argument( '--shard_size' , type=_A , default=10_00 , help='Number of entries to go in a single shard.' , ) parser.add_argument('--split' , type=_A , default='train' , choices=['train', 'test', 'validation'] ) parser.add_argument( '--limit' , default=_A , type=_A , help='Limit the number of shards (used for debugging).' , ) parser.add_argument( '--max_length' , type=_A , default=5_12 , help='Maximum sequence length. For training on TPUs, it helps to have a maximum' ' sequence length that is a multiple of 8.' , ) parser.add_argument( '--output_dir' , default='tf-tpu' , type=_A , help='Output directory where the TFRecord shards will be saved. If the' ' path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord' ' shards will be directly saved to a Google Cloud Storage bucket.' , ) lowerCAmelCase : Any = parser.parse_args() return args def __UpperCamelCase ( _A : Optional[int] ) -> int: """simple docstring""" def fn(_A : Tuple ): return tokenizer(examples['text'] ) return fn def __UpperCamelCase ( _A : int ) -> int: """simple docstring""" lowerCAmelCase : Tuple = [] for i in range(len(tokenized_data['input_ids'] ) ): lowerCAmelCase : Optional[Any] = { 'input_ids': tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data['input_ids'][i] ) ), 'attention_mask': tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data['attention_mask'][i] ) ), } lowerCAmelCase : Any = tf.train.Features(feature=_A ) lowerCAmelCase : List[str] = tf.train.Example(features=_A ) lowerCAmelCase : Tuple = example.SerializeToString() records.append(_A ) return records def __UpperCamelCase ( _A : int ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase : Union[str, Any] = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: lowerCAmelCase : Optional[Any] = min(len(_A ) , args.limit ) lowerCAmelCase : Dict = dataset.select(range(_A ) ) print(F"Limiting the dataset to {args.limit} entries." ) lowerCAmelCase : str = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) lowerCAmelCase : Any = os.path.join(args.output_dir , args.split ) if not os.path.exists(_A ): os.makedirs(_A ) else: lowerCAmelCase : List[Any] = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. lowerCAmelCase : Any = tokenize_function(_A ) lowerCAmelCase : Optional[int] = dataset.map(_A , batched=_A , num_proc=4 , remove_columns=['text'] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(_A : str ): # Concatenate all texts. lowerCAmelCase : Optional[int] = {k: sum(examples[k] , [] ) for k in examples.keys()} lowerCAmelCase : str = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 lowerCAmelCase : List[Any] = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. lowerCAmelCase : str = { k: [t[i : i + args.max_length] for i in range(0 , _A , args.max_length )] for k, t in concatenated_examples.items() } return result lowerCAmelCase : List[Any] = dataset_tokenized.map(_A , batched=_A , batch_size=10_00 , num_proc=4 ) lowerCAmelCase : Union[str, Any] = 0 lowerCAmelCase : Tuple = 0 for shard in range(0 , len(_A ) , args.shard_size ): lowerCAmelCase : Optional[Any] = grouped_dataset[shard : shard + args.shard_size] lowerCAmelCase : List[str] = len(dataset_snapshot['input_ids'] ) lowerCAmelCase : Union[str, Any] = os.path.join(_A , F"dataset-{shard_count}-{records_containing}.tfrecord" ) lowerCAmelCase : List[Any] = get_serialized_examples(_A ) with tf.io.TFRecordWriter(_A ) as out_file: for i in range(len(_A ) ): lowerCAmelCase : Union[str, Any] = serialized_examples[i] out_file.write(_A ) print('Wrote file {} containing {} records'.format(_A , _A ) ) shard_count += 1 total_records += records_containing with open(F"split-{args.split}-records-count.txt" , 'w' ) as f: print(F"Total {args.split} records: {total_records}" , file=_A ) if __name__ == "__main__": _lowerCAmelCase : List[Any] = parse_args() main(args)
646
1
'''simple docstring''' import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase ( a ): def __init__( self , snake_case__ , snake_case__=13 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=False , snake_case__=False , snake_case__=False , snake_case__=2 , snake_case__=99 , snake_case__=0 , snake_case__=32 , snake_case__=5 , snake_case__=4 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=12 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=3 , snake_case__=4 , snake_case__="last" , snake_case__=None , snake_case__=None , ): lowerCAmelCase : Tuple = parent lowerCAmelCase : Any = batch_size lowerCAmelCase : Union[str, Any] = seq_length lowerCAmelCase : str = is_training lowerCAmelCase : List[str] = use_input_lengths lowerCAmelCase : str = use_token_type_ids lowerCAmelCase : Tuple = use_labels lowerCAmelCase : List[str] = gelu_activation lowerCAmelCase : str = sinusoidal_embeddings lowerCAmelCase : str = causal lowerCAmelCase : Dict = asm lowerCAmelCase : List[str] = n_langs lowerCAmelCase : Tuple = vocab_size lowerCAmelCase : Optional[Any] = n_special lowerCAmelCase : Optional[int] = hidden_size lowerCAmelCase : Optional[int] = num_hidden_layers lowerCAmelCase : Dict = num_attention_heads lowerCAmelCase : List[Any] = hidden_dropout_prob lowerCAmelCase : List[str] = attention_probs_dropout_prob lowerCAmelCase : Optional[int] = max_position_embeddings lowerCAmelCase : List[str] = type_vocab_size lowerCAmelCase : Optional[int] = type_sequence_label_size lowerCAmelCase : Any = initializer_range lowerCAmelCase : Optional[int] = num_labels lowerCAmelCase : Tuple = num_choices lowerCAmelCase : Optional[int] = summary_type lowerCAmelCase : Optional[Any] = use_proj lowerCAmelCase : str = scope def lowercase ( self ): lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : Optional[int] = None if self.use_input_lengths: lowerCAmelCase : Dict = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowerCAmelCase : int = None if self.use_token_type_ids: lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) lowerCAmelCase : str = None lowerCAmelCase : List[str] = None lowerCAmelCase : List[str] = None if self.use_labels: lowerCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : Any = ids_tensor([self.batch_size] , 2 ).float() lowerCAmelCase : int = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : Tuple = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def lowercase ( self ): return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): lowerCAmelCase : int = FlaubertModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Optional[int] = model(snake_case__ , lengths=snake_case__ , langs=snake_case__ ) lowerCAmelCase : int = model(snake_case__ , langs=snake_case__ ) lowerCAmelCase : Union[str, Any] = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): lowerCAmelCase : str = FlaubertWithLMHeadModel(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Optional[int] = model(snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): lowerCAmelCase : Optional[Any] = FlaubertForQuestionAnsweringSimple(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : int = model(snake_case__ ) lowerCAmelCase : List[Any] = model(snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): lowerCAmelCase : Dict = FlaubertForQuestionAnswering(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Any = model(snake_case__ ) lowerCAmelCase : List[str] = model( snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , cls_index=snake_case__ , is_impossible=snake_case__ , p_mask=snake_case__ , ) lowerCAmelCase : List[Any] = model( snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , cls_index=snake_case__ , is_impossible=snake_case__ , ) ((lowerCAmelCase) , ) : Any = result_with_labels.to_tuple() lowerCAmelCase : Tuple = model(snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ ) ((lowerCAmelCase) , ) : str = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): lowerCAmelCase : str = FlaubertForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Tuple = model(snake_case__ ) lowerCAmelCase : Dict = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): lowerCAmelCase : Optional[Any] = self.num_labels lowerCAmelCase : Any = FlaubertForTokenClassification(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : int = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): lowerCAmelCase : Optional[Any] = self.num_choices lowerCAmelCase : Any = FlaubertForMultipleChoice(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : Tuple = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : int = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : Tuple = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase ( self ): lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) : Tuple = config_and_inputs lowerCAmelCase : List[str] = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class lowerCAmelCase ( a , a , unittest.TestCase ): _lowerCamelCase : Union[str, Any] = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) _lowerCamelCase : Any = ( { """feature-extraction""": FlaubertModel, """fill-mask""": FlaubertWithLMHeadModel, """question-answering""": FlaubertForQuestionAnsweringSimple, """text-classification""": FlaubertForSequenceClassification, """token-classification""": FlaubertForTokenClassification, """zero-shot""": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def lowercase ( self , snake_case__ , snake_case__ , snake_case__=False ): lowerCAmelCase : Optional[int] = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": lowerCAmelCase : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case__ ) lowerCAmelCase : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case__ ) return inputs_dict def lowercase ( self ): lowerCAmelCase : Optional[Any] = FlaubertModelTester(self ) lowerCAmelCase : List[Any] = ConfigTester(self , config_class=snake_case__ , emb_dim=37 ) def lowercase ( self ): self.config_tester.run_common_tests() def lowercase ( self ): lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*snake_case__ ) @slow def lowercase ( self ): for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : Union[str, Any] = FlaubertModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) @slow @require_torch_gpu def lowercase ( self ): lowerCAmelCase , lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return lowerCAmelCase : Dict = True lowerCAmelCase : Optional[Any] = model_class(config=snake_case__ ) lowerCAmelCase : int = self._prepare_for_class(snake_case__ , snake_case__ ) lowerCAmelCase : str = torch.jit.trace( snake_case__ , (inputs_dict['input_ids'].to('cpu' ), inputs_dict['attention_mask'].to('cpu' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(snake_case__ , os.path.join(snake_case__ , 'traced_model.pt' ) ) lowerCAmelCase : List[Any] = torch.jit.load(os.path.join(snake_case__ , 'traced_model.pt' ) , map_location=snake_case__ ) loaded(inputs_dict['input_ids'].to(snake_case__ ) , inputs_dict['attention_mask'].to(snake_case__ ) ) @require_torch class lowerCAmelCase ( unittest.TestCase ): @slow def lowercase ( self ): lowerCAmelCase : int = FlaubertModel.from_pretrained('flaubert/flaubert_base_cased' ) lowerCAmelCase : Tuple = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): lowerCAmelCase : List[Any] = model(snake_case__ )[0] lowerCAmelCase : List[str] = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , snake_case__ ) lowerCAmelCase : str = torch.tensor( [[[-2.6_2_5_1, -1.4_2_9_8, -0.0_2_2_7], [-2.8_5_1_0, -1.6_3_8_7, 0.2_2_5_8], [-2.8_1_1_4, -1.1_8_3_2, -0.3_0_6_6]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case__ , atol=1e-4 ) )
646
'''simple docstring''' import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() _lowerCAmelCase : List[str] = logging.get_logger('transformers.models.speecht5') def __UpperCamelCase ( _A : Any , _A : Dict , _A : Any ) -> Union[str, Any]: """simple docstring""" hf_model.apply_weight_norm() lowerCAmelCase : int = checkpoint['input_conv.weight_g'] lowerCAmelCase : Optional[int] = checkpoint['input_conv.weight_v'] lowerCAmelCase : Dict = checkpoint['input_conv.bias'] for i in range(len(config.upsample_rates ) ): lowerCAmelCase : Optional[Any] = checkpoint[F"upsamples.{i}.1.weight_g"] lowerCAmelCase : str = checkpoint[F"upsamples.{i}.1.weight_v"] lowerCAmelCase : str = checkpoint[F"upsamples.{i}.1.bias"] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): lowerCAmelCase : int = checkpoint[F"blocks.{i}.convs1.{j}.1.weight_g"] lowerCAmelCase : str = checkpoint[F"blocks.{i}.convs1.{j}.1.weight_v"] lowerCAmelCase : int = checkpoint[F"blocks.{i}.convs1.{j}.1.bias"] lowerCAmelCase : Optional[Any] = checkpoint[F"blocks.{i}.convs2.{j}.1.weight_g"] lowerCAmelCase : Tuple = checkpoint[F"blocks.{i}.convs2.{j}.1.weight_v"] lowerCAmelCase : Tuple = checkpoint[F"blocks.{i}.convs2.{j}.1.bias"] lowerCAmelCase : List[Any] = checkpoint['output_conv.1.weight_g'] lowerCAmelCase : List[str] = checkpoint['output_conv.1.weight_v'] lowerCAmelCase : Optional[Any] = checkpoint['output_conv.1.bias'] hf_model.remove_weight_norm() @torch.no_grad() def __UpperCamelCase ( _A : Dict , _A : Union[str, Any] , _A : List[Any] , _A : Any=None , _A : Any=None , ) -> Dict: """simple docstring""" if config_path is not None: lowerCAmelCase : Dict = SpeechTaHifiGanConfig.from_pretrained(_A ) else: lowerCAmelCase : Union[str, Any] = SpeechTaHifiGanConfig() lowerCAmelCase : List[Any] = SpeechTaHifiGan(_A ) lowerCAmelCase : List[str] = torch.load(_A ) load_weights(orig_checkpoint['model']['generator'] , _A , _A ) lowerCAmelCase : Tuple = np.load(_A ) lowerCAmelCase : List[Any] = stats[0].reshape(-1 ) lowerCAmelCase : int = stats[1].reshape(-1 ) lowerCAmelCase : Union[str, Any] = torch.from_numpy(_A ).float() lowerCAmelCase : int = torch.from_numpy(_A ).float() model.save_pretrained(_A ) if repo_id: print('Pushing to the hub...' ) model.push_to_hub(_A ) if __name__ == "__main__": _lowerCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--stats_path', required=True, default=None, type=str, help='Path to stats.npy file') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) _lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
646
1
'''simple docstring''' def __UpperCamelCase ( _A : dict ) -> set: """simple docstring""" lowerCAmelCase : int = set() # edges = list of graph's edges lowerCAmelCase : List[str] = get_edges(_A ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: lowerCAmelCase , lowerCAmelCase : Tuple = edges.pop() chosen_vertices.add(_A ) chosen_vertices.add(_A ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(_A ) return chosen_vertices def __UpperCamelCase ( _A : dict ) -> set: """simple docstring""" lowerCAmelCase : Optional[Any] = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
646
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets _lowerCAmelCase : Dict = '\\n@inproceedings{popovic-2015-chrf,\n title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",\n month = sep,\n year = "2015",\n address = "Lisbon, Portugal",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W15-3049",\n doi = "10.18653/v1/W15-3049",\n pages = "392--395",\n}\n@inproceedings{popovic-2017-chrf,\n title = "chr{F}++: words helping character n-grams",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Second Conference on Machine Translation",\n month = sep,\n year = "2017",\n address = "Copenhagen, Denmark",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W17-4770",\n doi = "10.18653/v1/W17-4770",\n pages = "612--618",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' _lowerCAmelCase : Optional[Any] = '\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n' _lowerCAmelCase : List[Any] = '\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n \'score\' (float): The chrF (chrF++) score,\n \'char_order\' (int): The character n-gram order,\n \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n \'beta\' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase ( datasets.Metric ): def lowercase ( self ): if version.parse(scb.__version__ ) < version.parse('1.4.12' ): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/mjpost/sacreBLEU#chrf--chrf' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/mjpost/sacreBLEU#chrf--chrf'] , reference_urls=[ 'https://github.com/m-popovic/chrF', ] , ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ = CHRF.CHAR_ORDER , snake_case__ = CHRF.WORD_ORDER , snake_case__ = CHRF.BETA , snake_case__ = False , snake_case__ = False , snake_case__ = False , ): lowerCAmelCase : List[str] = len(references[0] ) if any(len(snake_case__ ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) lowerCAmelCase : List[str] = [[refs[i] for refs in references] for i in range(snake_case__ )] lowerCAmelCase : Union[str, Any] = CHRF(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase : Dict = sb_chrf.corpus_score(snake_case__ , snake_case__ ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
646
1
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import _LazyModule _lowerCAmelCase : Any = {'tokenization_tapex': ['TapexTokenizer']} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys _lowerCAmelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure)
646
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : str = logging.get_logger(__name__) _lowerCAmelCase : Tuple = { 's-JoL/Open-Llama-V1': 'https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json', } class lowerCAmelCase ( a ): _lowerCamelCase : Union[str, Any] = """open-llama""" def __init__( self , snake_case__=10_0000 , snake_case__=4096 , snake_case__=1_1008 , snake_case__=32 , snake_case__=32 , snake_case__="silu" , snake_case__=2048 , snake_case__=0.0_2 , snake_case__=1e-6 , snake_case__=True , snake_case__=0 , snake_case__=1 , snake_case__=2 , snake_case__=False , snake_case__=True , snake_case__=0.1 , snake_case__=0.1 , snake_case__=True , snake_case__=True , snake_case__=None , **snake_case__ , ): lowerCAmelCase : Tuple = vocab_size lowerCAmelCase : Optional[Any] = max_position_embeddings lowerCAmelCase : List[Any] = hidden_size lowerCAmelCase : List[Any] = intermediate_size lowerCAmelCase : Tuple = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : str = rms_norm_eps lowerCAmelCase : Optional[int] = use_cache lowerCAmelCase : Dict = kwargs.pop( 'use_memorry_efficient_attention' , snake_case__ ) lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : Optional[Any] = attention_dropout_prob lowerCAmelCase : Union[str, Any] = use_stable_embedding lowerCAmelCase : Tuple = shared_input_output_embedding lowerCAmelCase : Tuple = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , tie_word_embeddings=snake_case__ , **snake_case__ , ) def lowercase ( self ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , snake_case__ ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' f"got {self.rope_scaling}" ) lowerCAmelCase : List[Any] = self.rope_scaling.get('type' , snake_case__ ) lowerCAmelCase : List[str] = self.rope_scaling.get('factor' , snake_case__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(snake_case__ , snake_case__ ) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
646
1
'''simple docstring''' from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge _lowerCAmelCase : List[str] = [ 'Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of the' ' final seconds on board Flight 9525. The Germanwings co-pilot says he had a "previous episode of severe' ' depression\" German airline confirms it knew of Andreas Lubitz\'s depression years before he took control.', 'The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal' ' accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC\'s' ' founding Rome Statute in January. Israel and the United States opposed the Palestinians\' efforts to join the' ' body.', 'Amnesty International releases its annual report on the death penalty. The report catalogs the use of' ' state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the' ' world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital' ' punishment.', ] _lowerCAmelCase : Optional[Any] = [ 'Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .' ' Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz' ' had informed his Lufthansa training school of an episode of severe depression, airline says .', 'Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June .' ' Israel and the United States opposed the move, which could open the door to war crimes investigations against' ' Israelis .', 'Amnesty\'s annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to' ' death . Organization claims that governments around the world are using the threat of terrorism to advance' ' executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death' ' sentences up by 28% .', ] def __UpperCamelCase ( ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase : List[Any] = calculate_rouge(_A , _A , bootstrap_aggregation=_A , rouge_keys=['rouge2', 'rougeL'] ) assert isinstance(_A , _A ) lowerCAmelCase : Tuple = calculate_rouge(_A , _A , bootstrap_aggregation=_A , rouge_keys=['rouge2'] ) assert ( pd.DataFrame(no_aggregation['rouge2'] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra['rouge2'] ).fmeasure.mean() ) def __UpperCamelCase ( ) -> List[Any]: """simple docstring""" lowerCAmelCase : Optional[Any] = 'rougeLsum' lowerCAmelCase : Union[str, Any] = calculate_rouge(_A , _A , newline_sep=_A , rouge_keys=[k] )[k] lowerCAmelCase : Tuple = calculate_rouge(_A , _A , newline_sep=_A , rouge_keys=[k] )[k] assert score > score_no_sep def __UpperCamelCase ( ) -> Tuple: """simple docstring""" lowerCAmelCase : List[str] = ['rouge1', 'rouge2', 'rougeL'] lowerCAmelCase : Optional[int] = calculate_rouge(_A , _A , newline_sep=_A , rouge_keys=_A ) lowerCAmelCase : Optional[int] = calculate_rouge(_A , _A , newline_sep=_A , rouge_keys=_A ) assert score_sep == score_no_sep def __UpperCamelCase ( ) -> Optional[Any]: """simple docstring""" lowerCAmelCase : Optional[int] = [ 'Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.', 'Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .', ] lowerCAmelCase : Union[str, Any] = [ 'Margot Frank, died in 1945, a month earlier than previously thought.', 'Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of' ' the final seconds on board Flight 9525.', ] assert calculate_rouge(_A , _A , newline_sep=_A ) == calculate_rouge(_A , _A , newline_sep=_A ) def __UpperCamelCase ( ) -> List[str]: """simple docstring""" lowerCAmelCase : List[Any] = [ '" "a person who has such a video needs to immediately give it to the investigators," prosecutor says .<n> "it is a very disturbing scene," editor-in-chief of bild online tells "erin burnett: outfront" ' ] lowerCAmelCase : Union[str, Any] = [ ' Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports . Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .' ] lowerCAmelCase : Any = calculate_rouge(_A , _A , rouge_keys=['rougeLsum'] , newline_sep=_A )['rougeLsum'] lowerCAmelCase : Any = calculate_rouge(_A , _A , rouge_keys=['rougeLsum'] )['rougeLsum'] assert new_score > prev_score def __UpperCamelCase ( ) -> Dict: """simple docstring""" lowerCAmelCase : int = Path('examples/seq2seq/test_data/wmt_en_ro' ) lowerCAmelCase : Union[str, Any] = calculate_rouge_path(data_dir.joinpath('test.source' ) , data_dir.joinpath('test.target' ) ) assert isinstance(_A , _A ) lowerCAmelCase : Union[str, Any] = calculate_rouge_path( data_dir.joinpath('test.source' ) , data_dir.joinpath('test.target' ) , bootstrap_aggregation=_A ) assert isinstance(_A , _A )
646
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) _lowerCAmelCase : Dict = { 'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class lowerCAmelCase ( a ): _lowerCamelCase : Any = """deformable_detr""" _lowerCamelCase : List[str] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , snake_case__=True , snake_case__=None , snake_case__=3 , snake_case__=300 , snake_case__=1024 , snake_case__=6 , snake_case__=1024 , snake_case__=8 , snake_case__=6 , snake_case__=1024 , snake_case__=8 , snake_case__=0.0 , snake_case__=True , snake_case__="relu" , snake_case__=256 , snake_case__=0.1 , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.0_2 , snake_case__=1.0 , snake_case__=True , snake_case__=False , snake_case__="sine" , snake_case__="resnet50" , snake_case__=True , snake_case__=False , snake_case__=4 , snake_case__=4 , snake_case__=4 , snake_case__=False , snake_case__=300 , snake_case__=False , snake_case__=1 , snake_case__=5 , snake_case__=2 , snake_case__=1 , snake_case__=1 , snake_case__=5 , snake_case__=2 , snake_case__=0.1 , snake_case__=0.2_5 , snake_case__=False , **snake_case__ , ): if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) lowerCAmelCase : Optional[int] = CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : List[str] = backbone_config.get('model_type' ) lowerCAmelCase : str = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase : Optional[Any] = config_class.from_dict(snake_case__ ) lowerCAmelCase : Union[str, Any] = use_timm_backbone lowerCAmelCase : List[Any] = backbone_config lowerCAmelCase : Any = num_channels lowerCAmelCase : Tuple = num_queries lowerCAmelCase : Dict = max_position_embeddings lowerCAmelCase : int = d_model lowerCAmelCase : List[str] = encoder_ffn_dim lowerCAmelCase : List[str] = encoder_layers lowerCAmelCase : int = encoder_attention_heads lowerCAmelCase : str = decoder_ffn_dim lowerCAmelCase : str = decoder_layers lowerCAmelCase : Dict = decoder_attention_heads lowerCAmelCase : str = dropout lowerCAmelCase : List[str] = attention_dropout lowerCAmelCase : Union[str, Any] = activation_dropout lowerCAmelCase : str = activation_function lowerCAmelCase : Any = init_std lowerCAmelCase : Any = init_xavier_std lowerCAmelCase : Dict = encoder_layerdrop lowerCAmelCase : int = auxiliary_loss lowerCAmelCase : Optional[Any] = position_embedding_type lowerCAmelCase : List[str] = backbone lowerCAmelCase : int = use_pretrained_backbone lowerCAmelCase : int = dilation # deformable attributes lowerCAmelCase : List[str] = num_feature_levels lowerCAmelCase : List[str] = encoder_n_points lowerCAmelCase : Union[str, Any] = decoder_n_points lowerCAmelCase : Tuple = two_stage lowerCAmelCase : Dict = two_stage_num_proposals lowerCAmelCase : Union[str, Any] = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.' ) # Hungarian matcher lowerCAmelCase : Union[str, Any] = class_cost lowerCAmelCase : Dict = bbox_cost lowerCAmelCase : List[Any] = giou_cost # Loss coefficients lowerCAmelCase : Dict = mask_loss_coefficient lowerCAmelCase : Any = dice_loss_coefficient lowerCAmelCase : str = bbox_loss_coefficient lowerCAmelCase : Tuple = giou_loss_coefficient lowerCAmelCase : List[str] = eos_coefficient lowerCAmelCase : Any = focal_alpha lowerCAmelCase : Dict = disable_custom_kernels super().__init__(is_encoder_decoder=snake_case__ , **snake_case__ ) @property def lowercase ( self ): return self.encoder_attention_heads @property def lowercase ( self ): return self.d_model def lowercase ( self ): lowerCAmelCase : Union[str, Any] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: lowerCAmelCase : List[Any] = self.backbone_config.to_dict() lowerCAmelCase : str = self.__class__.model_type return output
646
1
'''simple docstring''' import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) _lowerCAmelCase : Dict = logging.getLogger(__name__) _lowerCAmelCase : Optional[Any] = tf.data.AUTOTUNE def __UpperCamelCase ( ) -> Any: """simple docstring""" lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser(description='Train a masked language model on TPU.' ) parser.add_argument( '--pretrained_model_config' , type=_A , default='roberta-base' , help='The model config to use. Note that we don\'t copy the model\'s weights, only the config!' , ) parser.add_argument( '--tokenizer' , type=_A , default='unigram-tokenizer-wikitext' , help='The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model\'s vocab size.' , ) parser.add_argument( '--per_replica_batch_size' , type=_A , default=8 , help='Batch size per TPU core.' , ) parser.add_argument( '--no_tpu' , action='store_true' , help='If set, run on CPU and don\'t try to initialize a TPU. Useful for debugging on non-TPU instances.' , ) parser.add_argument( '--tpu_name' , type=_A , help='Name of TPU resource to initialize. Should be blank on Colab, and \'local\' on TPU VMs.' , default='local' , ) parser.add_argument( '--tpu_zone' , type=_A , help='Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.' , ) parser.add_argument( '--gcp_project' , type=_A , help='Google cloud project name. Only used for non-Colab TPU nodes.' ) parser.add_argument( '--bfloat16' , action='store_true' , help='Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.' , ) parser.add_argument( '--train_dataset' , type=_A , help='Path to training dataset to load. If the path begins with `gs://`' ' then the dataset will be loaded from a Google Cloud Storage bucket.' , ) parser.add_argument( '--shuffle_buffer_size' , type=_A , default=2**18 , help='Size of the shuffle buffer (in samples)' , ) parser.add_argument( '--eval_dataset' , type=_A , help='Path to evaluation dataset to load. If the path begins with `gs://`' ' then the dataset will be loaded from a Google Cloud Storage bucket.' , ) parser.add_argument( '--num_epochs' , type=_A , default=1 , help='Number of epochs to train for.' , ) parser.add_argument( '--learning_rate' , type=_A , default=1e-4 , help='Learning rate to use for training.' , ) parser.add_argument( '--weight_decay_rate' , type=_A , default=1e-3 , help='Weight decay rate to use for training.' , ) parser.add_argument( '--max_length' , type=_A , default=5_12 , help='Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py' , ) parser.add_argument( '--mlm_probability' , type=_A , default=0.15 , help='Fraction of tokens to mask during training.' , ) parser.add_argument('--output_dir' , type=_A , required=_A , help='Path to save model checkpoints to.' ) parser.add_argument('--hub_model_id' , type=_A , help='Model ID to upload to on the Hugging Face Hub.' ) lowerCAmelCase : int = parser.parse_args() return args def __UpperCamelCase ( _A : Optional[int] ) -> Union[str, Any]: """simple docstring""" try: if args.tpu_name: lowerCAmelCase : int = tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: lowerCAmelCase : Tuple = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( 'Couldn\'t connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or ' '--gcp_project. When running on a TPU VM, use --tpu_name local.' ) tf.config.experimental_connect_to_cluster(_A ) tf.tpu.experimental.initialize_tpu_system(_A ) return tpu def __UpperCamelCase ( _A : Optional[Any] ) -> str: """simple docstring""" lowerCAmelCase : Optional[int] = 0 for file in file_list: lowerCAmelCase : int = file.split('/' )[-1] lowerCAmelCase : List[str] = re.search(r'-\d+-(\d+)\.tfrecord' , _A ).group(1 ) lowerCAmelCase : Any = int(_A ) num_samples += sample_count return num_samples def __UpperCamelCase ( _A : Tuple , _A : Union[str, Any] , _A : Union[str, Any] , _A : List[str] , _A : Tuple , _A : int=None ) -> Tuple: """simple docstring""" lowerCAmelCase : Union[str, Any] = count_samples(_A ) lowerCAmelCase : List[str] = tf.data.Dataset.from_tensor_slices(_A ) if shuffle: lowerCAmelCase : List[str] = dataset.shuffle(len(_A ) ) lowerCAmelCase : int = tf.data.TFRecordDataset(_A , num_parallel_reads=_A ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here lowerCAmelCase : List[str] = dataset.apply(tf.data.experimental.assert_cardinality(_A ) ) lowerCAmelCase : Union[str, Any] = dataset.map(_A , num_parallel_calls=_A ) if shuffle: assert shuffle_buffer_size is not None lowerCAmelCase : Optional[Any] = dataset.shuffle(args.shuffle_buffer_size ) lowerCAmelCase : List[str] = dataset.batch(_A , drop_remainder=_A ) lowerCAmelCase : Union[str, Any] = dataset.map(_A , num_parallel_calls=_A ) lowerCAmelCase : Union[str, Any] = dataset.prefetch(_A ) return dataset def __UpperCamelCase ( _A : str ) -> Any: """simple docstring""" if not args.no_tpu: lowerCAmelCase : int = initialize_tpu(_A ) lowerCAmelCase : Optional[Any] = tf.distribute.TPUStrategy(_A ) else: lowerCAmelCase : Any = tf.distribute.OneDeviceStrategy(device='/gpu:0' ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy('mixed_bfloat16' ) lowerCAmelCase : Tuple = AutoTokenizer.from_pretrained(args.tokenizer ) lowerCAmelCase : str = AutoConfig.from_pretrained(args.pretrained_model_config ) lowerCAmelCase : Tuple = tokenizer.vocab_size lowerCAmelCase : Tuple = tf.io.gfile.glob(os.path.join(args.train_dataset , '*.tfrecord' ) ) if not training_records: raise ValueError(F"No .tfrecord files found in {args.train_dataset}." ) lowerCAmelCase : Tuple = tf.io.gfile.glob(os.path.join(args.eval_dataset , '*.tfrecord' ) ) if not eval_records: raise ValueError(F"No .tfrecord files found in {args.eval_dataset}." ) lowerCAmelCase : Tuple = count_samples(_A ) lowerCAmelCase : Dict = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) lowerCAmelCase : Optional[int] = steps_per_epoch * args.num_epochs with strategy.scope(): lowerCAmelCase : Union[str, Any] = TFAutoModelForMaskedLM.from_config(_A ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built lowerCAmelCase , lowerCAmelCase : Tuple = create_optimizer( num_train_steps=_A , num_warmup_steps=total_train_steps // 20 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=_A , metrics=['accuracy'] ) def decode_fn(_A : Optional[int] ): lowerCAmelCase : Optional[int] = { 'input_ids': tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), 'attention_mask': tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(_A , _A ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. lowerCAmelCase : Any = DataCollatorForLanguageModeling( tokenizer=_A , mlm_probability=args.mlm_probability , mlm=_A , return_tensors='tf' ) def mask_with_collator(_A : Any ): # TF really needs an isin() function lowerCAmelCase : List[str] = ( ~tf.cast(batch['attention_mask'] , tf.bool ) | (batch['input_ids'] == tokenizer.cls_token_id) | (batch['input_ids'] == tokenizer.sep_token_id) ) lowerCAmelCase , lowerCAmelCase : Any = data_collator.tf_mask_tokens( batch['input_ids'] , vocab_size=len(_A ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=_A , ) return batch lowerCAmelCase : List[Any] = args.per_replica_batch_size * strategy.num_replicas_in_sync lowerCAmelCase : Any = prepare_dataset( _A , decode_fn=_A , mask_fn=_A , batch_size=_A , shuffle=_A , shuffle_buffer_size=args.shuffle_buffer_size , ) lowerCAmelCase : Tuple = prepare_dataset( _A , decode_fn=_A , mask_fn=_A , batch_size=_A , shuffle=_A , ) lowerCAmelCase : List[Any] = [] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=_A ) ) model.fit( _A , validation_data=_A , epochs=args.num_epochs , callbacks=_A , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": _lowerCAmelCase : Tuple = parse_args() main(args)
646
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece_no_bos.model') @require_sentencepiece @require_tokenizers class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : str = PegasusTokenizer _lowerCamelCase : Union[str, Any] = PegasusTokenizerFast _lowerCamelCase : Optional[Any] = True _lowerCamelCase : Optional[Any] = True def lowercase ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : List[Any] = PegasusTokenizer(snake_case__ ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase ( self ): return PegasusTokenizer.from_pretrained('google/pegasus-large' ) def lowercase ( self , **snake_case__ ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def lowercase ( self , snake_case__ ): return ("This is a test", "This is a test") def lowercase ( self ): lowerCAmelCase : Optional[int] = '</s>' lowerCAmelCase : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '</s>' ) self.assertEqual(vocab_keys[-1] , 'v' ) self.assertEqual(len(snake_case__ ) , 1103 ) def lowercase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def lowercase ( self ): lowerCAmelCase : List[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : List[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : Optional[Any] = ( 'Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important' ' </s> <pad> <pad> <pad>' ) lowerCAmelCase : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] lowerCAmelCase : Optional[int] = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Any = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowerCAmelCase : List[str] = '<mask_1> To ensure a <mask_2> flow of bank resolutions.' lowerCAmelCase : Optional[Any] = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1] lowerCAmelCase : Optional[Any] = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Optional[Any] = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 lowerCAmelCase : List[Any] = 'To ensure a smooth flow of bank resolutions.' lowerCAmelCase : Optional[int] = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1] lowerCAmelCase : Any = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def lowercase ( self ): lowerCAmelCase : Union[str, Any] = ['This is going to be way too long.' * 150, 'short example'] lowerCAmelCase : int = ['not super long but more than 5 tokens', 'tiny'] lowerCAmelCase : Dict = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) lowerCAmelCase : Dict = self._large_tokenizer( text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(snake_case__ ) == 2 # input_ids, attention_mask. @slow def lowercase ( self ): # fmt: off lowerCAmelCase : Tuple = {'input_ids': [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name='google/bigbird-pegasus-large-arxiv' , revision='ba85d0851d708441f91440d509690f1ab6353415' , ) @require_sentencepiece @require_tokenizers class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : Optional[Any] = PegasusTokenizer _lowerCamelCase : str = PegasusTokenizerFast _lowerCamelCase : Tuple = True _lowerCamelCase : int = True def lowercase ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : int = PegasusTokenizer(snake_case__ , offset=0 , mask_token_sent=snake_case__ , mask_token='[MASK]' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase ( self ): return PegasusTokenizer.from_pretrained('google/bigbird-pegasus-large-arxiv' ) def lowercase ( self , **snake_case__ ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def lowercase ( self , snake_case__ ): return ("This is a test", "This is a test") def lowercase ( self ): lowerCAmelCase : Tuple = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : Union[str, Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : List[str] = ( 'Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>' ' <pad> <pad> <pad>' ) lowerCAmelCase : Dict = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] lowerCAmelCase : Union[str, Any] = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) @require_torch def lowercase ( self ): lowerCAmelCase : Optional[int] = ['This is going to be way too long.' * 1000, 'short example'] lowerCAmelCase : Union[str, Any] = ['not super long but more than 5 tokens', 'tiny'] lowerCAmelCase : List[str] = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) lowerCAmelCase : List[str] = self._large_tokenizer( text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(snake_case__ ) == 2 # input_ids, attention_mask. def lowercase ( self ): lowerCAmelCase : List[str] = ( 'This is an example string that is used to test the original TF implementation against the HF' ' implementation' ) lowerCAmelCase : Tuple = self._large_tokenizer(snake_case__ ).input_ids self.assertListEqual( snake_case__ , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
646
1
'''simple docstring''' import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class lowerCAmelCase ( unittest.TestCase ): def __init__( self , snake_case__ , snake_case__=2 , snake_case__=56 , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=99 , snake_case__=32 , snake_case__=2 , snake_case__=2 , snake_case__=7 , snake_case__="gelu_new" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=16 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=4 , snake_case__="block_sparse" , snake_case__=True , snake_case__=False , snake_case__=2 , snake_case__=3 , ): lowerCAmelCase : Optional[int] = parent lowerCAmelCase : Optional[Any] = batch_size lowerCAmelCase : Any = seq_length lowerCAmelCase : str = is_training lowerCAmelCase : List[Any] = use_attention_mask lowerCAmelCase : List[Any] = use_token_type_ids lowerCAmelCase : Optional[Any] = use_labels lowerCAmelCase : Any = vocab_size lowerCAmelCase : Tuple = hidden_size lowerCAmelCase : Dict = num_hidden_layers lowerCAmelCase : int = num_attention_heads lowerCAmelCase : Optional[Any] = intermediate_size lowerCAmelCase : Any = hidden_act lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : Dict = attention_probs_dropout_prob lowerCAmelCase : str = max_position_embeddings lowerCAmelCase : List[Any] = type_vocab_size lowerCAmelCase : Tuple = type_sequence_label_size lowerCAmelCase : List[Any] = initializer_range lowerCAmelCase : int = num_choices lowerCAmelCase : Optional[int] = rescale_embeddings lowerCAmelCase : Dict = attention_type lowerCAmelCase : Any = use_bias lowerCAmelCase : Optional[Any] = block_size lowerCAmelCase : Dict = num_random_blocks def lowercase ( self ): lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Dict = None if self.use_attention_mask: lowerCAmelCase : str = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : Any = None if self.use_token_type_ids: lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : List[Any] = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case__ , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def lowercase ( self ): lowerCAmelCase : int = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : int = config_and_inputs lowerCAmelCase : Union[str, Any] = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask, } return config, inputs_dict @require_flax class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : int = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) _lowerCamelCase : Tuple = False _lowerCamelCase : str = False def lowercase ( self ): lowerCAmelCase : Optional[int] = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowercase ( self ): super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowercase ( self ): super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowercase ( self ): super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowercase ( self ): super().test_hidden_states_output() @slow def lowercase ( self ): for model_class_name in self.all_model_classes: lowerCAmelCase : Union[str, Any] = model_class_name.from_pretrained('google/bigbird-roberta-base' ) self.assertIsNotNone(snake_case__ ) def lowercase ( self ): if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowercase ( self ): lowerCAmelCase , lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCAmelCase : int = self._prepare_for_class(snake_case__ , snake_case__ ) lowerCAmelCase : int = model_class(snake_case__ ) @jax.jit def model_jitted(snake_case__ , snake_case__=None , **snake_case__ ): return model(input_ids=snake_case__ , attention_mask=snake_case__ , **snake_case__ ) with self.subTest('JIT Enabled' ): lowerCAmelCase : Tuple = model_jitted(**snake_case__ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): lowerCAmelCase : List[str] = model_jitted(**snake_case__ ).to_tuple() self.assertEqual(len(snake_case__ ) , len(snake_case__ ) ) for jitted_output, output in zip(snake_case__ , snake_case__ ): self.assertEqual(jitted_output.shape , output.shape ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__=1e-5 , snake_case__="outputs" , snake_case__=None ): # `bigbird_block_sparse_attention` in `FlaxBigBird` returns `attention_probs = None`, while in PyTorch version, # an effort was done to return `attention_probs` (yet to be verified). if name.startswith('outputs.attentions' ): return else: super().check_pt_flax_outputs(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ )
646
'''simple docstring''' import math import sys import cva import numpy as np def __UpperCamelCase ( _A : np.ndarray , _A : float ) -> np.ndarray: """simple docstring""" lowerCAmelCase : Union[str, Any] = math.sqrt(_A ) lowerCAmelCase : Union[str, Any] = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def __UpperCamelCase ( _A : np.ndarray , _A : int , _A : int , _A : int ) -> np.ndarray: """simple docstring""" lowerCAmelCase : int = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def __UpperCamelCase ( _A : int , _A : float ) -> np.ndarray: """simple docstring""" lowerCAmelCase : Dict = np.zeros((kernel_size, kernel_size) ) for i in range(0 , _A ): for j in range(0 , _A ): lowerCAmelCase : Optional[int] = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(_A , _A ) def __UpperCamelCase ( _A : np.ndarray , _A : float , _A : float , _A : int , ) -> np.ndarray: """simple docstring""" lowerCAmelCase : str = np.zeros(img.shape ) lowerCAmelCase : int = get_gauss_kernel(_A , _A ) lowerCAmelCase , lowerCAmelCase : Dict = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): lowerCAmelCase : int = get_slice(_A , _A , _A , _A ) lowerCAmelCase : Any = img_s - img_s[kernel_size // 2, kernel_size // 2] lowerCAmelCase : str = vec_gaussian(_A , _A ) lowerCAmelCase : Optional[int] = np.multiply(_A , _A ) lowerCAmelCase : str = np.multiply(_A , _A ) lowerCAmelCase : Union[str, Any] = np.sum(_A ) / np.sum(_A ) lowerCAmelCase : Tuple = val return imga def __UpperCamelCase ( _A : list ) -> tuple: """simple docstring""" lowerCAmelCase : List[Any] = args[1] if args[1:] else '../image_data/lena.jpg' lowerCAmelCase : Any = float(args[2] ) if args[2:] else 1.0 lowerCAmelCase : Union[str, Any] = float(args[3] ) if args[3:] else 1.0 if args[4:]: lowerCAmelCase : int = int(args[4] ) lowerCAmelCase : Optional[Any] = kernel_size + abs(kernel_size % 2 - 1 ) else: lowerCAmelCase : Optional[int] = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Any = parse_args(sys.argv) _lowerCAmelCase : str = cva.imread(filename, 0) cva.imshow('input image', img) _lowerCAmelCase : Union[str, Any] = img / 255 _lowerCAmelCase : List[str] = out.astype('float32') _lowerCAmelCase : Optional[int] = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) _lowerCAmelCase : Union[str, Any] = out * 255 _lowerCAmelCase : Optional[Any] = np.uinta(out) cva.imshow('output image', out) cva.waitKey(0) cva.destroyAllWindows()
646
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer _lowerCAmelCase : Optional[int] = logging.get_logger(__name__) _lowerCAmelCase : Optional[int] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _lowerCAmelCase : str = { 'vocab_file': { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt' ), 'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt', 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json' ), 'distilbert-base-german-cased': ( 'https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json' ), 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json' ), }, } _lowerCAmelCase : int = { 'distilbert-base-uncased': 512, 'distilbert-base-uncased-distilled-squad': 512, 'distilbert-base-cased': 512, 'distilbert-base-cased-distilled-squad': 512, 'distilbert-base-german-cased': 512, 'distilbert-base-multilingual-cased': 512, } _lowerCAmelCase : Dict = { 'distilbert-base-uncased': {'do_lower_case': True}, 'distilbert-base-uncased-distilled-squad': {'do_lower_case': True}, 'distilbert-base-cased': {'do_lower_case': False}, 'distilbert-base-cased-distilled-squad': {'do_lower_case': False}, 'distilbert-base-german-cased': {'do_lower_case': False}, 'distilbert-base-multilingual-cased': {'do_lower_case': False}, } class lowerCAmelCase ( a ): _lowerCamelCase : int = VOCAB_FILES_NAMES _lowerCamelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase : Tuple = PRETRAINED_INIT_CONFIGURATION _lowerCamelCase : Tuple = ["""input_ids""", """attention_mask"""] _lowerCamelCase : List[Any] = DistilBertTokenizer def __init__( self , snake_case__=None , snake_case__=None , snake_case__=True , snake_case__="[UNK]" , snake_case__="[SEP]" , snake_case__="[PAD]" , snake_case__="[CLS]" , snake_case__="[MASK]" , snake_case__=True , snake_case__=None , **snake_case__ , ): super().__init__( snake_case__ , tokenizer_file=snake_case__ , do_lower_case=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , tokenize_chinese_chars=snake_case__ , strip_accents=snake_case__ , **snake_case__ , ) lowerCAmelCase : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , snake_case__ ) != do_lower_case or normalizer_state.get('strip_accents' , snake_case__ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , snake_case__ ) != tokenize_chinese_chars ): lowerCAmelCase : Any = getattr(snake_case__ , normalizer_state.pop('type' ) ) lowerCAmelCase : int = do_lower_case lowerCAmelCase : List[Any] = strip_accents lowerCAmelCase : List[Any] = tokenize_chinese_chars lowerCAmelCase : Optional[int] = normalizer_class(**snake_case__ ) lowerCAmelCase : int = do_lower_case def lowercase ( self , snake_case__ , snake_case__=None ): lowerCAmelCase : Optional[int] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase ( self , snake_case__ , snake_case__ = None ): lowerCAmelCase : int = [self.sep_token_id] lowerCAmelCase : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase ( self , snake_case__ , snake_case__ = None ): lowerCAmelCase : int = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ )
646
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowerCAmelCase : int = { 'configuration_nezha': ['NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NezhaConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Tuple = [ 'NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST', 'NezhaForNextSentencePrediction', 'NezhaForMaskedLM', 'NezhaForPreTraining', 'NezhaForMultipleChoice', 'NezhaForQuestionAnswering', 'NezhaForSequenceClassification', 'NezhaForTokenClassification', 'NezhaModel', 'NezhaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys _lowerCAmelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
646
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _lowerCAmelCase : Tuple = { 'configuration_resnet': ['RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ResNetConfig', 'ResNetOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Any = [ 'RESNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'ResNetForImageClassification', 'ResNetModel', 'ResNetPreTrainedModel', 'ResNetBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : str = [ 'TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFResNetForImageClassification', 'TFResNetModel', 'TFResNetPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Union[str, Any] = [ 'FlaxResNetForImageClassification', 'FlaxResNetModel', 'FlaxResNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys _lowerCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure)
646
'''simple docstring''' from typing import Any class lowerCAmelCase : def __init__( self , snake_case__ ): lowerCAmelCase : Optional[int] = data lowerCAmelCase : Optional[Any] = None def __repr__( self ): return f"Node({self.data})" class lowerCAmelCase : def __init__( self ): lowerCAmelCase : Dict = None def __iter__( self ): lowerCAmelCase : Optional[Any] = self.head while node: yield node.data lowerCAmelCase : Optional[int] = node.next def __len__( self ): return sum(1 for _ in self ) def __repr__( self ): return "->".join([str(snake_case__ ) for item in self] ) def __getitem__( self , snake_case__ ): if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , snake_case__ , snake_case__ ): if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) lowerCAmelCase : Any = self.head for _ in range(snake_case__ ): lowerCAmelCase : List[str] = current.next lowerCAmelCase : int = data def lowercase ( self , snake_case__ ): self.insert_nth(len(self ) , snake_case__ ) def lowercase ( self , snake_case__ ): self.insert_nth(0 , snake_case__ ) def lowercase ( self , snake_case__ , snake_case__ ): if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) lowerCAmelCase : List[str] = Node(snake_case__ ) if self.head is None: lowerCAmelCase : int = new_node elif index == 0: lowerCAmelCase : List[Any] = self.head # link new_node to head lowerCAmelCase : List[Any] = new_node else: lowerCAmelCase : List[Any] = self.head for _ in range(index - 1 ): lowerCAmelCase : Union[str, Any] = temp.next lowerCAmelCase : Any = temp.next lowerCAmelCase : str = new_node def lowercase ( self ): # print every node data print(self ) def lowercase ( self ): return self.delete_nth(0 ) def lowercase ( self ): # delete from tail return self.delete_nth(len(self ) - 1 ) def lowercase ( self , snake_case__ = 0 ): if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) lowerCAmelCase : List[str] = self.head # default first node if index == 0: lowerCAmelCase : Tuple = self.head.next else: lowerCAmelCase : Dict = self.head for _ in range(index - 1 ): lowerCAmelCase : Tuple = temp.next lowerCAmelCase : Dict = temp.next lowerCAmelCase : Tuple = temp.next.next return delete_node.data def lowercase ( self ): return self.head is None def lowercase ( self ): lowerCAmelCase : List[Any] = None lowerCAmelCase : Any = self.head while current: # Store the current node's next node. lowerCAmelCase : List[str] = current.next # Make the current node's next point backwards lowerCAmelCase : int = prev # Make the previous node be the current node lowerCAmelCase : int = current # Make the current node the next node (to progress iteration) lowerCAmelCase : Optional[Any] = next_node # Return prev in order to put the head at the end lowerCAmelCase : List[Any] = prev def __UpperCamelCase ( ) -> None: """simple docstring""" lowerCAmelCase : Tuple = LinkedList() assert linked_list.is_empty() is True assert str(_A ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(_A ) == i linked_list.insert_nth(_A , i + 1 ) assert str(_A ) == "->".join(str(_A ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(_A ) == "->".join(str(_A ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(_A ) == 9 assert str(_A ) == "->".join(str(_A ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): lowerCAmelCase : Optional[Any] = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(_A ) == "->".join(str(_A ) for i in range(-8 , 1 ) ) def __UpperCamelCase ( ) -> None: """simple docstring""" lowerCAmelCase : Optional[int] = [ -9, 1_00, Node(77_34_51_12 ), 'dlrow olleH', 7, 55_55, 0, -1_92.5_55_55, 'Hello, world!', 77.9, Node(10 ), None, None, 12.20, ] lowerCAmelCase : Dict = LinkedList() for i in test_input: linked_list.insert_tail(_A ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(_A ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head lowerCAmelCase : Optional[Any] = linked_list.delete_head() assert result == -9 assert ( str(_A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail lowerCAmelCase : List[str] = linked_list.delete_tail() assert result == 12.2 assert ( str(_A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list lowerCAmelCase : List[str] = linked_list.delete_nth(10 ) assert result is None assert ( str(_A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(_A ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(_A ) assert ( str(_A ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(_A ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def __UpperCamelCase ( ) -> List[Any]: """simple docstring""" from doctest import testmod testmod() lowerCAmelCase : Optional[Any] = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(_A ) print('\nReading/changing Node data using indexing:' ) print(F"Element at Position 1: {linked_list[1]}" ) lowerCAmelCase : Tuple = input('Enter New Value: ' ).strip() print('New list:' ) print(_A ) print(F"length of linked_list is : {len(_A )}" ) if __name__ == "__main__": main()
646
1