code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class lowerCAmelCase ( unittest.TestCase ): def __init__( self , snake_case__ , snake_case__=13 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=99 , snake_case__=32 , snake_case__=5 , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=16 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=4 , ): lowerCAmelCase : List[str] = parent lowerCAmelCase : List[str] = batch_size lowerCAmelCase : Optional[int] = seq_length lowerCAmelCase : str = is_training lowerCAmelCase : Optional[int] = use_attention_mask lowerCAmelCase : Any = use_token_type_ids lowerCAmelCase : Union[str, Any] = use_labels lowerCAmelCase : Tuple = vocab_size lowerCAmelCase : List[str] = hidden_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : Optional[Any] = num_attention_heads lowerCAmelCase : int = intermediate_size lowerCAmelCase : Optional[int] = hidden_act lowerCAmelCase : str = hidden_dropout_prob lowerCAmelCase : Any = attention_probs_dropout_prob lowerCAmelCase : Optional[int] = max_position_embeddings lowerCAmelCase : List[Any] = type_vocab_size lowerCAmelCase : List[Any] = type_sequence_label_size lowerCAmelCase : List[Any] = initializer_range lowerCAmelCase : Dict = num_choices def lowercase ( self ): lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : str = None if self.use_attention_mask: lowerCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : List[Any] = None if self.use_token_type_ids: lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : Union[str, Any] = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowercase ( self ): lowerCAmelCase : Tuple = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : str = config_and_inputs lowerCAmelCase : str = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : Union[str, Any] = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def lowercase ( self ): lowerCAmelCase : Optional[int] = FlaxAlbertModelTester(self ) @slow def lowercase ( self ): for model_class_name in self.all_model_classes: lowerCAmelCase : Any = model_class_name.from_pretrained('albert-base-v2' ) lowerCAmelCase : Union[str, Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(snake_case__ ) @require_flax class lowerCAmelCase ( unittest.TestCase ): @slow def lowercase ( self ): lowerCAmelCase : Union[str, Any] = FlaxAlbertModel.from_pretrained('albert-base-v2' ) lowerCAmelCase : Union[str, Any] = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) lowerCAmelCase : Tuple = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) lowerCAmelCase : int = model(snake_case__ , attention_mask=snake_case__ )[0] lowerCAmelCase : Optional[Any] = (1, 11, 768) self.assertEqual(output.shape , snake_case__ ) lowerCAmelCase : Any = np.array( [[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , snake_case__ , atol=1e-4 ) )
646
'''simple docstring''' _lowerCAmelCase : List[str] = {str(digit): digit**5 for digit in range(10)} def __UpperCamelCase ( _A : int ) -> int: """simple docstring""" return sum(DIGITS_FIFTH_POWER[digit] for digit in str(_A ) ) def __UpperCamelCase ( ) -> int: """simple docstring""" return sum( number for number in range(10_00 , 1_00_00_00 ) if number == digits_fifth_powers_sum(_A ) ) if __name__ == "__main__": print(solution())
646
1
'''simple docstring''' from collections.abc import Sequence def __UpperCamelCase ( _A : Sequence[float] , _A : bool = False ) -> float: """simple docstring""" if not arr: return 0 lowerCAmelCase : Union[str, Any] = 0 if allow_empty_subarrays else float('-inf' ) lowerCAmelCase : Optional[int] = 0.0 for num in arr: lowerCAmelCase : str = max(0 if allow_empty_subarrays else num , curr_sum + num ) lowerCAmelCase : Dict = max(_A , _A ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() _lowerCAmelCase : List[Any] = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(f"""{max_subarray_sum(nums) = }""")
646
'''simple docstring''' def __UpperCamelCase ( _A : List[str] ) -> Optional[Any]: """simple docstring""" if not head: return True # split the list to two parts lowerCAmelCase , lowerCAmelCase : str = head.next, head while fast and fast.next: lowerCAmelCase : Optional[int] = fast.next.next lowerCAmelCase : int = slow.next lowerCAmelCase : int = slow.next lowerCAmelCase : Optional[Any] = None # Don't forget here! But forget still works! # reverse the second part lowerCAmelCase : List[Any] = None while second: lowerCAmelCase : List[Any] = second.next lowerCAmelCase : Union[str, Any] = node lowerCAmelCase : Optional[Any] = second lowerCAmelCase : Any = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False lowerCAmelCase : Optional[Any] = node.next lowerCAmelCase : Tuple = head.next return True def __UpperCamelCase ( _A : Optional[Any] ) -> Optional[int]: """simple docstring""" if not head or not head.next: return True # 1. Get the midpoint (slow) lowerCAmelCase : Optional[int] = head while fast and fast.next: lowerCAmelCase , lowerCAmelCase : Optional[Any] = fast.next.next, slow.next # 2. Push the second half into the stack lowerCAmelCase : Tuple = [slow.val] while slow.next: lowerCAmelCase : Tuple = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False lowerCAmelCase : Union[str, Any] = cur.next return True def __UpperCamelCase ( _A : Tuple ) -> Optional[int]: """simple docstring""" if not head or not head.next: return True lowerCAmelCase : Optional[int] = {} lowerCAmelCase : int = 0 while head: if head.val in d: d[head.val].append(_A ) else: lowerCAmelCase : Any = [pos] lowerCAmelCase : int = head.next pos += 1 lowerCAmelCase : str = pos - 1 lowerCAmelCase : Optional[Any] = 0 for v in d.values(): if len(_A ) % 2 != 0: middle += 1 else: lowerCAmelCase : Any = 0 for i in range(0 , len(_A ) ): if v[i] + v[len(_A ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
646
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) _lowerCAmelCase : Any = { 'kssteven/ibert-roberta-base': 'https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json', 'kssteven/ibert-roberta-large': 'https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json', 'kssteven/ibert-roberta-large-mnli': ( 'https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json' ), } class lowerCAmelCase ( a ): _lowerCamelCase : Optional[Any] = """ibert""" def __init__( self , snake_case__=3_0522 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=1e-1_2 , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__="absolute" , snake_case__=False , snake_case__="none" , **snake_case__ , ): super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) lowerCAmelCase : str = vocab_size lowerCAmelCase : Optional[Any] = hidden_size lowerCAmelCase : Any = num_hidden_layers lowerCAmelCase : Any = num_attention_heads lowerCAmelCase : str = hidden_act lowerCAmelCase : str = intermediate_size lowerCAmelCase : Union[str, Any] = hidden_dropout_prob lowerCAmelCase : Dict = attention_probs_dropout_prob lowerCAmelCase : Any = max_position_embeddings lowerCAmelCase : List[Any] = type_vocab_size lowerCAmelCase : Optional[Any] = initializer_range lowerCAmelCase : List[Any] = layer_norm_eps lowerCAmelCase : str = position_embedding_type lowerCAmelCase : List[str] = quant_mode lowerCAmelCase : int = force_dequant class lowerCAmelCase ( a ): @property def lowercase ( self ): if self.task == "multiple-choice": lowerCAmelCase : Union[str, Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase : str = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
646
'''simple docstring''' import math def __UpperCamelCase ( _A : int = 1_00 ) -> int: """simple docstring""" lowerCAmelCase : List[Any] = sum(i * i for i in range(1 , n + 1 ) ) lowerCAmelCase : Optional[Any] = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f"""{solution() = }""")
646
1
'''simple docstring''' from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
646
'''simple docstring''' import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece_with_bytefallback.model') @require_sentencepiece @require_tokenizers class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : Tuple = GPTSwaTokenizer _lowerCamelCase : str = False _lowerCamelCase : Dict = True _lowerCamelCase : Optional[Any] = False def lowercase ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : Tuple = GPTSwaTokenizer(snake_case__ , eos_token='<unk>' , bos_token='<unk>' , pad_token='<unk>' ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase ( self , snake_case__ ): lowerCAmelCase : List[Any] = 'This is a test' lowerCAmelCase : List[Any] = 'This is a test' return input_text, output_text def lowercase ( self ): lowerCAmelCase : Tuple = '<s>' lowerCAmelCase : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def lowercase ( self ): lowerCAmelCase : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(snake_case__ ) , 2000 ) def lowercase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 2000 ) def lowercase ( self ): lowerCAmelCase : List[Any] = GPTSwaTokenizer(snake_case__ ) lowerCAmelCase : Optional[Any] = tokenizer.tokenize('This is a test' ) self.assertListEqual(snake_case__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , [465, 287, 265, 631, 842] ) lowerCAmelCase : Tuple = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) # fmt: off self.assertListEqual( snake_case__ , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] , ) # fmt: on lowerCAmelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual( snake_case__ , [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] , ) lowerCAmelCase : int = tokenizer.convert_ids_to_tokens(snake_case__ ) # fmt: off self.assertListEqual( snake_case__ , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] ) # fmt: on def lowercase ( self ): lowerCAmelCase : str = GPTSwaTokenizer(snake_case__ ) lowerCAmelCase : Optional[int] = ['This is a test', 'I was born in 92000, and this is falsé.'] lowerCAmelCase : Tuple = [ [465, 287, 265, 631, 842], [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(snake_case__ , snake_case__ ): self.assertListEqual(tokenizer.encode_fast(snake_case__ ) , snake_case__ ) # Test that decode_fast returns the input text for text, token_ids in zip(snake_case__ , snake_case__ ): self.assertEqual(tokenizer.decode_fast(snake_case__ ) , snake_case__ ) @slow def lowercase ( self ): lowerCAmelCase : str = [ '<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')', 'Hey there, how are you doing this fine day?', 'This is a text with a trailing spaces followed by a dot .', 'Häj sväjs lillebrör! =)', 'Det är inget fel på Mr. Cool', ] # fmt: off lowerCAmelCase : Tuple = {'input_ids': [[6_3423, 5, 6811, 1_4954, 282, 816, 3821, 6_3466, 6_3425, 6_3462, 18, 6_3978, 678, 301, 1320, 6_3423, 6_3455, 6_3458, 18, 6_3982, 4246, 3940, 1901, 4_7789, 5547, 1_8994], [1_9630, 1100, 6_3446, 1342, 633, 544, 4488, 593, 5102, 2416, 6_3495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1652, 428, 268, 1936, 515, 268, 5_8593, 2_2413, 9106, 546, 268, 3_3213, 6_3979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_5130, 6_3450, 924, 6_3449, 2249, 4062, 1558, 318, 6_3504, 2_1498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2827, 2559, 332, 6575, 6_3443, 2_6801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name='AI-Sweden/gpt-sw3-126m' , sequences=snake_case__ , )
646
1
'''simple docstring''' import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece.model') if is_sentencepiece_available(): import sentencepiece as sp _lowerCAmelCase : int = 5 _lowerCAmelCase : str = 10 @require_sentencepiece @require_tokenizers class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : str = SpeechaTextTokenizer _lowerCamelCase : Tuple = False _lowerCamelCase : Dict = True def lowercase ( self ): super().setUp() lowerCAmelCase : Dict = sp.SentencePieceProcessor() spm_model.Load(snake_case__ ) lowerCAmelCase : int = ['<s>', '<pad>', '</s>', '<unk>'] vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(snake_case__ ) )] lowerCAmelCase : Optional[int] = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) lowerCAmelCase : int = Path(self.tmpdirname ) save_json(snake_case__ , save_dir / VOCAB_FILES_NAMES['vocab_file'] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(snake_case__ , save_dir / VOCAB_FILES_NAMES['spm_file'] ) lowerCAmelCase : Tuple = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase ( self ): lowerCAmelCase : str = '<pad>' lowerCAmelCase : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Optional[int] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(snake_case__ ) , 1001 ) def lowercase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1001 ) def lowercase ( self ): lowerCAmelCase : int = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) lowerCAmelCase : Tuple = tokenizer.tokenize('This is a test' ) self.assertListEqual(snake_case__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case__ ) , [289, 50, 14, 174, 386] , ) lowerCAmelCase : Optional[int] = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( snake_case__ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , ) lowerCAmelCase : List[Any] = tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual(snake_case__ , [12, 25, 88, 59, 28, 23, 11, 4, 606, 351, 351, 351, 7, 16, 70, 50, 76, 84, 10, 4, 8] ) lowerCAmelCase : int = tokenizer.convert_ids_to_tokens(snake_case__ ) self.assertListEqual( snake_case__ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , ) @slow def lowercase ( self ): # fmt: off lowerCAmelCase : int = {'input_ids': [[3791, 797, 31, 11, 64, 797, 31, 2429, 433, 12, 1176, 12, 20, 786, 915, 142, 2413, 240, 37, 3238, 797, 31, 11, 35, 93, 915, 142, 2413, 240, 37, 5540, 567, 1276, 93, 37, 610, 40, 62, 455, 657, 1042, 123, 780, 177, 37, 309, 241, 1298, 514, 20, 292, 2737, 114, 2469, 241, 85, 64, 302, 548, 528, 423, 4, 509, 406, 423, 37, 601, 4, 777, 302, 548, 528, 423, 284, 4, 3388, 511, 459, 4, 3555, 40, 321, 302, 705, 4, 3388, 511, 583, 326, 5, 5, 5, 62, 3310, 560, 177, 2680, 217, 1508, 32, 31, 853, 418, 64, 583, 511, 1605, 62, 35, 93, 560, 177, 2680, 217, 1508, 1521, 64, 583, 511, 519, 62, 20, 1515, 764, 20, 149, 261, 5625, 7972, 20, 5540, 567, 1276, 93, 3925, 1675, 11, 15, 802, 7972, 576, 217, 1508, 11, 35, 93, 1253, 2441, 15, 289, 652, 31, 416, 321, 3842, 115, 40, 911, 8, 476, 619, 4, 380, 142, 423, 335, 240, 35, 93, 264, 8, 11, 335, 569, 420, 163, 5, 2], [260, 548, 528, 423, 20, 451, 20, 2681, 1153, 3434, 20, 5540, 37, 567, 126, 1253, 2441, 3376, 449, 210, 431, 1563, 177, 767, 5540, 11, 1203, 472, 11, 2953, 685, 285, 364, 706, 1153, 20, 6799, 20, 2869, 20, 4464, 126, 40, 2429, 20, 1040, 866, 2664, 418, 20, 318, 20, 1726, 186, 20, 265, 522, 35, 93, 2191, 4634, 20, 1040, 12, 6799, 15, 228, 2356, 142, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2575, 2666, 684, 1582, 1176, 12, 627, 149, 619, 20, 4902, 563, 11, 20, 149, 261, 3420, 2356, 174, 142, 4714, 131, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name='facebook/s2t-small-mustc-en-de-st' , revision='a14f04cf0776c02f62a8cb800cf7909e15ea23ad' , ) @require_sentencepiece class lowerCAmelCase ( unittest.TestCase ): _lowerCamelCase : Optional[Any] = """valhalla/s2t_mustc_multilinguial_medium""" _lowerCamelCase : int = """C'est trop cool""" _lowerCamelCase : List[str] = """Esto es genial""" @classmethod def lowercase ( cls ): lowerCAmelCase : SpeechaTextTokenizer = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name ) return cls def lowercase ( self ): self.assertEqual(self.tokenizer.lang_code_to_id['pt'] , 4 ) self.assertEqual(self.tokenizer.lang_code_to_id['ru'] , 6 ) self.assertEqual(self.tokenizer.lang_code_to_id['it'] , 9 ) self.assertEqual(self.tokenizer.lang_code_to_id['de'] , 11 ) def lowercase ( self ): self.assertEqual(self.tokenizer.vocab_size , 1_0000 ) def lowercase ( self ): self.assertIn(snake_case__ , self.tokenizer.all_special_ids ) lowerCAmelCase : List[str] = [ES_CODE, 4, 1601, 47, 7647, 2] lowerCAmelCase : Union[str, Any] = self.tokenizer.decode(snake_case__ , skip_special_tokens=snake_case__ ) lowerCAmelCase : Tuple = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) self.assertNotIn(self.tokenizer.eos_token , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Optional[int] = 'fr' lowerCAmelCase : str = self.tokenizer(self.french_text ).input_ids self.assertEqual(encoded[0] , snake_case__ ) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id ) def lowercase ( self ): lowerCAmelCase : List[Any] = 'fr' self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] ) lowerCAmelCase : Dict = 'es' self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
646
'''simple docstring''' def __UpperCamelCase ( _A : int ) -> bool: """simple docstring""" return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
646
1
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCAmelCase ( a ): def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): super().__init__() if safety_checker is None: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" ' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered' ' results in services or applications open to the public. Both the diffusers team and Hugging Face' ' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling' ' it only for use-cases that involve analyzing network behavior or auditing its results. For more' ' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .' ) self.register_modules( speech_model=snake_case__ , speech_processor=snake_case__ , vae=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , unet=snake_case__ , scheduler=snake_case__ , feature_extractor=snake_case__ , ) def lowercase ( self , snake_case__ = "auto" ): if slice_size == "auto": lowerCAmelCase : Union[str, Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(snake_case__ ) def lowercase ( self ): self.enable_attention_slicing(snake_case__ ) @torch.no_grad() def __call__( self , snake_case__ , snake_case__=1_6000 , snake_case__ = 512 , snake_case__ = 512 , snake_case__ = 50 , snake_case__ = 7.5 , snake_case__ = None , snake_case__ = 1 , snake_case__ = 0.0 , snake_case__ = None , snake_case__ = None , snake_case__ = "pil" , snake_case__ = True , snake_case__ = None , snake_case__ = 1 , **snake_case__ , ): lowerCAmelCase : List[str] = self.speech_processor.feature_extractor( snake_case__ , return_tensors='pt' , sampling_rate=snake_case__ ).input_features.to(self.device ) lowerCAmelCase : Optional[Any] = self.speech_model.generate(snake_case__ , max_length=48_0000 ) lowerCAmelCase : str = self.speech_processor.tokenizer.batch_decode(snake_case__ , skip_special_tokens=snake_case__ , normalize=snake_case__ )[ 0 ] if isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = 1 elif isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = len(snake_case__ ) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(snake_case__ )}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(snake_case__ , snake_case__ ) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(snake_case__ )}." ) # get prompt text embeddings lowerCAmelCase : str = self.tokenizer( snake_case__ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) lowerCAmelCase : Tuple = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowerCAmelCase : str = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) lowerCAmelCase : Union[str, Any] = text_input_ids[:, : self.tokenizer.model_max_length] lowerCAmelCase : Union[str, Any] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : int = text_embeddings.shape lowerCAmelCase : Any = text_embeddings.repeat(1 , snake_case__ , 1 ) lowerCAmelCase : Optional[int] = text_embeddings.view(bs_embed * num_images_per_prompt , snake_case__ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowerCAmelCase : List[str] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowerCAmelCase : List[str] if negative_prompt is None: lowerCAmelCase : Any = [''] * batch_size elif type(snake_case__ ) is not type(snake_case__ ): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(snake_case__ )} !=" f" {type(snake_case__ )}." ) elif isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = [negative_prompt] elif batch_size != len(snake_case__ ): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(snake_case__ )}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" ' the batch size of `prompt`.' ) else: lowerCAmelCase : Dict = negative_prompt lowerCAmelCase : Optional[int] = text_input_ids.shape[-1] lowerCAmelCase : int = self.tokenizer( snake_case__ , padding='max_length' , max_length=snake_case__ , truncation=snake_case__ , return_tensors='pt' , ) lowerCAmelCase : Union[str, Any] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowerCAmelCase : List[Any] = uncond_embeddings.shape[1] lowerCAmelCase : List[str] = uncond_embeddings.repeat(1 , snake_case__ , 1 ) lowerCAmelCase : Optional[Any] = uncond_embeddings.view(batch_size * num_images_per_prompt , snake_case__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCAmelCase : List[str] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowerCAmelCase : Union[str, Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowerCAmelCase : Dict = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowerCAmelCase : str = torch.randn(snake_case__ , generator=snake_case__ , device='cpu' , dtype=snake_case__ ).to( self.device ) else: lowerCAmelCase : Tuple = torch.randn(snake_case__ , generator=snake_case__ , device=self.device , dtype=snake_case__ ) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) lowerCAmelCase : str = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(snake_case__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowerCAmelCase : Union[str, Any] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowerCAmelCase : Any = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowerCAmelCase : Tuple = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCAmelCase : Union[str, Any] = {} if accepts_eta: lowerCAmelCase : int = eta for i, t in enumerate(self.progress_bar(snake_case__ ) ): # expand the latents if we are doing classifier free guidance lowerCAmelCase : Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCAmelCase : Tuple = self.scheduler.scale_model_input(snake_case__ , snake_case__ ) # predict the noise residual lowerCAmelCase : List[str] = self.unet(snake_case__ , snake_case__ , encoder_hidden_states=snake_case__ ).sample # perform guidance if do_classifier_free_guidance: lowerCAmelCase , lowerCAmelCase : Dict = noise_pred.chunk(2 ) lowerCAmelCase : Tuple = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowerCAmelCase : int = self.scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase : List[Any] = 1 / 0.1_8_2_1_5 * latents lowerCAmelCase : Dict = self.vae.decode(snake_case__ ).sample lowerCAmelCase : List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowerCAmelCase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowerCAmelCase : Dict = self.numpy_to_pil(snake_case__ ) if not return_dict: return image return StableDiffusionPipelineOutput(images=snake_case__ , nsfw_content_detected=snake_case__ )
646
'''simple docstring''' import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( 'files' , [ ['full:README.md', 'dataset_infos.json'], ['empty:README.md', 'dataset_infos.json'], ['dataset_infos.json'], ['full:README.md'], ] , ) def __UpperCamelCase ( _A : str , _A : List[Any] ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase : Optional[int] = tmp_path_factory.mktemp('dset_infos_dir' ) if "full:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('---\ndataset_info:\n dataset_size: 42\n---' ) if "empty:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / 'dataset_infos.json' , 'w' ) as f: f.write('{"default": {"dataset_size": 42}}' ) lowerCAmelCase : Union[str, Any] = DatasetInfosDict.from_directory(_A ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( 'dataset_info' , [ DatasetInfo(), DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ), ] , ) def __UpperCamelCase ( _A : str , _A : DatasetInfo ) -> Optional[int]: """simple docstring""" lowerCAmelCase : str = str(_A ) dataset_info.write_to_directory(_A ) lowerCAmelCase : List[str] = DatasetInfo.from_directory(_A ) assert dataset_info == reloaded assert os.path.exists(os.path.join(_A , 'dataset_info.json' ) ) def __UpperCamelCase ( ) -> List[str]: """simple docstring""" lowerCAmelCase : Tuple = DatasetInfo( description='foo' , citation='bar' , homepage='https://foo.bar' , license='CC0' , features=Features({'a': Value('int32' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train', 'num_examples': 42}] , download_checksums={} , download_size=13_37 , post_processing_size=4_42 , dataset_size=12_34 , size_in_bytes=13_37 + 4_42 + 12_34 , ) lowerCAmelCase : Optional[int] = dataset_info._to_yaml_dict() assert sorted(_A ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) lowerCAmelCase : Any = yaml.safe_dump(_A ) lowerCAmelCase : int = yaml.safe_load(_A ) assert dataset_info_yaml_dict == reloaded def __UpperCamelCase ( ) -> Dict: """simple docstring""" lowerCAmelCase : Union[str, Any] = DatasetInfo() lowerCAmelCase : List[Any] = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( 'dataset_infos_dict' , [ DatasetInfosDict(), DatasetInfosDict({'default': DatasetInfo()} ), DatasetInfosDict({'my_config_name': DatasetInfo()} ), DatasetInfosDict( { 'default': DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ) } ), DatasetInfosDict( { 'v1': DatasetInfo(dataset_size=42 ), 'v2': DatasetInfo(dataset_size=13_37 ), } ), ] , ) def __UpperCamelCase ( _A : Tuple , _A : DatasetInfosDict ) -> List[Any]: """simple docstring""" lowerCAmelCase : Tuple = str(_A ) dataset_infos_dict.write_to_directory(_A ) lowerCAmelCase : List[str] = DatasetInfosDict.from_directory(_A ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): lowerCAmelCase : Tuple = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml lowerCAmelCase : Optional[Any] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(_A , 'README.md' ) )
646
1
'''simple docstring''' import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class lowerCAmelCase ( unittest.TestCase ): @slow def lowercase ( self ): for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(snake_case__ ): lowerCAmelCase : Tuple = AutoConfig.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) lowerCAmelCase : Any = FlaxAutoModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) @slow def lowercase ( self ): for model_name in ["roberta-base", "roberta-large"]: with self.subTest(snake_case__ ): lowerCAmelCase : Optional[Any] = AutoConfig.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) lowerCAmelCase : int = FlaxAutoModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) @slow def lowercase ( self ): for model_name in ["bert-base-cased", "bert-large-uncased"]: lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained(snake_case__ ) lowerCAmelCase : str = FlaxBertModel.from_pretrained(snake_case__ ) lowerCAmelCase : List[Any] = tokenizer('Do you support jax jitted function?' , return_tensors=TensorType.JAX ) @jax.jit def eval(**snake_case__ ): return model(**snake_case__ ) eval(**snake_case__ ).block_until_ready() @slow def lowercase ( self ): for model_name in ["roberta-base", "roberta-large"]: lowerCAmelCase : int = AutoTokenizer.from_pretrained(snake_case__ ) lowerCAmelCase : List[str] = FlaxRobertaModel.from_pretrained(snake_case__ ) lowerCAmelCase : str = tokenizer('Do you support jax jitted function?' , return_tensors=TensorType.JAX ) @jax.jit def eval(**snake_case__ ): return model(**snake_case__ ) eval(**snake_case__ ).block_until_ready() def lowercase ( self ): with self.assertRaisesRegex( snake_case__ , 'bert-base is not a local folder and is not a valid model identifier' ): lowerCAmelCase : Dict = FlaxAutoModel.from_pretrained('bert-base' ) def lowercase ( self ): with self.assertRaisesRegex( snake_case__ , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): lowerCAmelCase : int = FlaxAutoModel.from_pretrained(snake_case__ , revision='aaaaaa' ) def lowercase ( self ): with self.assertRaisesRegex( snake_case__ , 'hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack' , ): lowerCAmelCase : str = FlaxAutoModel.from_pretrained('hf-internal-testing/config-no-model' ) def lowercase ( self ): with self.assertRaisesRegex(snake_case__ , 'Use `from_pt=True` to load this model' ): lowerCAmelCase : Union[str, Any] = FlaxAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only' )
646
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCAmelCase ( a ): def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): super().__init__() if safety_checker is None: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" ' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered' ' results in services or applications open to the public. Both the diffusers team and Hugging Face' ' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling' ' it only for use-cases that involve analyzing network behavior or auditing its results. For more' ' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .' ) self.register_modules( speech_model=snake_case__ , speech_processor=snake_case__ , vae=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , unet=snake_case__ , scheduler=snake_case__ , feature_extractor=snake_case__ , ) def lowercase ( self , snake_case__ = "auto" ): if slice_size == "auto": lowerCAmelCase : Union[str, Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(snake_case__ ) def lowercase ( self ): self.enable_attention_slicing(snake_case__ ) @torch.no_grad() def __call__( self , snake_case__ , snake_case__=1_6000 , snake_case__ = 512 , snake_case__ = 512 , snake_case__ = 50 , snake_case__ = 7.5 , snake_case__ = None , snake_case__ = 1 , snake_case__ = 0.0 , snake_case__ = None , snake_case__ = None , snake_case__ = "pil" , snake_case__ = True , snake_case__ = None , snake_case__ = 1 , **snake_case__ , ): lowerCAmelCase : List[str] = self.speech_processor.feature_extractor( snake_case__ , return_tensors='pt' , sampling_rate=snake_case__ ).input_features.to(self.device ) lowerCAmelCase : Optional[Any] = self.speech_model.generate(snake_case__ , max_length=48_0000 ) lowerCAmelCase : str = self.speech_processor.tokenizer.batch_decode(snake_case__ , skip_special_tokens=snake_case__ , normalize=snake_case__ )[ 0 ] if isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = 1 elif isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = len(snake_case__ ) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(snake_case__ )}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(snake_case__ , snake_case__ ) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(snake_case__ )}." ) # get prompt text embeddings lowerCAmelCase : str = self.tokenizer( snake_case__ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) lowerCAmelCase : Tuple = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowerCAmelCase : str = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) lowerCAmelCase : Union[str, Any] = text_input_ids[:, : self.tokenizer.model_max_length] lowerCAmelCase : Union[str, Any] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : int = text_embeddings.shape lowerCAmelCase : Any = text_embeddings.repeat(1 , snake_case__ , 1 ) lowerCAmelCase : Optional[int] = text_embeddings.view(bs_embed * num_images_per_prompt , snake_case__ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowerCAmelCase : List[str] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowerCAmelCase : List[str] if negative_prompt is None: lowerCAmelCase : Any = [''] * batch_size elif type(snake_case__ ) is not type(snake_case__ ): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(snake_case__ )} !=" f" {type(snake_case__ )}." ) elif isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = [negative_prompt] elif batch_size != len(snake_case__ ): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(snake_case__ )}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" ' the batch size of `prompt`.' ) else: lowerCAmelCase : Dict = negative_prompt lowerCAmelCase : Optional[int] = text_input_ids.shape[-1] lowerCAmelCase : int = self.tokenizer( snake_case__ , padding='max_length' , max_length=snake_case__ , truncation=snake_case__ , return_tensors='pt' , ) lowerCAmelCase : Union[str, Any] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowerCAmelCase : List[Any] = uncond_embeddings.shape[1] lowerCAmelCase : List[str] = uncond_embeddings.repeat(1 , snake_case__ , 1 ) lowerCAmelCase : Optional[Any] = uncond_embeddings.view(batch_size * num_images_per_prompt , snake_case__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCAmelCase : List[str] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowerCAmelCase : Union[str, Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowerCAmelCase : Dict = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowerCAmelCase : str = torch.randn(snake_case__ , generator=snake_case__ , device='cpu' , dtype=snake_case__ ).to( self.device ) else: lowerCAmelCase : Tuple = torch.randn(snake_case__ , generator=snake_case__ , device=self.device , dtype=snake_case__ ) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) lowerCAmelCase : str = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(snake_case__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowerCAmelCase : Union[str, Any] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowerCAmelCase : Any = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowerCAmelCase : Tuple = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCAmelCase : Union[str, Any] = {} if accepts_eta: lowerCAmelCase : int = eta for i, t in enumerate(self.progress_bar(snake_case__ ) ): # expand the latents if we are doing classifier free guidance lowerCAmelCase : Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCAmelCase : Tuple = self.scheduler.scale_model_input(snake_case__ , snake_case__ ) # predict the noise residual lowerCAmelCase : List[str] = self.unet(snake_case__ , snake_case__ , encoder_hidden_states=snake_case__ ).sample # perform guidance if do_classifier_free_guidance: lowerCAmelCase , lowerCAmelCase : Dict = noise_pred.chunk(2 ) lowerCAmelCase : Tuple = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowerCAmelCase : int = self.scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase : List[Any] = 1 / 0.1_8_2_1_5 * latents lowerCAmelCase : Dict = self.vae.decode(snake_case__ ).sample lowerCAmelCase : List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowerCAmelCase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowerCAmelCase : Dict = self.numpy_to_pil(snake_case__ ) if not return_dict: return image return StableDiffusionPipelineOutput(images=snake_case__ , nsfw_content_detected=snake_case__ )
646
1
'''simple docstring''' def __UpperCamelCase ( _A : Optional[int] ) -> List[str]: """simple docstring""" if collection == []: return [] # get some information about the collection lowerCAmelCase : Tuple = len(_A ) lowerCAmelCase : Any = max(_A ) lowerCAmelCase : Tuple = min(_A ) # create the counting array lowerCAmelCase : Any = coll_max + 1 - coll_min lowerCAmelCase : List[str] = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , _A ): lowerCAmelCase : int = counting_arr[i] + counting_arr[i - 1] # create the output collection lowerCAmelCase : Tuple = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , _A ) ): lowerCAmelCase : str = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def __UpperCamelCase ( _A : Any ) -> str: """simple docstring""" return "".join([chr(_A ) for i in counting_sort([ord(_A ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string('thisisthestring') == "eghhiiinrsssttt" _lowerCAmelCase : Dict = input('Enter numbers separated by a comma:\n').strip() _lowerCAmelCase : List[Any] = [int(item) for item in user_input.split(',')] print(counting_sort(unsorted))
646
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : List[Any] = LDMTextToImagePipeline _lowerCamelCase : Optional[Any] = TEXT_TO_IMAGE_PARAMS - { """negative_prompt""", """negative_prompt_embeds""", """cross_attention_kwargs""", """prompt_embeds""", } _lowerCamelCase : List[str] = PipelineTesterMixin.required_optional_params - { """num_images_per_prompt""", """callback""", """callback_steps""", } _lowerCamelCase : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS _lowerCamelCase : Optional[int] = False def lowercase ( self ): torch.manual_seed(0 ) lowerCAmelCase : Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) lowerCAmelCase : int = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , ) torch.manual_seed(0 ) lowerCAmelCase : str = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') , up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') , latent_channels=4 , ) torch.manual_seed(0 ) lowerCAmelCase : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowerCAmelCase : str = CLIPTextModel(snake_case__ ) lowerCAmelCase : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCAmelCase : List[Any] = { 'unet': unet, 'scheduler': scheduler, 'vqvae': vae, 'bert': text_encoder, 'tokenizer': tokenizer, } return components def lowercase ( self , snake_case__ , snake_case__=0 ): if str(snake_case__ ).startswith('mps' ): lowerCAmelCase : Optional[int] = torch.manual_seed(snake_case__ ) else: lowerCAmelCase : str = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) lowerCAmelCase : Tuple = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase ( self ): lowerCAmelCase : List[str] = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase : Optional[Any] = self.get_dummy_components() lowerCAmelCase : Optional[Any] = LDMTextToImagePipeline(**snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Tuple = self.get_dummy_inputs(snake_case__ ) lowerCAmelCase : Union[str, Any] = pipe(**snake_case__ ).images lowerCAmelCase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) lowerCAmelCase : List[Any] = np.array([0.6_1_0_1, 0.6_1_5_6, 0.5_6_2_2, 0.4_8_9_5, 0.6_6_6_1, 0.3_8_0_4, 0.5_7_4_8, 0.6_1_3_6, 0.5_0_1_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self , snake_case__ , snake_case__=torch.floataa , snake_case__=0 ): lowerCAmelCase : List[str] = torch.manual_seed(snake_case__ ) lowerCAmelCase : int = np.random.RandomState(snake_case__ ).standard_normal((1, 4, 32, 32) ) lowerCAmelCase : Optional[Any] = torch.from_numpy(snake_case__ ).to(device=snake_case__ , dtype=snake_case__ ) lowerCAmelCase : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase ( self ): lowerCAmelCase : Tuple = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Optional[Any] = self.get_inputs(snake_case__ ) lowerCAmelCase : List[Any] = pipe(**snake_case__ ).images lowerCAmelCase : str = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) lowerCAmelCase : Tuple = np.array([0.5_1_8_2_5, 0.5_2_8_5_0, 0.5_2_5_4_3, 0.5_4_2_5_8, 0.5_2_3_0_4, 0.5_2_5_6_9, 0.5_4_3_6_3, 0.5_5_2_7_6, 0.5_6_8_7_8] ) lowerCAmelCase : int = np.abs(expected_slice - image_slice ).max() assert max_diff < 1e-3 @nightly @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self , snake_case__ , snake_case__=torch.floataa , snake_case__=0 ): lowerCAmelCase : List[str] = torch.manual_seed(snake_case__ ) lowerCAmelCase : Any = np.random.RandomState(snake_case__ ).standard_normal((1, 4, 32, 32) ) lowerCAmelCase : List[Any] = torch.from_numpy(snake_case__ ).to(device=snake_case__ , dtype=snake_case__ ) lowerCAmelCase : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase ( self ): lowerCAmelCase : Optional[int] = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : int = self.get_inputs(snake_case__ ) lowerCAmelCase : Optional[int] = pipe(**snake_case__ ).images[0] lowerCAmelCase : Optional[int] = load_numpy( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy' ) lowerCAmelCase : List[str] = np.abs(expected_image - image ).max() assert max_diff < 1e-3
646
1
'''simple docstring''' def __UpperCamelCase ( _A : int ) -> bool: """simple docstring""" return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
646
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Tuple = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { 'facebook/xmod-base': 'https://huggingface.co/facebook/xmod-base/resolve/main/config.json', 'facebook/xmod-large-prenorm': 'https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json', 'facebook/xmod-base-13-125k': 'https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json', 'facebook/xmod-base-30-125k': 'https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json', 'facebook/xmod-base-30-195k': 'https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json', 'facebook/xmod-base-60-125k': 'https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json', 'facebook/xmod-base-60-265k': 'https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json', 'facebook/xmod-base-75-125k': 'https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json', 'facebook/xmod-base-75-269k': 'https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json', } class lowerCAmelCase ( a ): _lowerCamelCase : int = """xmod""" def __init__( self , snake_case__=3_0522 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=1e-1_2 , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__="absolute" , snake_case__=True , snake_case__=None , snake_case__=False , snake_case__=2 , snake_case__=False , snake_case__=True , snake_case__=True , snake_case__=("en_XX",) , snake_case__=None , **snake_case__ , ): super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) lowerCAmelCase : Dict = vocab_size lowerCAmelCase : Optional[Any] = hidden_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob lowerCAmelCase : str = max_position_embeddings lowerCAmelCase : int = type_vocab_size lowerCAmelCase : List[Any] = initializer_range lowerCAmelCase : Any = layer_norm_eps lowerCAmelCase : Dict = position_embedding_type lowerCAmelCase : Optional[Any] = use_cache lowerCAmelCase : Union[str, Any] = classifier_dropout lowerCAmelCase : int = pre_norm lowerCAmelCase : Optional[Any] = adapter_reduction_factor lowerCAmelCase : Any = adapter_layer_norm lowerCAmelCase : Dict = adapter_reuse_layer_norm lowerCAmelCase : Any = ln_before_adapter lowerCAmelCase : Optional[Any] = list(snake_case__ ) lowerCAmelCase : List[Any] = default_language class lowerCAmelCase ( a ): @property def lowercase ( self ): if self.task == "multiple-choice": lowerCAmelCase : List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase : Optional[int] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
646
1
'''simple docstring''' from __future__ import annotations def __UpperCamelCase ( _A : int , _A : int ) -> list[list[int]]: """simple docstring""" lowerCAmelCase : list[list[int]] = [] create_all_state(1 , _A , _A , [] , _A ) return result def __UpperCamelCase ( _A : int , _A : int , _A : int , _A : list[int] , _A : list[list[int]] , ) -> None: """simple docstring""" if level == 0: total_list.append(current_list[:] ) return for i in range(_A , total_number - level + 2 ): current_list.append(_A ) create_all_state(i + 1 , _A , level - 1 , _A , _A ) current_list.pop() def __UpperCamelCase ( _A : list[list[int]] ) -> None: """simple docstring""" for i in total_list: print(*_A ) if __name__ == "__main__": _lowerCAmelCase : Optional[Any] = 4 _lowerCAmelCase : Tuple = 2 _lowerCAmelCase : List[Any] = generate_all_combinations(n, k) print_all_state(total_list)
646
'''simple docstring''' import argparse import os import re _lowerCAmelCase : Dict = 'src/diffusers' # Pattern that looks at the indentation in a line. _lowerCAmelCase : str = re.compile(r'^(\s*)\S') # Pattern that matches `"key":" and puts `key` in group 0. _lowerCAmelCase : Any = re.compile(r'^\s*"([^"]+)":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. _lowerCAmelCase : List[Any] = re.compile(r'^\s*_import_structure\["([^"]+)"\]') # Pattern that matches `"key",` and puts `key` in group 0. _lowerCAmelCase : int = re.compile(r'^\s*"([^"]+)",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. _lowerCAmelCase : Optional[Any] = re.compile(r'\[([^\]]+)\]') def __UpperCamelCase ( _A : Union[str, Any] ) -> Dict: """simple docstring""" lowerCAmelCase : Any = _re_indent.search(_A ) return "" if search is None else search.groups()[0] def __UpperCamelCase ( _A : Dict , _A : Any="" , _A : List[str]=None , _A : Any=None ) -> Tuple: """simple docstring""" lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Tuple = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(_A ): index += 1 lowerCAmelCase : Optional[int] = ['\n'.join(lines[:index] )] else: lowerCAmelCase : int = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowerCAmelCase : Tuple = [lines[index]] index += 1 while index < len(_A ) and (end_prompt is None or not lines[index].startswith(_A )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(_A ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(_A ) ) if index < len(_A ) - 1: lowerCAmelCase : List[Any] = [lines[index + 1]] index += 1 else: lowerCAmelCase : int = [] else: blocks.append('\n'.join(_A ) ) lowerCAmelCase : Any = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(_A ) > 0: blocks.append('\n'.join(_A ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(_A ): blocks.append('\n'.join(lines[index:] ) ) return blocks def __UpperCamelCase ( _A : Dict ) -> List[Any]: """simple docstring""" def _inner(_A : Tuple ): return key(_A ).lower().replace('_' , '' ) return _inner def __UpperCamelCase ( _A : Union[str, Any] , _A : Any=None ) -> Optional[Any]: """simple docstring""" def noop(_A : Any ): return x if key is None: lowerCAmelCase : List[str] = noop # Constants are all uppercase, they go first. lowerCAmelCase : str = [obj for obj in objects if key(_A ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowerCAmelCase : List[str] = [obj for obj in objects if key(_A )[0].isupper() and not key(_A ).isupper()] # Functions begin with a lowercase, they go last. lowerCAmelCase : Optional[Any] = [obj for obj in objects if not key(_A )[0].isupper()] lowerCAmelCase : Tuple = ignore_underscore(_A ) return sorted(_A , key=_A ) + sorted(_A , key=_A ) + sorted(_A , key=_A ) def __UpperCamelCase ( _A : Union[str, Any] ) -> int: """simple docstring""" def _replace(_A : List[Any] ): lowerCAmelCase : List[Any] = match.groups()[0] if "," not in imports: return F"[{imports}]" lowerCAmelCase : Dict = [part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase : List[str] = keys[:-1] return "[" + ", ".join([F"\"{k}\"" for k in sort_objects(_A )] ) + "]" lowerCAmelCase : Optional[int] = import_statement.split('\n' ) if len(_A ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowerCAmelCase : Optional[Any] = 2 if lines[1].strip() == '[' else 1 lowerCAmelCase : List[str] = [(i, _re_strip_line.search(_A ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowerCAmelCase : Optional[Any] = sort_objects(_A , key=lambda _A : x[1] ) lowerCAmelCase : Dict = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(_A ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowerCAmelCase : Optional[int] = _re_bracket_content.sub(_replace , lines[1] ) else: lowerCAmelCase : List[Any] = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase : int = keys[:-1] lowerCAmelCase : Tuple = get_indent(lines[1] ) + ', '.join([F"\"{k}\"" for k in sort_objects(_A )] ) return "\n".join(_A ) else: # Finally we have to deal with imports fitting on one line lowerCAmelCase : Union[str, Any] = _re_bracket_content.sub(_replace , _A ) return import_statement def __UpperCamelCase ( _A : str , _A : Tuple=True ) -> Optional[Any]: """simple docstring""" with open(_A , 'r' ) as f: lowerCAmelCase : Optional[int] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowerCAmelCase : List[Any] = split_code_in_indented_blocks( _A , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(_A ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowerCAmelCase : List[str] = main_blocks[block_idx] lowerCAmelCase : Union[str, Any] = block.split('\n' ) # Get to the start of the imports. lowerCAmelCase : Optional[Any] = 0 while line_idx < len(_A ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowerCAmelCase : Optional[Any] = len(_A ) else: line_idx += 1 if line_idx >= len(_A ): continue # Ignore beginning and last line: they don't contain anything. lowerCAmelCase : str = '\n'.join(block_lines[line_idx:-1] ) lowerCAmelCase : str = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowerCAmelCase : Optional[Any] = split_code_in_indented_blocks(_A , indent_level=_A ) # We have two categories of import key: list or _import_structure[key].append/extend lowerCAmelCase : Union[str, Any] = _re_direct_key if '_import_structure' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowerCAmelCase : int = [(pattern.search(_A ).groups()[0] if pattern.search(_A ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowerCAmelCase : Dict = [(i, key) for i, key in enumerate(_A ) if key is not None] lowerCAmelCase : List[Any] = [x[0] for x in sorted(_A , key=lambda _A : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowerCAmelCase : int = 0 lowerCAmelCase : Dict = [] for i in range(len(_A ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: lowerCAmelCase : str = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(_A ) count += 1 # And we put our main block back together with its first and last line. lowerCAmelCase : str = '\n'.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(_A ): if check_only: return True else: print(F"Overwriting {file}." ) with open(_A , 'w' ) as f: f.write('\n'.join(_A ) ) def __UpperCamelCase ( _A : Tuple=True ) -> Any: """simple docstring""" lowerCAmelCase : Tuple = [] for root, _, files in os.walk(_A ): if "__init__.py" in files: lowerCAmelCase : Any = sort_imports(os.path.join(_A , '__init__.py' ) , check_only=_A ) if result: lowerCAmelCase : Optional[Any] = [os.path.join(_A , '__init__.py' )] if len(_A ) > 0: raise ValueError(F"Would overwrite {len(_A )} files, run `make style`." ) if __name__ == "__main__": _lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') _lowerCAmelCase : Optional[int] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
646
1
'''simple docstring''' from queue import PriorityQueue from typing import Any import numpy as np def __UpperCamelCase ( _A : dict , _A : str , _A : set , _A : set , _A : dict , _A : dict , _A : PriorityQueue , _A : dict , _A : float | int , ) -> float | int: """simple docstring""" for nxt, d in graph[v]: if nxt in visited_forward: continue lowerCAmelCase : List[Any] = cst_fwd.get(_A , np.inf ) lowerCAmelCase : Optional[int] = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) lowerCAmelCase : int = new_cost_f lowerCAmelCase : Tuple = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: lowerCAmelCase : Dict = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def __UpperCamelCase ( _A : str , _A : str , _A : dict , _A : dict ) -> int: """simple docstring""" lowerCAmelCase : Optional[Any] = -1 lowerCAmelCase : Any = set() lowerCAmelCase : Optional[int] = set() lowerCAmelCase : Union[str, Any] = {source: 0} lowerCAmelCase : Optional[Any] = {destination: 0} lowerCAmelCase : str = {source: None} lowerCAmelCase : int = {destination: None} lowerCAmelCase : PriorityQueue[Any] = PriorityQueue() lowerCAmelCase : PriorityQueue[Any] = PriorityQueue() lowerCAmelCase : Any = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): lowerCAmelCase , lowerCAmelCase : Dict = queue_forward.get() visited_forward.add(_A ) lowerCAmelCase , lowerCAmelCase : Union[str, Any] = queue_backward.get() visited_backward.add(_A ) lowerCAmelCase : Dict = pass_and_relaxation( _A , _A , _A , _A , _A , _A , _A , _A , _A , ) lowerCAmelCase : str = pass_and_relaxation( _A , _A , _A , _A , _A , _A , _A , _A , _A , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: lowerCAmelCase : Optional[Any] = shortest_distance return shortest_path_distance _lowerCAmelCase : Optional[int] = { 'B': [['C', 1]], 'C': [['D', 1]], 'D': [['F', 1]], 'E': [['B', 1], ['G', 2]], 'F': [], 'G': [['F', 1]], } _lowerCAmelCase : Dict = { 'B': [['E', 1]], 'C': [['B', 1]], 'D': [['C', 1]], 'F': [['D', 1], ['G', 1]], 'E': [[None, np.inf]], 'G': [['E', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
646
'''simple docstring''' import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class lowerCAmelCase : def __init__( self , snake_case__ , snake_case__=13 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=99 , snake_case__=64 , snake_case__=32 , snake_case__=5 , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=16 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=3 , snake_case__=4 , snake_case__=None , ): lowerCAmelCase : str = parent lowerCAmelCase : Optional[int] = batch_size lowerCAmelCase : Optional[Any] = seq_length lowerCAmelCase : Optional[Any] = is_training lowerCAmelCase : Dict = use_input_mask lowerCAmelCase : Tuple = use_token_type_ids lowerCAmelCase : int = use_labels lowerCAmelCase : int = vocab_size lowerCAmelCase : Any = hidden_size lowerCAmelCase : Optional[Any] = embedding_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : List[str] = num_attention_heads lowerCAmelCase : List[Any] = intermediate_size lowerCAmelCase : Dict = hidden_act lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : int = attention_probs_dropout_prob lowerCAmelCase : List[Any] = max_position_embeddings lowerCAmelCase : int = type_vocab_size lowerCAmelCase : List[str] = type_sequence_label_size lowerCAmelCase : Dict = initializer_range lowerCAmelCase : Any = num_labels lowerCAmelCase : str = num_choices lowerCAmelCase : int = scope def lowercase ( self ): lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Union[str, Any] = None if self.use_input_mask: lowerCAmelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : Optional[int] = None if self.use_token_type_ids: lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : Optional[Any] = None lowerCAmelCase : Optional[Any] = None lowerCAmelCase : Dict = None if self.use_labels: lowerCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase ( self ): return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case__ , initializer_range=self.initializer_range , ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = MobileBertModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : int = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) lowerCAmelCase : Optional[int] = model(snake_case__ , token_type_ids=snake_case__ ) lowerCAmelCase : Optional[Any] = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : int = MobileBertForMaskedLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : str = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = MobileBertForNextSentencePrediction(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : str = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : List[Any] = MobileBertForPreTraining(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Tuple = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , next_sentence_label=snake_case__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = MobileBertForQuestionAnswering(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : List[str] = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = self.num_labels lowerCAmelCase : List[Any] = MobileBertForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = self.num_labels lowerCAmelCase : int = MobileBertForTokenClassification(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : List[str] = self.num_choices lowerCAmelCase : Any = MobileBertForMultipleChoice(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : int = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : List[str] = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase ( self ): lowerCAmelCase : Any = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) : Optional[Any] = config_and_inputs lowerCAmelCase : List[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase ( a , a , unittest.TestCase ): _lowerCamelCase : List[str] = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) _lowerCamelCase : Tuple = ( { """feature-extraction""": MobileBertModel, """fill-mask""": MobileBertForMaskedLM, """question-answering""": MobileBertForQuestionAnswering, """text-classification""": MobileBertForSequenceClassification, """token-classification""": MobileBertForTokenClassification, """zero-shot""": MobileBertForSequenceClassification, } if is_torch_available() else {} ) _lowerCamelCase : str = True def lowercase ( self , snake_case__ , snake_case__ , snake_case__=False ): lowerCAmelCase : int = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if return_labels: if model_class in get_values(snake_case__ ): lowerCAmelCase : str = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=snake_case__ ) lowerCAmelCase : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case__ ) return inputs_dict def lowercase ( self ): lowerCAmelCase : List[Any] = MobileBertModelTester(self ) lowerCAmelCase : Dict = ConfigTester(self , config_class=snake_case__ , hidden_size=37 ) def lowercase ( self ): self.config_tester.run_common_tests() def lowercase ( self ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*snake_case__ ) def __UpperCamelCase ( _A : Optional[Any] ) -> Optional[int]: """simple docstring""" return torch.tensor( _A , dtype=torch.long , device=_A , ) _lowerCAmelCase : Union[str, Any] = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase ( unittest.TestCase ): @slow def lowercase ( self ): lowerCAmelCase : List[str] = MobileBertModel.from_pretrained('google/mobilebert-uncased' ).to(snake_case__ ) lowerCAmelCase : List[Any] = _long_tensor([[101, 7110, 1005, 1056, 2023, 1_1333, 1_7413, 1029, 102]] ) with torch.no_grad(): lowerCAmelCase : Tuple = model(snake_case__ )[0] lowerCAmelCase : List[Any] = torch.Size((1, 9, 512) ) self.assertEqual(output.shape , snake_case__ ) lowerCAmelCase : Union[str, Any] = torch.tensor( [ [ [-2.4_7_3_6_5_2_6e0_7, 8.2_6_9_1_6_5_6e0_4, 1.6_5_2_1_8_3_8e0_5], [-5.7_5_4_1_7_0_4e-0_1, 3.9_0_5_6_0_2_2e0_0, 4.4_0_1_1_5_0_7e0_0], [2.6_0_4_7_3_5_9e0_0, 1.5_6_7_7_6_5_2e0_0, -1.7_3_2_4_1_8_8e-0_1], ] ] , device=snake_case__ , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE lowerCAmelCase : List[str] = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) lowerCAmelCase : Dict = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
646
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Tuple = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { 'facebook/xmod-base': 'https://huggingface.co/facebook/xmod-base/resolve/main/config.json', 'facebook/xmod-large-prenorm': 'https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json', 'facebook/xmod-base-13-125k': 'https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json', 'facebook/xmod-base-30-125k': 'https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json', 'facebook/xmod-base-30-195k': 'https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json', 'facebook/xmod-base-60-125k': 'https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json', 'facebook/xmod-base-60-265k': 'https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json', 'facebook/xmod-base-75-125k': 'https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json', 'facebook/xmod-base-75-269k': 'https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json', } class lowerCAmelCase ( a ): _lowerCamelCase : int = """xmod""" def __init__( self , snake_case__=3_0522 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=1e-1_2 , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__="absolute" , snake_case__=True , snake_case__=None , snake_case__=False , snake_case__=2 , snake_case__=False , snake_case__=True , snake_case__=True , snake_case__=("en_XX",) , snake_case__=None , **snake_case__ , ): super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) lowerCAmelCase : Dict = vocab_size lowerCAmelCase : Optional[Any] = hidden_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob lowerCAmelCase : str = max_position_embeddings lowerCAmelCase : int = type_vocab_size lowerCAmelCase : List[Any] = initializer_range lowerCAmelCase : Any = layer_norm_eps lowerCAmelCase : Dict = position_embedding_type lowerCAmelCase : Optional[Any] = use_cache lowerCAmelCase : Union[str, Any] = classifier_dropout lowerCAmelCase : int = pre_norm lowerCAmelCase : Optional[Any] = adapter_reduction_factor lowerCAmelCase : Any = adapter_layer_norm lowerCAmelCase : Dict = adapter_reuse_layer_norm lowerCAmelCase : Any = ln_before_adapter lowerCAmelCase : Optional[Any] = list(snake_case__ ) lowerCAmelCase : List[Any] = default_language class lowerCAmelCase ( a ): @property def lowercase ( self ): if self.task == "multiple-choice": lowerCAmelCase : List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase : Optional[int] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
646
'''simple docstring''' import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __UpperCamelCase ( _A : Dict ) -> int: """simple docstring""" lowerCAmelCase : Tuple = [] embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight", F"stage{idx}.patch_embed.proj.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias", F"stage{idx}.patch_embed.proj.bias", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight", F"stage{idx}.patch_embed.norm.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias", F"stage{idx}.patch_embed.norm.bias", ) ) return embed def __UpperCamelCase ( _A : List[Any] , _A : Dict ) -> Any: """simple docstring""" lowerCAmelCase : str = [] attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight", F"stage{idx}.blocks.{cnt}.attn.proj_q.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias", F"stage{idx}.blocks.{cnt}.attn.proj_q.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight", F"stage{idx}.blocks.{cnt}.attn.proj_k.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias", F"stage{idx}.blocks.{cnt}.attn.proj_k.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight", F"stage{idx}.blocks.{cnt}.attn.proj_v.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias", F"stage{idx}.blocks.{cnt}.attn.proj_v.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight", F"stage{idx}.blocks.{cnt}.attn.proj.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias", F"stage{idx}.blocks.{cnt}.attn.proj.bias", ) ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc2.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight", F"stage{idx}.blocks.{cnt}.norm1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias", F"stage{idx}.blocks.{cnt}.norm1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight", F"stage{idx}.blocks.{cnt}.norm2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias", F"stage{idx}.blocks.{cnt}.norm2.bias") ) return attention_weights def __UpperCamelCase ( _A : Optional[int] ) -> Optional[int]: """simple docstring""" lowerCAmelCase : Optional[int] = [] token.append((F"cvt.encoder.stages.{idx}.cls_token", 'stage2.cls_token') ) return token def __UpperCamelCase ( ) -> int: """simple docstring""" lowerCAmelCase : List[Any] = [] head.append(('layernorm.weight', 'norm.weight') ) head.append(('layernorm.bias', 'norm.bias') ) head.append(('classifier.weight', 'head.weight') ) head.append(('classifier.bias', 'head.bias') ) return head def __UpperCamelCase ( _A : str , _A : Optional[Any] , _A : Dict , _A : str ) -> Optional[int]: """simple docstring""" lowerCAmelCase : List[str] = 'imagenet-1k-id2label.json' lowerCAmelCase : Tuple = 10_00 lowerCAmelCase : str = 'huggingface/label-files' lowerCAmelCase : List[Any] = num_labels lowerCAmelCase : Any = json.load(open(cached_download(hf_hub_url(_A , _A , repo_type='dataset' ) ) , 'r' ) ) lowerCAmelCase : List[str] = {int(_A ): v for k, v in idalabel.items()} lowerCAmelCase : List[str] = idalabel lowerCAmelCase : str = {v: k for k, v in idalabel.items()} lowerCAmelCase : int = CvtConfig(num_labels=_A , idalabel=_A , labelaid=_A ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13": lowerCAmelCase : List[str] = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21": lowerCAmelCase : Tuple = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: lowerCAmelCase : Any = [2, 2, 20] lowerCAmelCase : List[str] = [3, 12, 16] lowerCAmelCase : List[Any] = [1_92, 7_68, 10_24] lowerCAmelCase : Union[str, Any] = CvtForImageClassification(_A ) lowerCAmelCase : str = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) lowerCAmelCase : Optional[Any] = image_size lowerCAmelCase : List[Any] = torch.load(_A , map_location=torch.device('cpu' ) ) lowerCAmelCase : str = OrderedDict() lowerCAmelCase : int = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: lowerCAmelCase : List[str] = list_of_state_dict + cls_token(_A ) lowerCAmelCase : Optional[Any] = list_of_state_dict + embeddings(_A ) for cnt in range(config.depth[idx] ): lowerCAmelCase : List[Any] = list_of_state_dict + attention(_A , _A ) lowerCAmelCase : List[str] = list_of_state_dict + final() for gg in list_of_state_dict: print(_A ) for i in range(len(_A ) ): lowerCAmelCase : Tuple = original_weights[list_of_state_dict[i][1]] model.load_state_dict(_A ) model.save_pretrained(_A ) image_processor.save_pretrained(_A ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": _lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '--cvt_model', default='cvt-w24', type=str, help='Name of the cvt model you\'d like to convert.', ) parser.add_argument( '--image_size', default=384, type=int, help='Input Image Size', ) parser.add_argument( '--cvt_file_name', default=r'cvtmodels\CvT-w24-384x384-IN-22k.pth', type=str, help='Input Image Size', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) _lowerCAmelCase : str = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
646
1
'''simple docstring''' from math import log from scipy.constants import Boltzmann, physical_constants _lowerCAmelCase : List[str] = 300 # TEMPERATURE (unit = K) def __UpperCamelCase ( _A : float , _A : float , _A : float , ) -> float: """simple docstring""" if donor_conc <= 0: raise ValueError('Donor concentration should be positive' ) elif acceptor_conc <= 0: raise ValueError('Acceptor concentration should be positive' ) elif intrinsic_conc <= 0: raise ValueError('Intrinsic concentration should be positive' ) elif donor_conc <= intrinsic_conc: raise ValueError( 'Donor concentration should be greater than intrinsic concentration' ) elif acceptor_conc <= intrinsic_conc: raise ValueError( 'Acceptor concentration should be greater than intrinsic concentration' ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
646
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Any = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { 'xlm-roberta-base': 'https://huggingface.co/xlm-roberta-base/resolve/main/config.json', 'xlm-roberta-large': 'https://huggingface.co/xlm-roberta-large/resolve/main/config.json', 'xlm-roberta-large-finetuned-conll02-dutch': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll02-spanish': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-english': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-german': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json' ), } class lowerCAmelCase ( a ): _lowerCamelCase : List[str] = """xlm-roberta""" def __init__( self , snake_case__=3_0522 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=1e-1_2 , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__="absolute" , snake_case__=True , snake_case__=None , **snake_case__ , ): super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) lowerCAmelCase : Optional[Any] = vocab_size lowerCAmelCase : Optional[Any] = hidden_size lowerCAmelCase : Optional[Any] = num_hidden_layers lowerCAmelCase : Any = num_attention_heads lowerCAmelCase : Optional[int] = hidden_act lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : Dict = hidden_dropout_prob lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob lowerCAmelCase : Optional[Any] = max_position_embeddings lowerCAmelCase : Optional[int] = type_vocab_size lowerCAmelCase : int = initializer_range lowerCAmelCase : List[Any] = layer_norm_eps lowerCAmelCase : Union[str, Any] = position_embedding_type lowerCAmelCase : Union[str, Any] = use_cache lowerCAmelCase : List[str] = classifier_dropout class lowerCAmelCase ( a ): @property def lowercase ( self ): if self.task == "multiple-choice": lowerCAmelCase : str = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase : Optional[int] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
646
1
'''simple docstring''' import math def __UpperCamelCase ( _A : int ) -> list[int]: """simple docstring""" lowerCAmelCase : List[str] = [] lowerCAmelCase : Optional[Any] = 2 lowerCAmelCase : Dict = int(math.sqrt(_A ) ) # Size of every segment lowerCAmelCase : int = [True] * (end + 1) lowerCAmelCase : Tuple = [] while start <= end: if temp[start] is True: in_prime.append(_A ) for i in range(start * start , end + 1 , _A ): lowerCAmelCase : List[Any] = False start += 1 prime += in_prime lowerCAmelCase : Union[str, Any] = end + 1 lowerCAmelCase : Union[str, Any] = min(2 * end , _A ) while low <= n: lowerCAmelCase : List[Any] = [True] * (high - low + 1) for each in in_prime: lowerCAmelCase : Union[str, Any] = math.floor(low / each ) * each if t < low: t += each for j in range(_A , high + 1 , _A ): lowerCAmelCase : Tuple = False for j in range(len(_A ) ): if temp[j] is True: prime.append(j + low ) lowerCAmelCase : List[str] = high + 1 lowerCAmelCase : str = min(high + end , _A ) return prime print(sieve(10**6))
646
'''simple docstring''' import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer _lowerCAmelCase : List[Any] = logging.getLogger(__name__) def __UpperCamelCase ( ) -> Any: """simple docstring""" lowerCAmelCase : str = argparse.ArgumentParser( description='Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.' ) parser.add_argument( '--dataset_name' , type=_A , default='wikitext' , help='Name of the training. Explore datasets at: hf.co/datasets.' , ) parser.add_argument( '--dataset_config' , type=_A , default='wikitext-103-raw-v1' , help='Configuration name of the dataset.' ) parser.add_argument( '--tokenizer_name_or_path' , type=_A , default='sayakpaul/unigram-tokenizer-wikitext' , help='Tokenizer identifier. Can be a local filepath or a Hub identifier.' , ) parser.add_argument( '--shard_size' , type=_A , default=10_00 , help='Number of entries to go in a single shard.' , ) parser.add_argument('--split' , type=_A , default='train' , choices=['train', 'test', 'validation'] ) parser.add_argument( '--limit' , default=_A , type=_A , help='Limit the number of shards (used for debugging).' , ) parser.add_argument( '--max_length' , type=_A , default=5_12 , help='Maximum sequence length. For training on TPUs, it helps to have a maximum' ' sequence length that is a multiple of 8.' , ) parser.add_argument( '--output_dir' , default='tf-tpu' , type=_A , help='Output directory where the TFRecord shards will be saved. If the' ' path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord' ' shards will be directly saved to a Google Cloud Storage bucket.' , ) lowerCAmelCase : Any = parser.parse_args() return args def __UpperCamelCase ( _A : Optional[int] ) -> int: """simple docstring""" def fn(_A : Tuple ): return tokenizer(examples['text'] ) return fn def __UpperCamelCase ( _A : int ) -> int: """simple docstring""" lowerCAmelCase : Tuple = [] for i in range(len(tokenized_data['input_ids'] ) ): lowerCAmelCase : Optional[Any] = { 'input_ids': tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data['input_ids'][i] ) ), 'attention_mask': tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data['attention_mask'][i] ) ), } lowerCAmelCase : Any = tf.train.Features(feature=_A ) lowerCAmelCase : List[str] = tf.train.Example(features=_A ) lowerCAmelCase : Tuple = example.SerializeToString() records.append(_A ) return records def __UpperCamelCase ( _A : int ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase : Union[str, Any] = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: lowerCAmelCase : Optional[Any] = min(len(_A ) , args.limit ) lowerCAmelCase : Dict = dataset.select(range(_A ) ) print(F"Limiting the dataset to {args.limit} entries." ) lowerCAmelCase : str = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) lowerCAmelCase : Any = os.path.join(args.output_dir , args.split ) if not os.path.exists(_A ): os.makedirs(_A ) else: lowerCAmelCase : List[Any] = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. lowerCAmelCase : Any = tokenize_function(_A ) lowerCAmelCase : Optional[int] = dataset.map(_A , batched=_A , num_proc=4 , remove_columns=['text'] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(_A : str ): # Concatenate all texts. lowerCAmelCase : Optional[int] = {k: sum(examples[k] , [] ) for k in examples.keys()} lowerCAmelCase : str = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 lowerCAmelCase : List[Any] = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. lowerCAmelCase : str = { k: [t[i : i + args.max_length] for i in range(0 , _A , args.max_length )] for k, t in concatenated_examples.items() } return result lowerCAmelCase : List[Any] = dataset_tokenized.map(_A , batched=_A , batch_size=10_00 , num_proc=4 ) lowerCAmelCase : Union[str, Any] = 0 lowerCAmelCase : Tuple = 0 for shard in range(0 , len(_A ) , args.shard_size ): lowerCAmelCase : Optional[Any] = grouped_dataset[shard : shard + args.shard_size] lowerCAmelCase : List[str] = len(dataset_snapshot['input_ids'] ) lowerCAmelCase : Union[str, Any] = os.path.join(_A , F"dataset-{shard_count}-{records_containing}.tfrecord" ) lowerCAmelCase : List[Any] = get_serialized_examples(_A ) with tf.io.TFRecordWriter(_A ) as out_file: for i in range(len(_A ) ): lowerCAmelCase : Union[str, Any] = serialized_examples[i] out_file.write(_A ) print('Wrote file {} containing {} records'.format(_A , _A ) ) shard_count += 1 total_records += records_containing with open(F"split-{args.split}-records-count.txt" , 'w' ) as f: print(F"Total {args.split} records: {total_records}" , file=_A ) if __name__ == "__main__": _lowerCAmelCase : List[Any] = parse_args() main(args)
646
1
'''simple docstring''' from __future__ import annotations _lowerCAmelCase : List[Any] = 8.988E9 # units = N * m^s * C^-2 def __UpperCamelCase ( _A : float , _A : float , _A : float , _A : float ) -> dict[str, float]: """simple docstring""" lowerCAmelCase : str = abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if distance < 0: raise ValueError('Distance cannot be negative' ) if force == 0: lowerCAmelCase : Union[str, Any] = COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: lowerCAmelCase : Optional[Any] = abs(_A ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: lowerCAmelCase : List[Any] = abs(_A ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: lowerCAmelCase : List[Any] = (COULOMBS_CONSTANT * charge_product / abs(_A )) ** 0.5 return {"distance": distance} raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
646
'''simple docstring''' import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() _lowerCAmelCase : List[str] = logging.get_logger('transformers.models.speecht5') def __UpperCamelCase ( _A : Any , _A : Dict , _A : Any ) -> Union[str, Any]: """simple docstring""" hf_model.apply_weight_norm() lowerCAmelCase : int = checkpoint['input_conv.weight_g'] lowerCAmelCase : Optional[int] = checkpoint['input_conv.weight_v'] lowerCAmelCase : Dict = checkpoint['input_conv.bias'] for i in range(len(config.upsample_rates ) ): lowerCAmelCase : Optional[Any] = checkpoint[F"upsamples.{i}.1.weight_g"] lowerCAmelCase : str = checkpoint[F"upsamples.{i}.1.weight_v"] lowerCAmelCase : str = checkpoint[F"upsamples.{i}.1.bias"] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): lowerCAmelCase : int = checkpoint[F"blocks.{i}.convs1.{j}.1.weight_g"] lowerCAmelCase : str = checkpoint[F"blocks.{i}.convs1.{j}.1.weight_v"] lowerCAmelCase : int = checkpoint[F"blocks.{i}.convs1.{j}.1.bias"] lowerCAmelCase : Optional[Any] = checkpoint[F"blocks.{i}.convs2.{j}.1.weight_g"] lowerCAmelCase : Tuple = checkpoint[F"blocks.{i}.convs2.{j}.1.weight_v"] lowerCAmelCase : Tuple = checkpoint[F"blocks.{i}.convs2.{j}.1.bias"] lowerCAmelCase : List[Any] = checkpoint['output_conv.1.weight_g'] lowerCAmelCase : List[str] = checkpoint['output_conv.1.weight_v'] lowerCAmelCase : Optional[Any] = checkpoint['output_conv.1.bias'] hf_model.remove_weight_norm() @torch.no_grad() def __UpperCamelCase ( _A : Dict , _A : Union[str, Any] , _A : List[Any] , _A : Any=None , _A : Any=None , ) -> Dict: """simple docstring""" if config_path is not None: lowerCAmelCase : Dict = SpeechTaHifiGanConfig.from_pretrained(_A ) else: lowerCAmelCase : Union[str, Any] = SpeechTaHifiGanConfig() lowerCAmelCase : List[Any] = SpeechTaHifiGan(_A ) lowerCAmelCase : List[str] = torch.load(_A ) load_weights(orig_checkpoint['model']['generator'] , _A , _A ) lowerCAmelCase : Tuple = np.load(_A ) lowerCAmelCase : List[Any] = stats[0].reshape(-1 ) lowerCAmelCase : int = stats[1].reshape(-1 ) lowerCAmelCase : Union[str, Any] = torch.from_numpy(_A ).float() lowerCAmelCase : int = torch.from_numpy(_A ).float() model.save_pretrained(_A ) if repo_id: print('Pushing to the hub...' ) model.push_to_hub(_A ) if __name__ == "__main__": _lowerCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--stats_path', required=True, default=None, type=str, help='Path to stats.npy file') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) _lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
646
1
'''simple docstring''' from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def __UpperCamelCase ( _A : str = "isbn/0140328726" ) -> dict: """simple docstring""" lowerCAmelCase : Union[str, Any] = olid.strip().strip('/' ) # Remove leading/trailing whitespace & slashes if new_olid.count('/' ) != 1: lowerCAmelCase : Optional[int] = F"{olid} is not a valid Open Library olid" raise ValueError(_A ) return requests.get(F"https://openlibrary.org/{new_olid}.json" ).json() def __UpperCamelCase ( _A : dict ) -> dict: """simple docstring""" lowerCAmelCase : List[str] = { 'title': 'Title', 'publish_date': 'Publish date', 'authors': 'Authors', 'number_of_pages': 'Number of pages:', 'first_sentence': 'First sentence', 'isbn_10': 'ISBN (10)', 'isbn_13': 'ISBN (13)', } lowerCAmelCase : Any = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} lowerCAmelCase : Tuple = [ get_openlibrary_data(author['key'] )['name'] for author in data['Authors'] ] lowerCAmelCase : Optional[int] = data['First sentence']['value'] for key, value in data.items(): if isinstance(_A , _A ): lowerCAmelCase : List[Any] = ', '.join(_A ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: _lowerCAmelCase : Optional[int] = input('\nEnter the ISBN code to search (or \'quit\' to stop): ').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(f"""Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.""") continue print(f"""\nSearching Open Library for ISBN: {isbn}...\n""") try: _lowerCAmelCase : List[str] = summarize_book(get_openlibrary_data(f"""isbn/{isbn}""")) print('\n'.join(f"""{key}: {value}""" for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(f"""Sorry, there are no results for ISBN: {isbn}.""")
646
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets _lowerCAmelCase : Dict = '\\n@inproceedings{popovic-2015-chrf,\n title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",\n month = sep,\n year = "2015",\n address = "Lisbon, Portugal",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W15-3049",\n doi = "10.18653/v1/W15-3049",\n pages = "392--395",\n}\n@inproceedings{popovic-2017-chrf,\n title = "chr{F}++: words helping character n-grams",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Second Conference on Machine Translation",\n month = sep,\n year = "2017",\n address = "Copenhagen, Denmark",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W17-4770",\n doi = "10.18653/v1/W17-4770",\n pages = "612--618",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' _lowerCAmelCase : Optional[Any] = '\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n' _lowerCAmelCase : List[Any] = '\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n \'score\' (float): The chrF (chrF++) score,\n \'char_order\' (int): The character n-gram order,\n \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n \'beta\' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase ( datasets.Metric ): def lowercase ( self ): if version.parse(scb.__version__ ) < version.parse('1.4.12' ): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/mjpost/sacreBLEU#chrf--chrf' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/mjpost/sacreBLEU#chrf--chrf'] , reference_urls=[ 'https://github.com/m-popovic/chrF', ] , ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ = CHRF.CHAR_ORDER , snake_case__ = CHRF.WORD_ORDER , snake_case__ = CHRF.BETA , snake_case__ = False , snake_case__ = False , snake_case__ = False , ): lowerCAmelCase : List[str] = len(references[0] ) if any(len(snake_case__ ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) lowerCAmelCase : List[str] = [[refs[i] for refs in references] for i in range(snake_case__ )] lowerCAmelCase : Union[str, Any] = CHRF(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase : Dict = sb_chrf.corpus_score(snake_case__ , snake_case__ ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
646
1
'''simple docstring''' import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class lowerCAmelCase ( nn.Module ): _lowerCamelCase : int _lowerCamelCase : int _lowerCamelCase : float = 0.0 _lowerCamelCase : int = 1 _lowerCamelCase : int = 1 _lowerCamelCase : bool = True _lowerCamelCase : bool = False _lowerCamelCase : bool = False _lowerCamelCase : bool = False _lowerCamelCase : jnp.dtype = jnp.floataa def lowercase ( self ): lowerCAmelCase : Tuple = [] lowerCAmelCase : Union[str, Any] = [] for i in range(self.num_layers ): lowerCAmelCase : Optional[Any] = self.in_channels if i == 0 else self.out_channels lowerCAmelCase : Optional[int] = FlaxResnetBlockaD( in_channels=snake_case__ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(snake_case__ ) lowerCAmelCase : List[str] = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(snake_case__ ) lowerCAmelCase : List[Any] = resnets lowerCAmelCase : int = attentions if self.add_downsample: lowerCAmelCase : Optional[Any] = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__=True ): lowerCAmelCase : List[Any] = () for resnet, attn in zip(self.resnets , self.attentions ): lowerCAmelCase : Optional[Any] = resnet(snake_case__ , snake_case__ , deterministic=snake_case__ ) lowerCAmelCase : int = attn(snake_case__ , snake_case__ , deterministic=snake_case__ ) output_states += (hidden_states,) if self.add_downsample: lowerCAmelCase : Optional[int] = self.downsamplers_a(snake_case__ ) output_states += (hidden_states,) return hidden_states, output_states class lowerCAmelCase ( nn.Module ): _lowerCamelCase : int _lowerCamelCase : int _lowerCamelCase : float = 0.0 _lowerCamelCase : int = 1 _lowerCamelCase : bool = True _lowerCamelCase : jnp.dtype = jnp.floataa def lowercase ( self ): lowerCAmelCase : Optional[int] = [] for i in range(self.num_layers ): lowerCAmelCase : Union[str, Any] = self.in_channels if i == 0 else self.out_channels lowerCAmelCase : Tuple = FlaxResnetBlockaD( in_channels=snake_case__ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(snake_case__ ) lowerCAmelCase : Optional[int] = resnets if self.add_downsample: lowerCAmelCase : str = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , snake_case__ , snake_case__ , snake_case__=True ): lowerCAmelCase : List[Any] = () for resnet in self.resnets: lowerCAmelCase : List[str] = resnet(snake_case__ , snake_case__ , deterministic=snake_case__ ) output_states += (hidden_states,) if self.add_downsample: lowerCAmelCase : Tuple = self.downsamplers_a(snake_case__ ) output_states += (hidden_states,) return hidden_states, output_states class lowerCAmelCase ( nn.Module ): _lowerCamelCase : int _lowerCamelCase : int _lowerCamelCase : int _lowerCamelCase : float = 0.0 _lowerCamelCase : int = 1 _lowerCamelCase : int = 1 _lowerCamelCase : bool = True _lowerCamelCase : bool = False _lowerCamelCase : bool = False _lowerCamelCase : bool = False _lowerCamelCase : jnp.dtype = jnp.floataa def lowercase ( self ): lowerCAmelCase : Optional[int] = [] lowerCAmelCase : Tuple = [] for i in range(self.num_layers ): lowerCAmelCase : Optional[Any] = self.in_channels if (i == self.num_layers - 1) else self.out_channels lowerCAmelCase : str = self.prev_output_channel if i == 0 else self.out_channels lowerCAmelCase : Optional[Any] = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(snake_case__ ) lowerCAmelCase : List[Any] = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(snake_case__ ) lowerCAmelCase : List[str] = resnets lowerCAmelCase : str = attentions if self.add_upsample: lowerCAmelCase : List[str] = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=True ): for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states lowerCAmelCase : Tuple = res_hidden_states_tuple[-1] lowerCAmelCase : Union[str, Any] = res_hidden_states_tuple[:-1] lowerCAmelCase : Dict = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) lowerCAmelCase : str = resnet(snake_case__ , snake_case__ , deterministic=snake_case__ ) lowerCAmelCase : Tuple = attn(snake_case__ , snake_case__ , deterministic=snake_case__ ) if self.add_upsample: lowerCAmelCase : List[Any] = self.upsamplers_a(snake_case__ ) return hidden_states class lowerCAmelCase ( nn.Module ): _lowerCamelCase : int _lowerCamelCase : int _lowerCamelCase : int _lowerCamelCase : float = 0.0 _lowerCamelCase : int = 1 _lowerCamelCase : bool = True _lowerCamelCase : jnp.dtype = jnp.floataa def lowercase ( self ): lowerCAmelCase : str = [] for i in range(self.num_layers ): lowerCAmelCase : Union[str, Any] = self.in_channels if (i == self.num_layers - 1) else self.out_channels lowerCAmelCase : str = self.prev_output_channel if i == 0 else self.out_channels lowerCAmelCase : Dict = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(snake_case__ ) lowerCAmelCase : Tuple = resnets if self.add_upsample: lowerCAmelCase : Dict = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__=True ): for resnet in self.resnets: # pop res hidden states lowerCAmelCase : Tuple = res_hidden_states_tuple[-1] lowerCAmelCase : Union[str, Any] = res_hidden_states_tuple[:-1] lowerCAmelCase : Dict = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) lowerCAmelCase : Dict = resnet(snake_case__ , snake_case__ , deterministic=snake_case__ ) if self.add_upsample: lowerCAmelCase : Tuple = self.upsamplers_a(snake_case__ ) return hidden_states class lowerCAmelCase ( nn.Module ): _lowerCamelCase : int _lowerCamelCase : float = 0.0 _lowerCamelCase : int = 1 _lowerCamelCase : int = 1 _lowerCamelCase : bool = False _lowerCamelCase : bool = False _lowerCamelCase : jnp.dtype = jnp.floataa def lowercase ( self ): # there is always at least one resnet lowerCAmelCase : Tuple = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] lowerCAmelCase : Union[str, Any] = [] for _ in range(self.num_layers ): lowerCAmelCase : Optional[int] = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(snake_case__ ) lowerCAmelCase : Tuple = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(snake_case__ ) lowerCAmelCase : int = resnets lowerCAmelCase : Optional[Any] = attentions def __call__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__=True ): lowerCAmelCase : List[str] = self.resnets[0](snake_case__ , snake_case__ ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): lowerCAmelCase : Tuple = attn(snake_case__ , snake_case__ , deterministic=snake_case__ ) lowerCAmelCase : Union[str, Any] = resnet(snake_case__ , snake_case__ , deterministic=snake_case__ ) return hidden_states
646
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : str = logging.get_logger(__name__) _lowerCAmelCase : Tuple = { 's-JoL/Open-Llama-V1': 'https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json', } class lowerCAmelCase ( a ): _lowerCamelCase : Union[str, Any] = """open-llama""" def __init__( self , snake_case__=10_0000 , snake_case__=4096 , snake_case__=1_1008 , snake_case__=32 , snake_case__=32 , snake_case__="silu" , snake_case__=2048 , snake_case__=0.0_2 , snake_case__=1e-6 , snake_case__=True , snake_case__=0 , snake_case__=1 , snake_case__=2 , snake_case__=False , snake_case__=True , snake_case__=0.1 , snake_case__=0.1 , snake_case__=True , snake_case__=True , snake_case__=None , **snake_case__ , ): lowerCAmelCase : Tuple = vocab_size lowerCAmelCase : Optional[Any] = max_position_embeddings lowerCAmelCase : List[Any] = hidden_size lowerCAmelCase : List[Any] = intermediate_size lowerCAmelCase : Tuple = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : str = rms_norm_eps lowerCAmelCase : Optional[int] = use_cache lowerCAmelCase : Dict = kwargs.pop( 'use_memorry_efficient_attention' , snake_case__ ) lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : Optional[Any] = attention_dropout_prob lowerCAmelCase : Union[str, Any] = use_stable_embedding lowerCAmelCase : Tuple = shared_input_output_embedding lowerCAmelCase : Tuple = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , tie_word_embeddings=snake_case__ , **snake_case__ , ) def lowercase ( self ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , snake_case__ ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' f"got {self.rope_scaling}" ) lowerCAmelCase : List[Any] = self.rope_scaling.get('type' , snake_case__ ) lowerCAmelCase : List[str] = self.rope_scaling.get('factor' , snake_case__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(snake_case__ , snake_case__ ) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
646
1
'''simple docstring''' import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging _lowerCAmelCase : str = logging.get_logger(__name__) class lowerCAmelCase ( a ): _lowerCamelCase : str = """linear""" _lowerCamelCase : str = """cosine""" _lowerCamelCase : Union[str, Any] = """cosine_with_restarts""" _lowerCamelCase : List[str] = """polynomial""" _lowerCamelCase : Tuple = """constant""" _lowerCamelCase : Optional[int] = """constant_with_warmup""" _lowerCamelCase : Optional[int] = """piecewise_constant""" def __UpperCamelCase ( _A : Optimizer , _A : int = -1 ) -> List[Any]: """simple docstring""" return LambdaLR(_A , lambda _A : 1 , last_epoch=_A ) def __UpperCamelCase ( _A : Optimizer , _A : int , _A : int = -1 ) -> Tuple: """simple docstring""" def lr_lambda(_A : int ): if current_step < num_warmup_steps: return float(_A ) / float(max(1.0 , _A ) ) return 1.0 return LambdaLR(_A , _A , last_epoch=_A ) def __UpperCamelCase ( _A : Optimizer , _A : str , _A : int = -1 ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase : Dict = {} lowerCAmelCase : Dict = step_rules.split(',' ) for rule_str in rule_list[:-1]: lowerCAmelCase , lowerCAmelCase : str = rule_str.split(':' ) lowerCAmelCase : int = int(_A ) lowerCAmelCase : List[Any] = float(_A ) lowerCAmelCase : Dict = value lowerCAmelCase : Union[str, Any] = float(rule_list[-1] ) def create_rules_function(_A : Any , _A : Any ): def rule_func(_A : int ) -> float: lowerCAmelCase : List[Any] = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(_A ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func lowerCAmelCase : Optional[int] = create_rules_function(_A , _A ) return LambdaLR(_A , _A , last_epoch=_A ) def __UpperCamelCase ( _A : Dict , _A : Dict , _A : Dict , _A : Optional[int]=-1 ) -> Dict: """simple docstring""" def lr_lambda(_A : int ): if current_step < num_warmup_steps: return float(_A ) / float(max(1 , _A ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(_A , _A , _A ) def __UpperCamelCase ( _A : Optimizer , _A : int , _A : int , _A : float = 0.5 , _A : int = -1 ) -> Union[str, Any]: """simple docstring""" def lr_lambda(_A : int ): if current_step < num_warmup_steps: return float(_A ) / float(max(1 , _A ) ) lowerCAmelCase : str = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(_A ) * 2.0 * progress )) ) return LambdaLR(_A , _A , _A ) def __UpperCamelCase ( _A : Optimizer , _A : int , _A : int , _A : int = 1 , _A : int = -1 ) -> Optional[Any]: """simple docstring""" def lr_lambda(_A : List[Any] ): if current_step < num_warmup_steps: return float(_A ) / float(max(1 , _A ) ) lowerCAmelCase : Optional[int] = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(_A ) * progress) % 1.0) )) ) return LambdaLR(_A , _A , _A ) def __UpperCamelCase ( _A : str , _A : str , _A : Optional[Any] , _A : Optional[int]=1e-7 , _A : Optional[int]=1.0 , _A : Union[str, Any]=-1 ) -> str: """simple docstring""" lowerCAmelCase : Optional[Any] = optimizer.defaults['lr'] if not (lr_init > lr_end): raise ValueError(F"lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})" ) def lr_lambda(_A : int ): if current_step < num_warmup_steps: return float(_A ) / float(max(1 , _A ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: lowerCAmelCase : int = lr_init - lr_end lowerCAmelCase : Dict = num_training_steps - num_warmup_steps lowerCAmelCase : Dict = 1 - (current_step - num_warmup_steps) / decay_steps lowerCAmelCase : int = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(_A , _A , _A ) _lowerCAmelCase : List[str] = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def __UpperCamelCase ( _A : Union[str, SchedulerType] , _A : Optimizer , _A : Optional[str] = None , _A : Optional[int] = None , _A : Optional[int] = None , _A : int = 1 , _A : float = 1.0 , _A : int = -1 , ) -> Optional[Any]: """simple docstring""" lowerCAmelCase : Optional[Any] = SchedulerType(_A ) lowerCAmelCase : List[Any] = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(_A , last_epoch=_A ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(_A , step_rules=_A , last_epoch=_A ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(F"{name} requires `num_warmup_steps`, please provide that argument." ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(_A , num_warmup_steps=_A , last_epoch=_A ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(F"{name} requires `num_training_steps`, please provide that argument." ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( _A , num_warmup_steps=_A , num_training_steps=_A , num_cycles=_A , last_epoch=_A , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( _A , num_warmup_steps=_A , num_training_steps=_A , power=_A , last_epoch=_A , ) return schedule_func( _A , num_warmup_steps=_A , num_training_steps=_A , last_epoch=_A )
646
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) _lowerCAmelCase : Dict = { 'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class lowerCAmelCase ( a ): _lowerCamelCase : Any = """deformable_detr""" _lowerCamelCase : List[str] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , snake_case__=True , snake_case__=None , snake_case__=3 , snake_case__=300 , snake_case__=1024 , snake_case__=6 , snake_case__=1024 , snake_case__=8 , snake_case__=6 , snake_case__=1024 , snake_case__=8 , snake_case__=0.0 , snake_case__=True , snake_case__="relu" , snake_case__=256 , snake_case__=0.1 , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.0_2 , snake_case__=1.0 , snake_case__=True , snake_case__=False , snake_case__="sine" , snake_case__="resnet50" , snake_case__=True , snake_case__=False , snake_case__=4 , snake_case__=4 , snake_case__=4 , snake_case__=False , snake_case__=300 , snake_case__=False , snake_case__=1 , snake_case__=5 , snake_case__=2 , snake_case__=1 , snake_case__=1 , snake_case__=5 , snake_case__=2 , snake_case__=0.1 , snake_case__=0.2_5 , snake_case__=False , **snake_case__ , ): if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) lowerCAmelCase : Optional[int] = CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : List[str] = backbone_config.get('model_type' ) lowerCAmelCase : str = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase : Optional[Any] = config_class.from_dict(snake_case__ ) lowerCAmelCase : Union[str, Any] = use_timm_backbone lowerCAmelCase : List[Any] = backbone_config lowerCAmelCase : Any = num_channels lowerCAmelCase : Tuple = num_queries lowerCAmelCase : Dict = max_position_embeddings lowerCAmelCase : int = d_model lowerCAmelCase : List[str] = encoder_ffn_dim lowerCAmelCase : List[str] = encoder_layers lowerCAmelCase : int = encoder_attention_heads lowerCAmelCase : str = decoder_ffn_dim lowerCAmelCase : str = decoder_layers lowerCAmelCase : Dict = decoder_attention_heads lowerCAmelCase : str = dropout lowerCAmelCase : List[str] = attention_dropout lowerCAmelCase : Union[str, Any] = activation_dropout lowerCAmelCase : str = activation_function lowerCAmelCase : Any = init_std lowerCAmelCase : Any = init_xavier_std lowerCAmelCase : Dict = encoder_layerdrop lowerCAmelCase : int = auxiliary_loss lowerCAmelCase : Optional[Any] = position_embedding_type lowerCAmelCase : List[str] = backbone lowerCAmelCase : int = use_pretrained_backbone lowerCAmelCase : int = dilation # deformable attributes lowerCAmelCase : List[str] = num_feature_levels lowerCAmelCase : List[str] = encoder_n_points lowerCAmelCase : Union[str, Any] = decoder_n_points lowerCAmelCase : Tuple = two_stage lowerCAmelCase : Dict = two_stage_num_proposals lowerCAmelCase : Union[str, Any] = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.' ) # Hungarian matcher lowerCAmelCase : Union[str, Any] = class_cost lowerCAmelCase : Dict = bbox_cost lowerCAmelCase : List[Any] = giou_cost # Loss coefficients lowerCAmelCase : Dict = mask_loss_coefficient lowerCAmelCase : Any = dice_loss_coefficient lowerCAmelCase : str = bbox_loss_coefficient lowerCAmelCase : Tuple = giou_loss_coefficient lowerCAmelCase : List[str] = eos_coefficient lowerCAmelCase : Any = focal_alpha lowerCAmelCase : Dict = disable_custom_kernels super().__init__(is_encoder_decoder=snake_case__ , **snake_case__ ) @property def lowercase ( self ): return self.encoder_attention_heads @property def lowercase ( self ): return self.d_model def lowercase ( self ): lowerCAmelCase : Union[str, Any] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: lowerCAmelCase : List[Any] = self.backbone_config.to_dict() lowerCAmelCase : str = self.__class__.model_type return output
646
1
'''simple docstring''' # Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def __UpperCamelCase ( _A : Optional[Any] , _A : Tuple , _A : str=0 ) -> Optional[int]: """simple docstring""" if name is None: lowerCAmelCase : Optional[int] = None else: lowerCAmelCase : Any = '.' * max(0 , spaces - 2 ) + '# {:' + str(50 - spaces ) + 's}' lowerCAmelCase : Dict = fmt.format(_A ) # Print and recurse (if needed). if isinstance(_A , _A ): if msg is not None: print(_A ) for k in val.keys(): recursive_print(_A , val[k] , spaces + 2 ) elif isinstance(_A , torch.Tensor ): print(_A , ':' , val.size() ) else: print(_A , ':' , _A ) def __UpperCamelCase ( _A : List[str] , _A : Tuple , _A : List[str] , _A : Optional[int] , _A : List[Any] ) -> Any: """simple docstring""" lowerCAmelCase : Optional[Any] = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] lowerCAmelCase : Tuple = (num_heads, hidden_size, num_splits) + input_shape[1:] lowerCAmelCase : Tuple = param.view(*_A ) lowerCAmelCase : Any = param.transpose(0 , 2 ) lowerCAmelCase : Union[str, Any] = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] lowerCAmelCase : Tuple = (num_heads, num_splits, hidden_size) + input_shape[1:] lowerCAmelCase : Any = param.view(*_A ) lowerCAmelCase : str = param.transpose(0 , 1 ).contiguous() lowerCAmelCase : Optional[int] = param.view(*_A ) return param def __UpperCamelCase ( _A : Union[str, Any] , _A : Tuple , _A : Optional[int] ) -> str: """simple docstring""" lowerCAmelCase : Optional[Any] = {} # old versions did not store training args lowerCAmelCase : Any = input_state_dict.get('args' , _A ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) lowerCAmelCase : Optional[int] = ds_args.padded_vocab_size lowerCAmelCase : Tuple = ds_args.max_position_embeddings lowerCAmelCase : Dict = ds_args.hidden_size lowerCAmelCase : Optional[int] = ds_args.num_layers lowerCAmelCase : Union[str, Any] = ds_args.num_attention_heads lowerCAmelCase : str = ds_args.ffn_hidden_size # pprint(config) # The number of heads. lowerCAmelCase : str = config.n_head # The hidden_size per head. lowerCAmelCase : Optional[Any] = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): lowerCAmelCase : int = input_state_dict['checkpoint_version'] else: lowerCAmelCase : Optional[Any] = 0.0 # The model. lowerCAmelCase : Tuple = input_state_dict['model'] # The language model. lowerCAmelCase : int = model['language_model'] # The embeddings. lowerCAmelCase : Dict = lm['embedding'] # The word embeddings. lowerCAmelCase : Union[str, Any] = embeddings['word_embeddings']['weight'] # Truncate the embedding table to vocab_size rows. lowerCAmelCase : List[str] = word_embeddings[: config.vocab_size, :] lowerCAmelCase : int = word_embeddings # The position embeddings. lowerCAmelCase : Optional[Any] = embeddings['position_embeddings']['weight'] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] lowerCAmelCase : int = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( F"pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don't match" ) # Store the position embeddings. lowerCAmelCase : int = pos_embeddings # The transformer. lowerCAmelCase : Union[str, Any] = lm['transformer'] if 'transformer' in lm.keys() else lm['encoder'] # The regex to extract layer names. lowerCAmelCase : Dict = re.compile(r'layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)' ) # The simple map of names for "automated" rules. lowerCAmelCase : str = { 'attention.dense': '.attn.c_proj.', 'self_attention.dense': '.attn.c_proj.', 'mlp.dense_h_to_4h': '.mlp.c_fc.', 'mlp.dense_4h_to_h': '.mlp.c_proj.', } # Extract the layers. for key, val in transformer.items(): # Match the name. lowerCAmelCase : Optional[Any] = layer_re.match(_A ) # Stop if that's not a layer if m is None: break # The index of the layer. lowerCAmelCase : int = int(m.group(1 ) ) # The name of the operation. lowerCAmelCase : str = m.group(2 ) # Is it a weight or a bias? lowerCAmelCase : Tuple = m.group(3 ) # The name of the layer. lowerCAmelCase : Any = F"transformer.h.{layer_idx}" # For layernorm(s), simply store the layer norm. if op_name.endswith('layernorm' ): lowerCAmelCase : Tuple = 'ln_1' if op_name.startswith('input' ) else 'ln_2' lowerCAmelCase : str = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. lowerCAmelCase : int = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , _A , _A ) lowerCAmelCase : Optional[int] = causal_mask # Insert a "dummy" tensor for masked_bias. lowerCAmelCase : Optional[int] = torch.tensor(-1e4 , dtype=torch.floataa ) lowerCAmelCase : str = masked_bias lowerCAmelCase : int = fix_query_key_value_ordering(_A , _A , 3 , _A , _A ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. lowerCAmelCase : Optional[Any] = out_val.transpose(0 , 1 ).contiguous() # Store. lowerCAmelCase : List[Any] = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": lowerCAmelCase : Optional[Any] = fix_query_key_value_ordering(_A , _A , 3 , _A , _A ) # Store. No change of shape. lowerCAmelCase : List[Any] = out_val # Transpose the weights. elif weight_or_bias == "weight": lowerCAmelCase : List[str] = megatron_to_transformers[op_name] lowerCAmelCase : Optional[Any] = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": lowerCAmelCase : Union[str, Any] = megatron_to_transformers[op_name] lowerCAmelCase : Tuple = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. lowerCAmelCase : Tuple = transformer['final_layernorm.weight'] lowerCAmelCase : List[Any] = transformer['final_layernorm.bias'] # For LM head, transformers' wants the matrix to weight embeddings. lowerCAmelCase : List[str] = word_embeddings # It should be done! return output_state_dict def __UpperCamelCase ( ) -> str: """simple docstring""" lowerCAmelCase : int = argparse.ArgumentParser() parser.add_argument('--print-checkpoint-structure' , action='store_true' ) parser.add_argument( 'path_to_checkpoint' , type=_A , help='Path to the checkpoint file (.zip archive or direct .pt file)' , ) parser.add_argument( '--config_file' , default='' , type=_A , help='An optional config json file describing the pre-trained model.' , ) lowerCAmelCase : List[str] = parser.parse_args() # Extract the basename. lowerCAmelCase : Optional[Any] = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(F"Extracting PyTorch state dictionary from {args.path_to_checkpoint}" ) if args.path_to_checkpoint.endswith('.zip' ): with zipfile.ZipFile(args.path_to_checkpoint , 'r' ) as checkpoint: with checkpoint.open('release/mp_rank_00/model_optim_rng.pt' ) as pytorch_dict: lowerCAmelCase : List[Any] = torch.load(_A , map_location='cpu' ) else: lowerCAmelCase : Any = torch.load(args.path_to_checkpoint , map_location='cpu' ) lowerCAmelCase : str = input_state_dict.get('args' , _A ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: lowerCAmelCase : int = 'gelu_fast' elif ds_args.openai_gelu: lowerCAmelCase : List[str] = 'gelu_new' else: lowerCAmelCase : Any = 'gelu' else: # in the very early days this used to be "gelu_new" lowerCAmelCase : Union[str, Any] = 'gelu_new' # Spell out all parameters in case the defaults change. lowerCAmelCase : List[Any] = GPTaConfig( vocab_size=5_02_57 , n_positions=10_24 , n_embd=10_24 , n_layer=24 , n_head=16 , n_inner=40_96 , activation_function=_A , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1e-5 , initializer_range=0.02 , summary_type='cls_index' , summary_use_proj=_A , summary_activation=_A , summary_proj_to_labels=_A , summary_first_dropout=0.1 , scale_attn_weights=_A , use_cache=_A , bos_token_id=5_02_56 , eos_token_id=5_02_56 , ) else: lowerCAmelCase : Dict = GPTaConfig.from_json_file(args.config_file ) lowerCAmelCase : str = ['GPT2LMHeadModel'] # Convert. print('Converting' ) lowerCAmelCase : List[Any] = convert_megatron_checkpoint(_A , _A , _A ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(_A , _A ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: lowerCAmelCase : Tuple = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": lowerCAmelCase : Dict = 'gpt2' elif tokenizer_type == "PretrainedFromHF": lowerCAmelCase : int = ds_args.tokenizer_name_or_path else: raise ValueError(F"Unrecognized tokenizer_type {tokenizer_type}" ) else: lowerCAmelCase : List[str] = 'gpt2' lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained(_A ) lowerCAmelCase : Dict = type(_A ).__name__ lowerCAmelCase : str = tokenizer_class # Store the config to file. print('Saving config' ) config.save_pretrained(_A ) # Save tokenizer based on args print(F"Adding {tokenizer_class} tokenizer files" ) tokenizer.save_pretrained(_A ) # Store the state_dict to file. lowerCAmelCase : Tuple = os.path.join(_A , 'pytorch_model.bin' ) print(F"Saving checkpoint to \"{output_checkpoint_file}\"" ) torch.save(_A , _A ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
646
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece_no_bos.model') @require_sentencepiece @require_tokenizers class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : str = PegasusTokenizer _lowerCamelCase : Union[str, Any] = PegasusTokenizerFast _lowerCamelCase : Optional[Any] = True _lowerCamelCase : Optional[Any] = True def lowercase ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : List[Any] = PegasusTokenizer(snake_case__ ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase ( self ): return PegasusTokenizer.from_pretrained('google/pegasus-large' ) def lowercase ( self , **snake_case__ ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def lowercase ( self , snake_case__ ): return ("This is a test", "This is a test") def lowercase ( self ): lowerCAmelCase : Optional[int] = '</s>' lowerCAmelCase : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '</s>' ) self.assertEqual(vocab_keys[-1] , 'v' ) self.assertEqual(len(snake_case__ ) , 1103 ) def lowercase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def lowercase ( self ): lowerCAmelCase : List[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : List[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : Optional[Any] = ( 'Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important' ' </s> <pad> <pad> <pad>' ) lowerCAmelCase : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] lowerCAmelCase : Optional[int] = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Any = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowerCAmelCase : List[str] = '<mask_1> To ensure a <mask_2> flow of bank resolutions.' lowerCAmelCase : Optional[Any] = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1] lowerCAmelCase : Optional[Any] = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Optional[Any] = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 lowerCAmelCase : List[Any] = 'To ensure a smooth flow of bank resolutions.' lowerCAmelCase : Optional[int] = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1] lowerCAmelCase : Any = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def lowercase ( self ): lowerCAmelCase : Union[str, Any] = ['This is going to be way too long.' * 150, 'short example'] lowerCAmelCase : int = ['not super long but more than 5 tokens', 'tiny'] lowerCAmelCase : Dict = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) lowerCAmelCase : Dict = self._large_tokenizer( text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(snake_case__ ) == 2 # input_ids, attention_mask. @slow def lowercase ( self ): # fmt: off lowerCAmelCase : Tuple = {'input_ids': [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name='google/bigbird-pegasus-large-arxiv' , revision='ba85d0851d708441f91440d509690f1ab6353415' , ) @require_sentencepiece @require_tokenizers class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : Optional[Any] = PegasusTokenizer _lowerCamelCase : str = PegasusTokenizerFast _lowerCamelCase : Tuple = True _lowerCamelCase : int = True def lowercase ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : int = PegasusTokenizer(snake_case__ , offset=0 , mask_token_sent=snake_case__ , mask_token='[MASK]' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase ( self ): return PegasusTokenizer.from_pretrained('google/bigbird-pegasus-large-arxiv' ) def lowercase ( self , **snake_case__ ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def lowercase ( self , snake_case__ ): return ("This is a test", "This is a test") def lowercase ( self ): lowerCAmelCase : Tuple = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : Union[str, Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : List[str] = ( 'Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>' ' <pad> <pad> <pad>' ) lowerCAmelCase : Dict = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] lowerCAmelCase : Union[str, Any] = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) @require_torch def lowercase ( self ): lowerCAmelCase : Optional[int] = ['This is going to be way too long.' * 1000, 'short example'] lowerCAmelCase : Union[str, Any] = ['not super long but more than 5 tokens', 'tiny'] lowerCAmelCase : List[str] = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) lowerCAmelCase : List[str] = self._large_tokenizer( text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(snake_case__ ) == 2 # input_ids, attention_mask. def lowercase ( self ): lowerCAmelCase : List[str] = ( 'This is an example string that is used to test the original TF implementation against the HF' ' implementation' ) lowerCAmelCase : Tuple = self._large_tokenizer(snake_case__ ).input_ids self.assertListEqual( snake_case__ , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
646
1
'''simple docstring''' _lowerCAmelCase : List[str] = {str(digit): digit**5 for digit in range(10)} def __UpperCamelCase ( _A : int ) -> int: """simple docstring""" return sum(DIGITS_FIFTH_POWER[digit] for digit in str(_A ) ) def __UpperCamelCase ( ) -> int: """simple docstring""" return sum( number for number in range(10_00 , 1_00_00_00 ) if number == digits_fifth_powers_sum(_A ) ) if __name__ == "__main__": print(solution())
646
'''simple docstring''' import math import sys import cva import numpy as np def __UpperCamelCase ( _A : np.ndarray , _A : float ) -> np.ndarray: """simple docstring""" lowerCAmelCase : Union[str, Any] = math.sqrt(_A ) lowerCAmelCase : Union[str, Any] = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def __UpperCamelCase ( _A : np.ndarray , _A : int , _A : int , _A : int ) -> np.ndarray: """simple docstring""" lowerCAmelCase : int = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def __UpperCamelCase ( _A : int , _A : float ) -> np.ndarray: """simple docstring""" lowerCAmelCase : Dict = np.zeros((kernel_size, kernel_size) ) for i in range(0 , _A ): for j in range(0 , _A ): lowerCAmelCase : Optional[int] = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(_A , _A ) def __UpperCamelCase ( _A : np.ndarray , _A : float , _A : float , _A : int , ) -> np.ndarray: """simple docstring""" lowerCAmelCase : str = np.zeros(img.shape ) lowerCAmelCase : int = get_gauss_kernel(_A , _A ) lowerCAmelCase , lowerCAmelCase : Dict = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): lowerCAmelCase : int = get_slice(_A , _A , _A , _A ) lowerCAmelCase : Any = img_s - img_s[kernel_size // 2, kernel_size // 2] lowerCAmelCase : str = vec_gaussian(_A , _A ) lowerCAmelCase : Optional[int] = np.multiply(_A , _A ) lowerCAmelCase : str = np.multiply(_A , _A ) lowerCAmelCase : Union[str, Any] = np.sum(_A ) / np.sum(_A ) lowerCAmelCase : Tuple = val return imga def __UpperCamelCase ( _A : list ) -> tuple: """simple docstring""" lowerCAmelCase : List[Any] = args[1] if args[1:] else '../image_data/lena.jpg' lowerCAmelCase : Any = float(args[2] ) if args[2:] else 1.0 lowerCAmelCase : Union[str, Any] = float(args[3] ) if args[3:] else 1.0 if args[4:]: lowerCAmelCase : int = int(args[4] ) lowerCAmelCase : Optional[Any] = kernel_size + abs(kernel_size % 2 - 1 ) else: lowerCAmelCase : Optional[int] = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Any = parse_args(sys.argv) _lowerCAmelCase : str = cva.imread(filename, 0) cva.imshow('input image', img) _lowerCAmelCase : Union[str, Any] = img / 255 _lowerCAmelCase : List[str] = out.astype('float32') _lowerCAmelCase : Optional[int] = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) _lowerCAmelCase : Union[str, Any] = out * 255 _lowerCAmelCase : Optional[Any] = np.uinta(out) cva.imshow('output image', out) cva.waitKey(0) cva.destroyAllWindows()
646
1
'''simple docstring''' import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def __UpperCamelCase ( _A : List[Any]="" ) -> str: """simple docstring""" lowerCAmelCase : Tuple = tempfile.mkdtemp() return os.path.join(_A , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): lowerCAmelCase : Union[str, Any] = torch.rand(12 , dtype=torch.floataa ) - 0.5 lowerCAmelCase : Tuple = AgentAudio(snake_case__ ) lowerCAmelCase : List[Any] = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(snake_case__ , agent_type.to_raw() , atol=1e-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(snake_case__ ) ) # Ensure that the file contains the same value as the original tensor lowerCAmelCase , lowerCAmelCase : int = sf.read(snake_case__ ) self.assertTrue(torch.allclose(snake_case__ , torch.tensor(snake_case__ ) , atol=1e-4 ) ) def lowercase ( self ): lowerCAmelCase : Tuple = torch.rand(12 , dtype=torch.floataa ) - 0.5 lowerCAmelCase : str = get_new_path(suffix='.wav' ) sf.write(snake_case__ , snake_case__ , 1_6000 ) lowerCAmelCase : List[str] = AgentAudio(snake_case__ ) self.assertTrue(torch.allclose(snake_case__ , agent_type.to_raw() , atol=1e-4 ) ) self.assertEqual(agent_type.to_string() , snake_case__ ) @require_vision @require_torch class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): lowerCAmelCase : str = torch.randint(0 , 256 , (64, 64, 3) ) lowerCAmelCase : List[Any] = AgentImage(snake_case__ ) lowerCAmelCase : int = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(snake_case__ , agent_type._tensor , atol=1e-4 ) ) self.assertIsInstance(agent_type.to_raw() , Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(snake_case__ ) ) def lowercase ( self ): lowerCAmelCase : List[str] = Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png' lowerCAmelCase : int = Image.open(snake_case__ ) lowerCAmelCase : Optional[int] = AgentImage(snake_case__ ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(snake_case__ ) ) def lowercase ( self ): lowerCAmelCase : Any = Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png' lowerCAmelCase : Optional[Any] = Image.open(snake_case__ ) lowerCAmelCase : str = AgentImage(snake_case__ ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(snake_case__ ) ) class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): lowerCAmelCase : Optional[int] = 'Hey!' lowerCAmelCase : int = AgentText(snake_case__ ) self.assertEqual(snake_case__ , agent_type.to_string() ) self.assertEqual(snake_case__ , agent_type.to_raw() ) self.assertEqual(snake_case__ , snake_case__ )
646
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowerCAmelCase : int = { 'configuration_nezha': ['NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NezhaConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Tuple = [ 'NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST', 'NezhaForNextSentencePrediction', 'NezhaForMaskedLM', 'NezhaForPreTraining', 'NezhaForMultipleChoice', 'NezhaForQuestionAnswering', 'NezhaForSequenceClassification', 'NezhaForTokenClassification', 'NezhaModel', 'NezhaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys _lowerCAmelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
646
1
'''simple docstring''' import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging _lowerCAmelCase : Any = logging.get_logger(__name__) def __UpperCamelCase ( _A : List[Any] , _A : Any ) -> Optional[Any]: """simple docstring""" lowerCAmelCase : int = set() lowerCAmelCase : List[Any] = [] def parse_line(_A : Optional[int] ): for line in fp: if isinstance(_A , _A ): lowerCAmelCase : Optional[int] = line.decode('UTF-8' ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(' ' ): # process a single warning and move it to `selected_warnings`. if len(_A ) > 0: lowerCAmelCase : Optional[int] = '\n'.join(_A ) # Only keep the warnings specified in `targets` if any(F": {x}: " in warning for x in targets ): selected_warnings.add(_A ) buffer.clear() continue else: lowerCAmelCase : int = line.strip() buffer.append(_A ) if from_gh: for filename in os.listdir(_A ): lowerCAmelCase : Optional[int] = os.path.join(_A , _A ) if not os.path.isdir(_A ): # read the file if filename != "warnings.txt": continue with open(_A ) as fp: parse_line(_A ) else: try: with zipfile.ZipFile(_A ) as z: for filename in z.namelist(): if not os.path.isdir(_A ): # read the file if filename != "warnings.txt": continue with z.open(_A ) as fp: parse_line(_A ) except Exception: logger.warning( F"{artifact_path} is either an invalid zip file or something else wrong. This file is skipped." ) return selected_warnings def __UpperCamelCase ( _A : Dict , _A : Optional[int] ) -> Any: """simple docstring""" lowerCAmelCase : Tuple = set() lowerCAmelCase : Union[str, Any] = [os.path.join(_A , _A ) for p in os.listdir(_A ) if (p.endswith('.zip' ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(_A , _A ) ) return selected_warnings if __name__ == "__main__": def __UpperCamelCase ( _A : str ) -> int: """simple docstring""" return values.split(',' ) _lowerCAmelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') parser.add_argument( '--output_dir', type=str, required=True, help='Where to store the downloaded artifacts and other result files.', ) parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.') # optional parameters parser.add_argument( '--targets', default='DeprecationWarning,UserWarning,FutureWarning', type=list_str, help='Comma-separated list of target warning(s) which we want to extract.', ) parser.add_argument( '--from_gh', action='store_true', help='If running from a GitHub action workflow and collecting warnings from its artifacts.', ) _lowerCAmelCase : Dict = parser.parse_args() _lowerCAmelCase : Dict = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links _lowerCAmelCase : Any = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print('=' * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts _lowerCAmelCase : Optional[Any] = extract_warnings(args.output_dir, args.targets) _lowerCAmelCase : Tuple = sorted(selected_warnings) with open(os.path.join(args.output_dir, 'selected_warnings.json'), 'w', encoding='UTF-8') as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
646
'''simple docstring''' from typing import Any class lowerCAmelCase : def __init__( self , snake_case__ ): lowerCAmelCase : Optional[int] = data lowerCAmelCase : Optional[Any] = None def __repr__( self ): return f"Node({self.data})" class lowerCAmelCase : def __init__( self ): lowerCAmelCase : Dict = None def __iter__( self ): lowerCAmelCase : Optional[Any] = self.head while node: yield node.data lowerCAmelCase : Optional[int] = node.next def __len__( self ): return sum(1 for _ in self ) def __repr__( self ): return "->".join([str(snake_case__ ) for item in self] ) def __getitem__( self , snake_case__ ): if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , snake_case__ , snake_case__ ): if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) lowerCAmelCase : Any = self.head for _ in range(snake_case__ ): lowerCAmelCase : List[str] = current.next lowerCAmelCase : int = data def lowercase ( self , snake_case__ ): self.insert_nth(len(self ) , snake_case__ ) def lowercase ( self , snake_case__ ): self.insert_nth(0 , snake_case__ ) def lowercase ( self , snake_case__ , snake_case__ ): if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) lowerCAmelCase : List[str] = Node(snake_case__ ) if self.head is None: lowerCAmelCase : int = new_node elif index == 0: lowerCAmelCase : List[Any] = self.head # link new_node to head lowerCAmelCase : List[Any] = new_node else: lowerCAmelCase : List[Any] = self.head for _ in range(index - 1 ): lowerCAmelCase : Union[str, Any] = temp.next lowerCAmelCase : Any = temp.next lowerCAmelCase : str = new_node def lowercase ( self ): # print every node data print(self ) def lowercase ( self ): return self.delete_nth(0 ) def lowercase ( self ): # delete from tail return self.delete_nth(len(self ) - 1 ) def lowercase ( self , snake_case__ = 0 ): if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) lowerCAmelCase : List[str] = self.head # default first node if index == 0: lowerCAmelCase : Tuple = self.head.next else: lowerCAmelCase : Dict = self.head for _ in range(index - 1 ): lowerCAmelCase : Tuple = temp.next lowerCAmelCase : Dict = temp.next lowerCAmelCase : Tuple = temp.next.next return delete_node.data def lowercase ( self ): return self.head is None def lowercase ( self ): lowerCAmelCase : List[Any] = None lowerCAmelCase : Any = self.head while current: # Store the current node's next node. lowerCAmelCase : List[str] = current.next # Make the current node's next point backwards lowerCAmelCase : int = prev # Make the previous node be the current node lowerCAmelCase : int = current # Make the current node the next node (to progress iteration) lowerCAmelCase : Optional[Any] = next_node # Return prev in order to put the head at the end lowerCAmelCase : List[Any] = prev def __UpperCamelCase ( ) -> None: """simple docstring""" lowerCAmelCase : Tuple = LinkedList() assert linked_list.is_empty() is True assert str(_A ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(_A ) == i linked_list.insert_nth(_A , i + 1 ) assert str(_A ) == "->".join(str(_A ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(_A ) == "->".join(str(_A ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(_A ) == 9 assert str(_A ) == "->".join(str(_A ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): lowerCAmelCase : Optional[Any] = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(_A ) == "->".join(str(_A ) for i in range(-8 , 1 ) ) def __UpperCamelCase ( ) -> None: """simple docstring""" lowerCAmelCase : Optional[int] = [ -9, 1_00, Node(77_34_51_12 ), 'dlrow olleH', 7, 55_55, 0, -1_92.5_55_55, 'Hello, world!', 77.9, Node(10 ), None, None, 12.20, ] lowerCAmelCase : Dict = LinkedList() for i in test_input: linked_list.insert_tail(_A ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(_A ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head lowerCAmelCase : Optional[Any] = linked_list.delete_head() assert result == -9 assert ( str(_A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail lowerCAmelCase : List[str] = linked_list.delete_tail() assert result == 12.2 assert ( str(_A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list lowerCAmelCase : List[str] = linked_list.delete_nth(10 ) assert result is None assert ( str(_A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(_A ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(_A ) assert ( str(_A ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(_A ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def __UpperCamelCase ( ) -> List[Any]: """simple docstring""" from doctest import testmod testmod() lowerCAmelCase : Optional[Any] = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(_A ) print('\nReading/changing Node data using indexing:' ) print(F"Element at Position 1: {linked_list[1]}" ) lowerCAmelCase : Tuple = input('Enter New Value: ' ).strip() print('New list:' ) print(_A ) print(F"length of linked_list is : {len(_A )}" ) if __name__ == "__main__": main()
646
1
'''simple docstring''' def __UpperCamelCase ( _A : str ) -> bool: """simple docstring""" if not all(x.isalpha() for x in string ): raise ValueError('String must only contain alphabetic characters.' ) lowerCAmelCase : List[Any] = sorted(string.lower() ) return len(_A ) == len(set(_A ) ) if __name__ == "__main__": _lowerCAmelCase : Tuple = input('Enter a string ').strip() _lowerCAmelCase : Dict = is_isogram(input_str) print(f"""{input_str} is {'an' if isogram else 'not an'} isogram.""")
646
'''simple docstring''' _lowerCAmelCase : List[str] = {str(digit): digit**5 for digit in range(10)} def __UpperCamelCase ( _A : int ) -> int: """simple docstring""" return sum(DIGITS_FIFTH_POWER[digit] for digit in str(_A ) ) def __UpperCamelCase ( ) -> int: """simple docstring""" return sum( number for number in range(10_00 , 1_00_00_00 ) if number == digits_fifth_powers_sum(_A ) ) if __name__ == "__main__": print(solution())
646
1
'''simple docstring''' import pickle import numpy as np from matplotlib import pyplot as plt class lowerCAmelCase : def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=0.2 , snake_case__=0.2 ): lowerCAmelCase : Optional[Any] = bp_numa lowerCAmelCase : List[str] = bp_numa lowerCAmelCase : List[str] = bp_numa lowerCAmelCase : List[Any] = conva_get[:2] lowerCAmelCase : Union[str, Any] = conva_get[2] lowerCAmelCase : Dict = size_pa lowerCAmelCase : Dict = rate_w lowerCAmelCase : List[Any] = rate_t lowerCAmelCase : Union[str, Any] = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] lowerCAmelCase : int = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) lowerCAmelCase : Union[str, Any] = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) lowerCAmelCase : Union[str, Any] = -2 * np.random.rand(self.conva[1] ) + 1 lowerCAmelCase : List[str] = -2 * np.random.rand(self.num_bpa ) + 1 lowerCAmelCase : str = -2 * np.random.rand(self.num_bpa ) + 1 def lowercase ( self , snake_case__ ): # save model dict with pickle lowerCAmelCase : Union[str, Any] = { 'num_bp1': self.num_bpa, 'num_bp2': self.num_bpa, 'num_bp3': self.num_bpa, 'conv1': self.conva, 'step_conv1': self.step_conva, 'size_pooling1': self.size_poolinga, 'rate_weight': self.rate_weight, 'rate_thre': self.rate_thre, 'w_conv1': self.w_conva, 'wkj': self.wkj, 'vji': self.vji, 'thre_conv1': self.thre_conva, 'thre_bp2': self.thre_bpa, 'thre_bp3': self.thre_bpa, } with open(snake_case__ , 'wb' ) as f: pickle.dump(snake_case__ , snake_case__ ) print(f"Model saved: {save_path}" ) @classmethod def lowercase ( cls , snake_case__ ): # read saved model with open(snake_case__ , 'rb' ) as f: lowerCAmelCase : Tuple = pickle.load(snake_case__ ) # noqa: S301 lowerCAmelCase : Dict = model_dic.get('conv1' ) conv_get.append(model_dic.get('step_conv1' ) ) lowerCAmelCase : Any = model_dic.get('size_pooling1' ) lowerCAmelCase : str = model_dic.get('num_bp1' ) lowerCAmelCase : Dict = model_dic.get('num_bp2' ) lowerCAmelCase : List[str] = model_dic.get('num_bp3' ) lowerCAmelCase : str = model_dic.get('rate_weight' ) lowerCAmelCase : List[str] = model_dic.get('rate_thre' ) # create model instance lowerCAmelCase : int = CNN(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # modify model parameter lowerCAmelCase : Optional[Any] = model_dic.get('w_conv1' ) lowerCAmelCase : Any = model_dic.get('wkj' ) lowerCAmelCase : int = model_dic.get('vji' ) lowerCAmelCase : str = model_dic.get('thre_conv1' ) lowerCAmelCase : Union[str, Any] = model_dic.get('thre_bp2' ) lowerCAmelCase : Dict = model_dic.get('thre_bp3' ) return conv_ins def lowercase ( self , snake_case__ ): return 1 / (1 + np.exp(-1 * x )) def lowercase ( self , snake_case__ ): return round(snake_case__ , 3 ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): # convolution process lowerCAmelCase : List[str] = convs[0] lowerCAmelCase : str = convs[1] lowerCAmelCase : Tuple = np.shape(snake_case__ )[0] # get the data slice of original image data, data_focus lowerCAmelCase : Any = [] for i_focus in range(0 , size_data - size_conv + 1 , snake_case__ ): for j_focus in range(0 , size_data - size_conv + 1 , snake_case__ ): lowerCAmelCase : int = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(snake_case__ ) # calculate the feature map of every single kernel, and saved as list of matrix lowerCAmelCase : Union[str, Any] = [] lowerCAmelCase : List[str] = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(snake_case__ ): lowerCAmelCase : Optional[int] = [] for i_focus in range(len(snake_case__ ) ): lowerCAmelCase : Optional[Any] = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(snake_case__ ) ) lowerCAmelCase : List[Any] = np.asmatrix(snake_case__ ).reshape( snake_case__ , snake_case__ ) data_featuremap.append(snake_case__ ) # expanding the data slice to One dimenssion lowerCAmelCase : Tuple = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(snake_case__ ) ) lowerCAmelCase : int = np.asarray(snake_case__ ) return focus_list, data_featuremap def lowercase ( self , snake_case__ , snake_case__ , snake_case__="average_pool" ): # pooling process lowerCAmelCase : Optional[Any] = len(featuremaps[0] ) lowerCAmelCase : List[str] = int(size_map / size_pooling ) lowerCAmelCase : int = [] for i_map in range(len(snake_case__ ) ): lowerCAmelCase : List[Any] = featuremaps[i_map] lowerCAmelCase : Union[str, Any] = [] for i_focus in range(0 , snake_case__ , snake_case__ ): for j_focus in range(0 , snake_case__ , snake_case__ ): lowerCAmelCase : Optional[Any] = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(snake_case__ ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(snake_case__ ) ) lowerCAmelCase : Union[str, Any] = np.asmatrix(snake_case__ ).reshape(snake_case__ , snake_case__ ) featuremap_pooled.append(snake_case__ ) return featuremap_pooled def lowercase ( self , snake_case__ ): # expanding three dimension data to one dimension list lowerCAmelCase : Optional[Any] = [] for i in range(len(snake_case__ ) ): lowerCAmelCase : Optional[Any] = np.shape(data[i] ) lowerCAmelCase : Any = data[i].reshape(1 , shapes[0] * shapes[1] ) lowerCAmelCase : Tuple = data_listed.getA().tolist()[0] data_expanded.extend(snake_case__ ) lowerCAmelCase : Optional[Any] = np.asarray(snake_case__ ) return data_expanded def lowercase ( self , snake_case__ ): # expanding matrix to one dimension list lowerCAmelCase : List[str] = np.asarray(snake_case__ ) lowerCAmelCase : int = np.shape(snake_case__ ) lowerCAmelCase : str = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Tuple = [] lowerCAmelCase : Tuple = 0 for i_map in range(snake_case__ ): lowerCAmelCase : Dict = np.ones((size_map, size_map) ) for i in range(0 , snake_case__ , snake_case__ ): for j in range(0 , snake_case__ , snake_case__ ): lowerCAmelCase : List[str] = pd_pool[ i_pool ] lowerCAmelCase : Union[str, Any] = i_pool + 1 lowerCAmelCase : Tuple = np.multiply( snake_case__ , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(snake_case__ ) return pd_all def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=bool ): # model traning print('----------------------Start Training-------------------------' ) print((' - - Shape: Train_Data ', np.shape(snake_case__ )) ) print((' - - Shape: Teach_Data ', np.shape(snake_case__ )) ) lowerCAmelCase : Dict = 0 lowerCAmelCase : Optional[int] = [] lowerCAmelCase : Optional[Any] = 1_0000 while rp < n_repeat and mse >= error_accuracy: lowerCAmelCase : Tuple = 0 print(f"-------------Learning Time {rp}--------------" ) for p in range(len(snake_case__ ) ): # print('------------Learning Image: %d--------------'%p) lowerCAmelCase : List[str] = np.asmatrix(datas_train[p] ) lowerCAmelCase : List[Any] = np.asarray(datas_teach[p] ) lowerCAmelCase , lowerCAmelCase : Union[str, Any] = self.convolute( snake_case__ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowerCAmelCase : Dict = self.pooling(snake_case__ , self.size_poolinga ) lowerCAmelCase : Dict = np.shape(snake_case__ ) lowerCAmelCase : Any = self._expand(snake_case__ ) lowerCAmelCase : Tuple = data_bp_input lowerCAmelCase : Union[str, Any] = np.dot(snake_case__ , self.vji.T ) - self.thre_bpa lowerCAmelCase : str = self.sig(snake_case__ ) lowerCAmelCase : Union[str, Any] = np.dot(snake_case__ , self.wkj.T ) - self.thre_bpa lowerCAmelCase : Union[str, Any] = self.sig(snake_case__ ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- lowerCAmelCase : List[Any] = np.multiply( (data_teach - bp_outa) , np.multiply(snake_case__ , (1 - bp_outa) ) ) lowerCAmelCase : str = np.multiply( np.dot(snake_case__ , self.wkj ) , np.multiply(snake_case__ , (1 - bp_outa) ) ) lowerCAmelCase : List[str] = np.dot(snake_case__ , self.vji ) lowerCAmelCase : Dict = pd_i_all / (self.size_poolinga * self.size_poolinga) lowerCAmelCase : Tuple = pd_conva_pooled.T.getA().tolist() lowerCAmelCase : List[Any] = self._calculate_gradient_from_pool( snake_case__ , snake_case__ , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): lowerCAmelCase : Tuple = self._expand_mat(pd_conva_all[k_conv] ) lowerCAmelCase : int = self.rate_weight * np.dot(snake_case__ , snake_case__ ) lowerCAmelCase : Dict = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) lowerCAmelCase : Tuple = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer lowerCAmelCase : Any = self.wkj + pd_k_all.T * bp_outa * self.rate_weight lowerCAmelCase : str = self.vji + pd_j_all.T * bp_outa * self.rate_weight lowerCAmelCase : str = self.thre_bpa - pd_k_all * self.rate_thre lowerCAmelCase : Any = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image lowerCAmelCase : int = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) lowerCAmelCase : int = rp + 1 lowerCAmelCase : int = error_count / patterns all_mse.append(snake_case__ ) def draw_error(): lowerCAmelCase : Union[str, Any] = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(snake_case__ , '+-' ) plt.plot(snake_case__ , 'r--' ) plt.xlabel('Learning Times' ) plt.ylabel('All_mse' ) plt.grid(snake_case__ , alpha=0.5 ) plt.show() print('------------------Training Complished---------------------' ) print((' - - Training epoch: ', rp, f" - - Mse: {mse:.6f}") ) if draw_e: draw_error() return mse def lowercase ( self , snake_case__ ): # model predict lowerCAmelCase : Union[str, Any] = [] print('-------------------Start Testing-------------------------' ) print((' - - Shape: Test_Data ', np.shape(snake_case__ )) ) for p in range(len(snake_case__ ) ): lowerCAmelCase : Dict = np.asmatrix(datas_test[p] ) lowerCAmelCase , lowerCAmelCase : str = self.convolute( snake_case__ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowerCAmelCase : Any = self.pooling(snake_case__ , self.size_poolinga ) lowerCAmelCase : Union[str, Any] = self._expand(snake_case__ ) lowerCAmelCase : Optional[Any] = data_bp_input lowerCAmelCase : Tuple = bp_outa * self.vji.T - self.thre_bpa lowerCAmelCase : Any = self.sig(snake_case__ ) lowerCAmelCase : Any = bp_outa * self.wkj.T - self.thre_bpa lowerCAmelCase : List[str] = self.sig(snake_case__ ) produce_out.extend(bp_outa.getA().tolist() ) lowerCAmelCase : Optional[int] = [list(map(self.do_round , snake_case__ ) ) for each in produce_out] return np.asarray(snake_case__ ) def lowercase ( self , snake_case__ ): # return the data of image after convoluting process so we can check it out lowerCAmelCase : Optional[Any] = np.asmatrix(snake_case__ ) lowerCAmelCase , lowerCAmelCase : List[Any] = self.convolute( snake_case__ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowerCAmelCase : int = self.pooling(snake_case__ , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
646
'''simple docstring''' def __UpperCamelCase ( _A : List[str] ) -> Optional[Any]: """simple docstring""" if not head: return True # split the list to two parts lowerCAmelCase , lowerCAmelCase : str = head.next, head while fast and fast.next: lowerCAmelCase : Optional[int] = fast.next.next lowerCAmelCase : int = slow.next lowerCAmelCase : int = slow.next lowerCAmelCase : Optional[Any] = None # Don't forget here! But forget still works! # reverse the second part lowerCAmelCase : List[Any] = None while second: lowerCAmelCase : List[Any] = second.next lowerCAmelCase : Union[str, Any] = node lowerCAmelCase : Optional[Any] = second lowerCAmelCase : Any = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False lowerCAmelCase : Optional[Any] = node.next lowerCAmelCase : Tuple = head.next return True def __UpperCamelCase ( _A : Optional[Any] ) -> Optional[int]: """simple docstring""" if not head or not head.next: return True # 1. Get the midpoint (slow) lowerCAmelCase : Optional[int] = head while fast and fast.next: lowerCAmelCase , lowerCAmelCase : Optional[Any] = fast.next.next, slow.next # 2. Push the second half into the stack lowerCAmelCase : Tuple = [slow.val] while slow.next: lowerCAmelCase : Tuple = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False lowerCAmelCase : Union[str, Any] = cur.next return True def __UpperCamelCase ( _A : Tuple ) -> Optional[int]: """simple docstring""" if not head or not head.next: return True lowerCAmelCase : Optional[int] = {} lowerCAmelCase : int = 0 while head: if head.val in d: d[head.val].append(_A ) else: lowerCAmelCase : Any = [pos] lowerCAmelCase : int = head.next pos += 1 lowerCAmelCase : str = pos - 1 lowerCAmelCase : Optional[Any] = 0 for v in d.values(): if len(_A ) % 2 != 0: middle += 1 else: lowerCAmelCase : Any = 0 for i in range(0 , len(_A ) ): if v[i] + v[len(_A ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
646
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : List[Any] = logging.get_logger(__name__) _lowerCAmelCase : int = { 'google/mobilenet_v2_1.4_224': 'https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json', 'google/mobilenet_v2_1.0_224': 'https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json', 'google/mobilenet_v2_0.75_160': 'https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json', 'google/mobilenet_v2_0.35_96': 'https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json', # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class lowerCAmelCase ( a ): _lowerCamelCase : Any = """mobilenet_v2""" def __init__( self , snake_case__=3 , snake_case__=224 , snake_case__=1.0 , snake_case__=8 , snake_case__=8 , snake_case__=6 , snake_case__=32 , snake_case__=True , snake_case__=True , snake_case__="relu6" , snake_case__=True , snake_case__=0.8 , snake_case__=0.0_2 , snake_case__=0.0_0_1 , snake_case__=255 , **snake_case__ , ): super().__init__(**snake_case__ ) if depth_multiplier <= 0: raise ValueError('depth_multiplier must be greater than zero.' ) lowerCAmelCase : Optional[int] = num_channels lowerCAmelCase : int = image_size lowerCAmelCase : str = depth_multiplier lowerCAmelCase : Tuple = depth_divisible_by lowerCAmelCase : str = min_depth lowerCAmelCase : Optional[Any] = expand_ratio lowerCAmelCase : Optional[Any] = output_stride lowerCAmelCase : int = first_layer_is_expansion lowerCAmelCase : Tuple = finegrained_output lowerCAmelCase : int = hidden_act lowerCAmelCase : Dict = tf_padding lowerCAmelCase : Optional[Any] = classifier_dropout_prob lowerCAmelCase : List[Any] = initializer_range lowerCAmelCase : int = layer_norm_eps lowerCAmelCase : Optional[Any] = semantic_loss_ignore_index class lowerCAmelCase ( a ): _lowerCamelCase : str = version.parse("""1.11""" ) @property def lowercase ( self ): return OrderedDict([('pixel_values', {0: 'batch'})] ) @property def lowercase ( self ): if self.task == "image-classification": return OrderedDict([('logits', {0: 'batch'})] ) else: return OrderedDict([('last_hidden_state', {0: 'batch'}), ('pooler_output', {0: 'batch'})] ) @property def lowercase ( self ): return 1e-4
646
'''simple docstring''' import math def __UpperCamelCase ( _A : int = 1_00 ) -> int: """simple docstring""" lowerCAmelCase : List[Any] = sum(i * i for i in range(1 , n + 1 ) ) lowerCAmelCase : Optional[Any] = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f"""{solution() = }""")
646
1
'''simple docstring''' import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer _lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) class lowerCAmelCase ( a ): _lowerCamelCase : int = """AutoTokenizer""" _lowerCamelCase : Tuple = ["""tokenizer"""] _lowerCamelCase : str = { """semantic_prompt""": 1, """coarse_prompt""": 2, """fine_prompt""": 2, } def __init__( self , snake_case__ , snake_case__=None ): super().__init__(snake_case__ ) lowerCAmelCase : List[str] = speaker_embeddings @classmethod def lowercase ( cls , snake_case__ , snake_case__="speaker_embeddings_path.json" , **snake_case__ ): if speaker_embeddings_dict_path is not None: lowerCAmelCase : Optional[int] = get_file_from_repo( snake_case__ , snake_case__ , subfolder=kwargs.pop('subfolder' , snake_case__ ) , cache_dir=kwargs.pop('cache_dir' , snake_case__ ) , force_download=kwargs.pop('force_download' , snake_case__ ) , proxies=kwargs.pop('proxies' , snake_case__ ) , resume_download=kwargs.pop('resume_download' , snake_case__ ) , local_files_only=kwargs.pop('local_files_only' , snake_case__ ) , use_auth_token=kwargs.pop('use_auth_token' , snake_case__ ) , revision=kwargs.pop('revision' , snake_case__ ) , ) if speaker_embeddings_path is None: logger.warning( f"`{os.path.join(snake_case__ , snake_case__ )}` does not exists\n , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json\n dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`." ) lowerCAmelCase : Optional[int] = None else: with open(snake_case__ ) as speaker_embeddings_json: lowerCAmelCase : Optional[Any] = json.load(snake_case__ ) else: lowerCAmelCase : Optional[Any] = None lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained(snake_case__ , **snake_case__ ) return cls(tokenizer=snake_case__ , speaker_embeddings=snake_case__ ) def lowercase ( self , snake_case__ , snake_case__="speaker_embeddings_path.json" , snake_case__="speaker_embeddings" , snake_case__ = False , **snake_case__ , ): if self.speaker_embeddings is not None: os.makedirs(os.path.join(snake_case__ , snake_case__ , 'v2' ) , exist_ok=snake_case__ ) lowerCAmelCase : str = {} lowerCAmelCase : Optional[Any] = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": lowerCAmelCase : Union[str, Any] = self._load_voice_preset(snake_case__ ) lowerCAmelCase : Dict = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict['repo_or_path'] , snake_case__ , f"{prompt_key}_{key}" ) , voice_preset[key] , allow_pickle=snake_case__ , ) lowerCAmelCase : Optional[Any] = os.path.join(snake_case__ , f"{prompt_key}_{key}.npy" ) lowerCAmelCase : Optional[int] = tmp_dict with open(os.path.join(snake_case__ , snake_case__ ) , 'w' ) as fp: json.dump(snake_case__ , snake_case__ ) super().save_pretrained(snake_case__ , snake_case__ , **snake_case__ ) def lowercase ( self , snake_case__ = None , **snake_case__ ): lowerCAmelCase : Optional[Any] = self.speaker_embeddings[voice_preset] lowerCAmelCase : Union[str, Any] = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( f"Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}]." ) lowerCAmelCase : str = get_file_from_repo( self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] , subfolder=kwargs.pop('subfolder' , snake_case__ ) , cache_dir=kwargs.pop('cache_dir' , snake_case__ ) , force_download=kwargs.pop('force_download' , snake_case__ ) , proxies=kwargs.pop('proxies' , snake_case__ ) , resume_download=kwargs.pop('resume_download' , snake_case__ ) , local_files_only=kwargs.pop('local_files_only' , snake_case__ ) , use_auth_token=kwargs.pop('use_auth_token' , snake_case__ ) , revision=kwargs.pop('revision' , snake_case__ ) , ) if path is None: raise ValueError( f"`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists\n , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset}\n embeddings." ) lowerCAmelCase : Any = np.load(snake_case__ ) return voice_preset_dict def lowercase ( self , snake_case__ = None ): for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(f"Voice preset unrecognized, missing {key} as a key." ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(f"{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray." ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(f"{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray." ) def __call__( self , snake_case__=None , snake_case__=None , snake_case__="pt" , snake_case__=256 , snake_case__=False , snake_case__=True , snake_case__=False , **snake_case__ , ): if voice_preset is not None and not isinstance(snake_case__ , snake_case__ ): if ( isinstance(snake_case__ , snake_case__ ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): lowerCAmelCase : Any = self._load_voice_preset(snake_case__ ) else: if isinstance(snake_case__ , snake_case__ ) and not voice_preset.endswith('.npz' ): lowerCAmelCase : List[str] = voice_preset + '.npz' lowerCAmelCase : Tuple = np.load(snake_case__ ) if voice_preset is not None: self._validate_voice_preset_dict(snake_case__ , **snake_case__ ) lowerCAmelCase : Union[str, Any] = BatchFeature(data=snake_case__ , tensor_type=snake_case__ ) lowerCAmelCase : List[Any] = self.tokenizer( snake_case__ , return_tensors=snake_case__ , padding='max_length' , max_length=snake_case__ , return_attention_mask=snake_case__ , return_token_type_ids=snake_case__ , add_special_tokens=snake_case__ , **snake_case__ , ) if voice_preset is not None: lowerCAmelCase : Tuple = voice_preset return encoded_text
646
'''simple docstring''' import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece_with_bytefallback.model') @require_sentencepiece @require_tokenizers class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : Tuple = GPTSwaTokenizer _lowerCamelCase : str = False _lowerCamelCase : Dict = True _lowerCamelCase : Optional[Any] = False def lowercase ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : Tuple = GPTSwaTokenizer(snake_case__ , eos_token='<unk>' , bos_token='<unk>' , pad_token='<unk>' ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase ( self , snake_case__ ): lowerCAmelCase : List[Any] = 'This is a test' lowerCAmelCase : List[Any] = 'This is a test' return input_text, output_text def lowercase ( self ): lowerCAmelCase : Tuple = '<s>' lowerCAmelCase : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def lowercase ( self ): lowerCAmelCase : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(snake_case__ ) , 2000 ) def lowercase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 2000 ) def lowercase ( self ): lowerCAmelCase : List[Any] = GPTSwaTokenizer(snake_case__ ) lowerCAmelCase : Optional[Any] = tokenizer.tokenize('This is a test' ) self.assertListEqual(snake_case__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , [465, 287, 265, 631, 842] ) lowerCAmelCase : Tuple = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) # fmt: off self.assertListEqual( snake_case__ , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] , ) # fmt: on lowerCAmelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual( snake_case__ , [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] , ) lowerCAmelCase : int = tokenizer.convert_ids_to_tokens(snake_case__ ) # fmt: off self.assertListEqual( snake_case__ , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] ) # fmt: on def lowercase ( self ): lowerCAmelCase : str = GPTSwaTokenizer(snake_case__ ) lowerCAmelCase : Optional[int] = ['This is a test', 'I was born in 92000, and this is falsé.'] lowerCAmelCase : Tuple = [ [465, 287, 265, 631, 842], [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(snake_case__ , snake_case__ ): self.assertListEqual(tokenizer.encode_fast(snake_case__ ) , snake_case__ ) # Test that decode_fast returns the input text for text, token_ids in zip(snake_case__ , snake_case__ ): self.assertEqual(tokenizer.decode_fast(snake_case__ ) , snake_case__ ) @slow def lowercase ( self ): lowerCAmelCase : str = [ '<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')', 'Hey there, how are you doing this fine day?', 'This is a text with a trailing spaces followed by a dot .', 'Häj sväjs lillebrör! =)', 'Det är inget fel på Mr. Cool', ] # fmt: off lowerCAmelCase : Tuple = {'input_ids': [[6_3423, 5, 6811, 1_4954, 282, 816, 3821, 6_3466, 6_3425, 6_3462, 18, 6_3978, 678, 301, 1320, 6_3423, 6_3455, 6_3458, 18, 6_3982, 4246, 3940, 1901, 4_7789, 5547, 1_8994], [1_9630, 1100, 6_3446, 1342, 633, 544, 4488, 593, 5102, 2416, 6_3495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1652, 428, 268, 1936, 515, 268, 5_8593, 2_2413, 9106, 546, 268, 3_3213, 6_3979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_5130, 6_3450, 924, 6_3449, 2249, 4062, 1558, 318, 6_3504, 2_1498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2827, 2559, 332, 6575, 6_3443, 2_6801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name='AI-Sweden/gpt-sw3-126m' , sequences=snake_case__ , )
646
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowerCAmelCase : Tuple = { 'configuration_encodec': [ 'ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EncodecConfig', ], 'feature_extraction_encodec': ['EncodecFeatureExtractor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[int] = [ 'ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST', 'EncodecModel', 'EncodecPreTrainedModel', ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys _lowerCAmelCase : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
646
'''simple docstring''' def __UpperCamelCase ( _A : int ) -> bool: """simple docstring""" return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
646
1
'''simple docstring''' from math import ceil, sqrt def __UpperCamelCase ( _A : int = 1_00_00_00 ) -> int: """simple docstring""" lowerCAmelCase : Optional[Any] = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: lowerCAmelCase : Any = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: lowerCAmelCase : Dict = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f"""{solution() = }""")
646
'''simple docstring''' import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( 'files' , [ ['full:README.md', 'dataset_infos.json'], ['empty:README.md', 'dataset_infos.json'], ['dataset_infos.json'], ['full:README.md'], ] , ) def __UpperCamelCase ( _A : str , _A : List[Any] ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase : Optional[int] = tmp_path_factory.mktemp('dset_infos_dir' ) if "full:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('---\ndataset_info:\n dataset_size: 42\n---' ) if "empty:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / 'dataset_infos.json' , 'w' ) as f: f.write('{"default": {"dataset_size": 42}}' ) lowerCAmelCase : Union[str, Any] = DatasetInfosDict.from_directory(_A ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( 'dataset_info' , [ DatasetInfo(), DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ), ] , ) def __UpperCamelCase ( _A : str , _A : DatasetInfo ) -> Optional[int]: """simple docstring""" lowerCAmelCase : str = str(_A ) dataset_info.write_to_directory(_A ) lowerCAmelCase : List[str] = DatasetInfo.from_directory(_A ) assert dataset_info == reloaded assert os.path.exists(os.path.join(_A , 'dataset_info.json' ) ) def __UpperCamelCase ( ) -> List[str]: """simple docstring""" lowerCAmelCase : Tuple = DatasetInfo( description='foo' , citation='bar' , homepage='https://foo.bar' , license='CC0' , features=Features({'a': Value('int32' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train', 'num_examples': 42}] , download_checksums={} , download_size=13_37 , post_processing_size=4_42 , dataset_size=12_34 , size_in_bytes=13_37 + 4_42 + 12_34 , ) lowerCAmelCase : Optional[int] = dataset_info._to_yaml_dict() assert sorted(_A ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) lowerCAmelCase : Any = yaml.safe_dump(_A ) lowerCAmelCase : int = yaml.safe_load(_A ) assert dataset_info_yaml_dict == reloaded def __UpperCamelCase ( ) -> Dict: """simple docstring""" lowerCAmelCase : Union[str, Any] = DatasetInfo() lowerCAmelCase : List[Any] = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( 'dataset_infos_dict' , [ DatasetInfosDict(), DatasetInfosDict({'default': DatasetInfo()} ), DatasetInfosDict({'my_config_name': DatasetInfo()} ), DatasetInfosDict( { 'default': DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ) } ), DatasetInfosDict( { 'v1': DatasetInfo(dataset_size=42 ), 'v2': DatasetInfo(dataset_size=13_37 ), } ), ] , ) def __UpperCamelCase ( _A : Tuple , _A : DatasetInfosDict ) -> List[Any]: """simple docstring""" lowerCAmelCase : Tuple = str(_A ) dataset_infos_dict.write_to_directory(_A ) lowerCAmelCase : List[str] = DatasetInfosDict.from_directory(_A ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): lowerCAmelCase : Tuple = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml lowerCAmelCase : Optional[Any] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(_A , 'README.md' ) )
646
1
'''simple docstring''' import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class lowerCAmelCase : def __init__( self , snake_case__ , snake_case__=13 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=99 , snake_case__=64 , snake_case__=32 , snake_case__=5 , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=16 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=3 , snake_case__=4 , snake_case__=None , ): lowerCAmelCase : str = parent lowerCAmelCase : Optional[int] = batch_size lowerCAmelCase : Optional[Any] = seq_length lowerCAmelCase : Optional[Any] = is_training lowerCAmelCase : Dict = use_input_mask lowerCAmelCase : Tuple = use_token_type_ids lowerCAmelCase : int = use_labels lowerCAmelCase : int = vocab_size lowerCAmelCase : Any = hidden_size lowerCAmelCase : Optional[Any] = embedding_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : List[str] = num_attention_heads lowerCAmelCase : List[Any] = intermediate_size lowerCAmelCase : Dict = hidden_act lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : int = attention_probs_dropout_prob lowerCAmelCase : List[Any] = max_position_embeddings lowerCAmelCase : int = type_vocab_size lowerCAmelCase : List[str] = type_sequence_label_size lowerCAmelCase : Dict = initializer_range lowerCAmelCase : Any = num_labels lowerCAmelCase : str = num_choices lowerCAmelCase : int = scope def lowercase ( self ): lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Union[str, Any] = None if self.use_input_mask: lowerCAmelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : Optional[int] = None if self.use_token_type_ids: lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : Optional[Any] = None lowerCAmelCase : Optional[Any] = None lowerCAmelCase : Dict = None if self.use_labels: lowerCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase ( self ): return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case__ , initializer_range=self.initializer_range , ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = MobileBertModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : int = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) lowerCAmelCase : Optional[int] = model(snake_case__ , token_type_ids=snake_case__ ) lowerCAmelCase : Optional[Any] = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : int = MobileBertForMaskedLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : str = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = MobileBertForNextSentencePrediction(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : str = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : List[Any] = MobileBertForPreTraining(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Tuple = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , next_sentence_label=snake_case__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = MobileBertForQuestionAnswering(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : List[str] = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = self.num_labels lowerCAmelCase : List[Any] = MobileBertForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = self.num_labels lowerCAmelCase : int = MobileBertForTokenClassification(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : List[str] = self.num_choices lowerCAmelCase : Any = MobileBertForMultipleChoice(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : int = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : List[str] = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase ( self ): lowerCAmelCase : Any = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) : Optional[Any] = config_and_inputs lowerCAmelCase : List[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase ( a , a , unittest.TestCase ): _lowerCamelCase : List[str] = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) _lowerCamelCase : Tuple = ( { """feature-extraction""": MobileBertModel, """fill-mask""": MobileBertForMaskedLM, """question-answering""": MobileBertForQuestionAnswering, """text-classification""": MobileBertForSequenceClassification, """token-classification""": MobileBertForTokenClassification, """zero-shot""": MobileBertForSequenceClassification, } if is_torch_available() else {} ) _lowerCamelCase : str = True def lowercase ( self , snake_case__ , snake_case__ , snake_case__=False ): lowerCAmelCase : int = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if return_labels: if model_class in get_values(snake_case__ ): lowerCAmelCase : str = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=snake_case__ ) lowerCAmelCase : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case__ ) return inputs_dict def lowercase ( self ): lowerCAmelCase : List[Any] = MobileBertModelTester(self ) lowerCAmelCase : Dict = ConfigTester(self , config_class=snake_case__ , hidden_size=37 ) def lowercase ( self ): self.config_tester.run_common_tests() def lowercase ( self ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*snake_case__ ) def __UpperCamelCase ( _A : Optional[Any] ) -> Optional[int]: """simple docstring""" return torch.tensor( _A , dtype=torch.long , device=_A , ) _lowerCAmelCase : Union[str, Any] = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase ( unittest.TestCase ): @slow def lowercase ( self ): lowerCAmelCase : List[str] = MobileBertModel.from_pretrained('google/mobilebert-uncased' ).to(snake_case__ ) lowerCAmelCase : List[Any] = _long_tensor([[101, 7110, 1005, 1056, 2023, 1_1333, 1_7413, 1029, 102]] ) with torch.no_grad(): lowerCAmelCase : Tuple = model(snake_case__ )[0] lowerCAmelCase : List[Any] = torch.Size((1, 9, 512) ) self.assertEqual(output.shape , snake_case__ ) lowerCAmelCase : Union[str, Any] = torch.tensor( [ [ [-2.4_7_3_6_5_2_6e0_7, 8.2_6_9_1_6_5_6e0_4, 1.6_5_2_1_8_3_8e0_5], [-5.7_5_4_1_7_0_4e-0_1, 3.9_0_5_6_0_2_2e0_0, 4.4_0_1_1_5_0_7e0_0], [2.6_0_4_7_3_5_9e0_0, 1.5_6_7_7_6_5_2e0_0, -1.7_3_2_4_1_8_8e-0_1], ] ] , device=snake_case__ , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE lowerCAmelCase : List[str] = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) lowerCAmelCase : Dict = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
646
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCAmelCase ( a ): def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): super().__init__() if safety_checker is None: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" ' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered' ' results in services or applications open to the public. Both the diffusers team and Hugging Face' ' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling' ' it only for use-cases that involve analyzing network behavior or auditing its results. For more' ' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .' ) self.register_modules( speech_model=snake_case__ , speech_processor=snake_case__ , vae=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , unet=snake_case__ , scheduler=snake_case__ , feature_extractor=snake_case__ , ) def lowercase ( self , snake_case__ = "auto" ): if slice_size == "auto": lowerCAmelCase : Union[str, Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(snake_case__ ) def lowercase ( self ): self.enable_attention_slicing(snake_case__ ) @torch.no_grad() def __call__( self , snake_case__ , snake_case__=1_6000 , snake_case__ = 512 , snake_case__ = 512 , snake_case__ = 50 , snake_case__ = 7.5 , snake_case__ = None , snake_case__ = 1 , snake_case__ = 0.0 , snake_case__ = None , snake_case__ = None , snake_case__ = "pil" , snake_case__ = True , snake_case__ = None , snake_case__ = 1 , **snake_case__ , ): lowerCAmelCase : List[str] = self.speech_processor.feature_extractor( snake_case__ , return_tensors='pt' , sampling_rate=snake_case__ ).input_features.to(self.device ) lowerCAmelCase : Optional[Any] = self.speech_model.generate(snake_case__ , max_length=48_0000 ) lowerCAmelCase : str = self.speech_processor.tokenizer.batch_decode(snake_case__ , skip_special_tokens=snake_case__ , normalize=snake_case__ )[ 0 ] if isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = 1 elif isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = len(snake_case__ ) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(snake_case__ )}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(snake_case__ , snake_case__ ) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(snake_case__ )}." ) # get prompt text embeddings lowerCAmelCase : str = self.tokenizer( snake_case__ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) lowerCAmelCase : Tuple = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowerCAmelCase : str = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) lowerCAmelCase : Union[str, Any] = text_input_ids[:, : self.tokenizer.model_max_length] lowerCAmelCase : Union[str, Any] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : int = text_embeddings.shape lowerCAmelCase : Any = text_embeddings.repeat(1 , snake_case__ , 1 ) lowerCAmelCase : Optional[int] = text_embeddings.view(bs_embed * num_images_per_prompt , snake_case__ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowerCAmelCase : List[str] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowerCAmelCase : List[str] if negative_prompt is None: lowerCAmelCase : Any = [''] * batch_size elif type(snake_case__ ) is not type(snake_case__ ): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(snake_case__ )} !=" f" {type(snake_case__ )}." ) elif isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = [negative_prompt] elif batch_size != len(snake_case__ ): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(snake_case__ )}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" ' the batch size of `prompt`.' ) else: lowerCAmelCase : Dict = negative_prompt lowerCAmelCase : Optional[int] = text_input_ids.shape[-1] lowerCAmelCase : int = self.tokenizer( snake_case__ , padding='max_length' , max_length=snake_case__ , truncation=snake_case__ , return_tensors='pt' , ) lowerCAmelCase : Union[str, Any] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowerCAmelCase : List[Any] = uncond_embeddings.shape[1] lowerCAmelCase : List[str] = uncond_embeddings.repeat(1 , snake_case__ , 1 ) lowerCAmelCase : Optional[Any] = uncond_embeddings.view(batch_size * num_images_per_prompt , snake_case__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCAmelCase : List[str] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowerCAmelCase : Union[str, Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowerCAmelCase : Dict = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowerCAmelCase : str = torch.randn(snake_case__ , generator=snake_case__ , device='cpu' , dtype=snake_case__ ).to( self.device ) else: lowerCAmelCase : Tuple = torch.randn(snake_case__ , generator=snake_case__ , device=self.device , dtype=snake_case__ ) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) lowerCAmelCase : str = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(snake_case__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowerCAmelCase : Union[str, Any] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowerCAmelCase : Any = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowerCAmelCase : Tuple = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCAmelCase : Union[str, Any] = {} if accepts_eta: lowerCAmelCase : int = eta for i, t in enumerate(self.progress_bar(snake_case__ ) ): # expand the latents if we are doing classifier free guidance lowerCAmelCase : Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCAmelCase : Tuple = self.scheduler.scale_model_input(snake_case__ , snake_case__ ) # predict the noise residual lowerCAmelCase : List[str] = self.unet(snake_case__ , snake_case__ , encoder_hidden_states=snake_case__ ).sample # perform guidance if do_classifier_free_guidance: lowerCAmelCase , lowerCAmelCase : Dict = noise_pred.chunk(2 ) lowerCAmelCase : Tuple = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowerCAmelCase : int = self.scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase : List[Any] = 1 / 0.1_8_2_1_5 * latents lowerCAmelCase : Dict = self.vae.decode(snake_case__ ).sample lowerCAmelCase : List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowerCAmelCase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowerCAmelCase : Dict = self.numpy_to_pil(snake_case__ ) if not return_dict: return image return StableDiffusionPipelineOutput(images=snake_case__ , nsfw_content_detected=snake_case__ )
646
1
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): lowerCAmelCase : Dict = tf.convert_to_tensor( [ [ 8.2_2_2_0_9_9_1, # 3rd highest value; idx. 0 -0.5_6_2_0_0_4_4, 5.2_3_2_2_9_7_5_2, 4.0_3_8_6_3_9_3, -6.8_7_9_8_3_7_8, -0.5_4_7_8_5_8_0_2, -3.2_0_1_2_1_5_3, 2.9_2_7_7_7_1_7_6, 1.8_8_1_7_1_9_5_3, 7.3_5_3_4_1_2_7_6, # 5th highest value; idx. 9 8.4_3_2_0_7_8_3_3, # 2nd highest value; idx. 10 -9.8_5_7_1_1_8_3_6, -5.9_6_2_0_9_2_3_6, -1.1_3_0_3_9_1_6_1, -7.1_1_1_5_2_9_4, -0.8_3_6_9_6_3_3, -5.3_1_8_6_4_0_8, 7.0_6_4_2_7_4_0_7, 0.8_1_3_6_9_3_4_4, -0.8_2_0_2_3_8_1_7, -5.9_1_7_9_7_9_6, 0.5_8_8_1_3_4_4_3, -6.9_9_7_7_8_4_3_8, 4.7_1_5_5_1_1_8_9, -0.1_8_7_7_1_6_3_7, 7.4_4_0_2_0_7_5_9, # 4th highest value; idx. 25 9.3_8_4_5_0_9_8_7, # 1st highest value; idx. 26 2.1_2_6_6_2_9_4_1, -9.3_2_5_6_2_0_3_8, 2.3_5_6_5_2_5_2_2, ], # cummulative prob of 5 highest values <= 0.6 [ 0.5_8_4_2_5_5_1_8, 4.5_3_1_3_9_2_3_8, -5.5_7_5_1_0_4_6_4, -6.2_8_0_3_0_6_9_9, -7.1_9_5_2_9_5_0_3, -4.0_2_1_2_2_5_5_1, 1.3_9_3_3_7_0_3_7, -6.0_6_7_0_7_0_5_7, 1.5_9_4_8_0_5_1_7, -9.6_4_3_1_1_9, 0.0_3_9_0_7_7_9_9, 0.6_7_2_3_1_7_6_2, -8.8_8_2_0_6_7_2_6, 6.2_7_1_1_5_9_2_2, # 4th highest value; idx. 13 2.2_8_5_2_0_7_2_3, 4.8_2_7_6_7_5_0_6, 4.3_0_4_2_1_3_6_8, 8.8_2_7_5_3_1_3, # 2nd highest value; idx. 17 5.4_4_0_2_9_9_5_8, # 5th highest value; idx. 18 -4.4_7_3_5_7_9_4, 7.3_8_5_7_9_5_3_6, # 3rd highest value; idx. 20 -2.9_1_0_5_1_6_6_3, 2.6_1_9_4_6_0_7_7, -2.5_6_7_4_7_6_2, -9.4_8_9_5_9_3_0_2, -4.0_2_9_2_2_6_4_5, -1.3_5_4_1_6_9_1_8, 9.6_7_7_0_2_3_2_3, # 1st highest value; idx. 27 -5.8_9_4_7_8_5_5_3, 1.8_5_3_7_0_4_6_7, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) lowerCAmelCase : str = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above lowerCAmelCase : Tuple = tf.convert_to_tensor( [8.2_2_2_0_9_9, 7.3_5_3_4_1_2_6, 8.4_3_2_0_7_8, 7.4_4_0_2_0_7_5, 9.3_8_4_5_1, 6.2_7_1_1_5_9, 8.8_2_7_5_3_1, 5.4_4_0_2_9_9_5, 7.3_8_5_7_9_5_6, 9.6_7_7_0_2_3] , dtype=tf.floataa , ) # expected non filtered values as noted above lowerCAmelCase : Union[str, Any] = tf_top_k_top_p_filtering(snake_case__ , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 ) lowerCAmelCase : List[str] = output[output != -float('inf' )] lowerCAmelCase : int = tf.cast( tf.where(tf.not_equal(snake_case__ , tf.constant(-float('inf' ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(snake_case__ , snake_case__ , rtol=1e-1_2 ) tf.debugging.assert_equal(snake_case__ , snake_case__ ) @require_tf class lowerCAmelCase ( unittest.TestCase , a ): # setting framework_dependent_parameters needs to be gated, just like its contents' imports if is_tf_available(): _lowerCamelCase : Optional[Any] = { """AutoModelForCausalLM""": TFAutoModelForCausalLM, """AutoModelForSpeechSeq2Seq""": TFAutoModelForSpeechSeqaSeq, """AutoModelForSeq2SeqLM""": TFAutoModelForSeqaSeqLM, """AutoModelForVision2Seq""": TFAutoModelForVisionaSeq, """LogitsProcessorList""": TFLogitsProcessorList, """MinLengthLogitsProcessor""": TFMinLengthLogitsProcessor, """create_tensor_fn""": tf.convert_to_tensor, """floats_tensor""": floats_tensor, """return_tensors""": """tf""", } @slow def lowercase ( self ): # TF-only test: tf.saved_model export lowerCAmelCase : int = TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) lowerCAmelCase : Union[str, Any] = 2 lowerCAmelCase : List[str] = 2 class lowerCAmelCase ( tf.Module ): def __init__( self , snake_case__ ): super(snake_case__ , self ).__init__() lowerCAmelCase : List[Any] = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name='input_ids' ), tf.TensorSpec((None, input_length) , tf.intaa , name='attention_mask' ), ) , jit_compile=snake_case__ , ) def lowercase ( self , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = self.model.generate( input_ids=snake_case__ , attention_mask=snake_case__ , max_new_tokens=snake_case__ , return_dict_in_generate=snake_case__ , ) return {"sequences": outputs["sequences"]} lowerCAmelCase : Optional[int] = [[2, 0], [102, 103]] lowerCAmelCase : List[Any] = [[1, 0], [1, 1]] lowerCAmelCase : List[Any] = DummyModel(model=snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(snake_case__ , snake_case__ , signatures={'serving_default': dummy_model.serving} ) lowerCAmelCase : int = tf.saved_model.load(snake_case__ ).signatures['serving_default'] for batch_size in range(1 , len(snake_case__ ) + 1 ): lowerCAmelCase : List[str] = { 'input_ids': tf.constant(dummy_input_ids[:batch_size] ), 'attention_mask': tf.constant(dummy_attention_masks[:batch_size] ), } lowerCAmelCase : Any = serving_func(**snake_case__ )['sequences'] lowerCAmelCase : Optional[int] = test_model.generate(**snake_case__ , max_new_tokens=snake_case__ ) tf.debugging.assert_equal(snake_case__ , snake_case__ ) @slow def lowercase ( self ): # TF-only test: tf.saved_model export lowerCAmelCase : str = TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) lowerCAmelCase : int = 1 lowerCAmelCase : Dict = 2 class lowerCAmelCase ( tf.Module ): def __init__( self , snake_case__ ): super(snake_case__ , self ).__init__() lowerCAmelCase : List[Any] = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name='input_ids' ), tf.TensorSpec((batch_size, None) , tf.intaa , name='attention_mask' ), ) , jit_compile=snake_case__ , ) def lowercase ( self , snake_case__ , snake_case__ ): lowerCAmelCase : int = self.model.generate( input_ids=snake_case__ , attention_mask=snake_case__ , max_new_tokens=snake_case__ , return_dict_in_generate=snake_case__ , ) return {"sequences": outputs["sequences"]} lowerCAmelCase : Dict = [[2], [102, 103]] lowerCAmelCase : Any = [[1], [1, 1]] lowerCAmelCase : List[Any] = DummyModel(model=snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(snake_case__ , snake_case__ , signatures={'serving_default': dummy_model.serving} ) lowerCAmelCase : Any = tf.saved_model.load(snake_case__ ).signatures['serving_default'] for input_row in range(len(snake_case__ ) ): lowerCAmelCase : int = { 'input_ids': tf.constant([dummy_input_ids[input_row]] ), 'attention_mask': tf.constant([dummy_attention_masks[input_row]] ), } lowerCAmelCase : Optional[Any] = serving_func(**snake_case__ )['sequences'] lowerCAmelCase : Any = test_model.generate(**snake_case__ , max_new_tokens=snake_case__ ) tf.debugging.assert_equal(snake_case__ , snake_case__ ) @slow @require_tensorflow_text def lowercase ( self ): # TF-only test: tf.saved_model export with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id='google/flan-t5-small' , filename='spiece.model' , local_dir=snake_case__ ) class lowerCAmelCase ( tf.keras.layers.Layer ): def __init__( self ): super().__init__() lowerCAmelCase : Optional[int] = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(snake_case__ , 'spiece.model' ) , 'rb' ).read() ) lowerCAmelCase : str = TFAutoModelForSeqaSeqLM.from_pretrained('hf-internal-testing/tiny-random-t5' ) def lowercase ( self , snake_case__ , *snake_case__ , **snake_case__ ): lowerCAmelCase : List[str] = self.tokenizer.tokenize(snake_case__ ) lowerCAmelCase , lowerCAmelCase : Any = text.pad_model_inputs( snake_case__ , max_seq_length=64 , pad_value=self.model.config.pad_token_id ) lowerCAmelCase : Optional[int] = self.model.generate(input_ids=snake_case__ , attention_mask=snake_case__ ) return self.tokenizer.detokenize(snake_case__ ) lowerCAmelCase : Optional[Any] = CompleteSentenceTransformer() lowerCAmelCase : List[str] = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name='inputs' ) lowerCAmelCase : Any = complete_model(snake_case__ ) lowerCAmelCase : str = tf.keras.Model(snake_case__ , snake_case__ ) keras_model.save(snake_case__ ) def lowercase ( self ): # Has PT equivalent: this test relies on random sampling lowerCAmelCase : Optional[Any] = { 'do_sample': True, 'num_beams': 1, 'top_p': 0.7, 'top_k': 10, 'temperature': 0.7, } lowerCAmelCase : Dict = 14 lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) lowerCAmelCase : Tuple = 'Hello, my dog is cute and' lowerCAmelCase : Union[str, Any] = tokenizer(snake_case__ , return_tensors='tf' ) lowerCAmelCase : int = TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) lowerCAmelCase : Union[str, Any] = 638 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(':/CPU:0' ): tf.random.set_seed(0 ) lowerCAmelCase : str = model.generate(**snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) lowerCAmelCase : Union[str, Any] = [638, 198] with tf.device(':/CPU:0' ): tf.random.set_seed(0 ) lowerCAmelCase : Union[str, Any] = model.generate(**snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def lowercase ( self ): # Has PT equivalent: ample use of framework-specific code lowerCAmelCase : Tuple = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-bart' ) lowerCAmelCase : Tuple = 'Hugging Face is a technology company based in New York and Paris.' lowerCAmelCase : Tuple = bart_tokenizer(snake_case__ , return_tensors='tf' ).input_ids lowerCAmelCase : Optional[Any] = TFBartForConditionalGeneration.from_pretrained('hf-internal-testing/tiny-random-bart' ) lowerCAmelCase : Tuple = bart_model.generate(snake_case__ ).numpy() class lowerCAmelCase ( a ): def lowercase ( self , snake_case__ , snake_case__=None , **snake_case__ ): return super().call(snake_case__ , **snake_case__ ) lowerCAmelCase : Optional[Any] = FakeBart.from_pretrained('hf-internal-testing/tiny-random-bart' ) lowerCAmelCase : Union[str, Any] = bart_model.generate(snake_case__ , foo='bar' ).numpy() self.assertTrue(np.array_equal(snake_case__ , snake_case__ ) ) class lowerCAmelCase ( bart_model.model.encoder.__class__ ): def lowercase ( self , snake_case__ , **snake_case__ ): return super().call(snake_case__ , **snake_case__ ) lowerCAmelCase : Union[str, Any] = FakeEncoder(bart_model.config , bart_model.model.shared ) lowerCAmelCase : List[str] = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) lowerCAmelCase : Any = bart_model.generate(snake_case__ ).numpy() with self.assertRaises(snake_case__ ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(snake_case__ , foo='bar' )
646
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : List[Any] = LDMTextToImagePipeline _lowerCamelCase : Optional[Any] = TEXT_TO_IMAGE_PARAMS - { """negative_prompt""", """negative_prompt_embeds""", """cross_attention_kwargs""", """prompt_embeds""", } _lowerCamelCase : List[str] = PipelineTesterMixin.required_optional_params - { """num_images_per_prompt""", """callback""", """callback_steps""", } _lowerCamelCase : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS _lowerCamelCase : Optional[int] = False def lowercase ( self ): torch.manual_seed(0 ) lowerCAmelCase : Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) lowerCAmelCase : int = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , ) torch.manual_seed(0 ) lowerCAmelCase : str = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') , up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') , latent_channels=4 , ) torch.manual_seed(0 ) lowerCAmelCase : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowerCAmelCase : str = CLIPTextModel(snake_case__ ) lowerCAmelCase : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCAmelCase : List[Any] = { 'unet': unet, 'scheduler': scheduler, 'vqvae': vae, 'bert': text_encoder, 'tokenizer': tokenizer, } return components def lowercase ( self , snake_case__ , snake_case__=0 ): if str(snake_case__ ).startswith('mps' ): lowerCAmelCase : Optional[int] = torch.manual_seed(snake_case__ ) else: lowerCAmelCase : str = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) lowerCAmelCase : Tuple = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase ( self ): lowerCAmelCase : List[str] = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase : Optional[Any] = self.get_dummy_components() lowerCAmelCase : Optional[Any] = LDMTextToImagePipeline(**snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Tuple = self.get_dummy_inputs(snake_case__ ) lowerCAmelCase : Union[str, Any] = pipe(**snake_case__ ).images lowerCAmelCase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) lowerCAmelCase : List[Any] = np.array([0.6_1_0_1, 0.6_1_5_6, 0.5_6_2_2, 0.4_8_9_5, 0.6_6_6_1, 0.3_8_0_4, 0.5_7_4_8, 0.6_1_3_6, 0.5_0_1_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self , snake_case__ , snake_case__=torch.floataa , snake_case__=0 ): lowerCAmelCase : List[str] = torch.manual_seed(snake_case__ ) lowerCAmelCase : int = np.random.RandomState(snake_case__ ).standard_normal((1, 4, 32, 32) ) lowerCAmelCase : Optional[Any] = torch.from_numpy(snake_case__ ).to(device=snake_case__ , dtype=snake_case__ ) lowerCAmelCase : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase ( self ): lowerCAmelCase : Tuple = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Optional[Any] = self.get_inputs(snake_case__ ) lowerCAmelCase : List[Any] = pipe(**snake_case__ ).images lowerCAmelCase : str = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) lowerCAmelCase : Tuple = np.array([0.5_1_8_2_5, 0.5_2_8_5_0, 0.5_2_5_4_3, 0.5_4_2_5_8, 0.5_2_3_0_4, 0.5_2_5_6_9, 0.5_4_3_6_3, 0.5_5_2_7_6, 0.5_6_8_7_8] ) lowerCAmelCase : int = np.abs(expected_slice - image_slice ).max() assert max_diff < 1e-3 @nightly @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self , snake_case__ , snake_case__=torch.floataa , snake_case__=0 ): lowerCAmelCase : List[str] = torch.manual_seed(snake_case__ ) lowerCAmelCase : Any = np.random.RandomState(snake_case__ ).standard_normal((1, 4, 32, 32) ) lowerCAmelCase : List[Any] = torch.from_numpy(snake_case__ ).to(device=snake_case__ , dtype=snake_case__ ) lowerCAmelCase : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase ( self ): lowerCAmelCase : Optional[int] = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : int = self.get_inputs(snake_case__ ) lowerCAmelCase : Optional[int] = pipe(**snake_case__ ).images[0] lowerCAmelCase : Optional[int] = load_numpy( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy' ) lowerCAmelCase : List[str] = np.abs(expected_image - image ).max() assert max_diff < 1e-3
646
1
'''simple docstring''' from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING _lowerCAmelCase : str = logging.get_logger(__name__) @add_end_docstrings(a ) class lowerCAmelCase ( a ): def __init__( self , **snake_case__ ): super().__init__(**snake_case__ ) requires_backends(self , 'vision' ) requires_backends(self , 'torch' ) if self.framework != "pt": raise ValueError(f"The {self.__class__} is only available in PyTorch." ) self.check_model_type(snake_case__ ) def lowercase ( self , **snake_case__ ): lowerCAmelCase : str = {} lowerCAmelCase : int = {} lowerCAmelCase : Tuple = {} # preprocess args if "points_per_batch" in kwargs: lowerCAmelCase : Union[str, Any] = kwargs['points_per_batch'] if "points_per_crop" in kwargs: lowerCAmelCase : Optional[Any] = kwargs['points_per_crop'] if "crops_n_layers" in kwargs: lowerCAmelCase : List[Any] = kwargs['crops_n_layers'] if "crop_overlap_ratio" in kwargs: lowerCAmelCase : List[Any] = kwargs['crop_overlap_ratio'] if "crop_n_points_downscale_factor" in kwargs: lowerCAmelCase : int = kwargs['crop_n_points_downscale_factor'] # postprocess args if "pred_iou_thresh" in kwargs: lowerCAmelCase : Tuple = kwargs['pred_iou_thresh'] if "stability_score_offset" in kwargs: lowerCAmelCase : str = kwargs['stability_score_offset'] if "mask_threshold" in kwargs: lowerCAmelCase : Any = kwargs['mask_threshold'] if "stability_score_thresh" in kwargs: lowerCAmelCase : int = kwargs['stability_score_thresh'] if "crops_nms_thresh" in kwargs: lowerCAmelCase : Optional[Any] = kwargs['crops_nms_thresh'] if "output_rle_mask" in kwargs: lowerCAmelCase : Dict = kwargs['output_rle_mask'] if "output_bboxes_mask" in kwargs: lowerCAmelCase : str = kwargs['output_bboxes_mask'] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self , snake_case__ , *snake_case__ , snake_case__=None , snake_case__=None , **snake_case__ ): return super().__call__(snake_case__ , *snake_case__ , num_workers=snake_case__ , batch_size=snake_case__ , **snake_case__ ) def lowercase ( self , snake_case__ , snake_case__=64 , snake_case__ = 0 , snake_case__ = 512 / 1500 , snake_case__ = 32 , snake_case__ = 1 , ): lowerCAmelCase : List[Any] = load_image(snake_case__ ) lowerCAmelCase : Optional[Any] = self.image_processor.size['longest_edge'] lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Tuple = self.image_processor.generate_crop_boxes( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase : Any = self.image_processor(images=snake_case__ , return_tensors='pt' ) with self.device_placement(): if self.framework == "pt": lowerCAmelCase : List[Any] = self.get_inference_context() with inference_context(): lowerCAmelCase : Any = self._ensure_tensor_on_device(snake_case__ , device=self.device ) lowerCAmelCase : Union[str, Any] = self.model.get_image_embeddings(model_inputs.pop('pixel_values' ) ) lowerCAmelCase : Optional[Any] = image_embeddings lowerCAmelCase : Dict = grid_points.shape[1] lowerCAmelCase : Optional[Any] = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( 'Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. ' 'To return all points at once, set points_per_batch to None' ) for i in range(0 , snake_case__ , snake_case__ ): lowerCAmelCase : List[Any] = grid_points[:, i : i + points_per_batch, :, :] lowerCAmelCase : Union[str, Any] = input_labels[:, i : i + points_per_batch] lowerCAmelCase : int = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def lowercase ( self , snake_case__ , snake_case__=0.8_8 , snake_case__=0.9_5 , snake_case__=0 , snake_case__=1 , ): lowerCAmelCase : Any = model_inputs.pop('input_boxes' ) lowerCAmelCase : Tuple = model_inputs.pop('is_last' ) lowerCAmelCase : Optional[Any] = model_inputs.pop('original_sizes' ).tolist() lowerCAmelCase : Optional[int] = model_inputs.pop('reshaped_input_sizes' ).tolist() lowerCAmelCase : List[Any] = self.model(**snake_case__ ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks lowerCAmelCase : List[str] = model_outputs['pred_masks'] lowerCAmelCase : Union[str, Any] = self.image_processor.post_process_masks( snake_case__ , snake_case__ , snake_case__ , snake_case__ , binarize=snake_case__ ) lowerCAmelCase : Union[str, Any] = model_outputs['iou_scores'] lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : int = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def lowercase ( self , snake_case__ , snake_case__=False , snake_case__=False , snake_case__=0.7 , ): lowerCAmelCase : int = [] lowerCAmelCase : int = [] lowerCAmelCase : int = [] for model_output in model_outputs: all_scores.append(model_output.pop('iou_scores' ) ) all_masks.extend(model_output.pop('masks' ) ) all_boxes.append(model_output.pop('boxes' ) ) lowerCAmelCase : Union[str, Any] = torch.cat(snake_case__ ) lowerCAmelCase : Optional[Any] = torch.cat(snake_case__ ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : List[str] = self.image_processor.post_process_for_mask_generation( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase : List[Any] = defaultdict(snake_case__ ) for output in model_outputs: for k, v in output.items(): extra[k].append(snake_case__ ) lowerCAmelCase : Union[str, Any] = {} if output_rle_mask: lowerCAmelCase : Union[str, Any] = rle_mask if output_bboxes_mask: lowerCAmelCase : Optional[int] = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
646
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Tuple = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { 'facebook/xmod-base': 'https://huggingface.co/facebook/xmod-base/resolve/main/config.json', 'facebook/xmod-large-prenorm': 'https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json', 'facebook/xmod-base-13-125k': 'https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json', 'facebook/xmod-base-30-125k': 'https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json', 'facebook/xmod-base-30-195k': 'https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json', 'facebook/xmod-base-60-125k': 'https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json', 'facebook/xmod-base-60-265k': 'https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json', 'facebook/xmod-base-75-125k': 'https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json', 'facebook/xmod-base-75-269k': 'https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json', } class lowerCAmelCase ( a ): _lowerCamelCase : int = """xmod""" def __init__( self , snake_case__=3_0522 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=1e-1_2 , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__="absolute" , snake_case__=True , snake_case__=None , snake_case__=False , snake_case__=2 , snake_case__=False , snake_case__=True , snake_case__=True , snake_case__=("en_XX",) , snake_case__=None , **snake_case__ , ): super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) lowerCAmelCase : Dict = vocab_size lowerCAmelCase : Optional[Any] = hidden_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob lowerCAmelCase : str = max_position_embeddings lowerCAmelCase : int = type_vocab_size lowerCAmelCase : List[Any] = initializer_range lowerCAmelCase : Any = layer_norm_eps lowerCAmelCase : Dict = position_embedding_type lowerCAmelCase : Optional[Any] = use_cache lowerCAmelCase : Union[str, Any] = classifier_dropout lowerCAmelCase : int = pre_norm lowerCAmelCase : Optional[Any] = adapter_reduction_factor lowerCAmelCase : Any = adapter_layer_norm lowerCAmelCase : Dict = adapter_reuse_layer_norm lowerCAmelCase : Any = ln_before_adapter lowerCAmelCase : Optional[Any] = list(snake_case__ ) lowerCAmelCase : List[Any] = default_language class lowerCAmelCase ( a ): @property def lowercase ( self ): if self.task == "multiple-choice": lowerCAmelCase : List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase : Optional[int] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
646
1
'''simple docstring''' from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class lowerCAmelCase ( yaml.SafeLoader ): def lowercase ( self , snake_case__ ): lowerCAmelCase : Union[str, Any] = [self.constructed_objects[key_node] for key_node, _ in node.value] lowerCAmelCase : Dict = [tuple(snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else key for key in keys] lowerCAmelCase : Union[str, Any] = Counter(snake_case__ ) lowerCAmelCase : Union[str, Any] = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(f"Got duplicate yaml keys: {duplicate_keys}" ) def lowercase ( self , snake_case__ , snake_case__=False ): lowerCAmelCase : Tuple = super().construct_mapping(snake_case__ , deep=snake_case__ ) self._check_no_duplicates_on_constructed_node(snake_case__ ) return mapping def __UpperCamelCase ( _A : str ) -> Tuple[Optional[str], str]: """simple docstring""" lowerCAmelCase : Dict = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: lowerCAmelCase : List[Any] = full_content[1:].index('---' ) + 1 lowerCAmelCase : Tuple = '\n'.join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(_A ) class lowerCAmelCase ( a ): # class attributes _lowerCamelCase : int = {"""train_eval_index"""} # train-eval-index in the YAML metadata @classmethod def lowercase ( cls , snake_case__ ): with open(snake_case__ , encoding='utf-8' ) as readme_file: lowerCAmelCase , lowerCAmelCase : Tuple = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(snake_case__ ) else: return cls() def lowercase ( self , snake_case__ ): if path.exists(): with open(snake_case__ , encoding='utf-8' ) as readme_file: lowerCAmelCase : str = readme_file.read() else: lowerCAmelCase : Optional[Any] = None lowerCAmelCase : Any = self._to_readme(snake_case__ ) with open(snake_case__ , 'w' , encoding='utf-8' ) as readme_file: readme_file.write(snake_case__ ) def lowercase ( self , snake_case__ = None ): if readme_content is not None: lowerCAmelCase , lowerCAmelCase : Tuple = _split_yaml_from_readme(snake_case__ ) lowerCAmelCase : Optional[int] = '---\n' + self.to_yaml_string() + '---\n' + content else: lowerCAmelCase : List[str] = '---\n' + self.to_yaml_string() + '---\n' return full_content @classmethod def lowercase ( cls , snake_case__ ): lowerCAmelCase : Dict = yaml.load(snake_case__ , Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields lowerCAmelCase : List[str] = { (key.replace('-' , '_' ) if key.replace('-' , '_' ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**snake_case__ ) def lowercase ( self ): return yaml.safe_dump( { (key.replace('_' , '-' ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } , sort_keys=snake_case__ , allow_unicode=snake_case__ , encoding='utf-8' , ).decode('utf-8' ) _lowerCAmelCase : int = { 'image-classification': [], 'translation': [], 'image-segmentation': [], 'fill-mask': [], 'automatic-speech-recognition': [], 'token-classification': [], 'sentence-similarity': [], 'audio-classification': [], 'question-answering': [], 'summarization': [], 'zero-shot-classification': [], 'table-to-text': [], 'feature-extraction': [], 'other': [], 'multiple-choice': [], 'text-classification': [], 'text-to-image': [], 'text2text-generation': [], 'zero-shot-image-classification': [], 'tabular-classification': [], 'tabular-regression': [], 'image-to-image': [], 'tabular-to-text': [], 'unconditional-image-generation': [], 'text-retrieval': [], 'text-to-speech': [], 'object-detection': [], 'audio-to-audio': [], 'text-generation': [], 'conversational': [], 'table-question-answering': [], 'visual-question-answering': [], 'image-to-text': [], 'reinforcement-learning': [], 'voice-activity-detection': [], 'time-series-forecasting': [], 'document-question-answering': [], } if __name__ == "__main__": from argparse import ArgumentParser _lowerCAmelCase : str = ArgumentParser(usage='Validate the yaml metadata block of a README.md file.') ap.add_argument('readme_filepath') _lowerCAmelCase : Optional[int] = ap.parse_args() _lowerCAmelCase : Dict = Path(args.readme_filepath) _lowerCAmelCase : Optional[int] = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
646
'''simple docstring''' import argparse import os import re _lowerCAmelCase : Dict = 'src/diffusers' # Pattern that looks at the indentation in a line. _lowerCAmelCase : str = re.compile(r'^(\s*)\S') # Pattern that matches `"key":" and puts `key` in group 0. _lowerCAmelCase : Any = re.compile(r'^\s*"([^"]+)":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. _lowerCAmelCase : List[Any] = re.compile(r'^\s*_import_structure\["([^"]+)"\]') # Pattern that matches `"key",` and puts `key` in group 0. _lowerCAmelCase : int = re.compile(r'^\s*"([^"]+)",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. _lowerCAmelCase : Optional[Any] = re.compile(r'\[([^\]]+)\]') def __UpperCamelCase ( _A : Union[str, Any] ) -> Dict: """simple docstring""" lowerCAmelCase : Any = _re_indent.search(_A ) return "" if search is None else search.groups()[0] def __UpperCamelCase ( _A : Dict , _A : Any="" , _A : List[str]=None , _A : Any=None ) -> Tuple: """simple docstring""" lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Tuple = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(_A ): index += 1 lowerCAmelCase : Optional[int] = ['\n'.join(lines[:index] )] else: lowerCAmelCase : int = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowerCAmelCase : Tuple = [lines[index]] index += 1 while index < len(_A ) and (end_prompt is None or not lines[index].startswith(_A )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(_A ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(_A ) ) if index < len(_A ) - 1: lowerCAmelCase : List[Any] = [lines[index + 1]] index += 1 else: lowerCAmelCase : int = [] else: blocks.append('\n'.join(_A ) ) lowerCAmelCase : Any = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(_A ) > 0: blocks.append('\n'.join(_A ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(_A ): blocks.append('\n'.join(lines[index:] ) ) return blocks def __UpperCamelCase ( _A : Dict ) -> List[Any]: """simple docstring""" def _inner(_A : Tuple ): return key(_A ).lower().replace('_' , '' ) return _inner def __UpperCamelCase ( _A : Union[str, Any] , _A : Any=None ) -> Optional[Any]: """simple docstring""" def noop(_A : Any ): return x if key is None: lowerCAmelCase : List[str] = noop # Constants are all uppercase, they go first. lowerCAmelCase : str = [obj for obj in objects if key(_A ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowerCAmelCase : List[str] = [obj for obj in objects if key(_A )[0].isupper() and not key(_A ).isupper()] # Functions begin with a lowercase, they go last. lowerCAmelCase : Optional[Any] = [obj for obj in objects if not key(_A )[0].isupper()] lowerCAmelCase : Tuple = ignore_underscore(_A ) return sorted(_A , key=_A ) + sorted(_A , key=_A ) + sorted(_A , key=_A ) def __UpperCamelCase ( _A : Union[str, Any] ) -> int: """simple docstring""" def _replace(_A : List[Any] ): lowerCAmelCase : List[Any] = match.groups()[0] if "," not in imports: return F"[{imports}]" lowerCAmelCase : Dict = [part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase : List[str] = keys[:-1] return "[" + ", ".join([F"\"{k}\"" for k in sort_objects(_A )] ) + "]" lowerCAmelCase : Optional[int] = import_statement.split('\n' ) if len(_A ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowerCAmelCase : Optional[Any] = 2 if lines[1].strip() == '[' else 1 lowerCAmelCase : List[str] = [(i, _re_strip_line.search(_A ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowerCAmelCase : Optional[Any] = sort_objects(_A , key=lambda _A : x[1] ) lowerCAmelCase : Dict = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(_A ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowerCAmelCase : Optional[int] = _re_bracket_content.sub(_replace , lines[1] ) else: lowerCAmelCase : List[Any] = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase : int = keys[:-1] lowerCAmelCase : Tuple = get_indent(lines[1] ) + ', '.join([F"\"{k}\"" for k in sort_objects(_A )] ) return "\n".join(_A ) else: # Finally we have to deal with imports fitting on one line lowerCAmelCase : Union[str, Any] = _re_bracket_content.sub(_replace , _A ) return import_statement def __UpperCamelCase ( _A : str , _A : Tuple=True ) -> Optional[Any]: """simple docstring""" with open(_A , 'r' ) as f: lowerCAmelCase : Optional[int] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowerCAmelCase : List[Any] = split_code_in_indented_blocks( _A , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(_A ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowerCAmelCase : List[str] = main_blocks[block_idx] lowerCAmelCase : Union[str, Any] = block.split('\n' ) # Get to the start of the imports. lowerCAmelCase : Optional[Any] = 0 while line_idx < len(_A ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowerCAmelCase : Optional[Any] = len(_A ) else: line_idx += 1 if line_idx >= len(_A ): continue # Ignore beginning and last line: they don't contain anything. lowerCAmelCase : str = '\n'.join(block_lines[line_idx:-1] ) lowerCAmelCase : str = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowerCAmelCase : Optional[Any] = split_code_in_indented_blocks(_A , indent_level=_A ) # We have two categories of import key: list or _import_structure[key].append/extend lowerCAmelCase : Union[str, Any] = _re_direct_key if '_import_structure' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowerCAmelCase : int = [(pattern.search(_A ).groups()[0] if pattern.search(_A ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowerCAmelCase : Dict = [(i, key) for i, key in enumerate(_A ) if key is not None] lowerCAmelCase : List[Any] = [x[0] for x in sorted(_A , key=lambda _A : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowerCAmelCase : int = 0 lowerCAmelCase : Dict = [] for i in range(len(_A ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: lowerCAmelCase : str = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(_A ) count += 1 # And we put our main block back together with its first and last line. lowerCAmelCase : str = '\n'.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(_A ): if check_only: return True else: print(F"Overwriting {file}." ) with open(_A , 'w' ) as f: f.write('\n'.join(_A ) ) def __UpperCamelCase ( _A : Tuple=True ) -> Any: """simple docstring""" lowerCAmelCase : Tuple = [] for root, _, files in os.walk(_A ): if "__init__.py" in files: lowerCAmelCase : Any = sort_imports(os.path.join(_A , '__init__.py' ) , check_only=_A ) if result: lowerCAmelCase : Optional[Any] = [os.path.join(_A , '__init__.py' )] if len(_A ) > 0: raise ValueError(F"Would overwrite {len(_A )} files, run `make style`." ) if __name__ == "__main__": _lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') _lowerCAmelCase : Optional[int] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
646
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase : int = { 'configuration_upernet': ['UperNetConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : str = [ 'UperNetForSemanticSegmentation', 'UperNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys _lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
646
'''simple docstring''' import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class lowerCAmelCase : def __init__( self , snake_case__ , snake_case__=13 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=99 , snake_case__=64 , snake_case__=32 , snake_case__=5 , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=16 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=3 , snake_case__=4 , snake_case__=None , ): lowerCAmelCase : str = parent lowerCAmelCase : Optional[int] = batch_size lowerCAmelCase : Optional[Any] = seq_length lowerCAmelCase : Optional[Any] = is_training lowerCAmelCase : Dict = use_input_mask lowerCAmelCase : Tuple = use_token_type_ids lowerCAmelCase : int = use_labels lowerCAmelCase : int = vocab_size lowerCAmelCase : Any = hidden_size lowerCAmelCase : Optional[Any] = embedding_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : List[str] = num_attention_heads lowerCAmelCase : List[Any] = intermediate_size lowerCAmelCase : Dict = hidden_act lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : int = attention_probs_dropout_prob lowerCAmelCase : List[Any] = max_position_embeddings lowerCAmelCase : int = type_vocab_size lowerCAmelCase : List[str] = type_sequence_label_size lowerCAmelCase : Dict = initializer_range lowerCAmelCase : Any = num_labels lowerCAmelCase : str = num_choices lowerCAmelCase : int = scope def lowercase ( self ): lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Union[str, Any] = None if self.use_input_mask: lowerCAmelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : Optional[int] = None if self.use_token_type_ids: lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : Optional[Any] = None lowerCAmelCase : Optional[Any] = None lowerCAmelCase : Dict = None if self.use_labels: lowerCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase ( self ): return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case__ , initializer_range=self.initializer_range , ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = MobileBertModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : int = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) lowerCAmelCase : Optional[int] = model(snake_case__ , token_type_ids=snake_case__ ) lowerCAmelCase : Optional[Any] = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : int = MobileBertForMaskedLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : str = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = MobileBertForNextSentencePrediction(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : str = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : List[Any] = MobileBertForPreTraining(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Tuple = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , next_sentence_label=snake_case__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = MobileBertForQuestionAnswering(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : List[str] = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = self.num_labels lowerCAmelCase : List[Any] = MobileBertForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = self.num_labels lowerCAmelCase : int = MobileBertForTokenClassification(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : List[str] = self.num_choices lowerCAmelCase : Any = MobileBertForMultipleChoice(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : int = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : List[str] = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase ( self ): lowerCAmelCase : Any = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) : Optional[Any] = config_and_inputs lowerCAmelCase : List[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase ( a , a , unittest.TestCase ): _lowerCamelCase : List[str] = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) _lowerCamelCase : Tuple = ( { """feature-extraction""": MobileBertModel, """fill-mask""": MobileBertForMaskedLM, """question-answering""": MobileBertForQuestionAnswering, """text-classification""": MobileBertForSequenceClassification, """token-classification""": MobileBertForTokenClassification, """zero-shot""": MobileBertForSequenceClassification, } if is_torch_available() else {} ) _lowerCamelCase : str = True def lowercase ( self , snake_case__ , snake_case__ , snake_case__=False ): lowerCAmelCase : int = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if return_labels: if model_class in get_values(snake_case__ ): lowerCAmelCase : str = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=snake_case__ ) lowerCAmelCase : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case__ ) return inputs_dict def lowercase ( self ): lowerCAmelCase : List[Any] = MobileBertModelTester(self ) lowerCAmelCase : Dict = ConfigTester(self , config_class=snake_case__ , hidden_size=37 ) def lowercase ( self ): self.config_tester.run_common_tests() def lowercase ( self ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*snake_case__ ) def __UpperCamelCase ( _A : Optional[Any] ) -> Optional[int]: """simple docstring""" return torch.tensor( _A , dtype=torch.long , device=_A , ) _lowerCAmelCase : Union[str, Any] = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase ( unittest.TestCase ): @slow def lowercase ( self ): lowerCAmelCase : List[str] = MobileBertModel.from_pretrained('google/mobilebert-uncased' ).to(snake_case__ ) lowerCAmelCase : List[Any] = _long_tensor([[101, 7110, 1005, 1056, 2023, 1_1333, 1_7413, 1029, 102]] ) with torch.no_grad(): lowerCAmelCase : Tuple = model(snake_case__ )[0] lowerCAmelCase : List[Any] = torch.Size((1, 9, 512) ) self.assertEqual(output.shape , snake_case__ ) lowerCAmelCase : Union[str, Any] = torch.tensor( [ [ [-2.4_7_3_6_5_2_6e0_7, 8.2_6_9_1_6_5_6e0_4, 1.6_5_2_1_8_3_8e0_5], [-5.7_5_4_1_7_0_4e-0_1, 3.9_0_5_6_0_2_2e0_0, 4.4_0_1_1_5_0_7e0_0], [2.6_0_4_7_3_5_9e0_0, 1.5_6_7_7_6_5_2e0_0, -1.7_3_2_4_1_8_8e-0_1], ] ] , device=snake_case__ , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE lowerCAmelCase : List[str] = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) lowerCAmelCase : Dict = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
646
1
'''simple docstring''' import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCAmelCase : def __init__( self , snake_case__ , snake_case__=13 , snake_case__=[30, 30] , snake_case__=2 , snake_case__=3 , snake_case__=True , snake_case__=True , snake_case__=32 , snake_case__=5 , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=10 , snake_case__=0.0_2 , snake_case__=3 , snake_case__=None , snake_case__=8 , snake_case__=10 , ): lowerCAmelCase : str = parent lowerCAmelCase : Tuple = batch_size lowerCAmelCase : List[Any] = image_size lowerCAmelCase : List[Any] = patch_size lowerCAmelCase : Dict = num_channels lowerCAmelCase : int = is_training lowerCAmelCase : Optional[Any] = use_labels lowerCAmelCase : Optional[int] = hidden_size lowerCAmelCase : List[Any] = num_hidden_layers lowerCAmelCase : int = num_attention_heads lowerCAmelCase : Any = intermediate_size lowerCAmelCase : Union[str, Any] = hidden_act lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : Optional[int] = attention_probs_dropout_prob lowerCAmelCase : Optional[Any] = type_sequence_label_size lowerCAmelCase : Any = initializer_range lowerCAmelCase : str = num_labels lowerCAmelCase : Any = scope lowerCAmelCase : Dict = n_targets lowerCAmelCase : Tuple = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens lowerCAmelCase : List[Any] = (image_size[1] // patch_size) * (image_size[0] // patch_size) lowerCAmelCase : int = num_patches + 1 + self.num_detection_tokens def lowercase ( self ): lowerCAmelCase : str = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) lowerCAmelCase : int = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) lowerCAmelCase : Optional[int] = [] for i in range(self.batch_size ): lowerCAmelCase : Tuple = {} lowerCAmelCase : Dict = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=snake_case__ ) lowerCAmelCase : List[str] = torch.rand(self.n_targets , 4 , device=snake_case__ ) labels.append(snake_case__ ) lowerCAmelCase : Any = self.get_config() return config, pixel_values, labels def lowercase ( self ): return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case__ , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Any = YolosModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : List[Any] = model(snake_case__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = YolosForObjectDetection(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Union[str, Any] = model(pixel_values=snake_case__ ) lowerCAmelCase : Dict = model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) lowerCAmelCase : str = model(pixel_values=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def lowercase ( self ): lowerCAmelCase : List[str] = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[int] = config_and_inputs lowerCAmelCase : Dict = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase ( a , a , unittest.TestCase ): _lowerCamelCase : str = (YolosModel, YolosForObjectDetection) if is_torch_available() else () _lowerCamelCase : str = ( {"""feature-extraction""": YolosModel, """object-detection""": YolosForObjectDetection} if is_torch_available() else {} ) _lowerCamelCase : Optional[int] = False _lowerCamelCase : Dict = False _lowerCamelCase : Optional[Any] = False _lowerCamelCase : Union[str, Any] = False def lowercase ( self , snake_case__ , snake_case__ , snake_case__=False ): lowerCAmelCase : Any = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": lowerCAmelCase : Optional[Any] = [] for i in range(self.model_tester.batch_size ): lowerCAmelCase : List[str] = {} lowerCAmelCase : Tuple = torch.ones( size=(self.model_tester.n_targets,) , device=snake_case__ , dtype=torch.long ) lowerCAmelCase : Any = torch.ones( self.model_tester.n_targets , 4 , device=snake_case__ , dtype=torch.float ) labels.append(snake_case__ ) lowerCAmelCase : str = labels return inputs_dict def lowercase ( self ): lowerCAmelCase : int = YolosModelTester(self ) lowerCAmelCase : Optional[Any] = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=37 ) def lowercase ( self ): self.config_tester.run_common_tests() def lowercase ( self ): # YOLOS does not use inputs_embeds pass def lowercase ( self ): lowerCAmelCase , lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Union[str, Any] = model_class(snake_case__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCAmelCase : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case__ , nn.Linear ) ) def lowercase ( self ): lowerCAmelCase , lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : List[Any] = model_class(snake_case__ ) lowerCAmelCase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase : Optional[Any] = [*signature.parameters.keys()] lowerCAmelCase : Any = ['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def lowercase ( self ): lowerCAmelCase , lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : Union[str, Any] = True # in YOLOS, the seq_len is different lowerCAmelCase : Any = self.model_tester.expected_seq_len for model_class in self.all_model_classes: lowerCAmelCase : List[str] = True lowerCAmelCase : Optional[Any] = False lowerCAmelCase : int = True lowerCAmelCase : Dict = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): lowerCAmelCase : Optional[Any] = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) lowerCAmelCase : Any = outputs.attentions self.assertEqual(len(snake_case__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCAmelCase : str = True lowerCAmelCase : List[str] = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): lowerCAmelCase : Optional[int] = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) lowerCAmelCase : Any = outputs.attentions self.assertEqual(len(snake_case__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowerCAmelCase : Optional[int] = len(snake_case__ ) # Check attention is always last and order is fine lowerCAmelCase : Tuple = True lowerCAmelCase : Any = True lowerCAmelCase : Any = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): lowerCAmelCase : List[str] = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) lowerCAmelCase : Dict = 1 self.assertEqual(out_len + added_hidden_states , len(snake_case__ ) ) lowerCAmelCase : Optional[Any] = outputs.attentions self.assertEqual(len(snake_case__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def lowercase ( self ): def check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): lowerCAmelCase : str = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) lowerCAmelCase : Optional[Any] = outputs.hidden_states lowerCAmelCase : Dict = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(snake_case__ ) , snake_case__ ) # YOLOS has a different seq_length lowerCAmelCase : Union[str, Any] = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowerCAmelCase , lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Any = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase : Dict = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*snake_case__ ) @slow def lowercase ( self ): for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : List[Any] = YolosModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def __UpperCamelCase ( ) -> Dict: """simple docstring""" lowerCAmelCase : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowerCAmelCase ( unittest.TestCase ): @cached_property def lowercase ( self ): return AutoImageProcessor.from_pretrained('hustvl/yolos-small' ) if is_vision_available() else None @slow def lowercase ( self ): lowerCAmelCase : Optional[int] = YolosForObjectDetection.from_pretrained('hustvl/yolos-small' ).to(snake_case__ ) lowerCAmelCase : Optional[Any] = self.default_image_processor lowerCAmelCase : List[Any] = prepare_img() lowerCAmelCase : List[Any] = image_processor(images=snake_case__ , return_tensors='pt' ).to(snake_case__ ) # forward pass with torch.no_grad(): lowerCAmelCase : Optional[int] = model(inputs.pixel_values ) # verify outputs lowerCAmelCase : Optional[Any] = torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape , snake_case__ ) lowerCAmelCase : Any = torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] , device=snake_case__ , ) lowerCAmelCase : Dict = torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] , device=snake_case__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , snake_case__ , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , snake_case__ , atol=1e-4 ) ) # verify postprocessing lowerCAmelCase : Tuple = image_processor.post_process_object_detection( snake_case__ , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] lowerCAmelCase : Dict = torch.tensor([0.9_9_9_4, 0.9_7_9_0, 0.9_9_6_4, 0.9_9_7_2, 0.9_8_6_1] ).to(snake_case__ ) lowerCAmelCase : int = [75, 75, 17, 63, 17] lowerCAmelCase : str = torch.tensor([3_3_5.0_6_0_9, 7_9.3_8_4_8, 3_7_5.4_2_1_6, 1_8_7.2_4_9_5] ).to(snake_case__ ) self.assertEqual(len(results['scores'] ) , 5 ) self.assertTrue(torch.allclose(results['scores'] , snake_case__ , atol=1e-4 ) ) self.assertSequenceEqual(results['labels'].tolist() , snake_case__ ) self.assertTrue(torch.allclose(results['boxes'][0, :] , snake_case__ ) )
646
'''simple docstring''' import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __UpperCamelCase ( _A : Dict ) -> int: """simple docstring""" lowerCAmelCase : Tuple = [] embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight", F"stage{idx}.patch_embed.proj.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias", F"stage{idx}.patch_embed.proj.bias", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight", F"stage{idx}.patch_embed.norm.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias", F"stage{idx}.patch_embed.norm.bias", ) ) return embed def __UpperCamelCase ( _A : List[Any] , _A : Dict ) -> Any: """simple docstring""" lowerCAmelCase : str = [] attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight", F"stage{idx}.blocks.{cnt}.attn.proj_q.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias", F"stage{idx}.blocks.{cnt}.attn.proj_q.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight", F"stage{idx}.blocks.{cnt}.attn.proj_k.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias", F"stage{idx}.blocks.{cnt}.attn.proj_k.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight", F"stage{idx}.blocks.{cnt}.attn.proj_v.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias", F"stage{idx}.blocks.{cnt}.attn.proj_v.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight", F"stage{idx}.blocks.{cnt}.attn.proj.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias", F"stage{idx}.blocks.{cnt}.attn.proj.bias", ) ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc2.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight", F"stage{idx}.blocks.{cnt}.norm1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias", F"stage{idx}.blocks.{cnt}.norm1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight", F"stage{idx}.blocks.{cnt}.norm2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias", F"stage{idx}.blocks.{cnt}.norm2.bias") ) return attention_weights def __UpperCamelCase ( _A : Optional[int] ) -> Optional[int]: """simple docstring""" lowerCAmelCase : Optional[int] = [] token.append((F"cvt.encoder.stages.{idx}.cls_token", 'stage2.cls_token') ) return token def __UpperCamelCase ( ) -> int: """simple docstring""" lowerCAmelCase : List[Any] = [] head.append(('layernorm.weight', 'norm.weight') ) head.append(('layernorm.bias', 'norm.bias') ) head.append(('classifier.weight', 'head.weight') ) head.append(('classifier.bias', 'head.bias') ) return head def __UpperCamelCase ( _A : str , _A : Optional[Any] , _A : Dict , _A : str ) -> Optional[int]: """simple docstring""" lowerCAmelCase : List[str] = 'imagenet-1k-id2label.json' lowerCAmelCase : Tuple = 10_00 lowerCAmelCase : str = 'huggingface/label-files' lowerCAmelCase : List[Any] = num_labels lowerCAmelCase : Any = json.load(open(cached_download(hf_hub_url(_A , _A , repo_type='dataset' ) ) , 'r' ) ) lowerCAmelCase : List[str] = {int(_A ): v for k, v in idalabel.items()} lowerCAmelCase : List[str] = idalabel lowerCAmelCase : str = {v: k for k, v in idalabel.items()} lowerCAmelCase : int = CvtConfig(num_labels=_A , idalabel=_A , labelaid=_A ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13": lowerCAmelCase : List[str] = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21": lowerCAmelCase : Tuple = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: lowerCAmelCase : Any = [2, 2, 20] lowerCAmelCase : List[str] = [3, 12, 16] lowerCAmelCase : List[Any] = [1_92, 7_68, 10_24] lowerCAmelCase : Union[str, Any] = CvtForImageClassification(_A ) lowerCAmelCase : str = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) lowerCAmelCase : Optional[Any] = image_size lowerCAmelCase : List[Any] = torch.load(_A , map_location=torch.device('cpu' ) ) lowerCAmelCase : str = OrderedDict() lowerCAmelCase : int = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: lowerCAmelCase : List[str] = list_of_state_dict + cls_token(_A ) lowerCAmelCase : Optional[Any] = list_of_state_dict + embeddings(_A ) for cnt in range(config.depth[idx] ): lowerCAmelCase : List[Any] = list_of_state_dict + attention(_A , _A ) lowerCAmelCase : List[str] = list_of_state_dict + final() for gg in list_of_state_dict: print(_A ) for i in range(len(_A ) ): lowerCAmelCase : Tuple = original_weights[list_of_state_dict[i][1]] model.load_state_dict(_A ) model.save_pretrained(_A ) image_processor.save_pretrained(_A ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": _lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '--cvt_model', default='cvt-w24', type=str, help='Name of the cvt model you\'d like to convert.', ) parser.add_argument( '--image_size', default=384, type=int, help='Input Image Size', ) parser.add_argument( '--cvt_file_name', default=r'cvtmodels\CvT-w24-384x384-IN-22k.pth', type=str, help='Input Image Size', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) _lowerCAmelCase : str = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
646
1
'''simple docstring''' def __UpperCamelCase ( _A : int ) -> int: """simple docstring""" if not isinstance(_A , _A ): raise ValueError('multiplicative_persistence() only accepts integral values' ) if num < 0: raise ValueError('multiplicative_persistence() does not accept negative values' ) lowerCAmelCase : Optional[Any] = 0 lowerCAmelCase : str = str(_A ) while len(_A ) != 1: lowerCAmelCase : int = [int(_A ) for i in num_string] lowerCAmelCase : List[str] = 1 for i in range(0 , len(_A ) ): total *= numbers[i] lowerCAmelCase : Any = str(_A ) steps += 1 return steps def __UpperCamelCase ( _A : int ) -> int: """simple docstring""" if not isinstance(_A , _A ): raise ValueError('additive_persistence() only accepts integral values' ) if num < 0: raise ValueError('additive_persistence() does not accept negative values' ) lowerCAmelCase : int = 0 lowerCAmelCase : Optional[Any] = str(_A ) while len(_A ) != 1: lowerCAmelCase : str = [int(_A ) for i in num_string] lowerCAmelCase : List[Any] = 0 for i in range(0 , len(_A ) ): total += numbers[i] lowerCAmelCase : Any = str(_A ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
646
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Any = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { 'xlm-roberta-base': 'https://huggingface.co/xlm-roberta-base/resolve/main/config.json', 'xlm-roberta-large': 'https://huggingface.co/xlm-roberta-large/resolve/main/config.json', 'xlm-roberta-large-finetuned-conll02-dutch': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll02-spanish': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-english': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-german': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json' ), } class lowerCAmelCase ( a ): _lowerCamelCase : List[str] = """xlm-roberta""" def __init__( self , snake_case__=3_0522 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=1e-1_2 , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__="absolute" , snake_case__=True , snake_case__=None , **snake_case__ , ): super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) lowerCAmelCase : Optional[Any] = vocab_size lowerCAmelCase : Optional[Any] = hidden_size lowerCAmelCase : Optional[Any] = num_hidden_layers lowerCAmelCase : Any = num_attention_heads lowerCAmelCase : Optional[int] = hidden_act lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : Dict = hidden_dropout_prob lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob lowerCAmelCase : Optional[Any] = max_position_embeddings lowerCAmelCase : Optional[int] = type_vocab_size lowerCAmelCase : int = initializer_range lowerCAmelCase : List[Any] = layer_norm_eps lowerCAmelCase : Union[str, Any] = position_embedding_type lowerCAmelCase : Union[str, Any] = use_cache lowerCAmelCase : List[str] = classifier_dropout class lowerCAmelCase ( a ): @property def lowercase ( self ): if self.task == "multiple-choice": lowerCAmelCase : str = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase : Optional[int] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
646
1
'''simple docstring''' from __future__ import annotations def __UpperCamelCase ( _A : list[int | str] ) -> None: """simple docstring""" create_state_space_tree(_A , [] , 0 , [0 for i in range(len(_A ) )] ) def __UpperCamelCase ( _A : list[int | str] , _A : list[int | str] , _A : int , _A : list[int] , ) -> None: """simple docstring""" if index == len(_A ): print(_A ) return for i in range(len(_A ) ): if not index_used[i]: current_sequence.append(sequence[i] ) lowerCAmelCase : List[Any] = True create_state_space_tree(_A , _A , index + 1 , _A ) current_sequence.pop() lowerCAmelCase : Tuple = False _lowerCAmelCase : list[int | str] = [3, 1, 2, 4] generate_all_permutations(sequence) _lowerCAmelCase : list[int | str] = ["A", "B", "C"] generate_all_permutations(sequence_a)
646
'''simple docstring''' import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer _lowerCAmelCase : List[Any] = logging.getLogger(__name__) def __UpperCamelCase ( ) -> Any: """simple docstring""" lowerCAmelCase : str = argparse.ArgumentParser( description='Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.' ) parser.add_argument( '--dataset_name' , type=_A , default='wikitext' , help='Name of the training. Explore datasets at: hf.co/datasets.' , ) parser.add_argument( '--dataset_config' , type=_A , default='wikitext-103-raw-v1' , help='Configuration name of the dataset.' ) parser.add_argument( '--tokenizer_name_or_path' , type=_A , default='sayakpaul/unigram-tokenizer-wikitext' , help='Tokenizer identifier. Can be a local filepath or a Hub identifier.' , ) parser.add_argument( '--shard_size' , type=_A , default=10_00 , help='Number of entries to go in a single shard.' , ) parser.add_argument('--split' , type=_A , default='train' , choices=['train', 'test', 'validation'] ) parser.add_argument( '--limit' , default=_A , type=_A , help='Limit the number of shards (used for debugging).' , ) parser.add_argument( '--max_length' , type=_A , default=5_12 , help='Maximum sequence length. For training on TPUs, it helps to have a maximum' ' sequence length that is a multiple of 8.' , ) parser.add_argument( '--output_dir' , default='tf-tpu' , type=_A , help='Output directory where the TFRecord shards will be saved. If the' ' path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord' ' shards will be directly saved to a Google Cloud Storage bucket.' , ) lowerCAmelCase : Any = parser.parse_args() return args def __UpperCamelCase ( _A : Optional[int] ) -> int: """simple docstring""" def fn(_A : Tuple ): return tokenizer(examples['text'] ) return fn def __UpperCamelCase ( _A : int ) -> int: """simple docstring""" lowerCAmelCase : Tuple = [] for i in range(len(tokenized_data['input_ids'] ) ): lowerCAmelCase : Optional[Any] = { 'input_ids': tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data['input_ids'][i] ) ), 'attention_mask': tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data['attention_mask'][i] ) ), } lowerCAmelCase : Any = tf.train.Features(feature=_A ) lowerCAmelCase : List[str] = tf.train.Example(features=_A ) lowerCAmelCase : Tuple = example.SerializeToString() records.append(_A ) return records def __UpperCamelCase ( _A : int ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase : Union[str, Any] = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: lowerCAmelCase : Optional[Any] = min(len(_A ) , args.limit ) lowerCAmelCase : Dict = dataset.select(range(_A ) ) print(F"Limiting the dataset to {args.limit} entries." ) lowerCAmelCase : str = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) lowerCAmelCase : Any = os.path.join(args.output_dir , args.split ) if not os.path.exists(_A ): os.makedirs(_A ) else: lowerCAmelCase : List[Any] = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. lowerCAmelCase : Any = tokenize_function(_A ) lowerCAmelCase : Optional[int] = dataset.map(_A , batched=_A , num_proc=4 , remove_columns=['text'] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(_A : str ): # Concatenate all texts. lowerCAmelCase : Optional[int] = {k: sum(examples[k] , [] ) for k in examples.keys()} lowerCAmelCase : str = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 lowerCAmelCase : List[Any] = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. lowerCAmelCase : str = { k: [t[i : i + args.max_length] for i in range(0 , _A , args.max_length )] for k, t in concatenated_examples.items() } return result lowerCAmelCase : List[Any] = dataset_tokenized.map(_A , batched=_A , batch_size=10_00 , num_proc=4 ) lowerCAmelCase : Union[str, Any] = 0 lowerCAmelCase : Tuple = 0 for shard in range(0 , len(_A ) , args.shard_size ): lowerCAmelCase : Optional[Any] = grouped_dataset[shard : shard + args.shard_size] lowerCAmelCase : List[str] = len(dataset_snapshot['input_ids'] ) lowerCAmelCase : Union[str, Any] = os.path.join(_A , F"dataset-{shard_count}-{records_containing}.tfrecord" ) lowerCAmelCase : List[Any] = get_serialized_examples(_A ) with tf.io.TFRecordWriter(_A ) as out_file: for i in range(len(_A ) ): lowerCAmelCase : Union[str, Any] = serialized_examples[i] out_file.write(_A ) print('Wrote file {} containing {} records'.format(_A , _A ) ) shard_count += 1 total_records += records_containing with open(F"split-{args.split}-records-count.txt" , 'w' ) as f: print(F"Total {args.split} records: {total_records}" , file=_A ) if __name__ == "__main__": _lowerCAmelCase : List[Any] = parse_args() main(args)
646
1
'''simple docstring''' import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available _lowerCAmelCase : Tuple = logging.getLogger(__name__) @dataclass class lowerCAmelCase : _lowerCamelCase : str _lowerCamelCase : List[str] _lowerCamelCase : Optional[List[str]] @dataclass class lowerCAmelCase : _lowerCamelCase : List[int] _lowerCamelCase : List[int] _lowerCamelCase : Optional[List[int]] = None _lowerCamelCase : Optional[List[int]] = None class lowerCAmelCase ( a ): _lowerCamelCase : List[str] = """train""" _lowerCamelCase : Optional[int] = """dev""" _lowerCamelCase : Tuple = """test""" class lowerCAmelCase : @staticmethod def lowercase ( snake_case__ , snake_case__ ): raise NotImplementedError @staticmethod def lowercase ( snake_case__ ): raise NotImplementedError @staticmethod def lowercase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=False , snake_case__="[CLS]" , snake_case__=1 , snake_case__="[SEP]" , snake_case__=False , snake_case__=False , snake_case__=0 , snake_case__=0 , snake_case__=-100 , snake_case__=0 , snake_case__=True , ): lowerCAmelCase : Optional[int] = {label: i for i, label in enumerate(snake_case__ )} lowerCAmelCase : Tuple = [] for ex_index, example in enumerate(snake_case__ ): if ex_index % 1_0000 == 0: logger.info('Writing example %d of %d' , snake_case__ , len(snake_case__ ) ) lowerCAmelCase : Dict = [] lowerCAmelCase : Union[str, Any] = [] for word, label in zip(example.words , example.labels ): lowerCAmelCase : Any = tokenizer.tokenize(snake_case__ ) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(snake_case__ ) > 0: tokens.extend(snake_case__ ) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(snake_case__ ) - 1) ) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. lowerCAmelCase : Optional[int] = tokenizer.num_special_tokens_to_add() if len(snake_case__ ) > max_seq_length - special_tokens_count: lowerCAmelCase : Optional[Any] = tokens[: (max_seq_length - special_tokens_count)] lowerCAmelCase : List[Any] = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] lowerCAmelCase : Optional[Any] = [sequence_a_segment_id] * len(snake_case__ ) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: lowerCAmelCase : List[str] = [cls_token] + tokens lowerCAmelCase : List[str] = [pad_token_label_id] + label_ids lowerCAmelCase : List[str] = [cls_token_segment_id] + segment_ids lowerCAmelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(snake_case__ ) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. lowerCAmelCase : Dict = [1 if mask_padding_with_zero else 0] * len(snake_case__ ) # Zero-pad up to the sequence length. lowerCAmelCase : Any = max_seq_length - len(snake_case__ ) if pad_on_left: lowerCAmelCase : Union[str, Any] = ([pad_token] * padding_length) + input_ids lowerCAmelCase : Tuple = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask lowerCAmelCase : Union[str, Any] = ([pad_token_segment_id] * padding_length) + segment_ids lowerCAmelCase : Any = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(snake_case__ ) == max_seq_length assert len(snake_case__ ) == max_seq_length assert len(snake_case__ ) == max_seq_length assert len(snake_case__ ) == max_seq_length if ex_index < 5: logger.info('*** Example ***' ) logger.info('guid: %s' , example.guid ) logger.info('tokens: %s' , ' '.join([str(snake_case__ ) for x in tokens] ) ) logger.info('input_ids: %s' , ' '.join([str(snake_case__ ) for x in input_ids] ) ) logger.info('input_mask: %s' , ' '.join([str(snake_case__ ) for x in input_mask] ) ) logger.info('segment_ids: %s' , ' '.join([str(snake_case__ ) for x in segment_ids] ) ) logger.info('label_ids: %s' , ' '.join([str(snake_case__ ) for x in label_ids] ) ) if "token_type_ids" not in tokenizer.model_input_names: lowerCAmelCase : Optional[Any] = None features.append( InputFeatures( input_ids=snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , label_ids=snake_case__ ) ) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class lowerCAmelCase ( a ): _lowerCamelCase : List[InputFeatures] _lowerCamelCase : int = nn.CrossEntropyLoss().ignore_index def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , snake_case__=False , snake_case__ = Split.train , ): # Load data features from cache or dataset file lowerCAmelCase : List[Any] = os.path.join( snake_case__ , 'cached_{}_{}_{}'.format(mode.value , tokenizer.__class__.__name__ , str(snake_case__ ) ) , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCAmelCase : str = cached_features_file + '.lock' with FileLock(snake_case__ ): if os.path.exists(snake_case__ ) and not overwrite_cache: logger.info(f"Loading features from cached file {cached_features_file}" ) lowerCAmelCase : Any = torch.load(snake_case__ ) else: logger.info(f"Creating features from dataset file at {data_dir}" ) lowerCAmelCase : Union[str, Any] = token_classification_task.read_examples_from_file(snake_case__ , snake_case__ ) # TODO clean up all this to leverage built-in features of tokenizers lowerCAmelCase : str = token_classification_task.convert_examples_to_features( snake_case__ , snake_case__ , snake_case__ , snake_case__ , cls_token_at_end=bool(model_type in ['xlnet'] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['xlnet'] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=snake_case__ , pad_on_left=bool(tokenizer.padding_side == 'left' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info(f"Saving features into cached file {cached_features_file}" ) torch.save(self.features , snake_case__ ) def __len__( self ): return len(self.features ) def __getitem__( self , snake_case__ ): return self.features[i] if is_tf_available(): import tensorflow as tf class lowerCAmelCase : _lowerCamelCase : List[InputFeatures] _lowerCamelCase : int = -100 def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , snake_case__=False , snake_case__ = Split.train , ): lowerCAmelCase : Any = token_classification_task.read_examples_from_file(snake_case__ , snake_case__ ) # TODO clean up all this to leverage built-in features of tokenizers lowerCAmelCase : Dict = token_classification_task.convert_examples_to_features( snake_case__ , snake_case__ , snake_case__ , snake_case__ , cls_token_at_end=bool(model_type in ['xlnet'] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['xlnet'] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=snake_case__ , pad_on_left=bool(tokenizer.padding_side == 'left' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: lowerCAmelCase : List[Any] = tf.data.Dataset.from_generator( snake_case__ , ({'input_ids': tf.intaa, 'attention_mask': tf.intaa}, tf.intaa) , ( {'input_ids': tf.TensorShape([None] ), 'attention_mask': tf.TensorShape([None] )}, tf.TensorShape([None] ), ) , ) else: lowerCAmelCase : Tuple = tf.data.Dataset.from_generator( snake_case__ , ({'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa}, tf.intaa) , ( { 'input_ids': tf.TensorShape([None] ), 'attention_mask': tf.TensorShape([None] ), 'token_type_ids': tf.TensorShape([None] ), }, tf.TensorShape([None] ), ) , ) def lowercase ( self ): lowerCAmelCase : List[str] = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) ) return self.dataset def __len__( self ): return len(self.features ) def __getitem__( self , snake_case__ ): return self.features[i]
646
'''simple docstring''' import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() _lowerCAmelCase : List[str] = logging.get_logger('transformers.models.speecht5') def __UpperCamelCase ( _A : Any , _A : Dict , _A : Any ) -> Union[str, Any]: """simple docstring""" hf_model.apply_weight_norm() lowerCAmelCase : int = checkpoint['input_conv.weight_g'] lowerCAmelCase : Optional[int] = checkpoint['input_conv.weight_v'] lowerCAmelCase : Dict = checkpoint['input_conv.bias'] for i in range(len(config.upsample_rates ) ): lowerCAmelCase : Optional[Any] = checkpoint[F"upsamples.{i}.1.weight_g"] lowerCAmelCase : str = checkpoint[F"upsamples.{i}.1.weight_v"] lowerCAmelCase : str = checkpoint[F"upsamples.{i}.1.bias"] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): lowerCAmelCase : int = checkpoint[F"blocks.{i}.convs1.{j}.1.weight_g"] lowerCAmelCase : str = checkpoint[F"blocks.{i}.convs1.{j}.1.weight_v"] lowerCAmelCase : int = checkpoint[F"blocks.{i}.convs1.{j}.1.bias"] lowerCAmelCase : Optional[Any] = checkpoint[F"blocks.{i}.convs2.{j}.1.weight_g"] lowerCAmelCase : Tuple = checkpoint[F"blocks.{i}.convs2.{j}.1.weight_v"] lowerCAmelCase : Tuple = checkpoint[F"blocks.{i}.convs2.{j}.1.bias"] lowerCAmelCase : List[Any] = checkpoint['output_conv.1.weight_g'] lowerCAmelCase : List[str] = checkpoint['output_conv.1.weight_v'] lowerCAmelCase : Optional[Any] = checkpoint['output_conv.1.bias'] hf_model.remove_weight_norm() @torch.no_grad() def __UpperCamelCase ( _A : Dict , _A : Union[str, Any] , _A : List[Any] , _A : Any=None , _A : Any=None , ) -> Dict: """simple docstring""" if config_path is not None: lowerCAmelCase : Dict = SpeechTaHifiGanConfig.from_pretrained(_A ) else: lowerCAmelCase : Union[str, Any] = SpeechTaHifiGanConfig() lowerCAmelCase : List[Any] = SpeechTaHifiGan(_A ) lowerCAmelCase : List[str] = torch.load(_A ) load_weights(orig_checkpoint['model']['generator'] , _A , _A ) lowerCAmelCase : Tuple = np.load(_A ) lowerCAmelCase : List[Any] = stats[0].reshape(-1 ) lowerCAmelCase : int = stats[1].reshape(-1 ) lowerCAmelCase : Union[str, Any] = torch.from_numpy(_A ).float() lowerCAmelCase : int = torch.from_numpy(_A ).float() model.save_pretrained(_A ) if repo_id: print('Pushing to the hub...' ) model.push_to_hub(_A ) if __name__ == "__main__": _lowerCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--stats_path', required=True, default=None, type=str, help='Path to stats.npy file') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) _lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
646
1
'''simple docstring''' import re def __UpperCamelCase ( _A : str ) -> bool: """simple docstring""" lowerCAmelCase : Tuple = re.compile(r'^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$' ) if match := re.search(_A , _A ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator('+918827897895'))
646
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets _lowerCAmelCase : Dict = '\\n@inproceedings{popovic-2015-chrf,\n title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",\n month = sep,\n year = "2015",\n address = "Lisbon, Portugal",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W15-3049",\n doi = "10.18653/v1/W15-3049",\n pages = "392--395",\n}\n@inproceedings{popovic-2017-chrf,\n title = "chr{F}++: words helping character n-grams",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Second Conference on Machine Translation",\n month = sep,\n year = "2017",\n address = "Copenhagen, Denmark",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W17-4770",\n doi = "10.18653/v1/W17-4770",\n pages = "612--618",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' _lowerCAmelCase : Optional[Any] = '\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n' _lowerCAmelCase : List[Any] = '\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n \'score\' (float): The chrF (chrF++) score,\n \'char_order\' (int): The character n-gram order,\n \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n \'beta\' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase ( datasets.Metric ): def lowercase ( self ): if version.parse(scb.__version__ ) < version.parse('1.4.12' ): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/mjpost/sacreBLEU#chrf--chrf' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/mjpost/sacreBLEU#chrf--chrf'] , reference_urls=[ 'https://github.com/m-popovic/chrF', ] , ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ = CHRF.CHAR_ORDER , snake_case__ = CHRF.WORD_ORDER , snake_case__ = CHRF.BETA , snake_case__ = False , snake_case__ = False , snake_case__ = False , ): lowerCAmelCase : List[str] = len(references[0] ) if any(len(snake_case__ ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) lowerCAmelCase : List[str] = [[refs[i] for refs in references] for i in range(snake_case__ )] lowerCAmelCase : Union[str, Any] = CHRF(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase : Dict = sb_chrf.corpus_score(snake_case__ , snake_case__ ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
646
1
'''simple docstring''' import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class lowerCAmelCase ( unittest.TestCase ): _lowerCamelCase : Tuple = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def lowercase ( self , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : List[str] = hf_hub_download( repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' ) lowerCAmelCase : Union[str, Any] = VideoClassificationPipeline(model=snake_case__ , image_processor=snake_case__ , top_k=2 ) lowerCAmelCase : Any = [ example_video_filepath, 'https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4', ] return video_classifier, examples def lowercase ( self , snake_case__ , snake_case__ ): for example in examples: lowerCAmelCase : Any = video_classifier(snake_case__ ) self.assertEqual( snake_case__ , [ {'score': ANY(snake_case__ ), 'label': ANY(snake_case__ )}, {'score': ANY(snake_case__ ), 'label': ANY(snake_case__ )}, ] , ) @require_torch def lowercase ( self ): lowerCAmelCase : Optional[Any] = 'hf-internal-testing/tiny-random-VideoMAEForVideoClassification' lowerCAmelCase : List[Any] = VideoMAEFeatureExtractor( size={'shortest_edge': 10} , crop_size={'height': 10, 'width': 10} ) lowerCAmelCase : Dict = pipeline( 'video-classification' , model=snake_case__ , feature_extractor=snake_case__ , frame_sampling_rate=4 ) lowerCAmelCase : str = hf_hub_download(repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' ) lowerCAmelCase : Tuple = video_classifier(snake_case__ , top_k=2 ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [{'score': 0.5_1_9_9, 'label': 'LABEL_0'}, {'score': 0.4_8_0_1, 'label': 'LABEL_1'}] , ) lowerCAmelCase : Any = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ [{'score': 0.5_1_9_9, 'label': 'LABEL_0'}, {'score': 0.4_8_0_1, 'label': 'LABEL_1'}], [{'score': 0.5_1_9_9, 'label': 'LABEL_0'}, {'score': 0.4_8_0_1, 'label': 'LABEL_1'}], ] , ) @require_tf def lowercase ( self ): pass
646
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : str = logging.get_logger(__name__) _lowerCAmelCase : Tuple = { 's-JoL/Open-Llama-V1': 'https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json', } class lowerCAmelCase ( a ): _lowerCamelCase : Union[str, Any] = """open-llama""" def __init__( self , snake_case__=10_0000 , snake_case__=4096 , snake_case__=1_1008 , snake_case__=32 , snake_case__=32 , snake_case__="silu" , snake_case__=2048 , snake_case__=0.0_2 , snake_case__=1e-6 , snake_case__=True , snake_case__=0 , snake_case__=1 , snake_case__=2 , snake_case__=False , snake_case__=True , snake_case__=0.1 , snake_case__=0.1 , snake_case__=True , snake_case__=True , snake_case__=None , **snake_case__ , ): lowerCAmelCase : Tuple = vocab_size lowerCAmelCase : Optional[Any] = max_position_embeddings lowerCAmelCase : List[Any] = hidden_size lowerCAmelCase : List[Any] = intermediate_size lowerCAmelCase : Tuple = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : str = rms_norm_eps lowerCAmelCase : Optional[int] = use_cache lowerCAmelCase : Dict = kwargs.pop( 'use_memorry_efficient_attention' , snake_case__ ) lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : Optional[Any] = attention_dropout_prob lowerCAmelCase : Union[str, Any] = use_stable_embedding lowerCAmelCase : Tuple = shared_input_output_embedding lowerCAmelCase : Tuple = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , tie_word_embeddings=snake_case__ , **snake_case__ , ) def lowercase ( self ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , snake_case__ ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' f"got {self.rope_scaling}" ) lowerCAmelCase : List[Any] = self.rope_scaling.get('type' , snake_case__ ) lowerCAmelCase : List[str] = self.rope_scaling.get('factor' , snake_case__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(snake_case__ , snake_case__ ) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
646
1
'''simple docstring''' import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class lowerCAmelCase ( unittest.TestCase ): @slow def lowercase ( self ): lowerCAmelCase : Union[str, Any] = FlaxXLMRobertaModel.from_pretrained('xlm-roberta-base' ) lowerCAmelCase : Optional[int] = AutoTokenizer.from_pretrained('xlm-roberta-base' ) lowerCAmelCase : Any = 'The dog is cute and lives in the garden house' lowerCAmelCase : Tuple = jnp.array([tokenizer.encode(snake_case__ )] ) lowerCAmelCase : Optional[int] = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim lowerCAmelCase : int = jnp.array( [[-0.0_1_0_1, 0.1_2_1_8, -0.0_8_0_3, 0.0_8_0_1, 0.1_3_2_7, 0.0_7_7_6, -0.1_2_1_5, 0.2_3_8_3, 0.3_3_3_8, 0.3_1_0_6, 0.0_3_0_0, 0.0_2_5_2]] ) lowerCAmelCase : Any = model(snake_case__ )['last_hidden_state'] self.assertEqual(output.shape , snake_case__ ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] , snake_case__ , atol=1e-3 ) )
646
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) _lowerCAmelCase : Dict = { 'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class lowerCAmelCase ( a ): _lowerCamelCase : Any = """deformable_detr""" _lowerCamelCase : List[str] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , snake_case__=True , snake_case__=None , snake_case__=3 , snake_case__=300 , snake_case__=1024 , snake_case__=6 , snake_case__=1024 , snake_case__=8 , snake_case__=6 , snake_case__=1024 , snake_case__=8 , snake_case__=0.0 , snake_case__=True , snake_case__="relu" , snake_case__=256 , snake_case__=0.1 , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.0_2 , snake_case__=1.0 , snake_case__=True , snake_case__=False , snake_case__="sine" , snake_case__="resnet50" , snake_case__=True , snake_case__=False , snake_case__=4 , snake_case__=4 , snake_case__=4 , snake_case__=False , snake_case__=300 , snake_case__=False , snake_case__=1 , snake_case__=5 , snake_case__=2 , snake_case__=1 , snake_case__=1 , snake_case__=5 , snake_case__=2 , snake_case__=0.1 , snake_case__=0.2_5 , snake_case__=False , **snake_case__ , ): if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) lowerCAmelCase : Optional[int] = CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : List[str] = backbone_config.get('model_type' ) lowerCAmelCase : str = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase : Optional[Any] = config_class.from_dict(snake_case__ ) lowerCAmelCase : Union[str, Any] = use_timm_backbone lowerCAmelCase : List[Any] = backbone_config lowerCAmelCase : Any = num_channels lowerCAmelCase : Tuple = num_queries lowerCAmelCase : Dict = max_position_embeddings lowerCAmelCase : int = d_model lowerCAmelCase : List[str] = encoder_ffn_dim lowerCAmelCase : List[str] = encoder_layers lowerCAmelCase : int = encoder_attention_heads lowerCAmelCase : str = decoder_ffn_dim lowerCAmelCase : str = decoder_layers lowerCAmelCase : Dict = decoder_attention_heads lowerCAmelCase : str = dropout lowerCAmelCase : List[str] = attention_dropout lowerCAmelCase : Union[str, Any] = activation_dropout lowerCAmelCase : str = activation_function lowerCAmelCase : Any = init_std lowerCAmelCase : Any = init_xavier_std lowerCAmelCase : Dict = encoder_layerdrop lowerCAmelCase : int = auxiliary_loss lowerCAmelCase : Optional[Any] = position_embedding_type lowerCAmelCase : List[str] = backbone lowerCAmelCase : int = use_pretrained_backbone lowerCAmelCase : int = dilation # deformable attributes lowerCAmelCase : List[str] = num_feature_levels lowerCAmelCase : List[str] = encoder_n_points lowerCAmelCase : Union[str, Any] = decoder_n_points lowerCAmelCase : Tuple = two_stage lowerCAmelCase : Dict = two_stage_num_proposals lowerCAmelCase : Union[str, Any] = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.' ) # Hungarian matcher lowerCAmelCase : Union[str, Any] = class_cost lowerCAmelCase : Dict = bbox_cost lowerCAmelCase : List[Any] = giou_cost # Loss coefficients lowerCAmelCase : Dict = mask_loss_coefficient lowerCAmelCase : Any = dice_loss_coefficient lowerCAmelCase : str = bbox_loss_coefficient lowerCAmelCase : Tuple = giou_loss_coefficient lowerCAmelCase : List[str] = eos_coefficient lowerCAmelCase : Any = focal_alpha lowerCAmelCase : Dict = disable_custom_kernels super().__init__(is_encoder_decoder=snake_case__ , **snake_case__ ) @property def lowercase ( self ): return self.encoder_attention_heads @property def lowercase ( self ): return self.d_model def lowercase ( self ): lowerCAmelCase : Union[str, Any] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: lowerCAmelCase : List[Any] = self.backbone_config.to_dict() lowerCAmelCase : str = self.__class__.model_type return output
646
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _lowerCAmelCase : Any = { 'configuration_transfo_xl': ['TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TransfoXLConfig'], 'tokenization_transfo_xl': ['TransfoXLCorpus', 'TransfoXLTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[int] = [ 'TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'AdaptiveEmbedding', 'TransfoXLForSequenceClassification', 'TransfoXLLMHeadModel', 'TransfoXLModel', 'TransfoXLPreTrainedModel', 'load_tf_weights_in_transfo_xl', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Any = [ 'TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFAdaptiveEmbedding', 'TFTransfoXLForSequenceClassification', 'TFTransfoXLLMHeadModel', 'TFTransfoXLMainLayer', 'TFTransfoXLModel', 'TFTransfoXLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys _lowerCAmelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
646
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece_no_bos.model') @require_sentencepiece @require_tokenizers class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : str = PegasusTokenizer _lowerCamelCase : Union[str, Any] = PegasusTokenizerFast _lowerCamelCase : Optional[Any] = True _lowerCamelCase : Optional[Any] = True def lowercase ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : List[Any] = PegasusTokenizer(snake_case__ ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase ( self ): return PegasusTokenizer.from_pretrained('google/pegasus-large' ) def lowercase ( self , **snake_case__ ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def lowercase ( self , snake_case__ ): return ("This is a test", "This is a test") def lowercase ( self ): lowerCAmelCase : Optional[int] = '</s>' lowerCAmelCase : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '</s>' ) self.assertEqual(vocab_keys[-1] , 'v' ) self.assertEqual(len(snake_case__ ) , 1103 ) def lowercase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def lowercase ( self ): lowerCAmelCase : List[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : List[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : Optional[Any] = ( 'Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important' ' </s> <pad> <pad> <pad>' ) lowerCAmelCase : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] lowerCAmelCase : Optional[int] = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Any = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowerCAmelCase : List[str] = '<mask_1> To ensure a <mask_2> flow of bank resolutions.' lowerCAmelCase : Optional[Any] = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1] lowerCAmelCase : Optional[Any] = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Optional[Any] = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 lowerCAmelCase : List[Any] = 'To ensure a smooth flow of bank resolutions.' lowerCAmelCase : Optional[int] = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1] lowerCAmelCase : Any = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def lowercase ( self ): lowerCAmelCase : Union[str, Any] = ['This is going to be way too long.' * 150, 'short example'] lowerCAmelCase : int = ['not super long but more than 5 tokens', 'tiny'] lowerCAmelCase : Dict = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) lowerCAmelCase : Dict = self._large_tokenizer( text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(snake_case__ ) == 2 # input_ids, attention_mask. @slow def lowercase ( self ): # fmt: off lowerCAmelCase : Tuple = {'input_ids': [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name='google/bigbird-pegasus-large-arxiv' , revision='ba85d0851d708441f91440d509690f1ab6353415' , ) @require_sentencepiece @require_tokenizers class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : Optional[Any] = PegasusTokenizer _lowerCamelCase : str = PegasusTokenizerFast _lowerCamelCase : Tuple = True _lowerCamelCase : int = True def lowercase ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : int = PegasusTokenizer(snake_case__ , offset=0 , mask_token_sent=snake_case__ , mask_token='[MASK]' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase ( self ): return PegasusTokenizer.from_pretrained('google/bigbird-pegasus-large-arxiv' ) def lowercase ( self , **snake_case__ ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def lowercase ( self , snake_case__ ): return ("This is a test", "This is a test") def lowercase ( self ): lowerCAmelCase : Tuple = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : Union[str, Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : List[str] = ( 'Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>' ' <pad> <pad> <pad>' ) lowerCAmelCase : Dict = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] lowerCAmelCase : Union[str, Any] = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) @require_torch def lowercase ( self ): lowerCAmelCase : Optional[int] = ['This is going to be way too long.' * 1000, 'short example'] lowerCAmelCase : Union[str, Any] = ['not super long but more than 5 tokens', 'tiny'] lowerCAmelCase : List[str] = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) lowerCAmelCase : List[str] = self._large_tokenizer( text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(snake_case__ ) == 2 # input_ids, attention_mask. def lowercase ( self ): lowerCAmelCase : List[str] = ( 'This is an example string that is used to test the original TF implementation against the HF' ' implementation' ) lowerCAmelCase : Tuple = self._large_tokenizer(snake_case__ ).input_ids self.assertListEqual( snake_case__ , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
646
1
'''simple docstring''' import random from .binary_exp_mod import bin_exp_mod def __UpperCamelCase ( _A : List[str] , _A : Optional[int]=10_00 ) -> Any: """simple docstring""" if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd lowerCAmelCase : Union[str, Any] = n - 1 lowerCAmelCase : Dict = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) lowerCAmelCase : str = 0 while count < prec: lowerCAmelCase : int = random.randint(2 , n - 1 ) lowerCAmelCase : Tuple = bin_exp_mod(_A , _A , _A ) if b != 1: lowerCAmelCase : Tuple = True for _ in range(_A ): if b == n - 1: lowerCAmelCase : str = False break lowerCAmelCase : List[str] = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": _lowerCAmelCase : Union[str, Any] = abs(int(input('Enter bound : ').strip())) print('Here\'s the list of primes:') print(', '.join(str(i) for i in range(n + 1) if is_prime_big(i)))
646
'''simple docstring''' import math import sys import cva import numpy as np def __UpperCamelCase ( _A : np.ndarray , _A : float ) -> np.ndarray: """simple docstring""" lowerCAmelCase : Union[str, Any] = math.sqrt(_A ) lowerCAmelCase : Union[str, Any] = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def __UpperCamelCase ( _A : np.ndarray , _A : int , _A : int , _A : int ) -> np.ndarray: """simple docstring""" lowerCAmelCase : int = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def __UpperCamelCase ( _A : int , _A : float ) -> np.ndarray: """simple docstring""" lowerCAmelCase : Dict = np.zeros((kernel_size, kernel_size) ) for i in range(0 , _A ): for j in range(0 , _A ): lowerCAmelCase : Optional[int] = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(_A , _A ) def __UpperCamelCase ( _A : np.ndarray , _A : float , _A : float , _A : int , ) -> np.ndarray: """simple docstring""" lowerCAmelCase : str = np.zeros(img.shape ) lowerCAmelCase : int = get_gauss_kernel(_A , _A ) lowerCAmelCase , lowerCAmelCase : Dict = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): lowerCAmelCase : int = get_slice(_A , _A , _A , _A ) lowerCAmelCase : Any = img_s - img_s[kernel_size // 2, kernel_size // 2] lowerCAmelCase : str = vec_gaussian(_A , _A ) lowerCAmelCase : Optional[int] = np.multiply(_A , _A ) lowerCAmelCase : str = np.multiply(_A , _A ) lowerCAmelCase : Union[str, Any] = np.sum(_A ) / np.sum(_A ) lowerCAmelCase : Tuple = val return imga def __UpperCamelCase ( _A : list ) -> tuple: """simple docstring""" lowerCAmelCase : List[Any] = args[1] if args[1:] else '../image_data/lena.jpg' lowerCAmelCase : Any = float(args[2] ) if args[2:] else 1.0 lowerCAmelCase : Union[str, Any] = float(args[3] ) if args[3:] else 1.0 if args[4:]: lowerCAmelCase : int = int(args[4] ) lowerCAmelCase : Optional[Any] = kernel_size + abs(kernel_size % 2 - 1 ) else: lowerCAmelCase : Optional[int] = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Any = parse_args(sys.argv) _lowerCAmelCase : str = cva.imread(filename, 0) cva.imshow('input image', img) _lowerCAmelCase : Union[str, Any] = img / 255 _lowerCAmelCase : List[str] = out.astype('float32') _lowerCAmelCase : Optional[int] = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) _lowerCAmelCase : Union[str, Any] = out * 255 _lowerCAmelCase : Optional[Any] = np.uinta(out) cva.imshow('output image', out) cva.waitKey(0) cva.destroyAllWindows()
646
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _lowerCAmelCase : Dict = {'configuration_vit_mae': ['VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMAEConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : str = [ 'VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMAEForPreTraining', 'ViTMAELayer', 'ViTMAEModel', 'ViTMAEPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : str = [ 'TFViTMAEForPreTraining', 'TFViTMAEModel', 'TFViTMAEPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys _lowerCAmelCase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
646
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowerCAmelCase : int = { 'configuration_nezha': ['NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NezhaConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Tuple = [ 'NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST', 'NezhaForNextSentencePrediction', 'NezhaForMaskedLM', 'NezhaForPreTraining', 'NezhaForMultipleChoice', 'NezhaForQuestionAnswering', 'NezhaForSequenceClassification', 'NezhaForTokenClassification', 'NezhaModel', 'NezhaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys _lowerCAmelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
646
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : str = logging.get_logger(__name__) def __UpperCamelCase ( _A : Tuple ) -> Optional[Any]: """simple docstring""" lowerCAmelCase : List[Any] = DPTConfig(embedding_type='hybrid' ) if "large" in checkpoint_url: lowerCAmelCase : Dict = 10_24 lowerCAmelCase : List[Any] = 40_96 lowerCAmelCase : Optional[Any] = 24 lowerCAmelCase : Any = 16 lowerCAmelCase : Any = [5, 11, 17, 23] lowerCAmelCase : Optional[int] = [2_56, 5_12, 10_24, 10_24] lowerCAmelCase : Dict = (1, 3_84, 3_84) if "nyu" or "midas" in checkpoint_url: lowerCAmelCase : int = 7_68 lowerCAmelCase : Optional[int] = [1, 1, 1, 0.5] lowerCAmelCase : Any = [2_56, 5_12, 7_68, 7_68] lowerCAmelCase : Tuple = 1_50 lowerCAmelCase : List[str] = 16 lowerCAmelCase : Dict = (1, 3_84, 3_84) lowerCAmelCase : List[Any] = False lowerCAmelCase : Tuple = 'project' if "ade" in checkpoint_url: lowerCAmelCase : str = True lowerCAmelCase : Tuple = 7_68 lowerCAmelCase : Optional[Any] = [1, 1, 1, 0.5] lowerCAmelCase : Optional[int] = 1_50 lowerCAmelCase : Optional[Any] = 16 lowerCAmelCase : List[Any] = 'huggingface/label-files' lowerCAmelCase : str = 'ade20k-id2label.json' lowerCAmelCase : str = json.load(open(cached_download(hf_hub_url(_A , _A , repo_type='dataset' ) ) , 'r' ) ) lowerCAmelCase : Optional[Any] = {int(_A ): v for k, v in idalabel.items()} lowerCAmelCase : str = idalabel lowerCAmelCase : Dict = {v: k for k, v in idalabel.items()} lowerCAmelCase : Optional[int] = [1, 1_50, 4_80, 4_80] return config, expected_shape def __UpperCamelCase ( _A : int ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase : List[str] = ['pretrained.model.head.weight', 'pretrained.model.head.bias'] for k in ignore_keys: state_dict.pop(_A , _A ) def __UpperCamelCase ( _A : Optional[Any] ) -> str: """simple docstring""" if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): lowerCAmelCase : List[str] = name.replace('pretrained.model' , 'dpt.encoder' ) if "pretrained.model" in name: lowerCAmelCase : List[Any] = name.replace('pretrained.model' , 'dpt.embeddings' ) if "patch_embed" in name: lowerCAmelCase : Tuple = name.replace('patch_embed' , '' ) if "pos_embed" in name: lowerCAmelCase : Union[str, Any] = name.replace('pos_embed' , 'position_embeddings' ) if "attn.proj" in name: lowerCAmelCase : Optional[Any] = name.replace('attn.proj' , 'attention.output.dense' ) if "proj" in name and "project" not in name: lowerCAmelCase : Dict = name.replace('proj' , 'projection' ) if "blocks" in name: lowerCAmelCase : Any = name.replace('blocks' , 'layer' ) if "mlp.fc1" in name: lowerCAmelCase : Union[str, Any] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: lowerCAmelCase : str = name.replace('mlp.fc2' , 'output.dense' ) if "norm1" in name and "backbone" not in name: lowerCAmelCase : List[Any] = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name and "backbone" not in name: lowerCAmelCase : Any = name.replace('norm2' , 'layernorm_after' ) if "scratch.output_conv" in name: lowerCAmelCase : Tuple = name.replace('scratch.output_conv' , 'head' ) if "scratch" in name: lowerCAmelCase : List[Any] = name.replace('scratch' , 'neck' ) if "layer1_rn" in name: lowerCAmelCase : Dict = name.replace('layer1_rn' , 'convs.0' ) if "layer2_rn" in name: lowerCAmelCase : Any = name.replace('layer2_rn' , 'convs.1' ) if "layer3_rn" in name: lowerCAmelCase : int = name.replace('layer3_rn' , 'convs.2' ) if "layer4_rn" in name: lowerCAmelCase : Dict = name.replace('layer4_rn' , 'convs.3' ) if "refinenet" in name: lowerCAmelCase : Tuple = int(name[len('neck.refinenet' ) : len('neck.refinenet' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 lowerCAmelCase : Any = name.replace(F"refinenet{layer_idx}" , F"fusion_stage.layers.{abs(layer_idx-4 )}" ) if "out_conv" in name: lowerCAmelCase : Any = name.replace('out_conv' , 'projection' ) if "resConfUnit1" in name: lowerCAmelCase : Union[str, Any] = name.replace('resConfUnit1' , 'residual_layer1' ) if "resConfUnit2" in name: lowerCAmelCase : List[Any] = name.replace('resConfUnit2' , 'residual_layer2' ) if "conv1" in name: lowerCAmelCase : Tuple = name.replace('conv1' , 'convolution1' ) if "conv2" in name: lowerCAmelCase : Tuple = name.replace('conv2' , 'convolution2' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: lowerCAmelCase : List[Any] = name.replace('pretrained.act_postprocess1.0.project.0' , 'neck.reassemble_stage.readout_projects.0.0' ) if "pretrained.act_postprocess2.0.project.0" in name: lowerCAmelCase : Optional[int] = name.replace('pretrained.act_postprocess2.0.project.0' , 'neck.reassemble_stage.readout_projects.1.0' ) if "pretrained.act_postprocess3.0.project.0" in name: lowerCAmelCase : List[str] = name.replace('pretrained.act_postprocess3.0.project.0' , 'neck.reassemble_stage.readout_projects.2.0' ) if "pretrained.act_postprocess4.0.project.0" in name: lowerCAmelCase : int = name.replace('pretrained.act_postprocess4.0.project.0' , 'neck.reassemble_stage.readout_projects.3.0' ) # resize blocks if "pretrained.act_postprocess1.3" in name: lowerCAmelCase : Dict = name.replace('pretrained.act_postprocess1.3' , 'neck.reassemble_stage.layers.0.projection' ) if "pretrained.act_postprocess1.4" in name: lowerCAmelCase : Any = name.replace('pretrained.act_postprocess1.4' , 'neck.reassemble_stage.layers.0.resize' ) if "pretrained.act_postprocess2.3" in name: lowerCAmelCase : Dict = name.replace('pretrained.act_postprocess2.3' , 'neck.reassemble_stage.layers.1.projection' ) if "pretrained.act_postprocess2.4" in name: lowerCAmelCase : Dict = name.replace('pretrained.act_postprocess2.4' , 'neck.reassemble_stage.layers.1.resize' ) if "pretrained.act_postprocess3.3" in name: lowerCAmelCase : List[str] = name.replace('pretrained.act_postprocess3.3' , 'neck.reassemble_stage.layers.2.projection' ) if "pretrained.act_postprocess4.3" in name: lowerCAmelCase : Optional[Any] = name.replace('pretrained.act_postprocess4.3' , 'neck.reassemble_stage.layers.3.projection' ) if "pretrained.act_postprocess4.4" in name: lowerCAmelCase : Dict = name.replace('pretrained.act_postprocess4.4' , 'neck.reassemble_stage.layers.3.resize' ) if "pretrained" in name: lowerCAmelCase : List[Any] = name.replace('pretrained' , 'dpt' ) if "bn" in name: lowerCAmelCase : Union[str, Any] = name.replace('bn' , 'batch_norm' ) if "head" in name: lowerCAmelCase : Union[str, Any] = name.replace('head' , 'head.head' ) if "encoder.norm" in name: lowerCAmelCase : int = name.replace('encoder.norm' , 'layernorm' ) if "auxlayer" in name: lowerCAmelCase : List[str] = name.replace('auxlayer' , 'auxiliary_head.head' ) if "backbone" in name: lowerCAmelCase : List[Any] = name.replace('backbone' , 'backbone.bit.encoder' ) if ".." in name: lowerCAmelCase : List[Any] = name.replace('..' , '.' ) if "stem.conv" in name: lowerCAmelCase : List[str] = name.replace('stem.conv' , 'bit.embedder.convolution' ) if "blocks" in name: lowerCAmelCase : Optional[int] = name.replace('blocks' , 'layers' ) if "convolution" in name and "backbone" in name: lowerCAmelCase : Union[str, Any] = name.replace('convolution' , 'conv' ) if "layer" in name and "backbone" in name: lowerCAmelCase : str = name.replace('layer' , 'layers' ) if "backbone.bit.encoder.bit" in name: lowerCAmelCase : Any = name.replace('backbone.bit.encoder.bit' , 'backbone.bit' ) if "embedder.conv" in name: lowerCAmelCase : Union[str, Any] = name.replace('embedder.conv' , 'embedder.convolution' ) if "backbone.bit.encoder.stem.norm" in name: lowerCAmelCase : Optional[int] = name.replace('backbone.bit.encoder.stem.norm' , 'backbone.bit.embedder.norm' ) return name def __UpperCamelCase ( _A : Dict , _A : str ) -> Union[str, Any]: """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase : Union[str, Any] = state_dict.pop(F"dpt.encoder.layer.{i}.attn.qkv.weight" ) lowerCAmelCase : Optional[Any] = state_dict.pop(F"dpt.encoder.layer.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase : Dict = in_proj_weight[: config.hidden_size, :] lowerCAmelCase : Optional[int] = in_proj_bias[: config.hidden_size] lowerCAmelCase : Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase : Optional[int] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase : Union[str, Any] = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase : str = in_proj_bias[-config.hidden_size :] def __UpperCamelCase ( ) -> List[Any]: """simple docstring""" lowerCAmelCase : int = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCAmelCase : Dict = Image.open(requests.get(_A , stream=_A ).raw ) return im @torch.no_grad() def __UpperCamelCase ( _A : Dict , _A : Union[str, Any] , _A : List[str] , _A : Optional[int] , _A : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase , lowerCAmelCase : List[str] = get_dpt_config(_A ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") lowerCAmelCase : str = torch.load(_A , map_location='cpu' ) # remove certain keys remove_ignore_keys_(_A ) # rename keys for key in state_dict.copy().keys(): lowerCAmelCase : str = state_dict.pop(_A ) lowerCAmelCase : Union[str, Any] = val # read in qkv matrices read_in_q_k_v(_A , _A ) # load HuggingFace model lowerCAmelCase : Any = DPTForSemanticSegmentation(_A ) if 'ade' in checkpoint_url else DPTForDepthEstimation(_A ) model.load_state_dict(_A ) model.eval() # Check outputs on an image lowerCAmelCase : List[str] = 4_80 if 'ade' in checkpoint_url else 3_84 lowerCAmelCase : Any = DPTImageProcessor(size=_A ) lowerCAmelCase : Tuple = prepare_img() lowerCAmelCase : int = image_processor(_A , return_tensors='pt' ) # forward pass lowerCAmelCase : Optional[Any] = model(**_A ).logits if 'ade' in checkpoint_url else model(**_A ).predicted_depth if show_prediction: lowerCAmelCase : Union[str, Any] = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode='bicubic' , align_corners=_A , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 2_55 ).show() if pytorch_dump_folder_path is not None: Path(_A ).mkdir(exist_ok=_A ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(_A ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_A ) if push_to_hub: model.push_to_hub('ybelkada/dpt-hybrid-midas' ) image_processor.push_to_hub('ybelkada/dpt-hybrid-midas' ) if __name__ == "__main__": _lowerCAmelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) parser.add_argument( '--show_prediction', action='store_true', ) _lowerCAmelCase : Any = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
646
'''simple docstring''' from typing import Any class lowerCAmelCase : def __init__( self , snake_case__ ): lowerCAmelCase : Optional[int] = data lowerCAmelCase : Optional[Any] = None def __repr__( self ): return f"Node({self.data})" class lowerCAmelCase : def __init__( self ): lowerCAmelCase : Dict = None def __iter__( self ): lowerCAmelCase : Optional[Any] = self.head while node: yield node.data lowerCAmelCase : Optional[int] = node.next def __len__( self ): return sum(1 for _ in self ) def __repr__( self ): return "->".join([str(snake_case__ ) for item in self] ) def __getitem__( self , snake_case__ ): if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , snake_case__ , snake_case__ ): if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) lowerCAmelCase : Any = self.head for _ in range(snake_case__ ): lowerCAmelCase : List[str] = current.next lowerCAmelCase : int = data def lowercase ( self , snake_case__ ): self.insert_nth(len(self ) , snake_case__ ) def lowercase ( self , snake_case__ ): self.insert_nth(0 , snake_case__ ) def lowercase ( self , snake_case__ , snake_case__ ): if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) lowerCAmelCase : List[str] = Node(snake_case__ ) if self.head is None: lowerCAmelCase : int = new_node elif index == 0: lowerCAmelCase : List[Any] = self.head # link new_node to head lowerCAmelCase : List[Any] = new_node else: lowerCAmelCase : List[Any] = self.head for _ in range(index - 1 ): lowerCAmelCase : Union[str, Any] = temp.next lowerCAmelCase : Any = temp.next lowerCAmelCase : str = new_node def lowercase ( self ): # print every node data print(self ) def lowercase ( self ): return self.delete_nth(0 ) def lowercase ( self ): # delete from tail return self.delete_nth(len(self ) - 1 ) def lowercase ( self , snake_case__ = 0 ): if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) lowerCAmelCase : List[str] = self.head # default first node if index == 0: lowerCAmelCase : Tuple = self.head.next else: lowerCAmelCase : Dict = self.head for _ in range(index - 1 ): lowerCAmelCase : Tuple = temp.next lowerCAmelCase : Dict = temp.next lowerCAmelCase : Tuple = temp.next.next return delete_node.data def lowercase ( self ): return self.head is None def lowercase ( self ): lowerCAmelCase : List[Any] = None lowerCAmelCase : Any = self.head while current: # Store the current node's next node. lowerCAmelCase : List[str] = current.next # Make the current node's next point backwards lowerCAmelCase : int = prev # Make the previous node be the current node lowerCAmelCase : int = current # Make the current node the next node (to progress iteration) lowerCAmelCase : Optional[Any] = next_node # Return prev in order to put the head at the end lowerCAmelCase : List[Any] = prev def __UpperCamelCase ( ) -> None: """simple docstring""" lowerCAmelCase : Tuple = LinkedList() assert linked_list.is_empty() is True assert str(_A ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(_A ) == i linked_list.insert_nth(_A , i + 1 ) assert str(_A ) == "->".join(str(_A ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(_A ) == "->".join(str(_A ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(_A ) == 9 assert str(_A ) == "->".join(str(_A ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): lowerCAmelCase : Optional[Any] = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(_A ) == "->".join(str(_A ) for i in range(-8 , 1 ) ) def __UpperCamelCase ( ) -> None: """simple docstring""" lowerCAmelCase : Optional[int] = [ -9, 1_00, Node(77_34_51_12 ), 'dlrow olleH', 7, 55_55, 0, -1_92.5_55_55, 'Hello, world!', 77.9, Node(10 ), None, None, 12.20, ] lowerCAmelCase : Dict = LinkedList() for i in test_input: linked_list.insert_tail(_A ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(_A ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head lowerCAmelCase : Optional[Any] = linked_list.delete_head() assert result == -9 assert ( str(_A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail lowerCAmelCase : List[str] = linked_list.delete_tail() assert result == 12.2 assert ( str(_A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list lowerCAmelCase : List[str] = linked_list.delete_nth(10 ) assert result is None assert ( str(_A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(_A ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(_A ) assert ( str(_A ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(_A ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def __UpperCamelCase ( ) -> List[Any]: """simple docstring""" from doctest import testmod testmod() lowerCAmelCase : Optional[Any] = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(_A ) print('\nReading/changing Node data using indexing:' ) print(F"Element at Position 1: {linked_list[1]}" ) lowerCAmelCase : Tuple = input('Enter New Value: ' ).strip() print('New list:' ) print(_A ) print(F"length of linked_list is : {len(_A )}" ) if __name__ == "__main__": main()
646
1
'''simple docstring''' import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( 'files' , [ ['full:README.md', 'dataset_infos.json'], ['empty:README.md', 'dataset_infos.json'], ['dataset_infos.json'], ['full:README.md'], ] , ) def __UpperCamelCase ( _A : str , _A : List[Any] ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase : Optional[int] = tmp_path_factory.mktemp('dset_infos_dir' ) if "full:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('---\ndataset_info:\n dataset_size: 42\n---' ) if "empty:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / 'dataset_infos.json' , 'w' ) as f: f.write('{"default": {"dataset_size": 42}}' ) lowerCAmelCase : Union[str, Any] = DatasetInfosDict.from_directory(_A ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( 'dataset_info' , [ DatasetInfo(), DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ), ] , ) def __UpperCamelCase ( _A : str , _A : DatasetInfo ) -> Optional[int]: """simple docstring""" lowerCAmelCase : str = str(_A ) dataset_info.write_to_directory(_A ) lowerCAmelCase : List[str] = DatasetInfo.from_directory(_A ) assert dataset_info == reloaded assert os.path.exists(os.path.join(_A , 'dataset_info.json' ) ) def __UpperCamelCase ( ) -> List[str]: """simple docstring""" lowerCAmelCase : Tuple = DatasetInfo( description='foo' , citation='bar' , homepage='https://foo.bar' , license='CC0' , features=Features({'a': Value('int32' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train', 'num_examples': 42}] , download_checksums={} , download_size=13_37 , post_processing_size=4_42 , dataset_size=12_34 , size_in_bytes=13_37 + 4_42 + 12_34 , ) lowerCAmelCase : Optional[int] = dataset_info._to_yaml_dict() assert sorted(_A ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) lowerCAmelCase : Any = yaml.safe_dump(_A ) lowerCAmelCase : int = yaml.safe_load(_A ) assert dataset_info_yaml_dict == reloaded def __UpperCamelCase ( ) -> Dict: """simple docstring""" lowerCAmelCase : Union[str, Any] = DatasetInfo() lowerCAmelCase : List[Any] = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( 'dataset_infos_dict' , [ DatasetInfosDict(), DatasetInfosDict({'default': DatasetInfo()} ), DatasetInfosDict({'my_config_name': DatasetInfo()} ), DatasetInfosDict( { 'default': DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ) } ), DatasetInfosDict( { 'v1': DatasetInfo(dataset_size=42 ), 'v2': DatasetInfo(dataset_size=13_37 ), } ), ] , ) def __UpperCamelCase ( _A : Tuple , _A : DatasetInfosDict ) -> List[Any]: """simple docstring""" lowerCAmelCase : Tuple = str(_A ) dataset_infos_dict.write_to_directory(_A ) lowerCAmelCase : List[str] = DatasetInfosDict.from_directory(_A ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): lowerCAmelCase : Tuple = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml lowerCAmelCase : Optional[Any] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(_A , 'README.md' ) )
646
'''simple docstring''' _lowerCAmelCase : List[str] = {str(digit): digit**5 for digit in range(10)} def __UpperCamelCase ( _A : int ) -> int: """simple docstring""" return sum(DIGITS_FIFTH_POWER[digit] for digit in str(_A ) ) def __UpperCamelCase ( ) -> int: """simple docstring""" return sum( number for number in range(10_00 , 1_00_00_00 ) if number == digits_fifth_powers_sum(_A ) ) if __name__ == "__main__": print(solution())
646
1
'''simple docstring''' import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __UpperCamelCase ( _A : Dict ) -> int: """simple docstring""" lowerCAmelCase : Tuple = [] embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight", F"stage{idx}.patch_embed.proj.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias", F"stage{idx}.patch_embed.proj.bias", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight", F"stage{idx}.patch_embed.norm.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias", F"stage{idx}.patch_embed.norm.bias", ) ) return embed def __UpperCamelCase ( _A : List[Any] , _A : Dict ) -> Any: """simple docstring""" lowerCAmelCase : str = [] attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight", F"stage{idx}.blocks.{cnt}.attn.proj_q.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias", F"stage{idx}.blocks.{cnt}.attn.proj_q.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight", F"stage{idx}.blocks.{cnt}.attn.proj_k.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias", F"stage{idx}.blocks.{cnt}.attn.proj_k.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight", F"stage{idx}.blocks.{cnt}.attn.proj_v.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias", F"stage{idx}.blocks.{cnt}.attn.proj_v.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight", F"stage{idx}.blocks.{cnt}.attn.proj.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias", F"stage{idx}.blocks.{cnt}.attn.proj.bias", ) ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc2.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight", F"stage{idx}.blocks.{cnt}.norm1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias", F"stage{idx}.blocks.{cnt}.norm1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight", F"stage{idx}.blocks.{cnt}.norm2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias", F"stage{idx}.blocks.{cnt}.norm2.bias") ) return attention_weights def __UpperCamelCase ( _A : Optional[int] ) -> Optional[int]: """simple docstring""" lowerCAmelCase : Optional[int] = [] token.append((F"cvt.encoder.stages.{idx}.cls_token", 'stage2.cls_token') ) return token def __UpperCamelCase ( ) -> int: """simple docstring""" lowerCAmelCase : List[Any] = [] head.append(('layernorm.weight', 'norm.weight') ) head.append(('layernorm.bias', 'norm.bias') ) head.append(('classifier.weight', 'head.weight') ) head.append(('classifier.bias', 'head.bias') ) return head def __UpperCamelCase ( _A : str , _A : Optional[Any] , _A : Dict , _A : str ) -> Optional[int]: """simple docstring""" lowerCAmelCase : List[str] = 'imagenet-1k-id2label.json' lowerCAmelCase : Tuple = 10_00 lowerCAmelCase : str = 'huggingface/label-files' lowerCAmelCase : List[Any] = num_labels lowerCAmelCase : Any = json.load(open(cached_download(hf_hub_url(_A , _A , repo_type='dataset' ) ) , 'r' ) ) lowerCAmelCase : List[str] = {int(_A ): v for k, v in idalabel.items()} lowerCAmelCase : List[str] = idalabel lowerCAmelCase : str = {v: k for k, v in idalabel.items()} lowerCAmelCase : int = CvtConfig(num_labels=_A , idalabel=_A , labelaid=_A ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13": lowerCAmelCase : List[str] = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21": lowerCAmelCase : Tuple = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: lowerCAmelCase : Any = [2, 2, 20] lowerCAmelCase : List[str] = [3, 12, 16] lowerCAmelCase : List[Any] = [1_92, 7_68, 10_24] lowerCAmelCase : Union[str, Any] = CvtForImageClassification(_A ) lowerCAmelCase : str = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) lowerCAmelCase : Optional[Any] = image_size lowerCAmelCase : List[Any] = torch.load(_A , map_location=torch.device('cpu' ) ) lowerCAmelCase : str = OrderedDict() lowerCAmelCase : int = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: lowerCAmelCase : List[str] = list_of_state_dict + cls_token(_A ) lowerCAmelCase : Optional[Any] = list_of_state_dict + embeddings(_A ) for cnt in range(config.depth[idx] ): lowerCAmelCase : List[Any] = list_of_state_dict + attention(_A , _A ) lowerCAmelCase : List[str] = list_of_state_dict + final() for gg in list_of_state_dict: print(_A ) for i in range(len(_A ) ): lowerCAmelCase : Tuple = original_weights[list_of_state_dict[i][1]] model.load_state_dict(_A ) model.save_pretrained(_A ) image_processor.save_pretrained(_A ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": _lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '--cvt_model', default='cvt-w24', type=str, help='Name of the cvt model you\'d like to convert.', ) parser.add_argument( '--image_size', default=384, type=int, help='Input Image Size', ) parser.add_argument( '--cvt_file_name', default=r'cvtmodels\CvT-w24-384x384-IN-22k.pth', type=str, help='Input Image Size', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) _lowerCAmelCase : str = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
646
'''simple docstring''' def __UpperCamelCase ( _A : List[str] ) -> Optional[Any]: """simple docstring""" if not head: return True # split the list to two parts lowerCAmelCase , lowerCAmelCase : str = head.next, head while fast and fast.next: lowerCAmelCase : Optional[int] = fast.next.next lowerCAmelCase : int = slow.next lowerCAmelCase : int = slow.next lowerCAmelCase : Optional[Any] = None # Don't forget here! But forget still works! # reverse the second part lowerCAmelCase : List[Any] = None while second: lowerCAmelCase : List[Any] = second.next lowerCAmelCase : Union[str, Any] = node lowerCAmelCase : Optional[Any] = second lowerCAmelCase : Any = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False lowerCAmelCase : Optional[Any] = node.next lowerCAmelCase : Tuple = head.next return True def __UpperCamelCase ( _A : Optional[Any] ) -> Optional[int]: """simple docstring""" if not head or not head.next: return True # 1. Get the midpoint (slow) lowerCAmelCase : Optional[int] = head while fast and fast.next: lowerCAmelCase , lowerCAmelCase : Optional[Any] = fast.next.next, slow.next # 2. Push the second half into the stack lowerCAmelCase : Tuple = [slow.val] while slow.next: lowerCAmelCase : Tuple = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False lowerCAmelCase : Union[str, Any] = cur.next return True def __UpperCamelCase ( _A : Tuple ) -> Optional[int]: """simple docstring""" if not head or not head.next: return True lowerCAmelCase : Optional[int] = {} lowerCAmelCase : int = 0 while head: if head.val in d: d[head.val].append(_A ) else: lowerCAmelCase : Any = [pos] lowerCAmelCase : int = head.next pos += 1 lowerCAmelCase : str = pos - 1 lowerCAmelCase : Optional[Any] = 0 for v in d.values(): if len(_A ) % 2 != 0: middle += 1 else: lowerCAmelCase : Any = 0 for i in range(0 , len(_A ) ): if v[i] + v[len(_A ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
646
1
'''simple docstring''' import argparse import torch from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def __UpperCamelCase ( _A : Optional[int] , _A : Tuple , _A : List[Any] ) -> List[Any]: """simple docstring""" if openai_config_file == "": lowerCAmelCase : List[str] = OpenAIGPTConfig() else: lowerCAmelCase : Tuple = OpenAIGPTConfig.from_json_file(_A ) lowerCAmelCase : Optional[Any] = OpenAIGPTModel(_A ) # Load weights from numpy load_tf_weights_in_openai_gpt(_A , _A , _A ) # Save pytorch-model lowerCAmelCase : int = pytorch_dump_folder_path + '/' + WEIGHTS_NAME lowerCAmelCase : Dict = pytorch_dump_folder_path + '/' + CONFIG_NAME print(F"Save PyTorch model to {pytorch_weights_dump_path}" ) torch.save(model.state_dict() , _A ) print(F"Save configuration file to {pytorch_config_dump_path}" ) with open(_A , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _lowerCAmelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--openai_checkpoint_folder_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--openai_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained OpenAI model. \n' 'This specifies the model architecture.' ), ) _lowerCAmelCase : List[str] = parser.parse_args() convert_openai_checkpoint_to_pytorch( args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path )
646
'''simple docstring''' import math def __UpperCamelCase ( _A : int = 1_00 ) -> int: """simple docstring""" lowerCAmelCase : List[Any] = sum(i * i for i in range(1 , n + 1 ) ) lowerCAmelCase : Optional[Any] = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f"""{solution() = }""")
646
1
'''simple docstring''' import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 _lowerCAmelCase : int = 0b10_11_00_11_11_10_11_00_10_01_00_00_01_11_10_11_10_11_00_01_10_01_11_10 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 _lowerCAmelCase : List[Any] = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class lowerCAmelCase : def __init__( self ): lowerCAmelCase : Any = WATERMARK_BITS lowerCAmelCase : Union[str, Any] = WatermarkEncoder() self.encoder.set_watermark('bits' , self.watermark ) def lowercase ( self , snake_case__ ): # can't encode images that are smaller than 256 if images.shape[-1] < 256: return images lowerCAmelCase : Optional[Any] = (255 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowerCAmelCase : List[str] = [self.encoder.encode(snake_case__ , 'dwtDct' ) for image in images] lowerCAmelCase : Union[str, Any] = torch.from_numpy(np.array(snake_case__ ) ).permute(0 , 3 , 1 , 2 ) lowerCAmelCase : Optional[int] = torch.clamp(2 * (images / 255 - 0.5) , min=-1.0 , max=1.0 ) return images
646
'''simple docstring''' import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece_with_bytefallback.model') @require_sentencepiece @require_tokenizers class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : Tuple = GPTSwaTokenizer _lowerCamelCase : str = False _lowerCamelCase : Dict = True _lowerCamelCase : Optional[Any] = False def lowercase ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : Tuple = GPTSwaTokenizer(snake_case__ , eos_token='<unk>' , bos_token='<unk>' , pad_token='<unk>' ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase ( self , snake_case__ ): lowerCAmelCase : List[Any] = 'This is a test' lowerCAmelCase : List[Any] = 'This is a test' return input_text, output_text def lowercase ( self ): lowerCAmelCase : Tuple = '<s>' lowerCAmelCase : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def lowercase ( self ): lowerCAmelCase : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(snake_case__ ) , 2000 ) def lowercase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 2000 ) def lowercase ( self ): lowerCAmelCase : List[Any] = GPTSwaTokenizer(snake_case__ ) lowerCAmelCase : Optional[Any] = tokenizer.tokenize('This is a test' ) self.assertListEqual(snake_case__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , [465, 287, 265, 631, 842] ) lowerCAmelCase : Tuple = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) # fmt: off self.assertListEqual( snake_case__ , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] , ) # fmt: on lowerCAmelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual( snake_case__ , [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] , ) lowerCAmelCase : int = tokenizer.convert_ids_to_tokens(snake_case__ ) # fmt: off self.assertListEqual( snake_case__ , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] ) # fmt: on def lowercase ( self ): lowerCAmelCase : str = GPTSwaTokenizer(snake_case__ ) lowerCAmelCase : Optional[int] = ['This is a test', 'I was born in 92000, and this is falsé.'] lowerCAmelCase : Tuple = [ [465, 287, 265, 631, 842], [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(snake_case__ , snake_case__ ): self.assertListEqual(tokenizer.encode_fast(snake_case__ ) , snake_case__ ) # Test that decode_fast returns the input text for text, token_ids in zip(snake_case__ , snake_case__ ): self.assertEqual(tokenizer.decode_fast(snake_case__ ) , snake_case__ ) @slow def lowercase ( self ): lowerCAmelCase : str = [ '<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')', 'Hey there, how are you doing this fine day?', 'This is a text with a trailing spaces followed by a dot .', 'Häj sväjs lillebrör! =)', 'Det är inget fel på Mr. Cool', ] # fmt: off lowerCAmelCase : Tuple = {'input_ids': [[6_3423, 5, 6811, 1_4954, 282, 816, 3821, 6_3466, 6_3425, 6_3462, 18, 6_3978, 678, 301, 1320, 6_3423, 6_3455, 6_3458, 18, 6_3982, 4246, 3940, 1901, 4_7789, 5547, 1_8994], [1_9630, 1100, 6_3446, 1342, 633, 544, 4488, 593, 5102, 2416, 6_3495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1652, 428, 268, 1936, 515, 268, 5_8593, 2_2413, 9106, 546, 268, 3_3213, 6_3979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_5130, 6_3450, 924, 6_3449, 2249, 4062, 1558, 318, 6_3504, 2_1498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2827, 2559, 332, 6575, 6_3443, 2_6801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name='AI-Sweden/gpt-sw3-126m' , sequences=snake_case__ , )
646
1
'''simple docstring''' import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : Optional[Any] = LEDTokenizer _lowerCamelCase : Tuple = LEDTokenizerFast _lowerCamelCase : List[Any] = True def lowercase ( self ): super().setUp() lowerCAmelCase : Tuple = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] lowerCAmelCase : List[Any] = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) lowerCAmelCase : str = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] lowerCAmelCase : Optional[Any] = {'unk_token': '<unk>'} lowerCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowerCAmelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(snake_case__ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(snake_case__ ) ) def lowercase ( self , **snake_case__ ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **snake_case__ ) def lowercase ( self , **snake_case__ ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **snake_case__ ) def lowercase ( self , snake_case__ ): return "lower newer", "lower newer" @cached_property def lowercase ( self ): return LEDTokenizer.from_pretrained('allenai/led-base-16384' ) @cached_property def lowercase ( self ): return LEDTokenizerFast.from_pretrained('allenai/led-base-16384' ) @require_torch def lowercase ( self ): lowerCAmelCase : str = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] lowerCAmelCase : Tuple = [0, 250, 251, 1_7818, 13, 3_9186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCAmelCase : Union[str, Any] = tokenizer(snake_case__ , max_length=len(snake_case__ ) , padding=snake_case__ , return_tensors='pt' ) self.assertIsInstance(snake_case__ , snake_case__ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) lowerCAmelCase : Union[str, Any] = batch.input_ids.tolist()[0] self.assertListEqual(snake_case__ , snake_case__ ) @require_torch def lowercase ( self ): lowerCAmelCase : str = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCAmelCase : Any = tokenizer(snake_case__ , padding=snake_case__ , return_tensors='pt' ) self.assertIn('input_ids' , snake_case__ ) self.assertIn('attention_mask' , snake_case__ ) self.assertNotIn('labels' , snake_case__ ) self.assertNotIn('decoder_attention_mask' , snake_case__ ) @require_torch def lowercase ( self ): lowerCAmelCase : Tuple = [ 'Summary of the text.', 'Another summary.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCAmelCase : Union[str, Any] = tokenizer(text_target=snake_case__ , max_length=32 , padding='max_length' , return_tensors='pt' ) self.assertEqual(32 , targets['input_ids'].shape[1] ) @require_torch def lowercase ( self ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCAmelCase : Optional[int] = tokenizer( ['I am a small frog' * 1024, 'I am a small frog'] , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) self.assertIsInstance(snake_case__ , snake_case__ ) self.assertEqual(batch.input_ids.shape , (2, 5122) ) @require_torch def lowercase ( self ): lowerCAmelCase : Optional[int] = ['A long paragraph for summarization.'] lowerCAmelCase : Union[str, Any] = [ 'Summary of the text.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCAmelCase : Any = tokenizer(snake_case__ , return_tensors='pt' ) lowerCAmelCase : Dict = tokenizer(text_target=snake_case__ , return_tensors='pt' ) lowerCAmelCase : int = inputs['input_ids'] lowerCAmelCase : Union[str, Any] = targets['input_ids'] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def lowercase ( self ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCAmelCase : List[Any] = ['Summary of the text.', 'Another summary.'] lowerCAmelCase : Optional[int] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] lowerCAmelCase : Tuple = tokenizer(snake_case__ , padding=snake_case__ ) lowerCAmelCase : Optional[int] = [[0] * len(snake_case__ ) for x in encoded_output['input_ids']] lowerCAmelCase : List[str] = tokenizer.pad(snake_case__ ) self.assertSequenceEqual(outputs['global_attention_mask'] , snake_case__ ) def lowercase ( self ): pass def lowercase ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCAmelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) lowerCAmelCase : Optional[int] = self.tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) lowerCAmelCase : Union[str, Any] = 'A, <mask> AllenNLP sentence.' lowerCAmelCase : Optional[int] = tokenizer_r.encode_plus(snake_case__ , add_special_tokens=snake_case__ , return_token_type_ids=snake_case__ ) lowerCAmelCase : List[str] = tokenizer_p.encode_plus(snake_case__ , add_special_tokens=snake_case__ , return_token_type_ids=snake_case__ ) self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) lowerCAmelCase : Any = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) lowerCAmelCase : Union[str, Any] = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) self.assertSequenceEqual(tokens_p['input_ids'] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( snake_case__ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( snake_case__ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
646
'''simple docstring''' def __UpperCamelCase ( _A : int ) -> bool: """simple docstring""" return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
646
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer _lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCAmelCase : List[Any] = {'vocab_file': 'vocab.txt'} _lowerCAmelCase : Union[str, Any] = { 'vocab_file': { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt', } } _lowerCAmelCase : Tuple = { 'YituTech/conv-bert-base': 512, 'YituTech/conv-bert-medium-small': 512, 'YituTech/conv-bert-small': 512, } _lowerCAmelCase : Any = { 'YituTech/conv-bert-base': {'do_lower_case': True}, 'YituTech/conv-bert-medium-small': {'do_lower_case': True}, 'YituTech/conv-bert-small': {'do_lower_case': True}, } class lowerCAmelCase ( a ): _lowerCamelCase : Optional[int] = VOCAB_FILES_NAMES _lowerCamelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : int = PRETRAINED_INIT_CONFIGURATION _lowerCamelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase : List[Any] = ConvBertTokenizer def __init__( self , snake_case__=None , snake_case__=None , snake_case__=True , snake_case__="[UNK]" , snake_case__="[SEP]" , snake_case__="[PAD]" , snake_case__="[CLS]" , snake_case__="[MASK]" , snake_case__=True , snake_case__=None , **snake_case__ , ): super().__init__( snake_case__ , tokenizer_file=snake_case__ , do_lower_case=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , tokenize_chinese_chars=snake_case__ , strip_accents=snake_case__ , **snake_case__ , ) lowerCAmelCase : List[str] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , snake_case__ ) != do_lower_case or normalizer_state.get('strip_accents' , snake_case__ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , snake_case__ ) != tokenize_chinese_chars ): lowerCAmelCase : Optional[int] = getattr(snake_case__ , normalizer_state.pop('type' ) ) lowerCAmelCase : List[Any] = do_lower_case lowerCAmelCase : Any = strip_accents lowerCAmelCase : Any = tokenize_chinese_chars lowerCAmelCase : Dict = normalizer_class(**snake_case__ ) lowerCAmelCase : Dict = do_lower_case def lowercase ( self , snake_case__ , snake_case__=None ): lowerCAmelCase : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase ( self , snake_case__ , snake_case__ = None ): lowerCAmelCase : List[Any] = [self.sep_token_id] lowerCAmelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase ( self , snake_case__ , snake_case__ = None ): lowerCAmelCase : int = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ )
646
'''simple docstring''' import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( 'files' , [ ['full:README.md', 'dataset_infos.json'], ['empty:README.md', 'dataset_infos.json'], ['dataset_infos.json'], ['full:README.md'], ] , ) def __UpperCamelCase ( _A : str , _A : List[Any] ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase : Optional[int] = tmp_path_factory.mktemp('dset_infos_dir' ) if "full:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('---\ndataset_info:\n dataset_size: 42\n---' ) if "empty:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / 'dataset_infos.json' , 'w' ) as f: f.write('{"default": {"dataset_size": 42}}' ) lowerCAmelCase : Union[str, Any] = DatasetInfosDict.from_directory(_A ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( 'dataset_info' , [ DatasetInfo(), DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ), ] , ) def __UpperCamelCase ( _A : str , _A : DatasetInfo ) -> Optional[int]: """simple docstring""" lowerCAmelCase : str = str(_A ) dataset_info.write_to_directory(_A ) lowerCAmelCase : List[str] = DatasetInfo.from_directory(_A ) assert dataset_info == reloaded assert os.path.exists(os.path.join(_A , 'dataset_info.json' ) ) def __UpperCamelCase ( ) -> List[str]: """simple docstring""" lowerCAmelCase : Tuple = DatasetInfo( description='foo' , citation='bar' , homepage='https://foo.bar' , license='CC0' , features=Features({'a': Value('int32' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train', 'num_examples': 42}] , download_checksums={} , download_size=13_37 , post_processing_size=4_42 , dataset_size=12_34 , size_in_bytes=13_37 + 4_42 + 12_34 , ) lowerCAmelCase : Optional[int] = dataset_info._to_yaml_dict() assert sorted(_A ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) lowerCAmelCase : Any = yaml.safe_dump(_A ) lowerCAmelCase : int = yaml.safe_load(_A ) assert dataset_info_yaml_dict == reloaded def __UpperCamelCase ( ) -> Dict: """simple docstring""" lowerCAmelCase : Union[str, Any] = DatasetInfo() lowerCAmelCase : List[Any] = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( 'dataset_infos_dict' , [ DatasetInfosDict(), DatasetInfosDict({'default': DatasetInfo()} ), DatasetInfosDict({'my_config_name': DatasetInfo()} ), DatasetInfosDict( { 'default': DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ) } ), DatasetInfosDict( { 'v1': DatasetInfo(dataset_size=42 ), 'v2': DatasetInfo(dataset_size=13_37 ), } ), ] , ) def __UpperCamelCase ( _A : Tuple , _A : DatasetInfosDict ) -> List[Any]: """simple docstring""" lowerCAmelCase : Tuple = str(_A ) dataset_infos_dict.write_to_directory(_A ) lowerCAmelCase : List[str] = DatasetInfosDict.from_directory(_A ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): lowerCAmelCase : Tuple = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml lowerCAmelCase : Optional[Any] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(_A , 'README.md' ) )
646
1
'''simple docstring''' import argparse import struct import unittest class lowerCAmelCase : def __init__( self , snake_case__ ): lowerCAmelCase : Optional[int] = data # Initialize hash values lowerCAmelCase : int = [ 0X6a_09e_667, 0Xbb_67a_e85, 0X3c_6ef_372, 0Xa5_4ff_53a, 0X51_0e5_27f, 0X9b_056_88c, 0X1f_83d_9ab, 0X5b_e0c_d19, ] # Initialize round constants lowerCAmelCase : int = [ 0X42_8a2_f98, 0X71_374_491, 0Xb5_c0f_bcf, 0Xe9_b5d_ba5, 0X39_56c_25b, 0X59_f11_1f1, 0X92_3f8_2a4, 0Xab_1c5_ed5, 0Xd8_07a_a98, 0X12_835_b01, 0X24_318_5be, 0X55_0c7_dc3, 0X72_be5_d74, 0X80_deb_1fe, 0X9b_dc0_6a7, 0Xc1_9bf_174, 0Xe4_9b6_9c1, 0Xef_be4_786, 0X0f_c19_dc6, 0X24_0ca_1cc, 0X2d_e92_c6f, 0X4a_748_4aa, 0X5c_b0a_9dc, 0X76_f98_8da, 0X98_3e5_152, 0Xa8_31c_66d, 0Xb0_032_7c8, 0Xbf_597_fc7, 0Xc6_e00_bf3, 0Xd5_a79_147, 0X06_ca6_351, 0X14_292_967, 0X27_b70_a85, 0X2e_1b2_138, 0X4d_2c6_dfc, 0X53_380_d13, 0X65_0a7_354, 0X76_6a0_abb, 0X81_c2c_92e, 0X92_722_c85, 0Xa2_bfe_8a1, 0Xa8_1a6_64b, 0Xc2_4b8_b70, 0Xc7_6c5_1a3, 0Xd1_92e_819, 0Xd6_990_624, 0Xf4_0e3_585, 0X10_6aa_070, 0X19_a4c_116, 0X1e_376_c08, 0X27_487_74c, 0X34_b0b_cb5, 0X39_1c0_cb3, 0X4e_d8a_a4a, 0X5b_9cc_a4f, 0X68_2e6_ff3, 0X74_8f8_2ee, 0X78_a56_36f, 0X84_c87_814, 0X8c_c70_208, 0X90_bef_ffa, 0Xa4_506_ceb, 0Xbe_f9a_3f7, 0Xc6_717_8f2, ] lowerCAmelCase : Union[str, Any] = self.preprocessing(self.data ) self.final_hash() @staticmethod def lowercase ( snake_case__ ): lowerCAmelCase : Any = B'\x80' + (B'\x00' * (63 - (len(snake_case__ ) + 8) % 64)) lowerCAmelCase : List[str] = struct.pack('>Q' , (len(snake_case__ ) * 8) ) return data + padding + big_endian_integer def lowercase ( self ): # Convert into blocks of 64 bytes lowerCAmelCase : List[str] = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers lowerCAmelCase : Tuple = list(struct.unpack('>16L' , snake_case__ ) ) # add 48 0-ed integers words += [0] * 48 lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Union[str, Any] = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array lowerCAmelCase : List[Any] = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) lowerCAmelCase : List[Any] = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) lowerCAmelCase : str = ( words[index - 16] + sa + words[index - 7] + sa ) % 0X100_000_000 # Compression lowerCAmelCase : Optional[int] = self.ror(snake_case__ , 6 ) ^ self.ror(snake_case__ , 11 ) ^ self.ror(snake_case__ , 25 ) lowerCAmelCase : List[Any] = (e & f) ^ ((~e & 0Xff_fff_fff) & g) lowerCAmelCase : int = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X100_000_000 lowerCAmelCase : Optional[Any] = self.ror(snake_case__ , 2 ) ^ self.ror(snake_case__ , 13 ) ^ self.ror(snake_case__ , 22 ) lowerCAmelCase : int = (a & b) ^ (a & c) ^ (b & c) lowerCAmelCase : List[Any] = (sa + maj) % 0X100_000_000 lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : List[str] = ( g, f, e, ((d + tempa) % 0X100_000_000), c, b, a, ((tempa + tempa) % 0X100_000_000), ) lowerCAmelCase : Optional[int] = [a, b, c, d, e, f, g, h] # Modify final values lowerCAmelCase : Optional[int] = [ ((element + mutated_hash_values[index]) % 0X100_000_000) for index, element in enumerate(self.hashes ) ] lowerCAmelCase : Union[str, Any] = ''.join([hex(snake_case__ )[2:].zfill(8 ) for value in self.hashes] ) def lowercase ( self , snake_case__ , snake_case__ ): return 0Xff_fff_fff & (value << (32 - rotations)) | (value >> rotations) class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): import hashlib lowerCAmelCase : Union[str, Any] = bytes('Test String' , 'utf-8' ) self.assertEqual(SHAaaa(snake_case__ ).hash , hashlib.shaaaa(snake_case__ ).hexdigest() ) def __UpperCamelCase ( ) -> None: """simple docstring""" import doctest doctest.testmod() lowerCAmelCase : int = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file' ) lowerCAmelCase : Any = parser.parse_args() lowerCAmelCase : Union[str, Any] = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: lowerCAmelCase : int = f.read() else: lowerCAmelCase : Optional[int] = bytes(_A , 'utf-8' ) print(SHAaaa(_A ).hash ) if __name__ == "__main__": main()
646
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCAmelCase ( a ): def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): super().__init__() if safety_checker is None: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" ' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered' ' results in services or applications open to the public. Both the diffusers team and Hugging Face' ' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling' ' it only for use-cases that involve analyzing network behavior or auditing its results. For more' ' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .' ) self.register_modules( speech_model=snake_case__ , speech_processor=snake_case__ , vae=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , unet=snake_case__ , scheduler=snake_case__ , feature_extractor=snake_case__ , ) def lowercase ( self , snake_case__ = "auto" ): if slice_size == "auto": lowerCAmelCase : Union[str, Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(snake_case__ ) def lowercase ( self ): self.enable_attention_slicing(snake_case__ ) @torch.no_grad() def __call__( self , snake_case__ , snake_case__=1_6000 , snake_case__ = 512 , snake_case__ = 512 , snake_case__ = 50 , snake_case__ = 7.5 , snake_case__ = None , snake_case__ = 1 , snake_case__ = 0.0 , snake_case__ = None , snake_case__ = None , snake_case__ = "pil" , snake_case__ = True , snake_case__ = None , snake_case__ = 1 , **snake_case__ , ): lowerCAmelCase : List[str] = self.speech_processor.feature_extractor( snake_case__ , return_tensors='pt' , sampling_rate=snake_case__ ).input_features.to(self.device ) lowerCAmelCase : Optional[Any] = self.speech_model.generate(snake_case__ , max_length=48_0000 ) lowerCAmelCase : str = self.speech_processor.tokenizer.batch_decode(snake_case__ , skip_special_tokens=snake_case__ , normalize=snake_case__ )[ 0 ] if isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = 1 elif isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = len(snake_case__ ) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(snake_case__ )}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(snake_case__ , snake_case__ ) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(snake_case__ )}." ) # get prompt text embeddings lowerCAmelCase : str = self.tokenizer( snake_case__ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) lowerCAmelCase : Tuple = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowerCAmelCase : str = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) lowerCAmelCase : Union[str, Any] = text_input_ids[:, : self.tokenizer.model_max_length] lowerCAmelCase : Union[str, Any] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : int = text_embeddings.shape lowerCAmelCase : Any = text_embeddings.repeat(1 , snake_case__ , 1 ) lowerCAmelCase : Optional[int] = text_embeddings.view(bs_embed * num_images_per_prompt , snake_case__ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowerCAmelCase : List[str] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowerCAmelCase : List[str] if negative_prompt is None: lowerCAmelCase : Any = [''] * batch_size elif type(snake_case__ ) is not type(snake_case__ ): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(snake_case__ )} !=" f" {type(snake_case__ )}." ) elif isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = [negative_prompt] elif batch_size != len(snake_case__ ): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(snake_case__ )}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" ' the batch size of `prompt`.' ) else: lowerCAmelCase : Dict = negative_prompt lowerCAmelCase : Optional[int] = text_input_ids.shape[-1] lowerCAmelCase : int = self.tokenizer( snake_case__ , padding='max_length' , max_length=snake_case__ , truncation=snake_case__ , return_tensors='pt' , ) lowerCAmelCase : Union[str, Any] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowerCAmelCase : List[Any] = uncond_embeddings.shape[1] lowerCAmelCase : List[str] = uncond_embeddings.repeat(1 , snake_case__ , 1 ) lowerCAmelCase : Optional[Any] = uncond_embeddings.view(batch_size * num_images_per_prompt , snake_case__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCAmelCase : List[str] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowerCAmelCase : Union[str, Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowerCAmelCase : Dict = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowerCAmelCase : str = torch.randn(snake_case__ , generator=snake_case__ , device='cpu' , dtype=snake_case__ ).to( self.device ) else: lowerCAmelCase : Tuple = torch.randn(snake_case__ , generator=snake_case__ , device=self.device , dtype=snake_case__ ) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) lowerCAmelCase : str = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(snake_case__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowerCAmelCase : Union[str, Any] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowerCAmelCase : Any = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowerCAmelCase : Tuple = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCAmelCase : Union[str, Any] = {} if accepts_eta: lowerCAmelCase : int = eta for i, t in enumerate(self.progress_bar(snake_case__ ) ): # expand the latents if we are doing classifier free guidance lowerCAmelCase : Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCAmelCase : Tuple = self.scheduler.scale_model_input(snake_case__ , snake_case__ ) # predict the noise residual lowerCAmelCase : List[str] = self.unet(snake_case__ , snake_case__ , encoder_hidden_states=snake_case__ ).sample # perform guidance if do_classifier_free_guidance: lowerCAmelCase , lowerCAmelCase : Dict = noise_pred.chunk(2 ) lowerCAmelCase : Tuple = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowerCAmelCase : int = self.scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase : List[Any] = 1 / 0.1_8_2_1_5 * latents lowerCAmelCase : Dict = self.vae.decode(snake_case__ ).sample lowerCAmelCase : List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowerCAmelCase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowerCAmelCase : Dict = self.numpy_to_pil(snake_case__ ) if not return_dict: return image return StableDiffusionPipelineOutput(images=snake_case__ , nsfw_content_detected=snake_case__ )
646
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCAmelCase : int = { 'configuration_blenderbot': [ 'BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlenderbotConfig', 'BlenderbotOnnxConfig', ], 'tokenization_blenderbot': ['BlenderbotTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[int] = ['BlenderbotTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : List[Any] = [ 'BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlenderbotForCausalLM', 'BlenderbotForConditionalGeneration', 'BlenderbotModel', 'BlenderbotPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : str = [ 'TFBlenderbotForConditionalGeneration', 'TFBlenderbotModel', 'TFBlenderbotPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : List[str] = [ 'FlaxBlenderbotForConditionalGeneration', 'FlaxBlenderbotModel', 'FlaxBlenderbotPreTrainedModel', ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys _lowerCAmelCase : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
646
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : List[Any] = LDMTextToImagePipeline _lowerCamelCase : Optional[Any] = TEXT_TO_IMAGE_PARAMS - { """negative_prompt""", """negative_prompt_embeds""", """cross_attention_kwargs""", """prompt_embeds""", } _lowerCamelCase : List[str] = PipelineTesterMixin.required_optional_params - { """num_images_per_prompt""", """callback""", """callback_steps""", } _lowerCamelCase : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS _lowerCamelCase : Optional[int] = False def lowercase ( self ): torch.manual_seed(0 ) lowerCAmelCase : Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) lowerCAmelCase : int = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , ) torch.manual_seed(0 ) lowerCAmelCase : str = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') , up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') , latent_channels=4 , ) torch.manual_seed(0 ) lowerCAmelCase : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowerCAmelCase : str = CLIPTextModel(snake_case__ ) lowerCAmelCase : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCAmelCase : List[Any] = { 'unet': unet, 'scheduler': scheduler, 'vqvae': vae, 'bert': text_encoder, 'tokenizer': tokenizer, } return components def lowercase ( self , snake_case__ , snake_case__=0 ): if str(snake_case__ ).startswith('mps' ): lowerCAmelCase : Optional[int] = torch.manual_seed(snake_case__ ) else: lowerCAmelCase : str = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) lowerCAmelCase : Tuple = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase ( self ): lowerCAmelCase : List[str] = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase : Optional[Any] = self.get_dummy_components() lowerCAmelCase : Optional[Any] = LDMTextToImagePipeline(**snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Tuple = self.get_dummy_inputs(snake_case__ ) lowerCAmelCase : Union[str, Any] = pipe(**snake_case__ ).images lowerCAmelCase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) lowerCAmelCase : List[Any] = np.array([0.6_1_0_1, 0.6_1_5_6, 0.5_6_2_2, 0.4_8_9_5, 0.6_6_6_1, 0.3_8_0_4, 0.5_7_4_8, 0.6_1_3_6, 0.5_0_1_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self , snake_case__ , snake_case__=torch.floataa , snake_case__=0 ): lowerCAmelCase : List[str] = torch.manual_seed(snake_case__ ) lowerCAmelCase : int = np.random.RandomState(snake_case__ ).standard_normal((1, 4, 32, 32) ) lowerCAmelCase : Optional[Any] = torch.from_numpy(snake_case__ ).to(device=snake_case__ , dtype=snake_case__ ) lowerCAmelCase : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase ( self ): lowerCAmelCase : Tuple = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Optional[Any] = self.get_inputs(snake_case__ ) lowerCAmelCase : List[Any] = pipe(**snake_case__ ).images lowerCAmelCase : str = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) lowerCAmelCase : Tuple = np.array([0.5_1_8_2_5, 0.5_2_8_5_0, 0.5_2_5_4_3, 0.5_4_2_5_8, 0.5_2_3_0_4, 0.5_2_5_6_9, 0.5_4_3_6_3, 0.5_5_2_7_6, 0.5_6_8_7_8] ) lowerCAmelCase : int = np.abs(expected_slice - image_slice ).max() assert max_diff < 1e-3 @nightly @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self , snake_case__ , snake_case__=torch.floataa , snake_case__=0 ): lowerCAmelCase : List[str] = torch.manual_seed(snake_case__ ) lowerCAmelCase : Any = np.random.RandomState(snake_case__ ).standard_normal((1, 4, 32, 32) ) lowerCAmelCase : List[Any] = torch.from_numpy(snake_case__ ).to(device=snake_case__ , dtype=snake_case__ ) lowerCAmelCase : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase ( self ): lowerCAmelCase : Optional[int] = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : int = self.get_inputs(snake_case__ ) lowerCAmelCase : Optional[int] = pipe(**snake_case__ ).images[0] lowerCAmelCase : Optional[int] = load_numpy( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy' ) lowerCAmelCase : List[str] = np.abs(expected_image - image ).max() assert max_diff < 1e-3
646
1
'''simple docstring''' _lowerCAmelCase : str = 6_5521 def __UpperCamelCase ( _A : str ) -> int: """simple docstring""" lowerCAmelCase : List[str] = 1 lowerCAmelCase : Union[str, Any] = 0 for plain_chr in plain_text: lowerCAmelCase : Optional[Any] = (a + ord(_A )) % MOD_ADLER lowerCAmelCase : Optional[int] = (b + a) % MOD_ADLER return (b << 16) | a
646
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Tuple = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { 'facebook/xmod-base': 'https://huggingface.co/facebook/xmod-base/resolve/main/config.json', 'facebook/xmod-large-prenorm': 'https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json', 'facebook/xmod-base-13-125k': 'https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json', 'facebook/xmod-base-30-125k': 'https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json', 'facebook/xmod-base-30-195k': 'https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json', 'facebook/xmod-base-60-125k': 'https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json', 'facebook/xmod-base-60-265k': 'https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json', 'facebook/xmod-base-75-125k': 'https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json', 'facebook/xmod-base-75-269k': 'https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json', } class lowerCAmelCase ( a ): _lowerCamelCase : int = """xmod""" def __init__( self , snake_case__=3_0522 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=1e-1_2 , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__="absolute" , snake_case__=True , snake_case__=None , snake_case__=False , snake_case__=2 , snake_case__=False , snake_case__=True , snake_case__=True , snake_case__=("en_XX",) , snake_case__=None , **snake_case__ , ): super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) lowerCAmelCase : Dict = vocab_size lowerCAmelCase : Optional[Any] = hidden_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob lowerCAmelCase : str = max_position_embeddings lowerCAmelCase : int = type_vocab_size lowerCAmelCase : List[Any] = initializer_range lowerCAmelCase : Any = layer_norm_eps lowerCAmelCase : Dict = position_embedding_type lowerCAmelCase : Optional[Any] = use_cache lowerCAmelCase : Union[str, Any] = classifier_dropout lowerCAmelCase : int = pre_norm lowerCAmelCase : Optional[Any] = adapter_reduction_factor lowerCAmelCase : Any = adapter_layer_norm lowerCAmelCase : Dict = adapter_reuse_layer_norm lowerCAmelCase : Any = ln_before_adapter lowerCAmelCase : Optional[Any] = list(snake_case__ ) lowerCAmelCase : List[Any] = default_language class lowerCAmelCase ( a ): @property def lowercase ( self ): if self.task == "multiple-choice": lowerCAmelCase : List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase : Optional[int] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
646
1
'''simple docstring''' from cva import destroyAllWindows, imread, imshow, waitKey def __UpperCamelCase ( _A : Tuple ) -> List[Any]: """simple docstring""" lowerCAmelCase , lowerCAmelCase : int = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(_A ): for j in range(_A ): lowerCAmelCase : str = [2_55, 2_55, 2_55] - img[i][j] return img if __name__ == "__main__": # read original image _lowerCAmelCase : int = imread('image_data/lena.jpg', 1) # convert to its negative _lowerCAmelCase : List[str] = convert_to_negative(img) # show result image imshow('negative of original image', img) waitKey(0) destroyAllWindows()
646
'''simple docstring''' import argparse import os import re _lowerCAmelCase : Dict = 'src/diffusers' # Pattern that looks at the indentation in a line. _lowerCAmelCase : str = re.compile(r'^(\s*)\S') # Pattern that matches `"key":" and puts `key` in group 0. _lowerCAmelCase : Any = re.compile(r'^\s*"([^"]+)":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. _lowerCAmelCase : List[Any] = re.compile(r'^\s*_import_structure\["([^"]+)"\]') # Pattern that matches `"key",` and puts `key` in group 0. _lowerCAmelCase : int = re.compile(r'^\s*"([^"]+)",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. _lowerCAmelCase : Optional[Any] = re.compile(r'\[([^\]]+)\]') def __UpperCamelCase ( _A : Union[str, Any] ) -> Dict: """simple docstring""" lowerCAmelCase : Any = _re_indent.search(_A ) return "" if search is None else search.groups()[0] def __UpperCamelCase ( _A : Dict , _A : Any="" , _A : List[str]=None , _A : Any=None ) -> Tuple: """simple docstring""" lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Tuple = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(_A ): index += 1 lowerCAmelCase : Optional[int] = ['\n'.join(lines[:index] )] else: lowerCAmelCase : int = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowerCAmelCase : Tuple = [lines[index]] index += 1 while index < len(_A ) and (end_prompt is None or not lines[index].startswith(_A )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(_A ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(_A ) ) if index < len(_A ) - 1: lowerCAmelCase : List[Any] = [lines[index + 1]] index += 1 else: lowerCAmelCase : int = [] else: blocks.append('\n'.join(_A ) ) lowerCAmelCase : Any = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(_A ) > 0: blocks.append('\n'.join(_A ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(_A ): blocks.append('\n'.join(lines[index:] ) ) return blocks def __UpperCamelCase ( _A : Dict ) -> List[Any]: """simple docstring""" def _inner(_A : Tuple ): return key(_A ).lower().replace('_' , '' ) return _inner def __UpperCamelCase ( _A : Union[str, Any] , _A : Any=None ) -> Optional[Any]: """simple docstring""" def noop(_A : Any ): return x if key is None: lowerCAmelCase : List[str] = noop # Constants are all uppercase, they go first. lowerCAmelCase : str = [obj for obj in objects if key(_A ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowerCAmelCase : List[str] = [obj for obj in objects if key(_A )[0].isupper() and not key(_A ).isupper()] # Functions begin with a lowercase, they go last. lowerCAmelCase : Optional[Any] = [obj for obj in objects if not key(_A )[0].isupper()] lowerCAmelCase : Tuple = ignore_underscore(_A ) return sorted(_A , key=_A ) + sorted(_A , key=_A ) + sorted(_A , key=_A ) def __UpperCamelCase ( _A : Union[str, Any] ) -> int: """simple docstring""" def _replace(_A : List[Any] ): lowerCAmelCase : List[Any] = match.groups()[0] if "," not in imports: return F"[{imports}]" lowerCAmelCase : Dict = [part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase : List[str] = keys[:-1] return "[" + ", ".join([F"\"{k}\"" for k in sort_objects(_A )] ) + "]" lowerCAmelCase : Optional[int] = import_statement.split('\n' ) if len(_A ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowerCAmelCase : Optional[Any] = 2 if lines[1].strip() == '[' else 1 lowerCAmelCase : List[str] = [(i, _re_strip_line.search(_A ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowerCAmelCase : Optional[Any] = sort_objects(_A , key=lambda _A : x[1] ) lowerCAmelCase : Dict = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(_A ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowerCAmelCase : Optional[int] = _re_bracket_content.sub(_replace , lines[1] ) else: lowerCAmelCase : List[Any] = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase : int = keys[:-1] lowerCAmelCase : Tuple = get_indent(lines[1] ) + ', '.join([F"\"{k}\"" for k in sort_objects(_A )] ) return "\n".join(_A ) else: # Finally we have to deal with imports fitting on one line lowerCAmelCase : Union[str, Any] = _re_bracket_content.sub(_replace , _A ) return import_statement def __UpperCamelCase ( _A : str , _A : Tuple=True ) -> Optional[Any]: """simple docstring""" with open(_A , 'r' ) as f: lowerCAmelCase : Optional[int] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowerCAmelCase : List[Any] = split_code_in_indented_blocks( _A , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(_A ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowerCAmelCase : List[str] = main_blocks[block_idx] lowerCAmelCase : Union[str, Any] = block.split('\n' ) # Get to the start of the imports. lowerCAmelCase : Optional[Any] = 0 while line_idx < len(_A ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowerCAmelCase : Optional[Any] = len(_A ) else: line_idx += 1 if line_idx >= len(_A ): continue # Ignore beginning and last line: they don't contain anything. lowerCAmelCase : str = '\n'.join(block_lines[line_idx:-1] ) lowerCAmelCase : str = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowerCAmelCase : Optional[Any] = split_code_in_indented_blocks(_A , indent_level=_A ) # We have two categories of import key: list or _import_structure[key].append/extend lowerCAmelCase : Union[str, Any] = _re_direct_key if '_import_structure' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowerCAmelCase : int = [(pattern.search(_A ).groups()[0] if pattern.search(_A ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowerCAmelCase : Dict = [(i, key) for i, key in enumerate(_A ) if key is not None] lowerCAmelCase : List[Any] = [x[0] for x in sorted(_A , key=lambda _A : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowerCAmelCase : int = 0 lowerCAmelCase : Dict = [] for i in range(len(_A ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: lowerCAmelCase : str = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(_A ) count += 1 # And we put our main block back together with its first and last line. lowerCAmelCase : str = '\n'.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(_A ): if check_only: return True else: print(F"Overwriting {file}." ) with open(_A , 'w' ) as f: f.write('\n'.join(_A ) ) def __UpperCamelCase ( _A : Tuple=True ) -> Any: """simple docstring""" lowerCAmelCase : Tuple = [] for root, _, files in os.walk(_A ): if "__init__.py" in files: lowerCAmelCase : Any = sort_imports(os.path.join(_A , '__init__.py' ) , check_only=_A ) if result: lowerCAmelCase : Optional[Any] = [os.path.join(_A , '__init__.py' )] if len(_A ) > 0: raise ValueError(F"Would overwrite {len(_A )} files, run `make style`." ) if __name__ == "__main__": _lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') _lowerCAmelCase : Optional[int] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
646
1
'''simple docstring''' from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class lowerCAmelCase : def __init__( self , snake_case__ , snake_case__=13 , snake_case__=30 , snake_case__=2 , snake_case__=3 , snake_case__=True , snake_case__=True , snake_case__=32 , snake_case__=2 , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=10 , snake_case__=0.0_2 , snake_case__=3 , snake_case__=None , snake_case__=2 , ): lowerCAmelCase : List[Any] = parent lowerCAmelCase : str = batch_size lowerCAmelCase : str = image_size lowerCAmelCase : str = patch_size lowerCAmelCase : Dict = num_channels lowerCAmelCase : List[Any] = is_training lowerCAmelCase : Any = use_labels lowerCAmelCase : List[str] = hidden_size lowerCAmelCase : Any = num_hidden_layers lowerCAmelCase : List[str] = num_attention_heads lowerCAmelCase : Union[str, Any] = intermediate_size lowerCAmelCase : int = hidden_act lowerCAmelCase : Union[str, Any] = hidden_dropout_prob lowerCAmelCase : Dict = attention_probs_dropout_prob lowerCAmelCase : str = type_sequence_label_size lowerCAmelCase : int = initializer_range lowerCAmelCase : int = scope lowerCAmelCase : str = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) lowerCAmelCase : List[str] = (image_size // patch_size) ** 2 lowerCAmelCase : str = num_patches + 2 def lowercase ( self ): lowerCAmelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase : Tuple = None if self.use_labels: lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Any = self.get_config() return config, pixel_values, labels def lowercase ( self ): return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Tuple = TFDeiTModel(config=snake_case__ ) lowerCAmelCase : str = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : List[str] = TFDeiTForMaskedImageModeling(config=snake_case__ ) lowerCAmelCase : int = model(snake_case__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCAmelCase : int = 1 lowerCAmelCase : Optional[int] = TFDeiTForMaskedImageModeling(snake_case__ ) lowerCAmelCase : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase : Any = model(snake_case__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Tuple = self.type_sequence_label_size lowerCAmelCase : str = TFDeiTForImageClassification(snake_case__ ) lowerCAmelCase : List[Any] = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCAmelCase : Any = 1 lowerCAmelCase : Any = TFDeiTForImageClassification(snake_case__ ) lowerCAmelCase : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase : Tuple = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Dict = config_and_inputs lowerCAmelCase : List[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class lowerCAmelCase ( a , a , unittest.TestCase ): _lowerCamelCase : int = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) _lowerCamelCase : Optional[Any] = ( { """feature-extraction""": TFDeiTModel, """image-classification""": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) _lowerCamelCase : Any = False _lowerCamelCase : str = False _lowerCamelCase : List[Any] = False _lowerCamelCase : Dict = False def lowercase ( self ): lowerCAmelCase : List[str] = TFDeiTModelTester(self ) lowerCAmelCase : List[str] = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=37 ) def lowercase ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='DeiT does not use inputs_embeds' ) def lowercase ( self ): pass def lowercase ( self ): lowerCAmelCase , lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Any = model_class(snake_case__ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) lowerCAmelCase : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case__ , tf.keras.layers.Dense ) ) def lowercase ( self ): lowerCAmelCase , lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Tuple = model_class(snake_case__ ) lowerCAmelCase : List[str] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase : Tuple = [*signature.parameters.keys()] lowerCAmelCase : Optional[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case__ ) def lowercase ( self ): lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__=False ): lowerCAmelCase : List[str] = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def lowercase ( self ): for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : Tuple = TFDeiTModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def __UpperCamelCase ( ) -> Optional[int]: """simple docstring""" lowerCAmelCase : Union[str, Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class lowerCAmelCase ( unittest.TestCase ): @cached_property def lowercase ( self ): return ( DeiTImageProcessor.from_pretrained('facebook/deit-base-distilled-patch16-224' ) if is_vision_available() else None ) @slow def lowercase ( self ): lowerCAmelCase : str = TFDeiTForImageClassificationWithTeacher.from_pretrained('facebook/deit-base-distilled-patch16-224' ) lowerCAmelCase : Tuple = self.default_image_processor lowerCAmelCase : List[str] = prepare_img() lowerCAmelCase : Tuple = image_processor(images=snake_case__ , return_tensors='tf' ) # forward pass lowerCAmelCase : int = model(**snake_case__ ) # verify the logits lowerCAmelCase : Optional[int] = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , snake_case__ ) lowerCAmelCase : Tuple = tf.constant([-1.0_2_6_6, 0.1_9_1_2, -1.2_8_6_1] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , snake_case__ , atol=1e-4 ) )
646
'''simple docstring''' import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class lowerCAmelCase : def __init__( self , snake_case__ , snake_case__=13 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=99 , snake_case__=64 , snake_case__=32 , snake_case__=5 , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=16 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=3 , snake_case__=4 , snake_case__=None , ): lowerCAmelCase : str = parent lowerCAmelCase : Optional[int] = batch_size lowerCAmelCase : Optional[Any] = seq_length lowerCAmelCase : Optional[Any] = is_training lowerCAmelCase : Dict = use_input_mask lowerCAmelCase : Tuple = use_token_type_ids lowerCAmelCase : int = use_labels lowerCAmelCase : int = vocab_size lowerCAmelCase : Any = hidden_size lowerCAmelCase : Optional[Any] = embedding_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : List[str] = num_attention_heads lowerCAmelCase : List[Any] = intermediate_size lowerCAmelCase : Dict = hidden_act lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : int = attention_probs_dropout_prob lowerCAmelCase : List[Any] = max_position_embeddings lowerCAmelCase : int = type_vocab_size lowerCAmelCase : List[str] = type_sequence_label_size lowerCAmelCase : Dict = initializer_range lowerCAmelCase : Any = num_labels lowerCAmelCase : str = num_choices lowerCAmelCase : int = scope def lowercase ( self ): lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Union[str, Any] = None if self.use_input_mask: lowerCAmelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : Optional[int] = None if self.use_token_type_ids: lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : Optional[Any] = None lowerCAmelCase : Optional[Any] = None lowerCAmelCase : Dict = None if self.use_labels: lowerCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase ( self ): return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case__ , initializer_range=self.initializer_range , ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = MobileBertModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : int = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) lowerCAmelCase : Optional[int] = model(snake_case__ , token_type_ids=snake_case__ ) lowerCAmelCase : Optional[Any] = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : int = MobileBertForMaskedLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : str = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = MobileBertForNextSentencePrediction(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : str = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : List[Any] = MobileBertForPreTraining(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Tuple = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , next_sentence_label=snake_case__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = MobileBertForQuestionAnswering(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : List[str] = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = self.num_labels lowerCAmelCase : List[Any] = MobileBertForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = self.num_labels lowerCAmelCase : int = MobileBertForTokenClassification(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : List[str] = self.num_choices lowerCAmelCase : Any = MobileBertForMultipleChoice(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : int = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : List[str] = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase ( self ): lowerCAmelCase : Any = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) : Optional[Any] = config_and_inputs lowerCAmelCase : List[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase ( a , a , unittest.TestCase ): _lowerCamelCase : List[str] = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) _lowerCamelCase : Tuple = ( { """feature-extraction""": MobileBertModel, """fill-mask""": MobileBertForMaskedLM, """question-answering""": MobileBertForQuestionAnswering, """text-classification""": MobileBertForSequenceClassification, """token-classification""": MobileBertForTokenClassification, """zero-shot""": MobileBertForSequenceClassification, } if is_torch_available() else {} ) _lowerCamelCase : str = True def lowercase ( self , snake_case__ , snake_case__ , snake_case__=False ): lowerCAmelCase : int = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if return_labels: if model_class in get_values(snake_case__ ): lowerCAmelCase : str = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=snake_case__ ) lowerCAmelCase : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case__ ) return inputs_dict def lowercase ( self ): lowerCAmelCase : List[Any] = MobileBertModelTester(self ) lowerCAmelCase : Dict = ConfigTester(self , config_class=snake_case__ , hidden_size=37 ) def lowercase ( self ): self.config_tester.run_common_tests() def lowercase ( self ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*snake_case__ ) def __UpperCamelCase ( _A : Optional[Any] ) -> Optional[int]: """simple docstring""" return torch.tensor( _A , dtype=torch.long , device=_A , ) _lowerCAmelCase : Union[str, Any] = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase ( unittest.TestCase ): @slow def lowercase ( self ): lowerCAmelCase : List[str] = MobileBertModel.from_pretrained('google/mobilebert-uncased' ).to(snake_case__ ) lowerCAmelCase : List[Any] = _long_tensor([[101, 7110, 1005, 1056, 2023, 1_1333, 1_7413, 1029, 102]] ) with torch.no_grad(): lowerCAmelCase : Tuple = model(snake_case__ )[0] lowerCAmelCase : List[Any] = torch.Size((1, 9, 512) ) self.assertEqual(output.shape , snake_case__ ) lowerCAmelCase : Union[str, Any] = torch.tensor( [ [ [-2.4_7_3_6_5_2_6e0_7, 8.2_6_9_1_6_5_6e0_4, 1.6_5_2_1_8_3_8e0_5], [-5.7_5_4_1_7_0_4e-0_1, 3.9_0_5_6_0_2_2e0_0, 4.4_0_1_1_5_0_7e0_0], [2.6_0_4_7_3_5_9e0_0, 1.5_6_7_7_6_5_2e0_0, -1.7_3_2_4_1_8_8e-0_1], ] ] , device=snake_case__ , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE lowerCAmelCase : List[str] = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) lowerCAmelCase : Dict = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
646
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class lowerCAmelCase : def __init__( self , snake_case__ , ): lowerCAmelCase : Optional[int] = parent lowerCAmelCase : Tuple = 13 lowerCAmelCase : List[Any] = 7 lowerCAmelCase : str = True lowerCAmelCase : Optional[Any] = True lowerCAmelCase : Tuple = False lowerCAmelCase : int = True lowerCAmelCase : str = 99 lowerCAmelCase : str = 32 lowerCAmelCase : Tuple = 2 lowerCAmelCase : List[Any] = 4 lowerCAmelCase : Dict = 37 lowerCAmelCase : int = 'gelu' lowerCAmelCase : Dict = 0.1 lowerCAmelCase : Dict = 0.1 lowerCAmelCase : str = 512 lowerCAmelCase : Optional[int] = 16 lowerCAmelCase : Tuple = 2 lowerCAmelCase : Tuple = 0.0_2 lowerCAmelCase : Tuple = 3 lowerCAmelCase : Optional[int] = 4 lowerCAmelCase : Union[str, Any] = None def lowercase ( self ): lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Tuple = None if self.use_input_mask: lowerCAmelCase : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : Union[str, Any] = None lowerCAmelCase : Optional[int] = None lowerCAmelCase : List[Any] = None if self.use_labels: lowerCAmelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : Dict = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : List[str] = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Any = TFDistilBertModel(config=snake_case__ ) lowerCAmelCase : List[Any] = {'input_ids': input_ids, 'attention_mask': input_mask} lowerCAmelCase : List[Any] = model(snake_case__ ) lowerCAmelCase : List[str] = [input_ids, input_mask] lowerCAmelCase : Optional[int] = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Tuple = TFDistilBertForMaskedLM(config=snake_case__ ) lowerCAmelCase : Union[str, Any] = {'input_ids': input_ids, 'attention_mask': input_mask} lowerCAmelCase : int = model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Optional[Any] = TFDistilBertForQuestionAnswering(config=snake_case__ ) lowerCAmelCase : Dict = { 'input_ids': input_ids, 'attention_mask': input_mask, } lowerCAmelCase : Optional[int] = model(snake_case__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = self.num_labels lowerCAmelCase : List[str] = TFDistilBertForSequenceClassification(snake_case__ ) lowerCAmelCase : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask} lowerCAmelCase : Dict = model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : List[str] = self.num_choices lowerCAmelCase : Optional[Any] = TFDistilBertForMultipleChoice(snake_case__ ) lowerCAmelCase : Dict = tf.tile(tf.expand_dims(snake_case__ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : List[Any] = tf.tile(tf.expand_dims(snake_case__ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : Any = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, } lowerCAmelCase : Union[str, Any] = model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Optional[Any] = self.num_labels lowerCAmelCase : str = TFDistilBertForTokenClassification(snake_case__ ) lowerCAmelCase : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask} lowerCAmelCase : List[str] = model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase ( self ): lowerCAmelCase : List[Any] = self.prepare_config_and_inputs() ((lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase)) : Tuple = config_and_inputs lowerCAmelCase : Union[str, Any] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class lowerCAmelCase ( a , a , unittest.TestCase ): _lowerCamelCase : Union[str, Any] = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) _lowerCamelCase : Optional[int] = ( { """feature-extraction""": TFDistilBertModel, """fill-mask""": TFDistilBertForMaskedLM, """question-answering""": TFDistilBertForQuestionAnswering, """text-classification""": TFDistilBertForSequenceClassification, """token-classification""": TFDistilBertForTokenClassification, """zero-shot""": TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) _lowerCamelCase : Union[str, Any] = False _lowerCamelCase : int = False def lowercase ( self ): lowerCAmelCase : str = TFDistilBertModelTester(self ) lowerCAmelCase : Any = ConfigTester(self , config_class=snake_case__ , dim=37 ) def lowercase ( self ): self.config_tester.run_common_tests() def lowercase ( self ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*snake_case__ ) @slow def lowercase ( self ): for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): lowerCAmelCase : Any = TFDistilBertModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) @require_tf class lowerCAmelCase ( unittest.TestCase ): @slow def lowercase ( self ): lowerCAmelCase : Optional[int] = TFDistilBertModel.from_pretrained('distilbert-base-uncased' ) lowerCAmelCase : List[str] = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCAmelCase : Any = model(snake_case__ )[0] lowerCAmelCase : List[str] = [1, 6, 768] self.assertEqual(output.shape , snake_case__ ) lowerCAmelCase : Union[str, Any] = tf.constant( [ [ [0.1_9_2_6_1_8_8_5, -0.1_3_7_3_2_9_5_5, 0.4_1_1_9_7_9_9], [0.2_2_1_5_0_1_5_6, -0.0_7_4_2_2_6_6_1, 0.3_9_0_3_7_2_0_4], [0.2_2_7_5_6_0_1_8, -0.0_8_9_6_4_1_4, 0.3_7_0_1_4_6_7], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , snake_case__ , atol=1e-4 )
646
'''simple docstring''' import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __UpperCamelCase ( _A : Dict ) -> int: """simple docstring""" lowerCAmelCase : Tuple = [] embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight", F"stage{idx}.patch_embed.proj.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias", F"stage{idx}.patch_embed.proj.bias", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight", F"stage{idx}.patch_embed.norm.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias", F"stage{idx}.patch_embed.norm.bias", ) ) return embed def __UpperCamelCase ( _A : List[Any] , _A : Dict ) -> Any: """simple docstring""" lowerCAmelCase : str = [] attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight", F"stage{idx}.blocks.{cnt}.attn.proj_q.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias", F"stage{idx}.blocks.{cnt}.attn.proj_q.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight", F"stage{idx}.blocks.{cnt}.attn.proj_k.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias", F"stage{idx}.blocks.{cnt}.attn.proj_k.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight", F"stage{idx}.blocks.{cnt}.attn.proj_v.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias", F"stage{idx}.blocks.{cnt}.attn.proj_v.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight", F"stage{idx}.blocks.{cnt}.attn.proj.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias", F"stage{idx}.blocks.{cnt}.attn.proj.bias", ) ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc2.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight", F"stage{idx}.blocks.{cnt}.norm1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias", F"stage{idx}.blocks.{cnt}.norm1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight", F"stage{idx}.blocks.{cnt}.norm2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias", F"stage{idx}.blocks.{cnt}.norm2.bias") ) return attention_weights def __UpperCamelCase ( _A : Optional[int] ) -> Optional[int]: """simple docstring""" lowerCAmelCase : Optional[int] = [] token.append((F"cvt.encoder.stages.{idx}.cls_token", 'stage2.cls_token') ) return token def __UpperCamelCase ( ) -> int: """simple docstring""" lowerCAmelCase : List[Any] = [] head.append(('layernorm.weight', 'norm.weight') ) head.append(('layernorm.bias', 'norm.bias') ) head.append(('classifier.weight', 'head.weight') ) head.append(('classifier.bias', 'head.bias') ) return head def __UpperCamelCase ( _A : str , _A : Optional[Any] , _A : Dict , _A : str ) -> Optional[int]: """simple docstring""" lowerCAmelCase : List[str] = 'imagenet-1k-id2label.json' lowerCAmelCase : Tuple = 10_00 lowerCAmelCase : str = 'huggingface/label-files' lowerCAmelCase : List[Any] = num_labels lowerCAmelCase : Any = json.load(open(cached_download(hf_hub_url(_A , _A , repo_type='dataset' ) ) , 'r' ) ) lowerCAmelCase : List[str] = {int(_A ): v for k, v in idalabel.items()} lowerCAmelCase : List[str] = idalabel lowerCAmelCase : str = {v: k for k, v in idalabel.items()} lowerCAmelCase : int = CvtConfig(num_labels=_A , idalabel=_A , labelaid=_A ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13": lowerCAmelCase : List[str] = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21": lowerCAmelCase : Tuple = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: lowerCAmelCase : Any = [2, 2, 20] lowerCAmelCase : List[str] = [3, 12, 16] lowerCAmelCase : List[Any] = [1_92, 7_68, 10_24] lowerCAmelCase : Union[str, Any] = CvtForImageClassification(_A ) lowerCAmelCase : str = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) lowerCAmelCase : Optional[Any] = image_size lowerCAmelCase : List[Any] = torch.load(_A , map_location=torch.device('cpu' ) ) lowerCAmelCase : str = OrderedDict() lowerCAmelCase : int = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: lowerCAmelCase : List[str] = list_of_state_dict + cls_token(_A ) lowerCAmelCase : Optional[Any] = list_of_state_dict + embeddings(_A ) for cnt in range(config.depth[idx] ): lowerCAmelCase : List[Any] = list_of_state_dict + attention(_A , _A ) lowerCAmelCase : List[str] = list_of_state_dict + final() for gg in list_of_state_dict: print(_A ) for i in range(len(_A ) ): lowerCAmelCase : Tuple = original_weights[list_of_state_dict[i][1]] model.load_state_dict(_A ) model.save_pretrained(_A ) image_processor.save_pretrained(_A ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": _lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '--cvt_model', default='cvt-w24', type=str, help='Name of the cvt model you\'d like to convert.', ) parser.add_argument( '--image_size', default=384, type=int, help='Input Image Size', ) parser.add_argument( '--cvt_file_name', default=r'cvtmodels\CvT-w24-384x384-IN-22k.pth', type=str, help='Input Image Size', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) _lowerCAmelCase : str = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
646
1
'''simple docstring''' import math import sys import cva import numpy as np def __UpperCamelCase ( _A : np.ndarray , _A : float ) -> np.ndarray: """simple docstring""" lowerCAmelCase : Union[str, Any] = math.sqrt(_A ) lowerCAmelCase : Union[str, Any] = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def __UpperCamelCase ( _A : np.ndarray , _A : int , _A : int , _A : int ) -> np.ndarray: """simple docstring""" lowerCAmelCase : int = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def __UpperCamelCase ( _A : int , _A : float ) -> np.ndarray: """simple docstring""" lowerCAmelCase : Dict = np.zeros((kernel_size, kernel_size) ) for i in range(0 , _A ): for j in range(0 , _A ): lowerCAmelCase : Optional[int] = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(_A , _A ) def __UpperCamelCase ( _A : np.ndarray , _A : float , _A : float , _A : int , ) -> np.ndarray: """simple docstring""" lowerCAmelCase : str = np.zeros(img.shape ) lowerCAmelCase : int = get_gauss_kernel(_A , _A ) lowerCAmelCase , lowerCAmelCase : Dict = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): lowerCAmelCase : int = get_slice(_A , _A , _A , _A ) lowerCAmelCase : Any = img_s - img_s[kernel_size // 2, kernel_size // 2] lowerCAmelCase : str = vec_gaussian(_A , _A ) lowerCAmelCase : Optional[int] = np.multiply(_A , _A ) lowerCAmelCase : str = np.multiply(_A , _A ) lowerCAmelCase : Union[str, Any] = np.sum(_A ) / np.sum(_A ) lowerCAmelCase : Tuple = val return imga def __UpperCamelCase ( _A : list ) -> tuple: """simple docstring""" lowerCAmelCase : List[Any] = args[1] if args[1:] else '../image_data/lena.jpg' lowerCAmelCase : Any = float(args[2] ) if args[2:] else 1.0 lowerCAmelCase : Union[str, Any] = float(args[3] ) if args[3:] else 1.0 if args[4:]: lowerCAmelCase : int = int(args[4] ) lowerCAmelCase : Optional[Any] = kernel_size + abs(kernel_size % 2 - 1 ) else: lowerCAmelCase : Optional[int] = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Any = parse_args(sys.argv) _lowerCAmelCase : str = cva.imread(filename, 0) cva.imshow('input image', img) _lowerCAmelCase : Union[str, Any] = img / 255 _lowerCAmelCase : List[str] = out.astype('float32') _lowerCAmelCase : Optional[int] = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) _lowerCAmelCase : Union[str, Any] = out * 255 _lowerCAmelCase : Optional[Any] = np.uinta(out) cva.imshow('output image', out) cva.waitKey(0) cva.destroyAllWindows()
646
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Any = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { 'xlm-roberta-base': 'https://huggingface.co/xlm-roberta-base/resolve/main/config.json', 'xlm-roberta-large': 'https://huggingface.co/xlm-roberta-large/resolve/main/config.json', 'xlm-roberta-large-finetuned-conll02-dutch': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll02-spanish': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-english': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-german': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json' ), } class lowerCAmelCase ( a ): _lowerCamelCase : List[str] = """xlm-roberta""" def __init__( self , snake_case__=3_0522 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=1e-1_2 , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__="absolute" , snake_case__=True , snake_case__=None , **snake_case__ , ): super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) lowerCAmelCase : Optional[Any] = vocab_size lowerCAmelCase : Optional[Any] = hidden_size lowerCAmelCase : Optional[Any] = num_hidden_layers lowerCAmelCase : Any = num_attention_heads lowerCAmelCase : Optional[int] = hidden_act lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : Dict = hidden_dropout_prob lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob lowerCAmelCase : Optional[Any] = max_position_embeddings lowerCAmelCase : Optional[int] = type_vocab_size lowerCAmelCase : int = initializer_range lowerCAmelCase : List[Any] = layer_norm_eps lowerCAmelCase : Union[str, Any] = position_embedding_type lowerCAmelCase : Union[str, Any] = use_cache lowerCAmelCase : List[str] = classifier_dropout class lowerCAmelCase ( a ): @property def lowercase ( self ): if self.task == "multiple-choice": lowerCAmelCase : str = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase : Optional[int] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
646
1
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece_no_bos.model') @require_sentencepiece @require_tokenizers class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : str = PegasusTokenizer _lowerCamelCase : Union[str, Any] = PegasusTokenizerFast _lowerCamelCase : Optional[Any] = True _lowerCamelCase : Optional[Any] = True def lowercase ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : List[Any] = PegasusTokenizer(snake_case__ ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase ( self ): return PegasusTokenizer.from_pretrained('google/pegasus-large' ) def lowercase ( self , **snake_case__ ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def lowercase ( self , snake_case__ ): return ("This is a test", "This is a test") def lowercase ( self ): lowerCAmelCase : Optional[int] = '</s>' lowerCAmelCase : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '</s>' ) self.assertEqual(vocab_keys[-1] , 'v' ) self.assertEqual(len(snake_case__ ) , 1103 ) def lowercase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def lowercase ( self ): lowerCAmelCase : List[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : List[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : Optional[Any] = ( 'Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important' ' </s> <pad> <pad> <pad>' ) lowerCAmelCase : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] lowerCAmelCase : Optional[int] = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Any = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowerCAmelCase : List[str] = '<mask_1> To ensure a <mask_2> flow of bank resolutions.' lowerCAmelCase : Optional[Any] = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1] lowerCAmelCase : Optional[Any] = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Optional[Any] = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 lowerCAmelCase : List[Any] = 'To ensure a smooth flow of bank resolutions.' lowerCAmelCase : Optional[int] = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1] lowerCAmelCase : Any = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def lowercase ( self ): lowerCAmelCase : Union[str, Any] = ['This is going to be way too long.' * 150, 'short example'] lowerCAmelCase : int = ['not super long but more than 5 tokens', 'tiny'] lowerCAmelCase : Dict = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) lowerCAmelCase : Dict = self._large_tokenizer( text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(snake_case__ ) == 2 # input_ids, attention_mask. @slow def lowercase ( self ): # fmt: off lowerCAmelCase : Tuple = {'input_ids': [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name='google/bigbird-pegasus-large-arxiv' , revision='ba85d0851d708441f91440d509690f1ab6353415' , ) @require_sentencepiece @require_tokenizers class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : Optional[Any] = PegasusTokenizer _lowerCamelCase : str = PegasusTokenizerFast _lowerCamelCase : Tuple = True _lowerCamelCase : int = True def lowercase ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : int = PegasusTokenizer(snake_case__ , offset=0 , mask_token_sent=snake_case__ , mask_token='[MASK]' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase ( self ): return PegasusTokenizer.from_pretrained('google/bigbird-pegasus-large-arxiv' ) def lowercase ( self , **snake_case__ ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def lowercase ( self , snake_case__ ): return ("This is a test", "This is a test") def lowercase ( self ): lowerCAmelCase : Tuple = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : Union[str, Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : List[str] = ( 'Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>' ' <pad> <pad> <pad>' ) lowerCAmelCase : Dict = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] lowerCAmelCase : Union[str, Any] = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) @require_torch def lowercase ( self ): lowerCAmelCase : Optional[int] = ['This is going to be way too long.' * 1000, 'short example'] lowerCAmelCase : Union[str, Any] = ['not super long but more than 5 tokens', 'tiny'] lowerCAmelCase : List[str] = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) lowerCAmelCase : List[str] = self._large_tokenizer( text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(snake_case__ ) == 2 # input_ids, attention_mask. def lowercase ( self ): lowerCAmelCase : List[str] = ( 'This is an example string that is used to test the original TF implementation against the HF' ' implementation' ) lowerCAmelCase : Tuple = self._large_tokenizer(snake_case__ ).input_ids self.assertListEqual( snake_case__ , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
646
'''simple docstring''' import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer _lowerCAmelCase : List[Any] = logging.getLogger(__name__) def __UpperCamelCase ( ) -> Any: """simple docstring""" lowerCAmelCase : str = argparse.ArgumentParser( description='Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.' ) parser.add_argument( '--dataset_name' , type=_A , default='wikitext' , help='Name of the training. Explore datasets at: hf.co/datasets.' , ) parser.add_argument( '--dataset_config' , type=_A , default='wikitext-103-raw-v1' , help='Configuration name of the dataset.' ) parser.add_argument( '--tokenizer_name_or_path' , type=_A , default='sayakpaul/unigram-tokenizer-wikitext' , help='Tokenizer identifier. Can be a local filepath or a Hub identifier.' , ) parser.add_argument( '--shard_size' , type=_A , default=10_00 , help='Number of entries to go in a single shard.' , ) parser.add_argument('--split' , type=_A , default='train' , choices=['train', 'test', 'validation'] ) parser.add_argument( '--limit' , default=_A , type=_A , help='Limit the number of shards (used for debugging).' , ) parser.add_argument( '--max_length' , type=_A , default=5_12 , help='Maximum sequence length. For training on TPUs, it helps to have a maximum' ' sequence length that is a multiple of 8.' , ) parser.add_argument( '--output_dir' , default='tf-tpu' , type=_A , help='Output directory where the TFRecord shards will be saved. If the' ' path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord' ' shards will be directly saved to a Google Cloud Storage bucket.' , ) lowerCAmelCase : Any = parser.parse_args() return args def __UpperCamelCase ( _A : Optional[int] ) -> int: """simple docstring""" def fn(_A : Tuple ): return tokenizer(examples['text'] ) return fn def __UpperCamelCase ( _A : int ) -> int: """simple docstring""" lowerCAmelCase : Tuple = [] for i in range(len(tokenized_data['input_ids'] ) ): lowerCAmelCase : Optional[Any] = { 'input_ids': tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data['input_ids'][i] ) ), 'attention_mask': tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data['attention_mask'][i] ) ), } lowerCAmelCase : Any = tf.train.Features(feature=_A ) lowerCAmelCase : List[str] = tf.train.Example(features=_A ) lowerCAmelCase : Tuple = example.SerializeToString() records.append(_A ) return records def __UpperCamelCase ( _A : int ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase : Union[str, Any] = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: lowerCAmelCase : Optional[Any] = min(len(_A ) , args.limit ) lowerCAmelCase : Dict = dataset.select(range(_A ) ) print(F"Limiting the dataset to {args.limit} entries." ) lowerCAmelCase : str = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) lowerCAmelCase : Any = os.path.join(args.output_dir , args.split ) if not os.path.exists(_A ): os.makedirs(_A ) else: lowerCAmelCase : List[Any] = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. lowerCAmelCase : Any = tokenize_function(_A ) lowerCAmelCase : Optional[int] = dataset.map(_A , batched=_A , num_proc=4 , remove_columns=['text'] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(_A : str ): # Concatenate all texts. lowerCAmelCase : Optional[int] = {k: sum(examples[k] , [] ) for k in examples.keys()} lowerCAmelCase : str = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 lowerCAmelCase : List[Any] = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. lowerCAmelCase : str = { k: [t[i : i + args.max_length] for i in range(0 , _A , args.max_length )] for k, t in concatenated_examples.items() } return result lowerCAmelCase : List[Any] = dataset_tokenized.map(_A , batched=_A , batch_size=10_00 , num_proc=4 ) lowerCAmelCase : Union[str, Any] = 0 lowerCAmelCase : Tuple = 0 for shard in range(0 , len(_A ) , args.shard_size ): lowerCAmelCase : Optional[Any] = grouped_dataset[shard : shard + args.shard_size] lowerCAmelCase : List[str] = len(dataset_snapshot['input_ids'] ) lowerCAmelCase : Union[str, Any] = os.path.join(_A , F"dataset-{shard_count}-{records_containing}.tfrecord" ) lowerCAmelCase : List[Any] = get_serialized_examples(_A ) with tf.io.TFRecordWriter(_A ) as out_file: for i in range(len(_A ) ): lowerCAmelCase : Union[str, Any] = serialized_examples[i] out_file.write(_A ) print('Wrote file {} containing {} records'.format(_A , _A ) ) shard_count += 1 total_records += records_containing with open(F"split-{args.split}-records-count.txt" , 'w' ) as f: print(F"Total {args.split} records: {total_records}" , file=_A ) if __name__ == "__main__": _lowerCAmelCase : List[Any] = parse_args() main(args)
646
1
'''simple docstring''' import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class lowerCAmelCase : def __init__( self , snake_case__ , snake_case__=13 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=False , snake_case__=True , snake_case__=99 , snake_case__=64 , snake_case__=5 , snake_case__=4 , snake_case__=64 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=16 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=3 , snake_case__=4 , snake_case__=None , ): lowerCAmelCase : int = parent lowerCAmelCase : Any = batch_size lowerCAmelCase : Dict = seq_length lowerCAmelCase : List[Any] = is_training lowerCAmelCase : List[str] = use_input_mask lowerCAmelCase : Dict = use_token_type_ids lowerCAmelCase : Tuple = use_labels lowerCAmelCase : List[Any] = vocab_size lowerCAmelCase : List[str] = hidden_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : List[str] = num_attention_heads lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : Optional[Any] = hidden_dropout_prob lowerCAmelCase : int = attention_probs_dropout_prob lowerCAmelCase : int = max_position_embeddings lowerCAmelCase : Dict = type_vocab_size lowerCAmelCase : List[str] = type_sequence_label_size lowerCAmelCase : Optional[Any] = initializer_range lowerCAmelCase : Tuple = num_labels lowerCAmelCase : List[Any] = num_choices lowerCAmelCase : List[str] = scope def lowercase ( self ): return MPNetConfig.from_pretrained('microsoft/mpnet-base' ) def lowercase ( self ): lowerCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Dict = None if self.use_input_mask: lowerCAmelCase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : str = None lowerCAmelCase : str = None lowerCAmelCase : Optional[int] = None if self.use_labels: lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : Optional[int] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase ( self ): return MPNetConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = MPNetModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : str = model(snake_case__ , snake_case__ ) lowerCAmelCase : Dict = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : List[str] = MPNetForQuestionAnswering(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : List[Any] = model( snake_case__ , attention_mask=snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : str = self.num_labels lowerCAmelCase : Any = MPNetForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Optional[int] = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Optional[Any] = self.num_choices lowerCAmelCase : Optional[int] = MPNetForMultipleChoice(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : Tuple = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : Tuple = model( snake_case__ , attention_mask=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Tuple = self.num_labels lowerCAmelCase : Optional[int] = MPNetForTokenClassification(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : List[Any] = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase ( self ): lowerCAmelCase : str = self.prepare_config_and_inputs() ((lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase)) : Optional[int] = config_and_inputs lowerCAmelCase : List[Any] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase ( a , a , unittest.TestCase ): _lowerCamelCase : List[str] = ( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) _lowerCamelCase : Dict = ( { """feature-extraction""": MPNetModel, """fill-mask""": MPNetForMaskedLM, """question-answering""": MPNetForQuestionAnswering, """text-classification""": MPNetForSequenceClassification, """token-classification""": MPNetForTokenClassification, """zero-shot""": MPNetForSequenceClassification, } if is_torch_available() else {} ) _lowerCamelCase : List[Any] = False _lowerCamelCase : Union[str, Any] = True def lowercase ( self ): lowerCAmelCase : Any = MPNetModelTester(self ) lowerCAmelCase : int = ConfigTester(self , config_class=snake_case__ , hidden_size=37 ) def lowercase ( self ): self.config_tester.run_common_tests() def lowercase ( self ): lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*snake_case__ ) @require_torch class lowerCAmelCase ( unittest.TestCase ): @slow def lowercase ( self ): lowerCAmelCase : Union[str, Any] = MPNetModel.from_pretrained('microsoft/mpnet-base' ) lowerCAmelCase : str = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) lowerCAmelCase : Tuple = model(snake_case__ )[0] lowerCAmelCase : Optional[int] = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , snake_case__ ) lowerCAmelCase : Optional[Any] = torch.tensor( [[[-0.0_5_5_0, 0.1_9_4_3, -0.0_7_4_0], [-0.0_5_6_2, 0.2_2_1_1, -0.0_5_7_9], [-0.0_4_3_7, 0.3_3_3_7, -0.0_6_4_1]]] ) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case__ , atol=1e-4 ) )
646
'''simple docstring''' import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() _lowerCAmelCase : List[str] = logging.get_logger('transformers.models.speecht5') def __UpperCamelCase ( _A : Any , _A : Dict , _A : Any ) -> Union[str, Any]: """simple docstring""" hf_model.apply_weight_norm() lowerCAmelCase : int = checkpoint['input_conv.weight_g'] lowerCAmelCase : Optional[int] = checkpoint['input_conv.weight_v'] lowerCAmelCase : Dict = checkpoint['input_conv.bias'] for i in range(len(config.upsample_rates ) ): lowerCAmelCase : Optional[Any] = checkpoint[F"upsamples.{i}.1.weight_g"] lowerCAmelCase : str = checkpoint[F"upsamples.{i}.1.weight_v"] lowerCAmelCase : str = checkpoint[F"upsamples.{i}.1.bias"] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): lowerCAmelCase : int = checkpoint[F"blocks.{i}.convs1.{j}.1.weight_g"] lowerCAmelCase : str = checkpoint[F"blocks.{i}.convs1.{j}.1.weight_v"] lowerCAmelCase : int = checkpoint[F"blocks.{i}.convs1.{j}.1.bias"] lowerCAmelCase : Optional[Any] = checkpoint[F"blocks.{i}.convs2.{j}.1.weight_g"] lowerCAmelCase : Tuple = checkpoint[F"blocks.{i}.convs2.{j}.1.weight_v"] lowerCAmelCase : Tuple = checkpoint[F"blocks.{i}.convs2.{j}.1.bias"] lowerCAmelCase : List[Any] = checkpoint['output_conv.1.weight_g'] lowerCAmelCase : List[str] = checkpoint['output_conv.1.weight_v'] lowerCAmelCase : Optional[Any] = checkpoint['output_conv.1.bias'] hf_model.remove_weight_norm() @torch.no_grad() def __UpperCamelCase ( _A : Dict , _A : Union[str, Any] , _A : List[Any] , _A : Any=None , _A : Any=None , ) -> Dict: """simple docstring""" if config_path is not None: lowerCAmelCase : Dict = SpeechTaHifiGanConfig.from_pretrained(_A ) else: lowerCAmelCase : Union[str, Any] = SpeechTaHifiGanConfig() lowerCAmelCase : List[Any] = SpeechTaHifiGan(_A ) lowerCAmelCase : List[str] = torch.load(_A ) load_weights(orig_checkpoint['model']['generator'] , _A , _A ) lowerCAmelCase : Tuple = np.load(_A ) lowerCAmelCase : List[Any] = stats[0].reshape(-1 ) lowerCAmelCase : int = stats[1].reshape(-1 ) lowerCAmelCase : Union[str, Any] = torch.from_numpy(_A ).float() lowerCAmelCase : int = torch.from_numpy(_A ).float() model.save_pretrained(_A ) if repo_id: print('Pushing to the hub...' ) model.push_to_hub(_A ) if __name__ == "__main__": _lowerCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--stats_path', required=True, default=None, type=str, help='Path to stats.npy file') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) _lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
646
1
'''simple docstring''' import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece_with_bytefallback.model') @require_sentencepiece @require_tokenizers class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : Tuple = GPTSwaTokenizer _lowerCamelCase : str = False _lowerCamelCase : Dict = True _lowerCamelCase : Optional[Any] = False def lowercase ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : Tuple = GPTSwaTokenizer(snake_case__ , eos_token='<unk>' , bos_token='<unk>' , pad_token='<unk>' ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase ( self , snake_case__ ): lowerCAmelCase : List[Any] = 'This is a test' lowerCAmelCase : List[Any] = 'This is a test' return input_text, output_text def lowercase ( self ): lowerCAmelCase : Tuple = '<s>' lowerCAmelCase : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def lowercase ( self ): lowerCAmelCase : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(snake_case__ ) , 2000 ) def lowercase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 2000 ) def lowercase ( self ): lowerCAmelCase : List[Any] = GPTSwaTokenizer(snake_case__ ) lowerCAmelCase : Optional[Any] = tokenizer.tokenize('This is a test' ) self.assertListEqual(snake_case__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , [465, 287, 265, 631, 842] ) lowerCAmelCase : Tuple = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) # fmt: off self.assertListEqual( snake_case__ , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] , ) # fmt: on lowerCAmelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual( snake_case__ , [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] , ) lowerCAmelCase : int = tokenizer.convert_ids_to_tokens(snake_case__ ) # fmt: off self.assertListEqual( snake_case__ , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] ) # fmt: on def lowercase ( self ): lowerCAmelCase : str = GPTSwaTokenizer(snake_case__ ) lowerCAmelCase : Optional[int] = ['This is a test', 'I was born in 92000, and this is falsé.'] lowerCAmelCase : Tuple = [ [465, 287, 265, 631, 842], [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(snake_case__ , snake_case__ ): self.assertListEqual(tokenizer.encode_fast(snake_case__ ) , snake_case__ ) # Test that decode_fast returns the input text for text, token_ids in zip(snake_case__ , snake_case__ ): self.assertEqual(tokenizer.decode_fast(snake_case__ ) , snake_case__ ) @slow def lowercase ( self ): lowerCAmelCase : str = [ '<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')', 'Hey there, how are you doing this fine day?', 'This is a text with a trailing spaces followed by a dot .', 'Häj sväjs lillebrör! =)', 'Det är inget fel på Mr. Cool', ] # fmt: off lowerCAmelCase : Tuple = {'input_ids': [[6_3423, 5, 6811, 1_4954, 282, 816, 3821, 6_3466, 6_3425, 6_3462, 18, 6_3978, 678, 301, 1320, 6_3423, 6_3455, 6_3458, 18, 6_3982, 4246, 3940, 1901, 4_7789, 5547, 1_8994], [1_9630, 1100, 6_3446, 1342, 633, 544, 4488, 593, 5102, 2416, 6_3495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1652, 428, 268, 1936, 515, 268, 5_8593, 2_2413, 9106, 546, 268, 3_3213, 6_3979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_5130, 6_3450, 924, 6_3449, 2249, 4062, 1558, 318, 6_3504, 2_1498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2827, 2559, 332, 6575, 6_3443, 2_6801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name='AI-Sweden/gpt-sw3-126m' , sequences=snake_case__ , )
646
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets _lowerCAmelCase : Dict = '\\n@inproceedings{popovic-2015-chrf,\n title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",\n month = sep,\n year = "2015",\n address = "Lisbon, Portugal",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W15-3049",\n doi = "10.18653/v1/W15-3049",\n pages = "392--395",\n}\n@inproceedings{popovic-2017-chrf,\n title = "chr{F}++: words helping character n-grams",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Second Conference on Machine Translation",\n month = sep,\n year = "2017",\n address = "Copenhagen, Denmark",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W17-4770",\n doi = "10.18653/v1/W17-4770",\n pages = "612--618",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' _lowerCAmelCase : Optional[Any] = '\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n' _lowerCAmelCase : List[Any] = '\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n \'score\' (float): The chrF (chrF++) score,\n \'char_order\' (int): The character n-gram order,\n \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n \'beta\' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase ( datasets.Metric ): def lowercase ( self ): if version.parse(scb.__version__ ) < version.parse('1.4.12' ): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/mjpost/sacreBLEU#chrf--chrf' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/mjpost/sacreBLEU#chrf--chrf'] , reference_urls=[ 'https://github.com/m-popovic/chrF', ] , ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ = CHRF.CHAR_ORDER , snake_case__ = CHRF.WORD_ORDER , snake_case__ = CHRF.BETA , snake_case__ = False , snake_case__ = False , snake_case__ = False , ): lowerCAmelCase : List[str] = len(references[0] ) if any(len(snake_case__ ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) lowerCAmelCase : List[str] = [[refs[i] for refs in references] for i in range(snake_case__ )] lowerCAmelCase : Union[str, Any] = CHRF(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase : Dict = sb_chrf.corpus_score(snake_case__ , snake_case__ ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
646
1
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: _lowerCAmelCase : Union[str, Any] = None _lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCAmelCase : Optional[Any] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} _lowerCAmelCase : int = { 'vocab_file': { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model', 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model' ), }, 'tokenizer_file': { 'google/bigbird-roberta-base': ( 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json' ), 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json' ), }, } _lowerCAmelCase : Any = { 'google/bigbird-roberta-base': 4096, 'google/bigbird-roberta-large': 4096, 'google/bigbird-base-trivia-itc': 4096, } _lowerCAmelCase : Any = '▁' class lowerCAmelCase ( a ): _lowerCamelCase : Any = VOCAB_FILES_NAMES _lowerCamelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase : str = BigBirdTokenizer _lowerCamelCase : Dict = ["""input_ids""", """attention_mask"""] _lowerCamelCase : List[int] = [] def __init__( self , snake_case__=None , snake_case__=None , snake_case__="<unk>" , snake_case__="<s>" , snake_case__="</s>" , snake_case__="<pad>" , snake_case__="[SEP]" , snake_case__="[MASK]" , snake_case__="[CLS]" , **snake_case__ , ): lowerCAmelCase : Tuple = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else bos_token lowerCAmelCase : List[str] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else eos_token lowerCAmelCase : str = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else unk_token lowerCAmelCase : Optional[Any] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else pad_token lowerCAmelCase : Tuple = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else cls_token lowerCAmelCase : Union[str, Any] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase : Optional[Any] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else mask_token super().__init__( snake_case__ , tokenizer_file=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , **snake_case__ , ) lowerCAmelCase : Optional[int] = vocab_file lowerCAmelCase : Union[str, Any] = False if not self.vocab_file else True def lowercase ( self , snake_case__ , snake_case__ = None ): lowerCAmelCase : Dict = [self.sep_token_id] lowerCAmelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowercase ( self , snake_case__ , snake_case__ = None , snake_case__ = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) + [1] return [1] + ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) + [1] def lowercase ( self , snake_case__ , snake_case__ = None ): lowerCAmelCase : List[Any] = [self.sep_token_id] lowerCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase ( self , snake_case__ , snake_case__ = None ): if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(snake_case__ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return lowerCAmelCase : str = os.path.join( snake_case__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ): copyfile(self.vocab_file , snake_case__ ) return (out_vocab_file,)
646
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : str = logging.get_logger(__name__) _lowerCAmelCase : Tuple = { 's-JoL/Open-Llama-V1': 'https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json', } class lowerCAmelCase ( a ): _lowerCamelCase : Union[str, Any] = """open-llama""" def __init__( self , snake_case__=10_0000 , snake_case__=4096 , snake_case__=1_1008 , snake_case__=32 , snake_case__=32 , snake_case__="silu" , snake_case__=2048 , snake_case__=0.0_2 , snake_case__=1e-6 , snake_case__=True , snake_case__=0 , snake_case__=1 , snake_case__=2 , snake_case__=False , snake_case__=True , snake_case__=0.1 , snake_case__=0.1 , snake_case__=True , snake_case__=True , snake_case__=None , **snake_case__ , ): lowerCAmelCase : Tuple = vocab_size lowerCAmelCase : Optional[Any] = max_position_embeddings lowerCAmelCase : List[Any] = hidden_size lowerCAmelCase : List[Any] = intermediate_size lowerCAmelCase : Tuple = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : str = rms_norm_eps lowerCAmelCase : Optional[int] = use_cache lowerCAmelCase : Dict = kwargs.pop( 'use_memorry_efficient_attention' , snake_case__ ) lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : Optional[Any] = attention_dropout_prob lowerCAmelCase : Union[str, Any] = use_stable_embedding lowerCAmelCase : Tuple = shared_input_output_embedding lowerCAmelCase : Tuple = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , tie_word_embeddings=snake_case__ , **snake_case__ , ) def lowercase ( self ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , snake_case__ ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' f"got {self.rope_scaling}" ) lowerCAmelCase : List[Any] = self.rope_scaling.get('type' , snake_case__ ) lowerCAmelCase : List[str] = self.rope_scaling.get('factor' , snake_case__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(snake_case__ , snake_case__ ) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
646
1
'''simple docstring''' import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class lowerCAmelCase : def __init__( self , snake_case__ , snake_case__=13 , snake_case__=7 , snake_case__=False , snake_case__=True , snake_case__=False , snake_case__=False , snake_case__=19 , snake_case__=32 , snake_case__=5 , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=16 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=3 , snake_case__=4 , snake_case__=None , ): lowerCAmelCase : Any = parent lowerCAmelCase : Any = batch_size lowerCAmelCase : int = seq_length lowerCAmelCase : Dict = is_training lowerCAmelCase : Any = use_input_mask lowerCAmelCase : Tuple = use_token_type_ids lowerCAmelCase : Tuple = use_labels lowerCAmelCase : List[Any] = vocab_size lowerCAmelCase : Dict = hidden_size lowerCAmelCase : Optional[Any] = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : Tuple = intermediate_size lowerCAmelCase : Optional[Any] = hidden_act lowerCAmelCase : Optional[Any] = hidden_dropout_prob lowerCAmelCase : Any = attention_probs_dropout_prob lowerCAmelCase : Tuple = max_position_embeddings lowerCAmelCase : Tuple = type_vocab_size lowerCAmelCase : Optional[Any] = type_sequence_label_size lowerCAmelCase : str = initializer_range lowerCAmelCase : Optional[Any] = num_labels lowerCAmelCase : List[str] = num_choices lowerCAmelCase : Optional[int] = scope def lowercase ( self ): lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Union[str, Any] = None if self.use_input_mask: lowerCAmelCase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : Optional[int] = None lowerCAmelCase : int = None lowerCAmelCase : Union[str, Any] = None if self.use_labels: lowerCAmelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : Dict = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase ( self ): lowerCAmelCase : str = EsmConfig( vocab_size=33 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=snake_case__ , esmfold_config={'trunk': {'num_blocks': 2}, 'fp16_esm': False} , ) return config def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Any = EsmForProteinFolding(config=snake_case__ ).float() model.to(snake_case__ ) model.eval() lowerCAmelCase : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ ) lowerCAmelCase : Any = model(snake_case__ ) lowerCAmelCase : Dict = model(snake_case__ ) self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 14, 3) ) self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2) ) def lowercase ( self ): lowerCAmelCase : Optional[int] = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) : str = config_and_inputs lowerCAmelCase : Any = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase ( a , a , unittest.TestCase ): _lowerCamelCase : Optional[int] = False _lowerCamelCase : List[str] = (EsmForProteinFolding,) if is_torch_available() else () _lowerCamelCase : List[Any] = () _lowerCamelCase : Tuple = {} if is_torch_available() else {} _lowerCamelCase : int = False def lowercase ( self ): lowerCAmelCase : Optional[int] = EsmFoldModelTester(self ) lowerCAmelCase : Any = ConfigTester(self , config_class=snake_case__ , hidden_size=37 ) def lowercase ( self ): self.config_tester.run_common_tests() def lowercase ( self ): lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) @unittest.skip('Does not support attention outputs' ) def lowercase ( self ): pass @unittest.skip def lowercase ( self ): pass @unittest.skip('Esm does not support embedding resizing' ) def lowercase ( self ): pass @unittest.skip('Esm does not support embedding resizing' ) def lowercase ( self ): pass @unittest.skip('ESMFold does not support passing input embeds!' ) def lowercase ( self ): pass @unittest.skip('ESMFold does not support head pruning.' ) def lowercase ( self ): pass @unittest.skip('ESMFold does not support head pruning.' ) def lowercase ( self ): pass @unittest.skip('ESMFold does not support head pruning.' ) def lowercase ( self ): pass @unittest.skip('ESMFold does not support head pruning.' ) def lowercase ( self ): pass @unittest.skip('ESMFold does not support head pruning.' ) def lowercase ( self ): pass @unittest.skip('ESMFold does not output hidden states in the normal way.' ) def lowercase ( self ): pass @unittest.skip('ESMfold does not output hidden states in the normal way.' ) def lowercase ( self ): pass @unittest.skip('ESMFold only has one output format.' ) def lowercase ( self ): pass @unittest.skip('This test doesn\'t work for ESMFold and doesn\'t test core functionality' ) def lowercase ( self ): pass @unittest.skip('ESMFold does not support input chunking.' ) def lowercase ( self ): pass @unittest.skip('ESMFold doesn\'t respect you and it certainly doesn\'t respect your initialization arguments.' ) def lowercase ( self ): pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def lowercase ( self ): pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def lowercase ( self ): pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def lowercase ( self ): pass @unittest.skip('ESMFold doesn\'t support data parallel.' ) def lowercase ( self ): pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase ( self ): pass @require_torch class lowerCAmelCase ( a ): @slow def lowercase ( self ): lowerCAmelCase : Optional[int] = EsmForProteinFolding.from_pretrained('facebook/esmfold_v1' ).float() model.eval() lowerCAmelCase : Tuple = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) lowerCAmelCase : Optional[Any] = model(snake_case__ )['positions'] lowerCAmelCase : Any = torch.tensor([2.5_8_2_8, 0.7_9_9_3, -1_0.9_3_3_4] , dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , snake_case__ , atol=1e-4 ) )
646
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) _lowerCAmelCase : Dict = { 'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class lowerCAmelCase ( a ): _lowerCamelCase : Any = """deformable_detr""" _lowerCamelCase : List[str] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , snake_case__=True , snake_case__=None , snake_case__=3 , snake_case__=300 , snake_case__=1024 , snake_case__=6 , snake_case__=1024 , snake_case__=8 , snake_case__=6 , snake_case__=1024 , snake_case__=8 , snake_case__=0.0 , snake_case__=True , snake_case__="relu" , snake_case__=256 , snake_case__=0.1 , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.0_2 , snake_case__=1.0 , snake_case__=True , snake_case__=False , snake_case__="sine" , snake_case__="resnet50" , snake_case__=True , snake_case__=False , snake_case__=4 , snake_case__=4 , snake_case__=4 , snake_case__=False , snake_case__=300 , snake_case__=False , snake_case__=1 , snake_case__=5 , snake_case__=2 , snake_case__=1 , snake_case__=1 , snake_case__=5 , snake_case__=2 , snake_case__=0.1 , snake_case__=0.2_5 , snake_case__=False , **snake_case__ , ): if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) lowerCAmelCase : Optional[int] = CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : List[str] = backbone_config.get('model_type' ) lowerCAmelCase : str = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase : Optional[Any] = config_class.from_dict(snake_case__ ) lowerCAmelCase : Union[str, Any] = use_timm_backbone lowerCAmelCase : List[Any] = backbone_config lowerCAmelCase : Any = num_channels lowerCAmelCase : Tuple = num_queries lowerCAmelCase : Dict = max_position_embeddings lowerCAmelCase : int = d_model lowerCAmelCase : List[str] = encoder_ffn_dim lowerCAmelCase : List[str] = encoder_layers lowerCAmelCase : int = encoder_attention_heads lowerCAmelCase : str = decoder_ffn_dim lowerCAmelCase : str = decoder_layers lowerCAmelCase : Dict = decoder_attention_heads lowerCAmelCase : str = dropout lowerCAmelCase : List[str] = attention_dropout lowerCAmelCase : Union[str, Any] = activation_dropout lowerCAmelCase : str = activation_function lowerCAmelCase : Any = init_std lowerCAmelCase : Any = init_xavier_std lowerCAmelCase : Dict = encoder_layerdrop lowerCAmelCase : int = auxiliary_loss lowerCAmelCase : Optional[Any] = position_embedding_type lowerCAmelCase : List[str] = backbone lowerCAmelCase : int = use_pretrained_backbone lowerCAmelCase : int = dilation # deformable attributes lowerCAmelCase : List[str] = num_feature_levels lowerCAmelCase : List[str] = encoder_n_points lowerCAmelCase : Union[str, Any] = decoder_n_points lowerCAmelCase : Tuple = two_stage lowerCAmelCase : Dict = two_stage_num_proposals lowerCAmelCase : Union[str, Any] = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.' ) # Hungarian matcher lowerCAmelCase : Union[str, Any] = class_cost lowerCAmelCase : Dict = bbox_cost lowerCAmelCase : List[Any] = giou_cost # Loss coefficients lowerCAmelCase : Dict = mask_loss_coefficient lowerCAmelCase : Any = dice_loss_coefficient lowerCAmelCase : str = bbox_loss_coefficient lowerCAmelCase : Tuple = giou_loss_coefficient lowerCAmelCase : List[str] = eos_coefficient lowerCAmelCase : Any = focal_alpha lowerCAmelCase : Dict = disable_custom_kernels super().__init__(is_encoder_decoder=snake_case__ , **snake_case__ ) @property def lowercase ( self ): return self.encoder_attention_heads @property def lowercase ( self ): return self.d_model def lowercase ( self ): lowerCAmelCase : Union[str, Any] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: lowerCAmelCase : List[Any] = self.backbone_config.to_dict() lowerCAmelCase : str = self.__class__.model_type return output
646
1
'''simple docstring''' import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class lowerCAmelCase ( unittest.TestCase ): _lowerCamelCase : Any = inspect.getfile(accelerate.test_utils ) _lowerCamelCase : Any = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_cli.py"""] ) _lowerCamelCase : Optional[int] = ["""accelerate""", """launch"""] _lowerCamelCase : int = Path.home() / """.cache/huggingface/accelerate""" _lowerCamelCase : List[Any] = """default_config.yaml""" _lowerCamelCase : Any = config_folder / config_file _lowerCamelCase : List[str] = config_folder / """_default_config.yaml""" _lowerCamelCase : int = Path("""tests/test_configs""" ) @classmethod def lowercase ( cls ): if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def lowercase ( cls ): if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def lowercase ( self ): lowerCAmelCase : Optional[Any] = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() ) def lowercase ( self ): for config in sorted(self.test_config_path.glob('**/*.yaml' ) ): with self.subTest(config_file=snake_case__ ): execute_subprocess_async( self.base_cmd + ['--config_file', str(snake_case__ ), self.test_file_path] , env=os.environ.copy() ) def lowercase ( self ): execute_subprocess_async(['accelerate', 'test'] , env=os.environ.copy() ) class lowerCAmelCase ( unittest.TestCase ): _lowerCamelCase : int = """test-tpu""" _lowerCamelCase : Tuple = """us-central1-a""" _lowerCamelCase : Optional[int] = """ls""" _lowerCamelCase : Union[str, Any] = ["""accelerate""", """tpu-config"""] _lowerCamelCase : Optional[int] = """cd /usr/share""" _lowerCamelCase : List[str] = """tests/test_samples/test_command_file.sh""" _lowerCamelCase : Any = """Running gcloud compute tpus tpu-vm ssh""" def lowercase ( self ): lowerCAmelCase : Optional[int] = run_command( self.cmd + ['--command', self.command, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug'] , return_stdout=snake_case__ , ) self.assertIn( f"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all" , snake_case__ , ) def lowercase ( self ): lowerCAmelCase : Tuple = run_command( self.cmd + [ '--config_file', 'tests/test_configs/0_12_0.yaml', '--command', self.command, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug', ] , return_stdout=snake_case__ , ) self.assertIn( f"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all" , snake_case__ , ) def lowercase ( self ): lowerCAmelCase : int = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--debug'] , return_stdout=snake_case__ ) self.assertIn( f"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all" , snake_case__ , ) def lowercase ( self ): lowerCAmelCase : Tuple = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--command', self.command, '--debug'] , return_stdout=snake_case__ , ) self.assertIn( f"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all" , snake_case__ , ) def lowercase ( self ): lowerCAmelCase : Optional[Any] = run_command( self.cmd + [ '--config_file', 'tests/test_configs/latest.yaml', '--command', self.command, '--command', 'echo "Hello World"', '--debug', ] , return_stdout=snake_case__ , ) self.assertIn( f"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo \"Hello World\" --worker all" , snake_case__ , ) def lowercase ( self ): lowerCAmelCase : Dict = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--command_file', self.command_file, '--debug'] , return_stdout=snake_case__ , ) self.assertIn( f"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all" , snake_case__ , ) def lowercase ( self ): lowerCAmelCase : List[Any] = run_command( self.cmd + [ '--config_file', 'tests/test_configs/0_12_0.yaml', '--command_file', self.command_file, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug', ] , return_stdout=snake_case__ , ) self.assertIn( f"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all" , snake_case__ , ) def lowercase ( self ): lowerCAmelCase : List[Any] = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--install_accelerate', '--debug'] , return_stdout=snake_case__ , ) self.assertIn( f"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo \"hello world\"; echo \"this is a second command\" --worker all" , snake_case__ , ) def lowercase ( self ): lowerCAmelCase : Optional[Any] = run_command( self.cmd + [ '--config_file', 'tests/test_configs/latest.yaml', '--install_accelerate', '--accelerate_version', '12.0.0', '--debug', ] , return_stdout=snake_case__ , ) self.assertIn( f"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo \"hello world\"; echo \"this is a second command\" --worker all" , snake_case__ , )
646
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece_no_bos.model') @require_sentencepiece @require_tokenizers class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : str = PegasusTokenizer _lowerCamelCase : Union[str, Any] = PegasusTokenizerFast _lowerCamelCase : Optional[Any] = True _lowerCamelCase : Optional[Any] = True def lowercase ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : List[Any] = PegasusTokenizer(snake_case__ ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase ( self ): return PegasusTokenizer.from_pretrained('google/pegasus-large' ) def lowercase ( self , **snake_case__ ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def lowercase ( self , snake_case__ ): return ("This is a test", "This is a test") def lowercase ( self ): lowerCAmelCase : Optional[int] = '</s>' lowerCAmelCase : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '</s>' ) self.assertEqual(vocab_keys[-1] , 'v' ) self.assertEqual(len(snake_case__ ) , 1103 ) def lowercase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def lowercase ( self ): lowerCAmelCase : List[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : List[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : Optional[Any] = ( 'Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important' ' </s> <pad> <pad> <pad>' ) lowerCAmelCase : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] lowerCAmelCase : Optional[int] = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Any = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowerCAmelCase : List[str] = '<mask_1> To ensure a <mask_2> flow of bank resolutions.' lowerCAmelCase : Optional[Any] = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1] lowerCAmelCase : Optional[Any] = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Optional[Any] = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 lowerCAmelCase : List[Any] = 'To ensure a smooth flow of bank resolutions.' lowerCAmelCase : Optional[int] = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1] lowerCAmelCase : Any = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def lowercase ( self ): lowerCAmelCase : Union[str, Any] = ['This is going to be way too long.' * 150, 'short example'] lowerCAmelCase : int = ['not super long but more than 5 tokens', 'tiny'] lowerCAmelCase : Dict = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) lowerCAmelCase : Dict = self._large_tokenizer( text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(snake_case__ ) == 2 # input_ids, attention_mask. @slow def lowercase ( self ): # fmt: off lowerCAmelCase : Tuple = {'input_ids': [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name='google/bigbird-pegasus-large-arxiv' , revision='ba85d0851d708441f91440d509690f1ab6353415' , ) @require_sentencepiece @require_tokenizers class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : Optional[Any] = PegasusTokenizer _lowerCamelCase : str = PegasusTokenizerFast _lowerCamelCase : Tuple = True _lowerCamelCase : int = True def lowercase ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : int = PegasusTokenizer(snake_case__ , offset=0 , mask_token_sent=snake_case__ , mask_token='[MASK]' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase ( self ): return PegasusTokenizer.from_pretrained('google/bigbird-pegasus-large-arxiv' ) def lowercase ( self , **snake_case__ ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def lowercase ( self , snake_case__ ): return ("This is a test", "This is a test") def lowercase ( self ): lowerCAmelCase : Tuple = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : Union[str, Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : List[str] = ( 'Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>' ' <pad> <pad> <pad>' ) lowerCAmelCase : Dict = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] lowerCAmelCase : Union[str, Any] = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) @require_torch def lowercase ( self ): lowerCAmelCase : Optional[int] = ['This is going to be way too long.' * 1000, 'short example'] lowerCAmelCase : Union[str, Any] = ['not super long but more than 5 tokens', 'tiny'] lowerCAmelCase : List[str] = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) lowerCAmelCase : List[str] = self._large_tokenizer( text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(snake_case__ ) == 2 # input_ids, attention_mask. def lowercase ( self ): lowerCAmelCase : List[str] = ( 'This is an example string that is used to test the original TF implementation against the HF' ' implementation' ) lowerCAmelCase : Tuple = self._large_tokenizer(snake_case__ ).input_ids self.assertListEqual( snake_case__ , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
646
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowerCAmelCase : Tuple = { 'configuration_conditional_detr': [ 'CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConditionalDetrConfig', 'ConditionalDetrOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Dict = ['ConditionalDetrFeatureExtractor'] _lowerCAmelCase : Dict = ['ConditionalDetrImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : List[str] = [ 'CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConditionalDetrForObjectDetection', 'ConditionalDetrForSegmentation', 'ConditionalDetrModel', 'ConditionalDetrPreTrainedModel', ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys _lowerCAmelCase : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
646
'''simple docstring''' import math import sys import cva import numpy as np def __UpperCamelCase ( _A : np.ndarray , _A : float ) -> np.ndarray: """simple docstring""" lowerCAmelCase : Union[str, Any] = math.sqrt(_A ) lowerCAmelCase : Union[str, Any] = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def __UpperCamelCase ( _A : np.ndarray , _A : int , _A : int , _A : int ) -> np.ndarray: """simple docstring""" lowerCAmelCase : int = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def __UpperCamelCase ( _A : int , _A : float ) -> np.ndarray: """simple docstring""" lowerCAmelCase : Dict = np.zeros((kernel_size, kernel_size) ) for i in range(0 , _A ): for j in range(0 , _A ): lowerCAmelCase : Optional[int] = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(_A , _A ) def __UpperCamelCase ( _A : np.ndarray , _A : float , _A : float , _A : int , ) -> np.ndarray: """simple docstring""" lowerCAmelCase : str = np.zeros(img.shape ) lowerCAmelCase : int = get_gauss_kernel(_A , _A ) lowerCAmelCase , lowerCAmelCase : Dict = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): lowerCAmelCase : int = get_slice(_A , _A , _A , _A ) lowerCAmelCase : Any = img_s - img_s[kernel_size // 2, kernel_size // 2] lowerCAmelCase : str = vec_gaussian(_A , _A ) lowerCAmelCase : Optional[int] = np.multiply(_A , _A ) lowerCAmelCase : str = np.multiply(_A , _A ) lowerCAmelCase : Union[str, Any] = np.sum(_A ) / np.sum(_A ) lowerCAmelCase : Tuple = val return imga def __UpperCamelCase ( _A : list ) -> tuple: """simple docstring""" lowerCAmelCase : List[Any] = args[1] if args[1:] else '../image_data/lena.jpg' lowerCAmelCase : Any = float(args[2] ) if args[2:] else 1.0 lowerCAmelCase : Union[str, Any] = float(args[3] ) if args[3:] else 1.0 if args[4:]: lowerCAmelCase : int = int(args[4] ) lowerCAmelCase : Optional[Any] = kernel_size + abs(kernel_size % 2 - 1 ) else: lowerCAmelCase : Optional[int] = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Any = parse_args(sys.argv) _lowerCAmelCase : str = cva.imread(filename, 0) cva.imshow('input image', img) _lowerCAmelCase : Union[str, Any] = img / 255 _lowerCAmelCase : List[str] = out.astype('float32') _lowerCAmelCase : Optional[int] = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) _lowerCAmelCase : Union[str, Any] = out * 255 _lowerCAmelCase : Optional[Any] = np.uinta(out) cva.imshow('output image', out) cva.waitKey(0) cva.destroyAllWindows()
646
1
'''simple docstring''' import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def __UpperCamelCase ( _A : Optional[int] , _A : Optional[int] ) -> str: """simple docstring""" lowerCAmelCase : Any = checkpoint lowerCAmelCase : Any = {} lowerCAmelCase : Any = vae_state_dict['encoder.conv_in.weight'] lowerCAmelCase : List[str] = vae_state_dict['encoder.conv_in.bias'] lowerCAmelCase : Optional[Any] = vae_state_dict['encoder.conv_out.weight'] lowerCAmelCase : Dict = vae_state_dict['encoder.conv_out.bias'] lowerCAmelCase : List[str] = vae_state_dict['encoder.norm_out.weight'] lowerCAmelCase : Union[str, Any] = vae_state_dict['encoder.norm_out.bias'] lowerCAmelCase : Union[str, Any] = vae_state_dict['decoder.conv_in.weight'] lowerCAmelCase : Optional[int] = vae_state_dict['decoder.conv_in.bias'] lowerCAmelCase : int = vae_state_dict['decoder.conv_out.weight'] lowerCAmelCase : Tuple = vae_state_dict['decoder.conv_out.bias'] lowerCAmelCase : Dict = vae_state_dict['decoder.norm_out.weight'] lowerCAmelCase : List[Any] = vae_state_dict['decoder.norm_out.bias'] lowerCAmelCase : Optional[int] = vae_state_dict['quant_conv.weight'] lowerCAmelCase : str = vae_state_dict['quant_conv.bias'] lowerCAmelCase : List[str] = vae_state_dict['post_quant_conv.weight'] lowerCAmelCase : int = vae_state_dict['post_quant_conv.bias'] # Retrieves the keys for the encoder down blocks only lowerCAmelCase : str = len({'.'.join(layer.split('.' )[:3] ) for layer in vae_state_dict if 'encoder.down' in layer} ) lowerCAmelCase : List[str] = { layer_id: [key for key in vae_state_dict if F"down.{layer_id}" in key] for layer_id in range(_A ) } # Retrieves the keys for the decoder up blocks only lowerCAmelCase : Union[str, Any] = len({'.'.join(layer.split('.' )[:3] ) for layer in vae_state_dict if 'decoder.up' in layer} ) lowerCAmelCase : Union[str, Any] = { layer_id: [key for key in vae_state_dict if F"up.{layer_id}" in key] for layer_id in range(_A ) } for i in range(_A ): lowerCAmelCase : str = [key for key in down_blocks[i] if F"down.{i}" in key and F"down.{i}.downsample" not in key] if F"encoder.down.{i}.downsample.conv.weight" in vae_state_dict: lowerCAmelCase : int = vae_state_dict.pop( F"encoder.down.{i}.downsample.conv.weight" ) lowerCAmelCase : Any = vae_state_dict.pop( F"encoder.down.{i}.downsample.conv.bias" ) lowerCAmelCase : str = renew_vae_resnet_paths(_A ) lowerCAmelCase : List[Any] = {'old': F"down.{i}.block", 'new': F"down_blocks.{i}.resnets"} assign_to_checkpoint(_A , _A , _A , additional_replacements=[meta_path] , config=_A ) lowerCAmelCase : Dict = [key for key in vae_state_dict if 'encoder.mid.block' in key] lowerCAmelCase : Any = 2 for i in range(1 , num_mid_res_blocks + 1 ): lowerCAmelCase : List[str] = [key for key in mid_resnets if F"encoder.mid.block_{i}" in key] lowerCAmelCase : List[str] = renew_vae_resnet_paths(_A ) lowerCAmelCase : int = {'old': F"mid.block_{i}", 'new': F"mid_block.resnets.{i - 1}"} assign_to_checkpoint(_A , _A , _A , additional_replacements=[meta_path] , config=_A ) lowerCAmelCase : List[Any] = [key for key in vae_state_dict if 'encoder.mid.attn' in key] lowerCAmelCase : Union[str, Any] = renew_vae_attention_paths(_A ) lowerCAmelCase : Optional[Any] = {'old': 'mid.attn_1', 'new': 'mid_block.attentions.0'} assign_to_checkpoint(_A , _A , _A , additional_replacements=[meta_path] , config=_A ) conv_attn_to_linear(_A ) for i in range(_A ): lowerCAmelCase : Dict = num_up_blocks - 1 - i lowerCAmelCase : Optional[Any] = [ key for key in up_blocks[block_id] if F"up.{block_id}" in key and F"up.{block_id}.upsample" not in key ] if F"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict: lowerCAmelCase : List[str] = vae_state_dict[ F"decoder.up.{block_id}.upsample.conv.weight" ] lowerCAmelCase : int = vae_state_dict[ F"decoder.up.{block_id}.upsample.conv.bias" ] lowerCAmelCase : List[str] = renew_vae_resnet_paths(_A ) lowerCAmelCase : List[Any] = {'old': F"up.{block_id}.block", 'new': F"up_blocks.{i}.resnets"} assign_to_checkpoint(_A , _A , _A , additional_replacements=[meta_path] , config=_A ) lowerCAmelCase : Any = [key for key in vae_state_dict if 'decoder.mid.block' in key] lowerCAmelCase : Dict = 2 for i in range(1 , num_mid_res_blocks + 1 ): lowerCAmelCase : Any = [key for key in mid_resnets if F"decoder.mid.block_{i}" in key] lowerCAmelCase : str = renew_vae_resnet_paths(_A ) lowerCAmelCase : Any = {'old': F"mid.block_{i}", 'new': F"mid_block.resnets.{i - 1}"} assign_to_checkpoint(_A , _A , _A , additional_replacements=[meta_path] , config=_A ) lowerCAmelCase : int = [key for key in vae_state_dict if 'decoder.mid.attn' in key] lowerCAmelCase : str = renew_vae_attention_paths(_A ) lowerCAmelCase : int = {'old': 'mid.attn_1', 'new': 'mid_block.attentions.0'} assign_to_checkpoint(_A , _A , _A , additional_replacements=[meta_path] , config=_A ) conv_attn_to_linear(_A ) return new_checkpoint def __UpperCamelCase ( _A : str , _A : str , ) -> int: """simple docstring""" lowerCAmelCase : Dict = requests.get( ' https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml' ) lowerCAmelCase : Any = io.BytesIO(r.content ) lowerCAmelCase : Optional[int] = OmegaConf.load(_A ) lowerCAmelCase : Optional[int] = 5_12 lowerCAmelCase : str = 'cuda' if torch.cuda.is_available() else 'cpu' if checkpoint_path.endswith('safetensors' ): from safetensors import safe_open lowerCAmelCase : Optional[int] = {} with safe_open(_A , framework='pt' , device='cpu' ) as f: for key in f.keys(): lowerCAmelCase : Any = f.get_tensor(_A ) else: lowerCAmelCase : Optional[Any] = torch.load(_A , map_location=_A )['state_dict'] # Convert the VAE model. lowerCAmelCase : Any = create_vae_diffusers_config(_A , image_size=_A ) lowerCAmelCase : Union[str, Any] = custom_convert_ldm_vae_checkpoint(_A , _A ) lowerCAmelCase : int = AutoencoderKL(**_A ) vae.load_state_dict(_A ) vae.save_pretrained(_A ) if __name__ == "__main__": _lowerCAmelCase : List[str] = argparse.ArgumentParser() parser.add_argument('--vae_pt_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') _lowerCAmelCase : Optional[int] = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
646
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowerCAmelCase : int = { 'configuration_nezha': ['NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NezhaConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Tuple = [ 'NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST', 'NezhaForNextSentencePrediction', 'NezhaForMaskedLM', 'NezhaForPreTraining', 'NezhaForMultipleChoice', 'NezhaForQuestionAnswering', 'NezhaForSequenceClassification', 'NezhaForTokenClassification', 'NezhaModel', 'NezhaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys _lowerCAmelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
646
1
'''simple docstring''' import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer _lowerCAmelCase : List[Any] = logging.getLogger(__name__) def __UpperCamelCase ( ) -> Any: """simple docstring""" lowerCAmelCase : str = argparse.ArgumentParser( description='Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.' ) parser.add_argument( '--dataset_name' , type=_A , default='wikitext' , help='Name of the training. Explore datasets at: hf.co/datasets.' , ) parser.add_argument( '--dataset_config' , type=_A , default='wikitext-103-raw-v1' , help='Configuration name of the dataset.' ) parser.add_argument( '--tokenizer_name_or_path' , type=_A , default='sayakpaul/unigram-tokenizer-wikitext' , help='Tokenizer identifier. Can be a local filepath or a Hub identifier.' , ) parser.add_argument( '--shard_size' , type=_A , default=10_00 , help='Number of entries to go in a single shard.' , ) parser.add_argument('--split' , type=_A , default='train' , choices=['train', 'test', 'validation'] ) parser.add_argument( '--limit' , default=_A , type=_A , help='Limit the number of shards (used for debugging).' , ) parser.add_argument( '--max_length' , type=_A , default=5_12 , help='Maximum sequence length. For training on TPUs, it helps to have a maximum' ' sequence length that is a multiple of 8.' , ) parser.add_argument( '--output_dir' , default='tf-tpu' , type=_A , help='Output directory where the TFRecord shards will be saved. If the' ' path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord' ' shards will be directly saved to a Google Cloud Storage bucket.' , ) lowerCAmelCase : Any = parser.parse_args() return args def __UpperCamelCase ( _A : Optional[int] ) -> int: """simple docstring""" def fn(_A : Tuple ): return tokenizer(examples['text'] ) return fn def __UpperCamelCase ( _A : int ) -> int: """simple docstring""" lowerCAmelCase : Tuple = [] for i in range(len(tokenized_data['input_ids'] ) ): lowerCAmelCase : Optional[Any] = { 'input_ids': tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data['input_ids'][i] ) ), 'attention_mask': tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data['attention_mask'][i] ) ), } lowerCAmelCase : Any = tf.train.Features(feature=_A ) lowerCAmelCase : List[str] = tf.train.Example(features=_A ) lowerCAmelCase : Tuple = example.SerializeToString() records.append(_A ) return records def __UpperCamelCase ( _A : int ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase : Union[str, Any] = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: lowerCAmelCase : Optional[Any] = min(len(_A ) , args.limit ) lowerCAmelCase : Dict = dataset.select(range(_A ) ) print(F"Limiting the dataset to {args.limit} entries." ) lowerCAmelCase : str = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) lowerCAmelCase : Any = os.path.join(args.output_dir , args.split ) if not os.path.exists(_A ): os.makedirs(_A ) else: lowerCAmelCase : List[Any] = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. lowerCAmelCase : Any = tokenize_function(_A ) lowerCAmelCase : Optional[int] = dataset.map(_A , batched=_A , num_proc=4 , remove_columns=['text'] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(_A : str ): # Concatenate all texts. lowerCAmelCase : Optional[int] = {k: sum(examples[k] , [] ) for k in examples.keys()} lowerCAmelCase : str = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 lowerCAmelCase : List[Any] = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. lowerCAmelCase : str = { k: [t[i : i + args.max_length] for i in range(0 , _A , args.max_length )] for k, t in concatenated_examples.items() } return result lowerCAmelCase : List[Any] = dataset_tokenized.map(_A , batched=_A , batch_size=10_00 , num_proc=4 ) lowerCAmelCase : Union[str, Any] = 0 lowerCAmelCase : Tuple = 0 for shard in range(0 , len(_A ) , args.shard_size ): lowerCAmelCase : Optional[Any] = grouped_dataset[shard : shard + args.shard_size] lowerCAmelCase : List[str] = len(dataset_snapshot['input_ids'] ) lowerCAmelCase : Union[str, Any] = os.path.join(_A , F"dataset-{shard_count}-{records_containing}.tfrecord" ) lowerCAmelCase : List[Any] = get_serialized_examples(_A ) with tf.io.TFRecordWriter(_A ) as out_file: for i in range(len(_A ) ): lowerCAmelCase : Union[str, Any] = serialized_examples[i] out_file.write(_A ) print('Wrote file {} containing {} records'.format(_A , _A ) ) shard_count += 1 total_records += records_containing with open(F"split-{args.split}-records-count.txt" , 'w' ) as f: print(F"Total {args.split} records: {total_records}" , file=_A ) if __name__ == "__main__": _lowerCAmelCase : List[Any] = parse_args() main(args)
646
'''simple docstring''' from typing import Any class lowerCAmelCase : def __init__( self , snake_case__ ): lowerCAmelCase : Optional[int] = data lowerCAmelCase : Optional[Any] = None def __repr__( self ): return f"Node({self.data})" class lowerCAmelCase : def __init__( self ): lowerCAmelCase : Dict = None def __iter__( self ): lowerCAmelCase : Optional[Any] = self.head while node: yield node.data lowerCAmelCase : Optional[int] = node.next def __len__( self ): return sum(1 for _ in self ) def __repr__( self ): return "->".join([str(snake_case__ ) for item in self] ) def __getitem__( self , snake_case__ ): if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , snake_case__ , snake_case__ ): if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) lowerCAmelCase : Any = self.head for _ in range(snake_case__ ): lowerCAmelCase : List[str] = current.next lowerCAmelCase : int = data def lowercase ( self , snake_case__ ): self.insert_nth(len(self ) , snake_case__ ) def lowercase ( self , snake_case__ ): self.insert_nth(0 , snake_case__ ) def lowercase ( self , snake_case__ , snake_case__ ): if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) lowerCAmelCase : List[str] = Node(snake_case__ ) if self.head is None: lowerCAmelCase : int = new_node elif index == 0: lowerCAmelCase : List[Any] = self.head # link new_node to head lowerCAmelCase : List[Any] = new_node else: lowerCAmelCase : List[Any] = self.head for _ in range(index - 1 ): lowerCAmelCase : Union[str, Any] = temp.next lowerCAmelCase : Any = temp.next lowerCAmelCase : str = new_node def lowercase ( self ): # print every node data print(self ) def lowercase ( self ): return self.delete_nth(0 ) def lowercase ( self ): # delete from tail return self.delete_nth(len(self ) - 1 ) def lowercase ( self , snake_case__ = 0 ): if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) lowerCAmelCase : List[str] = self.head # default first node if index == 0: lowerCAmelCase : Tuple = self.head.next else: lowerCAmelCase : Dict = self.head for _ in range(index - 1 ): lowerCAmelCase : Tuple = temp.next lowerCAmelCase : Dict = temp.next lowerCAmelCase : Tuple = temp.next.next return delete_node.data def lowercase ( self ): return self.head is None def lowercase ( self ): lowerCAmelCase : List[Any] = None lowerCAmelCase : Any = self.head while current: # Store the current node's next node. lowerCAmelCase : List[str] = current.next # Make the current node's next point backwards lowerCAmelCase : int = prev # Make the previous node be the current node lowerCAmelCase : int = current # Make the current node the next node (to progress iteration) lowerCAmelCase : Optional[Any] = next_node # Return prev in order to put the head at the end lowerCAmelCase : List[Any] = prev def __UpperCamelCase ( ) -> None: """simple docstring""" lowerCAmelCase : Tuple = LinkedList() assert linked_list.is_empty() is True assert str(_A ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(_A ) == i linked_list.insert_nth(_A , i + 1 ) assert str(_A ) == "->".join(str(_A ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(_A ) == "->".join(str(_A ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(_A ) == 9 assert str(_A ) == "->".join(str(_A ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): lowerCAmelCase : Optional[Any] = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(_A ) == "->".join(str(_A ) for i in range(-8 , 1 ) ) def __UpperCamelCase ( ) -> None: """simple docstring""" lowerCAmelCase : Optional[int] = [ -9, 1_00, Node(77_34_51_12 ), 'dlrow olleH', 7, 55_55, 0, -1_92.5_55_55, 'Hello, world!', 77.9, Node(10 ), None, None, 12.20, ] lowerCAmelCase : Dict = LinkedList() for i in test_input: linked_list.insert_tail(_A ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(_A ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head lowerCAmelCase : Optional[Any] = linked_list.delete_head() assert result == -9 assert ( str(_A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail lowerCAmelCase : List[str] = linked_list.delete_tail() assert result == 12.2 assert ( str(_A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list lowerCAmelCase : List[str] = linked_list.delete_nth(10 ) assert result is None assert ( str(_A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(_A ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(_A ) assert ( str(_A ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(_A ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def __UpperCamelCase ( ) -> List[Any]: """simple docstring""" from doctest import testmod testmod() lowerCAmelCase : Optional[Any] = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(_A ) print('\nReading/changing Node data using indexing:' ) print(F"Element at Position 1: {linked_list[1]}" ) lowerCAmelCase : Tuple = input('Enter New Value: ' ).strip() print('New list:' ) print(_A ) print(F"length of linked_list is : {len(_A )}" ) if __name__ == "__main__": main()
646
1
'''simple docstring''' import math def __UpperCamelCase ( _A : int = 1_00 ) -> int: """simple docstring""" lowerCAmelCase : List[Any] = sum(i * i for i in range(1 , n + 1 ) ) lowerCAmelCase : Optional[Any] = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f"""{solution() = }""")
646
'''simple docstring''' _lowerCAmelCase : List[str] = {str(digit): digit**5 for digit in range(10)} def __UpperCamelCase ( _A : int ) -> int: """simple docstring""" return sum(DIGITS_FIFTH_POWER[digit] for digit in str(_A ) ) def __UpperCamelCase ( ) -> int: """simple docstring""" return sum( number for number in range(10_00 , 1_00_00_00 ) if number == digits_fifth_powers_sum(_A ) ) if __name__ == "__main__": print(solution())
646
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Any = logging.get_logger(__name__) _lowerCAmelCase : int = { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json', # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class lowerCAmelCase ( a ): _lowerCamelCase : List[Any] = """gpt_neox""" def __init__( self , snake_case__=5_0432 , snake_case__=6144 , snake_case__=44 , snake_case__=64 , snake_case__=2_4576 , snake_case__="gelu" , snake_case__=0.2_5 , snake_case__=1_0000 , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.1 , snake_case__=2048 , snake_case__=0.0_2 , snake_case__=1e-5 , snake_case__=True , snake_case__=0 , snake_case__=2 , snake_case__=False , snake_case__=True , snake_case__=None , **snake_case__ , ): super().__init__(bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) lowerCAmelCase : Tuple = vocab_size lowerCAmelCase : int = max_position_embeddings lowerCAmelCase : Tuple = hidden_size lowerCAmelCase : Union[str, Any] = num_hidden_layers lowerCAmelCase : Optional[Any] = num_attention_heads lowerCAmelCase : List[Any] = intermediate_size lowerCAmelCase : Optional[int] = hidden_act lowerCAmelCase : Dict = rotary_pct lowerCAmelCase : Optional[Any] = rotary_emb_base lowerCAmelCase : Any = attention_dropout lowerCAmelCase : Tuple = hidden_dropout lowerCAmelCase : str = classifier_dropout lowerCAmelCase : Any = initializer_range lowerCAmelCase : List[Any] = layer_norm_eps lowerCAmelCase : Optional[int] = use_cache lowerCAmelCase : str = tie_word_embeddings lowerCAmelCase : Dict = use_parallel_residual lowerCAmelCase : Optional[int] = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( 'The hidden size is not divisble by the number of attention heads! Make sure to update them!' ) def lowercase ( self ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , snake_case__ ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' f"got {self.rope_scaling}" ) lowerCAmelCase : str = self.rope_scaling.get('type' , snake_case__ ) lowerCAmelCase : Optional[Any] = self.rope_scaling.get('factor' , snake_case__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(snake_case__ , snake_case__ ) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
646
'''simple docstring''' def __UpperCamelCase ( _A : List[str] ) -> Optional[Any]: """simple docstring""" if not head: return True # split the list to two parts lowerCAmelCase , lowerCAmelCase : str = head.next, head while fast and fast.next: lowerCAmelCase : Optional[int] = fast.next.next lowerCAmelCase : int = slow.next lowerCAmelCase : int = slow.next lowerCAmelCase : Optional[Any] = None # Don't forget here! But forget still works! # reverse the second part lowerCAmelCase : List[Any] = None while second: lowerCAmelCase : List[Any] = second.next lowerCAmelCase : Union[str, Any] = node lowerCAmelCase : Optional[Any] = second lowerCAmelCase : Any = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False lowerCAmelCase : Optional[Any] = node.next lowerCAmelCase : Tuple = head.next return True def __UpperCamelCase ( _A : Optional[Any] ) -> Optional[int]: """simple docstring""" if not head or not head.next: return True # 1. Get the midpoint (slow) lowerCAmelCase : Optional[int] = head while fast and fast.next: lowerCAmelCase , lowerCAmelCase : Optional[Any] = fast.next.next, slow.next # 2. Push the second half into the stack lowerCAmelCase : Tuple = [slow.val] while slow.next: lowerCAmelCase : Tuple = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False lowerCAmelCase : Union[str, Any] = cur.next return True def __UpperCamelCase ( _A : Tuple ) -> Optional[int]: """simple docstring""" if not head or not head.next: return True lowerCAmelCase : Optional[int] = {} lowerCAmelCase : int = 0 while head: if head.val in d: d[head.val].append(_A ) else: lowerCAmelCase : Any = [pos] lowerCAmelCase : int = head.next pos += 1 lowerCAmelCase : str = pos - 1 lowerCAmelCase : Optional[Any] = 0 for v in d.values(): if len(_A ) % 2 != 0: middle += 1 else: lowerCAmelCase : Any = 0 for i in range(0 , len(_A ) ): if v[i] + v[len(_A ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
646
1
'''simple docstring''' from string import ascii_uppercase _lowerCAmelCase : List[str] = {char: i for i, char in enumerate(ascii_uppercase)} _lowerCAmelCase : List[Any] = dict(enumerate(ascii_uppercase)) def __UpperCamelCase ( _A : str , _A : str ) -> str: """simple docstring""" lowerCAmelCase : Any = len(_A ) lowerCAmelCase : Tuple = 0 while True: if x == i: lowerCAmelCase : str = 0 if len(_A ) == len(_A ): break key += key[i] i += 1 return key def __UpperCamelCase ( _A : str , _A : str ) -> str: """simple docstring""" lowerCAmelCase : str = '' lowerCAmelCase : Any = 0 for letter in message: if letter == " ": cipher_text += " " else: lowerCAmelCase : List[str] = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def __UpperCamelCase ( _A : str , _A : str ) -> str: """simple docstring""" lowerCAmelCase : Tuple = '' lowerCAmelCase : Union[str, Any] = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: lowerCAmelCase : str = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def __UpperCamelCase ( ) -> None: """simple docstring""" lowerCAmelCase : Union[str, Any] = 'THE GERMAN ATTACK' lowerCAmelCase : Tuple = 'SECRET' lowerCAmelCase : int = generate_key(_A , _A ) lowerCAmelCase : Union[str, Any] = cipher_text(_A , _A ) print(F"Encrypted Text = {s}" ) print(F"Original Text = {original_text(_A , _A )}" ) if __name__ == "__main__": import doctest doctest.testmod() main()
646
'''simple docstring''' import math def __UpperCamelCase ( _A : int = 1_00 ) -> int: """simple docstring""" lowerCAmelCase : List[Any] = sum(i * i for i in range(1 , n + 1 ) ) lowerCAmelCase : Optional[Any] = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f"""{solution() = }""")
646
1
'''simple docstring''' import enum import shutil import sys _lowerCAmelCase , _lowerCAmelCase : Tuple = shutil.get_terminal_size() _lowerCAmelCase : List[Any] = {'UP': 'A', 'DOWN': 'B', 'RIGHT': 'C', 'LEFT': 'D'} class lowerCAmelCase ( enum.Enum ): _lowerCamelCase : Optional[int] = 0 _lowerCamelCase : int = 1 def __UpperCamelCase ( _A : Any , _A : Optional[int]="" ) -> Tuple: """simple docstring""" sys.stdout.write(str(_A ) + end ) sys.stdout.flush() def __UpperCamelCase ( _A : Dict , _A : str , _A : Tuple="" ) -> List[str]: """simple docstring""" forceWrite(F"\u001b[{color}m{content}\u001b[0m" , _A ) def __UpperCamelCase ( ) -> Optional[int]: """simple docstring""" forceWrite('\r' ) def __UpperCamelCase ( _A : int , _A : str ) -> Dict: """simple docstring""" forceWrite(F"\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}" ) def __UpperCamelCase ( ) -> Union[str, Any]: """simple docstring""" forceWrite(' ' * TERMINAL_WIDTH ) reset_cursor() def __UpperCamelCase ( ) -> List[Any]: """simple docstring""" reset_cursor() forceWrite('-' * TERMINAL_WIDTH )
646
'''simple docstring''' import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece_with_bytefallback.model') @require_sentencepiece @require_tokenizers class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : Tuple = GPTSwaTokenizer _lowerCamelCase : str = False _lowerCamelCase : Dict = True _lowerCamelCase : Optional[Any] = False def lowercase ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : Tuple = GPTSwaTokenizer(snake_case__ , eos_token='<unk>' , bos_token='<unk>' , pad_token='<unk>' ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase ( self , snake_case__ ): lowerCAmelCase : List[Any] = 'This is a test' lowerCAmelCase : List[Any] = 'This is a test' return input_text, output_text def lowercase ( self ): lowerCAmelCase : Tuple = '<s>' lowerCAmelCase : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def lowercase ( self ): lowerCAmelCase : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(snake_case__ ) , 2000 ) def lowercase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 2000 ) def lowercase ( self ): lowerCAmelCase : List[Any] = GPTSwaTokenizer(snake_case__ ) lowerCAmelCase : Optional[Any] = tokenizer.tokenize('This is a test' ) self.assertListEqual(snake_case__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , [465, 287, 265, 631, 842] ) lowerCAmelCase : Tuple = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) # fmt: off self.assertListEqual( snake_case__ , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] , ) # fmt: on lowerCAmelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual( snake_case__ , [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] , ) lowerCAmelCase : int = tokenizer.convert_ids_to_tokens(snake_case__ ) # fmt: off self.assertListEqual( snake_case__ , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] ) # fmt: on def lowercase ( self ): lowerCAmelCase : str = GPTSwaTokenizer(snake_case__ ) lowerCAmelCase : Optional[int] = ['This is a test', 'I was born in 92000, and this is falsé.'] lowerCAmelCase : Tuple = [ [465, 287, 265, 631, 842], [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(snake_case__ , snake_case__ ): self.assertListEqual(tokenizer.encode_fast(snake_case__ ) , snake_case__ ) # Test that decode_fast returns the input text for text, token_ids in zip(snake_case__ , snake_case__ ): self.assertEqual(tokenizer.decode_fast(snake_case__ ) , snake_case__ ) @slow def lowercase ( self ): lowerCAmelCase : str = [ '<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')', 'Hey there, how are you doing this fine day?', 'This is a text with a trailing spaces followed by a dot .', 'Häj sväjs lillebrör! =)', 'Det är inget fel på Mr. Cool', ] # fmt: off lowerCAmelCase : Tuple = {'input_ids': [[6_3423, 5, 6811, 1_4954, 282, 816, 3821, 6_3466, 6_3425, 6_3462, 18, 6_3978, 678, 301, 1320, 6_3423, 6_3455, 6_3458, 18, 6_3982, 4246, 3940, 1901, 4_7789, 5547, 1_8994], [1_9630, 1100, 6_3446, 1342, 633, 544, 4488, 593, 5102, 2416, 6_3495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1652, 428, 268, 1936, 515, 268, 5_8593, 2_2413, 9106, 546, 268, 3_3213, 6_3979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_5130, 6_3450, 924, 6_3449, 2249, 4062, 1558, 318, 6_3504, 2_1498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2827, 2559, 332, 6575, 6_3443, 2_6801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name='AI-Sweden/gpt-sw3-126m' , sequences=snake_case__ , )
646
1
'''simple docstring''' from __future__ import annotations from collections.abc import Callable def __UpperCamelCase ( _A : Callable[[int | float], int | float] , _A : int | float , _A : int | float , _A : int = 1_00 , ) -> float: """simple docstring""" lowerCAmelCase : List[str] = x_start lowerCAmelCase : Tuple = fnc(_A ) lowerCAmelCase : Optional[int] = 0.0 for _ in range(_A ): # Approximates small segments of curve as linear and solve # for trapezoidal area lowerCAmelCase : List[str] = (x_end - x_start) / steps + xa lowerCAmelCase : Tuple = fnc(_A ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step lowerCAmelCase : List[str] = xa lowerCAmelCase : int = fxa return area if __name__ == "__main__": def __UpperCamelCase ( _A : Union[str, Any] ) -> Tuple: """simple docstring""" return x**3 + x**2 print('f(x) = x^3 + x^2') print('The area between the curve, x = -5, x = 5 and the x axis is:') _lowerCAmelCase : int = 10 while i <= 10_0000: print(f"""with {i} steps: {trapezoidal_area(f, -5, 5, i)}""") i *= 10
646
'''simple docstring''' def __UpperCamelCase ( _A : int ) -> bool: """simple docstring""" return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
646
1
'''simple docstring''' from math import factorial def __UpperCamelCase ( _A : int = 20 ) -> int: """simple docstring""" lowerCAmelCase : Union[str, Any] = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... lowerCAmelCase : Tuple = n // 2 return int(factorial(_A ) / (factorial(_A ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: _lowerCAmelCase : Dict = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number.')
646
'''simple docstring''' import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( 'files' , [ ['full:README.md', 'dataset_infos.json'], ['empty:README.md', 'dataset_infos.json'], ['dataset_infos.json'], ['full:README.md'], ] , ) def __UpperCamelCase ( _A : str , _A : List[Any] ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase : Optional[int] = tmp_path_factory.mktemp('dset_infos_dir' ) if "full:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('---\ndataset_info:\n dataset_size: 42\n---' ) if "empty:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / 'dataset_infos.json' , 'w' ) as f: f.write('{"default": {"dataset_size": 42}}' ) lowerCAmelCase : Union[str, Any] = DatasetInfosDict.from_directory(_A ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( 'dataset_info' , [ DatasetInfo(), DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ), ] , ) def __UpperCamelCase ( _A : str , _A : DatasetInfo ) -> Optional[int]: """simple docstring""" lowerCAmelCase : str = str(_A ) dataset_info.write_to_directory(_A ) lowerCAmelCase : List[str] = DatasetInfo.from_directory(_A ) assert dataset_info == reloaded assert os.path.exists(os.path.join(_A , 'dataset_info.json' ) ) def __UpperCamelCase ( ) -> List[str]: """simple docstring""" lowerCAmelCase : Tuple = DatasetInfo( description='foo' , citation='bar' , homepage='https://foo.bar' , license='CC0' , features=Features({'a': Value('int32' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train', 'num_examples': 42}] , download_checksums={} , download_size=13_37 , post_processing_size=4_42 , dataset_size=12_34 , size_in_bytes=13_37 + 4_42 + 12_34 , ) lowerCAmelCase : Optional[int] = dataset_info._to_yaml_dict() assert sorted(_A ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) lowerCAmelCase : Any = yaml.safe_dump(_A ) lowerCAmelCase : int = yaml.safe_load(_A ) assert dataset_info_yaml_dict == reloaded def __UpperCamelCase ( ) -> Dict: """simple docstring""" lowerCAmelCase : Union[str, Any] = DatasetInfo() lowerCAmelCase : List[Any] = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( 'dataset_infos_dict' , [ DatasetInfosDict(), DatasetInfosDict({'default': DatasetInfo()} ), DatasetInfosDict({'my_config_name': DatasetInfo()} ), DatasetInfosDict( { 'default': DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ) } ), DatasetInfosDict( { 'v1': DatasetInfo(dataset_size=42 ), 'v2': DatasetInfo(dataset_size=13_37 ), } ), ] , ) def __UpperCamelCase ( _A : Tuple , _A : DatasetInfosDict ) -> List[Any]: """simple docstring""" lowerCAmelCase : Tuple = str(_A ) dataset_infos_dict.write_to_directory(_A ) lowerCAmelCase : List[str] = DatasetInfosDict.from_directory(_A ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): lowerCAmelCase : Tuple = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml lowerCAmelCase : Optional[Any] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(_A , 'README.md' ) )
646
1
'''simple docstring''' import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py _lowerCAmelCase : Any = '\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation",\n author = "Lin, Chin-Yew and\n Och, Franz Josef",\n booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics",\n month = "aug 23{--}aug 27",\n year = "2004",\n address = "Geneva, Switzerland",\n publisher = "COLING",\n url = "https://www.aclweb.org/anthology/C04-1072",\n pages = "501--507",\n}\n' _lowerCAmelCase : List[Any] = '\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine\'s output and that of a human: "the closer a machine translation is to a professional human translation,\nthe better it is" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n' _lowerCAmelCase : List[Any] = '\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n \'bleu\': bleu score,\n \'precisions\': geometric mean of n-gram precisions,\n \'brevity_penalty\': brevity penalty,\n \'length_ratio\': ratio of lengths,\n \'translation_length\': translation_length,\n \'reference_length\': reference_length\nExamples:\n\n >>> predictions = [\n ... ["hello", "there", "general", "kenobi"], # tokenized prediction of the first sample\n ... ["foo", "bar", "foobar"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [["hello", "there", "general", "kenobi"], ["hello", "there", "!"]], # tokenized references for the first sample (2 references)\n ... [["foo", "bar", "foobar"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric("bleu")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results["bleu"])\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase ( datasets.Metric ): def lowercase ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'] , reference_urls=[ 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ] , ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__=4 , snake_case__=False ): lowerCAmelCase : Dict = compute_bleu( reference_corpus=snake_case__ , translation_corpus=snake_case__ , max_order=snake_case__ , smooth=snake_case__ ) ((lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase)) : List[Any] = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
646
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCAmelCase ( a ): def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): super().__init__() if safety_checker is None: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" ' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered' ' results in services or applications open to the public. Both the diffusers team and Hugging Face' ' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling' ' it only for use-cases that involve analyzing network behavior or auditing its results. For more' ' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .' ) self.register_modules( speech_model=snake_case__ , speech_processor=snake_case__ , vae=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , unet=snake_case__ , scheduler=snake_case__ , feature_extractor=snake_case__ , ) def lowercase ( self , snake_case__ = "auto" ): if slice_size == "auto": lowerCAmelCase : Union[str, Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(snake_case__ ) def lowercase ( self ): self.enable_attention_slicing(snake_case__ ) @torch.no_grad() def __call__( self , snake_case__ , snake_case__=1_6000 , snake_case__ = 512 , snake_case__ = 512 , snake_case__ = 50 , snake_case__ = 7.5 , snake_case__ = None , snake_case__ = 1 , snake_case__ = 0.0 , snake_case__ = None , snake_case__ = None , snake_case__ = "pil" , snake_case__ = True , snake_case__ = None , snake_case__ = 1 , **snake_case__ , ): lowerCAmelCase : List[str] = self.speech_processor.feature_extractor( snake_case__ , return_tensors='pt' , sampling_rate=snake_case__ ).input_features.to(self.device ) lowerCAmelCase : Optional[Any] = self.speech_model.generate(snake_case__ , max_length=48_0000 ) lowerCAmelCase : str = self.speech_processor.tokenizer.batch_decode(snake_case__ , skip_special_tokens=snake_case__ , normalize=snake_case__ )[ 0 ] if isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = 1 elif isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = len(snake_case__ ) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(snake_case__ )}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(snake_case__ , snake_case__ ) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(snake_case__ )}." ) # get prompt text embeddings lowerCAmelCase : str = self.tokenizer( snake_case__ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) lowerCAmelCase : Tuple = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowerCAmelCase : str = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) lowerCAmelCase : Union[str, Any] = text_input_ids[:, : self.tokenizer.model_max_length] lowerCAmelCase : Union[str, Any] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : int = text_embeddings.shape lowerCAmelCase : Any = text_embeddings.repeat(1 , snake_case__ , 1 ) lowerCAmelCase : Optional[int] = text_embeddings.view(bs_embed * num_images_per_prompt , snake_case__ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowerCAmelCase : List[str] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowerCAmelCase : List[str] if negative_prompt is None: lowerCAmelCase : Any = [''] * batch_size elif type(snake_case__ ) is not type(snake_case__ ): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(snake_case__ )} !=" f" {type(snake_case__ )}." ) elif isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = [negative_prompt] elif batch_size != len(snake_case__ ): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(snake_case__ )}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" ' the batch size of `prompt`.' ) else: lowerCAmelCase : Dict = negative_prompt lowerCAmelCase : Optional[int] = text_input_ids.shape[-1] lowerCAmelCase : int = self.tokenizer( snake_case__ , padding='max_length' , max_length=snake_case__ , truncation=snake_case__ , return_tensors='pt' , ) lowerCAmelCase : Union[str, Any] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowerCAmelCase : List[Any] = uncond_embeddings.shape[1] lowerCAmelCase : List[str] = uncond_embeddings.repeat(1 , snake_case__ , 1 ) lowerCAmelCase : Optional[Any] = uncond_embeddings.view(batch_size * num_images_per_prompt , snake_case__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCAmelCase : List[str] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowerCAmelCase : Union[str, Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowerCAmelCase : Dict = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowerCAmelCase : str = torch.randn(snake_case__ , generator=snake_case__ , device='cpu' , dtype=snake_case__ ).to( self.device ) else: lowerCAmelCase : Tuple = torch.randn(snake_case__ , generator=snake_case__ , device=self.device , dtype=snake_case__ ) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) lowerCAmelCase : str = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(snake_case__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowerCAmelCase : Union[str, Any] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowerCAmelCase : Any = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowerCAmelCase : Tuple = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCAmelCase : Union[str, Any] = {} if accepts_eta: lowerCAmelCase : int = eta for i, t in enumerate(self.progress_bar(snake_case__ ) ): # expand the latents if we are doing classifier free guidance lowerCAmelCase : Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCAmelCase : Tuple = self.scheduler.scale_model_input(snake_case__ , snake_case__ ) # predict the noise residual lowerCAmelCase : List[str] = self.unet(snake_case__ , snake_case__ , encoder_hidden_states=snake_case__ ).sample # perform guidance if do_classifier_free_guidance: lowerCAmelCase , lowerCAmelCase : Dict = noise_pred.chunk(2 ) lowerCAmelCase : Tuple = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowerCAmelCase : int = self.scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase : List[Any] = 1 / 0.1_8_2_1_5 * latents lowerCAmelCase : Dict = self.vae.decode(snake_case__ ).sample lowerCAmelCase : List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowerCAmelCase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowerCAmelCase : Dict = self.numpy_to_pil(snake_case__ ) if not return_dict: return image return StableDiffusionPipelineOutput(images=snake_case__ , nsfw_content_detected=snake_case__ )
646
1
'''simple docstring''' from math import sqrt def __UpperCamelCase ( _A : int = 1_00_00_00 ) -> int: """simple docstring""" lowerCAmelCase : int = 0 lowerCAmelCase : int = 0 lowerCAmelCase : int while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(_A , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f"""{solution() = }""")
646
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : List[Any] = LDMTextToImagePipeline _lowerCamelCase : Optional[Any] = TEXT_TO_IMAGE_PARAMS - { """negative_prompt""", """negative_prompt_embeds""", """cross_attention_kwargs""", """prompt_embeds""", } _lowerCamelCase : List[str] = PipelineTesterMixin.required_optional_params - { """num_images_per_prompt""", """callback""", """callback_steps""", } _lowerCamelCase : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS _lowerCamelCase : Optional[int] = False def lowercase ( self ): torch.manual_seed(0 ) lowerCAmelCase : Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) lowerCAmelCase : int = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , ) torch.manual_seed(0 ) lowerCAmelCase : str = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') , up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') , latent_channels=4 , ) torch.manual_seed(0 ) lowerCAmelCase : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowerCAmelCase : str = CLIPTextModel(snake_case__ ) lowerCAmelCase : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCAmelCase : List[Any] = { 'unet': unet, 'scheduler': scheduler, 'vqvae': vae, 'bert': text_encoder, 'tokenizer': tokenizer, } return components def lowercase ( self , snake_case__ , snake_case__=0 ): if str(snake_case__ ).startswith('mps' ): lowerCAmelCase : Optional[int] = torch.manual_seed(snake_case__ ) else: lowerCAmelCase : str = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) lowerCAmelCase : Tuple = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase ( self ): lowerCAmelCase : List[str] = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase : Optional[Any] = self.get_dummy_components() lowerCAmelCase : Optional[Any] = LDMTextToImagePipeline(**snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Tuple = self.get_dummy_inputs(snake_case__ ) lowerCAmelCase : Union[str, Any] = pipe(**snake_case__ ).images lowerCAmelCase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) lowerCAmelCase : List[Any] = np.array([0.6_1_0_1, 0.6_1_5_6, 0.5_6_2_2, 0.4_8_9_5, 0.6_6_6_1, 0.3_8_0_4, 0.5_7_4_8, 0.6_1_3_6, 0.5_0_1_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self , snake_case__ , snake_case__=torch.floataa , snake_case__=0 ): lowerCAmelCase : List[str] = torch.manual_seed(snake_case__ ) lowerCAmelCase : int = np.random.RandomState(snake_case__ ).standard_normal((1, 4, 32, 32) ) lowerCAmelCase : Optional[Any] = torch.from_numpy(snake_case__ ).to(device=snake_case__ , dtype=snake_case__ ) lowerCAmelCase : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase ( self ): lowerCAmelCase : Tuple = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Optional[Any] = self.get_inputs(snake_case__ ) lowerCAmelCase : List[Any] = pipe(**snake_case__ ).images lowerCAmelCase : str = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) lowerCAmelCase : Tuple = np.array([0.5_1_8_2_5, 0.5_2_8_5_0, 0.5_2_5_4_3, 0.5_4_2_5_8, 0.5_2_3_0_4, 0.5_2_5_6_9, 0.5_4_3_6_3, 0.5_5_2_7_6, 0.5_6_8_7_8] ) lowerCAmelCase : int = np.abs(expected_slice - image_slice ).max() assert max_diff < 1e-3 @nightly @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self , snake_case__ , snake_case__=torch.floataa , snake_case__=0 ): lowerCAmelCase : List[str] = torch.manual_seed(snake_case__ ) lowerCAmelCase : Any = np.random.RandomState(snake_case__ ).standard_normal((1, 4, 32, 32) ) lowerCAmelCase : List[Any] = torch.from_numpy(snake_case__ ).to(device=snake_case__ , dtype=snake_case__ ) lowerCAmelCase : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase ( self ): lowerCAmelCase : Optional[int] = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : int = self.get_inputs(snake_case__ ) lowerCAmelCase : Optional[int] = pipe(**snake_case__ ).images[0] lowerCAmelCase : Optional[int] = load_numpy( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy' ) lowerCAmelCase : List[str] = np.abs(expected_image - image ).max() assert max_diff < 1e-3
646
1
'''simple docstring''' from decimal import Decimal, getcontext from math import ceil, factorial def __UpperCamelCase ( _A : int ) -> str: """simple docstring""" if not isinstance(_A , _A ): raise TypeError('Undefined for non-integers' ) elif precision < 1: raise ValueError('Undefined for non-natural numbers' ) lowerCAmelCase : Dict = precision lowerCAmelCase : List[str] = ceil(precision / 14 ) lowerCAmelCase : Optional[Any] = 42_68_80 * Decimal(1_00_05 ).sqrt() lowerCAmelCase : Optional[int] = 1 lowerCAmelCase : Optional[Any] = 13_59_14_09 lowerCAmelCase : Union[str, Any] = Decimal(_A ) for k in range(1 , _A ): lowerCAmelCase : List[Any] = factorial(6 * k ) // (factorial(3 * k ) * factorial(_A ) ** 3) linear_term += 5_45_14_01_34 exponential_term *= -26_25_37_41_26_40_76_80_00 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": _lowerCAmelCase : List[Any] = 50 print(f"""The first {n} digits of pi is: {pi(n)}""")
646
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Tuple = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { 'facebook/xmod-base': 'https://huggingface.co/facebook/xmod-base/resolve/main/config.json', 'facebook/xmod-large-prenorm': 'https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json', 'facebook/xmod-base-13-125k': 'https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json', 'facebook/xmod-base-30-125k': 'https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json', 'facebook/xmod-base-30-195k': 'https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json', 'facebook/xmod-base-60-125k': 'https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json', 'facebook/xmod-base-60-265k': 'https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json', 'facebook/xmod-base-75-125k': 'https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json', 'facebook/xmod-base-75-269k': 'https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json', } class lowerCAmelCase ( a ): _lowerCamelCase : int = """xmod""" def __init__( self , snake_case__=3_0522 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=1e-1_2 , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__="absolute" , snake_case__=True , snake_case__=None , snake_case__=False , snake_case__=2 , snake_case__=False , snake_case__=True , snake_case__=True , snake_case__=("en_XX",) , snake_case__=None , **snake_case__ , ): super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) lowerCAmelCase : Dict = vocab_size lowerCAmelCase : Optional[Any] = hidden_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob lowerCAmelCase : str = max_position_embeddings lowerCAmelCase : int = type_vocab_size lowerCAmelCase : List[Any] = initializer_range lowerCAmelCase : Any = layer_norm_eps lowerCAmelCase : Dict = position_embedding_type lowerCAmelCase : Optional[Any] = use_cache lowerCAmelCase : Union[str, Any] = classifier_dropout lowerCAmelCase : int = pre_norm lowerCAmelCase : Optional[Any] = adapter_reduction_factor lowerCAmelCase : Any = adapter_layer_norm lowerCAmelCase : Dict = adapter_reuse_layer_norm lowerCAmelCase : Any = ln_before_adapter lowerCAmelCase : Optional[Any] = list(snake_case__ ) lowerCAmelCase : List[Any] = default_language class lowerCAmelCase ( a ): @property def lowercase ( self ): if self.task == "multiple-choice": lowerCAmelCase : List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase : Optional[int] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
646
1
'''simple docstring''' from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar _lowerCAmelCase : Tuple = TypeVar('T') _lowerCAmelCase : Optional[int] = TypeVar('U') class lowerCAmelCase ( Generic[T, U] ): def __init__( self , snake_case__ , snake_case__ ): lowerCAmelCase : Dict = key lowerCAmelCase : Union[str, Any] = val lowerCAmelCase : DoubleLinkedListNode[T, U] | None = None lowerCAmelCase : DoubleLinkedListNode[T, U] | None = None def __repr__( self ): return ( f"Node: key: {self.key}, val: {self.val}, " f"has next: {bool(self.next )}, has prev: {bool(self.prev )}" ) class lowerCAmelCase ( Generic[T, U] ): def __init__( self ): lowerCAmelCase : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(snake_case__ , snake_case__ ) lowerCAmelCase : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(snake_case__ , snake_case__ ) lowerCAmelCase , lowerCAmelCase : Dict = self.rear, self.head def __repr__( self ): lowerCAmelCase : List[str] = ['DoubleLinkedList'] lowerCAmelCase : Optional[Any] = self.head while node.next is not None: rep.append(str(snake_case__ ) ) lowerCAmelCase : Optional[Any] = node.next rep.append(str(self.rear ) ) return ",\n ".join(snake_case__ ) def lowercase ( self , snake_case__ ): lowerCAmelCase : List[str] = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None lowerCAmelCase : int = node lowerCAmelCase : Dict = previous lowerCAmelCase : Optional[int] = node lowerCAmelCase : int = self.rear def lowercase ( self , snake_case__ ): if node.prev is None or node.next is None: return None lowerCAmelCase : Tuple = node.next lowerCAmelCase : Dict = node.prev lowerCAmelCase : Optional[int] = None lowerCAmelCase : Tuple = None return node class lowerCAmelCase ( Generic[T, U] ): _lowerCamelCase : dict[Callable[[T], U], LRUCache[T, U]] = {} def __init__( self , snake_case__ ): lowerCAmelCase : DoubleLinkedList[T, U] = DoubleLinkedList() lowerCAmelCase : List[str] = capacity lowerCAmelCase : Union[str, Any] = 0 lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Optional[Any] = 0 lowerCAmelCase : dict[T, DoubleLinkedListNode[T, U]] = {} def __repr__( self ): return ( f"CacheInfo(hits={self.hits}, misses={self.miss}, " f"capacity={self.capacity}, current size={self.num_keys})" ) def __contains__( self , snake_case__ ): return key in self.cache def lowercase ( self , snake_case__ ): # Note: pythonic interface would throw KeyError rather than return None if key in self.cache: self.hits += 1 lowerCAmelCase : DoubleLinkedListNode[T, U] = self.cache[key] lowerCAmelCase : Optional[int] = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(snake_case__ ) return node.val self.miss += 1 return None def lowercase ( self , snake_case__ , snake_case__ ): if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity lowerCAmelCase : List[Any] = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(snake_case__ ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 lowerCAmelCase : Any = DoubleLinkedListNode(snake_case__ , snake_case__ ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value lowerCAmelCase : List[str] = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list lowerCAmelCase : List[Any] = value self.list.add(snake_case__ ) @classmethod def lowercase ( cls , snake_case__ = 128 ): def cache_decorator_inner(snake_case__ ) -> Callable[..., U]: def cache_decorator_wrapper(*snake_case__ ) -> U: if func not in cls.decorator_function_to_instance_map: lowerCAmelCase : Union[str, Any] = LRUCache(snake_case__ ) lowerCAmelCase : Optional[int] = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: lowerCAmelCase : List[str] = func(*snake_case__ ) cls.decorator_function_to_instance_map[func].put(args[0] , snake_case__ ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(snake_case__ , 'cache_info' , snake_case__ ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
646
'''simple docstring''' import argparse import os import re _lowerCAmelCase : Dict = 'src/diffusers' # Pattern that looks at the indentation in a line. _lowerCAmelCase : str = re.compile(r'^(\s*)\S') # Pattern that matches `"key":" and puts `key` in group 0. _lowerCAmelCase : Any = re.compile(r'^\s*"([^"]+)":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. _lowerCAmelCase : List[Any] = re.compile(r'^\s*_import_structure\["([^"]+)"\]') # Pattern that matches `"key",` and puts `key` in group 0. _lowerCAmelCase : int = re.compile(r'^\s*"([^"]+)",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. _lowerCAmelCase : Optional[Any] = re.compile(r'\[([^\]]+)\]') def __UpperCamelCase ( _A : Union[str, Any] ) -> Dict: """simple docstring""" lowerCAmelCase : Any = _re_indent.search(_A ) return "" if search is None else search.groups()[0] def __UpperCamelCase ( _A : Dict , _A : Any="" , _A : List[str]=None , _A : Any=None ) -> Tuple: """simple docstring""" lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Tuple = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(_A ): index += 1 lowerCAmelCase : Optional[int] = ['\n'.join(lines[:index] )] else: lowerCAmelCase : int = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowerCAmelCase : Tuple = [lines[index]] index += 1 while index < len(_A ) and (end_prompt is None or not lines[index].startswith(_A )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(_A ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(_A ) ) if index < len(_A ) - 1: lowerCAmelCase : List[Any] = [lines[index + 1]] index += 1 else: lowerCAmelCase : int = [] else: blocks.append('\n'.join(_A ) ) lowerCAmelCase : Any = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(_A ) > 0: blocks.append('\n'.join(_A ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(_A ): blocks.append('\n'.join(lines[index:] ) ) return blocks def __UpperCamelCase ( _A : Dict ) -> List[Any]: """simple docstring""" def _inner(_A : Tuple ): return key(_A ).lower().replace('_' , '' ) return _inner def __UpperCamelCase ( _A : Union[str, Any] , _A : Any=None ) -> Optional[Any]: """simple docstring""" def noop(_A : Any ): return x if key is None: lowerCAmelCase : List[str] = noop # Constants are all uppercase, they go first. lowerCAmelCase : str = [obj for obj in objects if key(_A ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowerCAmelCase : List[str] = [obj for obj in objects if key(_A )[0].isupper() and not key(_A ).isupper()] # Functions begin with a lowercase, they go last. lowerCAmelCase : Optional[Any] = [obj for obj in objects if not key(_A )[0].isupper()] lowerCAmelCase : Tuple = ignore_underscore(_A ) return sorted(_A , key=_A ) + sorted(_A , key=_A ) + sorted(_A , key=_A ) def __UpperCamelCase ( _A : Union[str, Any] ) -> int: """simple docstring""" def _replace(_A : List[Any] ): lowerCAmelCase : List[Any] = match.groups()[0] if "," not in imports: return F"[{imports}]" lowerCAmelCase : Dict = [part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase : List[str] = keys[:-1] return "[" + ", ".join([F"\"{k}\"" for k in sort_objects(_A )] ) + "]" lowerCAmelCase : Optional[int] = import_statement.split('\n' ) if len(_A ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowerCAmelCase : Optional[Any] = 2 if lines[1].strip() == '[' else 1 lowerCAmelCase : List[str] = [(i, _re_strip_line.search(_A ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowerCAmelCase : Optional[Any] = sort_objects(_A , key=lambda _A : x[1] ) lowerCAmelCase : Dict = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(_A ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowerCAmelCase : Optional[int] = _re_bracket_content.sub(_replace , lines[1] ) else: lowerCAmelCase : List[Any] = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase : int = keys[:-1] lowerCAmelCase : Tuple = get_indent(lines[1] ) + ', '.join([F"\"{k}\"" for k in sort_objects(_A )] ) return "\n".join(_A ) else: # Finally we have to deal with imports fitting on one line lowerCAmelCase : Union[str, Any] = _re_bracket_content.sub(_replace , _A ) return import_statement def __UpperCamelCase ( _A : str , _A : Tuple=True ) -> Optional[Any]: """simple docstring""" with open(_A , 'r' ) as f: lowerCAmelCase : Optional[int] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowerCAmelCase : List[Any] = split_code_in_indented_blocks( _A , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(_A ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowerCAmelCase : List[str] = main_blocks[block_idx] lowerCAmelCase : Union[str, Any] = block.split('\n' ) # Get to the start of the imports. lowerCAmelCase : Optional[Any] = 0 while line_idx < len(_A ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowerCAmelCase : Optional[Any] = len(_A ) else: line_idx += 1 if line_idx >= len(_A ): continue # Ignore beginning and last line: they don't contain anything. lowerCAmelCase : str = '\n'.join(block_lines[line_idx:-1] ) lowerCAmelCase : str = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowerCAmelCase : Optional[Any] = split_code_in_indented_blocks(_A , indent_level=_A ) # We have two categories of import key: list or _import_structure[key].append/extend lowerCAmelCase : Union[str, Any] = _re_direct_key if '_import_structure' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowerCAmelCase : int = [(pattern.search(_A ).groups()[0] if pattern.search(_A ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowerCAmelCase : Dict = [(i, key) for i, key in enumerate(_A ) if key is not None] lowerCAmelCase : List[Any] = [x[0] for x in sorted(_A , key=lambda _A : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowerCAmelCase : int = 0 lowerCAmelCase : Dict = [] for i in range(len(_A ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: lowerCAmelCase : str = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(_A ) count += 1 # And we put our main block back together with its first and last line. lowerCAmelCase : str = '\n'.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(_A ): if check_only: return True else: print(F"Overwriting {file}." ) with open(_A , 'w' ) as f: f.write('\n'.join(_A ) ) def __UpperCamelCase ( _A : Tuple=True ) -> Any: """simple docstring""" lowerCAmelCase : Tuple = [] for root, _, files in os.walk(_A ): if "__init__.py" in files: lowerCAmelCase : Any = sort_imports(os.path.join(_A , '__init__.py' ) , check_only=_A ) if result: lowerCAmelCase : Optional[Any] = [os.path.join(_A , '__init__.py' )] if len(_A ) > 0: raise ValueError(F"Would overwrite {len(_A )} files, run `make style`." ) if __name__ == "__main__": _lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') _lowerCAmelCase : Optional[int] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
646
1
'''simple docstring''' import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter _lowerCAmelCase : Optional[Any] = True except ImportError: _lowerCAmelCase : List[str] = False _lowerCAmelCase : Any = logging.get_logger(__name__) # pylint: disable=invalid-name def __UpperCamelCase ( _A : Namespace ) -> Any: """simple docstring""" return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class lowerCAmelCase ( a ): @staticmethod def lowercase ( snake_case__ ): lowerCAmelCase : Any = parser.add_parser('add-new-model' ) add_new_model_parser.add_argument('--testing' , action='store_true' , help='If in testing mode.' ) add_new_model_parser.add_argument('--testing_file' , type=snake_case__ , help='Configuration file on which to run.' ) add_new_model_parser.add_argument( '--path' , type=snake_case__ , help='Path to cookiecutter. Should only be used for testing purposes.' ) add_new_model_parser.set_defaults(func=snake_case__ ) def __init__( self , snake_case__ , snake_case__ , snake_case__=None , *snake_case__ ): lowerCAmelCase : List[Any] = testing lowerCAmelCase : Any = testing_file lowerCAmelCase : Any = path def lowercase ( self ): warnings.warn( 'The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. ' 'It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality ' 'checks, you should use `transformers-cli add-new-model-like` instead.' ) if not _has_cookiecutter: raise ImportError( 'Model creation dependencies are required to use the `add_new_model` command. Install them by running ' 'the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n' ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory lowerCAmelCase : Optional[Any] = [directory for directory in os.listdir() if 'cookiecutter-template-' == directory[:22]] if len(snake_case__ ) > 0: raise ValueError( 'Several directories starting with `cookiecutter-template-` in current working directory. ' 'Please clean your directory by removing all folders starting with `cookiecutter-template-` or ' 'change your working directory.' ) lowerCAmelCase : str = ( Path(snake_case__ ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) lowerCAmelCase : Tuple = path_to_transformer_root / 'templates' / 'adding_a_new_model' # Execute cookiecutter if not self._testing: cookiecutter(str(snake_case__ ) ) else: with open(self._testing_file , 'r' ) as configuration_file: lowerCAmelCase : Optional[Any] = json.load(snake_case__ ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) , no_input=snake_case__ , extra_context=snake_case__ , ) lowerCAmelCase : Union[str, Any] = [directory for directory in os.listdir() if 'cookiecutter-template-' in directory[:22]][0] # Retrieve configuration with open(directory + '/configuration.json' , 'r' ) as configuration_file: lowerCAmelCase : Any = json.load(snake_case__ ) lowerCAmelCase : Union[str, Any] = configuration['lowercase_modelname'] lowerCAmelCase : Optional[Any] = configuration['generate_tensorflow_pytorch_and_flax'] os.remove(f"{directory}/configuration.json" ) lowerCAmelCase : Any = 'PyTorch' in generate_tensorflow_pytorch_and_flax lowerCAmelCase : Dict = 'TensorFlow' in generate_tensorflow_pytorch_and_flax lowerCAmelCase : int = 'Flax' in generate_tensorflow_pytorch_and_flax lowerCAmelCase : str = f"{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}" os.makedirs(snake_case__ , exist_ok=snake_case__ ) os.makedirs(f"{path_to_transformer_root}/tests/models/{lowercase_model_name}" , exist_ok=snake_case__ ) # Tests require submodules as they have parent imports with open(f"{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py" , 'w' ): pass shutil.move( f"{directory}/__init__.py" , f"{model_dir}/__init__.py" , ) shutil.move( f"{directory}/configuration_{lowercase_model_name}.py" , f"{model_dir}/configuration_{lowercase_model_name}.py" , ) def remove_copy_lines(snake_case__ ): with open(snake_case__ , 'r' ) as f: lowerCAmelCase : Union[str, Any] = f.readlines() with open(snake_case__ , 'w' ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(snake_case__ ) if output_pytorch: if not self._testing: remove_copy_lines(f"{directory}/modeling_{lowercase_model_name}.py" ) shutil.move( f"{directory}/modeling_{lowercase_model_name}.py" , f"{model_dir}/modeling_{lowercase_model_name}.py" , ) shutil.move( f"{directory}/test_modeling_{lowercase_model_name}.py" , f"{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py" , ) else: os.remove(f"{directory}/modeling_{lowercase_model_name}.py" ) os.remove(f"{directory}/test_modeling_{lowercase_model_name}.py" ) if output_tensorflow: if not self._testing: remove_copy_lines(f"{directory}/modeling_tf_{lowercase_model_name}.py" ) shutil.move( f"{directory}/modeling_tf_{lowercase_model_name}.py" , f"{model_dir}/modeling_tf_{lowercase_model_name}.py" , ) shutil.move( f"{directory}/test_modeling_tf_{lowercase_model_name}.py" , f"{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py" , ) else: os.remove(f"{directory}/modeling_tf_{lowercase_model_name}.py" ) os.remove(f"{directory}/test_modeling_tf_{lowercase_model_name}.py" ) if output_flax: if not self._testing: remove_copy_lines(f"{directory}/modeling_flax_{lowercase_model_name}.py" ) shutil.move( f"{directory}/modeling_flax_{lowercase_model_name}.py" , f"{model_dir}/modeling_flax_{lowercase_model_name}.py" , ) shutil.move( f"{directory}/test_modeling_flax_{lowercase_model_name}.py" , f"{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py" , ) else: os.remove(f"{directory}/modeling_flax_{lowercase_model_name}.py" ) os.remove(f"{directory}/test_modeling_flax_{lowercase_model_name}.py" ) shutil.move( f"{directory}/{lowercase_model_name}.md" , f"{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md" , ) shutil.move( f"{directory}/tokenization_{lowercase_model_name}.py" , f"{model_dir}/tokenization_{lowercase_model_name}.py" , ) shutil.move( f"{directory}/tokenization_fast_{lowercase_model_name}.py" , f"{model_dir}/tokenization_{lowercase_model_name}_fast.py" , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(snake_case__ , snake_case__ , snake_case__ ): # Create temp file lowerCAmelCase , lowerCAmelCase : Dict = mkstemp() lowerCAmelCase : Any = False with fdopen(snake_case__ , 'w' ) as new_file: with open(snake_case__ ) as old_file: for line in old_file: new_file.write(snake_case__ ) if line_to_copy_below in line: lowerCAmelCase : Tuple = True for line_to_copy in lines_to_copy: new_file.write(snake_case__ ) if not line_found: raise ValueError(f"Line {line_to_copy_below} was not found in file." ) # Copy the file permissions from the old file to the new file copymode(snake_case__ , snake_case__ ) # Remove original file remove(snake_case__ ) # Move new file move(snake_case__ , snake_case__ ) def skip_units(snake_case__ ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(snake_case__ ): with open(snake_case__ ) as datafile: lowerCAmelCase : Union[str, Any] = [] lowerCAmelCase : Dict = False lowerCAmelCase : Any = False for line in datafile: if "# To replace in: " in line and "##" not in line: lowerCAmelCase : Dict = line.split('"' )[1] lowerCAmelCase : List[str] = skip_units(snake_case__ ) elif "# Below: " in line and "##" not in line: lowerCAmelCase : Tuple = line.split('"' )[1] lowerCAmelCase : Any = skip_units(snake_case__ ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase : Any = [] elif "# Replace with" in line and "##" not in line: lowerCAmelCase : Optional[Any] = [] elif "##" not in line: lines_to_copy.append(snake_case__ ) remove(snake_case__ ) replace_in_files(f"{directory}/to_replace_{lowercase_model_name}.py" ) os.rmdir(snake_case__ )
646
'''simple docstring''' import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class lowerCAmelCase : def __init__( self , snake_case__ , snake_case__=13 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=99 , snake_case__=64 , snake_case__=32 , snake_case__=5 , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=16 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=3 , snake_case__=4 , snake_case__=None , ): lowerCAmelCase : str = parent lowerCAmelCase : Optional[int] = batch_size lowerCAmelCase : Optional[Any] = seq_length lowerCAmelCase : Optional[Any] = is_training lowerCAmelCase : Dict = use_input_mask lowerCAmelCase : Tuple = use_token_type_ids lowerCAmelCase : int = use_labels lowerCAmelCase : int = vocab_size lowerCAmelCase : Any = hidden_size lowerCAmelCase : Optional[Any] = embedding_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : List[str] = num_attention_heads lowerCAmelCase : List[Any] = intermediate_size lowerCAmelCase : Dict = hidden_act lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : int = attention_probs_dropout_prob lowerCAmelCase : List[Any] = max_position_embeddings lowerCAmelCase : int = type_vocab_size lowerCAmelCase : List[str] = type_sequence_label_size lowerCAmelCase : Dict = initializer_range lowerCAmelCase : Any = num_labels lowerCAmelCase : str = num_choices lowerCAmelCase : int = scope def lowercase ( self ): lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Union[str, Any] = None if self.use_input_mask: lowerCAmelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : Optional[int] = None if self.use_token_type_ids: lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : Optional[Any] = None lowerCAmelCase : Optional[Any] = None lowerCAmelCase : Dict = None if self.use_labels: lowerCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase ( self ): return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case__ , initializer_range=self.initializer_range , ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = MobileBertModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : int = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) lowerCAmelCase : Optional[int] = model(snake_case__ , token_type_ids=snake_case__ ) lowerCAmelCase : Optional[Any] = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : int = MobileBertForMaskedLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : str = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = MobileBertForNextSentencePrediction(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : str = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : List[Any] = MobileBertForPreTraining(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Tuple = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , next_sentence_label=snake_case__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = MobileBertForQuestionAnswering(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : List[str] = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = self.num_labels lowerCAmelCase : List[Any] = MobileBertForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = self.num_labels lowerCAmelCase : int = MobileBertForTokenClassification(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : List[str] = self.num_choices lowerCAmelCase : Any = MobileBertForMultipleChoice(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : int = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : List[str] = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase ( self ): lowerCAmelCase : Any = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) : Optional[Any] = config_and_inputs lowerCAmelCase : List[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase ( a , a , unittest.TestCase ): _lowerCamelCase : List[str] = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) _lowerCamelCase : Tuple = ( { """feature-extraction""": MobileBertModel, """fill-mask""": MobileBertForMaskedLM, """question-answering""": MobileBertForQuestionAnswering, """text-classification""": MobileBertForSequenceClassification, """token-classification""": MobileBertForTokenClassification, """zero-shot""": MobileBertForSequenceClassification, } if is_torch_available() else {} ) _lowerCamelCase : str = True def lowercase ( self , snake_case__ , snake_case__ , snake_case__=False ): lowerCAmelCase : int = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if return_labels: if model_class in get_values(snake_case__ ): lowerCAmelCase : str = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=snake_case__ ) lowerCAmelCase : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case__ ) return inputs_dict def lowercase ( self ): lowerCAmelCase : List[Any] = MobileBertModelTester(self ) lowerCAmelCase : Dict = ConfigTester(self , config_class=snake_case__ , hidden_size=37 ) def lowercase ( self ): self.config_tester.run_common_tests() def lowercase ( self ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*snake_case__ ) def __UpperCamelCase ( _A : Optional[Any] ) -> Optional[int]: """simple docstring""" return torch.tensor( _A , dtype=torch.long , device=_A , ) _lowerCAmelCase : Union[str, Any] = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase ( unittest.TestCase ): @slow def lowercase ( self ): lowerCAmelCase : List[str] = MobileBertModel.from_pretrained('google/mobilebert-uncased' ).to(snake_case__ ) lowerCAmelCase : List[Any] = _long_tensor([[101, 7110, 1005, 1056, 2023, 1_1333, 1_7413, 1029, 102]] ) with torch.no_grad(): lowerCAmelCase : Tuple = model(snake_case__ )[0] lowerCAmelCase : List[Any] = torch.Size((1, 9, 512) ) self.assertEqual(output.shape , snake_case__ ) lowerCAmelCase : Union[str, Any] = torch.tensor( [ [ [-2.4_7_3_6_5_2_6e0_7, 8.2_6_9_1_6_5_6e0_4, 1.6_5_2_1_8_3_8e0_5], [-5.7_5_4_1_7_0_4e-0_1, 3.9_0_5_6_0_2_2e0_0, 4.4_0_1_1_5_0_7e0_0], [2.6_0_4_7_3_5_9e0_0, 1.5_6_7_7_6_5_2e0_0, -1.7_3_2_4_1_8_8e-0_1], ] ] , device=snake_case__ , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE lowerCAmelCase : List[str] = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) lowerCAmelCase : Dict = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
646
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available _lowerCAmelCase : List[Any] = {'tokenization_herbert': ['HerbertTokenizer']} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : str = ['HerbertTokenizerFast'] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys _lowerCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
646
'''simple docstring''' import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __UpperCamelCase ( _A : Dict ) -> int: """simple docstring""" lowerCAmelCase : Tuple = [] embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight", F"stage{idx}.patch_embed.proj.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias", F"stage{idx}.patch_embed.proj.bias", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight", F"stage{idx}.patch_embed.norm.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias", F"stage{idx}.patch_embed.norm.bias", ) ) return embed def __UpperCamelCase ( _A : List[Any] , _A : Dict ) -> Any: """simple docstring""" lowerCAmelCase : str = [] attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight", F"stage{idx}.blocks.{cnt}.attn.proj_q.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias", F"stage{idx}.blocks.{cnt}.attn.proj_q.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight", F"stage{idx}.blocks.{cnt}.attn.proj_k.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias", F"stage{idx}.blocks.{cnt}.attn.proj_k.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight", F"stage{idx}.blocks.{cnt}.attn.proj_v.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias", F"stage{idx}.blocks.{cnt}.attn.proj_v.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight", F"stage{idx}.blocks.{cnt}.attn.proj.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias", F"stage{idx}.blocks.{cnt}.attn.proj.bias", ) ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc2.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight", F"stage{idx}.blocks.{cnt}.norm1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias", F"stage{idx}.blocks.{cnt}.norm1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight", F"stage{idx}.blocks.{cnt}.norm2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias", F"stage{idx}.blocks.{cnt}.norm2.bias") ) return attention_weights def __UpperCamelCase ( _A : Optional[int] ) -> Optional[int]: """simple docstring""" lowerCAmelCase : Optional[int] = [] token.append((F"cvt.encoder.stages.{idx}.cls_token", 'stage2.cls_token') ) return token def __UpperCamelCase ( ) -> int: """simple docstring""" lowerCAmelCase : List[Any] = [] head.append(('layernorm.weight', 'norm.weight') ) head.append(('layernorm.bias', 'norm.bias') ) head.append(('classifier.weight', 'head.weight') ) head.append(('classifier.bias', 'head.bias') ) return head def __UpperCamelCase ( _A : str , _A : Optional[Any] , _A : Dict , _A : str ) -> Optional[int]: """simple docstring""" lowerCAmelCase : List[str] = 'imagenet-1k-id2label.json' lowerCAmelCase : Tuple = 10_00 lowerCAmelCase : str = 'huggingface/label-files' lowerCAmelCase : List[Any] = num_labels lowerCAmelCase : Any = json.load(open(cached_download(hf_hub_url(_A , _A , repo_type='dataset' ) ) , 'r' ) ) lowerCAmelCase : List[str] = {int(_A ): v for k, v in idalabel.items()} lowerCAmelCase : List[str] = idalabel lowerCAmelCase : str = {v: k for k, v in idalabel.items()} lowerCAmelCase : int = CvtConfig(num_labels=_A , idalabel=_A , labelaid=_A ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13": lowerCAmelCase : List[str] = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21": lowerCAmelCase : Tuple = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: lowerCAmelCase : Any = [2, 2, 20] lowerCAmelCase : List[str] = [3, 12, 16] lowerCAmelCase : List[Any] = [1_92, 7_68, 10_24] lowerCAmelCase : Union[str, Any] = CvtForImageClassification(_A ) lowerCAmelCase : str = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) lowerCAmelCase : Optional[Any] = image_size lowerCAmelCase : List[Any] = torch.load(_A , map_location=torch.device('cpu' ) ) lowerCAmelCase : str = OrderedDict() lowerCAmelCase : int = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: lowerCAmelCase : List[str] = list_of_state_dict + cls_token(_A ) lowerCAmelCase : Optional[Any] = list_of_state_dict + embeddings(_A ) for cnt in range(config.depth[idx] ): lowerCAmelCase : List[Any] = list_of_state_dict + attention(_A , _A ) lowerCAmelCase : List[str] = list_of_state_dict + final() for gg in list_of_state_dict: print(_A ) for i in range(len(_A ) ): lowerCAmelCase : Tuple = original_weights[list_of_state_dict[i][1]] model.load_state_dict(_A ) model.save_pretrained(_A ) image_processor.save_pretrained(_A ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": _lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '--cvt_model', default='cvt-w24', type=str, help='Name of the cvt model you\'d like to convert.', ) parser.add_argument( '--image_size', default=384, type=int, help='Input Image Size', ) parser.add_argument( '--cvt_file_name', default=r'cvtmodels\CvT-w24-384x384-IN-22k.pth', type=str, help='Input Image Size', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) _lowerCAmelCase : str = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
646
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _lowerCAmelCase : Any = {'configuration_deit': ['DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DeiTConfig', 'DeiTOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Tuple = ['DeiTFeatureExtractor'] _lowerCAmelCase : Union[str, Any] = ['DeiTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[int] = [ 'DEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DeiTForImageClassification', 'DeiTForImageClassificationWithTeacher', 'DeiTForMaskedImageModeling', 'DeiTModel', 'DeiTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : List[str] = [ 'TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFDeiTForImageClassification', 'TFDeiTForImageClassificationWithTeacher', 'TFDeiTForMaskedImageModeling', 'TFDeiTModel', 'TFDeiTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys _lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
646
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Any = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { 'xlm-roberta-base': 'https://huggingface.co/xlm-roberta-base/resolve/main/config.json', 'xlm-roberta-large': 'https://huggingface.co/xlm-roberta-large/resolve/main/config.json', 'xlm-roberta-large-finetuned-conll02-dutch': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll02-spanish': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-english': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-german': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json' ), } class lowerCAmelCase ( a ): _lowerCamelCase : List[str] = """xlm-roberta""" def __init__( self , snake_case__=3_0522 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=1e-1_2 , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__="absolute" , snake_case__=True , snake_case__=None , **snake_case__ , ): super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) lowerCAmelCase : Optional[Any] = vocab_size lowerCAmelCase : Optional[Any] = hidden_size lowerCAmelCase : Optional[Any] = num_hidden_layers lowerCAmelCase : Any = num_attention_heads lowerCAmelCase : Optional[int] = hidden_act lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : Dict = hidden_dropout_prob lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob lowerCAmelCase : Optional[Any] = max_position_embeddings lowerCAmelCase : Optional[int] = type_vocab_size lowerCAmelCase : int = initializer_range lowerCAmelCase : List[Any] = layer_norm_eps lowerCAmelCase : Union[str, Any] = position_embedding_type lowerCAmelCase : Union[str, Any] = use_cache lowerCAmelCase : List[str] = classifier_dropout class lowerCAmelCase ( a ): @property def lowercase ( self ): if self.task == "multiple-choice": lowerCAmelCase : str = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase : Optional[int] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
646
1
'''simple docstring''' import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class lowerCAmelCase ( a ): _lowerCamelCase : str = (UniPCMultistepScheduler,) _lowerCamelCase : int = (("""num_inference_steps""", 25),) def lowercase ( self , **snake_case__ ): lowerCAmelCase : List[Any] = { 'num_train_timesteps': 1000, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', 'solver_order': 2, 'solver_type': 'bh2', } config.update(**snake_case__ ) return config def lowercase ( self , snake_case__=0 , **snake_case__ ): lowerCAmelCase : Dict = dict(self.forward_default_kwargs ) lowerCAmelCase : Dict = kwargs.pop('num_inference_steps' , snake_case__ ) lowerCAmelCase : List[str] = self.dummy_sample lowerCAmelCase : Optional[int] = 0.1 * sample lowerCAmelCase : Tuple = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: lowerCAmelCase : List[Any] = self.get_scheduler_config(**snake_case__ ) lowerCAmelCase : Optional[Any] = scheduler_class(**snake_case__ ) scheduler.set_timesteps(snake_case__ ) # copy over dummy past residuals lowerCAmelCase : List[Any] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(snake_case__ ) lowerCAmelCase : Any = scheduler_class.from_pretrained(snake_case__ ) new_scheduler.set_timesteps(snake_case__ ) # copy over dummy past residuals lowerCAmelCase : str = dummy_past_residuals[: new_scheduler.config.solver_order] lowerCAmelCase , lowerCAmelCase : Optional[Any] = sample, sample for t in range(snake_case__ , time_step + scheduler.config.solver_order + 1 ): lowerCAmelCase : List[str] = scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample lowerCAmelCase : Tuple = new_scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def lowercase ( self , snake_case__=0 , **snake_case__ ): lowerCAmelCase : Tuple = dict(self.forward_default_kwargs ) lowerCAmelCase : Any = kwargs.pop('num_inference_steps' , snake_case__ ) lowerCAmelCase : Optional[Any] = self.dummy_sample lowerCAmelCase : Dict = 0.1 * sample lowerCAmelCase : Optional[Any] = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: lowerCAmelCase : List[Any] = self.get_scheduler_config() lowerCAmelCase : List[str] = scheduler_class(**snake_case__ ) scheduler.set_timesteps(snake_case__ ) # copy over dummy past residuals (must be after setting timesteps) lowerCAmelCase : Dict = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(snake_case__ ) lowerCAmelCase : Optional[int] = scheduler_class.from_pretrained(snake_case__ ) # copy over dummy past residuals new_scheduler.set_timesteps(snake_case__ ) # copy over dummy past residual (must be after setting timesteps) lowerCAmelCase : Union[str, Any] = dummy_past_residuals[: new_scheduler.config.solver_order] lowerCAmelCase : Optional[int] = scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample lowerCAmelCase : int = new_scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def lowercase ( self , snake_case__=None , **snake_case__ ): if scheduler is None: lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0] lowerCAmelCase : Any = self.get_scheduler_config(**snake_case__ ) lowerCAmelCase : Optional[int] = scheduler_class(**snake_case__ ) lowerCAmelCase : Optional[Any] = self.scheduler_classes[0] lowerCAmelCase : Optional[int] = self.get_scheduler_config(**snake_case__ ) lowerCAmelCase : Optional[int] = scheduler_class(**snake_case__ ) lowerCAmelCase : List[Any] = 10 lowerCAmelCase : Tuple = self.dummy_model() lowerCAmelCase : List[Any] = self.dummy_sample_deter scheduler.set_timesteps(snake_case__ ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase : List[str] = model(snake_case__ , snake_case__ ) lowerCAmelCase : Optional[int] = scheduler.step(snake_case__ , snake_case__ , snake_case__ ).prev_sample return sample def lowercase ( self ): lowerCAmelCase : List[str] = dict(self.forward_default_kwargs ) lowerCAmelCase : str = kwargs.pop('num_inference_steps' , snake_case__ ) for scheduler_class in self.scheduler_classes: lowerCAmelCase : Dict = self.get_scheduler_config() lowerCAmelCase : Dict = scheduler_class(**snake_case__ ) lowerCAmelCase : Optional[Any] = self.dummy_sample lowerCAmelCase : Optional[Any] = 0.1 * sample if num_inference_steps is not None and hasattr(snake_case__ , 'set_timesteps' ): scheduler.set_timesteps(snake_case__ ) elif num_inference_steps is not None and not hasattr(snake_case__ , 'set_timesteps' ): lowerCAmelCase : Optional[Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowerCAmelCase : Any = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] lowerCAmelCase : Any = dummy_past_residuals[: scheduler.config.solver_order] lowerCAmelCase : int = scheduler.timesteps[5] lowerCAmelCase : str = scheduler.timesteps[6] lowerCAmelCase : List[str] = scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample lowerCAmelCase : Any = scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowercase ( self ): # make sure that iterating over schedulers with same config names gives same results # for defaults lowerCAmelCase : str = UniPCMultistepScheduler(**self.get_scheduler_config() ) lowerCAmelCase : Dict = self.full_loop(scheduler=snake_case__ ) lowerCAmelCase : Union[str, Any] = torch.mean(torch.abs(snake_case__ ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1e-3 lowerCAmelCase : Tuple = DPMSolverSinglestepScheduler.from_config(scheduler.config ) lowerCAmelCase : Optional[int] = DEISMultistepScheduler.from_config(scheduler.config ) lowerCAmelCase : Any = DPMSolverMultistepScheduler.from_config(scheduler.config ) lowerCAmelCase : int = UniPCMultistepScheduler.from_config(scheduler.config ) lowerCAmelCase : str = self.full_loop(scheduler=snake_case__ ) lowerCAmelCase : Optional[int] = torch.mean(torch.abs(snake_case__ ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1e-3 def lowercase ( self ): for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=snake_case__ ) def lowercase ( self ): self.check_over_configs(thresholding=snake_case__ ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=snake_case__ , prediction_type=snake_case__ , sample_max_value=snake_case__ , solver_order=snake_case__ , solver_type=snake_case__ , ) def lowercase ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=snake_case__ ) def lowercase ( self ): for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=snake_case__ , solver_type=snake_case__ , prediction_type=snake_case__ , ) lowerCAmelCase : Any = self.full_loop( solver_order=snake_case__ , solver_type=snake_case__ , prediction_type=snake_case__ , ) assert not torch.isnan(snake_case__ ).any(), "Samples have nan numbers" def lowercase ( self ): self.check_over_configs(lower_order_final=snake_case__ ) self.check_over_configs(lower_order_final=snake_case__ ) def lowercase ( self ): for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=snake_case__ , time_step=0 ) def lowercase ( self ): lowerCAmelCase : Dict = self.full_loop() lowerCAmelCase : Dict = torch.mean(torch.abs(snake_case__ ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1e-3 def lowercase ( self ): lowerCAmelCase : int = self.full_loop(prediction_type='v_prediction' ) lowerCAmelCase : str = torch.mean(torch.abs(snake_case__ ) ) assert abs(result_mean.item() - 0.1_0_1_4 ) < 1e-3 def lowercase ( self ): lowerCAmelCase : Dict = self.scheduler_classes[0] lowerCAmelCase : str = self.get_scheduler_config(thresholding=snake_case__ , dynamic_thresholding_ratio=0 ) lowerCAmelCase : Dict = scheduler_class(**snake_case__ ) lowerCAmelCase : Optional[int] = 10 lowerCAmelCase : str = self.dummy_model() lowerCAmelCase : Tuple = self.dummy_sample_deter.half() scheduler.set_timesteps(snake_case__ ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase : str = model(snake_case__ , snake_case__ ) lowerCAmelCase : List[Any] = scheduler.step(snake_case__ , snake_case__ , snake_case__ ).prev_sample assert sample.dtype == torch.floataa def lowercase ( self , **snake_case__ ): for scheduler_class in self.scheduler_classes: lowerCAmelCase : List[str] = self.get_scheduler_config(**snake_case__ ) lowerCAmelCase : Optional[int] = scheduler_class(**snake_case__ ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
646
'''simple docstring''' import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer _lowerCAmelCase : List[Any] = logging.getLogger(__name__) def __UpperCamelCase ( ) -> Any: """simple docstring""" lowerCAmelCase : str = argparse.ArgumentParser( description='Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.' ) parser.add_argument( '--dataset_name' , type=_A , default='wikitext' , help='Name of the training. Explore datasets at: hf.co/datasets.' , ) parser.add_argument( '--dataset_config' , type=_A , default='wikitext-103-raw-v1' , help='Configuration name of the dataset.' ) parser.add_argument( '--tokenizer_name_or_path' , type=_A , default='sayakpaul/unigram-tokenizer-wikitext' , help='Tokenizer identifier. Can be a local filepath or a Hub identifier.' , ) parser.add_argument( '--shard_size' , type=_A , default=10_00 , help='Number of entries to go in a single shard.' , ) parser.add_argument('--split' , type=_A , default='train' , choices=['train', 'test', 'validation'] ) parser.add_argument( '--limit' , default=_A , type=_A , help='Limit the number of shards (used for debugging).' , ) parser.add_argument( '--max_length' , type=_A , default=5_12 , help='Maximum sequence length. For training on TPUs, it helps to have a maximum' ' sequence length that is a multiple of 8.' , ) parser.add_argument( '--output_dir' , default='tf-tpu' , type=_A , help='Output directory where the TFRecord shards will be saved. If the' ' path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord' ' shards will be directly saved to a Google Cloud Storage bucket.' , ) lowerCAmelCase : Any = parser.parse_args() return args def __UpperCamelCase ( _A : Optional[int] ) -> int: """simple docstring""" def fn(_A : Tuple ): return tokenizer(examples['text'] ) return fn def __UpperCamelCase ( _A : int ) -> int: """simple docstring""" lowerCAmelCase : Tuple = [] for i in range(len(tokenized_data['input_ids'] ) ): lowerCAmelCase : Optional[Any] = { 'input_ids': tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data['input_ids'][i] ) ), 'attention_mask': tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data['attention_mask'][i] ) ), } lowerCAmelCase : Any = tf.train.Features(feature=_A ) lowerCAmelCase : List[str] = tf.train.Example(features=_A ) lowerCAmelCase : Tuple = example.SerializeToString() records.append(_A ) return records def __UpperCamelCase ( _A : int ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase : Union[str, Any] = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: lowerCAmelCase : Optional[Any] = min(len(_A ) , args.limit ) lowerCAmelCase : Dict = dataset.select(range(_A ) ) print(F"Limiting the dataset to {args.limit} entries." ) lowerCAmelCase : str = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) lowerCAmelCase : Any = os.path.join(args.output_dir , args.split ) if not os.path.exists(_A ): os.makedirs(_A ) else: lowerCAmelCase : List[Any] = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. lowerCAmelCase : Any = tokenize_function(_A ) lowerCAmelCase : Optional[int] = dataset.map(_A , batched=_A , num_proc=4 , remove_columns=['text'] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(_A : str ): # Concatenate all texts. lowerCAmelCase : Optional[int] = {k: sum(examples[k] , [] ) for k in examples.keys()} lowerCAmelCase : str = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 lowerCAmelCase : List[Any] = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. lowerCAmelCase : str = { k: [t[i : i + args.max_length] for i in range(0 , _A , args.max_length )] for k, t in concatenated_examples.items() } return result lowerCAmelCase : List[Any] = dataset_tokenized.map(_A , batched=_A , batch_size=10_00 , num_proc=4 ) lowerCAmelCase : Union[str, Any] = 0 lowerCAmelCase : Tuple = 0 for shard in range(0 , len(_A ) , args.shard_size ): lowerCAmelCase : Optional[Any] = grouped_dataset[shard : shard + args.shard_size] lowerCAmelCase : List[str] = len(dataset_snapshot['input_ids'] ) lowerCAmelCase : Union[str, Any] = os.path.join(_A , F"dataset-{shard_count}-{records_containing}.tfrecord" ) lowerCAmelCase : List[Any] = get_serialized_examples(_A ) with tf.io.TFRecordWriter(_A ) as out_file: for i in range(len(_A ) ): lowerCAmelCase : Union[str, Any] = serialized_examples[i] out_file.write(_A ) print('Wrote file {} containing {} records'.format(_A , _A ) ) shard_count += 1 total_records += records_containing with open(F"split-{args.split}-records-count.txt" , 'w' ) as f: print(F"Total {args.split} records: {total_records}" , file=_A ) if __name__ == "__main__": _lowerCAmelCase : List[Any] = parse_args() main(args)
646
1
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets _lowerCAmelCase : Dict = '\\n@inproceedings{popovic-2015-chrf,\n title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",\n month = sep,\n year = "2015",\n address = "Lisbon, Portugal",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W15-3049",\n doi = "10.18653/v1/W15-3049",\n pages = "392--395",\n}\n@inproceedings{popovic-2017-chrf,\n title = "chr{F}++: words helping character n-grams",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Second Conference on Machine Translation",\n month = sep,\n year = "2017",\n address = "Copenhagen, Denmark",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W17-4770",\n doi = "10.18653/v1/W17-4770",\n pages = "612--618",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' _lowerCAmelCase : Optional[Any] = '\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n' _lowerCAmelCase : List[Any] = '\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n \'score\' (float): The chrF (chrF++) score,\n \'char_order\' (int): The character n-gram order,\n \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n \'beta\' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase ( datasets.Metric ): def lowercase ( self ): if version.parse(scb.__version__ ) < version.parse('1.4.12' ): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/mjpost/sacreBLEU#chrf--chrf' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/mjpost/sacreBLEU#chrf--chrf'] , reference_urls=[ 'https://github.com/m-popovic/chrF', ] , ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ = CHRF.CHAR_ORDER , snake_case__ = CHRF.WORD_ORDER , snake_case__ = CHRF.BETA , snake_case__ = False , snake_case__ = False , snake_case__ = False , ): lowerCAmelCase : List[str] = len(references[0] ) if any(len(snake_case__ ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) lowerCAmelCase : List[str] = [[refs[i] for refs in references] for i in range(snake_case__ )] lowerCAmelCase : Union[str, Any] = CHRF(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase : Dict = sb_chrf.corpus_score(snake_case__ , snake_case__ ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
646
'''simple docstring''' import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() _lowerCAmelCase : List[str] = logging.get_logger('transformers.models.speecht5') def __UpperCamelCase ( _A : Any , _A : Dict , _A : Any ) -> Union[str, Any]: """simple docstring""" hf_model.apply_weight_norm() lowerCAmelCase : int = checkpoint['input_conv.weight_g'] lowerCAmelCase : Optional[int] = checkpoint['input_conv.weight_v'] lowerCAmelCase : Dict = checkpoint['input_conv.bias'] for i in range(len(config.upsample_rates ) ): lowerCAmelCase : Optional[Any] = checkpoint[F"upsamples.{i}.1.weight_g"] lowerCAmelCase : str = checkpoint[F"upsamples.{i}.1.weight_v"] lowerCAmelCase : str = checkpoint[F"upsamples.{i}.1.bias"] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): lowerCAmelCase : int = checkpoint[F"blocks.{i}.convs1.{j}.1.weight_g"] lowerCAmelCase : str = checkpoint[F"blocks.{i}.convs1.{j}.1.weight_v"] lowerCAmelCase : int = checkpoint[F"blocks.{i}.convs1.{j}.1.bias"] lowerCAmelCase : Optional[Any] = checkpoint[F"blocks.{i}.convs2.{j}.1.weight_g"] lowerCAmelCase : Tuple = checkpoint[F"blocks.{i}.convs2.{j}.1.weight_v"] lowerCAmelCase : Tuple = checkpoint[F"blocks.{i}.convs2.{j}.1.bias"] lowerCAmelCase : List[Any] = checkpoint['output_conv.1.weight_g'] lowerCAmelCase : List[str] = checkpoint['output_conv.1.weight_v'] lowerCAmelCase : Optional[Any] = checkpoint['output_conv.1.bias'] hf_model.remove_weight_norm() @torch.no_grad() def __UpperCamelCase ( _A : Dict , _A : Union[str, Any] , _A : List[Any] , _A : Any=None , _A : Any=None , ) -> Dict: """simple docstring""" if config_path is not None: lowerCAmelCase : Dict = SpeechTaHifiGanConfig.from_pretrained(_A ) else: lowerCAmelCase : Union[str, Any] = SpeechTaHifiGanConfig() lowerCAmelCase : List[Any] = SpeechTaHifiGan(_A ) lowerCAmelCase : List[str] = torch.load(_A ) load_weights(orig_checkpoint['model']['generator'] , _A , _A ) lowerCAmelCase : Tuple = np.load(_A ) lowerCAmelCase : List[Any] = stats[0].reshape(-1 ) lowerCAmelCase : int = stats[1].reshape(-1 ) lowerCAmelCase : Union[str, Any] = torch.from_numpy(_A ).float() lowerCAmelCase : int = torch.from_numpy(_A ).float() model.save_pretrained(_A ) if repo_id: print('Pushing to the hub...' ) model.push_to_hub(_A ) if __name__ == "__main__": _lowerCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--stats_path', required=True, default=None, type=str, help='Path to stats.npy file') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) _lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
646
1
'''simple docstring''' class lowerCAmelCase : def __init__( self , snake_case__ ): lowerCAmelCase : Optional[Any] = len(snake_case__ ) lowerCAmelCase : Tuple = [0] * len_array if len_array > 0: lowerCAmelCase : Optional[int] = array[0] for i in range(1 , snake_case__ ): lowerCAmelCase : Any = self.prefix_sum[i - 1] + array[i] def lowercase ( self , snake_case__ , snake_case__ ): if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def lowercase ( self , snake_case__ ): lowerCAmelCase : Optional[Any] = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(snake_case__ ) return False if __name__ == "__main__": import doctest doctest.testmod()
646
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets _lowerCAmelCase : Dict = '\\n@inproceedings{popovic-2015-chrf,\n title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",\n month = sep,\n year = "2015",\n address = "Lisbon, Portugal",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W15-3049",\n doi = "10.18653/v1/W15-3049",\n pages = "392--395",\n}\n@inproceedings{popovic-2017-chrf,\n title = "chr{F}++: words helping character n-grams",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Second Conference on Machine Translation",\n month = sep,\n year = "2017",\n address = "Copenhagen, Denmark",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W17-4770",\n doi = "10.18653/v1/W17-4770",\n pages = "612--618",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' _lowerCAmelCase : Optional[Any] = '\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n' _lowerCAmelCase : List[Any] = '\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n \'score\' (float): The chrF (chrF++) score,\n \'char_order\' (int): The character n-gram order,\n \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n \'beta\' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase ( datasets.Metric ): def lowercase ( self ): if version.parse(scb.__version__ ) < version.parse('1.4.12' ): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/mjpost/sacreBLEU#chrf--chrf' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/mjpost/sacreBLEU#chrf--chrf'] , reference_urls=[ 'https://github.com/m-popovic/chrF', ] , ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ = CHRF.CHAR_ORDER , snake_case__ = CHRF.WORD_ORDER , snake_case__ = CHRF.BETA , snake_case__ = False , snake_case__ = False , snake_case__ = False , ): lowerCAmelCase : List[str] = len(references[0] ) if any(len(snake_case__ ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) lowerCAmelCase : List[str] = [[refs[i] for refs in references] for i in range(snake_case__ )] lowerCAmelCase : Union[str, Any] = CHRF(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase : Dict = sb_chrf.corpus_score(snake_case__ , snake_case__ ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
646
1
'''simple docstring''' import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() _lowerCAmelCase : List[str] = logging.get_logger('transformers.models.speecht5') def __UpperCamelCase ( _A : Any , _A : Dict , _A : Any ) -> Union[str, Any]: """simple docstring""" hf_model.apply_weight_norm() lowerCAmelCase : int = checkpoint['input_conv.weight_g'] lowerCAmelCase : Optional[int] = checkpoint['input_conv.weight_v'] lowerCAmelCase : Dict = checkpoint['input_conv.bias'] for i in range(len(config.upsample_rates ) ): lowerCAmelCase : Optional[Any] = checkpoint[F"upsamples.{i}.1.weight_g"] lowerCAmelCase : str = checkpoint[F"upsamples.{i}.1.weight_v"] lowerCAmelCase : str = checkpoint[F"upsamples.{i}.1.bias"] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): lowerCAmelCase : int = checkpoint[F"blocks.{i}.convs1.{j}.1.weight_g"] lowerCAmelCase : str = checkpoint[F"blocks.{i}.convs1.{j}.1.weight_v"] lowerCAmelCase : int = checkpoint[F"blocks.{i}.convs1.{j}.1.bias"] lowerCAmelCase : Optional[Any] = checkpoint[F"blocks.{i}.convs2.{j}.1.weight_g"] lowerCAmelCase : Tuple = checkpoint[F"blocks.{i}.convs2.{j}.1.weight_v"] lowerCAmelCase : Tuple = checkpoint[F"blocks.{i}.convs2.{j}.1.bias"] lowerCAmelCase : List[Any] = checkpoint['output_conv.1.weight_g'] lowerCAmelCase : List[str] = checkpoint['output_conv.1.weight_v'] lowerCAmelCase : Optional[Any] = checkpoint['output_conv.1.bias'] hf_model.remove_weight_norm() @torch.no_grad() def __UpperCamelCase ( _A : Dict , _A : Union[str, Any] , _A : List[Any] , _A : Any=None , _A : Any=None , ) -> Dict: """simple docstring""" if config_path is not None: lowerCAmelCase : Dict = SpeechTaHifiGanConfig.from_pretrained(_A ) else: lowerCAmelCase : Union[str, Any] = SpeechTaHifiGanConfig() lowerCAmelCase : List[Any] = SpeechTaHifiGan(_A ) lowerCAmelCase : List[str] = torch.load(_A ) load_weights(orig_checkpoint['model']['generator'] , _A , _A ) lowerCAmelCase : Tuple = np.load(_A ) lowerCAmelCase : List[Any] = stats[0].reshape(-1 ) lowerCAmelCase : int = stats[1].reshape(-1 ) lowerCAmelCase : Union[str, Any] = torch.from_numpy(_A ).float() lowerCAmelCase : int = torch.from_numpy(_A ).float() model.save_pretrained(_A ) if repo_id: print('Pushing to the hub...' ) model.push_to_hub(_A ) if __name__ == "__main__": _lowerCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--stats_path', required=True, default=None, type=str, help='Path to stats.npy file') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) _lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
646
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : str = logging.get_logger(__name__) _lowerCAmelCase : Tuple = { 's-JoL/Open-Llama-V1': 'https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json', } class lowerCAmelCase ( a ): _lowerCamelCase : Union[str, Any] = """open-llama""" def __init__( self , snake_case__=10_0000 , snake_case__=4096 , snake_case__=1_1008 , snake_case__=32 , snake_case__=32 , snake_case__="silu" , snake_case__=2048 , snake_case__=0.0_2 , snake_case__=1e-6 , snake_case__=True , snake_case__=0 , snake_case__=1 , snake_case__=2 , snake_case__=False , snake_case__=True , snake_case__=0.1 , snake_case__=0.1 , snake_case__=True , snake_case__=True , snake_case__=None , **snake_case__ , ): lowerCAmelCase : Tuple = vocab_size lowerCAmelCase : Optional[Any] = max_position_embeddings lowerCAmelCase : List[Any] = hidden_size lowerCAmelCase : List[Any] = intermediate_size lowerCAmelCase : Tuple = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : str = rms_norm_eps lowerCAmelCase : Optional[int] = use_cache lowerCAmelCase : Dict = kwargs.pop( 'use_memorry_efficient_attention' , snake_case__ ) lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : Optional[Any] = attention_dropout_prob lowerCAmelCase : Union[str, Any] = use_stable_embedding lowerCAmelCase : Tuple = shared_input_output_embedding lowerCAmelCase : Tuple = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , tie_word_embeddings=snake_case__ , **snake_case__ , ) def lowercase ( self ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , snake_case__ ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' f"got {self.rope_scaling}" ) lowerCAmelCase : List[Any] = self.rope_scaling.get('type' , snake_case__ ) lowerCAmelCase : List[str] = self.rope_scaling.get('factor' , snake_case__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(snake_case__ , snake_case__ ) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
646
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _lowerCAmelCase : List[str] = { 'configuration_data2vec_audio': ['DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecAudioConfig'], 'configuration_data2vec_text': [ 'DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecTextConfig', 'Data2VecTextOnnxConfig', ], 'configuration_data2vec_vision': [ 'DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecVisionConfig', 'Data2VecVisionOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Tuple = [ 'DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecAudioForAudioFrameClassification', 'Data2VecAudioForCTC', 'Data2VecAudioForSequenceClassification', 'Data2VecAudioForXVector', 'Data2VecAudioModel', 'Data2VecAudioPreTrainedModel', ] _lowerCAmelCase : Any = [ 'DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecTextForCausalLM', 'Data2VecTextForMaskedLM', 'Data2VecTextForMultipleChoice', 'Data2VecTextForQuestionAnswering', 'Data2VecTextForSequenceClassification', 'Data2VecTextForTokenClassification', 'Data2VecTextModel', 'Data2VecTextPreTrainedModel', ] _lowerCAmelCase : Tuple = [ 'DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecVisionForImageClassification', 'Data2VecVisionForMaskedImageModeling', 'Data2VecVisionForSemanticSegmentation', 'Data2VecVisionModel', 'Data2VecVisionPreTrainedModel', ] if is_tf_available(): _lowerCAmelCase : str = [ 'TFData2VecVisionForImageClassification', 'TFData2VecVisionForSemanticSegmentation', 'TFData2VecVisionModel', 'TFData2VecVisionPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys _lowerCAmelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
646
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) _lowerCAmelCase : Dict = { 'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class lowerCAmelCase ( a ): _lowerCamelCase : Any = """deformable_detr""" _lowerCamelCase : List[str] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , snake_case__=True , snake_case__=None , snake_case__=3 , snake_case__=300 , snake_case__=1024 , snake_case__=6 , snake_case__=1024 , snake_case__=8 , snake_case__=6 , snake_case__=1024 , snake_case__=8 , snake_case__=0.0 , snake_case__=True , snake_case__="relu" , snake_case__=256 , snake_case__=0.1 , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.0_2 , snake_case__=1.0 , snake_case__=True , snake_case__=False , snake_case__="sine" , snake_case__="resnet50" , snake_case__=True , snake_case__=False , snake_case__=4 , snake_case__=4 , snake_case__=4 , snake_case__=False , snake_case__=300 , snake_case__=False , snake_case__=1 , snake_case__=5 , snake_case__=2 , snake_case__=1 , snake_case__=1 , snake_case__=5 , snake_case__=2 , snake_case__=0.1 , snake_case__=0.2_5 , snake_case__=False , **snake_case__ , ): if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) lowerCAmelCase : Optional[int] = CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : List[str] = backbone_config.get('model_type' ) lowerCAmelCase : str = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase : Optional[Any] = config_class.from_dict(snake_case__ ) lowerCAmelCase : Union[str, Any] = use_timm_backbone lowerCAmelCase : List[Any] = backbone_config lowerCAmelCase : Any = num_channels lowerCAmelCase : Tuple = num_queries lowerCAmelCase : Dict = max_position_embeddings lowerCAmelCase : int = d_model lowerCAmelCase : List[str] = encoder_ffn_dim lowerCAmelCase : List[str] = encoder_layers lowerCAmelCase : int = encoder_attention_heads lowerCAmelCase : str = decoder_ffn_dim lowerCAmelCase : str = decoder_layers lowerCAmelCase : Dict = decoder_attention_heads lowerCAmelCase : str = dropout lowerCAmelCase : List[str] = attention_dropout lowerCAmelCase : Union[str, Any] = activation_dropout lowerCAmelCase : str = activation_function lowerCAmelCase : Any = init_std lowerCAmelCase : Any = init_xavier_std lowerCAmelCase : Dict = encoder_layerdrop lowerCAmelCase : int = auxiliary_loss lowerCAmelCase : Optional[Any] = position_embedding_type lowerCAmelCase : List[str] = backbone lowerCAmelCase : int = use_pretrained_backbone lowerCAmelCase : int = dilation # deformable attributes lowerCAmelCase : List[str] = num_feature_levels lowerCAmelCase : List[str] = encoder_n_points lowerCAmelCase : Union[str, Any] = decoder_n_points lowerCAmelCase : Tuple = two_stage lowerCAmelCase : Dict = two_stage_num_proposals lowerCAmelCase : Union[str, Any] = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.' ) # Hungarian matcher lowerCAmelCase : Union[str, Any] = class_cost lowerCAmelCase : Dict = bbox_cost lowerCAmelCase : List[Any] = giou_cost # Loss coefficients lowerCAmelCase : Dict = mask_loss_coefficient lowerCAmelCase : Any = dice_loss_coefficient lowerCAmelCase : str = bbox_loss_coefficient lowerCAmelCase : Tuple = giou_loss_coefficient lowerCAmelCase : List[str] = eos_coefficient lowerCAmelCase : Any = focal_alpha lowerCAmelCase : Dict = disable_custom_kernels super().__init__(is_encoder_decoder=snake_case__ , **snake_case__ ) @property def lowercase ( self ): return self.encoder_attention_heads @property def lowercase ( self ): return self.d_model def lowercase ( self ): lowerCAmelCase : Union[str, Any] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: lowerCAmelCase : List[Any] = self.backbone_config.to_dict() lowerCAmelCase : str = self.__class__.model_type return output
646
1
'''simple docstring''' def __UpperCamelCase ( _A : int , _A : int ) -> int: """simple docstring""" return int((input_a, input_a).count(0 ) == 0 ) def __UpperCamelCase ( ) -> None: """simple docstring""" assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
646
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece_no_bos.model') @require_sentencepiece @require_tokenizers class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : str = PegasusTokenizer _lowerCamelCase : Union[str, Any] = PegasusTokenizerFast _lowerCamelCase : Optional[Any] = True _lowerCamelCase : Optional[Any] = True def lowercase ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : List[Any] = PegasusTokenizer(snake_case__ ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase ( self ): return PegasusTokenizer.from_pretrained('google/pegasus-large' ) def lowercase ( self , **snake_case__ ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def lowercase ( self , snake_case__ ): return ("This is a test", "This is a test") def lowercase ( self ): lowerCAmelCase : Optional[int] = '</s>' lowerCAmelCase : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '</s>' ) self.assertEqual(vocab_keys[-1] , 'v' ) self.assertEqual(len(snake_case__ ) , 1103 ) def lowercase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def lowercase ( self ): lowerCAmelCase : List[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : List[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : Optional[Any] = ( 'Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important' ' </s> <pad> <pad> <pad>' ) lowerCAmelCase : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] lowerCAmelCase : Optional[int] = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Any = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowerCAmelCase : List[str] = '<mask_1> To ensure a <mask_2> flow of bank resolutions.' lowerCAmelCase : Optional[Any] = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1] lowerCAmelCase : Optional[Any] = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Optional[Any] = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 lowerCAmelCase : List[Any] = 'To ensure a smooth flow of bank resolutions.' lowerCAmelCase : Optional[int] = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1] lowerCAmelCase : Any = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def lowercase ( self ): lowerCAmelCase : Union[str, Any] = ['This is going to be way too long.' * 150, 'short example'] lowerCAmelCase : int = ['not super long but more than 5 tokens', 'tiny'] lowerCAmelCase : Dict = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) lowerCAmelCase : Dict = self._large_tokenizer( text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(snake_case__ ) == 2 # input_ids, attention_mask. @slow def lowercase ( self ): # fmt: off lowerCAmelCase : Tuple = {'input_ids': [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name='google/bigbird-pegasus-large-arxiv' , revision='ba85d0851d708441f91440d509690f1ab6353415' , ) @require_sentencepiece @require_tokenizers class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : Optional[Any] = PegasusTokenizer _lowerCamelCase : str = PegasusTokenizerFast _lowerCamelCase : Tuple = True _lowerCamelCase : int = True def lowercase ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : int = PegasusTokenizer(snake_case__ , offset=0 , mask_token_sent=snake_case__ , mask_token='[MASK]' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase ( self ): return PegasusTokenizer.from_pretrained('google/bigbird-pegasus-large-arxiv' ) def lowercase ( self , **snake_case__ ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def lowercase ( self , snake_case__ ): return ("This is a test", "This is a test") def lowercase ( self ): lowerCAmelCase : Tuple = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : Union[str, Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : List[str] = ( 'Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>' ' <pad> <pad> <pad>' ) lowerCAmelCase : Dict = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] lowerCAmelCase : Union[str, Any] = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) @require_torch def lowercase ( self ): lowerCAmelCase : Optional[int] = ['This is going to be way too long.' * 1000, 'short example'] lowerCAmelCase : Union[str, Any] = ['not super long but more than 5 tokens', 'tiny'] lowerCAmelCase : List[str] = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) lowerCAmelCase : List[str] = self._large_tokenizer( text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(snake_case__ ) == 2 # input_ids, attention_mask. def lowercase ( self ): lowerCAmelCase : List[str] = ( 'This is an example string that is used to test the original TF implementation against the HF' ' implementation' ) lowerCAmelCase : Tuple = self._large_tokenizer(snake_case__ ).input_ids self.assertListEqual( snake_case__ , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
646
1
'''simple docstring''' import datasets from .evaluate import evaluate _lowerCAmelCase : Optional[int] = '\\n@article{hendrycks2021cuad,\n title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},\n author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},\n journal={arXiv preprint arXiv:2103.06268},\n year={2021}\n}\n' _lowerCAmelCase : str = '\nThis metric wrap the official scoring script for version 1 of the Contract\nUnderstanding Atticus Dataset (CUAD).\nContract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510\ncommercial legal contracts that have been manually labeled to identify 41 categories of important\nclauses that lawyers look for when reviewing contracts in connection with corporate transactions.\n' _lowerCAmelCase : Any = '\nComputes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': list of possible texts for the answer, as a list of strings\n depending on a threshold on the confidence probability of each prediction.\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the CUAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\n \'aupr\': Area Under the Precision-Recall curve\n \'prec_at_80_recall\': Precision at 80% recall\n \'prec_at_90_recall\': Precision at 90% recall\nExamples:\n >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> cuad_metric = datasets.load_metric("cuad")\n >>> results = cuad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase ( datasets.Metric ): def lowercase ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': { 'id': datasets.Value('string' ), 'prediction_text': datasets.features.Sequence(datasets.Value('string' ) ), }, 'references': { 'id': datasets.Value('string' ), 'answers': datasets.features.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), }, } ) , codebase_urls=['https://www.atticusprojectai.org/cuad'] , reference_urls=['https://www.atticusprojectai.org/cuad'] , ) def lowercase ( self , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = {prediction['id']: prediction['prediction_text'] for prediction in predictions} lowerCAmelCase : Tuple = [ { 'paragraphs': [ { 'qas': [ { 'answers': [{'text': answer_text} for answer_text in ref['answers']['text']], 'id': ref['id'], } for ref in references ] } ] } ] lowerCAmelCase : Tuple = evaluate(dataset=snake_case__ , predictions=snake_case__ ) return score
646
'''simple docstring''' import math import sys import cva import numpy as np def __UpperCamelCase ( _A : np.ndarray , _A : float ) -> np.ndarray: """simple docstring""" lowerCAmelCase : Union[str, Any] = math.sqrt(_A ) lowerCAmelCase : Union[str, Any] = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def __UpperCamelCase ( _A : np.ndarray , _A : int , _A : int , _A : int ) -> np.ndarray: """simple docstring""" lowerCAmelCase : int = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def __UpperCamelCase ( _A : int , _A : float ) -> np.ndarray: """simple docstring""" lowerCAmelCase : Dict = np.zeros((kernel_size, kernel_size) ) for i in range(0 , _A ): for j in range(0 , _A ): lowerCAmelCase : Optional[int] = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(_A , _A ) def __UpperCamelCase ( _A : np.ndarray , _A : float , _A : float , _A : int , ) -> np.ndarray: """simple docstring""" lowerCAmelCase : str = np.zeros(img.shape ) lowerCAmelCase : int = get_gauss_kernel(_A , _A ) lowerCAmelCase , lowerCAmelCase : Dict = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): lowerCAmelCase : int = get_slice(_A , _A , _A , _A ) lowerCAmelCase : Any = img_s - img_s[kernel_size // 2, kernel_size // 2] lowerCAmelCase : str = vec_gaussian(_A , _A ) lowerCAmelCase : Optional[int] = np.multiply(_A , _A ) lowerCAmelCase : str = np.multiply(_A , _A ) lowerCAmelCase : Union[str, Any] = np.sum(_A ) / np.sum(_A ) lowerCAmelCase : Tuple = val return imga def __UpperCamelCase ( _A : list ) -> tuple: """simple docstring""" lowerCAmelCase : List[Any] = args[1] if args[1:] else '../image_data/lena.jpg' lowerCAmelCase : Any = float(args[2] ) if args[2:] else 1.0 lowerCAmelCase : Union[str, Any] = float(args[3] ) if args[3:] else 1.0 if args[4:]: lowerCAmelCase : int = int(args[4] ) lowerCAmelCase : Optional[Any] = kernel_size + abs(kernel_size % 2 - 1 ) else: lowerCAmelCase : Optional[int] = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Any = parse_args(sys.argv) _lowerCAmelCase : str = cva.imread(filename, 0) cva.imshow('input image', img) _lowerCAmelCase : Union[str, Any] = img / 255 _lowerCAmelCase : List[str] = out.astype('float32') _lowerCAmelCase : Optional[int] = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) _lowerCAmelCase : Union[str, Any] = out * 255 _lowerCAmelCase : Optional[Any] = np.uinta(out) cva.imshow('output image', out) cva.waitKey(0) cva.destroyAllWindows()
646
1
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowerCAmelCase ( a , a , unittest.TestCase ): _lowerCamelCase : List[str] = IFInpaintingSuperResolutionPipeline _lowerCamelCase : Tuple = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""} _lowerCamelCase : Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"""original_image"""} ) _lowerCamelCase : int = PipelineTesterMixin.required_optional_params - {"""latents"""} def lowercase ( self ): return self._get_superresolution_dummy_components() def lowercase ( self , snake_case__ , snake_case__=0 ): if str(snake_case__ ).startswith('mps' ): lowerCAmelCase : str = torch.manual_seed(snake_case__ ) else: lowerCAmelCase : Union[str, Any] = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) lowerCAmelCase : Any = floats_tensor((1, 3, 16, 16) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) lowerCAmelCase : str = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) lowerCAmelCase : Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) lowerCAmelCase : Any = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'original_image': original_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def lowercase ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def lowercase ( self ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def lowercase ( self ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def lowercase ( self ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def lowercase ( self ): self._test_save_load_local() def lowercase ( self ): self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
646
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowerCAmelCase : int = { 'configuration_nezha': ['NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NezhaConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Tuple = [ 'NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST', 'NezhaForNextSentencePrediction', 'NezhaForMaskedLM', 'NezhaForPreTraining', 'NezhaForMultipleChoice', 'NezhaForQuestionAnswering', 'NezhaForSequenceClassification', 'NezhaForTokenClassification', 'NezhaModel', 'NezhaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys _lowerCAmelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
646
1
'''simple docstring''' import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch _lowerCAmelCase : Dict = True except ImportError: _lowerCAmelCase : Tuple = False try: from torch.hub import _get_torch_home _lowerCAmelCase : int = _get_torch_home() except ImportError: _lowerCAmelCase : int = os.path.expanduser( os.getenv('TORCH_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'torch')) ) _lowerCAmelCase : List[str] = os.path.join(torch_cache_home, 'transformers') _lowerCAmelCase : Any = 'https://cdn.huggingface.co' _lowerCAmelCase : List[Any] = 'https://s3.amazonaws.com/models.huggingface.co/bert' _lowerCAmelCase : Any = '/'.join(str(Path(__file__).resolve()).split('/')[:-1]) _lowerCAmelCase : Union[str, Any] = os.path.join(PATH, 'config.yaml') _lowerCAmelCase : Optional[int] = os.path.join(PATH, 'attributes.txt') _lowerCAmelCase : Optional[Any] = os.path.join(PATH, 'objects.txt') _lowerCAmelCase : Dict = os.getenv('PYTORCH_PRETRAINED_BERT_CACHE', default_cache_path) _lowerCAmelCase : List[Any] = os.getenv('PYTORCH_TRANSFORMERS_CACHE', PYTORCH_PRETRAINED_BERT_CACHE) _lowerCAmelCase : Dict = os.getenv('TRANSFORMERS_CACHE', PYTORCH_TRANSFORMERS_CACHE) _lowerCAmelCase : Dict = 'pytorch_model.bin' _lowerCAmelCase : Tuple = 'config.yaml' def __UpperCamelCase ( _A : Optional[Any]=OBJECTS , _A : List[Any]=ATTRIBUTES ) -> Dict: """simple docstring""" lowerCAmelCase : Dict = [] with open(_A ) as f: for object in f.readlines(): vg_classes.append(object.split(',' )[0].lower().strip() ) lowerCAmelCase : str = [] with open(_A ) as f: for object in f.readlines(): vg_attrs.append(object.split(',' )[0].lower().strip() ) return vg_classes, vg_attrs def __UpperCamelCase ( _A : Tuple ) -> str: """simple docstring""" lowerCAmelCase : Union[str, Any] = OrderedDict() with open(_A , 'rb' ) as f: lowerCAmelCase : List[Any] = pkl.load(_A )['model'] for k in copy.deepcopy(list(ckp.keys() ) ): lowerCAmelCase : List[Any] = ckp.pop(_A ) if isinstance(_A , np.ndarray ): lowerCAmelCase : int = torch.tensor(_A ) else: assert isinstance(_A , torch.tensor ), type(_A ) lowerCAmelCase : List[str] = v return r class lowerCAmelCase : _lowerCamelCase : Optional[Any] = {} def __init__( self , snake_case__ , snake_case__ = "root" , snake_case__=0 ): lowerCAmelCase : Dict = name lowerCAmelCase : List[str] = level lowerCAmelCase : Union[str, Any] = {} for k, v in dictionary.items(): if v is None: raise ValueError() lowerCAmelCase : List[Any] = copy.deepcopy(snake_case__ ) lowerCAmelCase : Optional[Any] = copy.deepcopy(snake_case__ ) if isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : List[Any] = Config(snake_case__ , name=snake_case__ , level=level + 1 ) lowerCAmelCase : Union[str, Any] = v setattr(self , snake_case__ , snake_case__ ) lowerCAmelCase : str = d def __repr__( self ): return str(list((self._pointer.keys()) ) ) def __setattr__( self , snake_case__ , snake_case__ ): lowerCAmelCase : int = val lowerCAmelCase : Optional[int] = val lowerCAmelCase : Any = key.split('.' ) lowerCAmelCase : Optional[int] = len(snake_case__ ) - 1 lowerCAmelCase : List[str] = self._pointer if len(snake_case__ ) > 1: for i, l in enumerate(snake_case__ ): if hasattr(self , snake_case__ ) and isinstance(getattr(self , snake_case__ ) , snake_case__ ): setattr(getattr(self , snake_case__ ) , '.'.join(levels[i:] ) , snake_case__ ) if l == last_level: lowerCAmelCase : Union[str, Any] = val else: lowerCAmelCase : Optional[Any] = pointer[l] def lowercase ( self ): return self._pointer def lowercase ( self , snake_case__ , snake_case__ ): with open(f"{file_name}" , 'w' ) as stream: dump(snake_case__ , snake_case__ ) def lowercase ( self , snake_case__ , snake_case__ ): with open(f"{file_name}" , 'w' ) as stream: json.dump(snake_case__ , snake_case__ ) @staticmethod def lowercase ( snake_case__ ): with open(snake_case__ ) as stream: lowerCAmelCase : Optional[int] = load(snake_case__ , Loader=snake_case__ ) return data def __str__( self ): lowerCAmelCase : List[str] = ' ' if self._name != "root": lowerCAmelCase : Optional[int] = f"{t * (self._level-1)}{self._name}:\n" else: lowerCAmelCase : Any = '' lowerCAmelCase : str = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(snake_case__ , snake_case__ ): r += f"{t * (self._level)}{v}\n" self._level += 1 else: r += f"{t * (self._level)}{k}: {v} ({type(snake_case__ ).__name__})\n" lowerCAmelCase : List[Any] = level return r[:-1] @classmethod def lowercase ( cls , snake_case__ , **snake_case__ ): lowerCAmelCase , lowerCAmelCase : Union[str, Any] = cls.get_config_dict(snake_case__ , **snake_case__ ) return cls(snake_case__ ) @classmethod def lowercase ( cls , snake_case__ , **snake_case__ ): lowerCAmelCase : List[str] = kwargs.pop('cache_dir' , snake_case__ ) lowerCAmelCase : Optional[Any] = kwargs.pop('force_download' , snake_case__ ) lowerCAmelCase : Any = kwargs.pop('resume_download' , snake_case__ ) lowerCAmelCase : List[str] = kwargs.pop('proxies' , snake_case__ ) lowerCAmelCase : Optional[Any] = kwargs.pop('local_files_only' , snake_case__ ) if os.path.isdir(snake_case__ ): lowerCAmelCase : Optional[int] = os.path.join(snake_case__ , snake_case__ ) elif os.path.isfile(snake_case__ ) or is_remote_url(snake_case__ ): lowerCAmelCase : List[str] = pretrained_model_name_or_path else: lowerCAmelCase : Any = hf_bucket_url(snake_case__ , filename=snake_case__ , use_cdn=snake_case__ ) try: # Load from URL or cache if already cached lowerCAmelCase : Union[str, Any] = cached_path( snake_case__ , cache_dir=snake_case__ , force_download=snake_case__ , proxies=snake_case__ , resume_download=snake_case__ , local_files_only=snake_case__ , ) # Load config dict if resolved_config_file is None: raise EnvironmentError lowerCAmelCase : str = Config.load_yaml(snake_case__ ) except EnvironmentError: lowerCAmelCase : Tuple = 'Can\'t load config for' raise EnvironmentError(snake_case__ ) if resolved_config_file == config_file: print('loading configuration file from path' ) else: print('loading configuration file cache' ) return Config.load_yaml(snake_case__ ), kwargs def __UpperCamelCase ( _A : Any ) -> Optional[Any]: """simple docstring""" lowerCAmelCase : Dict = torch.load('dump.pt' , map_location=in_tensor.device ) lowerCAmelCase : Optional[int] = in_tensor.numpy() lowerCAmelCase : Optional[int] = out_tensor.numpy()[0] print(na.shape , na[0, 0, :5] ) print(na.shape , na[0, 0, :5] ) assert np.allclose(_A , _A , rtol=0.01 , atol=0.1 ), ( F"{sum([1 for x in np.isclose(_A , _A , rtol=0.01 , atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*1_00:.4f} %" " element-wise mismatch" ) raise Exception('tensors are all good' ) # Hugging face functions below def __UpperCamelCase ( _A : Optional[Any] ) -> int: """simple docstring""" lowerCAmelCase : Tuple = urlparse(_A ) return parsed.scheme in ("http", "https") def __UpperCamelCase ( _A : str , _A : str , _A : Any=True ) -> str: """simple docstring""" lowerCAmelCase : List[Any] = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX lowerCAmelCase : Optional[int] = '/' not in model_id if legacy_format: return F"{endpoint}/{model_id}-{filename}" else: return F"{endpoint}/{model_id}/{filename}" def __UpperCamelCase ( _A : Union[str, Any] , _A : Any , _A : Dict=None , _A : List[Any]=0 , _A : Optional[int]=None , ) -> Any: """simple docstring""" lowerCAmelCase : Any = 'python/{}'.format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(_A , _A ): ua += "; " + "; ".join('{}/{}'.format(_A , _A ) for k, v in user_agent.items() ) elif isinstance(_A , _A ): ua += "; " + user_agent lowerCAmelCase : Optional[Any] = {'user-agent': ua} if resume_size > 0: lowerCAmelCase : List[Any] = 'bytes=%d-' % (resume_size,) lowerCAmelCase : str = requests.get(_A , stream=_A , proxies=_A , headers=_A ) if response.status_code == 4_16: # Range not satisfiable return lowerCAmelCase : Optional[int] = response.headers.get('Content-Length' ) lowerCAmelCase : Union[str, Any] = resume_size + int(_A ) if content_length is not None else None lowerCAmelCase : List[str] = tqdm( unit='B' , unit_scale=_A , total=_A , initial=_A , desc='Downloading' , ) for chunk in response.iter_content(chunk_size=10_24 ): if chunk: # filter out keep-alive new chunks progress.update(len(_A ) ) temp_file.write(_A ) progress.close() def __UpperCamelCase ( _A : Tuple , _A : List[str]=None , _A : Dict=False , _A : Any=None , _A : Dict=10 , _A : str=False , _A : Dict=None , _A : Any=False , ) -> int: """simple docstring""" if cache_dir is None: lowerCAmelCase : List[Any] = TRANSFORMERS_CACHE if isinstance(_A , _A ): lowerCAmelCase : Tuple = str(_A ) os.makedirs(_A , exist_ok=_A ) lowerCAmelCase : List[str] = None if not local_files_only: try: lowerCAmelCase : List[str] = requests.head(_A , allow_redirects=_A , proxies=_A , timeout=_A ) if response.status_code == 2_00: lowerCAmelCase : int = response.headers.get('ETag' ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass lowerCAmelCase : str = url_to_filename(_A , _A ) # get cache path to put the file lowerCAmelCase : str = os.path.join(_A , _A ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(_A ): return cache_path else: lowerCAmelCase : Tuple = [ file for file in fnmatch.filter(os.listdir(_A ) , filename + '.*' ) if not file.endswith('.json' ) and not file.endswith('.lock' ) ] if len(_A ) > 0: return os.path.join(_A , matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( 'Cannot find the requested files in the cached path and outgoing traffic has been' ' disabled. To enable model look-ups and downloads online, set \'local_files_only\'' ' to False.' ) return None # From now on, etag is not None. if os.path.exists(_A ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. lowerCAmelCase : List[Any] = cache_path + '.lock' with FileLock(_A ): # If the download just completed while the lock was activated. if os.path.exists(_A ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: lowerCAmelCase : int = cache_path + '.incomplete' @contextmanager def _resumable_file_manager(): with open(_A , 'a+b' ) as f: yield f lowerCAmelCase : Union[str, Any] = _resumable_file_manager if os.path.exists(_A ): lowerCAmelCase : Dict = os.stat(_A ).st_size else: lowerCAmelCase : List[str] = 0 else: lowerCAmelCase : Any = partial(tempfile.NamedTemporaryFile , dir=_A , delete=_A ) lowerCAmelCase : List[Any] = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( '%s not found in cache or force_download set to True, downloading to %s' , _A , temp_file.name , ) http_get( _A , _A , proxies=_A , resume_size=_A , user_agent=_A , ) os.replace(temp_file.name , _A ) lowerCAmelCase : List[str] = {'url': url, 'etag': etag} lowerCAmelCase : Optional[int] = cache_path + '.json' with open(_A , 'w' ) as meta_file: json.dump(_A , _A ) return cache_path def __UpperCamelCase ( _A : str , _A : Optional[Any]=None ) -> int: """simple docstring""" lowerCAmelCase : str = url.encode('utf-8' ) lowerCAmelCase : List[Any] = shaaaa(_A ) lowerCAmelCase : List[Any] = url_hash.hexdigest() if etag: lowerCAmelCase : Optional[Any] = etag.encode('utf-8' ) lowerCAmelCase : Optional[int] = shaaaa(_A ) filename += "." + etag_hash.hexdigest() if url.endswith('.h5' ): filename += ".h5" return filename def __UpperCamelCase ( _A : str , _A : Dict=None , _A : Any=False , _A : List[Any]=None , _A : int=False , _A : Optional[int]=None , _A : str=False , _A : Optional[Any]=False , _A : int=False , ) -> str: """simple docstring""" if cache_dir is None: lowerCAmelCase : int = TRANSFORMERS_CACHE if isinstance(_A , _A ): lowerCAmelCase : List[Any] = str(_A ) if isinstance(_A , _A ): lowerCAmelCase : Dict = str(_A ) if is_remote_url(_A ): # URL, so get it from the cache (downloading if necessary) lowerCAmelCase : Optional[int] = get_from_cache( _A , cache_dir=_A , force_download=_A , proxies=_A , resume_download=_A , user_agent=_A , local_files_only=_A , ) elif os.path.exists(_A ): # File, and it exists. lowerCAmelCase : List[Any] = url_or_filename elif urlparse(_A ).scheme == "": # File, but it doesn't exist. raise EnvironmentError('file {} not found'.format(_A ) ) else: # Something unknown raise ValueError('unable to parse {} as a URL or as a local path'.format(_A ) ) if extract_compressed_file: if not is_zipfile(_A ) and not tarfile.is_tarfile(_A ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" lowerCAmelCase , lowerCAmelCase : str = os.path.split(_A ) lowerCAmelCase : Tuple = output_file.replace('.' , '-' ) + '-extracted' lowerCAmelCase : Optional[int] = os.path.join(_A , _A ) if os.path.isdir(_A ) and os.listdir(_A ) and not force_extract: return output_path_extracted # Prevent parallel extractions lowerCAmelCase : List[str] = output_path + '.lock' with FileLock(_A ): shutil.rmtree(_A , ignore_errors=_A ) os.makedirs(_A ) if is_zipfile(_A ): with ZipFile(_A , 'r' ) as zip_file: zip_file.extractall(_A ) zip_file.close() elif tarfile.is_tarfile(_A ): lowerCAmelCase : Tuple = tarfile.open(_A ) tar_file.extractall(_A ) tar_file.close() else: raise EnvironmentError('Archive format of {} could not be identified'.format(_A ) ) return output_path_extracted return output_path def __UpperCamelCase ( _A : List[str] , _A : int="," ) -> Union[str, Any]: """simple docstring""" assert isinstance(_A , _A ) if os.path.isfile(_A ): with open(_A ) as f: lowerCAmelCase : Union[str, Any] = eval(f.read() ) else: lowerCAmelCase : List[Any] = requests.get(_A ) try: lowerCAmelCase : int = requests.json() except Exception: lowerCAmelCase : Optional[Any] = req.content.decode() assert data is not None, "could not connect" try: lowerCAmelCase : List[Any] = eval(_A ) except Exception: lowerCAmelCase : List[str] = data.split('\n' ) req.close() return data def __UpperCamelCase ( _A : Optional[Any] ) -> Optional[int]: """simple docstring""" lowerCAmelCase : Tuple = requests.get(_A ) lowerCAmelCase : Tuple = np.array(Image.open(BytesIO(response.content ) ) ) return img def __UpperCamelCase ( _A : List[str] ) -> Optional[Any]: """simple docstring""" lowerCAmelCase : Union[str, Any] = url.split('/' )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(_A ) with open(_A , 'rb' ) as stream: lowerCAmelCase : List[Any] = pkl.load(_A ) lowerCAmelCase : Optional[int] = weights.pop('model' ) lowerCAmelCase : List[str] = {} for k, v in model.items(): lowerCAmelCase : int = torch.from_numpy(_A ) if "running_var" in k: lowerCAmelCase : List[str] = torch.tensor([0] ) lowerCAmelCase : Dict = k.replace('running_var' , 'num_batches_tracked' ) lowerCAmelCase : Optional[Any] = zero return new def __UpperCamelCase ( ) -> List[Any]: """simple docstring""" print(F"{os.path.abspath(os.path.join(_A , os.pardir ) )}/demo.ipynb" ) def __UpperCamelCase ( _A : Any , _A : int="RGB" ) -> List[str]: """simple docstring""" assert isinstance(_A , _A ) if os.path.isfile(_A ): lowerCAmelCase : List[str] = cva.imread(_A ) else: lowerCAmelCase : List[Any] = get_image_from_url(_A ) assert img is not None, F"could not connect to: {im}" lowerCAmelCase : List[str] = cva.cvtColor(_A , cva.COLOR_BGR2RGB ) if input_format == "RGB": lowerCAmelCase : Union[str, Any] = img[:, :, ::-1] return img def __UpperCamelCase ( _A : Tuple , _A : int=1 ) -> Any: """simple docstring""" return (images[i : i + batch] for i in range(0 , len(_A ) , _A ))
646
'''simple docstring''' from typing import Any class lowerCAmelCase : def __init__( self , snake_case__ ): lowerCAmelCase : Optional[int] = data lowerCAmelCase : Optional[Any] = None def __repr__( self ): return f"Node({self.data})" class lowerCAmelCase : def __init__( self ): lowerCAmelCase : Dict = None def __iter__( self ): lowerCAmelCase : Optional[Any] = self.head while node: yield node.data lowerCAmelCase : Optional[int] = node.next def __len__( self ): return sum(1 for _ in self ) def __repr__( self ): return "->".join([str(snake_case__ ) for item in self] ) def __getitem__( self , snake_case__ ): if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , snake_case__ , snake_case__ ): if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) lowerCAmelCase : Any = self.head for _ in range(snake_case__ ): lowerCAmelCase : List[str] = current.next lowerCAmelCase : int = data def lowercase ( self , snake_case__ ): self.insert_nth(len(self ) , snake_case__ ) def lowercase ( self , snake_case__ ): self.insert_nth(0 , snake_case__ ) def lowercase ( self , snake_case__ , snake_case__ ): if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) lowerCAmelCase : List[str] = Node(snake_case__ ) if self.head is None: lowerCAmelCase : int = new_node elif index == 0: lowerCAmelCase : List[Any] = self.head # link new_node to head lowerCAmelCase : List[Any] = new_node else: lowerCAmelCase : List[Any] = self.head for _ in range(index - 1 ): lowerCAmelCase : Union[str, Any] = temp.next lowerCAmelCase : Any = temp.next lowerCAmelCase : str = new_node def lowercase ( self ): # print every node data print(self ) def lowercase ( self ): return self.delete_nth(0 ) def lowercase ( self ): # delete from tail return self.delete_nth(len(self ) - 1 ) def lowercase ( self , snake_case__ = 0 ): if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) lowerCAmelCase : List[str] = self.head # default first node if index == 0: lowerCAmelCase : Tuple = self.head.next else: lowerCAmelCase : Dict = self.head for _ in range(index - 1 ): lowerCAmelCase : Tuple = temp.next lowerCAmelCase : Dict = temp.next lowerCAmelCase : Tuple = temp.next.next return delete_node.data def lowercase ( self ): return self.head is None def lowercase ( self ): lowerCAmelCase : List[Any] = None lowerCAmelCase : Any = self.head while current: # Store the current node's next node. lowerCAmelCase : List[str] = current.next # Make the current node's next point backwards lowerCAmelCase : int = prev # Make the previous node be the current node lowerCAmelCase : int = current # Make the current node the next node (to progress iteration) lowerCAmelCase : Optional[Any] = next_node # Return prev in order to put the head at the end lowerCAmelCase : List[Any] = prev def __UpperCamelCase ( ) -> None: """simple docstring""" lowerCAmelCase : Tuple = LinkedList() assert linked_list.is_empty() is True assert str(_A ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(_A ) == i linked_list.insert_nth(_A , i + 1 ) assert str(_A ) == "->".join(str(_A ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(_A ) == "->".join(str(_A ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(_A ) == 9 assert str(_A ) == "->".join(str(_A ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): lowerCAmelCase : Optional[Any] = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(_A ) == "->".join(str(_A ) for i in range(-8 , 1 ) ) def __UpperCamelCase ( ) -> None: """simple docstring""" lowerCAmelCase : Optional[int] = [ -9, 1_00, Node(77_34_51_12 ), 'dlrow olleH', 7, 55_55, 0, -1_92.5_55_55, 'Hello, world!', 77.9, Node(10 ), None, None, 12.20, ] lowerCAmelCase : Dict = LinkedList() for i in test_input: linked_list.insert_tail(_A ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(_A ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head lowerCAmelCase : Optional[Any] = linked_list.delete_head() assert result == -9 assert ( str(_A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail lowerCAmelCase : List[str] = linked_list.delete_tail() assert result == 12.2 assert ( str(_A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list lowerCAmelCase : List[str] = linked_list.delete_nth(10 ) assert result is None assert ( str(_A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(_A ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(_A ) assert ( str(_A ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(_A ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def __UpperCamelCase ( ) -> List[Any]: """simple docstring""" from doctest import testmod testmod() lowerCAmelCase : Optional[Any] = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(_A ) print('\nReading/changing Node data using indexing:' ) print(F"Element at Position 1: {linked_list[1]}" ) lowerCAmelCase : Tuple = input('Enter New Value: ' ).strip() print('New list:' ) print(_A ) print(F"length of linked_list is : {len(_A )}" ) if __name__ == "__main__": main()
646
1
'''simple docstring''' from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def __UpperCamelCase ( _A : int ) -> bool: """simple docstring""" lowerCAmelCase : int = int(number**0.5 ) return number == sq * sq def __UpperCamelCase ( _A : int , _A : int , _A : int , _A : int , _A : int , _A : int ) -> tuple[int, int]: """simple docstring""" lowerCAmelCase : int = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den lowerCAmelCase : int = x_den * y_den * z_den lowerCAmelCase : int = gcd(_A , _A ) top //= hcf bottom //= hcf return top, bottom def __UpperCamelCase ( _A : int = 35 ) -> int: """simple docstring""" lowerCAmelCase : set = set() lowerCAmelCase : int lowerCAmelCase : Fraction = Fraction(0 ) lowerCAmelCase : tuple[int, int] for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 lowerCAmelCase : str = x_num * y_den + x_den * y_num lowerCAmelCase : str = x_den * y_den lowerCAmelCase : List[str] = gcd(_A , _A ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowerCAmelCase : Any = add_three( _A , _A , _A , _A , _A , _A ) unique_s.add(_A ) # n=2 lowerCAmelCase : str = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) lowerCAmelCase : Any = x_den * x_den * y_den * y_den if is_sq(_A ) and is_sq(_A ): lowerCAmelCase : Tuple = int(sqrt(_A ) ) lowerCAmelCase : List[Any] = int(sqrt(_A ) ) lowerCAmelCase : str = gcd(_A , _A ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowerCAmelCase : str = add_three( _A , _A , _A , _A , _A , _A ) unique_s.add(_A ) # n=-1 lowerCAmelCase : List[Any] = x_num * y_num lowerCAmelCase : Dict = x_den * y_num + x_num * y_den lowerCAmelCase : Any = gcd(_A , _A ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowerCAmelCase : int = add_three( _A , _A , _A , _A , _A , _A ) unique_s.add(_A ) # n=2 lowerCAmelCase : List[Any] = x_num * x_num * y_num * y_num lowerCAmelCase : List[str] = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(_A ) and is_sq(_A ): lowerCAmelCase : List[str] = int(sqrt(_A ) ) lowerCAmelCase : Union[str, Any] = int(sqrt(_A ) ) lowerCAmelCase : str = gcd(_A , _A ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowerCAmelCase : str = add_three( _A , _A , _A , _A , _A , _A ) unique_s.add(_A ) for num, den in unique_s: total += Fraction(_A , _A ) return total.denominator + total.numerator if __name__ == "__main__": print(f"""{solution() = }""")
646
'''simple docstring''' _lowerCAmelCase : List[str] = {str(digit): digit**5 for digit in range(10)} def __UpperCamelCase ( _A : int ) -> int: """simple docstring""" return sum(DIGITS_FIFTH_POWER[digit] for digit in str(_A ) ) def __UpperCamelCase ( ) -> int: """simple docstring""" return sum( number for number in range(10_00 , 1_00_00_00 ) if number == digits_fifth_powers_sum(_A ) ) if __name__ == "__main__": print(solution())
646
1
'''simple docstring''' from __future__ import annotations def __UpperCamelCase ( _A : list[int] , _A : int ) -> int: """simple docstring""" if len(_A ) < k or k < 0: raise ValueError('Invalid Input' ) lowerCAmelCase : Optional[Any] = sum(array[:k] ) for i in range(len(_A ) - k ): lowerCAmelCase : str = current_sum - array[i] + array[i + k] lowerCAmelCase : List[Any] = max(_A , _A ) return max_sum if __name__ == "__main__": from doctest import testmod from random import randint testmod() _lowerCAmelCase : Union[str, Any] = [randint(-1000, 1000) for i in range(100)] _lowerCAmelCase : Any = randint(0, 110) print(f"""The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}""")
646
'''simple docstring''' def __UpperCamelCase ( _A : List[str] ) -> Optional[Any]: """simple docstring""" if not head: return True # split the list to two parts lowerCAmelCase , lowerCAmelCase : str = head.next, head while fast and fast.next: lowerCAmelCase : Optional[int] = fast.next.next lowerCAmelCase : int = slow.next lowerCAmelCase : int = slow.next lowerCAmelCase : Optional[Any] = None # Don't forget here! But forget still works! # reverse the second part lowerCAmelCase : List[Any] = None while second: lowerCAmelCase : List[Any] = second.next lowerCAmelCase : Union[str, Any] = node lowerCAmelCase : Optional[Any] = second lowerCAmelCase : Any = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False lowerCAmelCase : Optional[Any] = node.next lowerCAmelCase : Tuple = head.next return True def __UpperCamelCase ( _A : Optional[Any] ) -> Optional[int]: """simple docstring""" if not head or not head.next: return True # 1. Get the midpoint (slow) lowerCAmelCase : Optional[int] = head while fast and fast.next: lowerCAmelCase , lowerCAmelCase : Optional[Any] = fast.next.next, slow.next # 2. Push the second half into the stack lowerCAmelCase : Tuple = [slow.val] while slow.next: lowerCAmelCase : Tuple = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False lowerCAmelCase : Union[str, Any] = cur.next return True def __UpperCamelCase ( _A : Tuple ) -> Optional[int]: """simple docstring""" if not head or not head.next: return True lowerCAmelCase : Optional[int] = {} lowerCAmelCase : int = 0 while head: if head.val in d: d[head.val].append(_A ) else: lowerCAmelCase : Any = [pos] lowerCAmelCase : int = head.next pos += 1 lowerCAmelCase : str = pos - 1 lowerCAmelCase : Optional[Any] = 0 for v in d.values(): if len(_A ) % 2 != 0: middle += 1 else: lowerCAmelCase : Any = 0 for i in range(0 , len(_A ) ): if v[i] + v[len(_A ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
646
1
'''simple docstring''' from __future__ import annotations def __UpperCamelCase ( _A : list[float] ) -> bool: """simple docstring""" if len(_A ) < 2: raise ValueError('Monogons and Digons are not polygons in the Euclidean space' ) if any(i <= 0 for i in nums ): raise ValueError('All values must be greater than 0' ) lowerCAmelCase : List[Any] = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
646
'''simple docstring''' import math def __UpperCamelCase ( _A : int = 1_00 ) -> int: """simple docstring""" lowerCAmelCase : List[Any] = sum(i * i for i in range(1 , n + 1 ) ) lowerCAmelCase : Optional[Any] = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f"""{solution() = }""")
646
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer _lowerCAmelCase : str = logging.get_logger(__name__) _lowerCAmelCase : Optional[int] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _lowerCAmelCase : Any = [ 'small', 'small-base', 'medium', 'medium-base', 'intermediate', 'intermediate-base', 'large', 'large-base', 'xlarge', 'xlarge-base', ] _lowerCAmelCase : Any = { 'vocab_file': { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt', 'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt', 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt', 'funnel-transformer/medium-base': ( 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt' ), 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt', 'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt', 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt', 'funnel-transformer/xlarge-base': ( 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json', 'funnel-transformer/small-base': ( 'https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json' ), 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json', 'funnel-transformer/medium-base': ( 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json' ), 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json', 'funnel-transformer/large-base': ( 'https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json' ), 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json', 'funnel-transformer/xlarge-base': ( 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json' ), }, } _lowerCAmelCase : List[Any] = {f"""funnel-transformer/{name}""": 512 for name in _model_names} _lowerCAmelCase : Optional[Any] = {f"""funnel-transformer/{name}""": {'do_lower_case': True} for name in _model_names} class lowerCAmelCase ( a ): _lowerCamelCase : Union[str, Any] = VOCAB_FILES_NAMES _lowerCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : int = PRETRAINED_INIT_CONFIGURATION _lowerCamelCase : Dict = FunnelTokenizer _lowerCamelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase : int = 2 def __init__( self , snake_case__=None , snake_case__=None , snake_case__=True , snake_case__="<unk>" , snake_case__="<sep>" , snake_case__="<pad>" , snake_case__="<cls>" , snake_case__="<mask>" , snake_case__="<s>" , snake_case__="</s>" , snake_case__=True , snake_case__=True , snake_case__=None , snake_case__="##" , **snake_case__ , ): super().__init__( snake_case__ , tokenizer_file=snake_case__ , do_lower_case=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , clean_text=snake_case__ , tokenize_chinese_chars=snake_case__ , strip_accents=snake_case__ , wordpieces_prefix=snake_case__ , **snake_case__ , ) lowerCAmelCase : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , snake_case__ ) != do_lower_case or normalizer_state.get('strip_accents' , snake_case__ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , snake_case__ ) != tokenize_chinese_chars ): lowerCAmelCase : List[str] = getattr(snake_case__ , normalizer_state.pop('type' ) ) lowerCAmelCase : int = do_lower_case lowerCAmelCase : Union[str, Any] = strip_accents lowerCAmelCase : Dict = tokenize_chinese_chars lowerCAmelCase : Any = normalizer_class(**snake_case__ ) lowerCAmelCase : List[Any] = do_lower_case def lowercase ( self , snake_case__ , snake_case__=None ): lowerCAmelCase : List[str] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase ( self , snake_case__ , snake_case__ = None ): lowerCAmelCase : Optional[Any] = [self.sep_token_id] lowerCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase ( self , snake_case__ , snake_case__ = None ): lowerCAmelCase : Dict = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ )
646
'''simple docstring''' import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece_with_bytefallback.model') @require_sentencepiece @require_tokenizers class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : Tuple = GPTSwaTokenizer _lowerCamelCase : str = False _lowerCamelCase : Dict = True _lowerCamelCase : Optional[Any] = False def lowercase ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : Tuple = GPTSwaTokenizer(snake_case__ , eos_token='<unk>' , bos_token='<unk>' , pad_token='<unk>' ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase ( self , snake_case__ ): lowerCAmelCase : List[Any] = 'This is a test' lowerCAmelCase : List[Any] = 'This is a test' return input_text, output_text def lowercase ( self ): lowerCAmelCase : Tuple = '<s>' lowerCAmelCase : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def lowercase ( self ): lowerCAmelCase : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(snake_case__ ) , 2000 ) def lowercase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 2000 ) def lowercase ( self ): lowerCAmelCase : List[Any] = GPTSwaTokenizer(snake_case__ ) lowerCAmelCase : Optional[Any] = tokenizer.tokenize('This is a test' ) self.assertListEqual(snake_case__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , [465, 287, 265, 631, 842] ) lowerCAmelCase : Tuple = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) # fmt: off self.assertListEqual( snake_case__ , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] , ) # fmt: on lowerCAmelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual( snake_case__ , [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] , ) lowerCAmelCase : int = tokenizer.convert_ids_to_tokens(snake_case__ ) # fmt: off self.assertListEqual( snake_case__ , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] ) # fmt: on def lowercase ( self ): lowerCAmelCase : str = GPTSwaTokenizer(snake_case__ ) lowerCAmelCase : Optional[int] = ['This is a test', 'I was born in 92000, and this is falsé.'] lowerCAmelCase : Tuple = [ [465, 287, 265, 631, 842], [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(snake_case__ , snake_case__ ): self.assertListEqual(tokenizer.encode_fast(snake_case__ ) , snake_case__ ) # Test that decode_fast returns the input text for text, token_ids in zip(snake_case__ , snake_case__ ): self.assertEqual(tokenizer.decode_fast(snake_case__ ) , snake_case__ ) @slow def lowercase ( self ): lowerCAmelCase : str = [ '<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')', 'Hey there, how are you doing this fine day?', 'This is a text with a trailing spaces followed by a dot .', 'Häj sväjs lillebrör! =)', 'Det är inget fel på Mr. Cool', ] # fmt: off lowerCAmelCase : Tuple = {'input_ids': [[6_3423, 5, 6811, 1_4954, 282, 816, 3821, 6_3466, 6_3425, 6_3462, 18, 6_3978, 678, 301, 1320, 6_3423, 6_3455, 6_3458, 18, 6_3982, 4246, 3940, 1901, 4_7789, 5547, 1_8994], [1_9630, 1100, 6_3446, 1342, 633, 544, 4488, 593, 5102, 2416, 6_3495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1652, 428, 268, 1936, 515, 268, 5_8593, 2_2413, 9106, 546, 268, 3_3213, 6_3979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_5130, 6_3450, 924, 6_3449, 2249, 4062, 1558, 318, 6_3504, 2_1498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2827, 2559, 332, 6575, 6_3443, 2_6801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name='AI-Sweden/gpt-sw3-126m' , sequences=snake_case__ , )
646
1
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _lowerCAmelCase : int = logging.getLogger(__name__) @dataclass class lowerCAmelCase : _lowerCamelCase : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) _lowerCamelCase : Optional[str] = field( default=a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) _lowerCamelCase : Optional[str] = field( default="""NER""" , metadata={"""help""": """Task type to fine tune in training (e.g. NER, POS, etc)"""} ) _lowerCamelCase : Optional[str] = field( default=a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) _lowerCamelCase : bool = field(default=a , metadata={"""help""": """Set this flag to use fast tokenization."""} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. _lowerCamelCase : Optional[str] = field( default=a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class lowerCAmelCase : _lowerCamelCase : str = field( metadata={"""help""": """The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."""} ) _lowerCamelCase : Optional[str] = field( default=a , metadata={"""help""": """Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."""} , ) _lowerCamelCase : int = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) _lowerCamelCase : bool = field( default=a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def __UpperCamelCase ( ) -> Optional[int]: """simple docstring""" lowerCAmelCase : int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[Any] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. Use" ' --overwrite_output_dir to overcome.' ) lowerCAmelCase : Dict = import_module('tasks' ) try: lowerCAmelCase : List[str] = getattr(_A , model_args.task_type ) lowerCAmelCase : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( F"Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. " F"Available tasks classes are: {TokenClassificationTask.__subclasses__()}" ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , _A ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task lowerCAmelCase : Optional[Any] = token_classification_task.get_labels(data_args.labels ) lowerCAmelCase : Dict[int, str] = dict(enumerate(_A ) ) lowerCAmelCase : Optional[Any] = len(_A ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCAmelCase : List[str] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_A , idalabel=_A , labelaid={label: i for i, label in enumerate(_A )} , cache_dir=model_args.cache_dir , ) lowerCAmelCase : Tuple = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) lowerCAmelCase : Optional[Any] = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_A , cache_dir=model_args.cache_dir , ) # Get datasets lowerCAmelCase : Dict = ( TokenClassificationDataset( token_classification_task=_A , data_dir=data_args.data_dir , tokenizer=_A , labels=_A , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) lowerCAmelCase : Union[str, Any] = ( TokenClassificationDataset( token_classification_task=_A , data_dir=data_args.data_dir , tokenizer=_A , labels=_A , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(_A : np.ndarray , _A : np.ndarray ) -> Tuple[List[int], List[int]]: lowerCAmelCase : List[Any] = np.argmax(_A , axis=2 ) lowerCAmelCase , lowerCAmelCase : List[Any] = preds.shape lowerCAmelCase : str = [[] for _ in range(_A )] lowerCAmelCase : Optional[int] = [[] for _ in range(_A )] for i in range(_A ): for j in range(_A ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(_A : EvalPrediction ) -> Dict: lowerCAmelCase , lowerCAmelCase : Optional[Any] = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(_A , _A ), "precision": precision_score(_A , _A ), "recall": recall_score(_A , _A ), "f1": fa_score(_A , _A ), } # Data collator lowerCAmelCase : Optional[int] = DataCollatorWithPadding(_A , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer lowerCAmelCase : List[str] = Trainer( model=_A , args=_A , train_dataset=_A , eval_dataset=_A , compute_metrics=_A , data_collator=_A , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowerCAmelCase : str = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) lowerCAmelCase : Union[str, Any] = trainer.evaluate() lowerCAmelCase : Optional[int] = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_process_zero(): with open(_A , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , _A , _A ) writer.write('%s = %s\n' % (key, value) ) results.update(_A ) # Predict if training_args.do_predict: lowerCAmelCase : Optional[Any] = TokenClassificationDataset( token_classification_task=_A , data_dir=data_args.data_dir , tokenizer=_A , labels=_A , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Any = trainer.predict(_A ) lowerCAmelCase , lowerCAmelCase : List[Any] = align_predictions(_A , _A ) lowerCAmelCase : Optional[Any] = os.path.join(training_args.output_dir , 'test_results.txt' ) if trainer.is_world_process_zero(): with open(_A , 'w' ) as writer: for key, value in metrics.items(): logger.info(' %s = %s' , _A , _A ) writer.write('%s = %s\n' % (key, value) ) # Save predictions lowerCAmelCase : List[Any] = os.path.join(training_args.output_dir , 'test_predictions.txt' ) if trainer.is_world_process_zero(): with open(_A , 'w' ) as writer: with open(os.path.join(data_args.data_dir , 'test.txt' ) , 'r' ) as f: token_classification_task.write_predictions_to_file(_A , _A , _A ) return results def __UpperCamelCase ( _A : Optional[Any] ) -> int: """simple docstring""" main() if __name__ == "__main__": main()
646
'''simple docstring''' def __UpperCamelCase ( _A : int ) -> bool: """simple docstring""" return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
646
1
'''simple docstring''' def __UpperCamelCase ( _A : int ) -> bool: """simple docstring""" if num < 0: return False lowerCAmelCase : int = num lowerCAmelCase : int = 0 while num > 0: lowerCAmelCase : List[str] = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
646
'''simple docstring''' import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( 'files' , [ ['full:README.md', 'dataset_infos.json'], ['empty:README.md', 'dataset_infos.json'], ['dataset_infos.json'], ['full:README.md'], ] , ) def __UpperCamelCase ( _A : str , _A : List[Any] ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase : Optional[int] = tmp_path_factory.mktemp('dset_infos_dir' ) if "full:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('---\ndataset_info:\n dataset_size: 42\n---' ) if "empty:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / 'dataset_infos.json' , 'w' ) as f: f.write('{"default": {"dataset_size": 42}}' ) lowerCAmelCase : Union[str, Any] = DatasetInfosDict.from_directory(_A ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( 'dataset_info' , [ DatasetInfo(), DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ), ] , ) def __UpperCamelCase ( _A : str , _A : DatasetInfo ) -> Optional[int]: """simple docstring""" lowerCAmelCase : str = str(_A ) dataset_info.write_to_directory(_A ) lowerCAmelCase : List[str] = DatasetInfo.from_directory(_A ) assert dataset_info == reloaded assert os.path.exists(os.path.join(_A , 'dataset_info.json' ) ) def __UpperCamelCase ( ) -> List[str]: """simple docstring""" lowerCAmelCase : Tuple = DatasetInfo( description='foo' , citation='bar' , homepage='https://foo.bar' , license='CC0' , features=Features({'a': Value('int32' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train', 'num_examples': 42}] , download_checksums={} , download_size=13_37 , post_processing_size=4_42 , dataset_size=12_34 , size_in_bytes=13_37 + 4_42 + 12_34 , ) lowerCAmelCase : Optional[int] = dataset_info._to_yaml_dict() assert sorted(_A ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) lowerCAmelCase : Any = yaml.safe_dump(_A ) lowerCAmelCase : int = yaml.safe_load(_A ) assert dataset_info_yaml_dict == reloaded def __UpperCamelCase ( ) -> Dict: """simple docstring""" lowerCAmelCase : Union[str, Any] = DatasetInfo() lowerCAmelCase : List[Any] = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( 'dataset_infos_dict' , [ DatasetInfosDict(), DatasetInfosDict({'default': DatasetInfo()} ), DatasetInfosDict({'my_config_name': DatasetInfo()} ), DatasetInfosDict( { 'default': DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ) } ), DatasetInfosDict( { 'v1': DatasetInfo(dataset_size=42 ), 'v2': DatasetInfo(dataset_size=13_37 ), } ), ] , ) def __UpperCamelCase ( _A : Tuple , _A : DatasetInfosDict ) -> List[Any]: """simple docstring""" lowerCAmelCase : Tuple = str(_A ) dataset_infos_dict.write_to_directory(_A ) lowerCAmelCase : List[str] = DatasetInfosDict.from_directory(_A ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): lowerCAmelCase : Tuple = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml lowerCAmelCase : Optional[Any] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(_A , 'README.md' ) )
646
1
'''simple docstring''' from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def __UpperCamelCase ( _A : int ) -> int: """simple docstring""" lowerCAmelCase : Tuple = prime_factors(_A ) if is_square_free(_A ): return -1 if len(_A ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
646
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCAmelCase ( a ): def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): super().__init__() if safety_checker is None: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" ' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered' ' results in services or applications open to the public. Both the diffusers team and Hugging Face' ' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling' ' it only for use-cases that involve analyzing network behavior or auditing its results. For more' ' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .' ) self.register_modules( speech_model=snake_case__ , speech_processor=snake_case__ , vae=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , unet=snake_case__ , scheduler=snake_case__ , feature_extractor=snake_case__ , ) def lowercase ( self , snake_case__ = "auto" ): if slice_size == "auto": lowerCAmelCase : Union[str, Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(snake_case__ ) def lowercase ( self ): self.enable_attention_slicing(snake_case__ ) @torch.no_grad() def __call__( self , snake_case__ , snake_case__=1_6000 , snake_case__ = 512 , snake_case__ = 512 , snake_case__ = 50 , snake_case__ = 7.5 , snake_case__ = None , snake_case__ = 1 , snake_case__ = 0.0 , snake_case__ = None , snake_case__ = None , snake_case__ = "pil" , snake_case__ = True , snake_case__ = None , snake_case__ = 1 , **snake_case__ , ): lowerCAmelCase : List[str] = self.speech_processor.feature_extractor( snake_case__ , return_tensors='pt' , sampling_rate=snake_case__ ).input_features.to(self.device ) lowerCAmelCase : Optional[Any] = self.speech_model.generate(snake_case__ , max_length=48_0000 ) lowerCAmelCase : str = self.speech_processor.tokenizer.batch_decode(snake_case__ , skip_special_tokens=snake_case__ , normalize=snake_case__ )[ 0 ] if isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = 1 elif isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = len(snake_case__ ) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(snake_case__ )}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(snake_case__ , snake_case__ ) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(snake_case__ )}." ) # get prompt text embeddings lowerCAmelCase : str = self.tokenizer( snake_case__ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) lowerCAmelCase : Tuple = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowerCAmelCase : str = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) lowerCAmelCase : Union[str, Any] = text_input_ids[:, : self.tokenizer.model_max_length] lowerCAmelCase : Union[str, Any] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : int = text_embeddings.shape lowerCAmelCase : Any = text_embeddings.repeat(1 , snake_case__ , 1 ) lowerCAmelCase : Optional[int] = text_embeddings.view(bs_embed * num_images_per_prompt , snake_case__ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowerCAmelCase : List[str] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowerCAmelCase : List[str] if negative_prompt is None: lowerCAmelCase : Any = [''] * batch_size elif type(snake_case__ ) is not type(snake_case__ ): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(snake_case__ )} !=" f" {type(snake_case__ )}." ) elif isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = [negative_prompt] elif batch_size != len(snake_case__ ): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(snake_case__ )}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" ' the batch size of `prompt`.' ) else: lowerCAmelCase : Dict = negative_prompt lowerCAmelCase : Optional[int] = text_input_ids.shape[-1] lowerCAmelCase : int = self.tokenizer( snake_case__ , padding='max_length' , max_length=snake_case__ , truncation=snake_case__ , return_tensors='pt' , ) lowerCAmelCase : Union[str, Any] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowerCAmelCase : List[Any] = uncond_embeddings.shape[1] lowerCAmelCase : List[str] = uncond_embeddings.repeat(1 , snake_case__ , 1 ) lowerCAmelCase : Optional[Any] = uncond_embeddings.view(batch_size * num_images_per_prompt , snake_case__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCAmelCase : List[str] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowerCAmelCase : Union[str, Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowerCAmelCase : Dict = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowerCAmelCase : str = torch.randn(snake_case__ , generator=snake_case__ , device='cpu' , dtype=snake_case__ ).to( self.device ) else: lowerCAmelCase : Tuple = torch.randn(snake_case__ , generator=snake_case__ , device=self.device , dtype=snake_case__ ) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) lowerCAmelCase : str = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(snake_case__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowerCAmelCase : Union[str, Any] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowerCAmelCase : Any = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowerCAmelCase : Tuple = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCAmelCase : Union[str, Any] = {} if accepts_eta: lowerCAmelCase : int = eta for i, t in enumerate(self.progress_bar(snake_case__ ) ): # expand the latents if we are doing classifier free guidance lowerCAmelCase : Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCAmelCase : Tuple = self.scheduler.scale_model_input(snake_case__ , snake_case__ ) # predict the noise residual lowerCAmelCase : List[str] = self.unet(snake_case__ , snake_case__ , encoder_hidden_states=snake_case__ ).sample # perform guidance if do_classifier_free_guidance: lowerCAmelCase , lowerCAmelCase : Dict = noise_pred.chunk(2 ) lowerCAmelCase : Tuple = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowerCAmelCase : int = self.scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase : List[Any] = 1 / 0.1_8_2_1_5 * latents lowerCAmelCase : Dict = self.vae.decode(snake_case__ ).sample lowerCAmelCase : List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowerCAmelCase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowerCAmelCase : Dict = self.numpy_to_pil(snake_case__ ) if not return_dict: return image return StableDiffusionPipelineOutput(images=snake_case__ , nsfw_content_detected=snake_case__ )
646
1
'''simple docstring''' from __future__ import annotations from random import random from typing import Generic, TypeVar _lowerCAmelCase : Tuple = TypeVar('KT') _lowerCAmelCase : Optional[int] = TypeVar('VT') class lowerCAmelCase ( Generic[KT, VT] ): def __init__( self , snake_case__ = "root" , snake_case__ = None ): lowerCAmelCase : Optional[Any] = key lowerCAmelCase : int = value lowerCAmelCase : list[Node[KT, VT]] = [] def __repr__( self ): return f"Node({self.key}: {self.value})" @property def lowercase ( self ): return len(self.forward ) class lowerCAmelCase ( Generic[KT, VT] ): def __init__( self , snake_case__ = 0.5 , snake_case__ = 16 ): lowerCAmelCase : Node[KT, VT] = Node[KT, VT]() lowerCAmelCase : Tuple = 0 lowerCAmelCase : Optional[int] = p lowerCAmelCase : Union[str, Any] = max_level def __str__( self ): lowerCAmelCase : Optional[Any] = list(self ) if len(snake_case__ ) == 0: return f"SkipList(level={self.level})" lowerCAmelCase : List[str] = max((len(str(snake_case__ ) ) for item in items) , default=4 ) lowerCAmelCase : str = max(snake_case__ , 4 ) + 4 lowerCAmelCase : str = self.head lowerCAmelCase : Dict = [] lowerCAmelCase : Any = node.forward.copy() lines.append(f"[{node.key}]".ljust(snake_case__ , '-' ) + '* ' * len(snake_case__ ) ) lines.append(' ' * label_size + '| ' * len(snake_case__ ) ) while len(node.forward ) != 0: lowerCAmelCase : List[str] = node.forward[0] lines.append( f"[{node.key}]".ljust(snake_case__ , '-' ) + ' '.join(str(n.key ) if n.key == node.key else '|' for n in forwards ) ) lines.append(' ' * label_size + '| ' * len(snake_case__ ) ) lowerCAmelCase : int = node.forward lines.append('None'.ljust(snake_case__ ) + '* ' * len(snake_case__ ) ) return f"SkipList(level={self.level})\n" + "\n".join(snake_case__ ) def __iter__( self ): lowerCAmelCase : Optional[Any] = self.head while len(node.forward ) != 0: yield node.forward[0].key lowerCAmelCase : Optional[int] = node.forward[0] def lowercase ( self ): lowerCAmelCase : Tuple = 1 while random() < self.p and level < self.max_level: level += 1 return level def lowercase ( self , snake_case__ ): lowerCAmelCase : Optional[int] = [] lowerCAmelCase : List[str] = self.head for i in reversed(range(self.level ) ): # i < node.level - When node level is lesser than `i` decrement `i`. # node.forward[i].key < key - Jumping to node with key value higher # or equal to searched key would result # in skipping searched key. while i < node.level and node.forward[i].key < key: lowerCAmelCase : List[str] = node.forward[i] # Each leftmost node (relative to searched node) will potentially have to # be updated. update_vector.append(snake_case__ ) update_vector.reverse() # Note that we were inserting values in reverse order. # len(node.forward) != 0 - If current node doesn't contain any further # references then searched key is not present. # node.forward[0].key == key - Next node key should be equal to search key # if key is present. if len(node.forward ) != 0 and node.forward[0].key == key: return node.forward[0], update_vector else: return None, update_vector def lowercase ( self , snake_case__ ): lowerCAmelCase , lowerCAmelCase : Union[str, Any] = self._locate_node(snake_case__ ) if node is not None: for i, update_node in enumerate(snake_case__ ): # Remove or replace all references to removed node. if update_node.level > i and update_node.forward[i].key == key: if node.level > i: lowerCAmelCase : Any = node.forward[i] else: lowerCAmelCase : List[str] = update_node.forward[:i] def lowercase ( self , snake_case__ , snake_case__ ): lowerCAmelCase , lowerCAmelCase : Union[str, Any] = self._locate_node(snake_case__ ) if node is not None: lowerCAmelCase : str = value else: lowerCAmelCase : Tuple = self.random_level() if level > self.level: # After level increase we have to add additional nodes to head. for _ in range(self.level - 1 , snake_case__ ): update_vector.append(self.head ) lowerCAmelCase : List[str] = level lowerCAmelCase : Optional[Any] = Node(snake_case__ , snake_case__ ) for i, update_node in enumerate(update_vector[:level] ): # Change references to pass through new node. if update_node.level > i: new_node.forward.append(update_node.forward[i] ) if update_node.level < i + 1: update_node.forward.append(snake_case__ ) else: lowerCAmelCase : Optional[Any] = new_node def lowercase ( self , snake_case__ ): lowerCAmelCase , lowerCAmelCase : Union[str, Any] = self._locate_node(snake_case__ ) if node is not None: return node.value return None def __UpperCamelCase ( ) -> str: """simple docstring""" lowerCAmelCase : Tuple = SkipList() skip_list.insert('Key1' , 3 ) skip_list.insert('Key2' , 12 ) skip_list.insert('Key3' , 41 ) skip_list.insert('Key4' , -19 ) lowerCAmelCase : List[str] = skip_list.head lowerCAmelCase : List[Any] = {} while node.level != 0: lowerCAmelCase : str = node.forward[0] lowerCAmelCase : Tuple = node.value assert len(_A ) == 4 assert all_values["Key1"] == 3 assert all_values["Key2"] == 12 assert all_values["Key3"] == 41 assert all_values["Key4"] == -19 def __UpperCamelCase ( ) -> Optional[int]: """simple docstring""" lowerCAmelCase : Optional[Any] = SkipList() skip_list.insert('Key1' , 10 ) skip_list.insert('Key1' , 12 ) skip_list.insert('Key5' , 7 ) skip_list.insert('Key7' , 10 ) skip_list.insert('Key10' , 5 ) skip_list.insert('Key7' , 7 ) skip_list.insert('Key5' , 5 ) skip_list.insert('Key10' , 10 ) lowerCAmelCase : int = skip_list.head lowerCAmelCase : Union[str, Any] = {} while node.level != 0: lowerCAmelCase : Dict = node.forward[0] lowerCAmelCase : Optional[int] = node.value if len(_A ) != 4: print() assert len(_A ) == 4 assert all_values["Key1"] == 12 assert all_values["Key7"] == 7 assert all_values["Key5"] == 5 assert all_values["Key10"] == 10 def __UpperCamelCase ( ) -> Optional[Any]: """simple docstring""" lowerCAmelCase : Tuple = SkipList() assert skip_list.find('Some key' ) is None def __UpperCamelCase ( ) -> List[str]: """simple docstring""" lowerCAmelCase : Optional[Any] = SkipList() skip_list.insert('Key2' , 20 ) assert skip_list.find('Key2' ) == 20 skip_list.insert('Some Key' , 10 ) skip_list.insert('Key2' , 8 ) skip_list.insert('V' , 13 ) assert skip_list.find('Y' ) is None assert skip_list.find('Key2' ) == 8 assert skip_list.find('Some Key' ) == 10 assert skip_list.find('V' ) == 13 def __UpperCamelCase ( ) -> Optional[int]: """simple docstring""" lowerCAmelCase : Optional[Any] = SkipList() skip_list.delete('Some key' ) assert len(skip_list.head.forward ) == 0 def __UpperCamelCase ( ) -> List[Any]: """simple docstring""" lowerCAmelCase : List[Any] = SkipList() skip_list.insert('Key1' , 12 ) skip_list.insert('V' , 13 ) skip_list.insert('X' , 14 ) skip_list.insert('Key2' , 15 ) skip_list.delete('V' ) skip_list.delete('Key2' ) assert skip_list.find('V' ) is None assert skip_list.find('Key2' ) is None def __UpperCamelCase ( ) -> Dict: """simple docstring""" lowerCAmelCase : Tuple = SkipList() skip_list.insert('Key1' , 12 ) skip_list.insert('V' , 13 ) skip_list.insert('X' , 14 ) skip_list.insert('Key2' , 15 ) skip_list.delete('V' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) == 14 assert skip_list.find('Key1' ) == 12 assert skip_list.find('Key2' ) == 15 skip_list.delete('X' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) is None assert skip_list.find('Key1' ) == 12 assert skip_list.find('Key2' ) == 15 skip_list.delete('Key1' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) is None assert skip_list.find('Key1' ) is None assert skip_list.find('Key2' ) == 15 skip_list.delete('Key2' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) is None assert skip_list.find('Key1' ) is None assert skip_list.find('Key2' ) is None def __UpperCamelCase ( ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase : Union[str, Any] = SkipList() skip_list.insert('Key1' , 12 ) skip_list.insert('V' , 13 ) skip_list.insert('X' , 1_42 ) skip_list.insert('Key2' , 15 ) skip_list.delete('X' ) def traverse_keys(_A : Dict ): yield node.key for forward_node in node.forward: yield from traverse_keys(_A ) assert len(set(traverse_keys(skip_list.head ) ) ) == 4 def __UpperCamelCase ( ) -> Tuple: """simple docstring""" def is_sorted(_A : Union[str, Any] ): return all(next_item >= item for item, next_item in zip(_A , lst[1:] ) ) lowerCAmelCase : List[Any] = SkipList() for i in range(10 ): skip_list.insert(_A , _A ) assert is_sorted(list(_A ) ) skip_list.delete(5 ) skip_list.delete(8 ) skip_list.delete(2 ) assert is_sorted(list(_A ) ) skip_list.insert(-12 , -12 ) skip_list.insert(77 , 77 ) assert is_sorted(list(_A ) ) def __UpperCamelCase ( ) -> Optional[int]: """simple docstring""" for _ in range(1_00 ): # Repeat test 100 times due to the probabilistic nature of skip list # random values == random bugs test_insert() test_insert_overrides_existing_value() test_searching_empty_list_returns_none() test_search() test_deleting_item_from_empty_list_do_nothing() test_deleted_items_are_not_founded_by_find_method() test_delete_removes_only_given_key() test_delete_doesnt_leave_dead_nodes() test_iter_always_yields_sorted_values() def __UpperCamelCase ( ) -> List[str]: """simple docstring""" lowerCAmelCase : List[Any] = SkipList() skip_list.insert(2 , '2' ) skip_list.insert(4 , '4' ) skip_list.insert(6 , '4' ) skip_list.insert(4 , '5' ) skip_list.insert(8 , '4' ) skip_list.insert(9 , '4' ) skip_list.delete(4 ) print(_A ) if __name__ == "__main__": import doctest doctest.testmod() main()
646
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : List[Any] = LDMTextToImagePipeline _lowerCamelCase : Optional[Any] = TEXT_TO_IMAGE_PARAMS - { """negative_prompt""", """negative_prompt_embeds""", """cross_attention_kwargs""", """prompt_embeds""", } _lowerCamelCase : List[str] = PipelineTesterMixin.required_optional_params - { """num_images_per_prompt""", """callback""", """callback_steps""", } _lowerCamelCase : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS _lowerCamelCase : Optional[int] = False def lowercase ( self ): torch.manual_seed(0 ) lowerCAmelCase : Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) lowerCAmelCase : int = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , ) torch.manual_seed(0 ) lowerCAmelCase : str = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') , up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') , latent_channels=4 , ) torch.manual_seed(0 ) lowerCAmelCase : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowerCAmelCase : str = CLIPTextModel(snake_case__ ) lowerCAmelCase : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCAmelCase : List[Any] = { 'unet': unet, 'scheduler': scheduler, 'vqvae': vae, 'bert': text_encoder, 'tokenizer': tokenizer, } return components def lowercase ( self , snake_case__ , snake_case__=0 ): if str(snake_case__ ).startswith('mps' ): lowerCAmelCase : Optional[int] = torch.manual_seed(snake_case__ ) else: lowerCAmelCase : str = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) lowerCAmelCase : Tuple = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase ( self ): lowerCAmelCase : List[str] = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase : Optional[Any] = self.get_dummy_components() lowerCAmelCase : Optional[Any] = LDMTextToImagePipeline(**snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Tuple = self.get_dummy_inputs(snake_case__ ) lowerCAmelCase : Union[str, Any] = pipe(**snake_case__ ).images lowerCAmelCase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) lowerCAmelCase : List[Any] = np.array([0.6_1_0_1, 0.6_1_5_6, 0.5_6_2_2, 0.4_8_9_5, 0.6_6_6_1, 0.3_8_0_4, 0.5_7_4_8, 0.6_1_3_6, 0.5_0_1_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self , snake_case__ , snake_case__=torch.floataa , snake_case__=0 ): lowerCAmelCase : List[str] = torch.manual_seed(snake_case__ ) lowerCAmelCase : int = np.random.RandomState(snake_case__ ).standard_normal((1, 4, 32, 32) ) lowerCAmelCase : Optional[Any] = torch.from_numpy(snake_case__ ).to(device=snake_case__ , dtype=snake_case__ ) lowerCAmelCase : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase ( self ): lowerCAmelCase : Tuple = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Optional[Any] = self.get_inputs(snake_case__ ) lowerCAmelCase : List[Any] = pipe(**snake_case__ ).images lowerCAmelCase : str = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) lowerCAmelCase : Tuple = np.array([0.5_1_8_2_5, 0.5_2_8_5_0, 0.5_2_5_4_3, 0.5_4_2_5_8, 0.5_2_3_0_4, 0.5_2_5_6_9, 0.5_4_3_6_3, 0.5_5_2_7_6, 0.5_6_8_7_8] ) lowerCAmelCase : int = np.abs(expected_slice - image_slice ).max() assert max_diff < 1e-3 @nightly @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self , snake_case__ , snake_case__=torch.floataa , snake_case__=0 ): lowerCAmelCase : List[str] = torch.manual_seed(snake_case__ ) lowerCAmelCase : Any = np.random.RandomState(snake_case__ ).standard_normal((1, 4, 32, 32) ) lowerCAmelCase : List[Any] = torch.from_numpy(snake_case__ ).to(device=snake_case__ , dtype=snake_case__ ) lowerCAmelCase : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase ( self ): lowerCAmelCase : Optional[int] = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : int = self.get_inputs(snake_case__ ) lowerCAmelCase : Optional[int] = pipe(**snake_case__ ).images[0] lowerCAmelCase : Optional[int] = load_numpy( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy' ) lowerCAmelCase : List[str] = np.abs(expected_image - image ).max() assert max_diff < 1e-3
646
1
'''simple docstring''' import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class lowerCAmelCase ( unittest.TestCase ): def __init__( self , snake_case__ , snake_case__=13 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=99 , snake_case__=32 , snake_case__=5 , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=16 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=4 , ): lowerCAmelCase : Any = parent lowerCAmelCase : Dict = batch_size lowerCAmelCase : int = seq_length lowerCAmelCase : List[str] = is_training lowerCAmelCase : Tuple = use_attention_mask lowerCAmelCase : Optional[Any] = use_token_type_ids lowerCAmelCase : str = use_labels lowerCAmelCase : List[str] = vocab_size lowerCAmelCase : Union[str, Any] = hidden_size lowerCAmelCase : Optional[Any] = num_hidden_layers lowerCAmelCase : Optional[Any] = num_attention_heads lowerCAmelCase : Optional[Any] = intermediate_size lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : List[Any] = hidden_dropout_prob lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob lowerCAmelCase : List[Any] = max_position_embeddings lowerCAmelCase : Union[str, Any] = type_vocab_size lowerCAmelCase : Optional[Any] = type_sequence_label_size lowerCAmelCase : Optional[Any] = initializer_range lowerCAmelCase : List[str] = num_choices def lowercase ( self ): lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : List[Any] = None if self.use_attention_mask: lowerCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : str = None if self.use_token_type_ids: lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : Any = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowercase ( self ): lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Dict = config_and_inputs lowerCAmelCase : Optional[int] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def lowercase ( self ): lowerCAmelCase : List[Any] = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : List[Any] = config_and_inputs lowerCAmelCase : Optional[int] = True lowerCAmelCase : List[str] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : List[Any] = True _lowerCamelCase : Any = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def lowercase ( self ): lowerCAmelCase : str = FlaxBertModelTester(self ) @slow def lowercase ( self ): # Only check this for base model, not necessary for all model classes. # This will also help speed-up tests. lowerCAmelCase : List[Any] = FlaxBertModel.from_pretrained('bert-base-cased' ) lowerCAmelCase : Dict = model(np.ones((1, 1) ) ) self.assertIsNotNone(snake_case__ )
646
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Tuple = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { 'facebook/xmod-base': 'https://huggingface.co/facebook/xmod-base/resolve/main/config.json', 'facebook/xmod-large-prenorm': 'https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json', 'facebook/xmod-base-13-125k': 'https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json', 'facebook/xmod-base-30-125k': 'https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json', 'facebook/xmod-base-30-195k': 'https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json', 'facebook/xmod-base-60-125k': 'https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json', 'facebook/xmod-base-60-265k': 'https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json', 'facebook/xmod-base-75-125k': 'https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json', 'facebook/xmod-base-75-269k': 'https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json', } class lowerCAmelCase ( a ): _lowerCamelCase : int = """xmod""" def __init__( self , snake_case__=3_0522 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=1e-1_2 , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__="absolute" , snake_case__=True , snake_case__=None , snake_case__=False , snake_case__=2 , snake_case__=False , snake_case__=True , snake_case__=True , snake_case__=("en_XX",) , snake_case__=None , **snake_case__ , ): super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) lowerCAmelCase : Dict = vocab_size lowerCAmelCase : Optional[Any] = hidden_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob lowerCAmelCase : str = max_position_embeddings lowerCAmelCase : int = type_vocab_size lowerCAmelCase : List[Any] = initializer_range lowerCAmelCase : Any = layer_norm_eps lowerCAmelCase : Dict = position_embedding_type lowerCAmelCase : Optional[Any] = use_cache lowerCAmelCase : Union[str, Any] = classifier_dropout lowerCAmelCase : int = pre_norm lowerCAmelCase : Optional[Any] = adapter_reduction_factor lowerCAmelCase : Any = adapter_layer_norm lowerCAmelCase : Dict = adapter_reuse_layer_norm lowerCAmelCase : Any = ln_before_adapter lowerCAmelCase : Optional[Any] = list(snake_case__ ) lowerCAmelCase : List[Any] = default_language class lowerCAmelCase ( a ): @property def lowercase ( self ): if self.task == "multiple-choice": lowerCAmelCase : List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase : Optional[int] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
646
1
'''simple docstring''' from collections import namedtuple _lowerCAmelCase : Tuple = namedtuple('from_to', 'from_ to') _lowerCAmelCase : List[Any] = { 'cubicmeter': from_to(1, 1), 'litre': from_to(0.0_0_1, 1000), 'kilolitre': from_to(1, 1), 'gallon': from_to(0.0_0_4_5_4, 2_6_4.1_7_2), 'cubicyard': from_to(0.7_6_4_5_5, 1.3_0_7_9_5), 'cubicfoot': from_to(0.0_2_8, 3_5.3_1_4_7), 'cup': from_to(0.0_0_0_2_3_6_5_8_8, 4_2_2_6.7_5), } def __UpperCamelCase ( _A : float , _A : str , _A : str ) -> float: """simple docstring""" if from_type not in METRIC_CONVERSION: raise ValueError( F"Invalid 'from_type' value: {from_type!r} Supported values are:\n" + ', '.join(_A ) ) if to_type not in METRIC_CONVERSION: raise ValueError( F"Invalid 'to_type' value: {to_type!r}. Supported values are:\n" + ', '.join(_A ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
646
'''simple docstring''' import argparse import os import re _lowerCAmelCase : Dict = 'src/diffusers' # Pattern that looks at the indentation in a line. _lowerCAmelCase : str = re.compile(r'^(\s*)\S') # Pattern that matches `"key":" and puts `key` in group 0. _lowerCAmelCase : Any = re.compile(r'^\s*"([^"]+)":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. _lowerCAmelCase : List[Any] = re.compile(r'^\s*_import_structure\["([^"]+)"\]') # Pattern that matches `"key",` and puts `key` in group 0. _lowerCAmelCase : int = re.compile(r'^\s*"([^"]+)",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. _lowerCAmelCase : Optional[Any] = re.compile(r'\[([^\]]+)\]') def __UpperCamelCase ( _A : Union[str, Any] ) -> Dict: """simple docstring""" lowerCAmelCase : Any = _re_indent.search(_A ) return "" if search is None else search.groups()[0] def __UpperCamelCase ( _A : Dict , _A : Any="" , _A : List[str]=None , _A : Any=None ) -> Tuple: """simple docstring""" lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Tuple = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(_A ): index += 1 lowerCAmelCase : Optional[int] = ['\n'.join(lines[:index] )] else: lowerCAmelCase : int = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowerCAmelCase : Tuple = [lines[index]] index += 1 while index < len(_A ) and (end_prompt is None or not lines[index].startswith(_A )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(_A ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(_A ) ) if index < len(_A ) - 1: lowerCAmelCase : List[Any] = [lines[index + 1]] index += 1 else: lowerCAmelCase : int = [] else: blocks.append('\n'.join(_A ) ) lowerCAmelCase : Any = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(_A ) > 0: blocks.append('\n'.join(_A ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(_A ): blocks.append('\n'.join(lines[index:] ) ) return blocks def __UpperCamelCase ( _A : Dict ) -> List[Any]: """simple docstring""" def _inner(_A : Tuple ): return key(_A ).lower().replace('_' , '' ) return _inner def __UpperCamelCase ( _A : Union[str, Any] , _A : Any=None ) -> Optional[Any]: """simple docstring""" def noop(_A : Any ): return x if key is None: lowerCAmelCase : List[str] = noop # Constants are all uppercase, they go first. lowerCAmelCase : str = [obj for obj in objects if key(_A ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowerCAmelCase : List[str] = [obj for obj in objects if key(_A )[0].isupper() and not key(_A ).isupper()] # Functions begin with a lowercase, they go last. lowerCAmelCase : Optional[Any] = [obj for obj in objects if not key(_A )[0].isupper()] lowerCAmelCase : Tuple = ignore_underscore(_A ) return sorted(_A , key=_A ) + sorted(_A , key=_A ) + sorted(_A , key=_A ) def __UpperCamelCase ( _A : Union[str, Any] ) -> int: """simple docstring""" def _replace(_A : List[Any] ): lowerCAmelCase : List[Any] = match.groups()[0] if "," not in imports: return F"[{imports}]" lowerCAmelCase : Dict = [part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase : List[str] = keys[:-1] return "[" + ", ".join([F"\"{k}\"" for k in sort_objects(_A )] ) + "]" lowerCAmelCase : Optional[int] = import_statement.split('\n' ) if len(_A ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowerCAmelCase : Optional[Any] = 2 if lines[1].strip() == '[' else 1 lowerCAmelCase : List[str] = [(i, _re_strip_line.search(_A ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowerCAmelCase : Optional[Any] = sort_objects(_A , key=lambda _A : x[1] ) lowerCAmelCase : Dict = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(_A ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowerCAmelCase : Optional[int] = _re_bracket_content.sub(_replace , lines[1] ) else: lowerCAmelCase : List[Any] = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase : int = keys[:-1] lowerCAmelCase : Tuple = get_indent(lines[1] ) + ', '.join([F"\"{k}\"" for k in sort_objects(_A )] ) return "\n".join(_A ) else: # Finally we have to deal with imports fitting on one line lowerCAmelCase : Union[str, Any] = _re_bracket_content.sub(_replace , _A ) return import_statement def __UpperCamelCase ( _A : str , _A : Tuple=True ) -> Optional[Any]: """simple docstring""" with open(_A , 'r' ) as f: lowerCAmelCase : Optional[int] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowerCAmelCase : List[Any] = split_code_in_indented_blocks( _A , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(_A ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowerCAmelCase : List[str] = main_blocks[block_idx] lowerCAmelCase : Union[str, Any] = block.split('\n' ) # Get to the start of the imports. lowerCAmelCase : Optional[Any] = 0 while line_idx < len(_A ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowerCAmelCase : Optional[Any] = len(_A ) else: line_idx += 1 if line_idx >= len(_A ): continue # Ignore beginning and last line: they don't contain anything. lowerCAmelCase : str = '\n'.join(block_lines[line_idx:-1] ) lowerCAmelCase : str = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowerCAmelCase : Optional[Any] = split_code_in_indented_blocks(_A , indent_level=_A ) # We have two categories of import key: list or _import_structure[key].append/extend lowerCAmelCase : Union[str, Any] = _re_direct_key if '_import_structure' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowerCAmelCase : int = [(pattern.search(_A ).groups()[0] if pattern.search(_A ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowerCAmelCase : Dict = [(i, key) for i, key in enumerate(_A ) if key is not None] lowerCAmelCase : List[Any] = [x[0] for x in sorted(_A , key=lambda _A : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowerCAmelCase : int = 0 lowerCAmelCase : Dict = [] for i in range(len(_A ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: lowerCAmelCase : str = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(_A ) count += 1 # And we put our main block back together with its first and last line. lowerCAmelCase : str = '\n'.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(_A ): if check_only: return True else: print(F"Overwriting {file}." ) with open(_A , 'w' ) as f: f.write('\n'.join(_A ) ) def __UpperCamelCase ( _A : Tuple=True ) -> Any: """simple docstring""" lowerCAmelCase : Tuple = [] for root, _, files in os.walk(_A ): if "__init__.py" in files: lowerCAmelCase : Any = sort_imports(os.path.join(_A , '__init__.py' ) , check_only=_A ) if result: lowerCAmelCase : Optional[Any] = [os.path.join(_A , '__init__.py' )] if len(_A ) > 0: raise ValueError(F"Would overwrite {len(_A )} files, run `make style`." ) if __name__ == "__main__": _lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') _lowerCAmelCase : Optional[int] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
646
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowerCAmelCase : Optional[int] = { 'configuration_mvp': ['MVP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MvpConfig', 'MvpOnnxConfig'], 'tokenization_mvp': ['MvpTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : List[str] = ['MvpTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Union[str, Any] = [ 'MVP_PRETRAINED_MODEL_ARCHIVE_LIST', 'MvpForCausalLM', 'MvpForConditionalGeneration', 'MvpForQuestionAnswering', 'MvpForSequenceClassification', 'MvpModel', 'MvpPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys _lowerCAmelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
646
'''simple docstring''' import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class lowerCAmelCase : def __init__( self , snake_case__ , snake_case__=13 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=99 , snake_case__=64 , snake_case__=32 , snake_case__=5 , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=16 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=3 , snake_case__=4 , snake_case__=None , ): lowerCAmelCase : str = parent lowerCAmelCase : Optional[int] = batch_size lowerCAmelCase : Optional[Any] = seq_length lowerCAmelCase : Optional[Any] = is_training lowerCAmelCase : Dict = use_input_mask lowerCAmelCase : Tuple = use_token_type_ids lowerCAmelCase : int = use_labels lowerCAmelCase : int = vocab_size lowerCAmelCase : Any = hidden_size lowerCAmelCase : Optional[Any] = embedding_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : List[str] = num_attention_heads lowerCAmelCase : List[Any] = intermediate_size lowerCAmelCase : Dict = hidden_act lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : int = attention_probs_dropout_prob lowerCAmelCase : List[Any] = max_position_embeddings lowerCAmelCase : int = type_vocab_size lowerCAmelCase : List[str] = type_sequence_label_size lowerCAmelCase : Dict = initializer_range lowerCAmelCase : Any = num_labels lowerCAmelCase : str = num_choices lowerCAmelCase : int = scope def lowercase ( self ): lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Union[str, Any] = None if self.use_input_mask: lowerCAmelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : Optional[int] = None if self.use_token_type_ids: lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : Optional[Any] = None lowerCAmelCase : Optional[Any] = None lowerCAmelCase : Dict = None if self.use_labels: lowerCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase ( self ): return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case__ , initializer_range=self.initializer_range , ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = MobileBertModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : int = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) lowerCAmelCase : Optional[int] = model(snake_case__ , token_type_ids=snake_case__ ) lowerCAmelCase : Optional[Any] = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : int = MobileBertForMaskedLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : str = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = MobileBertForNextSentencePrediction(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : str = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : List[Any] = MobileBertForPreTraining(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Tuple = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , next_sentence_label=snake_case__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = MobileBertForQuestionAnswering(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : List[str] = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = self.num_labels lowerCAmelCase : List[Any] = MobileBertForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = self.num_labels lowerCAmelCase : int = MobileBertForTokenClassification(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : List[str] = self.num_choices lowerCAmelCase : Any = MobileBertForMultipleChoice(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : int = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : List[str] = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase ( self ): lowerCAmelCase : Any = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) : Optional[Any] = config_and_inputs lowerCAmelCase : List[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase ( a , a , unittest.TestCase ): _lowerCamelCase : List[str] = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) _lowerCamelCase : Tuple = ( { """feature-extraction""": MobileBertModel, """fill-mask""": MobileBertForMaskedLM, """question-answering""": MobileBertForQuestionAnswering, """text-classification""": MobileBertForSequenceClassification, """token-classification""": MobileBertForTokenClassification, """zero-shot""": MobileBertForSequenceClassification, } if is_torch_available() else {} ) _lowerCamelCase : str = True def lowercase ( self , snake_case__ , snake_case__ , snake_case__=False ): lowerCAmelCase : int = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if return_labels: if model_class in get_values(snake_case__ ): lowerCAmelCase : str = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=snake_case__ ) lowerCAmelCase : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case__ ) return inputs_dict def lowercase ( self ): lowerCAmelCase : List[Any] = MobileBertModelTester(self ) lowerCAmelCase : Dict = ConfigTester(self , config_class=snake_case__ , hidden_size=37 ) def lowercase ( self ): self.config_tester.run_common_tests() def lowercase ( self ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*snake_case__ ) def __UpperCamelCase ( _A : Optional[Any] ) -> Optional[int]: """simple docstring""" return torch.tensor( _A , dtype=torch.long , device=_A , ) _lowerCAmelCase : Union[str, Any] = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase ( unittest.TestCase ): @slow def lowercase ( self ): lowerCAmelCase : List[str] = MobileBertModel.from_pretrained('google/mobilebert-uncased' ).to(snake_case__ ) lowerCAmelCase : List[Any] = _long_tensor([[101, 7110, 1005, 1056, 2023, 1_1333, 1_7413, 1029, 102]] ) with torch.no_grad(): lowerCAmelCase : Tuple = model(snake_case__ )[0] lowerCAmelCase : List[Any] = torch.Size((1, 9, 512) ) self.assertEqual(output.shape , snake_case__ ) lowerCAmelCase : Union[str, Any] = torch.tensor( [ [ [-2.4_7_3_6_5_2_6e0_7, 8.2_6_9_1_6_5_6e0_4, 1.6_5_2_1_8_3_8e0_5], [-5.7_5_4_1_7_0_4e-0_1, 3.9_0_5_6_0_2_2e0_0, 4.4_0_1_1_5_0_7e0_0], [2.6_0_4_7_3_5_9e0_0, 1.5_6_7_7_6_5_2e0_0, -1.7_3_2_4_1_8_8e-0_1], ] ] , device=snake_case__ , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE lowerCAmelCase : List[str] = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) lowerCAmelCase : Dict = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
646
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Tuple = logging.get_logger(__name__) _lowerCAmelCase : str = {'openai-gpt': 'https://huggingface.co/openai-gpt/resolve/main/config.json'} class lowerCAmelCase ( a ): _lowerCamelCase : int = """openai-gpt""" _lowerCamelCase : Optional[int] = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , snake_case__=4_0478 , snake_case__=512 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=1e-5 , snake_case__=0.0_2 , snake_case__="cls_index" , snake_case__=True , snake_case__=None , snake_case__=True , snake_case__=0.1 , **snake_case__ , ): lowerCAmelCase : str = vocab_size lowerCAmelCase : Optional[Any] = n_positions lowerCAmelCase : Dict = n_embd lowerCAmelCase : Optional[int] = n_layer lowerCAmelCase : Union[str, Any] = n_head lowerCAmelCase : List[str] = afn lowerCAmelCase : Tuple = resid_pdrop lowerCAmelCase : List[str] = embd_pdrop lowerCAmelCase : List[Any] = attn_pdrop lowerCAmelCase : List[Any] = layer_norm_epsilon lowerCAmelCase : List[Any] = initializer_range lowerCAmelCase : Optional[Any] = summary_type lowerCAmelCase : List[str] = summary_use_proj lowerCAmelCase : List[str] = summary_activation lowerCAmelCase : Optional[Any] = summary_first_dropout lowerCAmelCase : Union[str, Any] = summary_proj_to_labels super().__init__(**snake_case__ )
646
'''simple docstring''' import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __UpperCamelCase ( _A : Dict ) -> int: """simple docstring""" lowerCAmelCase : Tuple = [] embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight", F"stage{idx}.patch_embed.proj.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias", F"stage{idx}.patch_embed.proj.bias", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight", F"stage{idx}.patch_embed.norm.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias", F"stage{idx}.patch_embed.norm.bias", ) ) return embed def __UpperCamelCase ( _A : List[Any] , _A : Dict ) -> Any: """simple docstring""" lowerCAmelCase : str = [] attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight", F"stage{idx}.blocks.{cnt}.attn.proj_q.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias", F"stage{idx}.blocks.{cnt}.attn.proj_q.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight", F"stage{idx}.blocks.{cnt}.attn.proj_k.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias", F"stage{idx}.blocks.{cnt}.attn.proj_k.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight", F"stage{idx}.blocks.{cnt}.attn.proj_v.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias", F"stage{idx}.blocks.{cnt}.attn.proj_v.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight", F"stage{idx}.blocks.{cnt}.attn.proj.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias", F"stage{idx}.blocks.{cnt}.attn.proj.bias", ) ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc2.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight", F"stage{idx}.blocks.{cnt}.norm1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias", F"stage{idx}.blocks.{cnt}.norm1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight", F"stage{idx}.blocks.{cnt}.norm2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias", F"stage{idx}.blocks.{cnt}.norm2.bias") ) return attention_weights def __UpperCamelCase ( _A : Optional[int] ) -> Optional[int]: """simple docstring""" lowerCAmelCase : Optional[int] = [] token.append((F"cvt.encoder.stages.{idx}.cls_token", 'stage2.cls_token') ) return token def __UpperCamelCase ( ) -> int: """simple docstring""" lowerCAmelCase : List[Any] = [] head.append(('layernorm.weight', 'norm.weight') ) head.append(('layernorm.bias', 'norm.bias') ) head.append(('classifier.weight', 'head.weight') ) head.append(('classifier.bias', 'head.bias') ) return head def __UpperCamelCase ( _A : str , _A : Optional[Any] , _A : Dict , _A : str ) -> Optional[int]: """simple docstring""" lowerCAmelCase : List[str] = 'imagenet-1k-id2label.json' lowerCAmelCase : Tuple = 10_00 lowerCAmelCase : str = 'huggingface/label-files' lowerCAmelCase : List[Any] = num_labels lowerCAmelCase : Any = json.load(open(cached_download(hf_hub_url(_A , _A , repo_type='dataset' ) ) , 'r' ) ) lowerCAmelCase : List[str] = {int(_A ): v for k, v in idalabel.items()} lowerCAmelCase : List[str] = idalabel lowerCAmelCase : str = {v: k for k, v in idalabel.items()} lowerCAmelCase : int = CvtConfig(num_labels=_A , idalabel=_A , labelaid=_A ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13": lowerCAmelCase : List[str] = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21": lowerCAmelCase : Tuple = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: lowerCAmelCase : Any = [2, 2, 20] lowerCAmelCase : List[str] = [3, 12, 16] lowerCAmelCase : List[Any] = [1_92, 7_68, 10_24] lowerCAmelCase : Union[str, Any] = CvtForImageClassification(_A ) lowerCAmelCase : str = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) lowerCAmelCase : Optional[Any] = image_size lowerCAmelCase : List[Any] = torch.load(_A , map_location=torch.device('cpu' ) ) lowerCAmelCase : str = OrderedDict() lowerCAmelCase : int = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: lowerCAmelCase : List[str] = list_of_state_dict + cls_token(_A ) lowerCAmelCase : Optional[Any] = list_of_state_dict + embeddings(_A ) for cnt in range(config.depth[idx] ): lowerCAmelCase : List[Any] = list_of_state_dict + attention(_A , _A ) lowerCAmelCase : List[str] = list_of_state_dict + final() for gg in list_of_state_dict: print(_A ) for i in range(len(_A ) ): lowerCAmelCase : Tuple = original_weights[list_of_state_dict[i][1]] model.load_state_dict(_A ) model.save_pretrained(_A ) image_processor.save_pretrained(_A ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": _lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '--cvt_model', default='cvt-w24', type=str, help='Name of the cvt model you\'d like to convert.', ) parser.add_argument( '--image_size', default=384, type=int, help='Input Image Size', ) parser.add_argument( '--cvt_file_name', default=r'cvtmodels\CvT-w24-384x384-IN-22k.pth', type=str, help='Input Image Size', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) _lowerCAmelCase : str = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
646
1