code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import tensorflow as tf from ...tf_utils import shape_list class lowerCAmelCase ( tf.keras.layers.Layer ): def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=1 , snake_case__=False , **snake_case__ ): super().__init__(**_snake_case ) lowerCAmelCase : List[Any] = vocab_size lowerCAmelCase : Any = d_embed lowerCAmelCase : Union[str, Any] = d_proj lowerCAmelCase : Optional[int] = cutoffs + [vocab_size] lowerCAmelCase : Optional[int] = [0] + self.cutoffs lowerCAmelCase : Optional[int] = div_val lowerCAmelCase : Any = self.cutoffs[0] lowerCAmelCase : Union[str, Any] = len(self.cutoffs ) - 1 lowerCAmelCase : Any = self.shortlist_size + self.n_clusters lowerCAmelCase : List[str] = keep_order lowerCAmelCase : Dict = [] lowerCAmelCase : Dict = [] def lowercase ( self , snake_case__ ): if self.n_clusters > 0: lowerCAmelCase : List[Any] = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer='zeros' , trainable=_snake_case , name='cluster_weight' ) lowerCAmelCase : Optional[Any] = self.add_weight( shape=(self.n_clusters,) , initializer='zeros' , trainable=_snake_case , name='cluster_bias' ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: lowerCAmelCase : Dict = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer='zeros' , trainable=_snake_case , name=f"out_projs_._{i}" , ) self.out_projs.append(_snake_case ) else: self.out_projs.append(_snake_case ) lowerCAmelCase : List[Any] = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer='zeros' , trainable=_snake_case , name=f"out_layers_._{i}_._weight" , ) lowerCAmelCase : Optional[Any] = self.add_weight( shape=(self.vocab_size,) , initializer='zeros' , trainable=_snake_case , name=f"out_layers_._{i}_._bias" , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): lowerCAmelCase , lowerCAmelCase : Optional[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowerCAmelCase : Union[str, Any] = self.d_embed // (self.div_val**i) lowerCAmelCase : str = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer='zeros' , trainable=_snake_case , name=f"out_projs_._{i}" ) self.out_projs.append(_snake_case ) lowerCAmelCase : Tuple = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer='zeros' , trainable=_snake_case , name=f"out_layers_._{i}_._weight" , ) lowerCAmelCase : Optional[int] = self.add_weight( shape=(r_idx - l_idx,) , initializer='zeros' , trainable=_snake_case , name=f"out_layers_._{i}_._bias" , ) self.out_layers.append((weight, bias) ) super().build(_snake_case ) @staticmethod def lowercase ( snake_case__ , snake_case__ , snake_case__ , snake_case__=None ): lowerCAmelCase : Dict = x if proj is not None: lowerCAmelCase : Optional[Any] = tf.einsum('ibd,ed->ibe' , _snake_case , _snake_case ) return tf.einsum('ibd,nd->ibn' , _snake_case , _snake_case ) + b @staticmethod def lowercase ( snake_case__ , snake_case__ ): lowerCAmelCase : List[Any] = shape_list(_snake_case ) lowerCAmelCase : Any = tf.range(lp_size[0] , dtype=target.dtype ) lowerCAmelCase : Optional[int] = tf.stack([r, target] , 1 ) return tf.gather_nd(_snake_case , _snake_case ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__=True , snake_case__=False ): lowerCAmelCase : Any = 0 if self.n_clusters == 0: lowerCAmelCase : List[str] = self._logit(_snake_case , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: lowerCAmelCase : Optional[int] = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=_snake_case , logits=_snake_case ) lowerCAmelCase : Any = tf.nn.log_softmax(_snake_case , axis=-1 ) else: lowerCAmelCase : Optional[int] = shape_list(_snake_case ) lowerCAmelCase : Optional[Any] = [] lowerCAmelCase : Any = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): lowerCAmelCase , lowerCAmelCase : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: lowerCAmelCase : Any = (target >= l_idx) & (target < r_idx) lowerCAmelCase : Union[str, Any] = tf.where(_snake_case ) lowerCAmelCase : Any = tf.boolean_mask(_snake_case , _snake_case ) - l_idx if self.div_val == 1: lowerCAmelCase : int = self.out_layers[0][0][l_idx:r_idx] lowerCAmelCase : List[str] = self.out_layers[0][1][l_idx:r_idx] else: lowerCAmelCase : Dict = self.out_layers[i][0] lowerCAmelCase : Any = self.out_layers[i][1] if i == 0: lowerCAmelCase : Union[str, Any] = tf.concat([cur_W, self.cluster_weight] , 0 ) lowerCAmelCase : Union[str, Any] = tf.concat([cur_b, self.cluster_bias] , 0 ) lowerCAmelCase : str = self._logit(_snake_case , _snake_case , _snake_case , self.out_projs[0] ) lowerCAmelCase : Dict = tf.nn.log_softmax(_snake_case ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: lowerCAmelCase : List[Any] = tf.boolean_mask(_snake_case , _snake_case ) lowerCAmelCase : int = self._gather_logprob(_snake_case , _snake_case ) else: lowerCAmelCase : Any = self._logit(_snake_case , _snake_case , _snake_case , self.out_projs[i] ) lowerCAmelCase : Optional[Any] = tf.nn.log_softmax(_snake_case ) lowerCAmelCase : int = self.cutoffs[0] + i - 1 # No probability for the head cluster lowerCAmelCase : Dict = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(_snake_case ) if target is not None: lowerCAmelCase : Union[str, Any] = tf.boolean_mask(_snake_case , _snake_case ) lowerCAmelCase : Dict = tf.boolean_mask(_snake_case , _snake_case ) lowerCAmelCase : Optional[int] = self._gather_logprob(_snake_case , _snake_case ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(_snake_case , -cur_logprob , shape_list(_snake_case ) ) lowerCAmelCase : int = tf.concat(_snake_case , axis=-1 ) if target is not None: if return_mean: lowerCAmelCase : Union[str, Any] = tf.reduce_mean(_snake_case ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(_snake_case ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(_snake_case , name=self.name , aggregation='mean' if return_mean else '' ) return out
708
'''simple docstring''' import math def __UpperCamelCase ( _A : int = 1_00 ) -> int: """simple docstring""" lowerCAmelCase : List[Any] = sum(i * i for i in range(1 , n + 1 ) ) lowerCAmelCase : Optional[Any] = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f"""{solution() = }""")
646
0
import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor _lowerCAmelCase : Optional[int] = logging.get_logger(__name__) class lowerCAmelCase ( _lowerCAmelCase ): def __init__( self , *snake_case__ , **snake_case__ ): warnings.warn( 'The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use DeformableDetrImageProcessor instead.' , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
709
'''simple docstring''' import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece_with_bytefallback.model') @require_sentencepiece @require_tokenizers class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : Tuple = GPTSwaTokenizer _lowerCamelCase : str = False _lowerCamelCase : Dict = True _lowerCamelCase : Optional[Any] = False def lowercase ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : Tuple = GPTSwaTokenizer(snake_case__ , eos_token='<unk>' , bos_token='<unk>' , pad_token='<unk>' ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase ( self , snake_case__ ): lowerCAmelCase : List[Any] = 'This is a test' lowerCAmelCase : List[Any] = 'This is a test' return input_text, output_text def lowercase ( self ): lowerCAmelCase : Tuple = '<s>' lowerCAmelCase : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def lowercase ( self ): lowerCAmelCase : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(snake_case__ ) , 2000 ) def lowercase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 2000 ) def lowercase ( self ): lowerCAmelCase : List[Any] = GPTSwaTokenizer(snake_case__ ) lowerCAmelCase : Optional[Any] = tokenizer.tokenize('This is a test' ) self.assertListEqual(snake_case__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , [465, 287, 265, 631, 842] ) lowerCAmelCase : Tuple = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) # fmt: off self.assertListEqual( snake_case__ , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] , ) # fmt: on lowerCAmelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual( snake_case__ , [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] , ) lowerCAmelCase : int = tokenizer.convert_ids_to_tokens(snake_case__ ) # fmt: off self.assertListEqual( snake_case__ , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] ) # fmt: on def lowercase ( self ): lowerCAmelCase : str = GPTSwaTokenizer(snake_case__ ) lowerCAmelCase : Optional[int] = ['This is a test', 'I was born in 92000, and this is falsé.'] lowerCAmelCase : Tuple = [ [465, 287, 265, 631, 842], [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(snake_case__ , snake_case__ ): self.assertListEqual(tokenizer.encode_fast(snake_case__ ) , snake_case__ ) # Test that decode_fast returns the input text for text, token_ids in zip(snake_case__ , snake_case__ ): self.assertEqual(tokenizer.decode_fast(snake_case__ ) , snake_case__ ) @slow def lowercase ( self ): lowerCAmelCase : str = [ '<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')', 'Hey there, how are you doing this fine day?', 'This is a text with a trailing spaces followed by a dot .', 'Häj sväjs lillebrör! =)', 'Det är inget fel på Mr. Cool', ] # fmt: off lowerCAmelCase : Tuple = {'input_ids': [[6_3423, 5, 6811, 1_4954, 282, 816, 3821, 6_3466, 6_3425, 6_3462, 18, 6_3978, 678, 301, 1320, 6_3423, 6_3455, 6_3458, 18, 6_3982, 4246, 3940, 1901, 4_7789, 5547, 1_8994], [1_9630, 1100, 6_3446, 1342, 633, 544, 4488, 593, 5102, 2416, 6_3495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1652, 428, 268, 1936, 515, 268, 5_8593, 2_2413, 9106, 546, 268, 3_3213, 6_3979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_5130, 6_3450, 924, 6_3449, 2249, 4062, 1558, 318, 6_3504, 2_1498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2827, 2559, 332, 6575, 6_3443, 2_6801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name='AI-Sweden/gpt-sw3-126m' , sequences=snake_case__ , )
646
0
'''simple docstring''' import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def __UpperCamelCase ( _A : List[Any] , _A : Any ) -> Any: """simple docstring""" lowerCAmelCase : Dict = checkpoint lowerCAmelCase : Optional[Any] = {} lowerCAmelCase : Optional[Any] = vae_state_dict["""encoder.conv_in.weight"""] lowerCAmelCase : Any = vae_state_dict["""encoder.conv_in.bias"""] lowerCAmelCase : int = vae_state_dict["""encoder.conv_out.weight"""] lowerCAmelCase : List[Any] = vae_state_dict["""encoder.conv_out.bias"""] lowerCAmelCase : List[str] = vae_state_dict["""encoder.norm_out.weight"""] lowerCAmelCase : Any = vae_state_dict["""encoder.norm_out.bias"""] lowerCAmelCase : Any = vae_state_dict["""decoder.conv_in.weight"""] lowerCAmelCase : List[Any] = vae_state_dict["""decoder.conv_in.bias"""] lowerCAmelCase : Union[str, Any] = vae_state_dict["""decoder.conv_out.weight"""] lowerCAmelCase : int = vae_state_dict["""decoder.conv_out.bias"""] lowerCAmelCase : Any = vae_state_dict["""decoder.norm_out.weight"""] lowerCAmelCase : List[str] = vae_state_dict["""decoder.norm_out.bias"""] lowerCAmelCase : Any = vae_state_dict["""quant_conv.weight"""] lowerCAmelCase : str = vae_state_dict["""quant_conv.bias"""] lowerCAmelCase : List[Any] = vae_state_dict["""post_quant_conv.weight"""] lowerCAmelCase : Any = vae_state_dict["""post_quant_conv.bias"""] # Retrieves the keys for the encoder down blocks only lowerCAmelCase : Any = len({'.'.join(layer.split('.' )[:3] ) for layer in vae_state_dict if 'encoder.down' in layer} ) lowerCAmelCase : Union[str, Any] = { layer_id: [key for key in vae_state_dict if F"down.{layer_id}" in key] for layer_id in range(snake_case_ ) } # Retrieves the keys for the decoder up blocks only lowerCAmelCase : List[Any] = len({'.'.join(layer.split('.' )[:3] ) for layer in vae_state_dict if 'decoder.up' in layer} ) lowerCAmelCase : Tuple = { layer_id: [key for key in vae_state_dict if F"up.{layer_id}" in key] for layer_id in range(snake_case_ ) } for i in range(snake_case_ ): lowerCAmelCase : Optional[int] = [key for key in down_blocks[i] if F"down.{i}" in key and F"down.{i}.downsample" not in key] if F"encoder.down.{i}.downsample.conv.weight" in vae_state_dict: lowerCAmelCase : Dict = vae_state_dict.pop( F"encoder.down.{i}.downsample.conv.weight" ) lowerCAmelCase : int = vae_state_dict.pop( F"encoder.down.{i}.downsample.conv.bias" ) lowerCAmelCase : Dict = renew_vae_resnet_paths(snake_case_ ) lowerCAmelCase : Tuple = {"""old""": F"down.{i}.block", """new""": F"down_blocks.{i}.resnets"} assign_to_checkpoint(snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path] , config=snake_case_ ) lowerCAmelCase : Tuple = [key for key in vae_state_dict if """encoder.mid.block""" in key] lowerCAmelCase : List[str] = 2 for i in range(1 , num_mid_res_blocks + 1 ): lowerCAmelCase : Dict = [key for key in mid_resnets if F"encoder.mid.block_{i}" in key] lowerCAmelCase : Any = renew_vae_resnet_paths(snake_case_ ) lowerCAmelCase : Tuple = {"""old""": F"mid.block_{i}", """new""": F"mid_block.resnets.{i - 1}"} assign_to_checkpoint(snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path] , config=snake_case_ ) lowerCAmelCase : List[Any] = [key for key in vae_state_dict if """encoder.mid.attn""" in key] lowerCAmelCase : List[str] = renew_vae_attention_paths(snake_case_ ) lowerCAmelCase : str = {"""old""": """mid.attn_1""", """new""": """mid_block.attentions.0"""} assign_to_checkpoint(snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path] , config=snake_case_ ) conv_attn_to_linear(snake_case_ ) for i in range(snake_case_ ): lowerCAmelCase : Dict = num_up_blocks - 1 - i lowerCAmelCase : Any = [ key for key in up_blocks[block_id] if F"up.{block_id}" in key and F"up.{block_id}.upsample" not in key ] if F"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict: lowerCAmelCase : Tuple = vae_state_dict[ F"decoder.up.{block_id}.upsample.conv.weight" ] lowerCAmelCase : Union[str, Any] = vae_state_dict[ F"decoder.up.{block_id}.upsample.conv.bias" ] lowerCAmelCase : List[str] = renew_vae_resnet_paths(snake_case_ ) lowerCAmelCase : Union[str, Any] = {"""old""": F"up.{block_id}.block", """new""": F"up_blocks.{i}.resnets"} assign_to_checkpoint(snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path] , config=snake_case_ ) lowerCAmelCase : List[str] = [key for key in vae_state_dict if """decoder.mid.block""" in key] lowerCAmelCase : str = 2 for i in range(1 , num_mid_res_blocks + 1 ): lowerCAmelCase : Dict = [key for key in mid_resnets if F"decoder.mid.block_{i}" in key] lowerCAmelCase : List[Any] = renew_vae_resnet_paths(snake_case_ ) lowerCAmelCase : Any = {"""old""": F"mid.block_{i}", """new""": F"mid_block.resnets.{i - 1}"} assign_to_checkpoint(snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path] , config=snake_case_ ) lowerCAmelCase : str = [key for key in vae_state_dict if """decoder.mid.attn""" in key] lowerCAmelCase : List[str] = renew_vae_attention_paths(snake_case_ ) lowerCAmelCase : Union[str, Any] = {"""old""": """mid.attn_1""", """new""": """mid_block.attentions.0"""} assign_to_checkpoint(snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path] , config=snake_case_ ) conv_attn_to_linear(snake_case_ ) return new_checkpoint def __UpperCamelCase ( _A : List[str] , _A : List[str] , ) -> Any: """simple docstring""" lowerCAmelCase : str = requests.get( ' https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml' ) lowerCAmelCase : Any = io.BytesIO(r.content ) lowerCAmelCase : Optional[Any] = OmegaConf.load(snake_case_ ) lowerCAmelCase : Tuple = 5_12 lowerCAmelCase : str = """cuda""" if torch.cuda.is_available() else """cpu""" if checkpoint_path.endswith('safetensors' ): from safetensors import safe_open lowerCAmelCase : int = {} with safe_open(snake_case_ , framework='pt' , device='cpu' ) as f: for key in f.keys(): lowerCAmelCase : Optional[Any] = f.get_tensor(snake_case_ ) else: lowerCAmelCase : str = torch.load(snake_case_ , map_location=snake_case_ )["""state_dict"""] # Convert the VAE model. lowerCAmelCase : int = create_vae_diffusers_config(snake_case_ , image_size=snake_case_ ) lowerCAmelCase : Optional[int] = custom_convert_ldm_vae_checkpoint(snake_case_ , snake_case_ ) lowerCAmelCase : List[str] = AutoencoderKL(**snake_case_ ) vae.load_state_dict(snake_case_ ) vae.save_pretrained(snake_case_ ) if __name__ == "__main__": _lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--vae_pt_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') _lowerCAmelCase : Dict = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
710
'''simple docstring''' def __UpperCamelCase ( _A : int ) -> bool: """simple docstring""" return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
646
0
'''simple docstring''' import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging _lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) class lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): _lowerCamelCase : Tuple = CLIPConfig _lowerCamelCase : List[Any] = ["""CLIPEncoderLayer"""] def __init__( self , snake_case__ ): super().__init__(UpperCamelCase__ ) lowerCAmelCase : str = CLIPVisionModelWithProjection(config.vision_config ) lowerCAmelCase : Dict = nn.Linear(config.vision_config.projection_dim , 1 ) lowerCAmelCase : str = nn.Linear(config.vision_config.projection_dim , 1 ) @torch.no_grad() def lowercase ( self , snake_case__ , snake_case__ , snake_case__=0.5 , snake_case__=0.5 ): lowerCAmelCase : Optional[Any] = self.vision_model(UpperCamelCase__ )[0] lowerCAmelCase : int = self.p_head(UpperCamelCase__ ) lowerCAmelCase : int = nsfw_detected.flatten() lowerCAmelCase : List[Any] = nsfw_detected > p_threshold lowerCAmelCase : Dict = nsfw_detected.tolist() if any(UpperCamelCase__ ): logger.warning( 'Potential NSFW content was detected in one or more images. A black image will be returned instead.' ' Try again with a different prompt and/or seed.' ) for idx, nsfw_detected_ in enumerate(UpperCamelCase__ ): if nsfw_detected_: lowerCAmelCase : List[str] = np.zeros(images[idx].shape ) lowerCAmelCase : Union[str, Any] = self.w_head(UpperCamelCase__ ) lowerCAmelCase : List[Any] = watermark_detected.flatten() lowerCAmelCase : Optional[int] = watermark_detected > w_threshold lowerCAmelCase : Optional[int] = watermark_detected.tolist() if any(UpperCamelCase__ ): logger.warning( 'Potential watermarked content was detected in one or more images. A black image will be returned instead.' ' Try again with a different prompt and/or seed.' ) for idx, watermark_detected_ in enumerate(UpperCamelCase__ ): if watermark_detected_: lowerCAmelCase : int = np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
711
'''simple docstring''' import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( 'files' , [ ['full:README.md', 'dataset_infos.json'], ['empty:README.md', 'dataset_infos.json'], ['dataset_infos.json'], ['full:README.md'], ] , ) def __UpperCamelCase ( _A : str , _A : List[Any] ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase : Optional[int] = tmp_path_factory.mktemp('dset_infos_dir' ) if "full:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('---\ndataset_info:\n dataset_size: 42\n---' ) if "empty:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / 'dataset_infos.json' , 'w' ) as f: f.write('{"default": {"dataset_size": 42}}' ) lowerCAmelCase : Union[str, Any] = DatasetInfosDict.from_directory(_A ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( 'dataset_info' , [ DatasetInfo(), DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ), ] , ) def __UpperCamelCase ( _A : str , _A : DatasetInfo ) -> Optional[int]: """simple docstring""" lowerCAmelCase : str = str(_A ) dataset_info.write_to_directory(_A ) lowerCAmelCase : List[str] = DatasetInfo.from_directory(_A ) assert dataset_info == reloaded assert os.path.exists(os.path.join(_A , 'dataset_info.json' ) ) def __UpperCamelCase ( ) -> List[str]: """simple docstring""" lowerCAmelCase : Tuple = DatasetInfo( description='foo' , citation='bar' , homepage='https://foo.bar' , license='CC0' , features=Features({'a': Value('int32' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train', 'num_examples': 42}] , download_checksums={} , download_size=13_37 , post_processing_size=4_42 , dataset_size=12_34 , size_in_bytes=13_37 + 4_42 + 12_34 , ) lowerCAmelCase : Optional[int] = dataset_info._to_yaml_dict() assert sorted(_A ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) lowerCAmelCase : Any = yaml.safe_dump(_A ) lowerCAmelCase : int = yaml.safe_load(_A ) assert dataset_info_yaml_dict == reloaded def __UpperCamelCase ( ) -> Dict: """simple docstring""" lowerCAmelCase : Union[str, Any] = DatasetInfo() lowerCAmelCase : List[Any] = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( 'dataset_infos_dict' , [ DatasetInfosDict(), DatasetInfosDict({'default': DatasetInfo()} ), DatasetInfosDict({'my_config_name': DatasetInfo()} ), DatasetInfosDict( { 'default': DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ) } ), DatasetInfosDict( { 'v1': DatasetInfo(dataset_size=42 ), 'v2': DatasetInfo(dataset_size=13_37 ), } ), ] , ) def __UpperCamelCase ( _A : Tuple , _A : DatasetInfosDict ) -> List[Any]: """simple docstring""" lowerCAmelCase : Tuple = str(_A ) dataset_infos_dict.write_to_directory(_A ) lowerCAmelCase : List[str] = DatasetInfosDict.from_directory(_A ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): lowerCAmelCase : Tuple = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml lowerCAmelCase : Optional[Any] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(_A , 'README.md' ) )
646
0
import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase ( lowerCAmelCase__ , unittest.TestCase ): _lowerCamelCase : Optional[Any] = OpenAIGPTTokenizer _lowerCamelCase : int = OpenAIGPTTokenizerFast _lowerCamelCase : Tuple = True _lowerCamelCase : Any = False def lowercase ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCAmelCase : Union[str, Any] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] lowerCAmelCase : Union[str, Any] = dict(zip(_lowerCamelCase , range(len(_lowerCamelCase ) ) ) ) lowerCAmelCase : Any = ['#version: 0.2', 'l o', 'lo w', 'e r</w>', ''] lowerCAmelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowerCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' ) as fp: fp.write(json.dumps(_lowerCamelCase ) ) with open(self.merges_file , 'w' ) as fp: fp.write('\n'.join(_lowerCamelCase ) ) def lowercase ( self , snake_case__ ): return "lower newer", "lower newer" def lowercase ( self ): lowerCAmelCase : str = OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) lowerCAmelCase : List[str] = 'lower' lowerCAmelCase : int = ['low', 'er</w>'] lowerCAmelCase : Any = tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) lowerCAmelCase : List[Any] = tokens + ['<unk>'] lowerCAmelCase : List[Any] = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , _lowerCamelCase ) def lowercase ( self , snake_case__=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCAmelCase : Tuple = self.rust_tokenizer_class.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) # Simple input lowerCAmelCase : Dict = 'This is a simple input' lowerCAmelCase : List[Any] = ['This is a simple input 1', 'This is a simple input 2'] lowerCAmelCase : List[str] = ('This is a simple input', 'This is a pair') lowerCAmelCase : Dict = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(_lowerCamelCase , tokenizer_r.encode , _lowerCamelCase , max_length=_lowerCamelCase , padding='max_length' ) # Simple input self.assertRaises(_lowerCamelCase , tokenizer_r.encode_plus , _lowerCamelCase , max_length=_lowerCamelCase , padding='max_length' ) # Simple input self.assertRaises( _lowerCamelCase , tokenizer_r.batch_encode_plus , _lowerCamelCase , max_length=_lowerCamelCase , padding='max_length' , ) # Pair input self.assertRaises(_lowerCamelCase , tokenizer_r.encode , _lowerCamelCase , max_length=_lowerCamelCase , padding='max_length' ) # Pair input self.assertRaises(_lowerCamelCase , tokenizer_r.encode_plus , _lowerCamelCase , max_length=_lowerCamelCase , padding='max_length' ) # Pair input self.assertRaises( _lowerCamelCase , tokenizer_r.batch_encode_plus , _lowerCamelCase , max_length=_lowerCamelCase , padding='max_length' , ) def lowercase ( self ): pass @require_ftfy @require_spacy @require_tokenizers class lowerCAmelCase ( lowerCAmelCase__ ): pass
712
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCAmelCase ( a ): def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): super().__init__() if safety_checker is None: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" ' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered' ' results in services or applications open to the public. Both the diffusers team and Hugging Face' ' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling' ' it only for use-cases that involve analyzing network behavior or auditing its results. For more' ' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .' ) self.register_modules( speech_model=snake_case__ , speech_processor=snake_case__ , vae=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , unet=snake_case__ , scheduler=snake_case__ , feature_extractor=snake_case__ , ) def lowercase ( self , snake_case__ = "auto" ): if slice_size == "auto": lowerCAmelCase : Union[str, Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(snake_case__ ) def lowercase ( self ): self.enable_attention_slicing(snake_case__ ) @torch.no_grad() def __call__( self , snake_case__ , snake_case__=1_6000 , snake_case__ = 512 , snake_case__ = 512 , snake_case__ = 50 , snake_case__ = 7.5 , snake_case__ = None , snake_case__ = 1 , snake_case__ = 0.0 , snake_case__ = None , snake_case__ = None , snake_case__ = "pil" , snake_case__ = True , snake_case__ = None , snake_case__ = 1 , **snake_case__ , ): lowerCAmelCase : List[str] = self.speech_processor.feature_extractor( snake_case__ , return_tensors='pt' , sampling_rate=snake_case__ ).input_features.to(self.device ) lowerCAmelCase : Optional[Any] = self.speech_model.generate(snake_case__ , max_length=48_0000 ) lowerCAmelCase : str = self.speech_processor.tokenizer.batch_decode(snake_case__ , skip_special_tokens=snake_case__ , normalize=snake_case__ )[ 0 ] if isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = 1 elif isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = len(snake_case__ ) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(snake_case__ )}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(snake_case__ , snake_case__ ) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(snake_case__ )}." ) # get prompt text embeddings lowerCAmelCase : str = self.tokenizer( snake_case__ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) lowerCAmelCase : Tuple = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowerCAmelCase : str = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) lowerCAmelCase : Union[str, Any] = text_input_ids[:, : self.tokenizer.model_max_length] lowerCAmelCase : Union[str, Any] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : int = text_embeddings.shape lowerCAmelCase : Any = text_embeddings.repeat(1 , snake_case__ , 1 ) lowerCAmelCase : Optional[int] = text_embeddings.view(bs_embed * num_images_per_prompt , snake_case__ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowerCAmelCase : List[str] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowerCAmelCase : List[str] if negative_prompt is None: lowerCAmelCase : Any = [''] * batch_size elif type(snake_case__ ) is not type(snake_case__ ): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(snake_case__ )} !=" f" {type(snake_case__ )}." ) elif isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = [negative_prompt] elif batch_size != len(snake_case__ ): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(snake_case__ )}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" ' the batch size of `prompt`.' ) else: lowerCAmelCase : Dict = negative_prompt lowerCAmelCase : Optional[int] = text_input_ids.shape[-1] lowerCAmelCase : int = self.tokenizer( snake_case__ , padding='max_length' , max_length=snake_case__ , truncation=snake_case__ , return_tensors='pt' , ) lowerCAmelCase : Union[str, Any] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowerCAmelCase : List[Any] = uncond_embeddings.shape[1] lowerCAmelCase : List[str] = uncond_embeddings.repeat(1 , snake_case__ , 1 ) lowerCAmelCase : Optional[Any] = uncond_embeddings.view(batch_size * num_images_per_prompt , snake_case__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCAmelCase : List[str] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowerCAmelCase : Union[str, Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowerCAmelCase : Dict = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowerCAmelCase : str = torch.randn(snake_case__ , generator=snake_case__ , device='cpu' , dtype=snake_case__ ).to( self.device ) else: lowerCAmelCase : Tuple = torch.randn(snake_case__ , generator=snake_case__ , device=self.device , dtype=snake_case__ ) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) lowerCAmelCase : str = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(snake_case__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowerCAmelCase : Union[str, Any] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowerCAmelCase : Any = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowerCAmelCase : Tuple = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCAmelCase : Union[str, Any] = {} if accepts_eta: lowerCAmelCase : int = eta for i, t in enumerate(self.progress_bar(snake_case__ ) ): # expand the latents if we are doing classifier free guidance lowerCAmelCase : Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCAmelCase : Tuple = self.scheduler.scale_model_input(snake_case__ , snake_case__ ) # predict the noise residual lowerCAmelCase : List[str] = self.unet(snake_case__ , snake_case__ , encoder_hidden_states=snake_case__ ).sample # perform guidance if do_classifier_free_guidance: lowerCAmelCase , lowerCAmelCase : Dict = noise_pred.chunk(2 ) lowerCAmelCase : Tuple = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowerCAmelCase : int = self.scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase : List[Any] = 1 / 0.1_8_2_1_5 * latents lowerCAmelCase : Dict = self.vae.decode(snake_case__ ).sample lowerCAmelCase : List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowerCAmelCase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowerCAmelCase : Dict = self.numpy_to_pil(snake_case__ ) if not return_dict: return image return StableDiffusionPipelineOutput(images=snake_case__ , nsfw_content_detected=snake_case__ )
646
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCAmelCase ( _A , _A , _A , unittest.TestCase ): _lowerCamelCase : Optional[int] = StableDiffusionInstructPixaPixPipeline _lowerCamelCase : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width""", """cross_attention_kwargs"""} _lowerCamelCase : int = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS _lowerCamelCase : int = IMAGE_TO_IMAGE_IMAGE_PARAMS _lowerCamelCase : str = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowercase ( self ): torch.manual_seed(0 ) lowerCAmelCase : Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) lowerCAmelCase : Union[str, Any] = PNDMScheduler(skip_prk_steps=snake_case__ ) torch.manual_seed(0 ) lowerCAmelCase : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) lowerCAmelCase : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowerCAmelCase : Optional[Any] = CLIPTextModel(snake_case__ ) lowerCAmelCase : Optional[int] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCAmelCase : Optional[Any] = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def lowercase ( self , snake_case__ , snake_case__=0 ): lowerCAmelCase : Tuple = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) lowerCAmelCase : Tuple = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase : Union[str, Any] = Image.fromarray(np.uinta(snake_case__ ) ).convert('RGB' ) if str(snake_case__ ).startswith('mps' ): lowerCAmelCase : Dict = torch.manual_seed(snake_case__ ) else: lowerCAmelCase : List[Any] = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) lowerCAmelCase : Tuple = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "image_guidance_scale": 1, "output_type": "numpy", } return inputs def lowercase ( self ): lowerCAmelCase : List[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase : Union[str, Any] = self.get_dummy_components() lowerCAmelCase : List[Any] = StableDiffusionInstructPixaPixPipeline(**snake_case__ ) lowerCAmelCase : int = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Dict = self.get_dummy_inputs(snake_case__ ) lowerCAmelCase : Optional[Any] = sd_pipe(**snake_case__ ).images lowerCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCAmelCase : Union[str, Any] = np.array([0.7_5_2_6, 0.3_7_5_0, 0.4_5_4_7, 0.6_1_1_7, 0.5_8_6_6, 0.5_0_1_6, 0.4_3_2_7, 0.5_6_4_2, 0.4_8_1_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowercase ( self ): lowerCAmelCase : Tuple = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase : Any = self.get_dummy_components() lowerCAmelCase : List[Any] = StableDiffusionInstructPixaPixPipeline(**snake_case__ ) lowerCAmelCase : Optional[Any] = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Optional[int] = self.get_dummy_inputs(snake_case__ ) lowerCAmelCase : List[str] = "french fries" lowerCAmelCase : int = sd_pipe(**snake_case__ , negative_prompt=snake_case__ ) lowerCAmelCase : Optional[int] = output.images lowerCAmelCase : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCAmelCase : Optional[int] = np.array([0.7_5_1_1, 0.3_6_4_2, 0.4_5_5_3, 0.6_2_3_6, 0.5_7_9_7, 0.5_0_1_3, 0.4_3_4_3, 0.5_6_1_1, 0.4_8_3_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowercase ( self ): lowerCAmelCase : Optional[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase : List[Any] = self.get_dummy_components() lowerCAmelCase : Optional[int] = StableDiffusionInstructPixaPixPipeline(**snake_case__ ) lowerCAmelCase : List[Any] = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Tuple = self.get_dummy_inputs(snake_case__ ) lowerCAmelCase : int = [inputs["prompt"]] * 2 lowerCAmelCase : Optional[Any] = np.array(inputs['image'] ).astype(np.floataa ) / 2_5_5.0 lowerCAmelCase : Union[str, Any] = torch.from_numpy(snake_case__ ).unsqueeze(0 ).to(snake_case__ ) lowerCAmelCase : Tuple = image / 2 + 0.5 lowerCAmelCase : Tuple = image.permute(0 , 3 , 1 , 2 ) lowerCAmelCase : Dict = image.repeat(2 , 1 , 1 , 1 ) lowerCAmelCase : List[Any] = sd_pipe(**snake_case__ ).images lowerCAmelCase : Tuple = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) lowerCAmelCase : str = np.array([0.5_8_1_2, 0.5_7_4_8, 0.5_2_2_2, 0.5_9_0_8, 0.5_6_9_5, 0.7_1_7_4, 0.6_8_0_4, 0.5_5_2_3, 0.5_5_7_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowercase ( self ): lowerCAmelCase : int = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase : Dict = self.get_dummy_components() lowerCAmelCase : Any = EulerAncestralDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' ) lowerCAmelCase : Tuple = StableDiffusionInstructPixaPixPipeline(**snake_case__ ) lowerCAmelCase : str = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Dict = self.get_dummy_inputs(snake_case__ ) lowerCAmelCase : Dict = sd_pipe(**snake_case__ ).images lowerCAmelCase : int = image[0, -3:, -3:, -1] lowerCAmelCase : Optional[int] = [round(snake_case__ , 4 ) for x in image_slice.flatten().tolist()] print(','.join([str(snake_case__ ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) lowerCAmelCase : str = np.array([0.7_4_1_7, 0.3_8_4_2, 0.4_7_3_2, 0.5_7_7_6, 0.5_8_9_1, 0.5_1_3_9, 0.4_0_5_2, 0.5_6_7_3, 0.4_9_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowercase ( self ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def lowercase ( self ): lowerCAmelCase : Optional[Any] = self.get_dummy_components() lowerCAmelCase : List[Any] = StableDiffusionInstructPixaPixPipeline(**snake_case__ ) lowerCAmelCase : List[Any] = VaeImageProcessor(do_resize=snake_case__ , do_normalize=snake_case__ ) lowerCAmelCase : Any = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Union[str, Any] = pipe(**self.get_dummy_inputs_by_type(snake_case__ , input_image_type='pt' ) )[0] lowerCAmelCase : Dict = components["vae"] lowerCAmelCase : Optional[Any] = self.get_dummy_inputs_by_type(snake_case__ , input_image_type='pt' ) for image_param in self.image_latents_params: if image_param in inputs.keys(): lowerCAmelCase : List[str] = vae.encode(inputs[image_param] ).latent_dist.mode() lowerCAmelCase : Dict = pipe(**snake_case__ )[0] lowerCAmelCase : str = np.abs(out - out_latents_inputs ).max() self.assertLess(snake_case__ , 1e-4 , 'passing latents as image input generate different result from passing image' ) @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self , snake_case__=0 ): lowerCAmelCase : List[Any] = torch.manual_seed(snake_case__ ) lowerCAmelCase : Union[str, Any] = load_image( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg' ) lowerCAmelCase : List[Any] = { "prompt": "turn him into a cyborg", "image": image, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "image_guidance_scale": 1.0, "output_type": "numpy", } return inputs def lowercase ( self ): lowerCAmelCase : Optional[Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing() lowerCAmelCase : int = self.get_inputs() lowerCAmelCase : List[str] = pipe(**snake_case__ ).images lowerCAmelCase : Dict = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) lowerCAmelCase : Dict = np.array([0.5_9_0_2, 0.6_0_1_5, 0.6_0_2_7, 0.5_9_8_3, 0.6_0_9_2, 0.6_0_6_1, 0.5_7_6_5, 0.5_7_8_5, 0.5_5_5_5] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def lowercase ( self ): lowerCAmelCase : List[str] = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=snake_case__ ) lowerCAmelCase : List[str] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing() lowerCAmelCase : Optional[Any] = self.get_inputs() lowerCAmelCase : Dict = pipe(**snake_case__ ).images lowerCAmelCase : Any = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) lowerCAmelCase : Optional[Any] = np.array([0.6_5_7_8, 0.6_8_1_7, 0.6_9_7_2, 0.6_7_6_1, 0.6_8_5_6, 0.6_9_1_6, 0.6_4_2_8, 0.6_5_1_6, 0.6_3_0_1] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def lowercase ( self ): lowerCAmelCase : str = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=snake_case__ ) lowerCAmelCase : Any = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing() lowerCAmelCase : Tuple = self.get_inputs() lowerCAmelCase : str = pipe(**snake_case__ ).images lowerCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) lowerCAmelCase : List[Any] = np.array([0.3_8_2_8, 0.3_8_3_4, 0.3_8_1_8, 0.3_7_9_2, 0.3_8_6_5, 0.3_7_5_2, 0.3_7_9_2, 0.3_8_4_7, 0.3_7_5_3] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def lowercase ( self ): lowerCAmelCase : str = 0 def callback_fn(snake_case__ , snake_case__ , snake_case__ ) -> None: lowerCAmelCase : Union[str, Any] = True nonlocal number_of_steps number_of_steps += 1 if step == 1: lowerCAmelCase : Optional[int] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) lowerCAmelCase : Any = latents[0, -3:, -3:, -1] lowerCAmelCase : Optional[Any] = np.array([-0.2_4_6_3, -0.4_6_4_4, -0.9_7_5_6, 1.5_1_7_6, 1.4_4_1_4, 0.7_8_6_6, 0.9_8_9_7, 0.8_5_2_1, 0.7_9_8_3] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: lowerCAmelCase : Tuple = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) lowerCAmelCase : List[str] = latents[0, -3:, -3:, -1] lowerCAmelCase : Tuple = np.array([-0.2_6_4_4, -0.4_6_2_6, -0.9_6_5_3, 1.5_1_7_6, 1.4_5_5_1, 0.7_6_8_6, 0.9_8_0_5, 0.8_4_5_2, 0.8_1_1_5] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 lowerCAmelCase : Any = False lowerCAmelCase : Tuple = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=snake_case__ , torch_dtype=torch.floataa ) lowerCAmelCase : Optional[Any] = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing() lowerCAmelCase : Dict = self.get_inputs() pipe(**snake_case__ , callback=snake_case__ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def lowercase ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCAmelCase : int = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=snake_case__ , torch_dtype=torch.floataa ) lowerCAmelCase : int = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowerCAmelCase : Any = self.get_inputs() lowerCAmelCase : int = pipe(**snake_case__ ) lowerCAmelCase : Dict = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def lowercase ( self ): lowerCAmelCase : Any = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 lowerCAmelCase : Optional[int] = inputs["image"].resize((504, 504) ) lowerCAmelCase : List[Any] = "timbrooks/instruct-pix2pix" lowerCAmelCase : List[str] = StableDiffusionInstructPixaPixPipeline.from_pretrained( snake_case__ , safety_checker=snake_case__ , ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing() lowerCAmelCase : Optional[int] = pipe(**snake_case__ ) lowerCAmelCase : Any = output.images[0] lowerCAmelCase : Union[str, Any] = image[255:258, 383:386, -1] assert image.shape == (504, 504, 3) lowerCAmelCase : Optional[int] = np.array([0.2_7_2_6, 0.2_5_2_9, 0.2_6_6_4, 0.2_6_5_5, 0.2_6_4_1, 0.2_6_4_2, 0.2_5_9_1, 0.2_6_4_9, 0.2_5_9_0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
713
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : List[Any] = LDMTextToImagePipeline _lowerCamelCase : Optional[Any] = TEXT_TO_IMAGE_PARAMS - { """negative_prompt""", """negative_prompt_embeds""", """cross_attention_kwargs""", """prompt_embeds""", } _lowerCamelCase : List[str] = PipelineTesterMixin.required_optional_params - { """num_images_per_prompt""", """callback""", """callback_steps""", } _lowerCamelCase : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS _lowerCamelCase : Optional[int] = False def lowercase ( self ): torch.manual_seed(0 ) lowerCAmelCase : Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) lowerCAmelCase : int = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , ) torch.manual_seed(0 ) lowerCAmelCase : str = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') , up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') , latent_channels=4 , ) torch.manual_seed(0 ) lowerCAmelCase : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowerCAmelCase : str = CLIPTextModel(snake_case__ ) lowerCAmelCase : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCAmelCase : List[Any] = { 'unet': unet, 'scheduler': scheduler, 'vqvae': vae, 'bert': text_encoder, 'tokenizer': tokenizer, } return components def lowercase ( self , snake_case__ , snake_case__=0 ): if str(snake_case__ ).startswith('mps' ): lowerCAmelCase : Optional[int] = torch.manual_seed(snake_case__ ) else: lowerCAmelCase : str = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) lowerCAmelCase : Tuple = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase ( self ): lowerCAmelCase : List[str] = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase : Optional[Any] = self.get_dummy_components() lowerCAmelCase : Optional[Any] = LDMTextToImagePipeline(**snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Tuple = self.get_dummy_inputs(snake_case__ ) lowerCAmelCase : Union[str, Any] = pipe(**snake_case__ ).images lowerCAmelCase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) lowerCAmelCase : List[Any] = np.array([0.6_1_0_1, 0.6_1_5_6, 0.5_6_2_2, 0.4_8_9_5, 0.6_6_6_1, 0.3_8_0_4, 0.5_7_4_8, 0.6_1_3_6, 0.5_0_1_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self , snake_case__ , snake_case__=torch.floataa , snake_case__=0 ): lowerCAmelCase : List[str] = torch.manual_seed(snake_case__ ) lowerCAmelCase : int = np.random.RandomState(snake_case__ ).standard_normal((1, 4, 32, 32) ) lowerCAmelCase : Optional[Any] = torch.from_numpy(snake_case__ ).to(device=snake_case__ , dtype=snake_case__ ) lowerCAmelCase : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase ( self ): lowerCAmelCase : Tuple = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Optional[Any] = self.get_inputs(snake_case__ ) lowerCAmelCase : List[Any] = pipe(**snake_case__ ).images lowerCAmelCase : str = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) lowerCAmelCase : Tuple = np.array([0.5_1_8_2_5, 0.5_2_8_5_0, 0.5_2_5_4_3, 0.5_4_2_5_8, 0.5_2_3_0_4, 0.5_2_5_6_9, 0.5_4_3_6_3, 0.5_5_2_7_6, 0.5_6_8_7_8] ) lowerCAmelCase : int = np.abs(expected_slice - image_slice ).max() assert max_diff < 1e-3 @nightly @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self , snake_case__ , snake_case__=torch.floataa , snake_case__=0 ): lowerCAmelCase : List[str] = torch.manual_seed(snake_case__ ) lowerCAmelCase : Any = np.random.RandomState(snake_case__ ).standard_normal((1, 4, 32, 32) ) lowerCAmelCase : List[Any] = torch.from_numpy(snake_case__ ).to(device=snake_case__ , dtype=snake_case__ ) lowerCAmelCase : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase ( self ): lowerCAmelCase : Optional[int] = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : int = self.get_inputs(snake_case__ ) lowerCAmelCase : Optional[int] = pipe(**snake_case__ ).images[0] lowerCAmelCase : Optional[int] = load_numpy( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy' ) lowerCAmelCase : List[str] = np.abs(expected_image - image ).max() assert max_diff < 1e-3
646
0
'''simple docstring''' from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( """The RoBERTa Model transformer with early exiting (DeeRoBERTa). """ , __lowercase , ) class lowerCAmelCase ( __lowercase ): _lowerCamelCase : str = RobertaConfig _lowerCamelCase : Dict = 'roberta' def __init__( self , snake_case__ ): super().__init__(__A ) lowerCAmelCase : List[Any] = RobertaEmbeddings(__A ) self.init_weights() @add_start_docstrings( """RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,\n also takes care of multi-layer training. """ , __lowercase , ) class lowerCAmelCase ( __lowercase ): _lowerCamelCase : int = RobertaConfig _lowerCamelCase : Tuple = 'roberta' def __init__( self , snake_case__ ): super().__init__(__A ) lowerCAmelCase : Union[str, Any] = config.num_labels lowerCAmelCase : Any = config.num_hidden_layers lowerCAmelCase : List[Any] = DeeRobertaModel(__A ) lowerCAmelCase : Union[str, Any] = nn.Dropout(config.hidden_dropout_prob ) lowerCAmelCase : List[Any] = nn.Linear(config.hidden_size , self.config.num_labels ) @add_start_docstrings_to_model_forward(__A ) def lowercase ( self , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=-1 , snake_case__=False , ): lowerCAmelCase : Optional[Any] = self.num_layers try: lowerCAmelCase : Any = self.roberta( __A , attention_mask=__A , token_type_ids=__A , position_ids=__A , head_mask=__A , inputs_embeds=__A , ) lowerCAmelCase : Dict = outputs[1] lowerCAmelCase : Any = self.dropout(__A ) lowerCAmelCase : Union[str, Any] = self.classifier(__A ) lowerCAmelCase : int = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: lowerCAmelCase : Any = e.message lowerCAmelCase : Any = e.exit_layer lowerCAmelCase : Dict = outputs[0] if not self.training: lowerCAmelCase : Dict = entropy(__A ) lowerCAmelCase : Optional[Any] = [] lowerCAmelCase : Dict = [] if labels is not None: if self.num_labels == 1: # We are doing regression lowerCAmelCase : Union[str, Any] = MSELoss() lowerCAmelCase : Optional[int] = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: lowerCAmelCase : str = CrossEntropyLoss() lowerCAmelCase : Optional[int] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits lowerCAmelCase : str = [] for highway_exit in outputs[-1]: lowerCAmelCase : int = highway_exit[0] if not self.training: highway_logits_all.append(__A ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression lowerCAmelCase : Any = MSELoss() lowerCAmelCase : List[Any] = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: lowerCAmelCase : List[str] = CrossEntropyLoss() lowerCAmelCase : Optional[int] = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(__A ) if train_highway: lowerCAmelCase : List[Any] = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: lowerCAmelCase : Union[str, Any] = (loss,) + outputs if not self.training: lowerCAmelCase : Any = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: lowerCAmelCase : Optional[int] = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
714
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Tuple = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { 'facebook/xmod-base': 'https://huggingface.co/facebook/xmod-base/resolve/main/config.json', 'facebook/xmod-large-prenorm': 'https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json', 'facebook/xmod-base-13-125k': 'https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json', 'facebook/xmod-base-30-125k': 'https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json', 'facebook/xmod-base-30-195k': 'https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json', 'facebook/xmod-base-60-125k': 'https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json', 'facebook/xmod-base-60-265k': 'https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json', 'facebook/xmod-base-75-125k': 'https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json', 'facebook/xmod-base-75-269k': 'https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json', } class lowerCAmelCase ( a ): _lowerCamelCase : int = """xmod""" def __init__( self , snake_case__=3_0522 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=1e-1_2 , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__="absolute" , snake_case__=True , snake_case__=None , snake_case__=False , snake_case__=2 , snake_case__=False , snake_case__=True , snake_case__=True , snake_case__=("en_XX",) , snake_case__=None , **snake_case__ , ): super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) lowerCAmelCase : Dict = vocab_size lowerCAmelCase : Optional[Any] = hidden_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob lowerCAmelCase : str = max_position_embeddings lowerCAmelCase : int = type_vocab_size lowerCAmelCase : List[Any] = initializer_range lowerCAmelCase : Any = layer_norm_eps lowerCAmelCase : Dict = position_embedding_type lowerCAmelCase : Optional[Any] = use_cache lowerCAmelCase : Union[str, Any] = classifier_dropout lowerCAmelCase : int = pre_norm lowerCAmelCase : Optional[Any] = adapter_reduction_factor lowerCAmelCase : Any = adapter_layer_norm lowerCAmelCase : Dict = adapter_reuse_layer_norm lowerCAmelCase : Any = ln_before_adapter lowerCAmelCase : Optional[Any] = list(snake_case__ ) lowerCAmelCase : List[Any] = default_language class lowerCAmelCase ( a ): @property def lowercase ( self ): if self.task == "multiple-choice": lowerCAmelCase : List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase : Optional[int] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
646
0
'''simple docstring''' from __future__ import annotations _lowerCAmelCase : Optional[int] = [] def __UpperCamelCase ( _A : list[list[int]] , _A : int , _A : int ) -> Optional[Any]: """simple docstring""" for i in range(len(UpperCamelCase__ ) ): if board[row][i] == 1: return False for i in range(len(UpperCamelCase__ ) ): if board[i][column] == 1: return False for i, j in zip(range(UpperCamelCase__ , -1 , -1 ) , range(UpperCamelCase__ , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(UpperCamelCase__ , -1 , -1 ) , range(UpperCamelCase__ , len(UpperCamelCase__ ) ) ): if board[i][j] == 1: return False return True def __UpperCamelCase ( _A : list[list[int]] , _A : int ) -> List[Any]: """simple docstring""" if row >= len(UpperCamelCase__ ): solution.append(UpperCamelCase__ ) printboard(UpperCamelCase__ ) print() return True for i in range(len(UpperCamelCase__ ) ): if is_safe(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): lowerCAmelCase : Any = 1 solve(UpperCamelCase__ , row + 1 ) lowerCAmelCase : List[Any] = 0 return False def __UpperCamelCase ( _A : list[list[int]] ) -> Optional[int]: """simple docstring""" for i in range(len(UpperCamelCase__ ) ): for j in range(len(UpperCamelCase__ ) ): if board[i][j] == 1: print('Q' , end=' ' ) else: print('.' , end=' ' ) print() # n=int(input("The no. of queens")) _lowerCAmelCase : Optional[Any] = 8 _lowerCAmelCase : List[str] = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print('The total no. of solutions are :', len(solution))
715
'''simple docstring''' import argparse import os import re _lowerCAmelCase : Dict = 'src/diffusers' # Pattern that looks at the indentation in a line. _lowerCAmelCase : str = re.compile(r'^(\s*)\S') # Pattern that matches `"key":" and puts `key` in group 0. _lowerCAmelCase : Any = re.compile(r'^\s*"([^"]+)":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. _lowerCAmelCase : List[Any] = re.compile(r'^\s*_import_structure\["([^"]+)"\]') # Pattern that matches `"key",` and puts `key` in group 0. _lowerCAmelCase : int = re.compile(r'^\s*"([^"]+)",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. _lowerCAmelCase : Optional[Any] = re.compile(r'\[([^\]]+)\]') def __UpperCamelCase ( _A : Union[str, Any] ) -> Dict: """simple docstring""" lowerCAmelCase : Any = _re_indent.search(_A ) return "" if search is None else search.groups()[0] def __UpperCamelCase ( _A : Dict , _A : Any="" , _A : List[str]=None , _A : Any=None ) -> Tuple: """simple docstring""" lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Tuple = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(_A ): index += 1 lowerCAmelCase : Optional[int] = ['\n'.join(lines[:index] )] else: lowerCAmelCase : int = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowerCAmelCase : Tuple = [lines[index]] index += 1 while index < len(_A ) and (end_prompt is None or not lines[index].startswith(_A )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(_A ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(_A ) ) if index < len(_A ) - 1: lowerCAmelCase : List[Any] = [lines[index + 1]] index += 1 else: lowerCAmelCase : int = [] else: blocks.append('\n'.join(_A ) ) lowerCAmelCase : Any = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(_A ) > 0: blocks.append('\n'.join(_A ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(_A ): blocks.append('\n'.join(lines[index:] ) ) return blocks def __UpperCamelCase ( _A : Dict ) -> List[Any]: """simple docstring""" def _inner(_A : Tuple ): return key(_A ).lower().replace('_' , '' ) return _inner def __UpperCamelCase ( _A : Union[str, Any] , _A : Any=None ) -> Optional[Any]: """simple docstring""" def noop(_A : Any ): return x if key is None: lowerCAmelCase : List[str] = noop # Constants are all uppercase, they go first. lowerCAmelCase : str = [obj for obj in objects if key(_A ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowerCAmelCase : List[str] = [obj for obj in objects if key(_A )[0].isupper() and not key(_A ).isupper()] # Functions begin with a lowercase, they go last. lowerCAmelCase : Optional[Any] = [obj for obj in objects if not key(_A )[0].isupper()] lowerCAmelCase : Tuple = ignore_underscore(_A ) return sorted(_A , key=_A ) + sorted(_A , key=_A ) + sorted(_A , key=_A ) def __UpperCamelCase ( _A : Union[str, Any] ) -> int: """simple docstring""" def _replace(_A : List[Any] ): lowerCAmelCase : List[Any] = match.groups()[0] if "," not in imports: return F"[{imports}]" lowerCAmelCase : Dict = [part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase : List[str] = keys[:-1] return "[" + ", ".join([F"\"{k}\"" for k in sort_objects(_A )] ) + "]" lowerCAmelCase : Optional[int] = import_statement.split('\n' ) if len(_A ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowerCAmelCase : Optional[Any] = 2 if lines[1].strip() == '[' else 1 lowerCAmelCase : List[str] = [(i, _re_strip_line.search(_A ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowerCAmelCase : Optional[Any] = sort_objects(_A , key=lambda _A : x[1] ) lowerCAmelCase : Dict = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(_A ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowerCAmelCase : Optional[int] = _re_bracket_content.sub(_replace , lines[1] ) else: lowerCAmelCase : List[Any] = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase : int = keys[:-1] lowerCAmelCase : Tuple = get_indent(lines[1] ) + ', '.join([F"\"{k}\"" for k in sort_objects(_A )] ) return "\n".join(_A ) else: # Finally we have to deal with imports fitting on one line lowerCAmelCase : Union[str, Any] = _re_bracket_content.sub(_replace , _A ) return import_statement def __UpperCamelCase ( _A : str , _A : Tuple=True ) -> Optional[Any]: """simple docstring""" with open(_A , 'r' ) as f: lowerCAmelCase : Optional[int] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowerCAmelCase : List[Any] = split_code_in_indented_blocks( _A , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(_A ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowerCAmelCase : List[str] = main_blocks[block_idx] lowerCAmelCase : Union[str, Any] = block.split('\n' ) # Get to the start of the imports. lowerCAmelCase : Optional[Any] = 0 while line_idx < len(_A ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowerCAmelCase : Optional[Any] = len(_A ) else: line_idx += 1 if line_idx >= len(_A ): continue # Ignore beginning and last line: they don't contain anything. lowerCAmelCase : str = '\n'.join(block_lines[line_idx:-1] ) lowerCAmelCase : str = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowerCAmelCase : Optional[Any] = split_code_in_indented_blocks(_A , indent_level=_A ) # We have two categories of import key: list or _import_structure[key].append/extend lowerCAmelCase : Union[str, Any] = _re_direct_key if '_import_structure' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowerCAmelCase : int = [(pattern.search(_A ).groups()[0] if pattern.search(_A ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowerCAmelCase : Dict = [(i, key) for i, key in enumerate(_A ) if key is not None] lowerCAmelCase : List[Any] = [x[0] for x in sorted(_A , key=lambda _A : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowerCAmelCase : int = 0 lowerCAmelCase : Dict = [] for i in range(len(_A ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: lowerCAmelCase : str = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(_A ) count += 1 # And we put our main block back together with its first and last line. lowerCAmelCase : str = '\n'.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(_A ): if check_only: return True else: print(F"Overwriting {file}." ) with open(_A , 'w' ) as f: f.write('\n'.join(_A ) ) def __UpperCamelCase ( _A : Tuple=True ) -> Any: """simple docstring""" lowerCAmelCase : Tuple = [] for root, _, files in os.walk(_A ): if "__init__.py" in files: lowerCAmelCase : Any = sort_imports(os.path.join(_A , '__init__.py' ) , check_only=_A ) if result: lowerCAmelCase : Optional[Any] = [os.path.join(_A , '__init__.py' )] if len(_A ) > 0: raise ValueError(F"Would overwrite {len(_A )} files, run `make style`." ) if __name__ == "__main__": _lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') _lowerCAmelCase : Optional[int] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
646
0
'''simple docstring''' import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class lowerCAmelCase ( unittest.TestCase ): def __init__( self , snake_case__ , snake_case__=7 , snake_case__=3 , snake_case__=18 , snake_case__=30 , snake_case__=400 , snake_case__=True , snake_case__=None , snake_case__=True , snake_case__=None , snake_case__=True , snake_case__=[0.5, 0.5, 0.5] , snake_case__=[0.5, 0.5, 0.5] , snake_case__=False , ): lowerCAmelCase : Optional[Any] = size if size is not None else {'height': 20, 'width': 20} lowerCAmelCase : int = crop_size if crop_size is not None else {'height': 18, 'width': 18} lowerCAmelCase : Tuple = parent lowerCAmelCase : Optional[Any] = batch_size lowerCAmelCase : Optional[int] = num_channels lowerCAmelCase : str = image_size lowerCAmelCase : str = min_resolution lowerCAmelCase : Tuple = max_resolution lowerCAmelCase : str = do_resize lowerCAmelCase : Dict = size lowerCAmelCase : Optional[int] = do_center_crop lowerCAmelCase : int = crop_size lowerCAmelCase : List[Any] = do_normalize lowerCAmelCase : Dict = image_mean lowerCAmelCase : Dict = image_std lowerCAmelCase : Optional[Any] = do_reduce_labels def lowercase ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def __UpperCamelCase ( ) -> Tuple: """simple docstring""" lowerCAmelCase : Optional[int] = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) lowerCAmelCase : Tuple = Image.open(dataset[0]['file'] ) lowerCAmelCase : int = Image.open(dataset[1]['file'] ) return image, map def __UpperCamelCase ( ) -> Optional[Any]: """simple docstring""" lowerCAmelCase : List[Any] = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) lowerCAmelCase : List[Any] = Image.open(ds[0]['file'] ) lowerCAmelCase : Tuple = Image.open(ds[1]['file'] ) lowerCAmelCase : Tuple = Image.open(ds[2]['file'] ) lowerCAmelCase : Dict = Image.open(ds[3]['file'] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): _lowerCamelCase : Union[str, Any] = BeitImageProcessor if is_vision_available() else None def lowercase ( self ): lowerCAmelCase : Tuple = BeitImageProcessingTester(self ) @property def lowercase ( self ): return self.image_processor_tester.prepare_image_processor_dict() def lowercase ( self ): lowerCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , 'do_resize' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , 'size' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , 'do_center_crop' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , 'center_crop' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , 'do_normalize' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , 'image_mean' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , 'image_std' ) ) def lowercase ( self ): lowerCAmelCase : Dict = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 20, 'width': 20} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) self.assertEqual(image_processor.do_reduce_labels , __SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=__SCREAMING_SNAKE_CASE ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) self.assertEqual(image_processor.do_reduce_labels , __SCREAMING_SNAKE_CASE ) def lowercase ( self ): pass def lowercase ( self ): lowerCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input lowerCAmelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase : Any = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowercase ( self ): lowerCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , numpify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input lowerCAmelCase : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase : int = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowercase ( self ): lowerCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , torchify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input lowerCAmelCase : Dict = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase : Tuple = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowercase ( self ): lowerCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , torchify=__SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[str] = [] for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input lowerCAmelCase : List[Any] = image_processing(image_inputs[0] , maps[0] , return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual( encoding['labels'].shape , ( 1, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual(encoding['labels'].dtype , torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 255 ) # Test batched lowerCAmelCase : List[Any] = image_processing(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual( encoding['labels'].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual(encoding['labels'].dtype , torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 255 ) # Test not batched input (PIL images) lowerCAmelCase , lowerCAmelCase : Optional[int] = prepare_semantic_single_inputs() lowerCAmelCase : Union[str, Any] = image_processing(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual( encoding['labels'].shape , ( 1, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual(encoding['labels'].dtype , torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 255 ) # Test batched input (PIL images) lowerCAmelCase , lowerCAmelCase : Tuple = prepare_semantic_batch_inputs() lowerCAmelCase : Tuple = image_processing(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual( encoding['labels'].shape , ( 2, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual(encoding['labels'].dtype , torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 255 ) def lowercase ( self ): lowerCAmelCase : Tuple = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 lowerCAmelCase , lowerCAmelCase : List[Any] = prepare_semantic_single_inputs() lowerCAmelCase : int = image_processing(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_tensors='pt' ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 150 ) lowerCAmelCase : List[Any] = True lowerCAmelCase : int = image_processing(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_tensors='pt' ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 255 )
716
'''simple docstring''' import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class lowerCAmelCase : def __init__( self , snake_case__ , snake_case__=13 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=99 , snake_case__=64 , snake_case__=32 , snake_case__=5 , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=16 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=3 , snake_case__=4 , snake_case__=None , ): lowerCAmelCase : str = parent lowerCAmelCase : Optional[int] = batch_size lowerCAmelCase : Optional[Any] = seq_length lowerCAmelCase : Optional[Any] = is_training lowerCAmelCase : Dict = use_input_mask lowerCAmelCase : Tuple = use_token_type_ids lowerCAmelCase : int = use_labels lowerCAmelCase : int = vocab_size lowerCAmelCase : Any = hidden_size lowerCAmelCase : Optional[Any] = embedding_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : List[str] = num_attention_heads lowerCAmelCase : List[Any] = intermediate_size lowerCAmelCase : Dict = hidden_act lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : int = attention_probs_dropout_prob lowerCAmelCase : List[Any] = max_position_embeddings lowerCAmelCase : int = type_vocab_size lowerCAmelCase : List[str] = type_sequence_label_size lowerCAmelCase : Dict = initializer_range lowerCAmelCase : Any = num_labels lowerCAmelCase : str = num_choices lowerCAmelCase : int = scope def lowercase ( self ): lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Union[str, Any] = None if self.use_input_mask: lowerCAmelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : Optional[int] = None if self.use_token_type_ids: lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : Optional[Any] = None lowerCAmelCase : Optional[Any] = None lowerCAmelCase : Dict = None if self.use_labels: lowerCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase ( self ): return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case__ , initializer_range=self.initializer_range , ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = MobileBertModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : int = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) lowerCAmelCase : Optional[int] = model(snake_case__ , token_type_ids=snake_case__ ) lowerCAmelCase : Optional[Any] = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : int = MobileBertForMaskedLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : str = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = MobileBertForNextSentencePrediction(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : str = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : List[Any] = MobileBertForPreTraining(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Tuple = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , next_sentence_label=snake_case__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = MobileBertForQuestionAnswering(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : List[str] = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = self.num_labels lowerCAmelCase : List[Any] = MobileBertForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = self.num_labels lowerCAmelCase : int = MobileBertForTokenClassification(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : List[str] = self.num_choices lowerCAmelCase : Any = MobileBertForMultipleChoice(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : int = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : List[str] = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase ( self ): lowerCAmelCase : Any = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) : Optional[Any] = config_and_inputs lowerCAmelCase : List[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase ( a , a , unittest.TestCase ): _lowerCamelCase : List[str] = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) _lowerCamelCase : Tuple = ( { """feature-extraction""": MobileBertModel, """fill-mask""": MobileBertForMaskedLM, """question-answering""": MobileBertForQuestionAnswering, """text-classification""": MobileBertForSequenceClassification, """token-classification""": MobileBertForTokenClassification, """zero-shot""": MobileBertForSequenceClassification, } if is_torch_available() else {} ) _lowerCamelCase : str = True def lowercase ( self , snake_case__ , snake_case__ , snake_case__=False ): lowerCAmelCase : int = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if return_labels: if model_class in get_values(snake_case__ ): lowerCAmelCase : str = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=snake_case__ ) lowerCAmelCase : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case__ ) return inputs_dict def lowercase ( self ): lowerCAmelCase : List[Any] = MobileBertModelTester(self ) lowerCAmelCase : Dict = ConfigTester(self , config_class=snake_case__ , hidden_size=37 ) def lowercase ( self ): self.config_tester.run_common_tests() def lowercase ( self ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*snake_case__ ) def __UpperCamelCase ( _A : Optional[Any] ) -> Optional[int]: """simple docstring""" return torch.tensor( _A , dtype=torch.long , device=_A , ) _lowerCAmelCase : Union[str, Any] = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase ( unittest.TestCase ): @slow def lowercase ( self ): lowerCAmelCase : List[str] = MobileBertModel.from_pretrained('google/mobilebert-uncased' ).to(snake_case__ ) lowerCAmelCase : List[Any] = _long_tensor([[101, 7110, 1005, 1056, 2023, 1_1333, 1_7413, 1029, 102]] ) with torch.no_grad(): lowerCAmelCase : Tuple = model(snake_case__ )[0] lowerCAmelCase : List[Any] = torch.Size((1, 9, 512) ) self.assertEqual(output.shape , snake_case__ ) lowerCAmelCase : Union[str, Any] = torch.tensor( [ [ [-2.4_7_3_6_5_2_6e0_7, 8.2_6_9_1_6_5_6e0_4, 1.6_5_2_1_8_3_8e0_5], [-5.7_5_4_1_7_0_4e-0_1, 3.9_0_5_6_0_2_2e0_0, 4.4_0_1_1_5_0_7e0_0], [2.6_0_4_7_3_5_9e0_0, 1.5_6_7_7_6_5_2e0_0, -1.7_3_2_4_1_8_8e-0_1], ] ] , device=snake_case__ , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE lowerCAmelCase : List[str] = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) lowerCAmelCase : Dict = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
646
0
'''simple docstring''' def __UpperCamelCase ( _A : str ) -> str: """simple docstring""" lowerCAmelCase : Any = '' for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def __UpperCamelCase ( _A : str ) -> dict[str, str]: """simple docstring""" lowerCAmelCase : Tuple = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key lowerCAmelCase : str = remove_duplicates(key.upper() ) lowerCAmelCase : Any = len(_A ) # First fill cipher with key characters lowerCAmelCase : Tuple = {alphabet[i]: char for i, char in enumerate(_A )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(_A ) , 26 ): lowerCAmelCase : Any = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 lowerCAmelCase : int = alphabet[i - offset] lowerCAmelCase : int = char return cipher_alphabet def __UpperCamelCase ( _A : str , _A : dict[str, str] ) -> str: """simple docstring""" return "".join(cipher_map.get(_A , _A ) for ch in message.upper() ) def __UpperCamelCase ( _A : str , _A : dict[str, str] ) -> str: """simple docstring""" lowerCAmelCase : List[Any] = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(_A , _A ) for ch in message.upper() ) def __UpperCamelCase ( ) -> None: """simple docstring""" lowerCAmelCase : Any = input('Enter message to encode or decode: ' ).strip() lowerCAmelCase : str = input('Enter keyword: ' ).strip() lowerCAmelCase : List[Any] = input('Encipher or decipher? E/D:' ).strip()[0].lower() try: lowerCAmelCase : Any = {'e': encipher, 'd': decipher}[option] except KeyError: raise KeyError('invalid input option' ) lowerCAmelCase : Optional[int] = create_cipher_map(_A ) print(func(_A , _A ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
717
'''simple docstring''' import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __UpperCamelCase ( _A : Dict ) -> int: """simple docstring""" lowerCAmelCase : Tuple = [] embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight", F"stage{idx}.patch_embed.proj.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias", F"stage{idx}.patch_embed.proj.bias", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight", F"stage{idx}.patch_embed.norm.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias", F"stage{idx}.patch_embed.norm.bias", ) ) return embed def __UpperCamelCase ( _A : List[Any] , _A : Dict ) -> Any: """simple docstring""" lowerCAmelCase : str = [] attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight", F"stage{idx}.blocks.{cnt}.attn.proj_q.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias", F"stage{idx}.blocks.{cnt}.attn.proj_q.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight", F"stage{idx}.blocks.{cnt}.attn.proj_k.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias", F"stage{idx}.blocks.{cnt}.attn.proj_k.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight", F"stage{idx}.blocks.{cnt}.attn.proj_v.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias", F"stage{idx}.blocks.{cnt}.attn.proj_v.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight", F"stage{idx}.blocks.{cnt}.attn.proj.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias", F"stage{idx}.blocks.{cnt}.attn.proj.bias", ) ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc2.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight", F"stage{idx}.blocks.{cnt}.norm1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias", F"stage{idx}.blocks.{cnt}.norm1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight", F"stage{idx}.blocks.{cnt}.norm2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias", F"stage{idx}.blocks.{cnt}.norm2.bias") ) return attention_weights def __UpperCamelCase ( _A : Optional[int] ) -> Optional[int]: """simple docstring""" lowerCAmelCase : Optional[int] = [] token.append((F"cvt.encoder.stages.{idx}.cls_token", 'stage2.cls_token') ) return token def __UpperCamelCase ( ) -> int: """simple docstring""" lowerCAmelCase : List[Any] = [] head.append(('layernorm.weight', 'norm.weight') ) head.append(('layernorm.bias', 'norm.bias') ) head.append(('classifier.weight', 'head.weight') ) head.append(('classifier.bias', 'head.bias') ) return head def __UpperCamelCase ( _A : str , _A : Optional[Any] , _A : Dict , _A : str ) -> Optional[int]: """simple docstring""" lowerCAmelCase : List[str] = 'imagenet-1k-id2label.json' lowerCAmelCase : Tuple = 10_00 lowerCAmelCase : str = 'huggingface/label-files' lowerCAmelCase : List[Any] = num_labels lowerCAmelCase : Any = json.load(open(cached_download(hf_hub_url(_A , _A , repo_type='dataset' ) ) , 'r' ) ) lowerCAmelCase : List[str] = {int(_A ): v for k, v in idalabel.items()} lowerCAmelCase : List[str] = idalabel lowerCAmelCase : str = {v: k for k, v in idalabel.items()} lowerCAmelCase : int = CvtConfig(num_labels=_A , idalabel=_A , labelaid=_A ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13": lowerCAmelCase : List[str] = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21": lowerCAmelCase : Tuple = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: lowerCAmelCase : Any = [2, 2, 20] lowerCAmelCase : List[str] = [3, 12, 16] lowerCAmelCase : List[Any] = [1_92, 7_68, 10_24] lowerCAmelCase : Union[str, Any] = CvtForImageClassification(_A ) lowerCAmelCase : str = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) lowerCAmelCase : Optional[Any] = image_size lowerCAmelCase : List[Any] = torch.load(_A , map_location=torch.device('cpu' ) ) lowerCAmelCase : str = OrderedDict() lowerCAmelCase : int = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: lowerCAmelCase : List[str] = list_of_state_dict + cls_token(_A ) lowerCAmelCase : Optional[Any] = list_of_state_dict + embeddings(_A ) for cnt in range(config.depth[idx] ): lowerCAmelCase : List[Any] = list_of_state_dict + attention(_A , _A ) lowerCAmelCase : List[str] = list_of_state_dict + final() for gg in list_of_state_dict: print(_A ) for i in range(len(_A ) ): lowerCAmelCase : Tuple = original_weights[list_of_state_dict[i][1]] model.load_state_dict(_A ) model.save_pretrained(_A ) image_processor.save_pretrained(_A ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": _lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '--cvt_model', default='cvt-w24', type=str, help='Name of the cvt model you\'d like to convert.', ) parser.add_argument( '--image_size', default=384, type=int, help='Input Image Size', ) parser.add_argument( '--cvt_file_name', default=r'cvtmodels\CvT-w24-384x384-IN-22k.pth', type=str, help='Input Image Size', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) _lowerCAmelCase : str = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
646
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class lowerCAmelCase ( unittest.TestCase ): def __init__( self , snake_case__ , snake_case__=7 , snake_case__=3 , snake_case__=18 , snake_case__=30 , snake_case__=400 , snake_case__=True , snake_case__=None , snake_case__=True , snake_case__=None , snake_case__=True , snake_case__=[0.5, 0.5, 0.5] , snake_case__=[0.5, 0.5, 0.5] , ): lowerCAmelCase : Union[str, Any] = size if size is not None else {'shortest_edge': 18} lowerCAmelCase : Optional[Any] = crop_size if crop_size is not None else {'height': 18, 'width': 18} lowerCAmelCase : str = parent lowerCAmelCase : int = batch_size lowerCAmelCase : int = num_channels lowerCAmelCase : Dict = image_size lowerCAmelCase : List[Any] = min_resolution lowerCAmelCase : Union[str, Any] = max_resolution lowerCAmelCase : List[str] = do_resize lowerCAmelCase : Tuple = size lowerCAmelCase : Dict = do_center_crop lowerCAmelCase : List[str] = crop_size lowerCAmelCase : List[Any] = do_normalize lowerCAmelCase : str = image_mean lowerCAmelCase : Optional[int] = image_std def lowercase ( self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : List[str] = LevitImageProcessor if is_vision_available() else None def lowercase ( self ): lowerCAmelCase : Any = LevitImageProcessingTester(self ) @property def lowercase ( self ): return self.image_processor_tester.prepare_image_processor_dict() def lowercase ( self ): lowerCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , 'image_mean' ) ) self.assertTrue(hasattr(__A , 'image_std' ) ) self.assertTrue(hasattr(__A , 'do_normalize' ) ) self.assertTrue(hasattr(__A , 'do_resize' ) ) self.assertTrue(hasattr(__A , 'do_center_crop' ) ) self.assertTrue(hasattr(__A , 'size' ) ) def lowercase ( self ): lowerCAmelCase : str = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) lowerCAmelCase : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def lowercase ( self ): pass def lowercase ( self ): # Initialize image_processing lowerCAmelCase : int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input lowerCAmelCase : int = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase : Optional[int] = image_processing(__A , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowercase ( self ): # Initialize image_processing lowerCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input lowerCAmelCase : str = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase : Optional[int] = image_processing(__A , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowercase ( self ): # Initialize image_processing lowerCAmelCase : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input lowerCAmelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase : Any = image_processing(__A , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
718
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Any = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { 'xlm-roberta-base': 'https://huggingface.co/xlm-roberta-base/resolve/main/config.json', 'xlm-roberta-large': 'https://huggingface.co/xlm-roberta-large/resolve/main/config.json', 'xlm-roberta-large-finetuned-conll02-dutch': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll02-spanish': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-english': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-german': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json' ), } class lowerCAmelCase ( a ): _lowerCamelCase : List[str] = """xlm-roberta""" def __init__( self , snake_case__=3_0522 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=1e-1_2 , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__="absolute" , snake_case__=True , snake_case__=None , **snake_case__ , ): super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) lowerCAmelCase : Optional[Any] = vocab_size lowerCAmelCase : Optional[Any] = hidden_size lowerCAmelCase : Optional[Any] = num_hidden_layers lowerCAmelCase : Any = num_attention_heads lowerCAmelCase : Optional[int] = hidden_act lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : Dict = hidden_dropout_prob lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob lowerCAmelCase : Optional[Any] = max_position_embeddings lowerCAmelCase : Optional[int] = type_vocab_size lowerCAmelCase : int = initializer_range lowerCAmelCase : List[Any] = layer_norm_eps lowerCAmelCase : Union[str, Any] = position_embedding_type lowerCAmelCase : Union[str, Any] = use_cache lowerCAmelCase : List[str] = classifier_dropout class lowerCAmelCase ( a ): @property def lowercase ( self ): if self.task == "multiple-choice": lowerCAmelCase : str = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase : Optional[int] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
646
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowerCAmelCase ( metaclass=__snake_case ): _lowerCamelCase : Tuple = ["""keras_nlp"""] def __init__( self , *snake_case__ , **snake_case__ ): requires_backends(self , ['keras_nlp'] )
719
'''simple docstring''' import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer _lowerCAmelCase : List[Any] = logging.getLogger(__name__) def __UpperCamelCase ( ) -> Any: """simple docstring""" lowerCAmelCase : str = argparse.ArgumentParser( description='Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.' ) parser.add_argument( '--dataset_name' , type=_A , default='wikitext' , help='Name of the training. Explore datasets at: hf.co/datasets.' , ) parser.add_argument( '--dataset_config' , type=_A , default='wikitext-103-raw-v1' , help='Configuration name of the dataset.' ) parser.add_argument( '--tokenizer_name_or_path' , type=_A , default='sayakpaul/unigram-tokenizer-wikitext' , help='Tokenizer identifier. Can be a local filepath or a Hub identifier.' , ) parser.add_argument( '--shard_size' , type=_A , default=10_00 , help='Number of entries to go in a single shard.' , ) parser.add_argument('--split' , type=_A , default='train' , choices=['train', 'test', 'validation'] ) parser.add_argument( '--limit' , default=_A , type=_A , help='Limit the number of shards (used for debugging).' , ) parser.add_argument( '--max_length' , type=_A , default=5_12 , help='Maximum sequence length. For training on TPUs, it helps to have a maximum' ' sequence length that is a multiple of 8.' , ) parser.add_argument( '--output_dir' , default='tf-tpu' , type=_A , help='Output directory where the TFRecord shards will be saved. If the' ' path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord' ' shards will be directly saved to a Google Cloud Storage bucket.' , ) lowerCAmelCase : Any = parser.parse_args() return args def __UpperCamelCase ( _A : Optional[int] ) -> int: """simple docstring""" def fn(_A : Tuple ): return tokenizer(examples['text'] ) return fn def __UpperCamelCase ( _A : int ) -> int: """simple docstring""" lowerCAmelCase : Tuple = [] for i in range(len(tokenized_data['input_ids'] ) ): lowerCAmelCase : Optional[Any] = { 'input_ids': tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data['input_ids'][i] ) ), 'attention_mask': tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data['attention_mask'][i] ) ), } lowerCAmelCase : Any = tf.train.Features(feature=_A ) lowerCAmelCase : List[str] = tf.train.Example(features=_A ) lowerCAmelCase : Tuple = example.SerializeToString() records.append(_A ) return records def __UpperCamelCase ( _A : int ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase : Union[str, Any] = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: lowerCAmelCase : Optional[Any] = min(len(_A ) , args.limit ) lowerCAmelCase : Dict = dataset.select(range(_A ) ) print(F"Limiting the dataset to {args.limit} entries." ) lowerCAmelCase : str = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) lowerCAmelCase : Any = os.path.join(args.output_dir , args.split ) if not os.path.exists(_A ): os.makedirs(_A ) else: lowerCAmelCase : List[Any] = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. lowerCAmelCase : Any = tokenize_function(_A ) lowerCAmelCase : Optional[int] = dataset.map(_A , batched=_A , num_proc=4 , remove_columns=['text'] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(_A : str ): # Concatenate all texts. lowerCAmelCase : Optional[int] = {k: sum(examples[k] , [] ) for k in examples.keys()} lowerCAmelCase : str = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 lowerCAmelCase : List[Any] = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. lowerCAmelCase : str = { k: [t[i : i + args.max_length] for i in range(0 , _A , args.max_length )] for k, t in concatenated_examples.items() } return result lowerCAmelCase : List[Any] = dataset_tokenized.map(_A , batched=_A , batch_size=10_00 , num_proc=4 ) lowerCAmelCase : Union[str, Any] = 0 lowerCAmelCase : Tuple = 0 for shard in range(0 , len(_A ) , args.shard_size ): lowerCAmelCase : Optional[Any] = grouped_dataset[shard : shard + args.shard_size] lowerCAmelCase : List[str] = len(dataset_snapshot['input_ids'] ) lowerCAmelCase : Union[str, Any] = os.path.join(_A , F"dataset-{shard_count}-{records_containing}.tfrecord" ) lowerCAmelCase : List[Any] = get_serialized_examples(_A ) with tf.io.TFRecordWriter(_A ) as out_file: for i in range(len(_A ) ): lowerCAmelCase : Union[str, Any] = serialized_examples[i] out_file.write(_A ) print('Wrote file {} containing {} records'.format(_A , _A ) ) shard_count += 1 total_records += records_containing with open(F"split-{args.split}-records-count.txt" , 'w' ) as f: print(F"Total {args.split} records: {total_records}" , file=_A ) if __name__ == "__main__": _lowerCAmelCase : List[Any] = parse_args() main(args)
646
0
'''simple docstring''' # This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class lowerCAmelCase ( a , a , a , unittest.TestCase ): _lowerCamelCase : int = StableDiffusionControlNetImgaImgPipeline _lowerCamelCase : int = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} _lowerCamelCase : Any = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _lowerCamelCase : Optional[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({"""control_image"""} ) _lowerCamelCase : Union[str, Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowercase ( self ): torch.manual_seed(0 ) lowerCAmelCase : List[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) torch.manual_seed(0 ) lowerCAmelCase : List[str] = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) torch.manual_seed(0 ) lowerCAmelCase : Optional[Any] = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=A__ , set_alpha_to_one=A__ , ) torch.manual_seed(0 ) lowerCAmelCase : Dict = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) lowerCAmelCase : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowerCAmelCase : Tuple = CLIPTextModel(A__ ) lowerCAmelCase : Dict = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCAmelCase : Tuple = { """unet""": unet, """controlnet""": controlnet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowercase ( self , snake_case__ , snake_case__=0 ): if str(A__ ).startswith('mps' ): lowerCAmelCase : Union[str, Any] = torch.manual_seed(A__ ) else: lowerCAmelCase : Optional[Any] = torch.Generator(device=A__ ).manual_seed(A__ ) lowerCAmelCase : Dict = 2 lowerCAmelCase : Tuple = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=A__ , device=torch.device(A__ ) , ) lowerCAmelCase : List[str] = floats_tensor(control_image.shape , rng=random.Random(A__ ) ).to(A__ ) lowerCAmelCase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase : str = Image.fromarray(np.uinta(A__ ) ).convert('RGB' ).resize((64, 64) ) lowerCAmelCase : Union[str, Any] = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", """image""": image, """control_image""": control_image, } return inputs def lowercase ( self ): return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def lowercase ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def lowercase ( self ): self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) class lowerCAmelCase ( a , a , unittest.TestCase ): _lowerCamelCase : Dict = StableDiffusionControlNetImgaImgPipeline _lowerCamelCase : str = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} _lowerCamelCase : str = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _lowerCamelCase : Tuple = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def lowercase ( self ): torch.manual_seed(0 ) lowerCAmelCase : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) torch.manual_seed(0 ) def init_weights(snake_case__ ): if isinstance(A__ , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) lowerCAmelCase : Optional[int] = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(A__ ) torch.manual_seed(0 ) lowerCAmelCase : Tuple = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(A__ ) torch.manual_seed(0 ) lowerCAmelCase : Optional[int] = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=A__ , set_alpha_to_one=A__ , ) torch.manual_seed(0 ) lowerCAmelCase : Any = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) lowerCAmelCase : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowerCAmelCase : Any = CLIPTextModel(A__ ) lowerCAmelCase : Optional[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCAmelCase : Optional[Any] = MultiControlNetModel([controlneta, controlneta] ) lowerCAmelCase : Any = { """unet""": unet, """controlnet""": controlnet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowercase ( self , snake_case__ , snake_case__=0 ): if str(A__ ).startswith('mps' ): lowerCAmelCase : List[Any] = torch.manual_seed(A__ ) else: lowerCAmelCase : List[Any] = torch.Generator(device=A__ ).manual_seed(A__ ) lowerCAmelCase : List[str] = 2 lowerCAmelCase : Optional[int] = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=A__ , device=torch.device(A__ ) , ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=A__ , device=torch.device(A__ ) , ), ] lowerCAmelCase : List[Any] = floats_tensor(control_image[0].shape , rng=random.Random(A__ ) ).to(A__ ) lowerCAmelCase : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase : Union[str, Any] = Image.fromarray(np.uinta(A__ ) ).convert('RGB' ).resize((64, 64) ) lowerCAmelCase : List[str] = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", """image""": image, """control_image""": control_image, } return inputs def lowercase ( self ): lowerCAmelCase : List[str] = self.get_dummy_components() lowerCAmelCase : Tuple = self.pipeline_class(**A__ ) pipe.to(A__ ) lowerCAmelCase : List[str] = 10.0 lowerCAmelCase : Union[str, Any] = 4 lowerCAmelCase : Union[str, Any] = self.get_dummy_inputs(A__ ) lowerCAmelCase : str = steps lowerCAmelCase : Dict = scale lowerCAmelCase : Optional[Any] = pipe(**A__ )[0] lowerCAmelCase : Union[str, Any] = self.get_dummy_inputs(A__ ) lowerCAmelCase : Dict = steps lowerCAmelCase : Dict = scale lowerCAmelCase : List[str] = pipe(**A__ , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] lowerCAmelCase : str = self.get_dummy_inputs(A__ ) lowerCAmelCase : Dict = steps lowerCAmelCase : Optional[int] = scale lowerCAmelCase : Dict = pipe(**A__ , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] lowerCAmelCase : List[str] = self.get_dummy_inputs(A__ ) lowerCAmelCase : List[str] = steps lowerCAmelCase : Optional[int] = scale lowerCAmelCase : int = pipe(**A__ , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 def lowercase ( self ): return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def lowercase ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def lowercase ( self ): self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) def lowercase ( self ): lowerCAmelCase : Optional[Any] = self.get_dummy_components() lowerCAmelCase : Optional[int] = self.pipeline_class(**A__ ) pipe.to(A__ ) pipe.set_progress_bar_config(disable=A__ ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(A__ ) except NotImplementedError: pass @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self ): lowerCAmelCase : Dict = ControlNetModel.from_pretrained('lllyasviel/sd-controlnet-canny' ) lowerCAmelCase : Union[str, Any] = StableDiffusionControlNetImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , safety_checker=A__ , controlnet=A__ ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=A__ ) lowerCAmelCase : str = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCAmelCase : List[Any] = """evil space-punk bird""" lowerCAmelCase : Union[str, Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png' ).resize((512, 512) ) lowerCAmelCase : Optional[int] = load_image( 'https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png' ).resize((512, 512) ) lowerCAmelCase : List[str] = pipe( A__ , A__ , control_image=A__ , generator=A__ , output_type='np' , num_inference_steps=50 , strength=0.6 , ) lowerCAmelCase : Optional[Any] = output.images[0] assert image.shape == (512, 512, 3) lowerCAmelCase : Union[str, Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy' ) assert np.abs(expected_image - image ).max() < 9e-2
720
'''simple docstring''' import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() _lowerCAmelCase : List[str] = logging.get_logger('transformers.models.speecht5') def __UpperCamelCase ( _A : Any , _A : Dict , _A : Any ) -> Union[str, Any]: """simple docstring""" hf_model.apply_weight_norm() lowerCAmelCase : int = checkpoint['input_conv.weight_g'] lowerCAmelCase : Optional[int] = checkpoint['input_conv.weight_v'] lowerCAmelCase : Dict = checkpoint['input_conv.bias'] for i in range(len(config.upsample_rates ) ): lowerCAmelCase : Optional[Any] = checkpoint[F"upsamples.{i}.1.weight_g"] lowerCAmelCase : str = checkpoint[F"upsamples.{i}.1.weight_v"] lowerCAmelCase : str = checkpoint[F"upsamples.{i}.1.bias"] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): lowerCAmelCase : int = checkpoint[F"blocks.{i}.convs1.{j}.1.weight_g"] lowerCAmelCase : str = checkpoint[F"blocks.{i}.convs1.{j}.1.weight_v"] lowerCAmelCase : int = checkpoint[F"blocks.{i}.convs1.{j}.1.bias"] lowerCAmelCase : Optional[Any] = checkpoint[F"blocks.{i}.convs2.{j}.1.weight_g"] lowerCAmelCase : Tuple = checkpoint[F"blocks.{i}.convs2.{j}.1.weight_v"] lowerCAmelCase : Tuple = checkpoint[F"blocks.{i}.convs2.{j}.1.bias"] lowerCAmelCase : List[Any] = checkpoint['output_conv.1.weight_g'] lowerCAmelCase : List[str] = checkpoint['output_conv.1.weight_v'] lowerCAmelCase : Optional[Any] = checkpoint['output_conv.1.bias'] hf_model.remove_weight_norm() @torch.no_grad() def __UpperCamelCase ( _A : Dict , _A : Union[str, Any] , _A : List[Any] , _A : Any=None , _A : Any=None , ) -> Dict: """simple docstring""" if config_path is not None: lowerCAmelCase : Dict = SpeechTaHifiGanConfig.from_pretrained(_A ) else: lowerCAmelCase : Union[str, Any] = SpeechTaHifiGanConfig() lowerCAmelCase : List[Any] = SpeechTaHifiGan(_A ) lowerCAmelCase : List[str] = torch.load(_A ) load_weights(orig_checkpoint['model']['generator'] , _A , _A ) lowerCAmelCase : Tuple = np.load(_A ) lowerCAmelCase : List[Any] = stats[0].reshape(-1 ) lowerCAmelCase : int = stats[1].reshape(-1 ) lowerCAmelCase : Union[str, Any] = torch.from_numpy(_A ).float() lowerCAmelCase : int = torch.from_numpy(_A ).float() model.save_pretrained(_A ) if repo_id: print('Pushing to the hub...' ) model.push_to_hub(_A ) if __name__ == "__main__": _lowerCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--stats_path', required=True, default=None, type=str, help='Path to stats.npy file') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) _lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
646
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : List[Any] = logging.get_logger(__name__) _lowerCAmelCase : Dict = { 'unc-nlp/lxmert-base-uncased': 'https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json', } class lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _lowerCamelCase : str = 'lxmert' _lowerCamelCase : str = {} def __init__( self , snake_case__=3_0522 , snake_case__=768 , snake_case__=12 , snake_case__=9500 , snake_case__=1600 , snake_case__=400 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=1e-1_2 , snake_case__=9 , snake_case__=5 , snake_case__=5 , snake_case__=2048 , snake_case__=4 , snake_case__=6.6_7 , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=True , **snake_case__ , ): lowerCAmelCase : List[str] = vocab_size lowerCAmelCase : List[Any] = hidden_size lowerCAmelCase : Optional[Any] = num_attention_heads lowerCAmelCase : Dict = hidden_act lowerCAmelCase : Tuple = intermediate_size lowerCAmelCase : List[Any] = hidden_dropout_prob lowerCAmelCase : Optional[int] = attention_probs_dropout_prob lowerCAmelCase : List[str] = max_position_embeddings lowerCAmelCase : Any = type_vocab_size lowerCAmelCase : int = initializer_range lowerCAmelCase : List[str] = layer_norm_eps lowerCAmelCase : Tuple = num_qa_labels lowerCAmelCase : List[str] = num_object_labels lowerCAmelCase : int = num_attr_labels lowerCAmelCase : int = l_layers lowerCAmelCase : List[Any] = x_layers lowerCAmelCase : List[str] = r_layers lowerCAmelCase : Union[str, Any] = visual_feat_dim lowerCAmelCase : Tuple = visual_pos_dim lowerCAmelCase : str = visual_loss_normalizer lowerCAmelCase : List[str] = task_matched lowerCAmelCase : Optional[Any] = task_mask_lm lowerCAmelCase : Union[str, Any] = task_obj_predict lowerCAmelCase : Tuple = task_qa lowerCAmelCase : List[Any] = visual_obj_loss lowerCAmelCase : List[str] = visual_attr_loss lowerCAmelCase : Dict = visual_feat_loss lowerCAmelCase : Any = {'vision': r_layers, 'cross_encoder': x_layers, 'language': l_layers} super().__init__(**_a )
721
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets _lowerCAmelCase : Dict = '\\n@inproceedings{popovic-2015-chrf,\n title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",\n month = sep,\n year = "2015",\n address = "Lisbon, Portugal",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W15-3049",\n doi = "10.18653/v1/W15-3049",\n pages = "392--395",\n}\n@inproceedings{popovic-2017-chrf,\n title = "chr{F}++: words helping character n-grams",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Second Conference on Machine Translation",\n month = sep,\n year = "2017",\n address = "Copenhagen, Denmark",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W17-4770",\n doi = "10.18653/v1/W17-4770",\n pages = "612--618",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' _lowerCAmelCase : Optional[Any] = '\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n' _lowerCAmelCase : List[Any] = '\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n \'score\' (float): The chrF (chrF++) score,\n \'char_order\' (int): The character n-gram order,\n \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n \'beta\' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase ( datasets.Metric ): def lowercase ( self ): if version.parse(scb.__version__ ) < version.parse('1.4.12' ): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/mjpost/sacreBLEU#chrf--chrf' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/mjpost/sacreBLEU#chrf--chrf'] , reference_urls=[ 'https://github.com/m-popovic/chrF', ] , ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ = CHRF.CHAR_ORDER , snake_case__ = CHRF.WORD_ORDER , snake_case__ = CHRF.BETA , snake_case__ = False , snake_case__ = False , snake_case__ = False , ): lowerCAmelCase : List[str] = len(references[0] ) if any(len(snake_case__ ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) lowerCAmelCase : List[str] = [[refs[i] for refs in references] for i in range(snake_case__ )] lowerCAmelCase : Union[str, Any] = CHRF(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase : Dict = sb_chrf.corpus_score(snake_case__ , snake_case__ ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
646
0
'''simple docstring''' import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor _lowerCAmelCase : Union[str, Any] = logging.getLogger(__name__) _lowerCAmelCase : str = 50 # max width of layer names _lowerCAmelCase : int = 70 # max width of quantizer names def __UpperCamelCase ( _A : Optional[int] ) -> Tuple: """simple docstring""" lowerCAmelCase : Dict = parser.add_argument_group('quant_trainer arguments' ) group.add_argument('--wprec' , type=_lowerCamelCase , default=8 , help='weight precision' ) group.add_argument('--aprec' , type=_lowerCamelCase , default=8 , help='activation precision' ) group.add_argument('--quant-per-tensor' , action='store_true' , help='per tensor weight scaling' ) group.add_argument('--quant-disable' , action='store_true' , help='disable all quantizers' ) group.add_argument('--quant-disable-embeddings' , action='store_true' , help='disable all embeddings quantizers' ) group.add_argument('--quant-disable-keyword' , type=_lowerCamelCase , nargs='+' , help='disable quantizers by keyword' ) group.add_argument('--quant-disable-layer-module' , type=_lowerCamelCase , help='disable quantizers by keyword under layer.' ) group.add_argument('--quant-enable-layer-module' , type=_lowerCamelCase , help='enable quantizers by keyword under layer' ) group.add_argument('--calibrator' , default='max' , help='which quantization range calibrator to use' ) group.add_argument('--percentile' , default=_lowerCamelCase , type=_lowerCamelCase , help='percentile for PercentileCalibrator' ) group.add_argument('--fuse-qkv' , action='store_true' , help='use the same scale factor for qkv' ) group.add_argument('--clip-gelu' , metavar='N' , type=_lowerCamelCase , help='clip gelu output maximum value to N' ) group.add_argument( '--recalibrate-weights' , action='store_true' , help=( 'recalibrate weight amaxes by taking the max of the weights.' ' amaxes will be computed with the current quantization granularity (axis).' ) , ) def __UpperCamelCase ( _A : str ) -> Any: """simple docstring""" if args.calibrator == "max": lowerCAmelCase : Optional[int] = 'max' elif args.calibrator == "percentile": if args.percentile is None: raise ValueError('Specify --percentile when using percentile calibrator' ) lowerCAmelCase : Any = 'histogram' elif args.calibrator == "mse": lowerCAmelCase : Tuple = 'histogram' else: raise ValueError(F"Invalid calibrator {args.calibrator}" ) lowerCAmelCase : Optional[int] = QuantDescriptor(num_bits=args.aprec , calib_method=_lowerCamelCase ) lowerCAmelCase : Tuple = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(_lowerCamelCase ) quant_nn.QuantLinear.set_default_quant_desc_weight(_lowerCamelCase ) def __UpperCamelCase ( _A : List[str] , _A : Union[str, Any] , _A : Dict=False , _A : Union[str, Any]=False ) -> Optional[Any]: """simple docstring""" logger.info('Configuring Model for Quantization' ) logger.info(F"using quantization package {pytorch_quantization.__file__}" ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(_lowerCamelCase , ['embeddings'] , which='weight' , _disabled=_lowerCamelCase ) if args.quant_disable: set_quantizer_by_name(_lowerCamelCase , [''] , _disabled=_lowerCamelCase ) if args.quant_disable_keyword: set_quantizer_by_name(_lowerCamelCase , args.quant_disable_keyword , _disabled=_lowerCamelCase ) if args.quant_disable_layer_module: set_quantizer_by_name(_lowerCamelCase , [r'layer.\d+.' + args.quant_disable_layer_module] , _disabled=_lowerCamelCase ) if args.quant_enable_layer_module: set_quantizer_by_name(_lowerCamelCase , [r'layer.\d+.' + args.quant_enable_layer_module] , _disabled=_lowerCamelCase ) if args.recalibrate_weights: recalibrate_weights(_lowerCamelCase ) if args.fuse_qkv: fuse_qkv(_lowerCamelCase , _lowerCamelCase ) if args.clip_gelu: clip_gelu(_lowerCamelCase , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(_lowerCamelCase ) def __UpperCamelCase ( _A : str ) -> str: """simple docstring""" logger.info('Enabling Calibration' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(F"{name:80}: {module}" ) def __UpperCamelCase ( _A : Tuple , _A : List[Any] ) -> List[str]: """simple docstring""" logger.info('Loading calibrated amax' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax('percentile' , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(_lowerCamelCase ) def __UpperCamelCase ( _A : Optional[int] , _A : Dict ) -> str: """simple docstring""" def fusea(_A : int , _A : str , _A : List[str] ): for mod in [qq, qk, qv]: if not hasattr(_lowerCamelCase , '_amax' ): print(' WARNING: NO AMAX BUFFER' ) return lowerCAmelCase : Union[str, Any] = qq._amax.detach().item() lowerCAmelCase : Optional[int] = qk._amax.detach().item() lowerCAmelCase : Tuple = qv._amax.detach().item() lowerCAmelCase : List[str] = max(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) qq._amax.fill_(_lowerCamelCase ) qk._amax.fill_(_lowerCamelCase ) qv._amax.fill_(_lowerCamelCase ) logger.info(F" q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}" ) for name, mod in model.named_modules(): if name.endswith('.attention.self' ): logger.info(F"FUSE_QKV: {name:{name_width}}" ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def __UpperCamelCase ( _A : Any , _A : Dict ) -> List[str]: """simple docstring""" for name, mod in model.named_modules(): if name.endswith('.output.dense' ) and not name.endswith('attention.output.dense' ): lowerCAmelCase : Union[str, Any] = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=_lowerCamelCase ) lowerCAmelCase : int = mod._input_quantizer._amax.data.detach().item() logger.info(F"CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}" ) def __UpperCamelCase ( _A : int ) -> int: """simple docstring""" for name, mod in model.named_modules(): if hasattr(_lowerCamelCase , '_weight_quantizer' ) and mod._weight_quantizer.axis is not None: lowerCAmelCase : Optional[Any] = mod.weight.shape[0] lowerCAmelCase : Dict = mod._weight_quantizer._amax.detach() lowerCAmelCase : Optional[Any] = torch.ones(_lowerCamelCase , dtype=amax.dtype , device=amax.device ) * amax print(F"expanding {name} {amax} -> {mod._weight_quantizer._amax}" ) def __UpperCamelCase ( _A : Dict ) -> List[Any]: """simple docstring""" for name, mod in model.named_modules(): if hasattr(_lowerCamelCase , '_weight_quantizer' ): if not hasattr(mod.weight_quantizer , '_amax' ): print('RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER' ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) lowerCAmelCase : Optional[int] = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) lowerCAmelCase : int = set(range(len(mod.weight.size() ) ) ) - axis_set lowerCAmelCase : Any = pytorch_quantization.utils.reduce_amax(mod.weight , axis=_lowerCamelCase , keepdims=_lowerCamelCase ).detach() logger.info(F"RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}" ) lowerCAmelCase : Dict = amax def __UpperCamelCase ( _A : Optional[int] , _A : Any=25 , _A : Optional[int]=1_80 , _A : Any=None ) -> Any: """simple docstring""" if ignore is None: lowerCAmelCase : List[str] = [] elif not isinstance(_lowerCamelCase , _lowerCamelCase ): lowerCAmelCase : int = [ignore] lowerCAmelCase : List[str] = 0 for name, mod in model.named_modules(): if not hasattr(_lowerCamelCase , 'weight' ): continue lowerCAmelCase : Union[str, Any] = max(_lowerCamelCase , len(_lowerCamelCase ) ) for name, mod in model.named_modules(): lowerCAmelCase : int = getattr(_lowerCamelCase , '_input_quantizer' , _lowerCamelCase ) lowerCAmelCase : Dict = getattr(_lowerCamelCase , '_weight_quantizer' , _lowerCamelCase ) if not hasattr(_lowerCamelCase , 'weight' ): continue if type(_lowerCamelCase ) in ignore: continue if [True for s in ignore if type(_lowerCamelCase ) is str and s in name]: continue lowerCAmelCase : Any = F"Act:{input_q.extra_repr()}" lowerCAmelCase : int = F"Wgt:{weight_q.extra_repr()}" lowerCAmelCase : Optional[int] = F"{name:{name_width}} {act_str} {wgt_str}" if len(_lowerCamelCase ) <= line_width: logger.info(_lowerCamelCase ) else: logger.info(F"{name:{name_width}} {act_str}" ) logger.info(F"{' ':{name_width}} {wgt_str}" ) def __UpperCamelCase ( _A : Optional[Any] ) -> Any: """simple docstring""" lowerCAmelCase : Optional[Any] = 0 for name, mod in model.named_modules(): if isinstance(_lowerCamelCase , pytorch_quantization.nn.TensorQuantizer ): print(F"{name:80} {mod}" ) count += 1 print(F"{count} TensorQuantizers found in model" ) def __UpperCamelCase ( _A : Tuple , _A : List[str] , _A : str , _A : str , _A : str ) -> Dict: """simple docstring""" lowerCAmelCase : Optional[int] = getattr(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if quantizer_mod is not None: assert hasattr(_lowerCamelCase , _lowerCamelCase ) setattr(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: logger.warning(F"{name} has no {quantizer}" ) def __UpperCamelCase ( _A : List[str] , _A : Any , _A : Union[str, Any]="both" , **_A : Any ) -> str: """simple docstring""" lowerCAmelCase : int = F"Warning: changing {which} quantizers of {name:{qname_width}}" for k, v in kwargs.items(): s += F" {k}={v}" if which in ["input", "both"]: set_quantizer(_lowerCamelCase , _lowerCamelCase , '_input_quantizer' , _lowerCamelCase , _lowerCamelCase ) if which in ["weight", "both"]: set_quantizer(_lowerCamelCase , _lowerCamelCase , '_weight_quantizer' , _lowerCamelCase , _lowerCamelCase ) logger.info(_lowerCamelCase ) def __UpperCamelCase ( _A : Tuple , _A : Union[str, Any] , **_A : List[Any] ) -> int: """simple docstring""" for name, mod in model.named_modules(): if hasattr(_lowerCamelCase , '_input_quantizer' ) or hasattr(_lowerCamelCase , '_weight_quantizer' ): for n in names: if re.search(_lowerCamelCase , _lowerCamelCase ): set_quantizers(_lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) elif name.endswith('_quantizer' ): for n in names: if re.search(_lowerCamelCase , _lowerCamelCase ): lowerCAmelCase : Dict = F"Warning: changing {name:{name_width}}" for k, v in kwargs.items(): s += F" {k}={v}" setattr(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) logger.info(_lowerCamelCase )
700
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : str = logging.get_logger(__name__) _lowerCAmelCase : Tuple = { 's-JoL/Open-Llama-V1': 'https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json', } class lowerCAmelCase ( a ): _lowerCamelCase : Union[str, Any] = """open-llama""" def __init__( self , snake_case__=10_0000 , snake_case__=4096 , snake_case__=1_1008 , snake_case__=32 , snake_case__=32 , snake_case__="silu" , snake_case__=2048 , snake_case__=0.0_2 , snake_case__=1e-6 , snake_case__=True , snake_case__=0 , snake_case__=1 , snake_case__=2 , snake_case__=False , snake_case__=True , snake_case__=0.1 , snake_case__=0.1 , snake_case__=True , snake_case__=True , snake_case__=None , **snake_case__ , ): lowerCAmelCase : Tuple = vocab_size lowerCAmelCase : Optional[Any] = max_position_embeddings lowerCAmelCase : List[Any] = hidden_size lowerCAmelCase : List[Any] = intermediate_size lowerCAmelCase : Tuple = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : str = rms_norm_eps lowerCAmelCase : Optional[int] = use_cache lowerCAmelCase : Dict = kwargs.pop( 'use_memorry_efficient_attention' , snake_case__ ) lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : Optional[Any] = attention_dropout_prob lowerCAmelCase : Union[str, Any] = use_stable_embedding lowerCAmelCase : Tuple = shared_input_output_embedding lowerCAmelCase : Tuple = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , tie_word_embeddings=snake_case__ , **snake_case__ , ) def lowercase ( self ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , snake_case__ ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' f"got {self.rope_scaling}" ) lowerCAmelCase : List[Any] = self.rope_scaling.get('type' , snake_case__ ) lowerCAmelCase : List[str] = self.rope_scaling.get('factor' , snake_case__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(snake_case__ , snake_case__ ) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
646
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _lowerCAmelCase : Tuple = { """configuration_resnet""": ["""RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ResNetConfig""", """ResNetOnnxConfig"""] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Tuple = [ """RESNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """ResNetForImageClassification""", """ResNetModel""", """ResNetPreTrainedModel""", """ResNetBackbone""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Tuple = [ """TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFResNetForImageClassification""", """TFResNetModel""", """TFResNetPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Tuple = [ """FlaxResNetForImageClassification""", """FlaxResNetModel""", """FlaxResNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys _lowerCAmelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure)
701
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) _lowerCAmelCase : Dict = { 'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class lowerCAmelCase ( a ): _lowerCamelCase : Any = """deformable_detr""" _lowerCamelCase : List[str] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , snake_case__=True , snake_case__=None , snake_case__=3 , snake_case__=300 , snake_case__=1024 , snake_case__=6 , snake_case__=1024 , snake_case__=8 , snake_case__=6 , snake_case__=1024 , snake_case__=8 , snake_case__=0.0 , snake_case__=True , snake_case__="relu" , snake_case__=256 , snake_case__=0.1 , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.0_2 , snake_case__=1.0 , snake_case__=True , snake_case__=False , snake_case__="sine" , snake_case__="resnet50" , snake_case__=True , snake_case__=False , snake_case__=4 , snake_case__=4 , snake_case__=4 , snake_case__=False , snake_case__=300 , snake_case__=False , snake_case__=1 , snake_case__=5 , snake_case__=2 , snake_case__=1 , snake_case__=1 , snake_case__=5 , snake_case__=2 , snake_case__=0.1 , snake_case__=0.2_5 , snake_case__=False , **snake_case__ , ): if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) lowerCAmelCase : Optional[int] = CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : List[str] = backbone_config.get('model_type' ) lowerCAmelCase : str = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase : Optional[Any] = config_class.from_dict(snake_case__ ) lowerCAmelCase : Union[str, Any] = use_timm_backbone lowerCAmelCase : List[Any] = backbone_config lowerCAmelCase : Any = num_channels lowerCAmelCase : Tuple = num_queries lowerCAmelCase : Dict = max_position_embeddings lowerCAmelCase : int = d_model lowerCAmelCase : List[str] = encoder_ffn_dim lowerCAmelCase : List[str] = encoder_layers lowerCAmelCase : int = encoder_attention_heads lowerCAmelCase : str = decoder_ffn_dim lowerCAmelCase : str = decoder_layers lowerCAmelCase : Dict = decoder_attention_heads lowerCAmelCase : str = dropout lowerCAmelCase : List[str] = attention_dropout lowerCAmelCase : Union[str, Any] = activation_dropout lowerCAmelCase : str = activation_function lowerCAmelCase : Any = init_std lowerCAmelCase : Any = init_xavier_std lowerCAmelCase : Dict = encoder_layerdrop lowerCAmelCase : int = auxiliary_loss lowerCAmelCase : Optional[Any] = position_embedding_type lowerCAmelCase : List[str] = backbone lowerCAmelCase : int = use_pretrained_backbone lowerCAmelCase : int = dilation # deformable attributes lowerCAmelCase : List[str] = num_feature_levels lowerCAmelCase : List[str] = encoder_n_points lowerCAmelCase : Union[str, Any] = decoder_n_points lowerCAmelCase : Tuple = two_stage lowerCAmelCase : Dict = two_stage_num_proposals lowerCAmelCase : Union[str, Any] = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.' ) # Hungarian matcher lowerCAmelCase : Union[str, Any] = class_cost lowerCAmelCase : Dict = bbox_cost lowerCAmelCase : List[Any] = giou_cost # Loss coefficients lowerCAmelCase : Dict = mask_loss_coefficient lowerCAmelCase : Any = dice_loss_coefficient lowerCAmelCase : str = bbox_loss_coefficient lowerCAmelCase : Tuple = giou_loss_coefficient lowerCAmelCase : List[str] = eos_coefficient lowerCAmelCase : Any = focal_alpha lowerCAmelCase : Dict = disable_custom_kernels super().__init__(is_encoder_decoder=snake_case__ , **snake_case__ ) @property def lowercase ( self ): return self.encoder_attention_heads @property def lowercase ( self ): return self.d_model def lowercase ( self ): lowerCAmelCase : Union[str, Any] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: lowerCAmelCase : List[Any] = self.backbone_config.to_dict() lowerCAmelCase : str = self.__class__.model_type return output
646
0
'''simple docstring''' from itertools import permutations def __UpperCamelCase ( _A : tuple ) -> bool: """simple docstring""" if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False lowerCAmelCase : Any = [7, 11, 13, 17] for i, test in enumerate(SCREAMING_SNAKE_CASE_ ): if (num[i + 4] * 1_00 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def __UpperCamelCase ( _A : int = 10 ) -> int: """simple docstring""" return sum( int(''.join(map(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) ) for num in permutations(range(SCREAMING_SNAKE_CASE_ ) ) if is_substring_divisible(SCREAMING_SNAKE_CASE_ ) ) if __name__ == "__main__": print(f"""{solution() = }""")
702
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece_no_bos.model') @require_sentencepiece @require_tokenizers class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : str = PegasusTokenizer _lowerCamelCase : Union[str, Any] = PegasusTokenizerFast _lowerCamelCase : Optional[Any] = True _lowerCamelCase : Optional[Any] = True def lowercase ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : List[Any] = PegasusTokenizer(snake_case__ ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase ( self ): return PegasusTokenizer.from_pretrained('google/pegasus-large' ) def lowercase ( self , **snake_case__ ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def lowercase ( self , snake_case__ ): return ("This is a test", "This is a test") def lowercase ( self ): lowerCAmelCase : Optional[int] = '</s>' lowerCAmelCase : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '</s>' ) self.assertEqual(vocab_keys[-1] , 'v' ) self.assertEqual(len(snake_case__ ) , 1103 ) def lowercase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def lowercase ( self ): lowerCAmelCase : List[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : List[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : Optional[Any] = ( 'Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important' ' </s> <pad> <pad> <pad>' ) lowerCAmelCase : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] lowerCAmelCase : Optional[int] = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Any = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowerCAmelCase : List[str] = '<mask_1> To ensure a <mask_2> flow of bank resolutions.' lowerCAmelCase : Optional[Any] = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1] lowerCAmelCase : Optional[Any] = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Optional[Any] = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 lowerCAmelCase : List[Any] = 'To ensure a smooth flow of bank resolutions.' lowerCAmelCase : Optional[int] = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1] lowerCAmelCase : Any = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def lowercase ( self ): lowerCAmelCase : Union[str, Any] = ['This is going to be way too long.' * 150, 'short example'] lowerCAmelCase : int = ['not super long but more than 5 tokens', 'tiny'] lowerCAmelCase : Dict = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) lowerCAmelCase : Dict = self._large_tokenizer( text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(snake_case__ ) == 2 # input_ids, attention_mask. @slow def lowercase ( self ): # fmt: off lowerCAmelCase : Tuple = {'input_ids': [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name='google/bigbird-pegasus-large-arxiv' , revision='ba85d0851d708441f91440d509690f1ab6353415' , ) @require_sentencepiece @require_tokenizers class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : Optional[Any] = PegasusTokenizer _lowerCamelCase : str = PegasusTokenizerFast _lowerCamelCase : Tuple = True _lowerCamelCase : int = True def lowercase ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : int = PegasusTokenizer(snake_case__ , offset=0 , mask_token_sent=snake_case__ , mask_token='[MASK]' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase ( self ): return PegasusTokenizer.from_pretrained('google/bigbird-pegasus-large-arxiv' ) def lowercase ( self , **snake_case__ ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def lowercase ( self , snake_case__ ): return ("This is a test", "This is a test") def lowercase ( self ): lowerCAmelCase : Tuple = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : Union[str, Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : List[str] = ( 'Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>' ' <pad> <pad> <pad>' ) lowerCAmelCase : Dict = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] lowerCAmelCase : Union[str, Any] = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) @require_torch def lowercase ( self ): lowerCAmelCase : Optional[int] = ['This is going to be way too long.' * 1000, 'short example'] lowerCAmelCase : Union[str, Any] = ['not super long but more than 5 tokens', 'tiny'] lowerCAmelCase : List[str] = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) lowerCAmelCase : List[str] = self._large_tokenizer( text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(snake_case__ ) == 2 # input_ids, attention_mask. def lowercase ( self ): lowerCAmelCase : List[str] = ( 'This is an example string that is used to test the original TF implementation against the HF' ' implementation' ) lowerCAmelCase : Tuple = self._large_tokenizer(snake_case__ ).input_ids self.assertListEqual( snake_case__ , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
646
0
'''simple docstring''' def __UpperCamelCase ( _A : Dict ) -> str: """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise TypeError('\'float\' object cannot be interpreted as an integer' ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise TypeError('\'str\' object cannot be interpreted as an integer' ) if num == 0: return "0b0" lowerCAmelCase : List[Any] = False if num < 0: lowerCAmelCase : List[str] = True lowerCAmelCase : str = -num lowerCAmelCase : list[int] = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(SCREAMING_SNAKE_CASE_ ) for e in binary ) return "0b" + "".join(str(SCREAMING_SNAKE_CASE_ ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
703
'''simple docstring''' import math import sys import cva import numpy as np def __UpperCamelCase ( _A : np.ndarray , _A : float ) -> np.ndarray: """simple docstring""" lowerCAmelCase : Union[str, Any] = math.sqrt(_A ) lowerCAmelCase : Union[str, Any] = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def __UpperCamelCase ( _A : np.ndarray , _A : int , _A : int , _A : int ) -> np.ndarray: """simple docstring""" lowerCAmelCase : int = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def __UpperCamelCase ( _A : int , _A : float ) -> np.ndarray: """simple docstring""" lowerCAmelCase : Dict = np.zeros((kernel_size, kernel_size) ) for i in range(0 , _A ): for j in range(0 , _A ): lowerCAmelCase : Optional[int] = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(_A , _A ) def __UpperCamelCase ( _A : np.ndarray , _A : float , _A : float , _A : int , ) -> np.ndarray: """simple docstring""" lowerCAmelCase : str = np.zeros(img.shape ) lowerCAmelCase : int = get_gauss_kernel(_A , _A ) lowerCAmelCase , lowerCAmelCase : Dict = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): lowerCAmelCase : int = get_slice(_A , _A , _A , _A ) lowerCAmelCase : Any = img_s - img_s[kernel_size // 2, kernel_size // 2] lowerCAmelCase : str = vec_gaussian(_A , _A ) lowerCAmelCase : Optional[int] = np.multiply(_A , _A ) lowerCAmelCase : str = np.multiply(_A , _A ) lowerCAmelCase : Union[str, Any] = np.sum(_A ) / np.sum(_A ) lowerCAmelCase : Tuple = val return imga def __UpperCamelCase ( _A : list ) -> tuple: """simple docstring""" lowerCAmelCase : List[Any] = args[1] if args[1:] else '../image_data/lena.jpg' lowerCAmelCase : Any = float(args[2] ) if args[2:] else 1.0 lowerCAmelCase : Union[str, Any] = float(args[3] ) if args[3:] else 1.0 if args[4:]: lowerCAmelCase : int = int(args[4] ) lowerCAmelCase : Optional[Any] = kernel_size + abs(kernel_size % 2 - 1 ) else: lowerCAmelCase : Optional[int] = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Any = parse_args(sys.argv) _lowerCAmelCase : str = cva.imread(filename, 0) cva.imshow('input image', img) _lowerCAmelCase : Union[str, Any] = img / 255 _lowerCAmelCase : List[str] = out.astype('float32') _lowerCAmelCase : Optional[int] = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) _lowerCAmelCase : Union[str, Any] = out * 255 _lowerCAmelCase : Optional[Any] = np.uinta(out) cva.imshow('output image', out) cva.waitKey(0) cva.destroyAllWindows()
646
0
'''simple docstring''' from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch('socket.socket' ) @patch('builtins.open' ) def __UpperCamelCase ( _A : Any , _A : Any ) -> List[Any]: """simple docstring""" lowerCAmelCase : Tuple = Mock() lowerCAmelCase : List[Any] = conn, Mock() lowerCAmelCase : Any = iter([1, None] ) lowerCAmelCase : List[Any] = lambda _A : next(__lowercase ) # ===== invoke ===== send_file(filename='mytext.txt' , testing=__lowercase ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
704
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowerCAmelCase : int = { 'configuration_nezha': ['NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NezhaConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Tuple = [ 'NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST', 'NezhaForNextSentencePrediction', 'NezhaForMaskedLM', 'NezhaForPreTraining', 'NezhaForMultipleChoice', 'NezhaForQuestionAnswering', 'NezhaForSequenceClassification', 'NezhaForTokenClassification', 'NezhaModel', 'NezhaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys _lowerCAmelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
646
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class lowerCAmelCase ( __lowercase , __lowercase , unittest.TestCase ): _lowerCamelCase : List[Any] = StableDiffusionPanoramaPipeline _lowerCamelCase : List[str] = TEXT_TO_IMAGE_PARAMS _lowerCamelCase : int = TEXT_TO_IMAGE_BATCH_PARAMS _lowerCamelCase : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS _lowerCamelCase : Any = TEXT_TO_IMAGE_IMAGE_PARAMS def lowercase ( self ): torch.manual_seed(0 ) lowerCAmelCase : Any = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) lowerCAmelCase : List[str] = DDIMScheduler() torch.manual_seed(0 ) lowerCAmelCase : str = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) lowerCAmelCase : Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowerCAmelCase : List[Any] = CLIPTextModel(_A ) lowerCAmelCase : Tuple = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCAmelCase : List[Any] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def lowercase ( self , snake_case__ , snake_case__=0 ): lowerCAmelCase : List[str] = torch.manual_seed(_A ) lowerCAmelCase : Union[str, Any] = { 'prompt': 'a photo of the dolomites', 'generator': generator, # Setting height and width to None to prevent OOMs on CPU. 'height': None, 'width': None, 'num_inference_steps': 1, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase ( self ): lowerCAmelCase : Tuple = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase : List[str] = self.get_dummy_components() lowerCAmelCase : int = StableDiffusionPanoramaPipeline(**_A ) lowerCAmelCase : Dict = sd_pipe.to(_A ) sd_pipe.set_progress_bar_config(disable=_A ) lowerCAmelCase : int = self.get_dummy_inputs(_A ) lowerCAmelCase : List[Any] = sd_pipe(**_A ).images lowerCAmelCase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase : Optional[Any] = np.array([0.6_1_8_6, 0.5_3_7_4, 0.4_9_1_5, 0.4_1_3_5, 0.4_1_1_4, 0.4_5_6_3, 0.5_1_2_8, 0.4_9_7_7, 0.4_7_5_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase ( self ): super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowercase ( self ): super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.2_5e-3 ) def lowercase ( self ): lowerCAmelCase : Tuple = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase : Union[str, Any] = self.get_dummy_components() lowerCAmelCase : int = StableDiffusionPanoramaPipeline(**_A ) lowerCAmelCase : Any = sd_pipe.to(_A ) sd_pipe.set_progress_bar_config(disable=_A ) lowerCAmelCase : str = self.get_dummy_inputs(_A ) lowerCAmelCase : Dict = 'french fries' lowerCAmelCase : Optional[int] = sd_pipe(**_A , negative_prompt=_A ) lowerCAmelCase : Tuple = output.images lowerCAmelCase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase : Dict = np.array([0.6_1_8_7, 0.5_3_7_5, 0.4_9_1_5, 0.4_1_3_6, 0.4_1_1_4, 0.4_5_6_3, 0.5_1_2_8, 0.4_9_7_6, 0.4_7_5_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase ( self ): lowerCAmelCase : List[str] = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase : Dict = self.get_dummy_components() lowerCAmelCase : int = StableDiffusionPanoramaPipeline(**_A ) lowerCAmelCase : List[str] = sd_pipe.to(_A ) sd_pipe.set_progress_bar_config(disable=_A ) lowerCAmelCase : Tuple = self.get_dummy_inputs(_A ) lowerCAmelCase : Any = sd_pipe(**_A , view_batch_size=2 ) lowerCAmelCase : List[Any] = output.images lowerCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase : str = np.array([0.6_1_8_7, 0.5_3_7_5, 0.4_9_1_5, 0.4_1_3_6, 0.4_1_1_4, 0.4_5_6_3, 0.5_1_2_8, 0.4_9_7_6, 0.4_7_5_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase ( self ): lowerCAmelCase : List[str] = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase : Any = self.get_dummy_components() lowerCAmelCase : str = EulerAncestralDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' ) lowerCAmelCase : Optional[Any] = StableDiffusionPanoramaPipeline(**_A ) lowerCAmelCase : Optional[Any] = sd_pipe.to(_A ) sd_pipe.set_progress_bar_config(disable=_A ) lowerCAmelCase : List[str] = self.get_dummy_inputs(_A ) lowerCAmelCase : Optional[Any] = sd_pipe(**_A ).images lowerCAmelCase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase : List[str] = np.array([0.4_0_2_4, 0.6_5_1_0, 0.4_9_0_1, 0.5_3_7_8, 0.5_8_1_3, 0.5_6_2_2, 0.4_7_9_5, 0.4_4_6_7, 0.4_9_5_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase ( self ): lowerCAmelCase : str = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase : Any = self.get_dummy_components() lowerCAmelCase : Union[str, Any] = PNDMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , skip_prk_steps=_A ) lowerCAmelCase : int = StableDiffusionPanoramaPipeline(**_A ) lowerCAmelCase : Union[str, Any] = sd_pipe.to(_A ) sd_pipe.set_progress_bar_config(disable=_A ) lowerCAmelCase : Any = self.get_dummy_inputs(_A ) lowerCAmelCase : Union[str, Any] = sd_pipe(**_A ).images lowerCAmelCase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase : Dict = np.array([0.6_3_9_1, 0.6_2_9_1, 0.4_8_6_1, 0.5_1_3_4, 0.5_5_5_2, 0.4_5_7_8, 0.5_0_3_2, 0.5_0_2_3, 0.4_5_3_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self , snake_case__=0 ): lowerCAmelCase : Optional[int] = torch.manual_seed(_A ) lowerCAmelCase : List[Any] = { 'prompt': 'a photo of the dolomites', 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def lowercase ( self ): lowerCAmelCase : Union[str, Any] = 'stabilityai/stable-diffusion-2-base' lowerCAmelCase : str = DDIMScheduler.from_pretrained(_A , subfolder='scheduler' ) lowerCAmelCase : List[Any] = StableDiffusionPanoramaPipeline.from_pretrained(_A , scheduler=_A , safety_checker=_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() lowerCAmelCase : List[str] = self.get_inputs() lowerCAmelCase : int = pipe(**_A ).images lowerCAmelCase : Any = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) lowerCAmelCase : List[Any] = np.array( [ 0.3_6_9_6_8_3_9_2, 0.2_7_0_2_5_3_7_2, 0.3_2_4_4_6_7_6_6, 0.2_8_3_7_9_3_8_7, 0.3_6_3_6_3_2_7_4, 0.3_0_7_3_3_3_4_7, 0.2_7_1_0_0_0_2_7, 0.2_7_0_5_4_1_2_5, 0.2_5_5_3_6_0_9_6, ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-2 def lowercase ( self ): lowerCAmelCase : List[Any] = StableDiffusionPanoramaPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-base' , safety_checker=_A ) lowerCAmelCase : List[str] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() lowerCAmelCase : List[Any] = self.get_inputs() lowerCAmelCase : List[Any] = pipe(**_A ).images lowerCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) lowerCAmelCase : int = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def lowercase ( self ): lowerCAmelCase : Tuple = 0 def callback_fn(snake_case__ , snake_case__ , snake_case__ ) -> None: lowerCAmelCase : Union[str, Any] = True nonlocal number_of_steps number_of_steps += 1 if step == 1: lowerCAmelCase : List[Any] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) lowerCAmelCase : List[Any] = latents[0, -3:, -3:, -1] lowerCAmelCase : Optional[Any] = np.array( [ 0.1_8_6_8_1_8_6_9, 0.3_3_9_0_7_8_1_6, 0.5_3_6_1_2_7_6, 0.1_4_4_3_2_8_6_5, -0.0_2_8_5_6_6_1_1, -0.7_3_9_4_1_1_2_3, 0.2_3_3_9_7_9_8_7, 0.4_7_3_2_2_6_8_2, -0.3_7_8_2_3_1_6_4, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: lowerCAmelCase : int = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) lowerCAmelCase : int = latents[0, -3:, -3:, -1] lowerCAmelCase : Union[str, Any] = np.array( [ 0.1_8_5_3_9_6_4_5, 0.3_3_9_8_7_2_4_8, 0.5_3_7_8_5_5_9, 0.1_4_4_3_7_1_4_2, -0.0_2_4_5_5_2_6_1, -0.7_3_3_8_3_1_7, 0.2_3_9_9_0_7_5_5, 0.4_7_3_5_6_2_7_2, -0.3_7_8_6_5_0_5, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 lowerCAmelCase : int = False lowerCAmelCase : List[Any] = 'stabilityai/stable-diffusion-2-base' lowerCAmelCase : Union[str, Any] = DDIMScheduler.from_pretrained(_A , subfolder='scheduler' ) lowerCAmelCase : Optional[int] = StableDiffusionPanoramaPipeline.from_pretrained(_A , scheduler=_A , safety_checker=_A ) lowerCAmelCase : int = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() lowerCAmelCase : Optional[Any] = self.get_inputs() pipe(**_A , callback=_A , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def lowercase ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCAmelCase : List[Any] = 'stabilityai/stable-diffusion-2-base' lowerCAmelCase : Optional[int] = DDIMScheduler.from_pretrained(_A , subfolder='scheduler' ) lowerCAmelCase : Tuple = StableDiffusionPanoramaPipeline.from_pretrained(_A , scheduler=_A , safety_checker=_A ) lowerCAmelCase : Tuple = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowerCAmelCase : List[str] = self.get_inputs() lowerCAmelCase : Any = pipe(**_A ) lowerCAmelCase : Union[str, Any] = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
705
'''simple docstring''' from typing import Any class lowerCAmelCase : def __init__( self , snake_case__ ): lowerCAmelCase : Optional[int] = data lowerCAmelCase : Optional[Any] = None def __repr__( self ): return f"Node({self.data})" class lowerCAmelCase : def __init__( self ): lowerCAmelCase : Dict = None def __iter__( self ): lowerCAmelCase : Optional[Any] = self.head while node: yield node.data lowerCAmelCase : Optional[int] = node.next def __len__( self ): return sum(1 for _ in self ) def __repr__( self ): return "->".join([str(snake_case__ ) for item in self] ) def __getitem__( self , snake_case__ ): if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , snake_case__ , snake_case__ ): if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) lowerCAmelCase : Any = self.head for _ in range(snake_case__ ): lowerCAmelCase : List[str] = current.next lowerCAmelCase : int = data def lowercase ( self , snake_case__ ): self.insert_nth(len(self ) , snake_case__ ) def lowercase ( self , snake_case__ ): self.insert_nth(0 , snake_case__ ) def lowercase ( self , snake_case__ , snake_case__ ): if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) lowerCAmelCase : List[str] = Node(snake_case__ ) if self.head is None: lowerCAmelCase : int = new_node elif index == 0: lowerCAmelCase : List[Any] = self.head # link new_node to head lowerCAmelCase : List[Any] = new_node else: lowerCAmelCase : List[Any] = self.head for _ in range(index - 1 ): lowerCAmelCase : Union[str, Any] = temp.next lowerCAmelCase : Any = temp.next lowerCAmelCase : str = new_node def lowercase ( self ): # print every node data print(self ) def lowercase ( self ): return self.delete_nth(0 ) def lowercase ( self ): # delete from tail return self.delete_nth(len(self ) - 1 ) def lowercase ( self , snake_case__ = 0 ): if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) lowerCAmelCase : List[str] = self.head # default first node if index == 0: lowerCAmelCase : Tuple = self.head.next else: lowerCAmelCase : Dict = self.head for _ in range(index - 1 ): lowerCAmelCase : Tuple = temp.next lowerCAmelCase : Dict = temp.next lowerCAmelCase : Tuple = temp.next.next return delete_node.data def lowercase ( self ): return self.head is None def lowercase ( self ): lowerCAmelCase : List[Any] = None lowerCAmelCase : Any = self.head while current: # Store the current node's next node. lowerCAmelCase : List[str] = current.next # Make the current node's next point backwards lowerCAmelCase : int = prev # Make the previous node be the current node lowerCAmelCase : int = current # Make the current node the next node (to progress iteration) lowerCAmelCase : Optional[Any] = next_node # Return prev in order to put the head at the end lowerCAmelCase : List[Any] = prev def __UpperCamelCase ( ) -> None: """simple docstring""" lowerCAmelCase : Tuple = LinkedList() assert linked_list.is_empty() is True assert str(_A ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(_A ) == i linked_list.insert_nth(_A , i + 1 ) assert str(_A ) == "->".join(str(_A ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(_A ) == "->".join(str(_A ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(_A ) == 9 assert str(_A ) == "->".join(str(_A ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): lowerCAmelCase : Optional[Any] = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(_A ) == "->".join(str(_A ) for i in range(-8 , 1 ) ) def __UpperCamelCase ( ) -> None: """simple docstring""" lowerCAmelCase : Optional[int] = [ -9, 1_00, Node(77_34_51_12 ), 'dlrow olleH', 7, 55_55, 0, -1_92.5_55_55, 'Hello, world!', 77.9, Node(10 ), None, None, 12.20, ] lowerCAmelCase : Dict = LinkedList() for i in test_input: linked_list.insert_tail(_A ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(_A ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head lowerCAmelCase : Optional[Any] = linked_list.delete_head() assert result == -9 assert ( str(_A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail lowerCAmelCase : List[str] = linked_list.delete_tail() assert result == 12.2 assert ( str(_A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list lowerCAmelCase : List[str] = linked_list.delete_nth(10 ) assert result is None assert ( str(_A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(_A ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(_A ) assert ( str(_A ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(_A ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def __UpperCamelCase ( ) -> List[Any]: """simple docstring""" from doctest import testmod testmod() lowerCAmelCase : Optional[Any] = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(_A ) print('\nReading/changing Node data using indexing:' ) print(F"Element at Position 1: {linked_list[1]}" ) lowerCAmelCase : Tuple = input('Enter New Value: ' ).strip() print('New list:' ) print(_A ) print(F"length of linked_list is : {len(_A )}" ) if __name__ == "__main__": main()
646
0
'''simple docstring''' from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
706
'''simple docstring''' _lowerCAmelCase : List[str] = {str(digit): digit**5 for digit in range(10)} def __UpperCamelCase ( _A : int ) -> int: """simple docstring""" return sum(DIGITS_FIFTH_POWER[digit] for digit in str(_A ) ) def __UpperCamelCase ( ) -> int: """simple docstring""" return sum( number for number in range(10_00 , 1_00_00_00 ) if number == digits_fifth_powers_sum(_A ) ) if __name__ == "__main__": print(solution())
646
0
'''simple docstring''' import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): # A mock response for an HTTP head request to emulate server down lowerCAmelCase : Optional[int] = mock.Mock() lowerCAmelCase : Union[str, Any] = 500 lowerCAmelCase : str = {} lowerCAmelCase : List[str] = HTTPError lowerCAmelCase : Optional[Any] = {} # Download this model to make sure it's in the cache. lowerCAmelCase : List[str] = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=a_ ) as mock_head: lowerCAmelCase : Optional[Any] = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def lowercase ( self ): # A mock response for an HTTP head request to emulate server down lowerCAmelCase : Union[str, Any] = mock.Mock() lowerCAmelCase : Any = 500 lowerCAmelCase : int = {} lowerCAmelCase : int = HTTPError lowerCAmelCase : Any = {} # Download this model to make sure it's in the cache. lowerCAmelCase : List[str] = GPTaTokenizerFast.from_pretrained('gpt2' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=a_ ) as mock_head: lowerCAmelCase : Optional[int] = GPTaTokenizerFast.from_pretrained('gpt2' ) # This check we did call the fake head request mock_head.assert_called() def lowercase ( self ): # This test is for deprecated behavior and can be removed in v5 try: lowerCAmelCase : Union[str, Any] = tempfile.mktemp() with open(a_ , 'wb' ) as f: http_get('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' , a_ ) lowerCAmelCase : Dict = AlbertTokenizer.from_pretrained(a_ ) finally: os.remove(a_ ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile('tokenizer.json' ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open('tokenizer.json' , 'wb' ) as f: http_get('https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json' , a_ ) lowerCAmelCase : Tuple = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size , 1000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove('tokenizer.json' ) def lowercase ( self ): # This test is for deprecated behavior and can be removed in v5 lowerCAmelCase : Tuple = AlbertTokenizer.from_pretrained('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' ) @is_staging_test class lowerCAmelCase ( unittest.TestCase ): _lowerCamelCase : str = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou'''] @classmethod def lowercase ( cls ): lowerCAmelCase : Tuple = TOKEN HfFolder.save_token(a_ ) @classmethod def lowercase ( cls ): try: delete_repo(token=cls._token , repo_id='test-tokenizer' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-tokenizer-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-tokenizer' ) except HTTPError: pass def lowercase ( self ): with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase : int = os.path.join(a_ , 'vocab.txt' ) with open(a_ , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) lowerCAmelCase : str = BertTokenizer(a_ ) tokenizer.push_to_hub('test-tokenizer' , use_auth_token=self._token ) lowerCAmelCase : List[Any] = BertTokenizer.from_pretrained(f"{USER}/test-tokenizer" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id='test-tokenizer' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(a_ , repo_id='test-tokenizer' , push_to_hub=a_ , use_auth_token=self._token ) lowerCAmelCase : str = BertTokenizer.from_pretrained(f"{USER}/test-tokenizer" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) def lowercase ( self ): with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase : List[Any] = os.path.join(a_ , 'vocab.txt' ) with open(a_ , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) lowerCAmelCase : Any = BertTokenizer(a_ ) tokenizer.push_to_hub('valid_org/test-tokenizer-org' , use_auth_token=self._token ) lowerCAmelCase : Dict = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-tokenizer-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( a_ , repo_id='valid_org/test-tokenizer-org' , push_to_hub=a_ , use_auth_token=self._token ) lowerCAmelCase : int = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) @require_tokenizers def lowercase ( self ): CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase : Optional[int] = os.path.join(a_ , 'vocab.txt' ) with open(a_ , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) lowerCAmelCase : Tuple = CustomTokenizer(a_ ) # No fast custom tokenizer tokenizer.push_to_hub('test-dynamic-tokenizer' , use_auth_token=self._token ) lowerCAmelCase : int = AutoTokenizer.from_pretrained(f"{USER}/test-dynamic-tokenizer" , trust_remote_code=a_ ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizer' ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase : Optional[Any] = os.path.join(a_ , 'vocab.txt' ) with open(a_ , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) lowerCAmelCase : List[Any] = BertTokenizerFast.from_pretrained(a_ ) bert_tokenizer.save_pretrained(a_ ) lowerCAmelCase : List[str] = CustomTokenizerFast.from_pretrained(a_ ) tokenizer.push_to_hub('test-dynamic-tokenizer' , use_auth_token=self._token ) lowerCAmelCase : Dict = AutoTokenizer.from_pretrained(f"{USER}/test-dynamic-tokenizer" , trust_remote_code=a_ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizerFast' ) lowerCAmelCase : Dict = AutoTokenizer.from_pretrained( f"{USER}/test-dynamic-tokenizer" , use_fast=a_ , trust_remote_code=a_ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizer' ) class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): lowerCAmelCase : Optional[Any] = Trie() trie.add('Hello 友達' ) self.assertEqual(trie.data , {'H': {'e': {'l': {'l': {'o': {' ': {'友': {'達': {'': 1}}}}}}}}} ) trie.add('Hello' ) trie.data self.assertEqual(trie.data , {'H': {'e': {'l': {'l': {'o': {'': 1, ' ': {'友': {'達': {'': 1}}}}}}}}} ) def lowercase ( self ): lowerCAmelCase : int = Trie() self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) , ['[CLS] This is a extra_id_100'] ) trie.add('[CLS]' ) trie.add('extra_id_1' ) trie.add('extra_id_100' ) self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) , ['[CLS]', ' This is a ', 'extra_id_100'] ) def lowercase ( self ): lowerCAmelCase : Any = Trie() trie.add('A' ) self.assertEqual(trie.split('ABC' ) , ['A', 'BC'] ) self.assertEqual(trie.split('BCA' ) , ['BC', 'A'] ) def lowercase ( self ): lowerCAmelCase : Tuple = Trie() trie.add('TOKEN]' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) , ['This is something ', '[SPECIAL_TOKEN]'] ) def lowercase ( self ): lowerCAmelCase : List[str] = Trie() trie.add('A' ) trie.add('P' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) , ['This is something ', '[SPECIAL_TOKEN]'] ) def lowercase ( self ): lowerCAmelCase : Optional[Any] = Trie() trie.add('AB' ) trie.add('B' ) trie.add('C' ) self.assertEqual(trie.split('ABC' ) , ['AB', 'C'] ) def lowercase ( self ): lowerCAmelCase : str = Trie() trie.add('ABC' ) trie.add('B' ) trie.add('CD' ) self.assertEqual(trie.split('ABCD' ) , ['ABC', 'D'] ) def lowercase ( self ): # Even if the offsets are wrong, we necessarily output correct string # parts. lowerCAmelCase : Dict = Trie() lowerCAmelCase : str = trie.cut_text('ABC' , [0, 0, 2, 1, 2, 3] ) self.assertEqual(a_ , ['AB', 'C'] )
707
'''simple docstring''' def __UpperCamelCase ( _A : List[str] ) -> Optional[Any]: """simple docstring""" if not head: return True # split the list to two parts lowerCAmelCase , lowerCAmelCase : str = head.next, head while fast and fast.next: lowerCAmelCase : Optional[int] = fast.next.next lowerCAmelCase : int = slow.next lowerCAmelCase : int = slow.next lowerCAmelCase : Optional[Any] = None # Don't forget here! But forget still works! # reverse the second part lowerCAmelCase : List[Any] = None while second: lowerCAmelCase : List[Any] = second.next lowerCAmelCase : Union[str, Any] = node lowerCAmelCase : Optional[Any] = second lowerCAmelCase : Any = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False lowerCAmelCase : Optional[Any] = node.next lowerCAmelCase : Tuple = head.next return True def __UpperCamelCase ( _A : Optional[Any] ) -> Optional[int]: """simple docstring""" if not head or not head.next: return True # 1. Get the midpoint (slow) lowerCAmelCase : Optional[int] = head while fast and fast.next: lowerCAmelCase , lowerCAmelCase : Optional[Any] = fast.next.next, slow.next # 2. Push the second half into the stack lowerCAmelCase : Tuple = [slow.val] while slow.next: lowerCAmelCase : Tuple = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False lowerCAmelCase : Union[str, Any] = cur.next return True def __UpperCamelCase ( _A : Tuple ) -> Optional[int]: """simple docstring""" if not head or not head.next: return True lowerCAmelCase : Optional[int] = {} lowerCAmelCase : int = 0 while head: if head.val in d: d[head.val].append(_A ) else: lowerCAmelCase : Any = [pos] lowerCAmelCase : int = head.next pos += 1 lowerCAmelCase : str = pos - 1 lowerCAmelCase : Optional[Any] = 0 for v in d.values(): if len(_A ) % 2 != 0: middle += 1 else: lowerCAmelCase : Any = 0 for i in range(0 , len(_A ) ): if v[i] + v[len(_A ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
646
0
'''simple docstring''' def __UpperCamelCase ( _A : Tuple ) -> List[str]: """simple docstring""" if edge <= 0 or not isinstance(_snake_case , _snake_case ): raise ValueError('Length must be a positive.' ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def __UpperCamelCase ( _A : Tuple ) -> Tuple: """simple docstring""" if edge <= 0 or not isinstance(_snake_case , _snake_case ): raise ValueError('Length must be a positive.' ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
708
'''simple docstring''' import math def __UpperCamelCase ( _A : int = 1_00 ) -> int: """simple docstring""" lowerCAmelCase : List[Any] = sum(i * i for i in range(1 , n + 1 ) ) lowerCAmelCase : Optional[Any] = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f"""{solution() = }""")
646
0
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class lowerCAmelCase ( datasets.BeamBasedBuilder ): def lowercase ( self ): return datasets.DatasetInfo( features=datasets.Features({'content': datasets.Value('string' )} ) , supervised_keys=_SCREAMING_SNAKE_CASE , ) def lowercase ( self , snake_case__ , snake_case__ ): return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'examples': get_test_dummy_examples()} )] def lowercase ( self , snake_case__ , snake_case__ ): import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(_SCREAMING_SNAKE_CASE ) class lowerCAmelCase ( datasets.BeamBasedBuilder ): def lowercase ( self ): return datasets.DatasetInfo( features=datasets.Features({'a': datasets.Sequence({'b': datasets.Value('string' )} )} ) , supervised_keys=_SCREAMING_SNAKE_CASE , ) def lowercase ( self , snake_case__ , snake_case__ ): return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'examples': get_test_nested_examples()} ) ] def lowercase ( self , snake_case__ , snake_case__ ): import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(_SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( ) -> Dict: """simple docstring""" return [(i, {"content": content}) for i, content in enumerate(['foo', 'bar', 'foobar'] )] def __UpperCamelCase ( ) -> Dict: """simple docstring""" return [(i, {"a": {"b": [content]}}) for i, content in enumerate(['foo', 'bar', 'foobar'] )] class lowerCAmelCase ( lowerCAmelCase__ ): @require_beam def lowercase ( self ): lowerCAmelCase : int = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: lowerCAmelCase : Optional[Any] = DummyBeamDataset(cache_dir=_SCREAMING_SNAKE_CASE , beam_runner='DirectRunner' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(_SCREAMING_SNAKE_CASE , builder.name , 'default' , '0.0.0' , f"{builder.name}-train.arrow" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'content': datasets.Value('string' )} ) ) lowerCAmelCase : str = builder.as_dataset() self.assertEqual(dset['train'].num_rows , _SCREAMING_SNAKE_CASE ) self.assertEqual(dset['train'].info.splits['train'].num_examples , _SCREAMING_SNAKE_CASE ) self.assertDictEqual(dset['train'][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset['train'][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset @require_beam def lowercase ( self ): import apache_beam as beam lowerCAmelCase : Any = beam.io.parquetio.WriteToParquet lowerCAmelCase : int = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: lowerCAmelCase : Any = DummyBeamDataset(cache_dir=_SCREAMING_SNAKE_CASE , beam_runner='DirectRunner' ) with patch('apache_beam.io.parquetio.WriteToParquet' ) as write_parquet_mock: lowerCAmelCase : int = partial(_SCREAMING_SNAKE_CASE , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( _SCREAMING_SNAKE_CASE , builder.name , 'default' , '0.0.0' , f"{builder.name}-train-00000-of-00002.arrow" ) ) ) self.assertTrue( os.path.exists( os.path.join( _SCREAMING_SNAKE_CASE , builder.name , 'default' , '0.0.0' , f"{builder.name}-train-00000-of-00002.arrow" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'content': datasets.Value('string' )} ) ) lowerCAmelCase : Tuple = builder.as_dataset() self.assertEqual(dset['train'].num_rows , _SCREAMING_SNAKE_CASE ) self.assertEqual(dset['train'].info.splits['train'].num_examples , _SCREAMING_SNAKE_CASE ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset['train']['content'] ) , sorted(['foo', 'bar', 'foobar'] ) ) self.assertTrue( os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset @require_beam def lowercase ( self ): with tempfile.TemporaryDirectory() as tmp_cache_dir: lowerCAmelCase : str = DummyBeamDataset(cache_dir=_SCREAMING_SNAKE_CASE ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def lowercase ( self ): lowerCAmelCase : List[str] = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: lowerCAmelCase : Optional[int] = NestedBeamDataset(cache_dir=_SCREAMING_SNAKE_CASE , beam_runner='DirectRunner' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(_SCREAMING_SNAKE_CASE , builder.name , 'default' , '0.0.0' , f"{builder.name}-train.arrow" ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({'a': datasets.Sequence({'b': datasets.Value('string' )} )} ) ) lowerCAmelCase : List[str] = builder.as_dataset() self.assertEqual(dset['train'].num_rows , _SCREAMING_SNAKE_CASE ) self.assertEqual(dset['train'].info.splits['train'].num_examples , _SCREAMING_SNAKE_CASE ) self.assertDictEqual(dset['train'][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset['train'][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset
709
'''simple docstring''' import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece_with_bytefallback.model') @require_sentencepiece @require_tokenizers class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : Tuple = GPTSwaTokenizer _lowerCamelCase : str = False _lowerCamelCase : Dict = True _lowerCamelCase : Optional[Any] = False def lowercase ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : Tuple = GPTSwaTokenizer(snake_case__ , eos_token='<unk>' , bos_token='<unk>' , pad_token='<unk>' ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase ( self , snake_case__ ): lowerCAmelCase : List[Any] = 'This is a test' lowerCAmelCase : List[Any] = 'This is a test' return input_text, output_text def lowercase ( self ): lowerCAmelCase : Tuple = '<s>' lowerCAmelCase : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def lowercase ( self ): lowerCAmelCase : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(snake_case__ ) , 2000 ) def lowercase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 2000 ) def lowercase ( self ): lowerCAmelCase : List[Any] = GPTSwaTokenizer(snake_case__ ) lowerCAmelCase : Optional[Any] = tokenizer.tokenize('This is a test' ) self.assertListEqual(snake_case__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , [465, 287, 265, 631, 842] ) lowerCAmelCase : Tuple = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) # fmt: off self.assertListEqual( snake_case__ , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] , ) # fmt: on lowerCAmelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual( snake_case__ , [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] , ) lowerCAmelCase : int = tokenizer.convert_ids_to_tokens(snake_case__ ) # fmt: off self.assertListEqual( snake_case__ , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] ) # fmt: on def lowercase ( self ): lowerCAmelCase : str = GPTSwaTokenizer(snake_case__ ) lowerCAmelCase : Optional[int] = ['This is a test', 'I was born in 92000, and this is falsé.'] lowerCAmelCase : Tuple = [ [465, 287, 265, 631, 842], [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(snake_case__ , snake_case__ ): self.assertListEqual(tokenizer.encode_fast(snake_case__ ) , snake_case__ ) # Test that decode_fast returns the input text for text, token_ids in zip(snake_case__ , snake_case__ ): self.assertEqual(tokenizer.decode_fast(snake_case__ ) , snake_case__ ) @slow def lowercase ( self ): lowerCAmelCase : str = [ '<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')', 'Hey there, how are you doing this fine day?', 'This is a text with a trailing spaces followed by a dot .', 'Häj sväjs lillebrör! =)', 'Det är inget fel på Mr. Cool', ] # fmt: off lowerCAmelCase : Tuple = {'input_ids': [[6_3423, 5, 6811, 1_4954, 282, 816, 3821, 6_3466, 6_3425, 6_3462, 18, 6_3978, 678, 301, 1320, 6_3423, 6_3455, 6_3458, 18, 6_3982, 4246, 3940, 1901, 4_7789, 5547, 1_8994], [1_9630, 1100, 6_3446, 1342, 633, 544, 4488, 593, 5102, 2416, 6_3495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1652, 428, 268, 1936, 515, 268, 5_8593, 2_2413, 9106, 546, 268, 3_3213, 6_3979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_5130, 6_3450, 924, 6_3449, 2249, 4062, 1558, 318, 6_3504, 2_1498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2827, 2559, 332, 6575, 6_3443, 2_6801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name='AI-Sweden/gpt-sw3-126m' , sequences=snake_case__ , )
646
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) _lowerCAmelCase : Dict = '▁' _lowerCAmelCase : Tuple = {'vocab_file': 'sentencepiece.bpe.model'} _lowerCAmelCase : List[Any] = { 'vocab_file': { 'xlm-roberta-base': 'https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model', 'xlm-roberta-large': 'https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model', 'xlm-roberta-large-finetuned-conll02-dutch': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model' ), 'xlm-roberta-large-finetuned-conll02-spanish': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model' ), 'xlm-roberta-large-finetuned-conll03-english': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model' ), 'xlm-roberta-large-finetuned-conll03-german': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model' ), } } _lowerCAmelCase : Optional[int] = { 'xlm-roberta-base': 512, 'xlm-roberta-large': 512, 'xlm-roberta-large-finetuned-conll02-dutch': 512, 'xlm-roberta-large-finetuned-conll02-spanish': 512, 'xlm-roberta-large-finetuned-conll03-english': 512, 'xlm-roberta-large-finetuned-conll03-german': 512, } class lowerCAmelCase ( _A ): _lowerCamelCase : Optional[int] = VOCAB_FILES_NAMES _lowerCamelCase : int = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase : Optional[int] = ["""input_ids""", """attention_mask"""] def __init__( self , snake_case__ , snake_case__="<s>" , snake_case__="</s>" , snake_case__="</s>" , snake_case__="<s>" , snake_case__="<unk>" , snake_case__="<pad>" , snake_case__="<mask>" , snake_case__ = None , **snake_case__ , ): lowerCAmelCase : List[Any] = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else mask_token lowerCAmelCase : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase__ , ) lowerCAmelCase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCamelCase__ ) ) lowerCAmelCase : str = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token lowerCAmelCase : Optional[int] = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowerCAmelCase : str = 1 lowerCAmelCase : Optional[int] = len(self.sp_model ) + self.fairseq_offset lowerCAmelCase : Optional[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): lowerCAmelCase : Optional[int] = self.__dict__.copy() lowerCAmelCase : Optional[int] = None lowerCAmelCase : int = self.sp_model.serialized_model_proto() return state def __setstate__( self , snake_case__ ): lowerCAmelCase : Optional[Any] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowerCAmelCase : Union[str, Any] = {} lowerCAmelCase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def lowercase ( self , snake_case__ , snake_case__ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase : str = [self.cls_token_id] lowerCAmelCase : Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase ( self , snake_case__ , snake_case__ = None , snake_case__ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase__ , token_ids_a=UpperCamelCase__ , already_has_special_tokens=UpperCamelCase__ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase__ )) + [1] return [1] + ([0] * len(UpperCamelCase__ )) + [1, 1] + ([0] * len(UpperCamelCase__ )) + [1] def lowercase ( self , snake_case__ , snake_case__ = None ): lowerCAmelCase : str = [self.sep_token_id] lowerCAmelCase : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowercase ( self ): return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def lowercase ( self ): lowerCAmelCase : int = {self.convert_ids_to_tokens(UpperCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowercase ( self , snake_case__ ): return self.sp_model.encode(UpperCamelCase__ , out_type=UpperCamelCase__ ) def lowercase ( self , snake_case__ ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCAmelCase : List[str] = self.sp_model.PieceToId(UpperCamelCase__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowercase ( self , snake_case__ ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowercase ( self , snake_case__ ): lowerCAmelCase : Optional[Any] = ''.join(UpperCamelCase__ ).replace(UpperCamelCase__ , ' ' ).strip() return out_string def lowercase ( self , snake_case__ , snake_case__ = None ): if not os.path.isdir(UpperCamelCase__ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return lowerCAmelCase : List[Any] = os.path.join( UpperCamelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase__ , 'wb' ) as fi: lowerCAmelCase : List[str] = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase__ ) return (out_vocab_file,)
710
'''simple docstring''' def __UpperCamelCase ( _A : int ) -> bool: """simple docstring""" return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
646
0
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=snake_case__ ) class lowerCAmelCase ( snake_case__ ): _lowerCamelCase : str = field(default="""text-classification""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) _lowerCamelCase : ClassVar[Features] = Features({"""text""": Value("""string""" )} ) _lowerCamelCase : ClassVar[Features] = Features({"""labels""": ClassLabel} ) _lowerCamelCase : str = "text" _lowerCamelCase : str = "labels" def lowercase ( self , snake_case__ ): if self.label_column not in features: raise ValueError(f"Column {self.label_column} is not present in features." ) if not isinstance(features[self.label_column] , _A ): raise ValueError(f"Column {self.label_column} is not a ClassLabel." ) lowerCAmelCase : Any = copy.deepcopy(self ) lowerCAmelCase : Dict = self.label_schema.copy() lowerCAmelCase : Any = features[self.label_column] lowerCAmelCase : Optional[int] = label_schema return task_template @property def lowercase ( self ): return { self.text_column: "text", self.label_column: "labels", }
711
'''simple docstring''' import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( 'files' , [ ['full:README.md', 'dataset_infos.json'], ['empty:README.md', 'dataset_infos.json'], ['dataset_infos.json'], ['full:README.md'], ] , ) def __UpperCamelCase ( _A : str , _A : List[Any] ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase : Optional[int] = tmp_path_factory.mktemp('dset_infos_dir' ) if "full:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('---\ndataset_info:\n dataset_size: 42\n---' ) if "empty:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / 'dataset_infos.json' , 'w' ) as f: f.write('{"default": {"dataset_size": 42}}' ) lowerCAmelCase : Union[str, Any] = DatasetInfosDict.from_directory(_A ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( 'dataset_info' , [ DatasetInfo(), DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ), ] , ) def __UpperCamelCase ( _A : str , _A : DatasetInfo ) -> Optional[int]: """simple docstring""" lowerCAmelCase : str = str(_A ) dataset_info.write_to_directory(_A ) lowerCAmelCase : List[str] = DatasetInfo.from_directory(_A ) assert dataset_info == reloaded assert os.path.exists(os.path.join(_A , 'dataset_info.json' ) ) def __UpperCamelCase ( ) -> List[str]: """simple docstring""" lowerCAmelCase : Tuple = DatasetInfo( description='foo' , citation='bar' , homepage='https://foo.bar' , license='CC0' , features=Features({'a': Value('int32' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train', 'num_examples': 42}] , download_checksums={} , download_size=13_37 , post_processing_size=4_42 , dataset_size=12_34 , size_in_bytes=13_37 + 4_42 + 12_34 , ) lowerCAmelCase : Optional[int] = dataset_info._to_yaml_dict() assert sorted(_A ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) lowerCAmelCase : Any = yaml.safe_dump(_A ) lowerCAmelCase : int = yaml.safe_load(_A ) assert dataset_info_yaml_dict == reloaded def __UpperCamelCase ( ) -> Dict: """simple docstring""" lowerCAmelCase : Union[str, Any] = DatasetInfo() lowerCAmelCase : List[Any] = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( 'dataset_infos_dict' , [ DatasetInfosDict(), DatasetInfosDict({'default': DatasetInfo()} ), DatasetInfosDict({'my_config_name': DatasetInfo()} ), DatasetInfosDict( { 'default': DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ) } ), DatasetInfosDict( { 'v1': DatasetInfo(dataset_size=42 ), 'v2': DatasetInfo(dataset_size=13_37 ), } ), ] , ) def __UpperCamelCase ( _A : Tuple , _A : DatasetInfosDict ) -> List[Any]: """simple docstring""" lowerCAmelCase : Tuple = str(_A ) dataset_infos_dict.write_to_directory(_A ) lowerCAmelCase : List[str] = DatasetInfosDict.from_directory(_A ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): lowerCAmelCase : Tuple = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml lowerCAmelCase : Optional[Any] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(_A , 'README.md' ) )
646
0
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : Optional[int] = logging.get_logger(__name__) def __UpperCamelCase ( _A : Any , _A : Union[str, Any]=False ) -> Any: """simple docstring""" lowerCAmelCase : Any = [] # fmt: off # stem: rename_keys.append(('cls_token', 'vit.embeddings.cls_token') ) rename_keys.append(('pos_embed', 'vit.embeddings.position_embeddings') ) rename_keys.append(('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias') ) # backbone rename_keys.append(('patch_embed.backbone.stem.conv.weight', 'vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight') ) rename_keys.append(('patch_embed.backbone.stem.norm.weight', 'vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight') ) rename_keys.append(('patch_embed.backbone.stem.norm.bias', 'vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias') ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias") ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((F"blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((F"blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias") ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ('pre_logits.fc.weight', 'pooler.dense.weight'), ('pre_logits.fc.bias', 'pooler.dense.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCAmelCase : int = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) # fmt: on return rename_keys def __UpperCamelCase ( _A : int , _A : Optional[int] , _A : int=False ) -> int: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase : Tuple = '' else: lowerCAmelCase : List[Any] = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase : Optional[int] = state_dict.pop(F"blocks.{i}.attn.qkv.weight" ) lowerCAmelCase : List[str] = state_dict.pop(F"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase : Any = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase : Optional[int] = in_proj_bias[: config.hidden_size] lowerCAmelCase : str = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase : Union[str, Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase : Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase : List[Any] = in_proj_bias[-config.hidden_size :] def __UpperCamelCase ( _A : str ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase : str = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(__snake_case , __snake_case ) def __UpperCamelCase ( _A : List[str] , _A : Union[str, Any] , _A : List[str] ) -> int: """simple docstring""" lowerCAmelCase : Dict = dct.pop(__snake_case ) lowerCAmelCase : str = val def __UpperCamelCase ( ) -> List[Any]: """simple docstring""" lowerCAmelCase : Dict = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCAmelCase : List[str] = Image.open(requests.get(__snake_case , stream=__snake_case ).raw ) return im @torch.no_grad() def __UpperCamelCase ( _A : Any , _A : Optional[Any] , _A : List[str]=False ) -> str: """simple docstring""" lowerCAmelCase : Optional[int] = BitConfig( global_padding='same' , layer_type='bottleneck' , depths=(3, 4, 9) , out_features=['stage3'] , embedding_dynamic_padding=__snake_case , ) lowerCAmelCase : Tuple = ViTHybridConfig(backbone_config=__snake_case , image_size=3_84 , num_labels=10_00 ) lowerCAmelCase : Union[str, Any] = False # load original model from timm lowerCAmelCase : str = timm.create_model(__snake_case , pretrained=__snake_case ) timm_model.eval() # load state_dict of original model, remove and rename some keys lowerCAmelCase : Optional[Any] = timm_model.state_dict() if base_model: remove_classification_head_(__snake_case ) lowerCAmelCase : Tuple = create_rename_keys(__snake_case , __snake_case ) for src, dest in rename_keys: rename_key(__snake_case , __snake_case , __snake_case ) read_in_q_k_v(__snake_case , __snake_case , __snake_case ) lowerCAmelCase : int = 'huggingface/label-files' lowerCAmelCase : Tuple = 'imagenet-1k-id2label.json' lowerCAmelCase : List[str] = json.load(open(hf_hub_download(__snake_case , __snake_case , repo_type='dataset' ) , 'r' ) ) lowerCAmelCase : List[Any] = {int(__snake_case ): v for k, v in idalabel.items()} lowerCAmelCase : Any = idalabel lowerCAmelCase : Union[str, Any] = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": lowerCAmelCase : Union[str, Any] = ViTHybridModel(__snake_case ).eval() else: lowerCAmelCase : int = ViTHybridForImageClassification(__snake_case ).eval() model.load_state_dict(__snake_case ) # create image processor lowerCAmelCase : Optional[int] = create_transform(**resolve_data_config({} , model=__snake_case ) ) lowerCAmelCase : str = transform.transforms lowerCAmelCase : List[Any] = { 'bilinear': PILImageResampling.BILINEAR, 'bicubic': PILImageResampling.BICUBIC, 'nearest': PILImageResampling.NEAREST, } lowerCAmelCase : Any = ViTHybridImageProcessor( do_resize=__snake_case , size={'shortest_edge': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=__snake_case , crop_size={'height': timm_transforms[1].size[0], 'width': timm_transforms[1].size[1]} , do_normalize=__snake_case , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) lowerCAmelCase : Any = prepare_img() lowerCAmelCase : Any = transform(__snake_case ).unsqueeze(0 ) lowerCAmelCase : str = processor(__snake_case , return_tensors='pt' ).pixel_values # verify pixel values assert torch.allclose(__snake_case , __snake_case ) # verify logits with torch.no_grad(): lowerCAmelCase : str = model(__snake_case ) lowerCAmelCase : Union[str, Any] = outputs.logits print('Predicted class:' , logits.argmax(-1 ).item() ) if base_model: lowerCAmelCase : Dict = timm_model.forward_features(__snake_case ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(__snake_case , outputs.pooler_output , atol=1e-3 ) else: lowerCAmelCase : Any = timm_model(__snake_case ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__snake_case , outputs.logits , atol=1e-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: Path(__snake_case ).mkdir(exist_ok=__snake_case ) print(F"Saving model {vit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__snake_case ) print(F"Saving processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(__snake_case ) if push_to_hub: print(F"Pushing model and processor to the hub {vit_name}" ) model.push_to_hub(F"ybelkada/{vit_name}" ) processor.push_to_hub(F"ybelkada/{vit_name}" ) if __name__ == "__main__": _lowerCAmelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--vit_name', default='vit_base_r50_s16_384', type=str, help='Name of the hybrid ViT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) _lowerCAmelCase : Any = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
712
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCAmelCase ( a ): def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): super().__init__() if safety_checker is None: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" ' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered' ' results in services or applications open to the public. Both the diffusers team and Hugging Face' ' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling' ' it only for use-cases that involve analyzing network behavior or auditing its results. For more' ' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .' ) self.register_modules( speech_model=snake_case__ , speech_processor=snake_case__ , vae=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , unet=snake_case__ , scheduler=snake_case__ , feature_extractor=snake_case__ , ) def lowercase ( self , snake_case__ = "auto" ): if slice_size == "auto": lowerCAmelCase : Union[str, Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(snake_case__ ) def lowercase ( self ): self.enable_attention_slicing(snake_case__ ) @torch.no_grad() def __call__( self , snake_case__ , snake_case__=1_6000 , snake_case__ = 512 , snake_case__ = 512 , snake_case__ = 50 , snake_case__ = 7.5 , snake_case__ = None , snake_case__ = 1 , snake_case__ = 0.0 , snake_case__ = None , snake_case__ = None , snake_case__ = "pil" , snake_case__ = True , snake_case__ = None , snake_case__ = 1 , **snake_case__ , ): lowerCAmelCase : List[str] = self.speech_processor.feature_extractor( snake_case__ , return_tensors='pt' , sampling_rate=snake_case__ ).input_features.to(self.device ) lowerCAmelCase : Optional[Any] = self.speech_model.generate(snake_case__ , max_length=48_0000 ) lowerCAmelCase : str = self.speech_processor.tokenizer.batch_decode(snake_case__ , skip_special_tokens=snake_case__ , normalize=snake_case__ )[ 0 ] if isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = 1 elif isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = len(snake_case__ ) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(snake_case__ )}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(snake_case__ , snake_case__ ) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(snake_case__ )}." ) # get prompt text embeddings lowerCAmelCase : str = self.tokenizer( snake_case__ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) lowerCAmelCase : Tuple = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowerCAmelCase : str = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) lowerCAmelCase : Union[str, Any] = text_input_ids[:, : self.tokenizer.model_max_length] lowerCAmelCase : Union[str, Any] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : int = text_embeddings.shape lowerCAmelCase : Any = text_embeddings.repeat(1 , snake_case__ , 1 ) lowerCAmelCase : Optional[int] = text_embeddings.view(bs_embed * num_images_per_prompt , snake_case__ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowerCAmelCase : List[str] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowerCAmelCase : List[str] if negative_prompt is None: lowerCAmelCase : Any = [''] * batch_size elif type(snake_case__ ) is not type(snake_case__ ): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(snake_case__ )} !=" f" {type(snake_case__ )}." ) elif isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = [negative_prompt] elif batch_size != len(snake_case__ ): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(snake_case__ )}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" ' the batch size of `prompt`.' ) else: lowerCAmelCase : Dict = negative_prompt lowerCAmelCase : Optional[int] = text_input_ids.shape[-1] lowerCAmelCase : int = self.tokenizer( snake_case__ , padding='max_length' , max_length=snake_case__ , truncation=snake_case__ , return_tensors='pt' , ) lowerCAmelCase : Union[str, Any] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowerCAmelCase : List[Any] = uncond_embeddings.shape[1] lowerCAmelCase : List[str] = uncond_embeddings.repeat(1 , snake_case__ , 1 ) lowerCAmelCase : Optional[Any] = uncond_embeddings.view(batch_size * num_images_per_prompt , snake_case__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCAmelCase : List[str] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowerCAmelCase : Union[str, Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowerCAmelCase : Dict = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowerCAmelCase : str = torch.randn(snake_case__ , generator=snake_case__ , device='cpu' , dtype=snake_case__ ).to( self.device ) else: lowerCAmelCase : Tuple = torch.randn(snake_case__ , generator=snake_case__ , device=self.device , dtype=snake_case__ ) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) lowerCAmelCase : str = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(snake_case__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowerCAmelCase : Union[str, Any] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowerCAmelCase : Any = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowerCAmelCase : Tuple = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCAmelCase : Union[str, Any] = {} if accepts_eta: lowerCAmelCase : int = eta for i, t in enumerate(self.progress_bar(snake_case__ ) ): # expand the latents if we are doing classifier free guidance lowerCAmelCase : Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCAmelCase : Tuple = self.scheduler.scale_model_input(snake_case__ , snake_case__ ) # predict the noise residual lowerCAmelCase : List[str] = self.unet(snake_case__ , snake_case__ , encoder_hidden_states=snake_case__ ).sample # perform guidance if do_classifier_free_guidance: lowerCAmelCase , lowerCAmelCase : Dict = noise_pred.chunk(2 ) lowerCAmelCase : Tuple = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowerCAmelCase : int = self.scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase : List[Any] = 1 / 0.1_8_2_1_5 * latents lowerCAmelCase : Dict = self.vae.decode(snake_case__ ).sample lowerCAmelCase : List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowerCAmelCase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowerCAmelCase : Dict = self.numpy_to_pil(snake_case__ ) if not return_dict: return image return StableDiffusionPipelineOutput(images=snake_case__ , nsfw_content_detected=snake_case__ )
646
0
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def __UpperCamelCase ( _A : Union[str, Any] , _A : str , _A : str , _A : Any , _A : Any ) -> int: """simple docstring""" with open(lowerCamelCase_ ) as metadata_file: lowerCAmelCase : Tuple = json.load(lowerCamelCase_ ) lowerCAmelCase : str = LukeConfig(use_entity_aware_attention=lowerCamelCase_ , **metadata['model_config'] ) # Load in the weights from the checkpoint_path lowerCAmelCase : List[Any] = torch.load(lowerCamelCase_ , map_location='cpu' )["""module"""] # Load the entity vocab file lowerCAmelCase : Optional[int] = load_original_entity_vocab(lowerCamelCase_ ) # add an entry for [MASK2] lowerCAmelCase : List[str] = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 lowerCAmelCase : List[Any] = XLMRobertaTokenizer.from_pretrained(metadata['model_config']['bert_model_name'] ) # Add special tokens to the token vocabulary for downstream tasks lowerCAmelCase : str = AddedToken('<ent>' , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) lowerCAmelCase : Tuple = AddedToken('<ent2>' , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) tokenizer.add_special_tokens({'additional_special_tokens': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F"Saving tokenizer to {pytorch_dump_folder_path}" ) tokenizer.save_pretrained(lowerCamelCase_ ) with open(os.path.join(lowerCamelCase_ , 'tokenizer_config.json' ) , 'r' ) as f: lowerCAmelCase : Dict = json.load(lowerCamelCase_ ) lowerCAmelCase : Union[str, Any] = """MLukeTokenizer""" with open(os.path.join(lowerCamelCase_ , 'tokenizer_config.json' ) , 'w' ) as f: json.dump(lowerCamelCase_ , lowerCamelCase_ ) with open(os.path.join(lowerCamelCase_ , MLukeTokenizer.vocab_files_names['entity_vocab_file'] ) , 'w' ) as f: json.dump(lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase : Any = MLukeTokenizer.from_pretrained(lowerCamelCase_ ) # Initialize the embeddings of the special tokens lowerCAmelCase : Dict = tokenizer.convert_tokens_to_ids(['@'] )[0] lowerCAmelCase : Tuple = tokenizer.convert_tokens_to_ids(['#'] )[0] lowerCAmelCase : int = state_dict["""embeddings.word_embeddings.weight"""] lowerCAmelCase : Dict = word_emb[ent_init_index].unsqueeze(0 ) lowerCAmelCase : Optional[Any] = word_emb[enta_init_index].unsqueeze(0 ) lowerCAmelCase : Optional[Any] = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: lowerCAmelCase : Any = state_dict[bias_name] lowerCAmelCase : int = decoder_bias[ent_init_index].unsqueeze(0 ) lowerCAmelCase : Optional[Any] = decoder_bias[enta_init_index].unsqueeze(0 ) lowerCAmelCase : List[Any] = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: lowerCAmelCase : Dict = F"encoder.layer.{layer_index}.attention.self." lowerCAmelCase : Any = state_dict[prefix + matrix_name] lowerCAmelCase : int = state_dict[prefix + matrix_name] lowerCAmelCase : str = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks lowerCAmelCase : List[Any] = state_dict["""entity_embeddings.entity_embeddings.weight"""] lowerCAmelCase : List[str] = entity_emb[entity_vocab["""[MASK]"""]].unsqueeze(0 ) lowerCAmelCase : int = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' lowerCAmelCase : List[Any] = state_dict["""entity_predictions.bias"""] lowerCAmelCase : str = entity_prediction_bias[entity_vocab["""[MASK]"""]].unsqueeze(0 ) lowerCAmelCase : Optional[Any] = torch.cat([entity_prediction_bias, entity_mask_bias] ) lowerCAmelCase : Tuple = LukeForMaskedLM(config=lowerCamelCase_ ).eval() state_dict.pop('entity_predictions.decoder.weight' ) state_dict.pop('lm_head.decoder.weight' ) state_dict.pop('lm_head.decoder.bias' ) lowerCAmelCase : List[Any] = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('lm_head' ) or key.startswith('entity_predictions' )): lowerCAmelCase : Optional[Any] = state_dict[key] else: lowerCAmelCase : Dict = state_dict[key] lowerCAmelCase : str = model.load_state_dict(lowerCamelCase_ , strict=lowerCamelCase_ ) if set(lowerCamelCase_ ) != {"luke.embeddings.position_ids"}: raise ValueError(F"Unexpected unexpected_keys: {unexpected_keys}" ) if set(lowerCamelCase_ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F"Unexpected missing_keys: {missing_keys}" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs lowerCAmelCase : str = MLukeTokenizer.from_pretrained(lowerCamelCase_ , task='entity_classification' ) lowerCAmelCase : Dict = """ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).""" lowerCAmelCase : Union[str, Any] = (0, 9) lowerCAmelCase : Dict = tokenizer(lowerCamelCase_ , entity_spans=[span] , return_tensors='pt' ) lowerCAmelCase : List[Any] = model(**lowerCamelCase_ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base lowerCAmelCase : List[Any] = torch.Size((1, 33, 7_68) ) lowerCAmelCase : Any = torch.tensor([[0.08_92, 0.05_96, -0.28_19], [0.01_34, 0.11_99, 0.05_73], [-0.01_69, 0.09_27, 0.06_44]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F"Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCamelCase_ , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base lowerCAmelCase : List[Any] = torch.Size((1, 1, 7_68) ) lowerCAmelCase : Union[str, Any] = torch.tensor([[-0.14_82, 0.06_09, 0.03_22]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F"Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is" F" {expected_shape}" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , lowerCamelCase_ , atol=1e-4 ): raise ValueError # Verify masked word/entity prediction lowerCAmelCase : Tuple = MLukeTokenizer.from_pretrained(lowerCamelCase_ ) lowerCAmelCase : Dict = """Tokyo is the capital of <mask>.""" lowerCAmelCase : Optional[int] = (24, 30) lowerCAmelCase : Optional[Any] = tokenizer(lowerCamelCase_ , entity_spans=[span] , return_tensors='pt' ) lowerCAmelCase : Dict = model(**lowerCamelCase_ ) lowerCAmelCase : List[str] = encoding["""input_ids"""][0].tolist() lowerCAmelCase : Dict = input_ids.index(tokenizer.convert_tokens_to_ids('<mask>' ) ) lowerCAmelCase : str = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(lowerCamelCase_ ) lowerCAmelCase : Dict = outputs.entity_logits[0][0].argmax().item() lowerCAmelCase : Any = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('en:' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('Saving PyTorch model to {}'.format(lowerCamelCase_ ) ) model.save_pretrained(lowerCamelCase_ ) def __UpperCamelCase ( _A : List[str] ) -> Optional[int]: """simple docstring""" lowerCAmelCase : Optional[int] = ["""[MASK]""", """[PAD]""", """[UNK]"""] lowerCAmelCase : List[Any] = [json.loads(lowerCamelCase_ ) for line in open(lowerCamelCase_ )] lowerCAmelCase : Tuple = {} for entry in data: lowerCAmelCase : List[str] = entry["""id"""] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: lowerCAmelCase : Optional[int] = entity_id break lowerCAmelCase : int = F"{language}:{entity_name}" lowerCAmelCase : List[Any] = entity_id return new_mapping if __name__ == "__main__": _lowerCAmelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Path to a pytorch_model.bin file.') parser.add_argument( '--metadata_path', default=None, type=str, help='Path to a metadata.json file, defining the configuration.' ) parser.add_argument( '--entity_vocab_path', default=None, type=str, help='Path to an entity_vocab.tsv file, containing the entity vocabulary.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to where to dump the output PyTorch model.' ) parser.add_argument( '--model_size', default='base', type=str, choices=['base', 'large'], help='Size of the model to be converted.' ) _lowerCAmelCase : List[str] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
713
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : List[Any] = LDMTextToImagePipeline _lowerCamelCase : Optional[Any] = TEXT_TO_IMAGE_PARAMS - { """negative_prompt""", """negative_prompt_embeds""", """cross_attention_kwargs""", """prompt_embeds""", } _lowerCamelCase : List[str] = PipelineTesterMixin.required_optional_params - { """num_images_per_prompt""", """callback""", """callback_steps""", } _lowerCamelCase : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS _lowerCamelCase : Optional[int] = False def lowercase ( self ): torch.manual_seed(0 ) lowerCAmelCase : Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) lowerCAmelCase : int = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , ) torch.manual_seed(0 ) lowerCAmelCase : str = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') , up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') , latent_channels=4 , ) torch.manual_seed(0 ) lowerCAmelCase : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowerCAmelCase : str = CLIPTextModel(snake_case__ ) lowerCAmelCase : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCAmelCase : List[Any] = { 'unet': unet, 'scheduler': scheduler, 'vqvae': vae, 'bert': text_encoder, 'tokenizer': tokenizer, } return components def lowercase ( self , snake_case__ , snake_case__=0 ): if str(snake_case__ ).startswith('mps' ): lowerCAmelCase : Optional[int] = torch.manual_seed(snake_case__ ) else: lowerCAmelCase : str = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) lowerCAmelCase : Tuple = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase ( self ): lowerCAmelCase : List[str] = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase : Optional[Any] = self.get_dummy_components() lowerCAmelCase : Optional[Any] = LDMTextToImagePipeline(**snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Tuple = self.get_dummy_inputs(snake_case__ ) lowerCAmelCase : Union[str, Any] = pipe(**snake_case__ ).images lowerCAmelCase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) lowerCAmelCase : List[Any] = np.array([0.6_1_0_1, 0.6_1_5_6, 0.5_6_2_2, 0.4_8_9_5, 0.6_6_6_1, 0.3_8_0_4, 0.5_7_4_8, 0.6_1_3_6, 0.5_0_1_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self , snake_case__ , snake_case__=torch.floataa , snake_case__=0 ): lowerCAmelCase : List[str] = torch.manual_seed(snake_case__ ) lowerCAmelCase : int = np.random.RandomState(snake_case__ ).standard_normal((1, 4, 32, 32) ) lowerCAmelCase : Optional[Any] = torch.from_numpy(snake_case__ ).to(device=snake_case__ , dtype=snake_case__ ) lowerCAmelCase : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase ( self ): lowerCAmelCase : Tuple = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Optional[Any] = self.get_inputs(snake_case__ ) lowerCAmelCase : List[Any] = pipe(**snake_case__ ).images lowerCAmelCase : str = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) lowerCAmelCase : Tuple = np.array([0.5_1_8_2_5, 0.5_2_8_5_0, 0.5_2_5_4_3, 0.5_4_2_5_8, 0.5_2_3_0_4, 0.5_2_5_6_9, 0.5_4_3_6_3, 0.5_5_2_7_6, 0.5_6_8_7_8] ) lowerCAmelCase : int = np.abs(expected_slice - image_slice ).max() assert max_diff < 1e-3 @nightly @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self , snake_case__ , snake_case__=torch.floataa , snake_case__=0 ): lowerCAmelCase : List[str] = torch.manual_seed(snake_case__ ) lowerCAmelCase : Any = np.random.RandomState(snake_case__ ).standard_normal((1, 4, 32, 32) ) lowerCAmelCase : List[Any] = torch.from_numpy(snake_case__ ).to(device=snake_case__ , dtype=snake_case__ ) lowerCAmelCase : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase ( self ): lowerCAmelCase : Optional[int] = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : int = self.get_inputs(snake_case__ ) lowerCAmelCase : Optional[int] = pipe(**snake_case__ ).images[0] lowerCAmelCase : Optional[int] = load_numpy( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy' ) lowerCAmelCase : List[str] = np.abs(expected_image - image ).max() assert max_diff < 1e-3
646
0
'''simple docstring''' from math import isclose, sqrt def __UpperCamelCase ( _A : float , _A : float , _A : float ) -> List[Any]: """simple docstring""" lowerCAmelCase : int = point_y / 4 / point_x lowerCAmelCase : Dict = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) lowerCAmelCase : Optional[Any] = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) lowerCAmelCase : Optional[int] = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 lowerCAmelCase : int = outgoing_gradient**2 + 4 lowerCAmelCase : List[Any] = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) lowerCAmelCase : str = (point_y - outgoing_gradient * point_x) ** 2 - 1_00 lowerCAmelCase : Any = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) lowerCAmelCase : List[Any] = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point lowerCAmelCase : Optional[int] = x_minus if isclose(A__ , A__ ) else x_plus lowerCAmelCase : str = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def __UpperCamelCase ( _A : float = 1.4 , _A : float = -9.6 ) -> List[Any]: """simple docstring""" lowerCAmelCase : List[str] = 0 lowerCAmelCase : Optional[int] = first_x_coord lowerCAmelCase : Tuple = first_y_coord lowerCAmelCase : Optional[Any] = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[int] = next_point(A__ , A__ , A__ ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(f"""{solution() = }""")
714
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Tuple = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { 'facebook/xmod-base': 'https://huggingface.co/facebook/xmod-base/resolve/main/config.json', 'facebook/xmod-large-prenorm': 'https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json', 'facebook/xmod-base-13-125k': 'https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json', 'facebook/xmod-base-30-125k': 'https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json', 'facebook/xmod-base-30-195k': 'https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json', 'facebook/xmod-base-60-125k': 'https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json', 'facebook/xmod-base-60-265k': 'https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json', 'facebook/xmod-base-75-125k': 'https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json', 'facebook/xmod-base-75-269k': 'https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json', } class lowerCAmelCase ( a ): _lowerCamelCase : int = """xmod""" def __init__( self , snake_case__=3_0522 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=1e-1_2 , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__="absolute" , snake_case__=True , snake_case__=None , snake_case__=False , snake_case__=2 , snake_case__=False , snake_case__=True , snake_case__=True , snake_case__=("en_XX",) , snake_case__=None , **snake_case__ , ): super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) lowerCAmelCase : Dict = vocab_size lowerCAmelCase : Optional[Any] = hidden_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob lowerCAmelCase : str = max_position_embeddings lowerCAmelCase : int = type_vocab_size lowerCAmelCase : List[Any] = initializer_range lowerCAmelCase : Any = layer_norm_eps lowerCAmelCase : Dict = position_embedding_type lowerCAmelCase : Optional[Any] = use_cache lowerCAmelCase : Union[str, Any] = classifier_dropout lowerCAmelCase : int = pre_norm lowerCAmelCase : Optional[Any] = adapter_reduction_factor lowerCAmelCase : Any = adapter_layer_norm lowerCAmelCase : Dict = adapter_reuse_layer_norm lowerCAmelCase : Any = ln_before_adapter lowerCAmelCase : Optional[Any] = list(snake_case__ ) lowerCAmelCase : List[Any] = default_language class lowerCAmelCase ( a ): @property def lowercase ( self ): if self.task == "multiple-choice": lowerCAmelCase : List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase : Optional[int] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
646
0
'''simple docstring''' import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCAmelCase : def __init__( self , snake_case__ , snake_case__=13 , snake_case__=32 , snake_case__=3 , snake_case__=4 , snake_case__=[10, 20, 30, 40] , snake_case__=[2, 2, 3, 2] , snake_case__=True , snake_case__=True , snake_case__=37 , snake_case__="gelu" , snake_case__=10 , snake_case__=0.0_2 , snake_case__=["stage2", "stage3", "stage4"] , snake_case__=[2, 3, 4] , snake_case__=None , ): lowerCAmelCase : Union[str, Any] = parent lowerCAmelCase : Optional[int] = batch_size lowerCAmelCase : Optional[Any] = image_size lowerCAmelCase : Tuple = num_channels lowerCAmelCase : Tuple = num_stages lowerCAmelCase : List[Any] = hidden_sizes lowerCAmelCase : Any = depths lowerCAmelCase : List[str] = is_training lowerCAmelCase : int = use_labels lowerCAmelCase : Union[str, Any] = intermediate_size lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : Tuple = num_labels lowerCAmelCase : Optional[Any] = initializer_range lowerCAmelCase : Optional[Any] = out_features lowerCAmelCase : Union[str, Any] = out_indices lowerCAmelCase : Tuple = scope def lowercase ( self ): lowerCAmelCase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase : Dict = None if self.use_labels: lowerCAmelCase : Dict = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase : Tuple = self.get_config() return config, pixel_values, labels def lowercase ( self ): return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=snake_case__ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Dict = ConvNextVaModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Tuple = model(snake_case__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Any = ConvNextVaForImageClassification(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : str = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Any = ConvNextVaBackbone(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Tuple = model(snake_case__ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None lowerCAmelCase : str = None lowerCAmelCase : List[Any] = ConvNextVaBackbone(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : List[Any] = model(snake_case__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowercase ( self ): lowerCAmelCase : str = self.prepare_config_and_inputs() lowerCAmelCase : Optional[int] = config_and_inputs lowerCAmelCase : List[Any] = {"pixel_values": pixel_values} return config, inputs_dict def lowercase ( self ): lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() lowerCAmelCase : Dict = config_and_inputs lowerCAmelCase : Optional[Any] = {"pixel_values": pixel_values, "labels": labels} return config, inputs_dict @require_torch class lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): _lowerCamelCase : Dict = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) _lowerCamelCase : str = ( {"""feature-extraction""": ConvNextVaModel, """image-classification""": ConvNextVaForImageClassification} if is_torch_available() else {} ) _lowerCamelCase : List[str] = False _lowerCamelCase : List[Any] = False _lowerCamelCase : str = False _lowerCamelCase : Optional[int] = False _lowerCamelCase : int = False def lowercase ( self ): lowerCAmelCase : List[str] = ConvNextVaModelTester(self ) lowerCAmelCase : Optional[Any] = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=37 ) def lowercase ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase ( self ): return @unittest.skip(reason='ConvNextV2 does not use inputs_embeds' ) def lowercase ( self ): pass @unittest.skip(reason='ConvNextV2 does not support input and output embeddings' ) def lowercase ( self ): pass @unittest.skip(reason='ConvNextV2 does not use feedforward chunking' ) def lowercase ( self ): pass def lowercase ( self ): if not self.model_tester.is_training: return for model_class in self.all_model_classes: lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_with_labels() lowerCAmelCase : List[str] = True if model_class.__name__ in [ *get_values(snake_case__ ), *get_values(snake_case__ ), ]: continue lowerCAmelCase : List[str] = model_class(snake_case__ ) model.to(snake_case__ ) model.train() lowerCAmelCase : Optional[int] = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) lowerCAmelCase : Union[str, Any] = model(**snake_case__ ).loss loss.backward() def lowercase ( self ): if not self.model_tester.is_training: return for model_class in self.all_model_classes: lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_with_labels() lowerCAmelCase : Optional[Any] = False lowerCAmelCase : Dict = True if ( model_class.__name__ in [*get_values(snake_case__ ), *get_values(snake_case__ )] or not model_class.supports_gradient_checkpointing ): continue lowerCAmelCase : Union[str, Any] = model_class(snake_case__ ) model.to(snake_case__ ) model.gradient_checkpointing_enable() model.train() lowerCAmelCase : str = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) lowerCAmelCase : str = model(**snake_case__ ).loss loss.backward() def lowercase ( self ): lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Union[str, Any] = model_class(snake_case__ ) lowerCAmelCase : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase : str = [*signature.parameters.keys()] lowerCAmelCase : Optional[int] = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def lowercase ( self ): def check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Any = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): lowerCAmelCase : Tuple = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) lowerCAmelCase : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase : Dict = self.model_tester.num_stages self.assertEqual(len(snake_case__ ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Union[str, Any] = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase : Optional[Any] = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) def lowercase ( self ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) @slow def lowercase ( self ): for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : List[str] = ConvNextVaModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def __UpperCamelCase ( ) -> int: """simple docstring""" lowerCAmelCase : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowerCAmelCase ( unittest.TestCase ): @cached_property def lowercase ( self ): return AutoImageProcessor.from_pretrained('facebook/convnextv2-tiny-1k-224' ) if is_vision_available() else None @slow def lowercase ( self ): lowerCAmelCase : Union[str, Any] = ConvNextVaForImageClassification.from_pretrained('facebook/convnextv2-tiny-1k-224' ).to(snake_case__ ) lowerCAmelCase : Dict = self.default_image_processor lowerCAmelCase : int = prepare_img() lowerCAmelCase : Optional[Any] = preprocessor(images=snake_case__ , return_tensors='pt' ).to(snake_case__ ) # forward pass with torch.no_grad(): lowerCAmelCase : Tuple = model(**snake_case__ ) # verify the logits lowerCAmelCase : Optional[int] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , snake_case__ ) lowerCAmelCase : Optional[Any] = torch.tensor([0.9_9_9_6, 0.1_9_6_6, -0.4_3_8_6] ).to(snake_case__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case__ , atol=1e-4 ) )
715
'''simple docstring''' import argparse import os import re _lowerCAmelCase : Dict = 'src/diffusers' # Pattern that looks at the indentation in a line. _lowerCAmelCase : str = re.compile(r'^(\s*)\S') # Pattern that matches `"key":" and puts `key` in group 0. _lowerCAmelCase : Any = re.compile(r'^\s*"([^"]+)":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. _lowerCAmelCase : List[Any] = re.compile(r'^\s*_import_structure\["([^"]+)"\]') # Pattern that matches `"key",` and puts `key` in group 0. _lowerCAmelCase : int = re.compile(r'^\s*"([^"]+)",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. _lowerCAmelCase : Optional[Any] = re.compile(r'\[([^\]]+)\]') def __UpperCamelCase ( _A : Union[str, Any] ) -> Dict: """simple docstring""" lowerCAmelCase : Any = _re_indent.search(_A ) return "" if search is None else search.groups()[0] def __UpperCamelCase ( _A : Dict , _A : Any="" , _A : List[str]=None , _A : Any=None ) -> Tuple: """simple docstring""" lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Tuple = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(_A ): index += 1 lowerCAmelCase : Optional[int] = ['\n'.join(lines[:index] )] else: lowerCAmelCase : int = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowerCAmelCase : Tuple = [lines[index]] index += 1 while index < len(_A ) and (end_prompt is None or not lines[index].startswith(_A )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(_A ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(_A ) ) if index < len(_A ) - 1: lowerCAmelCase : List[Any] = [lines[index + 1]] index += 1 else: lowerCAmelCase : int = [] else: blocks.append('\n'.join(_A ) ) lowerCAmelCase : Any = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(_A ) > 0: blocks.append('\n'.join(_A ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(_A ): blocks.append('\n'.join(lines[index:] ) ) return blocks def __UpperCamelCase ( _A : Dict ) -> List[Any]: """simple docstring""" def _inner(_A : Tuple ): return key(_A ).lower().replace('_' , '' ) return _inner def __UpperCamelCase ( _A : Union[str, Any] , _A : Any=None ) -> Optional[Any]: """simple docstring""" def noop(_A : Any ): return x if key is None: lowerCAmelCase : List[str] = noop # Constants are all uppercase, they go first. lowerCAmelCase : str = [obj for obj in objects if key(_A ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowerCAmelCase : List[str] = [obj for obj in objects if key(_A )[0].isupper() and not key(_A ).isupper()] # Functions begin with a lowercase, they go last. lowerCAmelCase : Optional[Any] = [obj for obj in objects if not key(_A )[0].isupper()] lowerCAmelCase : Tuple = ignore_underscore(_A ) return sorted(_A , key=_A ) + sorted(_A , key=_A ) + sorted(_A , key=_A ) def __UpperCamelCase ( _A : Union[str, Any] ) -> int: """simple docstring""" def _replace(_A : List[Any] ): lowerCAmelCase : List[Any] = match.groups()[0] if "," not in imports: return F"[{imports}]" lowerCAmelCase : Dict = [part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase : List[str] = keys[:-1] return "[" + ", ".join([F"\"{k}\"" for k in sort_objects(_A )] ) + "]" lowerCAmelCase : Optional[int] = import_statement.split('\n' ) if len(_A ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowerCAmelCase : Optional[Any] = 2 if lines[1].strip() == '[' else 1 lowerCAmelCase : List[str] = [(i, _re_strip_line.search(_A ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowerCAmelCase : Optional[Any] = sort_objects(_A , key=lambda _A : x[1] ) lowerCAmelCase : Dict = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(_A ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowerCAmelCase : Optional[int] = _re_bracket_content.sub(_replace , lines[1] ) else: lowerCAmelCase : List[Any] = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase : int = keys[:-1] lowerCAmelCase : Tuple = get_indent(lines[1] ) + ', '.join([F"\"{k}\"" for k in sort_objects(_A )] ) return "\n".join(_A ) else: # Finally we have to deal with imports fitting on one line lowerCAmelCase : Union[str, Any] = _re_bracket_content.sub(_replace , _A ) return import_statement def __UpperCamelCase ( _A : str , _A : Tuple=True ) -> Optional[Any]: """simple docstring""" with open(_A , 'r' ) as f: lowerCAmelCase : Optional[int] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowerCAmelCase : List[Any] = split_code_in_indented_blocks( _A , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(_A ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowerCAmelCase : List[str] = main_blocks[block_idx] lowerCAmelCase : Union[str, Any] = block.split('\n' ) # Get to the start of the imports. lowerCAmelCase : Optional[Any] = 0 while line_idx < len(_A ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowerCAmelCase : Optional[Any] = len(_A ) else: line_idx += 1 if line_idx >= len(_A ): continue # Ignore beginning and last line: they don't contain anything. lowerCAmelCase : str = '\n'.join(block_lines[line_idx:-1] ) lowerCAmelCase : str = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowerCAmelCase : Optional[Any] = split_code_in_indented_blocks(_A , indent_level=_A ) # We have two categories of import key: list or _import_structure[key].append/extend lowerCAmelCase : Union[str, Any] = _re_direct_key if '_import_structure' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowerCAmelCase : int = [(pattern.search(_A ).groups()[0] if pattern.search(_A ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowerCAmelCase : Dict = [(i, key) for i, key in enumerate(_A ) if key is not None] lowerCAmelCase : List[Any] = [x[0] for x in sorted(_A , key=lambda _A : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowerCAmelCase : int = 0 lowerCAmelCase : Dict = [] for i in range(len(_A ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: lowerCAmelCase : str = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(_A ) count += 1 # And we put our main block back together with its first and last line. lowerCAmelCase : str = '\n'.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(_A ): if check_only: return True else: print(F"Overwriting {file}." ) with open(_A , 'w' ) as f: f.write('\n'.join(_A ) ) def __UpperCamelCase ( _A : Tuple=True ) -> Any: """simple docstring""" lowerCAmelCase : Tuple = [] for root, _, files in os.walk(_A ): if "__init__.py" in files: lowerCAmelCase : Any = sort_imports(os.path.join(_A , '__init__.py' ) , check_only=_A ) if result: lowerCAmelCase : Optional[Any] = [os.path.join(_A , '__init__.py' )] if len(_A ) > 0: raise ValueError(F"Would overwrite {len(_A )} files, run `make style`." ) if __name__ == "__main__": _lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') _lowerCAmelCase : Optional[int] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
646
0
'''simple docstring''' import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class lowerCAmelCase : def __init__( self , snake_case__ , snake_case__=13 , snake_case__=64 , snake_case__=2 , snake_case__=3 , snake_case__=True , snake_case__=True , snake_case__=32 , snake_case__=5 , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=10 , snake_case__=0.0_2 , snake_case__=[1, 16, 4, 4] , snake_case__=None , ): lowerCAmelCase : List[str] = parent lowerCAmelCase : Optional[Any] = batch_size lowerCAmelCase : str = image_size lowerCAmelCase : Dict = patch_size lowerCAmelCase : Union[str, Any] = num_channels lowerCAmelCase : List[str] = is_training lowerCAmelCase : Tuple = use_labels lowerCAmelCase : Dict = hidden_size lowerCAmelCase : List[str] = num_hidden_layers lowerCAmelCase : Any = num_attention_heads lowerCAmelCase : Tuple = intermediate_size lowerCAmelCase : Optional[int] = hidden_act lowerCAmelCase : Optional[Any] = hidden_dropout_prob lowerCAmelCase : Any = attention_probs_dropout_prob lowerCAmelCase : Tuple = type_sequence_label_size lowerCAmelCase : Dict = initializer_range lowerCAmelCase : Dict = scope lowerCAmelCase : List[str] = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size lowerCAmelCase : Optional[int] = (self.image_size // 32) ** 2 lowerCAmelCase : Optional[Any] = num_patches + 1 def lowercase ( self ): lowerCAmelCase : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase : str = None if self.use_labels: lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : str = self.get_config() return config, pixel_values, labels def lowercase ( self ): lowerCAmelCase : Dict = { 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, 'hidden_sizes': [4, 8, 16, 32], 'num_groups': 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase_ , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=lowercase_ , ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = ViTHybridModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() lowerCAmelCase : Union[str, Any] = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Any = self.type_sequence_label_size lowerCAmelCase : Dict = ViTHybridForImageClassification(lowercase_ ) model.to(lowercase_ ) model.eval() lowerCAmelCase : int = model(lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase ( self ): lowerCAmelCase : Any = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Tuple = config_and_inputs lowerCAmelCase : List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase ( a , a , unittest.TestCase ): _lowerCamelCase : Optional[Any] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () _lowerCamelCase : int = ( {"""feature-extraction""": ViTHybridModel, """image-classification""": ViTHybridForImageClassification} if is_torch_available() else {} ) _lowerCamelCase : int = False _lowerCamelCase : Union[str, Any] = False _lowerCamelCase : Optional[Any] = False def lowercase ( self ): lowerCAmelCase : str = ViTHybridModelTester(self ) lowerCAmelCase : int = ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ , hidden_size=37 ) def lowercase ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def lowercase ( self ): pass def lowercase ( self ): lowerCAmelCase , lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : List[str] = model_class(lowercase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCAmelCase : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase_ , nn.Linear ) ) def lowercase ( self ): lowerCAmelCase , lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Tuple = model_class(lowercase_ ) lowerCAmelCase : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase : int = [*signature.parameters.keys()] lowerCAmelCase : str = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase_ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_ ) def lowercase ( self ): lowerCAmelCase , lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : Optional[int] = _config_zero_init(lowercase_ ) for model_class in self.all_model_classes: lowerCAmelCase : int = model_class(config=lowercase_ ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": lowerCAmelCase : Any = [f"{name}.{key}" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) @slow def lowercase ( self ): for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : Any = ViTHybridModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def __UpperCamelCase ( ) -> str: """simple docstring""" lowerCAmelCase : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowerCAmelCase ( unittest.TestCase ): @cached_property def lowercase ( self ): return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowercase ( self ): lowerCAmelCase : List[str] = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( lowercase_ ) lowerCAmelCase : Union[str, Any] = self.default_image_processor lowerCAmelCase : int = prepare_img() lowerCAmelCase : List[Any] = image_processor(images=lowercase_ , return_tensors='pt' ).to(lowercase_ ) # forward pass with torch.no_grad(): lowerCAmelCase : List[str] = model(**lowercase_ ) # verify the logits lowerCAmelCase : Dict = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowercase_ ) lowerCAmelCase : List[Any] = torch.tensor([-1.9_0_9_0, -0.4_9_9_3, -0.2_3_8_9] ).to(lowercase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase_ , atol=1e-4 ) ) @slow @require_accelerate def lowercase ( self ): lowerCAmelCase : Any = ViTHybridImageProcessor.from_pretrained('google/vit-hybrid-base-bit-384' ) lowerCAmelCase : str = ViTHybridForImageClassification.from_pretrained('google/vit-hybrid-base-bit-384' , device_map='auto' ) lowerCAmelCase : Union[str, Any] = prepare_img() lowerCAmelCase : List[str] = image_processor(images=lowercase_ , return_tensors='pt' ) lowerCAmelCase : Tuple = model(**lowercase_ ) lowerCAmelCase : str = outputs.logits # model predicts one of the 1000 ImageNet classes lowerCAmelCase : List[Any] = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , 'tabby, tabby cat' )
716
'''simple docstring''' import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class lowerCAmelCase : def __init__( self , snake_case__ , snake_case__=13 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=99 , snake_case__=64 , snake_case__=32 , snake_case__=5 , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=16 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=3 , snake_case__=4 , snake_case__=None , ): lowerCAmelCase : str = parent lowerCAmelCase : Optional[int] = batch_size lowerCAmelCase : Optional[Any] = seq_length lowerCAmelCase : Optional[Any] = is_training lowerCAmelCase : Dict = use_input_mask lowerCAmelCase : Tuple = use_token_type_ids lowerCAmelCase : int = use_labels lowerCAmelCase : int = vocab_size lowerCAmelCase : Any = hidden_size lowerCAmelCase : Optional[Any] = embedding_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : List[str] = num_attention_heads lowerCAmelCase : List[Any] = intermediate_size lowerCAmelCase : Dict = hidden_act lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : int = attention_probs_dropout_prob lowerCAmelCase : List[Any] = max_position_embeddings lowerCAmelCase : int = type_vocab_size lowerCAmelCase : List[str] = type_sequence_label_size lowerCAmelCase : Dict = initializer_range lowerCAmelCase : Any = num_labels lowerCAmelCase : str = num_choices lowerCAmelCase : int = scope def lowercase ( self ): lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Union[str, Any] = None if self.use_input_mask: lowerCAmelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : Optional[int] = None if self.use_token_type_ids: lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : Optional[Any] = None lowerCAmelCase : Optional[Any] = None lowerCAmelCase : Dict = None if self.use_labels: lowerCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase ( self ): return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case__ , initializer_range=self.initializer_range , ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = MobileBertModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : int = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) lowerCAmelCase : Optional[int] = model(snake_case__ , token_type_ids=snake_case__ ) lowerCAmelCase : Optional[Any] = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : int = MobileBertForMaskedLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : str = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = MobileBertForNextSentencePrediction(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : str = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : List[Any] = MobileBertForPreTraining(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Tuple = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , next_sentence_label=snake_case__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = MobileBertForQuestionAnswering(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : List[str] = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = self.num_labels lowerCAmelCase : List[Any] = MobileBertForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = self.num_labels lowerCAmelCase : int = MobileBertForTokenClassification(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : List[str] = self.num_choices lowerCAmelCase : Any = MobileBertForMultipleChoice(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : int = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : List[str] = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase ( self ): lowerCAmelCase : Any = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) : Optional[Any] = config_and_inputs lowerCAmelCase : List[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase ( a , a , unittest.TestCase ): _lowerCamelCase : List[str] = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) _lowerCamelCase : Tuple = ( { """feature-extraction""": MobileBertModel, """fill-mask""": MobileBertForMaskedLM, """question-answering""": MobileBertForQuestionAnswering, """text-classification""": MobileBertForSequenceClassification, """token-classification""": MobileBertForTokenClassification, """zero-shot""": MobileBertForSequenceClassification, } if is_torch_available() else {} ) _lowerCamelCase : str = True def lowercase ( self , snake_case__ , snake_case__ , snake_case__=False ): lowerCAmelCase : int = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if return_labels: if model_class in get_values(snake_case__ ): lowerCAmelCase : str = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=snake_case__ ) lowerCAmelCase : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case__ ) return inputs_dict def lowercase ( self ): lowerCAmelCase : List[Any] = MobileBertModelTester(self ) lowerCAmelCase : Dict = ConfigTester(self , config_class=snake_case__ , hidden_size=37 ) def lowercase ( self ): self.config_tester.run_common_tests() def lowercase ( self ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*snake_case__ ) def __UpperCamelCase ( _A : Optional[Any] ) -> Optional[int]: """simple docstring""" return torch.tensor( _A , dtype=torch.long , device=_A , ) _lowerCAmelCase : Union[str, Any] = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase ( unittest.TestCase ): @slow def lowercase ( self ): lowerCAmelCase : List[str] = MobileBertModel.from_pretrained('google/mobilebert-uncased' ).to(snake_case__ ) lowerCAmelCase : List[Any] = _long_tensor([[101, 7110, 1005, 1056, 2023, 1_1333, 1_7413, 1029, 102]] ) with torch.no_grad(): lowerCAmelCase : Tuple = model(snake_case__ )[0] lowerCAmelCase : List[Any] = torch.Size((1, 9, 512) ) self.assertEqual(output.shape , snake_case__ ) lowerCAmelCase : Union[str, Any] = torch.tensor( [ [ [-2.4_7_3_6_5_2_6e0_7, 8.2_6_9_1_6_5_6e0_4, 1.6_5_2_1_8_3_8e0_5], [-5.7_5_4_1_7_0_4e-0_1, 3.9_0_5_6_0_2_2e0_0, 4.4_0_1_1_5_0_7e0_0], [2.6_0_4_7_3_5_9e0_0, 1.5_6_7_7_6_5_2e0_0, -1.7_3_2_4_1_8_8e-0_1], ] ] , device=snake_case__ , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE lowerCAmelCase : List[str] = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) lowerCAmelCase : Dict = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
646
0
'''simple docstring''' from __future__ import annotations def __UpperCamelCase ( _A : list[list[int]] ) -> int: """simple docstring""" for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(snake_case__ ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(snake_case__ ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
717
'''simple docstring''' import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __UpperCamelCase ( _A : Dict ) -> int: """simple docstring""" lowerCAmelCase : Tuple = [] embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight", F"stage{idx}.patch_embed.proj.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias", F"stage{idx}.patch_embed.proj.bias", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight", F"stage{idx}.patch_embed.norm.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias", F"stage{idx}.patch_embed.norm.bias", ) ) return embed def __UpperCamelCase ( _A : List[Any] , _A : Dict ) -> Any: """simple docstring""" lowerCAmelCase : str = [] attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight", F"stage{idx}.blocks.{cnt}.attn.proj_q.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias", F"stage{idx}.blocks.{cnt}.attn.proj_q.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight", F"stage{idx}.blocks.{cnt}.attn.proj_k.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias", F"stage{idx}.blocks.{cnt}.attn.proj_k.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight", F"stage{idx}.blocks.{cnt}.attn.proj_v.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias", F"stage{idx}.blocks.{cnt}.attn.proj_v.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight", F"stage{idx}.blocks.{cnt}.attn.proj.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias", F"stage{idx}.blocks.{cnt}.attn.proj.bias", ) ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc2.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight", F"stage{idx}.blocks.{cnt}.norm1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias", F"stage{idx}.blocks.{cnt}.norm1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight", F"stage{idx}.blocks.{cnt}.norm2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias", F"stage{idx}.blocks.{cnt}.norm2.bias") ) return attention_weights def __UpperCamelCase ( _A : Optional[int] ) -> Optional[int]: """simple docstring""" lowerCAmelCase : Optional[int] = [] token.append((F"cvt.encoder.stages.{idx}.cls_token", 'stage2.cls_token') ) return token def __UpperCamelCase ( ) -> int: """simple docstring""" lowerCAmelCase : List[Any] = [] head.append(('layernorm.weight', 'norm.weight') ) head.append(('layernorm.bias', 'norm.bias') ) head.append(('classifier.weight', 'head.weight') ) head.append(('classifier.bias', 'head.bias') ) return head def __UpperCamelCase ( _A : str , _A : Optional[Any] , _A : Dict , _A : str ) -> Optional[int]: """simple docstring""" lowerCAmelCase : List[str] = 'imagenet-1k-id2label.json' lowerCAmelCase : Tuple = 10_00 lowerCAmelCase : str = 'huggingface/label-files' lowerCAmelCase : List[Any] = num_labels lowerCAmelCase : Any = json.load(open(cached_download(hf_hub_url(_A , _A , repo_type='dataset' ) ) , 'r' ) ) lowerCAmelCase : List[str] = {int(_A ): v for k, v in idalabel.items()} lowerCAmelCase : List[str] = idalabel lowerCAmelCase : str = {v: k for k, v in idalabel.items()} lowerCAmelCase : int = CvtConfig(num_labels=_A , idalabel=_A , labelaid=_A ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13": lowerCAmelCase : List[str] = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21": lowerCAmelCase : Tuple = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: lowerCAmelCase : Any = [2, 2, 20] lowerCAmelCase : List[str] = [3, 12, 16] lowerCAmelCase : List[Any] = [1_92, 7_68, 10_24] lowerCAmelCase : Union[str, Any] = CvtForImageClassification(_A ) lowerCAmelCase : str = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) lowerCAmelCase : Optional[Any] = image_size lowerCAmelCase : List[Any] = torch.load(_A , map_location=torch.device('cpu' ) ) lowerCAmelCase : str = OrderedDict() lowerCAmelCase : int = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: lowerCAmelCase : List[str] = list_of_state_dict + cls_token(_A ) lowerCAmelCase : Optional[Any] = list_of_state_dict + embeddings(_A ) for cnt in range(config.depth[idx] ): lowerCAmelCase : List[Any] = list_of_state_dict + attention(_A , _A ) lowerCAmelCase : List[str] = list_of_state_dict + final() for gg in list_of_state_dict: print(_A ) for i in range(len(_A ) ): lowerCAmelCase : Tuple = original_weights[list_of_state_dict[i][1]] model.load_state_dict(_A ) model.save_pretrained(_A ) image_processor.save_pretrained(_A ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": _lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '--cvt_model', default='cvt-w24', type=str, help='Name of the cvt model you\'d like to convert.', ) parser.add_argument( '--image_size', default=384, type=int, help='Input Image Size', ) parser.add_argument( '--cvt_file_name', default=r'cvtmodels\CvT-w24-384x384-IN-22k.pth', type=str, help='Input Image Size', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) _lowerCAmelCase : str = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
646
0
'''simple docstring''' from __future__ import annotations import collections import pprint from pathlib import Path def __UpperCamelCase ( _A ) -> str: """simple docstring""" return "".join(sorted(_A ) ) def __UpperCamelCase ( _A ) -> list[str]: """simple docstring""" return word_by_signature[signature(_A )] _lowerCAmelCase : str = Path(__file__).parent.joinpath('words.txt').read_text(encoding='utf-8') _lowerCAmelCase : Tuple = sorted({word.strip().lower() for word in data.splitlines()}) _lowerCAmelCase : Optional[int] = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": _lowerCAmelCase : Tuple = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('anagrams.txt', 'w') as file: file.write('all_anagrams = \n ') file.write(pprint.pformat(all_anagrams))
718
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Any = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { 'xlm-roberta-base': 'https://huggingface.co/xlm-roberta-base/resolve/main/config.json', 'xlm-roberta-large': 'https://huggingface.co/xlm-roberta-large/resolve/main/config.json', 'xlm-roberta-large-finetuned-conll02-dutch': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll02-spanish': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-english': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-german': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json' ), } class lowerCAmelCase ( a ): _lowerCamelCase : List[str] = """xlm-roberta""" def __init__( self , snake_case__=3_0522 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=1e-1_2 , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__="absolute" , snake_case__=True , snake_case__=None , **snake_case__ , ): super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) lowerCAmelCase : Optional[Any] = vocab_size lowerCAmelCase : Optional[Any] = hidden_size lowerCAmelCase : Optional[Any] = num_hidden_layers lowerCAmelCase : Any = num_attention_heads lowerCAmelCase : Optional[int] = hidden_act lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : Dict = hidden_dropout_prob lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob lowerCAmelCase : Optional[Any] = max_position_embeddings lowerCAmelCase : Optional[int] = type_vocab_size lowerCAmelCase : int = initializer_range lowerCAmelCase : List[Any] = layer_norm_eps lowerCAmelCase : Union[str, Any] = position_embedding_type lowerCAmelCase : Union[str, Any] = use_cache lowerCAmelCase : List[str] = classifier_dropout class lowerCAmelCase ( a ): @property def lowercase ( self ): if self.task == "multiple-choice": lowerCAmelCase : str = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase : Optional[int] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
646
0
'''simple docstring''' from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): _lowerCamelCase : Optional[int] = ["""image_processor""", """tokenizer"""] _lowerCamelCase : Optional[int] = """BlipImageProcessor""" _lowerCamelCase : Union[str, Any] = """AutoTokenizer""" def __init__( self , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = False super().__init__(snake_case__ , snake_case__ ) lowerCAmelCase : List[Any] = self.image_processor def __call__( self , snake_case__ = None , snake_case__ = None , snake_case__ = True , snake_case__ = False , snake_case__ = None , snake_case__ = None , snake_case__ = 0 , snake_case__ = None , snake_case__ = None , snake_case__ = False , snake_case__ = False , snake_case__ = False , snake_case__ = False , snake_case__ = False , snake_case__ = True , snake_case__ = None , **snake_case__ , ): if images is None and text is None: raise ValueError('You have to specify either images or text.' ) # Get only text if images is None: lowerCAmelCase : List[str] = self.tokenizer lowerCAmelCase : Union[str, Any] = self.tokenizer( text=snake_case__ , add_special_tokens=snake_case__ , padding=snake_case__ , truncation=snake_case__ , max_length=snake_case__ , stride=snake_case__ , pad_to_multiple_of=snake_case__ , return_attention_mask=snake_case__ , return_overflowing_tokens=snake_case__ , return_special_tokens_mask=snake_case__ , return_offsets_mapping=snake_case__ , return_token_type_ids=snake_case__ , return_length=snake_case__ , verbose=snake_case__ , return_tensors=snake_case__ , **snake_case__ , ) return text_encoding # add pixel_values lowerCAmelCase : Any = self.image_processor(snake_case__ , return_tensors=snake_case__ ) if text is not None: lowerCAmelCase : Tuple = self.tokenizer( text=snake_case__ , add_special_tokens=snake_case__ , padding=snake_case__ , truncation=snake_case__ , max_length=snake_case__ , stride=snake_case__ , pad_to_multiple_of=snake_case__ , return_attention_mask=snake_case__ , return_overflowing_tokens=snake_case__ , return_special_tokens_mask=snake_case__ , return_offsets_mapping=snake_case__ , return_token_type_ids=snake_case__ , return_length=snake_case__ , verbose=snake_case__ , return_tensors=snake_case__ , **snake_case__ , ) else: lowerCAmelCase : List[str] = None if text_encoding is not None: encoding_image_processor.update(snake_case__ ) return encoding_image_processor def lowercase ( self , *snake_case__ , **snake_case__ ): return self.tokenizer.batch_decode(*snake_case__ , **snake_case__ ) def lowercase ( self , *snake_case__ , **snake_case__ ): return self.tokenizer.decode(*snake_case__ , **snake_case__ ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def lowercase ( self ): lowerCAmelCase : Any = self.tokenizer.model_input_names lowerCAmelCase : Optional[int] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
719
'''simple docstring''' import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer _lowerCAmelCase : List[Any] = logging.getLogger(__name__) def __UpperCamelCase ( ) -> Any: """simple docstring""" lowerCAmelCase : str = argparse.ArgumentParser( description='Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.' ) parser.add_argument( '--dataset_name' , type=_A , default='wikitext' , help='Name of the training. Explore datasets at: hf.co/datasets.' , ) parser.add_argument( '--dataset_config' , type=_A , default='wikitext-103-raw-v1' , help='Configuration name of the dataset.' ) parser.add_argument( '--tokenizer_name_or_path' , type=_A , default='sayakpaul/unigram-tokenizer-wikitext' , help='Tokenizer identifier. Can be a local filepath or a Hub identifier.' , ) parser.add_argument( '--shard_size' , type=_A , default=10_00 , help='Number of entries to go in a single shard.' , ) parser.add_argument('--split' , type=_A , default='train' , choices=['train', 'test', 'validation'] ) parser.add_argument( '--limit' , default=_A , type=_A , help='Limit the number of shards (used for debugging).' , ) parser.add_argument( '--max_length' , type=_A , default=5_12 , help='Maximum sequence length. For training on TPUs, it helps to have a maximum' ' sequence length that is a multiple of 8.' , ) parser.add_argument( '--output_dir' , default='tf-tpu' , type=_A , help='Output directory where the TFRecord shards will be saved. If the' ' path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord' ' shards will be directly saved to a Google Cloud Storage bucket.' , ) lowerCAmelCase : Any = parser.parse_args() return args def __UpperCamelCase ( _A : Optional[int] ) -> int: """simple docstring""" def fn(_A : Tuple ): return tokenizer(examples['text'] ) return fn def __UpperCamelCase ( _A : int ) -> int: """simple docstring""" lowerCAmelCase : Tuple = [] for i in range(len(tokenized_data['input_ids'] ) ): lowerCAmelCase : Optional[Any] = { 'input_ids': tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data['input_ids'][i] ) ), 'attention_mask': tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data['attention_mask'][i] ) ), } lowerCAmelCase : Any = tf.train.Features(feature=_A ) lowerCAmelCase : List[str] = tf.train.Example(features=_A ) lowerCAmelCase : Tuple = example.SerializeToString() records.append(_A ) return records def __UpperCamelCase ( _A : int ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase : Union[str, Any] = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: lowerCAmelCase : Optional[Any] = min(len(_A ) , args.limit ) lowerCAmelCase : Dict = dataset.select(range(_A ) ) print(F"Limiting the dataset to {args.limit} entries." ) lowerCAmelCase : str = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) lowerCAmelCase : Any = os.path.join(args.output_dir , args.split ) if not os.path.exists(_A ): os.makedirs(_A ) else: lowerCAmelCase : List[Any] = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. lowerCAmelCase : Any = tokenize_function(_A ) lowerCAmelCase : Optional[int] = dataset.map(_A , batched=_A , num_proc=4 , remove_columns=['text'] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(_A : str ): # Concatenate all texts. lowerCAmelCase : Optional[int] = {k: sum(examples[k] , [] ) for k in examples.keys()} lowerCAmelCase : str = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 lowerCAmelCase : List[Any] = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. lowerCAmelCase : str = { k: [t[i : i + args.max_length] for i in range(0 , _A , args.max_length )] for k, t in concatenated_examples.items() } return result lowerCAmelCase : List[Any] = dataset_tokenized.map(_A , batched=_A , batch_size=10_00 , num_proc=4 ) lowerCAmelCase : Union[str, Any] = 0 lowerCAmelCase : Tuple = 0 for shard in range(0 , len(_A ) , args.shard_size ): lowerCAmelCase : Optional[Any] = grouped_dataset[shard : shard + args.shard_size] lowerCAmelCase : List[str] = len(dataset_snapshot['input_ids'] ) lowerCAmelCase : Union[str, Any] = os.path.join(_A , F"dataset-{shard_count}-{records_containing}.tfrecord" ) lowerCAmelCase : List[Any] = get_serialized_examples(_A ) with tf.io.TFRecordWriter(_A ) as out_file: for i in range(len(_A ) ): lowerCAmelCase : Union[str, Any] = serialized_examples[i] out_file.write(_A ) print('Wrote file {} containing {} records'.format(_A , _A ) ) shard_count += 1 total_records += records_containing with open(F"split-{args.split}-records-count.txt" , 'w' ) as f: print(F"Total {args.split} records: {total_records}" , file=_A ) if __name__ == "__main__": _lowerCAmelCase : List[Any] = parse_args() main(args)
646
0
'''simple docstring''' from collections.abc import Iterable from typing import Generic, TypeVar _lowerCAmelCase : str = TypeVar('_T') class lowerCAmelCase ( Generic[_T] ): def __init__( self , snake_case__ = None ): lowerCAmelCase : Dict = list(iterable or [] ) lowerCAmelCase : Any = [] def __len__( self ): return len(self._stacka ) + len(self._stacka ) def __repr__( self ): return f"Queue({tuple(self._stacka[::-1] + self._stacka )})" def lowercase ( self , snake_case__ ): self._stacka.append(SCREAMING_SNAKE_CASE_ ) def lowercase ( self ): lowerCAmelCase : Tuple = self._stacka.pop lowerCAmelCase : int = self._stacka.append if not self._stacka: while self._stacka: stacka_append(stacka_pop() ) if not self._stacka: raise IndexError('Queue is empty' ) return self._stacka.pop() if __name__ == "__main__": from doctest import testmod testmod()
720
'''simple docstring''' import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() _lowerCAmelCase : List[str] = logging.get_logger('transformers.models.speecht5') def __UpperCamelCase ( _A : Any , _A : Dict , _A : Any ) -> Union[str, Any]: """simple docstring""" hf_model.apply_weight_norm() lowerCAmelCase : int = checkpoint['input_conv.weight_g'] lowerCAmelCase : Optional[int] = checkpoint['input_conv.weight_v'] lowerCAmelCase : Dict = checkpoint['input_conv.bias'] for i in range(len(config.upsample_rates ) ): lowerCAmelCase : Optional[Any] = checkpoint[F"upsamples.{i}.1.weight_g"] lowerCAmelCase : str = checkpoint[F"upsamples.{i}.1.weight_v"] lowerCAmelCase : str = checkpoint[F"upsamples.{i}.1.bias"] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): lowerCAmelCase : int = checkpoint[F"blocks.{i}.convs1.{j}.1.weight_g"] lowerCAmelCase : str = checkpoint[F"blocks.{i}.convs1.{j}.1.weight_v"] lowerCAmelCase : int = checkpoint[F"blocks.{i}.convs1.{j}.1.bias"] lowerCAmelCase : Optional[Any] = checkpoint[F"blocks.{i}.convs2.{j}.1.weight_g"] lowerCAmelCase : Tuple = checkpoint[F"blocks.{i}.convs2.{j}.1.weight_v"] lowerCAmelCase : Tuple = checkpoint[F"blocks.{i}.convs2.{j}.1.bias"] lowerCAmelCase : List[Any] = checkpoint['output_conv.1.weight_g'] lowerCAmelCase : List[str] = checkpoint['output_conv.1.weight_v'] lowerCAmelCase : Optional[Any] = checkpoint['output_conv.1.bias'] hf_model.remove_weight_norm() @torch.no_grad() def __UpperCamelCase ( _A : Dict , _A : Union[str, Any] , _A : List[Any] , _A : Any=None , _A : Any=None , ) -> Dict: """simple docstring""" if config_path is not None: lowerCAmelCase : Dict = SpeechTaHifiGanConfig.from_pretrained(_A ) else: lowerCAmelCase : Union[str, Any] = SpeechTaHifiGanConfig() lowerCAmelCase : List[Any] = SpeechTaHifiGan(_A ) lowerCAmelCase : List[str] = torch.load(_A ) load_weights(orig_checkpoint['model']['generator'] , _A , _A ) lowerCAmelCase : Tuple = np.load(_A ) lowerCAmelCase : List[Any] = stats[0].reshape(-1 ) lowerCAmelCase : int = stats[1].reshape(-1 ) lowerCAmelCase : Union[str, Any] = torch.from_numpy(_A ).float() lowerCAmelCase : int = torch.from_numpy(_A ).float() model.save_pretrained(_A ) if repo_id: print('Pushing to the hub...' ) model.push_to_hub(_A ) if __name__ == "__main__": _lowerCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--stats_path', required=True, default=None, type=str, help='Path to stats.npy file') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) _lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
646
0
'''simple docstring''' import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase ( _snake_case ): _lowerCamelCase : Dict = (DDPMScheduler,) def lowercase ( self , **snake_case__ ): lowerCAmelCase : Dict = { "num_train_timesteps": 1000, "beta_start": 0.0_0_0_1, "beta_end": 0.0_2, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**snake_case_ ) return config def lowercase ( self ): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=snake_case_ ) def lowercase ( self ): for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=snake_case_ , beta_end=snake_case_ ) def lowercase ( self ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=snake_case_ ) def lowercase ( self ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=snake_case_ ) def lowercase ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=snake_case_ ) def lowercase ( self ): self.check_over_configs(thresholding=snake_case_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=snake_case_ , prediction_type=snake_case_ , sample_max_value=snake_case_ , ) def lowercase ( self ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=snake_case_ ) def lowercase ( self ): for t in [0, 500, 999]: self.check_over_forward(time_step=snake_case_ ) def lowercase ( self ): lowerCAmelCase : Optional[Any] = self.scheduler_classes[0] lowerCAmelCase : Optional[Any] = self.get_scheduler_config() lowerCAmelCase : Tuple = scheduler_class(**snake_case_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1e-5 def lowercase ( self ): lowerCAmelCase : int = self.scheduler_classes[0] lowerCAmelCase : List[Any] = self.get_scheduler_config() lowerCAmelCase : Optional[int] = scheduler_class(**snake_case_ ) lowerCAmelCase : Any = len(snake_case_ ) lowerCAmelCase : str = self.dummy_model() lowerCAmelCase : Union[str, Any] = self.dummy_sample_deter lowerCAmelCase : Union[str, Any] = torch.manual_seed(0 ) for t in reversed(range(snake_case_ ) ): # 1. predict noise residual lowerCAmelCase : List[str] = model(snake_case_ , snake_case_ ) # 2. predict previous mean of sample x_t-1 lowerCAmelCase : Dict = scheduler.step(snake_case_ , snake_case_ , snake_case_ , generator=snake_case_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCAmelCase : int = pred_prev_sample lowerCAmelCase : Any = torch.sum(torch.abs(snake_case_ ) ) lowerCAmelCase : str = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1e-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3 def lowercase ( self ): lowerCAmelCase : Optional[Any] = self.scheduler_classes[0] lowerCAmelCase : Tuple = self.get_scheduler_config(prediction_type='v_prediction' ) lowerCAmelCase : Union[str, Any] = scheduler_class(**snake_case_ ) lowerCAmelCase : str = len(snake_case_ ) lowerCAmelCase : Tuple = self.dummy_model() lowerCAmelCase : Dict = self.dummy_sample_deter lowerCAmelCase : Tuple = torch.manual_seed(0 ) for t in reversed(range(snake_case_ ) ): # 1. predict noise residual lowerCAmelCase : Dict = model(snake_case_ , snake_case_ ) # 2. predict previous mean of sample x_t-1 lowerCAmelCase : Dict = scheduler.step(snake_case_ , snake_case_ , snake_case_ , generator=snake_case_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCAmelCase : int = pred_prev_sample lowerCAmelCase : Dict = torch.sum(torch.abs(snake_case_ ) ) lowerCAmelCase : Optional[Any] = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1e-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3 def lowercase ( self ): lowerCAmelCase : Any = self.scheduler_classes[0] lowerCAmelCase : Tuple = self.get_scheduler_config() lowerCAmelCase : Dict = scheduler_class(**snake_case_ ) lowerCAmelCase : List[str] = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=snake_case_ ) lowerCAmelCase : Tuple = scheduler.timesteps for i, timestep in enumerate(snake_case_ ): if i == len(snake_case_ ) - 1: lowerCAmelCase : int = -1 else: lowerCAmelCase : Optional[Any] = timesteps[i + 1] lowerCAmelCase : str = scheduler.previous_timestep(snake_case_ ) lowerCAmelCase : List[Any] = prev_t.item() self.assertEqual(snake_case_ , snake_case_ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0] lowerCAmelCase : str = self.get_scheduler_config() lowerCAmelCase : Optional[Any] = scheduler_class(**snake_case_ ) lowerCAmelCase : Union[str, Any] = [100, 87, 50, 51, 0] with self.assertRaises(snake_case_ , msg='`custom_timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=snake_case_ ) def lowercase ( self ): lowerCAmelCase : Optional[Any] = self.scheduler_classes[0] lowerCAmelCase : int = self.get_scheduler_config() lowerCAmelCase : Union[str, Any] = scheduler_class(**snake_case_ ) lowerCAmelCase : List[str] = [100, 87, 50, 1, 0] lowerCAmelCase : Optional[int] = len(snake_case_ ) with self.assertRaises(snake_case_ , msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.' ): scheduler.set_timesteps(num_inference_steps=snake_case_ , timesteps=snake_case_ ) def lowercase ( self ): lowerCAmelCase : Optional[Any] = self.scheduler_classes[0] lowerCAmelCase : Any = self.get_scheduler_config() lowerCAmelCase : Dict = scheduler_class(**snake_case_ ) lowerCAmelCase : str = [scheduler.config.num_train_timesteps] with self.assertRaises( snake_case_ , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=snake_case_ )
721
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets _lowerCAmelCase : Dict = '\\n@inproceedings{popovic-2015-chrf,\n title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",\n month = sep,\n year = "2015",\n address = "Lisbon, Portugal",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W15-3049",\n doi = "10.18653/v1/W15-3049",\n pages = "392--395",\n}\n@inproceedings{popovic-2017-chrf,\n title = "chr{F}++: words helping character n-grams",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Second Conference on Machine Translation",\n month = sep,\n year = "2017",\n address = "Copenhagen, Denmark",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W17-4770",\n doi = "10.18653/v1/W17-4770",\n pages = "612--618",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' _lowerCAmelCase : Optional[Any] = '\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n' _lowerCAmelCase : List[Any] = '\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n \'score\' (float): The chrF (chrF++) score,\n \'char_order\' (int): The character n-gram order,\n \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n \'beta\' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase ( datasets.Metric ): def lowercase ( self ): if version.parse(scb.__version__ ) < version.parse('1.4.12' ): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/mjpost/sacreBLEU#chrf--chrf' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/mjpost/sacreBLEU#chrf--chrf'] , reference_urls=[ 'https://github.com/m-popovic/chrF', ] , ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ = CHRF.CHAR_ORDER , snake_case__ = CHRF.WORD_ORDER , snake_case__ = CHRF.BETA , snake_case__ = False , snake_case__ = False , snake_case__ = False , ): lowerCAmelCase : List[str] = len(references[0] ) if any(len(snake_case__ ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) lowerCAmelCase : List[str] = [[refs[i] for refs in references] for i in range(snake_case__ )] lowerCAmelCase : Union[str, Any] = CHRF(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase : Dict = sb_chrf.corpus_score(snake_case__ , snake_case__ ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
646
0
'''simple docstring''' from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class lowerCAmelCase ( lowercase__ ): def __lt__( self , snake_case__ ): return self[-1] < other[-1] def __eq__( self , snake_case__ ): return self[-1] == other[-1] def __UpperCamelCase ( _A : list ) -> list: """simple docstring""" lowerCAmelCase : list[Stack] = [] # sort into stacks for element in collection: lowerCAmelCase : List[Any] = Stack([element] ) lowerCAmelCase : Union[str, Any] = bisect_left(_A , _A ) if i != len(_A ): stacks[i].append(_A ) else: stacks.append(_A ) # use a heap-based merge to merge stack efficiently lowerCAmelCase : Tuple = merge(*(reversed(_A ) for stack in stacks) ) return collection if __name__ == "__main__": _lowerCAmelCase : Optional[int] = input('Enter numbers separated by a comma:\n').strip() _lowerCAmelCase : Union[str, Any] = [int(item) for item in user_input.split(',')] print(patience_sort(unsorted))
700
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : str = logging.get_logger(__name__) _lowerCAmelCase : Tuple = { 's-JoL/Open-Llama-V1': 'https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json', } class lowerCAmelCase ( a ): _lowerCamelCase : Union[str, Any] = """open-llama""" def __init__( self , snake_case__=10_0000 , snake_case__=4096 , snake_case__=1_1008 , snake_case__=32 , snake_case__=32 , snake_case__="silu" , snake_case__=2048 , snake_case__=0.0_2 , snake_case__=1e-6 , snake_case__=True , snake_case__=0 , snake_case__=1 , snake_case__=2 , snake_case__=False , snake_case__=True , snake_case__=0.1 , snake_case__=0.1 , snake_case__=True , snake_case__=True , snake_case__=None , **snake_case__ , ): lowerCAmelCase : Tuple = vocab_size lowerCAmelCase : Optional[Any] = max_position_embeddings lowerCAmelCase : List[Any] = hidden_size lowerCAmelCase : List[Any] = intermediate_size lowerCAmelCase : Tuple = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : str = rms_norm_eps lowerCAmelCase : Optional[int] = use_cache lowerCAmelCase : Dict = kwargs.pop( 'use_memorry_efficient_attention' , snake_case__ ) lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : Optional[Any] = attention_dropout_prob lowerCAmelCase : Union[str, Any] = use_stable_embedding lowerCAmelCase : Tuple = shared_input_output_embedding lowerCAmelCase : Tuple = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , tie_word_embeddings=snake_case__ , **snake_case__ , ) def lowercase ( self ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , snake_case__ ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' f"got {self.rope_scaling}" ) lowerCAmelCase : List[Any] = self.rope_scaling.get('type' , snake_case__ ) lowerCAmelCase : List[str] = self.rope_scaling.get('factor' , snake_case__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(snake_case__ , snake_case__ ) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
646
0
import math def __UpperCamelCase ( _A : Optional[Any] , _A : Tuple ) -> Optional[int]: """simple docstring""" if initial_intensity < 0: raise ValueError('The value of intensity cannot be negative' ) # handling of negative values of initial intensity if angle < 0 or angle > 3_60: raise ValueError('In Malus Law, the angle is in the range 0-360 degrees' ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(_lowerCAmelCase ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name='malus_law')
701
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) _lowerCAmelCase : Dict = { 'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class lowerCAmelCase ( a ): _lowerCamelCase : Any = """deformable_detr""" _lowerCamelCase : List[str] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , snake_case__=True , snake_case__=None , snake_case__=3 , snake_case__=300 , snake_case__=1024 , snake_case__=6 , snake_case__=1024 , snake_case__=8 , snake_case__=6 , snake_case__=1024 , snake_case__=8 , snake_case__=0.0 , snake_case__=True , snake_case__="relu" , snake_case__=256 , snake_case__=0.1 , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.0_2 , snake_case__=1.0 , snake_case__=True , snake_case__=False , snake_case__="sine" , snake_case__="resnet50" , snake_case__=True , snake_case__=False , snake_case__=4 , snake_case__=4 , snake_case__=4 , snake_case__=False , snake_case__=300 , snake_case__=False , snake_case__=1 , snake_case__=5 , snake_case__=2 , snake_case__=1 , snake_case__=1 , snake_case__=5 , snake_case__=2 , snake_case__=0.1 , snake_case__=0.2_5 , snake_case__=False , **snake_case__ , ): if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) lowerCAmelCase : Optional[int] = CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : List[str] = backbone_config.get('model_type' ) lowerCAmelCase : str = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase : Optional[Any] = config_class.from_dict(snake_case__ ) lowerCAmelCase : Union[str, Any] = use_timm_backbone lowerCAmelCase : List[Any] = backbone_config lowerCAmelCase : Any = num_channels lowerCAmelCase : Tuple = num_queries lowerCAmelCase : Dict = max_position_embeddings lowerCAmelCase : int = d_model lowerCAmelCase : List[str] = encoder_ffn_dim lowerCAmelCase : List[str] = encoder_layers lowerCAmelCase : int = encoder_attention_heads lowerCAmelCase : str = decoder_ffn_dim lowerCAmelCase : str = decoder_layers lowerCAmelCase : Dict = decoder_attention_heads lowerCAmelCase : str = dropout lowerCAmelCase : List[str] = attention_dropout lowerCAmelCase : Union[str, Any] = activation_dropout lowerCAmelCase : str = activation_function lowerCAmelCase : Any = init_std lowerCAmelCase : Any = init_xavier_std lowerCAmelCase : Dict = encoder_layerdrop lowerCAmelCase : int = auxiliary_loss lowerCAmelCase : Optional[Any] = position_embedding_type lowerCAmelCase : List[str] = backbone lowerCAmelCase : int = use_pretrained_backbone lowerCAmelCase : int = dilation # deformable attributes lowerCAmelCase : List[str] = num_feature_levels lowerCAmelCase : List[str] = encoder_n_points lowerCAmelCase : Union[str, Any] = decoder_n_points lowerCAmelCase : Tuple = two_stage lowerCAmelCase : Dict = two_stage_num_proposals lowerCAmelCase : Union[str, Any] = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.' ) # Hungarian matcher lowerCAmelCase : Union[str, Any] = class_cost lowerCAmelCase : Dict = bbox_cost lowerCAmelCase : List[Any] = giou_cost # Loss coefficients lowerCAmelCase : Dict = mask_loss_coefficient lowerCAmelCase : Any = dice_loss_coefficient lowerCAmelCase : str = bbox_loss_coefficient lowerCAmelCase : Tuple = giou_loss_coefficient lowerCAmelCase : List[str] = eos_coefficient lowerCAmelCase : Any = focal_alpha lowerCAmelCase : Dict = disable_custom_kernels super().__init__(is_encoder_decoder=snake_case__ , **snake_case__ ) @property def lowercase ( self ): return self.encoder_attention_heads @property def lowercase ( self ): return self.d_model def lowercase ( self ): lowerCAmelCase : Union[str, Any] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: lowerCAmelCase : List[Any] = self.backbone_config.to_dict() lowerCAmelCase : str = self.__class__.model_type return output
646
0
'''simple docstring''' class lowerCAmelCase : def __init__( self , snake_case__ , snake_case__ ): lowerCAmelCase : int = name lowerCAmelCase : Any = val def __str__( self ): return f"{self.__class__.__name__}({self.name}, {self.val})" def __lt__( self , snake_case__ ): return self.val < other.val class lowerCAmelCase : def __init__( self , snake_case__ ): lowerCAmelCase : Optional[Any] = {} lowerCAmelCase : Union[str, Any] = {} lowerCAmelCase : Optional[int] = self.build_heap(__lowerCamelCase ) def __getitem__( self , snake_case__ ): return self.get_value(__lowerCamelCase ) def lowercase ( self , snake_case__ ): return (idx - 1) // 2 def lowercase ( self , snake_case__ ): return idx * 2 + 1 def lowercase ( self , snake_case__ ): return idx * 2 + 2 def lowercase ( self , snake_case__ ): return self.heap_dict[key] def lowercase ( self , snake_case__ ): lowerCAmelCase : int = len(__lowerCamelCase ) - 1 lowerCAmelCase : Tuple = self.get_parent_idx(__lowerCamelCase ) for idx, i in enumerate(__lowerCamelCase ): lowerCAmelCase : Dict = idx lowerCAmelCase : Dict = i.val for i in range(__lowerCamelCase , -1 , -1 ): self.sift_down(__lowerCamelCase , __lowerCamelCase ) return array def lowercase ( self , snake_case__ , snake_case__ ): while True: lowerCAmelCase : Dict = self.get_left_child_idx(__lowerCamelCase ) # noqa: E741 lowerCAmelCase : Any = self.get_right_child_idx(__lowerCamelCase ) lowerCAmelCase : str = idx if l < len(__lowerCamelCase ) and array[l] < array[idx]: lowerCAmelCase : Optional[int] = l if r < len(__lowerCamelCase ) and array[r] < array[smallest]: lowerCAmelCase : str = r if smallest != idx: lowerCAmelCase : Optional[int] = array[smallest], array[idx] ( lowerCAmelCase ) : Tuple = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) lowerCAmelCase : Optional[int] = smallest else: break def lowercase ( self , snake_case__ ): lowerCAmelCase : Dict = self.get_parent_idx(__lowerCamelCase ) while p >= 0 and self.heap[p] > self.heap[idx]: lowerCAmelCase : Optional[Any] = self.heap[idx], self.heap[p] lowerCAmelCase : List[Any] = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) lowerCAmelCase : Dict = p lowerCAmelCase : int = self.get_parent_idx(__lowerCamelCase ) def lowercase ( self ): return self.heap[0] def lowercase ( self ): lowerCAmelCase : Union[str, Any] = self.heap[-1], self.heap[0] lowerCAmelCase : Union[str, Any] = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) lowerCAmelCase : str = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap ) return x def lowercase ( self , snake_case__ ): self.heap.append(__lowerCamelCase ) lowerCAmelCase : Tuple = len(self.heap ) - 1 lowerCAmelCase : str = node.val self.sift_up(len(self.heap ) - 1 ) def lowercase ( self ): return len(self.heap ) == 0 def lowercase ( self , snake_case__ , snake_case__ ): assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" lowerCAmelCase : int = new_value lowerCAmelCase : Tuple = new_value self.sift_up(self.idx_of_element[node] ) _lowerCAmelCase : Optional[Any] = Node('R', -1) _lowerCAmelCase : Dict = Node('B', 6) _lowerCAmelCase : List[Any] = Node('A', 3) _lowerCAmelCase : List[Any] = Node('X', 1) _lowerCAmelCase : Union[str, Any] = Node('E', 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array _lowerCAmelCase : Any = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print('Min Heap - before decrease key') for i in my_min_heap.heap: print(i) print('Min Heap - After decrease key of node [B -> -17]') my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
702
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece_no_bos.model') @require_sentencepiece @require_tokenizers class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : str = PegasusTokenizer _lowerCamelCase : Union[str, Any] = PegasusTokenizerFast _lowerCamelCase : Optional[Any] = True _lowerCamelCase : Optional[Any] = True def lowercase ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : List[Any] = PegasusTokenizer(snake_case__ ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase ( self ): return PegasusTokenizer.from_pretrained('google/pegasus-large' ) def lowercase ( self , **snake_case__ ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def lowercase ( self , snake_case__ ): return ("This is a test", "This is a test") def lowercase ( self ): lowerCAmelCase : Optional[int] = '</s>' lowerCAmelCase : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '</s>' ) self.assertEqual(vocab_keys[-1] , 'v' ) self.assertEqual(len(snake_case__ ) , 1103 ) def lowercase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def lowercase ( self ): lowerCAmelCase : List[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : List[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : Optional[Any] = ( 'Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important' ' </s> <pad> <pad> <pad>' ) lowerCAmelCase : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] lowerCAmelCase : Optional[int] = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Any = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowerCAmelCase : List[str] = '<mask_1> To ensure a <mask_2> flow of bank resolutions.' lowerCAmelCase : Optional[Any] = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1] lowerCAmelCase : Optional[Any] = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Optional[Any] = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 lowerCAmelCase : List[Any] = 'To ensure a smooth flow of bank resolutions.' lowerCAmelCase : Optional[int] = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1] lowerCAmelCase : Any = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def lowercase ( self ): lowerCAmelCase : Union[str, Any] = ['This is going to be way too long.' * 150, 'short example'] lowerCAmelCase : int = ['not super long but more than 5 tokens', 'tiny'] lowerCAmelCase : Dict = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) lowerCAmelCase : Dict = self._large_tokenizer( text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(snake_case__ ) == 2 # input_ids, attention_mask. @slow def lowercase ( self ): # fmt: off lowerCAmelCase : Tuple = {'input_ids': [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name='google/bigbird-pegasus-large-arxiv' , revision='ba85d0851d708441f91440d509690f1ab6353415' , ) @require_sentencepiece @require_tokenizers class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : Optional[Any] = PegasusTokenizer _lowerCamelCase : str = PegasusTokenizerFast _lowerCamelCase : Tuple = True _lowerCamelCase : int = True def lowercase ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : int = PegasusTokenizer(snake_case__ , offset=0 , mask_token_sent=snake_case__ , mask_token='[MASK]' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase ( self ): return PegasusTokenizer.from_pretrained('google/bigbird-pegasus-large-arxiv' ) def lowercase ( self , **snake_case__ ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def lowercase ( self , snake_case__ ): return ("This is a test", "This is a test") def lowercase ( self ): lowerCAmelCase : Tuple = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : Union[str, Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : List[str] = ( 'Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>' ' <pad> <pad> <pad>' ) lowerCAmelCase : Dict = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] lowerCAmelCase : Union[str, Any] = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) @require_torch def lowercase ( self ): lowerCAmelCase : Optional[int] = ['This is going to be way too long.' * 1000, 'short example'] lowerCAmelCase : Union[str, Any] = ['not super long but more than 5 tokens', 'tiny'] lowerCAmelCase : List[str] = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) lowerCAmelCase : List[str] = self._large_tokenizer( text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(snake_case__ ) == 2 # input_ids, attention_mask. def lowercase ( self ): lowerCAmelCase : List[str] = ( 'This is an example string that is used to test the original TF implementation against the HF' ' implementation' ) lowerCAmelCase : Tuple = self._large_tokenizer(snake_case__ ).input_ids self.assertListEqual( snake_case__ , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
646
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : Dict = logging.get_logger(__name__) def __UpperCamelCase ( _A : Tuple ) -> List[str]: """simple docstring""" lowerCAmelCase : int = SwinConfig( embed_dim=1_92 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=['stage2', 'stage3', 'stage4'] , ) lowerCAmelCase : Optional[Any] = DetaConfig( backbone_config=UpperCamelCase__ , num_queries=9_00 , encoder_ffn_dim=20_48 , decoder_ffn_dim=20_48 , num_feature_levels=5 , assign_first_stage=UpperCamelCase__ , with_box_refine=UpperCamelCase__ , two_stage=UpperCamelCase__ , ) # set labels lowerCAmelCase : List[Any] = 'huggingface/label-files' if "o365" in model_name: lowerCAmelCase : Dict = 3_66 lowerCAmelCase : Optional[Any] = 'object365-id2label.json' else: lowerCAmelCase : str = 91 lowerCAmelCase : int = 'coco-detection-id2label.json' lowerCAmelCase : List[str] = num_labels lowerCAmelCase : Tuple = json.load(open(cached_download(hf_hub_url(UpperCamelCase__ , UpperCamelCase__ , repo_type='dataset' ) ) , 'r' ) ) lowerCAmelCase : Optional[Any] = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} lowerCAmelCase : Optional[int] = idalabel lowerCAmelCase : Dict = {v: k for k, v in idalabel.items()} return config def __UpperCamelCase ( _A : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowerCAmelCase : List[Any] = [] # stem # fmt: off rename_keys.append(('backbone.0.body.patch_embed.proj.weight', 'model.backbone.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.0.body.patch_embed.proj.bias', 'model.backbone.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.0.body.patch_embed.norm.weight', 'model.backbone.model.embeddings.norm.weight') ) rename_keys.append(('backbone.0.body.patch_embed.norm.bias', 'model.backbone.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.norm1.weight", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.norm1.bias", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.norm2.weight", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.norm2.bias", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias") ) if i < 3: rename_keys.append((F"backbone.0.body.layers.{i}.downsample.reduction.weight", F"model.backbone.model.encoder.layers.{i}.downsample.reduction.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.downsample.norm.weight", F"model.backbone.model.encoder.layers.{i}.downsample.norm.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.downsample.norm.bias", F"model.backbone.model.encoder.layers.{i}.downsample.norm.bias") ) rename_keys.append(('backbone.0.body.norm1.weight', 'model.backbone.model.hidden_states_norms.stage2.weight') ) rename_keys.append(('backbone.0.body.norm1.bias', 'model.backbone.model.hidden_states_norms.stage2.bias') ) rename_keys.append(('backbone.0.body.norm2.weight', 'model.backbone.model.hidden_states_norms.stage3.weight') ) rename_keys.append(('backbone.0.body.norm2.bias', 'model.backbone.model.hidden_states_norms.stage3.bias') ) rename_keys.append(('backbone.0.body.norm3.weight', 'model.backbone.model.hidden_states_norms.stage4.weight') ) rename_keys.append(('backbone.0.body.norm3.bias', 'model.backbone.model.hidden_states_norms.stage4.bias') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight", F"model.encoder.layers.{i}.self_attn.sampling_offsets.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias", F"model.encoder.layers.{i}.self_attn.sampling_offsets.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.attention_weights.weight", F"model.encoder.layers.{i}.self_attn.attention_weights.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.attention_weights.bias", F"model.encoder.layers.{i}.self_attn.attention_weights.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.value_proj.weight", F"model.encoder.layers.{i}.self_attn.value_proj.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.value_proj.bias", F"model.encoder.layers.{i}.self_attn.value_proj.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.output_proj.weight", F"model.encoder.layers.{i}.self_attn.output_proj.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.output_proj.bias", F"model.encoder.layers.{i}.self_attn.output_proj.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.norm1.weight", F"model.encoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.norm1.bias", F"model.encoder.layers.{i}.self_attn_layer_norm.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear1.weight", F"model.encoder.layers.{i}.fc1.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear1.bias", F"model.encoder.layers.{i}.fc1.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear2.weight", F"model.encoder.layers.{i}.fc2.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear2.bias", F"model.encoder.layers.{i}.fc2.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.norm2.weight", F"model.encoder.layers.{i}.final_layer_norm.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.norm2.bias", F"model.encoder.layers.{i}.final_layer_norm.bias") ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight", F"model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias", F"model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.attention_weights.weight", F"model.decoder.layers.{i}.encoder_attn.attention_weights.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.attention_weights.bias", F"model.decoder.layers.{i}.encoder_attn.attention_weights.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.value_proj.weight", F"model.decoder.layers.{i}.encoder_attn.value_proj.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.value_proj.bias", F"model.decoder.layers.{i}.encoder_attn.value_proj.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.output_proj.weight", F"model.decoder.layers.{i}.encoder_attn.output_proj.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.output_proj.bias", F"model.decoder.layers.{i}.encoder_attn.output_proj.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm1.weight", F"model.decoder.layers.{i}.encoder_attn_layer_norm.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm1.bias", F"model.decoder.layers.{i}.encoder_attn_layer_norm.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.self_attn.out_proj.weight", F"model.decoder.layers.{i}.self_attn.out_proj.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.self_attn.out_proj.bias", F"model.decoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm2.weight", F"model.decoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm2.bias", F"model.decoder.layers.{i}.self_attn_layer_norm.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear1.weight", F"model.decoder.layers.{i}.fc1.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear1.bias", F"model.decoder.layers.{i}.fc1.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear2.weight", F"model.decoder.layers.{i}.fc2.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear2.bias", F"model.decoder.layers.{i}.fc2.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm3.weight", F"model.decoder.layers.{i}.final_layer_norm.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm3.bias", F"model.decoder.layers.{i}.final_layer_norm.bias") ) # fmt: on return rename_keys def __UpperCamelCase ( _A : Union[str, Any] , _A : Dict , _A : List[Any] ) -> Any: """simple docstring""" lowerCAmelCase : str = dct.pop(UpperCamelCase__ ) lowerCAmelCase : Tuple = val def __UpperCamelCase ( _A : Any , _A : Tuple ) -> Optional[Any]: """simple docstring""" lowerCAmelCase : int = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): lowerCAmelCase : Optional[int] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) lowerCAmelCase : Optional[int] = state_dict.pop(F"backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight" ) lowerCAmelCase : List[str] = state_dict.pop(F"backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase : str = in_proj_weight[:dim, :] lowerCAmelCase : Any = in_proj_bias[: dim] lowerCAmelCase : str = in_proj_weight[ dim : dim * 2, : ] lowerCAmelCase : Dict = in_proj_bias[ dim : dim * 2 ] lowerCAmelCase : Any = in_proj_weight[ -dim :, : ] lowerCAmelCase : int = in_proj_bias[-dim :] # fmt: on def __UpperCamelCase ( _A : List[str] , _A : Any ) -> int: """simple docstring""" lowerCAmelCase : Dict = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention lowerCAmelCase : Optional[Any] = state_dict.pop(F"transformer.decoder.layers.{i}.self_attn.in_proj_weight" ) lowerCAmelCase : List[str] = state_dict.pop(F"transformer.decoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase : int = in_proj_weight[:hidden_size, :] lowerCAmelCase : Union[str, Any] = in_proj_bias[:hidden_size] lowerCAmelCase : str = in_proj_weight[ hidden_size : hidden_size * 2, : ] lowerCAmelCase : Union[str, Any] = in_proj_bias[hidden_size : hidden_size * 2] lowerCAmelCase : Tuple = in_proj_weight[-hidden_size:, :] lowerCAmelCase : Union[str, Any] = in_proj_bias[-hidden_size:] def __UpperCamelCase ( ) -> Optional[int]: """simple docstring""" lowerCAmelCase : Dict = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCAmelCase : int = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ) return im @torch.no_grad() def __UpperCamelCase ( _A : str , _A : List[Any] , _A : Union[str, Any] ) -> Dict: """simple docstring""" lowerCAmelCase : Any = get_deta_config(UpperCamelCase__ ) # load original state dict if model_name == "deta-swin-large": lowerCAmelCase : Tuple = hf_hub_download(repo_id='nielsr/deta-checkpoints' , filename='adet_swin_ft.pth' ) elif model_name == "deta-swin-large-o365": lowerCAmelCase : str = hf_hub_download(repo_id='jozhang97/deta-swin-l-o365' , filename='deta_swin_pt_o365.pth' ) else: raise ValueError(F"Model name {model_name} not supported" ) lowerCAmelCase : List[str] = torch.load(UpperCamelCase__ , map_location='cpu' )['model'] # original state dict for name, param in state_dict.items(): print(UpperCamelCase__ , param.shape ) # rename keys lowerCAmelCase : int = create_rename_keys(UpperCamelCase__ ) for src, dest in rename_keys: rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) read_in_swin_q_k_v(UpperCamelCase__ , config.backbone_config ) read_in_decoder_q_k_v(UpperCamelCase__ , UpperCamelCase__ ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: lowerCAmelCase : str = state_dict.pop(UpperCamelCase__ ) lowerCAmelCase : List[Any] = val if "input_proj" in key: lowerCAmelCase : List[str] = state_dict.pop(UpperCamelCase__ ) lowerCAmelCase : Tuple = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: lowerCAmelCase : List[str] = state_dict.pop(UpperCamelCase__ ) lowerCAmelCase : List[str] = val # finally, create HuggingFace model and load state dict lowerCAmelCase : Dict = DetaForObjectDetection(UpperCamelCase__ ) model.load_state_dict(UpperCamelCase__ ) model.eval() lowerCAmelCase : Optional[Any] = 'cuda' if torch.cuda.is_available() else 'cpu' model.to(UpperCamelCase__ ) # load image processor lowerCAmelCase : Union[str, Any] = DetaImageProcessor(format='coco_detection' ) # verify our conversion on image lowerCAmelCase : Union[str, Any] = prepare_img() lowerCAmelCase : Optional[int] = processor(images=UpperCamelCase__ , return_tensors='pt' ) lowerCAmelCase : Tuple = encoding['pixel_values'] lowerCAmelCase : Any = model(pixel_values.to(UpperCamelCase__ ) ) # verify logits print('Logits:' , outputs.logits[0, :3, :3] ) print('Boxes:' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": lowerCAmelCase : Any = torch.tensor( [[-7.63_08, -2.84_85, -5.37_37], [-7.20_37, -4.55_05, -4.80_27], [-7.29_43, -4.26_11, -4.66_17]] ) lowerCAmelCase : List[str] = torch.tensor([[0.49_87, 0.49_69, 0.99_99], [0.25_49, 0.54_98, 0.48_05], [0.54_98, 0.27_57, 0.05_69]] ) elif model_name == "deta-swin-large-o365": lowerCAmelCase : Dict = torch.tensor( [[-8.01_22, -3.57_20, -4.97_17], [-8.15_47, -3.68_86, -4.63_89], [-7.66_10, -3.61_94, -5.01_34]] ) lowerCAmelCase : int = torch.tensor([[0.25_23, 0.55_49, 0.48_81], [0.77_15, 0.41_49, 0.46_01], [0.55_03, 0.27_53, 0.05_75]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(UpperCamelCase__ ) , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(UpperCamelCase__ ) , atol=1e-4 ) print('Everything ok!' ) if pytorch_dump_folder_path: # Save model and processor logger.info(F"Saving PyTorch model and processor to {pytorch_dump_folder_path}..." ) Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) model.save_pretrained(UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) # Push to hub if push_to_hub: print('Pushing model and processor to hub...' ) model.push_to_hub(F"jozhang97/{model_name}" ) processor.push_to_hub(F"jozhang97/{model_name}" ) if __name__ == "__main__": _lowerCAmelCase : List[str] = argparse.ArgumentParser() parser.add_argument( '--model_name', type=str, default='deta-swin-large', choices=['deta-swin-large', 'deta-swin-large-o365'], help='Name of the model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _lowerCAmelCase : Tuple = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
703
'''simple docstring''' import math import sys import cva import numpy as np def __UpperCamelCase ( _A : np.ndarray , _A : float ) -> np.ndarray: """simple docstring""" lowerCAmelCase : Union[str, Any] = math.sqrt(_A ) lowerCAmelCase : Union[str, Any] = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def __UpperCamelCase ( _A : np.ndarray , _A : int , _A : int , _A : int ) -> np.ndarray: """simple docstring""" lowerCAmelCase : int = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def __UpperCamelCase ( _A : int , _A : float ) -> np.ndarray: """simple docstring""" lowerCAmelCase : Dict = np.zeros((kernel_size, kernel_size) ) for i in range(0 , _A ): for j in range(0 , _A ): lowerCAmelCase : Optional[int] = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(_A , _A ) def __UpperCamelCase ( _A : np.ndarray , _A : float , _A : float , _A : int , ) -> np.ndarray: """simple docstring""" lowerCAmelCase : str = np.zeros(img.shape ) lowerCAmelCase : int = get_gauss_kernel(_A , _A ) lowerCAmelCase , lowerCAmelCase : Dict = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): lowerCAmelCase : int = get_slice(_A , _A , _A , _A ) lowerCAmelCase : Any = img_s - img_s[kernel_size // 2, kernel_size // 2] lowerCAmelCase : str = vec_gaussian(_A , _A ) lowerCAmelCase : Optional[int] = np.multiply(_A , _A ) lowerCAmelCase : str = np.multiply(_A , _A ) lowerCAmelCase : Union[str, Any] = np.sum(_A ) / np.sum(_A ) lowerCAmelCase : Tuple = val return imga def __UpperCamelCase ( _A : list ) -> tuple: """simple docstring""" lowerCAmelCase : List[Any] = args[1] if args[1:] else '../image_data/lena.jpg' lowerCAmelCase : Any = float(args[2] ) if args[2:] else 1.0 lowerCAmelCase : Union[str, Any] = float(args[3] ) if args[3:] else 1.0 if args[4:]: lowerCAmelCase : int = int(args[4] ) lowerCAmelCase : Optional[Any] = kernel_size + abs(kernel_size % 2 - 1 ) else: lowerCAmelCase : Optional[int] = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Any = parse_args(sys.argv) _lowerCAmelCase : str = cva.imread(filename, 0) cva.imshow('input image', img) _lowerCAmelCase : Union[str, Any] = img / 255 _lowerCAmelCase : List[str] = out.astype('float32') _lowerCAmelCase : Optional[int] = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) _lowerCAmelCase : Union[str, Any] = out * 255 _lowerCAmelCase : Optional[Any] = np.uinta(out) cva.imshow('output image', out) cva.waitKey(0) cva.destroyAllWindows()
646
0
'''simple docstring''' import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class lowerCAmelCase ( snake_case__ ): _lowerCamelCase : Dict = """microsoft/speecht5_tts""" _lowerCamelCase : Tuple = ( """This is a tool that reads an English text out loud. It takes an input named `text` which should contain the """ """text to read (in English) and returns a waveform object containing the sound.""" ) _lowerCamelCase : Union[str, Any] = """text_reader""" _lowerCamelCase : List[Any] = SpeechTaProcessor _lowerCamelCase : Optional[Any] = SpeechTaForTextToSpeech _lowerCamelCase : Tuple = SpeechTaHifiGan _lowerCamelCase : List[Any] = ["""text"""] _lowerCamelCase : Tuple = ["""audio"""] def lowercase ( self ): if self.post_processor is None: lowerCAmelCase : Dict = "microsoft/speecht5_hifigan" super().setup() def lowercase ( self , snake_case__ , snake_case__=None ): lowerCAmelCase : Tuple = self.pre_processor(text=lowercase_ , return_tensors='pt' , truncation=lowercase_ ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError('Datasets needs to be installed if not passing speaker embeddings.' ) lowerCAmelCase : Optional[Any] = load_dataset('Matthijs/cmu-arctic-xvectors' , split='validation' ) lowerCAmelCase : List[Any] = torch.tensor(embeddings_dataset[7305]['xvector'] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def lowercase ( self , snake_case__ ): with torch.no_grad(): return self.model.generate_speech(**lowercase_ ) def lowercase ( self , snake_case__ ): with torch.no_grad(): return self.post_processor(lowercase_ ).cpu().detach()
704
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowerCAmelCase : int = { 'configuration_nezha': ['NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NezhaConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Tuple = [ 'NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST', 'NezhaForNextSentencePrediction', 'NezhaForMaskedLM', 'NezhaForPreTraining', 'NezhaForMultipleChoice', 'NezhaForQuestionAnswering', 'NezhaForSequenceClassification', 'NezhaForTokenClassification', 'NezhaModel', 'NezhaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys _lowerCAmelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
646
0
import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput _lowerCAmelCase : Union[str, Any] = logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class lowerCAmelCase ( _UpperCAmelCase ): def __init__( self , *snake_case__ , snake_case__=None , snake_case__=None , snake_case__=None , **snake_case__ ): super().__init__(*A_ , **A_ ) lowerCAmelCase : str = eval_examples lowerCAmelCase : str = post_process_function lowerCAmelCase : str = quant_trainer_args lowerCAmelCase : str = 128 # default number of calibration samples def lowercase ( self , snake_case__=None ): if calib_dataset is None and self.calib_dataset is None: raise ValueError('Trainer: calibration requires an calib_dataset.' ) lowerCAmelCase : Optional[Any] = calib_dataset if calib_dataset is not None else self.calib_dataset lowerCAmelCase : Any = self._remove_unused_columns(A_ , description='Calibration' ) return DataLoader( A_ , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=A_ , ) def lowercase ( self , snake_case__=None ): lowerCAmelCase : Optional[Any] = self.train_dataset if calib_dataset is None else calib_dataset lowerCAmelCase : Dict = self.get_calib_dataloader(A_ ) lowerCAmelCase : Tuple = self.model quant_trainer.configure_model(A_ , self.quant_trainer_args , calib=A_ ) model.eval() quant_trainer.enable_calibration(A_ ) logger.info('***** Running calibration *****' ) logger.info(f" Num examples = {self.calib_num}" ) logger.info(f" Batch size = {calib_dataloader.batch_size}" ) for step, inputs in enumerate(A_ ): # Prediction step lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : List[Any] = self.prediction_step(A_ , A_ , prediction_loss_only=A_ ) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(A_ , self.quant_trainer_args ) lowerCAmelCase : str = model def lowercase ( self , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__ = "eval" ): lowerCAmelCase : str = self.eval_dataset if eval_dataset is None else eval_dataset lowerCAmelCase : str = self.get_eval_dataloader(A_ ) lowerCAmelCase : List[Any] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. lowerCAmelCase : Optional[Any] = self.compute_metrics lowerCAmelCase : int = None lowerCAmelCase : Union[str, Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowerCAmelCase : Optional[int] = eval_loop( A_ , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=A_ , ) finally: lowerCAmelCase : int = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: lowerCAmelCase : str = self.post_process_function(A_ , A_ , output.predictions ) lowerCAmelCase : Union[str, Any] = self.compute_metrics(A_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"{metric_key_prefix}_" ): lowerCAmelCase : Dict = metrics.pop(A_ ) self.log(A_ ) else: lowerCAmelCase : Dict = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) lowerCAmelCase : Dict = self.callback_handler.on_evaluate(self.args , self.state , self.control , A_ ) return metrics def lowercase ( self , snake_case__ , snake_case__ , snake_case__=None , snake_case__ = "test" ): lowerCAmelCase : Optional[int] = self.get_test_dataloader(A_ ) # Temporarily disable metric computation, we will do it in the loop here. lowerCAmelCase : Any = self.compute_metrics lowerCAmelCase : Dict = None lowerCAmelCase : Union[str, Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowerCAmelCase : List[Any] = eval_loop( A_ , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=A_ , ) finally: lowerCAmelCase : Dict = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output lowerCAmelCase : Any = self.post_process_function(A_ , A_ , output.predictions , 'predict' ) lowerCAmelCase : Dict = self.compute_metrics(A_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"{metric_key_prefix}_" ): lowerCAmelCase : Optional[Any] = metrics.pop(A_ ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=A_ ) def lowercase ( self , snake_case__="./" ): lowerCAmelCase : Dict = self.eval_dataset lowerCAmelCase : Dict = self.get_eval_dataloader(A_ ) lowerCAmelCase : Dict = next(iter(A_ ) ) # saving device - to make it consistent lowerCAmelCase : List[str] = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) # convert to tuple lowerCAmelCase : List[Any] = tuple(v.to(A_ ) for k, v in batch.items() ) logger.info('Converting model to be onnx compatible' ) from pytorch_quantization.nn import TensorQuantizer lowerCAmelCase : Dict = True lowerCAmelCase : Any = self.model.to(A_ ) model.eval() model.float() lowerCAmelCase : Union[str, Any] = model.module if hasattr(A_ , 'module' ) else model quant_trainer.configure_model(A_ , self.quant_trainer_args ) lowerCAmelCase : List[str] = os.path.join(A_ , 'model.onnx' ) logger.info(f"exporting model to {output_model_file}" ) lowerCAmelCase : List[str] = {0: 'batch_size', 1: 'seq_len'} torch.onnx.export( A_ , A_ , A_ , export_params=A_ , opset_version=13 , do_constant_folding=A_ , input_names=['input_ids', 'attention_mask', 'token_type_ids'] , output_names=['output_start_logits', 'output_end_logits'] , dynamic_axes={ 'input_ids': axes, 'attention_mask': axes, 'token_type_ids': axes, 'output_start_logits': axes, 'output_end_logits': axes, } , verbose=A_ , ) logger.info('onnx export finished' )
705
'''simple docstring''' from typing import Any class lowerCAmelCase : def __init__( self , snake_case__ ): lowerCAmelCase : Optional[int] = data lowerCAmelCase : Optional[Any] = None def __repr__( self ): return f"Node({self.data})" class lowerCAmelCase : def __init__( self ): lowerCAmelCase : Dict = None def __iter__( self ): lowerCAmelCase : Optional[Any] = self.head while node: yield node.data lowerCAmelCase : Optional[int] = node.next def __len__( self ): return sum(1 for _ in self ) def __repr__( self ): return "->".join([str(snake_case__ ) for item in self] ) def __getitem__( self , snake_case__ ): if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , snake_case__ , snake_case__ ): if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) lowerCAmelCase : Any = self.head for _ in range(snake_case__ ): lowerCAmelCase : List[str] = current.next lowerCAmelCase : int = data def lowercase ( self , snake_case__ ): self.insert_nth(len(self ) , snake_case__ ) def lowercase ( self , snake_case__ ): self.insert_nth(0 , snake_case__ ) def lowercase ( self , snake_case__ , snake_case__ ): if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) lowerCAmelCase : List[str] = Node(snake_case__ ) if self.head is None: lowerCAmelCase : int = new_node elif index == 0: lowerCAmelCase : List[Any] = self.head # link new_node to head lowerCAmelCase : List[Any] = new_node else: lowerCAmelCase : List[Any] = self.head for _ in range(index - 1 ): lowerCAmelCase : Union[str, Any] = temp.next lowerCAmelCase : Any = temp.next lowerCAmelCase : str = new_node def lowercase ( self ): # print every node data print(self ) def lowercase ( self ): return self.delete_nth(0 ) def lowercase ( self ): # delete from tail return self.delete_nth(len(self ) - 1 ) def lowercase ( self , snake_case__ = 0 ): if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) lowerCAmelCase : List[str] = self.head # default first node if index == 0: lowerCAmelCase : Tuple = self.head.next else: lowerCAmelCase : Dict = self.head for _ in range(index - 1 ): lowerCAmelCase : Tuple = temp.next lowerCAmelCase : Dict = temp.next lowerCAmelCase : Tuple = temp.next.next return delete_node.data def lowercase ( self ): return self.head is None def lowercase ( self ): lowerCAmelCase : List[Any] = None lowerCAmelCase : Any = self.head while current: # Store the current node's next node. lowerCAmelCase : List[str] = current.next # Make the current node's next point backwards lowerCAmelCase : int = prev # Make the previous node be the current node lowerCAmelCase : int = current # Make the current node the next node (to progress iteration) lowerCAmelCase : Optional[Any] = next_node # Return prev in order to put the head at the end lowerCAmelCase : List[Any] = prev def __UpperCamelCase ( ) -> None: """simple docstring""" lowerCAmelCase : Tuple = LinkedList() assert linked_list.is_empty() is True assert str(_A ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(_A ) == i linked_list.insert_nth(_A , i + 1 ) assert str(_A ) == "->".join(str(_A ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(_A ) == "->".join(str(_A ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(_A ) == 9 assert str(_A ) == "->".join(str(_A ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): lowerCAmelCase : Optional[Any] = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(_A ) == "->".join(str(_A ) for i in range(-8 , 1 ) ) def __UpperCamelCase ( ) -> None: """simple docstring""" lowerCAmelCase : Optional[int] = [ -9, 1_00, Node(77_34_51_12 ), 'dlrow olleH', 7, 55_55, 0, -1_92.5_55_55, 'Hello, world!', 77.9, Node(10 ), None, None, 12.20, ] lowerCAmelCase : Dict = LinkedList() for i in test_input: linked_list.insert_tail(_A ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(_A ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head lowerCAmelCase : Optional[Any] = linked_list.delete_head() assert result == -9 assert ( str(_A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail lowerCAmelCase : List[str] = linked_list.delete_tail() assert result == 12.2 assert ( str(_A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list lowerCAmelCase : List[str] = linked_list.delete_nth(10 ) assert result is None assert ( str(_A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(_A ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(_A ) assert ( str(_A ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(_A ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def __UpperCamelCase ( ) -> List[Any]: """simple docstring""" from doctest import testmod testmod() lowerCAmelCase : Optional[Any] = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(_A ) print('\nReading/changing Node data using indexing:' ) print(F"Element at Position 1: {linked_list[1]}" ) lowerCAmelCase : Tuple = input('Enter New Value: ' ).strip() print('New list:' ) print(_A ) print(F"length of linked_list is : {len(_A )}" ) if __name__ == "__main__": main()
646
0
'''simple docstring''' from __future__ import annotations def __UpperCamelCase ( _A : list[int] ) -> list[int]: """simple docstring""" if len(_lowerCamelCase ) == 0: return array lowerCAmelCase : Optional[int] = min(_lowerCamelCase ), max(_lowerCamelCase ) # Compute the variables lowerCAmelCase : Any = _max - _min + 1 lowerCAmelCase : List[str] = [0] * holes_range, [0] * holes_range # Make the sorting. for i in array: lowerCAmelCase : Union[str, Any] = i - _min lowerCAmelCase : str = i holes_repeat[index] += 1 # Makes the array back by replacing the numbers. lowerCAmelCase : List[Any] = 0 for i in range(_lowerCamelCase ): while holes_repeat[i] > 0: lowerCAmelCase : Tuple = holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : Any = input('Enter numbers separated by comma:\n') _lowerCAmelCase : str = [int(x) for x in user_input.split(',')] print(pigeon_sort(unsorted))
706
'''simple docstring''' _lowerCAmelCase : List[str] = {str(digit): digit**5 for digit in range(10)} def __UpperCamelCase ( _A : int ) -> int: """simple docstring""" return sum(DIGITS_FIFTH_POWER[digit] for digit in str(_A ) ) def __UpperCamelCase ( ) -> int: """simple docstring""" return sum( number for number in range(10_00 , 1_00_00_00 ) if number == digits_fifth_powers_sum(_A ) ) if __name__ == "__main__": print(solution())
646
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class lowerCAmelCase : def __init__( self , snake_case__ , ): lowerCAmelCase : int = parent lowerCAmelCase : List[Any] = 13 lowerCAmelCase : str = 7 lowerCAmelCase : Any = True lowerCAmelCase : str = True lowerCAmelCase : Dict = False lowerCAmelCase : List[str] = True lowerCAmelCase : Tuple = 99 lowerCAmelCase : Optional[int] = 32 lowerCAmelCase : Tuple = 2 lowerCAmelCase : Optional[int] = 4 lowerCAmelCase : str = 37 lowerCAmelCase : str = 'gelu' lowerCAmelCase : List[str] = 0.1 lowerCAmelCase : Union[str, Any] = 0.1 lowerCAmelCase : Optional[int] = 512 lowerCAmelCase : List[str] = 16 lowerCAmelCase : int = 2 lowerCAmelCase : Optional[int] = 0.0_2 lowerCAmelCase : Tuple = 3 lowerCAmelCase : Any = 4 lowerCAmelCase : int = None def lowercase ( self ): lowerCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : List[str] = None if self.use_input_mask: lowerCAmelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : Tuple = None lowerCAmelCase : Tuple = None lowerCAmelCase : Tuple = None if self.use_labels: lowerCAmelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : int = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Dict = TFDistilBertModel(config=__UpperCamelCase ) lowerCAmelCase : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask} lowerCAmelCase : List[str] = model(__UpperCamelCase ) lowerCAmelCase : List[str] = [input_ids, input_mask] lowerCAmelCase : Tuple = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = TFDistilBertForMaskedLM(config=__UpperCamelCase ) lowerCAmelCase : Any = {'input_ids': input_ids, 'attention_mask': input_mask} lowerCAmelCase : Tuple = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = TFDistilBertForQuestionAnswering(config=__UpperCamelCase ) lowerCAmelCase : int = { 'input_ids': input_ids, 'attention_mask': input_mask, } lowerCAmelCase : int = model(__UpperCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Dict = self.num_labels lowerCAmelCase : int = TFDistilBertForSequenceClassification(__UpperCamelCase ) lowerCAmelCase : Tuple = {'input_ids': input_ids, 'attention_mask': input_mask} lowerCAmelCase : int = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = self.num_choices lowerCAmelCase : List[Any] = TFDistilBertForMultipleChoice(__UpperCamelCase ) lowerCAmelCase : Union[str, Any] = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : Optional[int] = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : Optional[int] = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, } lowerCAmelCase : Any = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Dict = self.num_labels lowerCAmelCase : List[Any] = TFDistilBertForTokenClassification(__UpperCamelCase ) lowerCAmelCase : int = {'input_ids': input_ids, 'attention_mask': input_mask} lowerCAmelCase : Tuple = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase ( self ): lowerCAmelCase : Any = self.prepare_config_and_inputs() ((lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase)) : Tuple = config_and_inputs lowerCAmelCase : int = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class lowerCAmelCase ( a , a , unittest.TestCase ): _lowerCamelCase : List[Any] = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) _lowerCamelCase : List[Any] = ( { """feature-extraction""": TFDistilBertModel, """fill-mask""": TFDistilBertForMaskedLM, """question-answering""": TFDistilBertForQuestionAnswering, """text-classification""": TFDistilBertForSequenceClassification, """token-classification""": TFDistilBertForTokenClassification, """zero-shot""": TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) _lowerCamelCase : List[Any] = False _lowerCamelCase : List[Any] = False def lowercase ( self ): lowerCAmelCase : Optional[Any] = TFDistilBertModelTester(self ) lowerCAmelCase : str = ConfigTester(self , config_class=__UpperCamelCase , dim=37 ) def lowercase ( self ): self.config_tester.run_common_tests() def lowercase ( self ): lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*__UpperCamelCase ) def lowercase ( self ): lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*__UpperCamelCase ) def lowercase ( self ): lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*__UpperCamelCase ) def lowercase ( self ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*__UpperCamelCase ) def lowercase ( self ): lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*__UpperCamelCase ) def lowercase ( self ): lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*__UpperCamelCase ) @slow def lowercase ( self ): for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): lowerCAmelCase : Dict = TFDistilBertModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) @require_tf class lowerCAmelCase ( unittest.TestCase ): @slow def lowercase ( self ): lowerCAmelCase : List[str] = TFDistilBertModel.from_pretrained('distilbert-base-uncased' ) lowerCAmelCase : List[Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCAmelCase : List[Any] = model(__UpperCamelCase )[0] lowerCAmelCase : Union[str, Any] = [1, 6, 768] self.assertEqual(output.shape , __UpperCamelCase ) lowerCAmelCase : List[Any] = tf.constant( [ [ [0.1_9_2_6_1_8_8_5, -0.1_3_7_3_2_9_5_5, 0.4_1_1_9_7_9_9], [0.2_2_1_5_0_1_5_6, -0.0_7_4_2_2_6_6_1, 0.3_9_0_3_7_2_0_4], [0.2_2_7_5_6_0_1_8, -0.0_8_9_6_4_1_4, 0.3_7_0_1_4_6_7], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __UpperCamelCase , atol=1e-4 )
707
'''simple docstring''' def __UpperCamelCase ( _A : List[str] ) -> Optional[Any]: """simple docstring""" if not head: return True # split the list to two parts lowerCAmelCase , lowerCAmelCase : str = head.next, head while fast and fast.next: lowerCAmelCase : Optional[int] = fast.next.next lowerCAmelCase : int = slow.next lowerCAmelCase : int = slow.next lowerCAmelCase : Optional[Any] = None # Don't forget here! But forget still works! # reverse the second part lowerCAmelCase : List[Any] = None while second: lowerCAmelCase : List[Any] = second.next lowerCAmelCase : Union[str, Any] = node lowerCAmelCase : Optional[Any] = second lowerCAmelCase : Any = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False lowerCAmelCase : Optional[Any] = node.next lowerCAmelCase : Tuple = head.next return True def __UpperCamelCase ( _A : Optional[Any] ) -> Optional[int]: """simple docstring""" if not head or not head.next: return True # 1. Get the midpoint (slow) lowerCAmelCase : Optional[int] = head while fast and fast.next: lowerCAmelCase , lowerCAmelCase : Optional[Any] = fast.next.next, slow.next # 2. Push the second half into the stack lowerCAmelCase : Tuple = [slow.val] while slow.next: lowerCAmelCase : Tuple = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False lowerCAmelCase : Union[str, Any] = cur.next return True def __UpperCamelCase ( _A : Tuple ) -> Optional[int]: """simple docstring""" if not head or not head.next: return True lowerCAmelCase : Optional[int] = {} lowerCAmelCase : int = 0 while head: if head.val in d: d[head.val].append(_A ) else: lowerCAmelCase : Any = [pos] lowerCAmelCase : int = head.next pos += 1 lowerCAmelCase : str = pos - 1 lowerCAmelCase : Optional[Any] = 0 for v in d.values(): if len(_A ) % 2 != 0: middle += 1 else: lowerCAmelCase : Any = 0 for i in range(0 , len(_A ) ): if v[i] + v[len(_A ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
646
0
'''simple docstring''' import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): lowerCAmelCase : Optional[Any] = logging.get_logger() # the current default level is logging.WARNING lowerCAmelCase : Any = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(snake_case__ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = logging.get_verbosity() lowerCAmelCase : Optional[Any] = logging.get_logger('transformers.models.bart.tokenization_bart' ) lowerCAmelCase : str = """Testing 1, 2, 3""" # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(snake_case__ ) as cl: logger.warning(snake_case__ ) self.assertEqual(cl.out , msg + '\n' ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(snake_case__ ) as cl: logger.warning(snake_case__ ) self.assertEqual(cl.out , '' ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(snake_case__ ) as cl: logger.warning(snake_case__ ) self.assertEqual(cl.out , msg + '\n' ) # restore to the original level logging.set_verbosity(snake_case__ ) @mockenv(TRANSFORMERS_VERBOSITY='error' ) def lowercase ( self ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() # this action activates the env var lowerCAmelCase : int = logging.get_logger('transformers.models.bart.tokenization_bart' ) lowerCAmelCase : Optional[int] = os.getenv('TRANSFORMERS_VERBOSITY' , snake_case__ ) lowerCAmelCase : Any = logging.log_levels[env_level_str] lowerCAmelCase : Dict = logging.get_verbosity() self.assertEqual( snake_case__ , snake_case__ , f"TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}" , ) # restore to the original level lowerCAmelCase : int = """""" transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY='super-error' ) def lowercase ( self ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() lowerCAmelCase : str = logging.logging.getLogger() with CaptureLogger(snake_case__ ) as cl: # this action activates the env var logging.get_logger('transformers.models.bart.tokenization_bart' ) self.assertIn('Unknown option TRANSFORMERS_VERBOSITY=super-error' , cl.out ) # no need to restore as nothing was changed def lowercase ( self ): # testing `logger.warning_advice()` transformers.utils.logging._reset_library_root_logger() lowerCAmelCase : Optional[Any] = logging.get_logger('transformers.models.bart.tokenization_bart' ) lowerCAmelCase : List[Any] = """Testing 1, 2, 3""" with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='1' ): # nothing should be logged as env var disables this method with CaptureLogger(snake_case__ ) as cl: logger.warning_advice(snake_case__ ) self.assertEqual(cl.out , '' ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='' ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(snake_case__ ) as cl: logger.warning_advice(snake_case__ ) self.assertEqual(cl.out , msg + '\n' ) def __UpperCamelCase ( ) -> Any: """simple docstring""" disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
708
'''simple docstring''' import math def __UpperCamelCase ( _A : int = 1_00 ) -> int: """simple docstring""" lowerCAmelCase : List[Any] = sum(i * i for i in range(1 , n + 1 ) ) lowerCAmelCase : Optional[Any] = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f"""{solution() = }""")
646
0
def __UpperCamelCase ( _A : str , _A : str = " " ) -> List[Any]: """simple docstring""" lowerCAmelCase : Optional[int] = [] lowerCAmelCase : int = 0 for index, char in enumerate(lowerCAmelCase__ ): if char == separator: split_words.append(string[last_index:index] ) lowerCAmelCase : Any = index + 1 elif index + 1 == len(lowerCAmelCase__ ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
709
'''simple docstring''' import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece_with_bytefallback.model') @require_sentencepiece @require_tokenizers class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : Tuple = GPTSwaTokenizer _lowerCamelCase : str = False _lowerCamelCase : Dict = True _lowerCamelCase : Optional[Any] = False def lowercase ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : Tuple = GPTSwaTokenizer(snake_case__ , eos_token='<unk>' , bos_token='<unk>' , pad_token='<unk>' ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase ( self , snake_case__ ): lowerCAmelCase : List[Any] = 'This is a test' lowerCAmelCase : List[Any] = 'This is a test' return input_text, output_text def lowercase ( self ): lowerCAmelCase : Tuple = '<s>' lowerCAmelCase : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def lowercase ( self ): lowerCAmelCase : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(snake_case__ ) , 2000 ) def lowercase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 2000 ) def lowercase ( self ): lowerCAmelCase : List[Any] = GPTSwaTokenizer(snake_case__ ) lowerCAmelCase : Optional[Any] = tokenizer.tokenize('This is a test' ) self.assertListEqual(snake_case__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , [465, 287, 265, 631, 842] ) lowerCAmelCase : Tuple = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) # fmt: off self.assertListEqual( snake_case__ , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] , ) # fmt: on lowerCAmelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual( snake_case__ , [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] , ) lowerCAmelCase : int = tokenizer.convert_ids_to_tokens(snake_case__ ) # fmt: off self.assertListEqual( snake_case__ , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] ) # fmt: on def lowercase ( self ): lowerCAmelCase : str = GPTSwaTokenizer(snake_case__ ) lowerCAmelCase : Optional[int] = ['This is a test', 'I was born in 92000, and this is falsé.'] lowerCAmelCase : Tuple = [ [465, 287, 265, 631, 842], [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(snake_case__ , snake_case__ ): self.assertListEqual(tokenizer.encode_fast(snake_case__ ) , snake_case__ ) # Test that decode_fast returns the input text for text, token_ids in zip(snake_case__ , snake_case__ ): self.assertEqual(tokenizer.decode_fast(snake_case__ ) , snake_case__ ) @slow def lowercase ( self ): lowerCAmelCase : str = [ '<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')', 'Hey there, how are you doing this fine day?', 'This is a text with a trailing spaces followed by a dot .', 'Häj sväjs lillebrör! =)', 'Det är inget fel på Mr. Cool', ] # fmt: off lowerCAmelCase : Tuple = {'input_ids': [[6_3423, 5, 6811, 1_4954, 282, 816, 3821, 6_3466, 6_3425, 6_3462, 18, 6_3978, 678, 301, 1320, 6_3423, 6_3455, 6_3458, 18, 6_3982, 4246, 3940, 1901, 4_7789, 5547, 1_8994], [1_9630, 1100, 6_3446, 1342, 633, 544, 4488, 593, 5102, 2416, 6_3495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1652, 428, 268, 1936, 515, 268, 5_8593, 2_2413, 9106, 546, 268, 3_3213, 6_3979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_5130, 6_3450, 924, 6_3449, 2249, 4062, 1558, 318, 6_3504, 2_1498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2827, 2559, 332, 6575, 6_3443, 2_6801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name='AI-Sweden/gpt-sw3-126m' , sequences=snake_case__ , )
646
0
'''simple docstring''' from math import factorial def __UpperCamelCase ( _A : Optional[int] = 1_00 ) -> int: """simple docstring""" return sum(map(_A , str(factorial(_A ) ) ) ) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
710
'''simple docstring''' def __UpperCamelCase ( _A : int ) -> bool: """simple docstring""" return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
646
0
'''simple docstring''' import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCAmelCase : def __init__( self , snake_case__ , snake_case__=13 , snake_case__=3 , snake_case__=True , snake_case__=True , snake_case__=0.1 , snake_case__=0.1 , snake_case__=224 , snake_case__=1000 , snake_case__=[3, 3, 6, 4] , snake_case__=[48, 56, 112, 220] , ): lowerCAmelCase : List[Any] = parent lowerCAmelCase : Optional[int] = batch_size lowerCAmelCase : Optional[Any] = num_channels lowerCAmelCase : List[str] = is_training lowerCAmelCase : Union[str, Any] = use_labels lowerCAmelCase : List[str] = hidden_dropout_prob lowerCAmelCase : List[Any] = attention_probs_dropout_prob lowerCAmelCase : Tuple = num_labels lowerCAmelCase : Optional[Any] = image_size lowerCAmelCase : List[Any] = layer_depths lowerCAmelCase : List[str] = embed_dims def lowercase ( self ): lowerCAmelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase : int = None if self.use_labels: lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase : Dict = self.get_config() return config, pixel_values, labels def lowercase ( self ): return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act='gelu' , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=UpperCamelCase__ , layer_scale_init_value=1e-5 , ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = SwiftFormerModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCAmelCase : int = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Any = self.num_labels lowerCAmelCase : str = SwiftFormerForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCAmelCase : List[str] = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) lowerCAmelCase : Any = SwiftFormerForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCAmelCase : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase : int = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self ): ((lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase)) : str = self.prepare_config_and_inputs() lowerCAmelCase : str = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase ( lowercase_ , lowercase_ , unittest.TestCase ): _lowerCamelCase : Dict = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () _lowerCamelCase : Any = ( {'''feature-extraction''': SwiftFormerModel, '''image-classification''': SwiftFormerForImageClassification} if is_torch_available() else {} ) _lowerCamelCase : List[str] = False _lowerCamelCase : str = False _lowerCamelCase : Optional[int] = False _lowerCamelCase : Optional[int] = False _lowerCamelCase : str = False def lowercase ( self ): lowerCAmelCase : List[str] = SwiftFormerModelTester(self ) lowerCAmelCase : Tuple = ConfigTester( self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def lowercase ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='SwiftFormer does not use inputs_embeds' ) def lowercase ( self ): pass def lowercase ( self ): lowerCAmelCase , lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : int = model_class(UpperCamelCase__ ) lowerCAmelCase : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , nn.Linear ) ) def lowercase ( self ): lowerCAmelCase , lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Union[str, Any] = model_class(UpperCamelCase__ ) lowerCAmelCase : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase : Optional[Any] = [*signature.parameters.keys()] lowerCAmelCase : Optional[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ ) @slow def lowercase ( self ): for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : Optional[Any] = SwiftFormerModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) @unittest.skip(reason='SwiftFormer does not output attentions' ) def lowercase ( self ): pass def lowercase ( self ): def check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : int = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): lowerCAmelCase : List[Any] = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) lowerCAmelCase : int = outputs.hidden_states lowerCAmelCase : Dict = 8 self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(UpperCamelCase__ ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) lowerCAmelCase , lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Optional[Any] = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase : List[str] = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def lowercase ( self ): def _config_zero_init(snake_case__ ): lowerCAmelCase : Dict = copy.deepcopy(UpperCamelCase__ ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(UpperCamelCase__ , UpperCamelCase__ , 1e-1_0 ) if isinstance(getattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ ): lowerCAmelCase : Optional[int] = _config_zero_init(getattr(UpperCamelCase__ , UpperCamelCase__ ) ) setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return configs_no_init lowerCAmelCase , lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : Union[str, Any] = _config_zero_init(UpperCamelCase__ ) for model_class in self.all_model_classes: lowerCAmelCase : str = model_class(config=UpperCamelCase__ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9) / 1e9).round().item() , [0.0, 1.0] , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase ( self ): pass def __UpperCamelCase ( ) -> Optional[Any]: """simple docstring""" lowerCAmelCase : Union[str, Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowerCAmelCase ( unittest.TestCase ): @cached_property def lowercase ( self ): return ViTImageProcessor.from_pretrained('MBZUAI/swiftformer-xs' ) if is_vision_available() else None @slow def lowercase ( self ): lowerCAmelCase : List[str] = SwiftFormerForImageClassification.from_pretrained('MBZUAI/swiftformer-xs' ).to(UpperCamelCase__ ) lowerCAmelCase : Optional[Any] = self.default_image_processor lowerCAmelCase : List[Any] = prepare_img() lowerCAmelCase : Any = image_processor(images=UpperCamelCase__ , return_tensors='pt' ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): lowerCAmelCase : Dict = model(**UpperCamelCase__ ) # verify the logits lowerCAmelCase : Union[str, Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) lowerCAmelCase : Optional[Any] = torch.tensor([[-2.1_7_0_3e0_0, 2.1_1_0_7e0_0, -2.0_8_1_1e0_0]] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) )
711
'''simple docstring''' import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( 'files' , [ ['full:README.md', 'dataset_infos.json'], ['empty:README.md', 'dataset_infos.json'], ['dataset_infos.json'], ['full:README.md'], ] , ) def __UpperCamelCase ( _A : str , _A : List[Any] ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase : Optional[int] = tmp_path_factory.mktemp('dset_infos_dir' ) if "full:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('---\ndataset_info:\n dataset_size: 42\n---' ) if "empty:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / 'dataset_infos.json' , 'w' ) as f: f.write('{"default": {"dataset_size": 42}}' ) lowerCAmelCase : Union[str, Any] = DatasetInfosDict.from_directory(_A ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( 'dataset_info' , [ DatasetInfo(), DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ), ] , ) def __UpperCamelCase ( _A : str , _A : DatasetInfo ) -> Optional[int]: """simple docstring""" lowerCAmelCase : str = str(_A ) dataset_info.write_to_directory(_A ) lowerCAmelCase : List[str] = DatasetInfo.from_directory(_A ) assert dataset_info == reloaded assert os.path.exists(os.path.join(_A , 'dataset_info.json' ) ) def __UpperCamelCase ( ) -> List[str]: """simple docstring""" lowerCAmelCase : Tuple = DatasetInfo( description='foo' , citation='bar' , homepage='https://foo.bar' , license='CC0' , features=Features({'a': Value('int32' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train', 'num_examples': 42}] , download_checksums={} , download_size=13_37 , post_processing_size=4_42 , dataset_size=12_34 , size_in_bytes=13_37 + 4_42 + 12_34 , ) lowerCAmelCase : Optional[int] = dataset_info._to_yaml_dict() assert sorted(_A ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) lowerCAmelCase : Any = yaml.safe_dump(_A ) lowerCAmelCase : int = yaml.safe_load(_A ) assert dataset_info_yaml_dict == reloaded def __UpperCamelCase ( ) -> Dict: """simple docstring""" lowerCAmelCase : Union[str, Any] = DatasetInfo() lowerCAmelCase : List[Any] = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( 'dataset_infos_dict' , [ DatasetInfosDict(), DatasetInfosDict({'default': DatasetInfo()} ), DatasetInfosDict({'my_config_name': DatasetInfo()} ), DatasetInfosDict( { 'default': DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ) } ), DatasetInfosDict( { 'v1': DatasetInfo(dataset_size=42 ), 'v2': DatasetInfo(dataset_size=13_37 ), } ), ] , ) def __UpperCamelCase ( _A : Tuple , _A : DatasetInfosDict ) -> List[Any]: """simple docstring""" lowerCAmelCase : Tuple = str(_A ) dataset_infos_dict.write_to_directory(_A ) lowerCAmelCase : List[str] = DatasetInfosDict.from_directory(_A ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): lowerCAmelCase : Tuple = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml lowerCAmelCase : Optional[Any] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(_A , 'README.md' ) )
646
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCAmelCase : Union[str, Any] = { "configuration_longformer": [ "LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "LongformerConfig", "LongformerOnnxConfig", ], "tokenization_longformer": ["LongformerTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : List[Any] = ["LongformerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Tuple = [ "LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "LongformerForMaskedLM", "LongformerForMultipleChoice", "LongformerForQuestionAnswering", "LongformerForSequenceClassification", "LongformerForTokenClassification", "LongformerModel", "LongformerPreTrainedModel", "LongformerSelfAttention", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : List[Any] = [ "TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFLongformerForMaskedLM", "TFLongformerForMultipleChoice", "TFLongformerForQuestionAnswering", "TFLongformerForSequenceClassification", "TFLongformerForTokenClassification", "TFLongformerModel", "TFLongformerPreTrainedModel", "TFLongformerSelfAttention", ] if TYPE_CHECKING: from .configuration_longformer import ( LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerOnnxConfig, ) from .tokenization_longformer import LongformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_longformer_fast import LongformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longformer import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerPreTrainedModel, LongformerSelfAttention, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_longformer import ( TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFLongformerForMaskedLM, TFLongformerForMultipleChoice, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerModel, TFLongformerPreTrainedModel, TFLongformerSelfAttention, ) else: import sys _lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
712
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCAmelCase ( a ): def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): super().__init__() if safety_checker is None: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" ' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered' ' results in services or applications open to the public. Both the diffusers team and Hugging Face' ' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling' ' it only for use-cases that involve analyzing network behavior or auditing its results. For more' ' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .' ) self.register_modules( speech_model=snake_case__ , speech_processor=snake_case__ , vae=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , unet=snake_case__ , scheduler=snake_case__ , feature_extractor=snake_case__ , ) def lowercase ( self , snake_case__ = "auto" ): if slice_size == "auto": lowerCAmelCase : Union[str, Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(snake_case__ ) def lowercase ( self ): self.enable_attention_slicing(snake_case__ ) @torch.no_grad() def __call__( self , snake_case__ , snake_case__=1_6000 , snake_case__ = 512 , snake_case__ = 512 , snake_case__ = 50 , snake_case__ = 7.5 , snake_case__ = None , snake_case__ = 1 , snake_case__ = 0.0 , snake_case__ = None , snake_case__ = None , snake_case__ = "pil" , snake_case__ = True , snake_case__ = None , snake_case__ = 1 , **snake_case__ , ): lowerCAmelCase : List[str] = self.speech_processor.feature_extractor( snake_case__ , return_tensors='pt' , sampling_rate=snake_case__ ).input_features.to(self.device ) lowerCAmelCase : Optional[Any] = self.speech_model.generate(snake_case__ , max_length=48_0000 ) lowerCAmelCase : str = self.speech_processor.tokenizer.batch_decode(snake_case__ , skip_special_tokens=snake_case__ , normalize=snake_case__ )[ 0 ] if isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = 1 elif isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = len(snake_case__ ) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(snake_case__ )}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(snake_case__ , snake_case__ ) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(snake_case__ )}." ) # get prompt text embeddings lowerCAmelCase : str = self.tokenizer( snake_case__ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) lowerCAmelCase : Tuple = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowerCAmelCase : str = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) lowerCAmelCase : Union[str, Any] = text_input_ids[:, : self.tokenizer.model_max_length] lowerCAmelCase : Union[str, Any] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : int = text_embeddings.shape lowerCAmelCase : Any = text_embeddings.repeat(1 , snake_case__ , 1 ) lowerCAmelCase : Optional[int] = text_embeddings.view(bs_embed * num_images_per_prompt , snake_case__ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowerCAmelCase : List[str] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowerCAmelCase : List[str] if negative_prompt is None: lowerCAmelCase : Any = [''] * batch_size elif type(snake_case__ ) is not type(snake_case__ ): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(snake_case__ )} !=" f" {type(snake_case__ )}." ) elif isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = [negative_prompt] elif batch_size != len(snake_case__ ): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(snake_case__ )}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" ' the batch size of `prompt`.' ) else: lowerCAmelCase : Dict = negative_prompt lowerCAmelCase : Optional[int] = text_input_ids.shape[-1] lowerCAmelCase : int = self.tokenizer( snake_case__ , padding='max_length' , max_length=snake_case__ , truncation=snake_case__ , return_tensors='pt' , ) lowerCAmelCase : Union[str, Any] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowerCAmelCase : List[Any] = uncond_embeddings.shape[1] lowerCAmelCase : List[str] = uncond_embeddings.repeat(1 , snake_case__ , 1 ) lowerCAmelCase : Optional[Any] = uncond_embeddings.view(batch_size * num_images_per_prompt , snake_case__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCAmelCase : List[str] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowerCAmelCase : Union[str, Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowerCAmelCase : Dict = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowerCAmelCase : str = torch.randn(snake_case__ , generator=snake_case__ , device='cpu' , dtype=snake_case__ ).to( self.device ) else: lowerCAmelCase : Tuple = torch.randn(snake_case__ , generator=snake_case__ , device=self.device , dtype=snake_case__ ) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) lowerCAmelCase : str = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(snake_case__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowerCAmelCase : Union[str, Any] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowerCAmelCase : Any = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowerCAmelCase : Tuple = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCAmelCase : Union[str, Any] = {} if accepts_eta: lowerCAmelCase : int = eta for i, t in enumerate(self.progress_bar(snake_case__ ) ): # expand the latents if we are doing classifier free guidance lowerCAmelCase : Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCAmelCase : Tuple = self.scheduler.scale_model_input(snake_case__ , snake_case__ ) # predict the noise residual lowerCAmelCase : List[str] = self.unet(snake_case__ , snake_case__ , encoder_hidden_states=snake_case__ ).sample # perform guidance if do_classifier_free_guidance: lowerCAmelCase , lowerCAmelCase : Dict = noise_pred.chunk(2 ) lowerCAmelCase : Tuple = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowerCAmelCase : int = self.scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase : List[Any] = 1 / 0.1_8_2_1_5 * latents lowerCAmelCase : Dict = self.vae.decode(snake_case__ ).sample lowerCAmelCase : List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowerCAmelCase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowerCAmelCase : Dict = self.numpy_to_pil(snake_case__ ) if not return_dict: return image return StableDiffusionPipelineOutput(images=snake_case__ , nsfw_content_detected=snake_case__ )
646
0
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : Dict = logging.get_logger(__name__) def __UpperCamelCase ( _A : Tuple ) -> Optional[int]: """simple docstring""" lowerCAmelCase : Tuple = MobileNetVaConfig(layer_norm_eps=0.0_01 ) if "_quant" in model_name: raise ValueError('Quantized models are not supported.' ) lowerCAmelCase : Any = re.match(r'^mobilenet_v1_([^_]*)_([^_]*)$' , a_ ) if matches: lowerCAmelCase : List[Any] = float(matches[1] ) lowerCAmelCase : Tuple = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". lowerCAmelCase : List[str] = 10_01 lowerCAmelCase : Union[str, Any] = '''imagenet-1k-id2label.json''' lowerCAmelCase : Optional[int] = '''huggingface/label-files''' lowerCAmelCase : Tuple = json.load(open(hf_hub_download(a_ , a_ , repo_type='dataset' ) , 'r' ) ) lowerCAmelCase : Any = {int(a_ ) + 1: v for k, v in idalabel.items()} lowerCAmelCase : int = '''background''' lowerCAmelCase : str = idalabel lowerCAmelCase : List[Any] = {v: k for k, v in idalabel.items()} return config def __UpperCamelCase ( ) -> List[str]: """simple docstring""" lowerCAmelCase : Optional[Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCAmelCase : Optional[Any] = Image.open(requests.get(a_ , stream=a_ ).raw ) return im @torch.no_grad() def __UpperCamelCase ( _A : Optional[int] , _A : int , _A : str , _A : Tuple=False ) -> List[Any]: """simple docstring""" lowerCAmelCase : int = get_mobilenet_va_config(a_ ) # Load 🤗 model lowerCAmelCase : Any = MobileNetVaForImageClassification(a_ ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(a_ , a_ , a_ ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor lowerCAmelCase : Tuple = MobileNetVaImageProcessor( crop_size={'width': config.image_size, 'height': config.image_size} , size={'shortest_edge': config.image_size + 32} , ) lowerCAmelCase : Tuple = image_processor(images=prepare_img() , return_tensors='pt' ) lowerCAmelCase : Optional[int] = model(**a_ ) lowerCAmelCase : Optional[Any] = outputs.logits assert logits.shape == (1, 10_01) if model_name == "mobilenet_v1_1.0_224": lowerCAmelCase : Optional[int] = torch.tensor([-4.17_39, -1.12_33, 3.12_05] ) elif model_name == "mobilenet_v1_0.75_192": lowerCAmelCase : str = torch.tensor([-3.94_40, -2.31_41, -0.33_33] ) else: lowerCAmelCase : Optional[Any] = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , a_ , atol=1e-4 ) Path(a_ ).mkdir(exist_ok=a_ ) print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(a_ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(a_ ) if push_to_hub: print('Pushing to the hub...' ) lowerCAmelCase : Union[str, Any] = '''google/''' + model_name image_processor.push_to_hub(a_ ) model.push_to_hub(a_ ) if __name__ == "__main__": _lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='mobilenet_v1_1.0_224', type=str, help='Name of the MobileNetV1 model you\'d like to convert. Should in the form \'mobilenet_v1_<depth>_<size>\'.', ) parser.add_argument( '--checkpoint_path', required=True, type=str, help='Path to the original TensorFlow checkpoint (.ckpt file).' ) parser.add_argument( '--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _lowerCAmelCase : str = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
713
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : List[Any] = LDMTextToImagePipeline _lowerCamelCase : Optional[Any] = TEXT_TO_IMAGE_PARAMS - { """negative_prompt""", """negative_prompt_embeds""", """cross_attention_kwargs""", """prompt_embeds""", } _lowerCamelCase : List[str] = PipelineTesterMixin.required_optional_params - { """num_images_per_prompt""", """callback""", """callback_steps""", } _lowerCamelCase : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS _lowerCamelCase : Optional[int] = False def lowercase ( self ): torch.manual_seed(0 ) lowerCAmelCase : Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) lowerCAmelCase : int = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , ) torch.manual_seed(0 ) lowerCAmelCase : str = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') , up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') , latent_channels=4 , ) torch.manual_seed(0 ) lowerCAmelCase : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowerCAmelCase : str = CLIPTextModel(snake_case__ ) lowerCAmelCase : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCAmelCase : List[Any] = { 'unet': unet, 'scheduler': scheduler, 'vqvae': vae, 'bert': text_encoder, 'tokenizer': tokenizer, } return components def lowercase ( self , snake_case__ , snake_case__=0 ): if str(snake_case__ ).startswith('mps' ): lowerCAmelCase : Optional[int] = torch.manual_seed(snake_case__ ) else: lowerCAmelCase : str = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) lowerCAmelCase : Tuple = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase ( self ): lowerCAmelCase : List[str] = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase : Optional[Any] = self.get_dummy_components() lowerCAmelCase : Optional[Any] = LDMTextToImagePipeline(**snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Tuple = self.get_dummy_inputs(snake_case__ ) lowerCAmelCase : Union[str, Any] = pipe(**snake_case__ ).images lowerCAmelCase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) lowerCAmelCase : List[Any] = np.array([0.6_1_0_1, 0.6_1_5_6, 0.5_6_2_2, 0.4_8_9_5, 0.6_6_6_1, 0.3_8_0_4, 0.5_7_4_8, 0.6_1_3_6, 0.5_0_1_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self , snake_case__ , snake_case__=torch.floataa , snake_case__=0 ): lowerCAmelCase : List[str] = torch.manual_seed(snake_case__ ) lowerCAmelCase : int = np.random.RandomState(snake_case__ ).standard_normal((1, 4, 32, 32) ) lowerCAmelCase : Optional[Any] = torch.from_numpy(snake_case__ ).to(device=snake_case__ , dtype=snake_case__ ) lowerCAmelCase : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase ( self ): lowerCAmelCase : Tuple = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Optional[Any] = self.get_inputs(snake_case__ ) lowerCAmelCase : List[Any] = pipe(**snake_case__ ).images lowerCAmelCase : str = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) lowerCAmelCase : Tuple = np.array([0.5_1_8_2_5, 0.5_2_8_5_0, 0.5_2_5_4_3, 0.5_4_2_5_8, 0.5_2_3_0_4, 0.5_2_5_6_9, 0.5_4_3_6_3, 0.5_5_2_7_6, 0.5_6_8_7_8] ) lowerCAmelCase : int = np.abs(expected_slice - image_slice ).max() assert max_diff < 1e-3 @nightly @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self , snake_case__ , snake_case__=torch.floataa , snake_case__=0 ): lowerCAmelCase : List[str] = torch.manual_seed(snake_case__ ) lowerCAmelCase : Any = np.random.RandomState(snake_case__ ).standard_normal((1, 4, 32, 32) ) lowerCAmelCase : List[Any] = torch.from_numpy(snake_case__ ).to(device=snake_case__ , dtype=snake_case__ ) lowerCAmelCase : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase ( self ): lowerCAmelCase : Optional[int] = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : int = self.get_inputs(snake_case__ ) lowerCAmelCase : Optional[int] = pipe(**snake_case__ ).images[0] lowerCAmelCase : Optional[int] = load_numpy( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy' ) lowerCAmelCase : List[str] = np.abs(expected_image - image ).max() assert max_diff < 1e-3
646
0
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowerCAmelCase : List[Any] = { 'configuration_vivit': ['VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VivitConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Dict = ['VivitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Any = [ 'VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'VivitModel', 'VivitPreTrainedModel', 'VivitForVideoClassification', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys _lowerCAmelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
714
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Tuple = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { 'facebook/xmod-base': 'https://huggingface.co/facebook/xmod-base/resolve/main/config.json', 'facebook/xmod-large-prenorm': 'https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json', 'facebook/xmod-base-13-125k': 'https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json', 'facebook/xmod-base-30-125k': 'https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json', 'facebook/xmod-base-30-195k': 'https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json', 'facebook/xmod-base-60-125k': 'https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json', 'facebook/xmod-base-60-265k': 'https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json', 'facebook/xmod-base-75-125k': 'https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json', 'facebook/xmod-base-75-269k': 'https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json', } class lowerCAmelCase ( a ): _lowerCamelCase : int = """xmod""" def __init__( self , snake_case__=3_0522 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=1e-1_2 , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__="absolute" , snake_case__=True , snake_case__=None , snake_case__=False , snake_case__=2 , snake_case__=False , snake_case__=True , snake_case__=True , snake_case__=("en_XX",) , snake_case__=None , **snake_case__ , ): super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) lowerCAmelCase : Dict = vocab_size lowerCAmelCase : Optional[Any] = hidden_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob lowerCAmelCase : str = max_position_embeddings lowerCAmelCase : int = type_vocab_size lowerCAmelCase : List[Any] = initializer_range lowerCAmelCase : Any = layer_norm_eps lowerCAmelCase : Dict = position_embedding_type lowerCAmelCase : Optional[Any] = use_cache lowerCAmelCase : Union[str, Any] = classifier_dropout lowerCAmelCase : int = pre_norm lowerCAmelCase : Optional[Any] = adapter_reduction_factor lowerCAmelCase : Any = adapter_layer_norm lowerCAmelCase : Dict = adapter_reuse_layer_norm lowerCAmelCase : Any = ln_before_adapter lowerCAmelCase : Optional[Any] = list(snake_case__ ) lowerCAmelCase : List[Any] = default_language class lowerCAmelCase ( a ): @property def lowercase ( self ): if self.task == "multiple-choice": lowerCAmelCase : List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase : Optional[int] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
646
0
'''simple docstring''' import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) _lowerCAmelCase : Optional[int] = logging.get_logger(__name__) _lowerCAmelCase : Optional[Any] = OrderedDict( [ ('align', 'EfficientNetImageProcessor'), ('beit', 'BeitImageProcessor'), ('bit', 'BitImageProcessor'), ('blip', 'BlipImageProcessor'), ('blip-2', 'BlipImageProcessor'), ('bridgetower', 'BridgeTowerImageProcessor'), ('chinese_clip', 'ChineseCLIPImageProcessor'), ('clip', 'CLIPImageProcessor'), ('clipseg', 'ViTImageProcessor'), ('conditional_detr', 'ConditionalDetrImageProcessor'), ('convnext', 'ConvNextImageProcessor'), ('convnextv2', 'ConvNextImageProcessor'), ('cvt', 'ConvNextImageProcessor'), ('data2vec-vision', 'BeitImageProcessor'), ('deformable_detr', 'DeformableDetrImageProcessor'), ('deit', 'DeiTImageProcessor'), ('deta', 'DetaImageProcessor'), ('detr', 'DetrImageProcessor'), ('dinat', 'ViTImageProcessor'), ('donut-swin', 'DonutImageProcessor'), ('dpt', 'DPTImageProcessor'), ('efficientformer', 'EfficientFormerImageProcessor'), ('efficientnet', 'EfficientNetImageProcessor'), ('flava', 'FlavaImageProcessor'), ('focalnet', 'BitImageProcessor'), ('git', 'CLIPImageProcessor'), ('glpn', 'GLPNImageProcessor'), ('groupvit', 'CLIPImageProcessor'), ('imagegpt', 'ImageGPTImageProcessor'), ('instructblip', 'BlipImageProcessor'), ('layoutlmv2', 'LayoutLMv2ImageProcessor'), ('layoutlmv3', 'LayoutLMv3ImageProcessor'), ('levit', 'LevitImageProcessor'), ('mask2former', 'Mask2FormerImageProcessor'), ('maskformer', 'MaskFormerImageProcessor'), ('mgp-str', 'ViTImageProcessor'), ('mobilenet_v1', 'MobileNetV1ImageProcessor'), ('mobilenet_v2', 'MobileNetV2ImageProcessor'), ('mobilevit', 'MobileViTImageProcessor'), ('mobilevit', 'MobileViTImageProcessor'), ('mobilevitv2', 'MobileViTImageProcessor'), ('nat', 'ViTImageProcessor'), ('oneformer', 'OneFormerImageProcessor'), ('owlvit', 'OwlViTImageProcessor'), ('perceiver', 'PerceiverImageProcessor'), ('pix2struct', 'Pix2StructImageProcessor'), ('poolformer', 'PoolFormerImageProcessor'), ('regnet', 'ConvNextImageProcessor'), ('resnet', 'ConvNextImageProcessor'), ('sam', 'SamImageProcessor'), ('segformer', 'SegformerImageProcessor'), ('swiftformer', 'ViTImageProcessor'), ('swin', 'ViTImageProcessor'), ('swin2sr', 'Swin2SRImageProcessor'), ('swinv2', 'ViTImageProcessor'), ('table-transformer', 'DetrImageProcessor'), ('timesformer', 'VideoMAEImageProcessor'), ('tvlt', 'TvltImageProcessor'), ('upernet', 'SegformerImageProcessor'), ('van', 'ConvNextImageProcessor'), ('videomae', 'VideoMAEImageProcessor'), ('vilt', 'ViltImageProcessor'), ('vit', 'ViTImageProcessor'), ('vit_hybrid', 'ViTHybridImageProcessor'), ('vit_mae', 'ViTImageProcessor'), ('vit_msn', 'ViTImageProcessor'), ('xclip', 'CLIPImageProcessor'), ('yolos', 'YolosImageProcessor'), ] ) _lowerCAmelCase : Union[str, Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def __UpperCamelCase ( _A : str ) -> Dict: """simple docstring""" for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: lowerCAmelCase : Dict = model_type_to_module_name(UpperCAmelCase__ ) lowerCAmelCase : Optional[Any] = importlib.import_module(F".{module_name}" , 'transformers.models' ) try: return getattr(UpperCAmelCase__ , UpperCAmelCase__ ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(UpperCAmelCase__ , '__name__' , UpperCAmelCase__ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. lowerCAmelCase : Union[str, Any] = importlib.import_module('transformers' ) if hasattr(UpperCAmelCase__ , UpperCAmelCase__ ): return getattr(UpperCAmelCase__ , UpperCAmelCase__ ) return None def __UpperCamelCase ( _A : Union[str, os.PathLike] , _A : Optional[Union[str, os.PathLike]] = None , _A : bool = False , _A : bool = False , _A : Optional[Dict[str, str]] = None , _A : Optional[Union[bool, str]] = None , _A : Optional[str] = None , _A : bool = False , **_A : Dict , ) -> Optional[Any]: """simple docstring""" lowerCAmelCase : Optional[int] = get_file_from_repo( UpperCAmelCase__ , UpperCAmelCase__ , cache_dir=UpperCAmelCase__ , force_download=UpperCAmelCase__ , resume_download=UpperCAmelCase__ , proxies=UpperCAmelCase__ , use_auth_token=UpperCAmelCase__ , revision=UpperCAmelCase__ , local_files_only=UpperCAmelCase__ , ) if resolved_config_file is None: logger.info( 'Could not locate the image processor configuration file, will try to use the model config instead.' ) return {} with open(UpperCAmelCase__ , encoding='utf-8' ) as reader: return json.load(UpperCAmelCase__ ) class lowerCAmelCase : def __init__( self ): raise EnvironmentError( 'AutoImageProcessor is designed to be instantiated ' 'using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.' ) @classmethod @replace_list_option_in_docstrings(__UpperCamelCase ) def lowercase ( cls , snake_case__ , **snake_case__ ): lowerCAmelCase : int = kwargs.pop('config' , __UpperCamelCase ) lowerCAmelCase : Any = kwargs.pop('trust_remote_code' , __UpperCamelCase ) lowerCAmelCase : Optional[Any] = True lowerCAmelCase , lowerCAmelCase : List[Any] = ImageProcessingMixin.get_image_processor_dict(__UpperCamelCase , **__UpperCamelCase ) lowerCAmelCase : Dict = config_dict.get('image_processor_type' , __UpperCamelCase ) lowerCAmelCase : List[Any] = None if "AutoImageProcessor" in config_dict.get('auto_map' , {} ): lowerCAmelCase : Optional[int] = config_dict['auto_map']['AutoImageProcessor'] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: lowerCAmelCase : Optional[int] = config_dict.pop('feature_extractor_type' , __UpperCamelCase ) if feature_extractor_class is not None: logger.warning( 'Could not find image processor class in the image processor config or the model config. Loading' ' based on pattern matching with the model\'s feature extractor configuration.' ) lowerCAmelCase : Dict = feature_extractor_class.replace('FeatureExtractor' , 'ImageProcessor' ) if "AutoFeatureExtractor" in config_dict.get('auto_map' , {} ): lowerCAmelCase : Optional[int] = config_dict['auto_map']['AutoFeatureExtractor'] lowerCAmelCase : Dict = feature_extractor_auto_map.replace('FeatureExtractor' , 'ImageProcessor' ) logger.warning( 'Could not find image processor auto map in the image processor config or the model config.' ' Loading based on pattern matching with the model\'s feature extractor configuration.' ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(__UpperCamelCase , __UpperCamelCase ): lowerCAmelCase : Tuple = AutoConfig.from_pretrained(__UpperCamelCase , **__UpperCamelCase ) # It could be in `config.image_processor_type`` lowerCAmelCase : Union[str, Any] = getattr(__UpperCamelCase , 'image_processor_type' , __UpperCamelCase ) if hasattr(__UpperCamelCase , 'auto_map' ) and "AutoImageProcessor" in config.auto_map: lowerCAmelCase : Tuple = config.auto_map['AutoImageProcessor'] if image_processor_class is not None: lowerCAmelCase : Optional[Any] = image_processor_class_from_name(__UpperCamelCase ) lowerCAmelCase : int = image_processor_auto_map is not None lowerCAmelCase : List[str] = image_processor_class is not None or type(__UpperCamelCase ) in IMAGE_PROCESSOR_MAPPING lowerCAmelCase : Union[str, Any] = resolve_trust_remote_code( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if has_remote_code and trust_remote_code: lowerCAmelCase : Union[str, Any] = get_class_from_dynamic_module( __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ) lowerCAmelCase : Optional[Any] = kwargs.pop('code_revision' , __UpperCamelCase ) if os.path.isdir(__UpperCamelCase ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(__UpperCamelCase , **__UpperCamelCase ) elif image_processor_class is not None: return image_processor_class.from_dict(__UpperCamelCase , **__UpperCamelCase ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(__UpperCamelCase ) in IMAGE_PROCESSOR_MAPPING: lowerCAmelCase : str = IMAGE_PROCESSOR_MAPPING[type(__UpperCamelCase )] return image_processor_class.from_dict(__UpperCamelCase , **__UpperCamelCase ) raise ValueError( f"Unrecognized image processor in {pretrained_model_name_or_path}. Should have a " f"`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following " f"`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}" ) @staticmethod def lowercase ( snake_case__ , snake_case__ ): IMAGE_PROCESSOR_MAPPING.register(__UpperCamelCase , __UpperCamelCase )
715
'''simple docstring''' import argparse import os import re _lowerCAmelCase : Dict = 'src/diffusers' # Pattern that looks at the indentation in a line. _lowerCAmelCase : str = re.compile(r'^(\s*)\S') # Pattern that matches `"key":" and puts `key` in group 0. _lowerCAmelCase : Any = re.compile(r'^\s*"([^"]+)":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. _lowerCAmelCase : List[Any] = re.compile(r'^\s*_import_structure\["([^"]+)"\]') # Pattern that matches `"key",` and puts `key` in group 0. _lowerCAmelCase : int = re.compile(r'^\s*"([^"]+)",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. _lowerCAmelCase : Optional[Any] = re.compile(r'\[([^\]]+)\]') def __UpperCamelCase ( _A : Union[str, Any] ) -> Dict: """simple docstring""" lowerCAmelCase : Any = _re_indent.search(_A ) return "" if search is None else search.groups()[0] def __UpperCamelCase ( _A : Dict , _A : Any="" , _A : List[str]=None , _A : Any=None ) -> Tuple: """simple docstring""" lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Tuple = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(_A ): index += 1 lowerCAmelCase : Optional[int] = ['\n'.join(lines[:index] )] else: lowerCAmelCase : int = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowerCAmelCase : Tuple = [lines[index]] index += 1 while index < len(_A ) and (end_prompt is None or not lines[index].startswith(_A )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(_A ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(_A ) ) if index < len(_A ) - 1: lowerCAmelCase : List[Any] = [lines[index + 1]] index += 1 else: lowerCAmelCase : int = [] else: blocks.append('\n'.join(_A ) ) lowerCAmelCase : Any = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(_A ) > 0: blocks.append('\n'.join(_A ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(_A ): blocks.append('\n'.join(lines[index:] ) ) return blocks def __UpperCamelCase ( _A : Dict ) -> List[Any]: """simple docstring""" def _inner(_A : Tuple ): return key(_A ).lower().replace('_' , '' ) return _inner def __UpperCamelCase ( _A : Union[str, Any] , _A : Any=None ) -> Optional[Any]: """simple docstring""" def noop(_A : Any ): return x if key is None: lowerCAmelCase : List[str] = noop # Constants are all uppercase, they go first. lowerCAmelCase : str = [obj for obj in objects if key(_A ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowerCAmelCase : List[str] = [obj for obj in objects if key(_A )[0].isupper() and not key(_A ).isupper()] # Functions begin with a lowercase, they go last. lowerCAmelCase : Optional[Any] = [obj for obj in objects if not key(_A )[0].isupper()] lowerCAmelCase : Tuple = ignore_underscore(_A ) return sorted(_A , key=_A ) + sorted(_A , key=_A ) + sorted(_A , key=_A ) def __UpperCamelCase ( _A : Union[str, Any] ) -> int: """simple docstring""" def _replace(_A : List[Any] ): lowerCAmelCase : List[Any] = match.groups()[0] if "," not in imports: return F"[{imports}]" lowerCAmelCase : Dict = [part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase : List[str] = keys[:-1] return "[" + ", ".join([F"\"{k}\"" for k in sort_objects(_A )] ) + "]" lowerCAmelCase : Optional[int] = import_statement.split('\n' ) if len(_A ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowerCAmelCase : Optional[Any] = 2 if lines[1].strip() == '[' else 1 lowerCAmelCase : List[str] = [(i, _re_strip_line.search(_A ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowerCAmelCase : Optional[Any] = sort_objects(_A , key=lambda _A : x[1] ) lowerCAmelCase : Dict = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(_A ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowerCAmelCase : Optional[int] = _re_bracket_content.sub(_replace , lines[1] ) else: lowerCAmelCase : List[Any] = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase : int = keys[:-1] lowerCAmelCase : Tuple = get_indent(lines[1] ) + ', '.join([F"\"{k}\"" for k in sort_objects(_A )] ) return "\n".join(_A ) else: # Finally we have to deal with imports fitting on one line lowerCAmelCase : Union[str, Any] = _re_bracket_content.sub(_replace , _A ) return import_statement def __UpperCamelCase ( _A : str , _A : Tuple=True ) -> Optional[Any]: """simple docstring""" with open(_A , 'r' ) as f: lowerCAmelCase : Optional[int] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowerCAmelCase : List[Any] = split_code_in_indented_blocks( _A , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(_A ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowerCAmelCase : List[str] = main_blocks[block_idx] lowerCAmelCase : Union[str, Any] = block.split('\n' ) # Get to the start of the imports. lowerCAmelCase : Optional[Any] = 0 while line_idx < len(_A ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowerCAmelCase : Optional[Any] = len(_A ) else: line_idx += 1 if line_idx >= len(_A ): continue # Ignore beginning and last line: they don't contain anything. lowerCAmelCase : str = '\n'.join(block_lines[line_idx:-1] ) lowerCAmelCase : str = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowerCAmelCase : Optional[Any] = split_code_in_indented_blocks(_A , indent_level=_A ) # We have two categories of import key: list or _import_structure[key].append/extend lowerCAmelCase : Union[str, Any] = _re_direct_key if '_import_structure' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowerCAmelCase : int = [(pattern.search(_A ).groups()[0] if pattern.search(_A ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowerCAmelCase : Dict = [(i, key) for i, key in enumerate(_A ) if key is not None] lowerCAmelCase : List[Any] = [x[0] for x in sorted(_A , key=lambda _A : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowerCAmelCase : int = 0 lowerCAmelCase : Dict = [] for i in range(len(_A ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: lowerCAmelCase : str = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(_A ) count += 1 # And we put our main block back together with its first and last line. lowerCAmelCase : str = '\n'.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(_A ): if check_only: return True else: print(F"Overwriting {file}." ) with open(_A , 'w' ) as f: f.write('\n'.join(_A ) ) def __UpperCamelCase ( _A : Tuple=True ) -> Any: """simple docstring""" lowerCAmelCase : Tuple = [] for root, _, files in os.walk(_A ): if "__init__.py" in files: lowerCAmelCase : Any = sort_imports(os.path.join(_A , '__init__.py' ) , check_only=_A ) if result: lowerCAmelCase : Optional[Any] = [os.path.join(_A , '__init__.py' )] if len(_A ) > 0: raise ValueError(F"Would overwrite {len(_A )} files, run `make style`." ) if __name__ == "__main__": _lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') _lowerCAmelCase : Optional[int] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
646
0
'''simple docstring''' import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def __UpperCamelCase ( _A : str , _A : Optional[Any] , _A : Optional[Any] , _A : Optional[int] , _A : int ) -> Optional[int]: """simple docstring""" lowerCAmelCase : List[str] = StableDiffusionPipeline.from_pretrained(_UpperCamelCase , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors lowerCAmelCase : List[Any] = load_file(_UpperCamelCase ) lowerCAmelCase : List[str] = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: lowerCAmelCase : Any = key.split('.' )[0].split(LORA_PREFIX_TEXT_ENCODER + '_' )[-1].split('_' ) lowerCAmelCase : Union[str, Any] = pipeline.text_encoder else: lowerCAmelCase : Optional[int] = key.split('.' )[0].split(LORA_PREFIX_UNET + '_' )[-1].split('_' ) lowerCAmelCase : List[str] = pipeline.unet # find the target layer lowerCAmelCase : Dict = layer_infos.pop(0 ) while len(_UpperCamelCase ) > -1: try: lowerCAmelCase : Any = curr_layer.__getattr__(_UpperCamelCase ) if len(_UpperCamelCase ) > 0: lowerCAmelCase : Tuple = layer_infos.pop(0 ) elif len(_UpperCamelCase ) == 0: break except Exception: if len(_UpperCamelCase ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: lowerCAmelCase : int = layer_infos.pop(0 ) lowerCAmelCase : List[Any] = [] if "lora_down" in key: pair_keys.append(key.replace('lora_down' , 'lora_up' ) ) pair_keys.append(_UpperCamelCase ) else: pair_keys.append(_UpperCamelCase ) pair_keys.append(key.replace('lora_up' , 'lora_down' ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: lowerCAmelCase : Optional[int] = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) lowerCAmelCase : Dict = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(_UpperCamelCase , _UpperCamelCase ).unsqueeze(2 ).unsqueeze(3 ) else: lowerCAmelCase : Optional[Any] = state_dict[pair_keys[0]].to(torch.floataa ) lowerCAmelCase : int = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(_UpperCamelCase , _UpperCamelCase ) # update visited list for item in pair_keys: visited.append(_UpperCamelCase ) return pipeline if __name__ == "__main__": _lowerCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument( '--base_model_path', default=None, type=str, required=True, help='Path to the base model in diffusers format.' ) parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--lora_prefix_unet', default='lora_unet', type=str, help='The prefix of UNet weight in safetensors' ) parser.add_argument( '--lora_prefix_text_encoder', default='lora_te', type=str, help='The prefix of text encoder weight in safetensors', ) parser.add_argument('--alpha', default=0.7_5, type=float, help='The merging ratio in W = W0 + alpha * deltaW') parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.' ) parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') _lowerCAmelCase : List[str] = parser.parse_args() _lowerCAmelCase : Tuple = args.base_model_path _lowerCAmelCase : int = args.checkpoint_path _lowerCAmelCase : List[str] = args.dump_path _lowerCAmelCase : Dict = args.lora_prefix_unet _lowerCAmelCase : str = args.lora_prefix_text_encoder _lowerCAmelCase : Tuple = args.alpha _lowerCAmelCase : str = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) _lowerCAmelCase : Tuple = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
716
'''simple docstring''' import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class lowerCAmelCase : def __init__( self , snake_case__ , snake_case__=13 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=99 , snake_case__=64 , snake_case__=32 , snake_case__=5 , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=16 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=3 , snake_case__=4 , snake_case__=None , ): lowerCAmelCase : str = parent lowerCAmelCase : Optional[int] = batch_size lowerCAmelCase : Optional[Any] = seq_length lowerCAmelCase : Optional[Any] = is_training lowerCAmelCase : Dict = use_input_mask lowerCAmelCase : Tuple = use_token_type_ids lowerCAmelCase : int = use_labels lowerCAmelCase : int = vocab_size lowerCAmelCase : Any = hidden_size lowerCAmelCase : Optional[Any] = embedding_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : List[str] = num_attention_heads lowerCAmelCase : List[Any] = intermediate_size lowerCAmelCase : Dict = hidden_act lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : int = attention_probs_dropout_prob lowerCAmelCase : List[Any] = max_position_embeddings lowerCAmelCase : int = type_vocab_size lowerCAmelCase : List[str] = type_sequence_label_size lowerCAmelCase : Dict = initializer_range lowerCAmelCase : Any = num_labels lowerCAmelCase : str = num_choices lowerCAmelCase : int = scope def lowercase ( self ): lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Union[str, Any] = None if self.use_input_mask: lowerCAmelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : Optional[int] = None if self.use_token_type_ids: lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : Optional[Any] = None lowerCAmelCase : Optional[Any] = None lowerCAmelCase : Dict = None if self.use_labels: lowerCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase ( self ): return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case__ , initializer_range=self.initializer_range , ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = MobileBertModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : int = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) lowerCAmelCase : Optional[int] = model(snake_case__ , token_type_ids=snake_case__ ) lowerCAmelCase : Optional[Any] = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : int = MobileBertForMaskedLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : str = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = MobileBertForNextSentencePrediction(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : str = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : List[Any] = MobileBertForPreTraining(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Tuple = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , next_sentence_label=snake_case__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = MobileBertForQuestionAnswering(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : List[str] = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = self.num_labels lowerCAmelCase : List[Any] = MobileBertForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = self.num_labels lowerCAmelCase : int = MobileBertForTokenClassification(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : List[str] = self.num_choices lowerCAmelCase : Any = MobileBertForMultipleChoice(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : int = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : List[str] = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase ( self ): lowerCAmelCase : Any = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) : Optional[Any] = config_and_inputs lowerCAmelCase : List[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase ( a , a , unittest.TestCase ): _lowerCamelCase : List[str] = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) _lowerCamelCase : Tuple = ( { """feature-extraction""": MobileBertModel, """fill-mask""": MobileBertForMaskedLM, """question-answering""": MobileBertForQuestionAnswering, """text-classification""": MobileBertForSequenceClassification, """token-classification""": MobileBertForTokenClassification, """zero-shot""": MobileBertForSequenceClassification, } if is_torch_available() else {} ) _lowerCamelCase : str = True def lowercase ( self , snake_case__ , snake_case__ , snake_case__=False ): lowerCAmelCase : int = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if return_labels: if model_class in get_values(snake_case__ ): lowerCAmelCase : str = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=snake_case__ ) lowerCAmelCase : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case__ ) return inputs_dict def lowercase ( self ): lowerCAmelCase : List[Any] = MobileBertModelTester(self ) lowerCAmelCase : Dict = ConfigTester(self , config_class=snake_case__ , hidden_size=37 ) def lowercase ( self ): self.config_tester.run_common_tests() def lowercase ( self ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*snake_case__ ) def __UpperCamelCase ( _A : Optional[Any] ) -> Optional[int]: """simple docstring""" return torch.tensor( _A , dtype=torch.long , device=_A , ) _lowerCAmelCase : Union[str, Any] = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase ( unittest.TestCase ): @slow def lowercase ( self ): lowerCAmelCase : List[str] = MobileBertModel.from_pretrained('google/mobilebert-uncased' ).to(snake_case__ ) lowerCAmelCase : List[Any] = _long_tensor([[101, 7110, 1005, 1056, 2023, 1_1333, 1_7413, 1029, 102]] ) with torch.no_grad(): lowerCAmelCase : Tuple = model(snake_case__ )[0] lowerCAmelCase : List[Any] = torch.Size((1, 9, 512) ) self.assertEqual(output.shape , snake_case__ ) lowerCAmelCase : Union[str, Any] = torch.tensor( [ [ [-2.4_7_3_6_5_2_6e0_7, 8.2_6_9_1_6_5_6e0_4, 1.6_5_2_1_8_3_8e0_5], [-5.7_5_4_1_7_0_4e-0_1, 3.9_0_5_6_0_2_2e0_0, 4.4_0_1_1_5_0_7e0_0], [2.6_0_4_7_3_5_9e0_0, 1.5_6_7_7_6_5_2e0_0, -1.7_3_2_4_1_8_8e-0_1], ] ] , device=snake_case__ , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE lowerCAmelCase : List[str] = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) lowerCAmelCase : Dict = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
646
0
'''simple docstring''' from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCAmelCase ( __UpperCAmelCase ): _lowerCamelCase : Dict = ["""image_processor""", """tokenizer"""] _lowerCamelCase : Optional[int] = """Pix2StructImageProcessor""" _lowerCamelCase : Dict = ("""T5Tokenizer""", """T5TokenizerFast""") def __init__( self , snake_case__ , snake_case__ ): lowerCAmelCase : int = False super().__init__(snake_case__ , snake_case__ ) def __call__( self , snake_case__=None , snake_case__ = None , snake_case__ = True , snake_case__ = False , snake_case__ = None , snake_case__ = None , snake_case__ = 2048 , snake_case__ = 0 , snake_case__ = None , snake_case__ = None , snake_case__ = False , snake_case__ = False , snake_case__ = False , snake_case__ = False , snake_case__ = False , snake_case__ = True , snake_case__ = None , **snake_case__ , ): if images is None and text is None: raise ValueError('You have to specify either images or text.' ) # Get only text if images is None and not self.image_processor.is_vqa: lowerCAmelCase : str = self.tokenizer lowerCAmelCase : Any = self.tokenizer( text=snake_case__ , add_special_tokens=snake_case__ , padding=snake_case__ , truncation=snake_case__ , max_length=snake_case__ , stride=snake_case__ , pad_to_multiple_of=snake_case__ , return_attention_mask=snake_case__ , return_overflowing_tokens=snake_case__ , return_special_tokens_mask=snake_case__ , return_offsets_mapping=snake_case__ , return_token_type_ids=snake_case__ , return_length=snake_case__ , verbose=snake_case__ , return_tensors=snake_case__ , **snake_case__ , ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values lowerCAmelCase : int = self.image_processor( snake_case__ , return_tensors=snake_case__ , max_patches=snake_case__ , **snake_case__ ) else: # add pixel_values and bbox lowerCAmelCase : str = self.image_processor( snake_case__ , return_tensors=snake_case__ , max_patches=snake_case__ , header_text=snake_case__ , **snake_case__ ) if text is not None and not self.image_processor.is_vqa: lowerCAmelCase : int = self.tokenizer( text=snake_case__ , add_special_tokens=snake_case__ , padding=snake_case__ , truncation=snake_case__ , max_length=snake_case__ , stride=snake_case__ , pad_to_multiple_of=snake_case__ , return_attention_mask=snake_case__ , return_overflowing_tokens=snake_case__ , return_special_tokens_mask=snake_case__ , return_offsets_mapping=snake_case__ , return_token_type_ids=snake_case__ , return_length=snake_case__ , verbose=snake_case__ , return_tensors=snake_case__ , **snake_case__ , ) if "attention_mask" in text_encoding: lowerCAmelCase : Any = text_encoding.pop('attention_mask' ) if "input_ids" in text_encoding: lowerCAmelCase : Any = text_encoding.pop('input_ids' ) else: lowerCAmelCase : List[str] = None if text_encoding is not None: encoding_image_processor.update(snake_case__ ) return encoding_image_processor def lowercase ( self , *snake_case__ , **snake_case__ ): return self.tokenizer.batch_decode(*snake_case__ , **snake_case__ ) def lowercase ( self , *snake_case__ , **snake_case__ ): return self.tokenizer.decode(*snake_case__ , **snake_case__ ) @property def lowercase ( self ): lowerCAmelCase : Dict = self.tokenizer.model_input_names lowerCAmelCase : Tuple = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
717
'''simple docstring''' import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __UpperCamelCase ( _A : Dict ) -> int: """simple docstring""" lowerCAmelCase : Tuple = [] embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight", F"stage{idx}.patch_embed.proj.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias", F"stage{idx}.patch_embed.proj.bias", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight", F"stage{idx}.patch_embed.norm.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias", F"stage{idx}.patch_embed.norm.bias", ) ) return embed def __UpperCamelCase ( _A : List[Any] , _A : Dict ) -> Any: """simple docstring""" lowerCAmelCase : str = [] attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight", F"stage{idx}.blocks.{cnt}.attn.proj_q.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias", F"stage{idx}.blocks.{cnt}.attn.proj_q.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight", F"stage{idx}.blocks.{cnt}.attn.proj_k.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias", F"stage{idx}.blocks.{cnt}.attn.proj_k.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight", F"stage{idx}.blocks.{cnt}.attn.proj_v.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias", F"stage{idx}.blocks.{cnt}.attn.proj_v.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight", F"stage{idx}.blocks.{cnt}.attn.proj.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias", F"stage{idx}.blocks.{cnt}.attn.proj.bias", ) ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc2.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight", F"stage{idx}.blocks.{cnt}.norm1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias", F"stage{idx}.blocks.{cnt}.norm1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight", F"stage{idx}.blocks.{cnt}.norm2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias", F"stage{idx}.blocks.{cnt}.norm2.bias") ) return attention_weights def __UpperCamelCase ( _A : Optional[int] ) -> Optional[int]: """simple docstring""" lowerCAmelCase : Optional[int] = [] token.append((F"cvt.encoder.stages.{idx}.cls_token", 'stage2.cls_token') ) return token def __UpperCamelCase ( ) -> int: """simple docstring""" lowerCAmelCase : List[Any] = [] head.append(('layernorm.weight', 'norm.weight') ) head.append(('layernorm.bias', 'norm.bias') ) head.append(('classifier.weight', 'head.weight') ) head.append(('classifier.bias', 'head.bias') ) return head def __UpperCamelCase ( _A : str , _A : Optional[Any] , _A : Dict , _A : str ) -> Optional[int]: """simple docstring""" lowerCAmelCase : List[str] = 'imagenet-1k-id2label.json' lowerCAmelCase : Tuple = 10_00 lowerCAmelCase : str = 'huggingface/label-files' lowerCAmelCase : List[Any] = num_labels lowerCAmelCase : Any = json.load(open(cached_download(hf_hub_url(_A , _A , repo_type='dataset' ) ) , 'r' ) ) lowerCAmelCase : List[str] = {int(_A ): v for k, v in idalabel.items()} lowerCAmelCase : List[str] = idalabel lowerCAmelCase : str = {v: k for k, v in idalabel.items()} lowerCAmelCase : int = CvtConfig(num_labels=_A , idalabel=_A , labelaid=_A ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13": lowerCAmelCase : List[str] = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21": lowerCAmelCase : Tuple = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: lowerCAmelCase : Any = [2, 2, 20] lowerCAmelCase : List[str] = [3, 12, 16] lowerCAmelCase : List[Any] = [1_92, 7_68, 10_24] lowerCAmelCase : Union[str, Any] = CvtForImageClassification(_A ) lowerCAmelCase : str = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) lowerCAmelCase : Optional[Any] = image_size lowerCAmelCase : List[Any] = torch.load(_A , map_location=torch.device('cpu' ) ) lowerCAmelCase : str = OrderedDict() lowerCAmelCase : int = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: lowerCAmelCase : List[str] = list_of_state_dict + cls_token(_A ) lowerCAmelCase : Optional[Any] = list_of_state_dict + embeddings(_A ) for cnt in range(config.depth[idx] ): lowerCAmelCase : List[Any] = list_of_state_dict + attention(_A , _A ) lowerCAmelCase : List[str] = list_of_state_dict + final() for gg in list_of_state_dict: print(_A ) for i in range(len(_A ) ): lowerCAmelCase : Tuple = original_weights[list_of_state_dict[i][1]] model.load_state_dict(_A ) model.save_pretrained(_A ) image_processor.save_pretrained(_A ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": _lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '--cvt_model', default='cvt-w24', type=str, help='Name of the cvt model you\'d like to convert.', ) parser.add_argument( '--image_size', default=384, type=int, help='Input Image Size', ) parser.add_argument( '--cvt_file_name', default=r'cvtmodels\CvT-w24-384x384-IN-22k.pth', type=str, help='Input Image Size', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) _lowerCAmelCase : str = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
646
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) _lowerCAmelCase : List[str] = {"openai-gpt": "https://huggingface.co/openai-gpt/resolve/main/config.json"} class lowerCAmelCase ( __lowerCAmelCase ): _lowerCamelCase : List[str] = "openai-gpt" _lowerCamelCase : int = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , snake_case__=4_0478 , snake_case__=512 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=1e-5 , snake_case__=0.0_2 , snake_case__="cls_index" , snake_case__=True , snake_case__=None , snake_case__=True , snake_case__=0.1 , **snake_case__ , ): lowerCAmelCase : List[Any] = vocab_size lowerCAmelCase : Any = n_positions lowerCAmelCase : List[Any] = n_embd lowerCAmelCase : str = n_layer lowerCAmelCase : Any = n_head lowerCAmelCase : Dict = afn lowerCAmelCase : Any = resid_pdrop lowerCAmelCase : Any = embd_pdrop lowerCAmelCase : str = attn_pdrop lowerCAmelCase : List[str] = layer_norm_epsilon lowerCAmelCase : Tuple = initializer_range lowerCAmelCase : Optional[int] = summary_type lowerCAmelCase : List[str] = summary_use_proj lowerCAmelCase : int = summary_activation lowerCAmelCase : Tuple = summary_first_dropout lowerCAmelCase : Dict = summary_proj_to_labels super().__init__(**lowerCamelCase__ )
718
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Any = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { 'xlm-roberta-base': 'https://huggingface.co/xlm-roberta-base/resolve/main/config.json', 'xlm-roberta-large': 'https://huggingface.co/xlm-roberta-large/resolve/main/config.json', 'xlm-roberta-large-finetuned-conll02-dutch': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll02-spanish': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-english': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-german': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json' ), } class lowerCAmelCase ( a ): _lowerCamelCase : List[str] = """xlm-roberta""" def __init__( self , snake_case__=3_0522 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=1e-1_2 , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__="absolute" , snake_case__=True , snake_case__=None , **snake_case__ , ): super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) lowerCAmelCase : Optional[Any] = vocab_size lowerCAmelCase : Optional[Any] = hidden_size lowerCAmelCase : Optional[Any] = num_hidden_layers lowerCAmelCase : Any = num_attention_heads lowerCAmelCase : Optional[int] = hidden_act lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : Dict = hidden_dropout_prob lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob lowerCAmelCase : Optional[Any] = max_position_embeddings lowerCAmelCase : Optional[int] = type_vocab_size lowerCAmelCase : int = initializer_range lowerCAmelCase : List[Any] = layer_norm_eps lowerCAmelCase : Union[str, Any] = position_embedding_type lowerCAmelCase : Union[str, Any] = use_cache lowerCAmelCase : List[str] = classifier_dropout class lowerCAmelCase ( a ): @property def lowercase ( self ): if self.task == "multiple-choice": lowerCAmelCase : str = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase : Optional[int] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
646
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class lowerCAmelCase : def __init__( self , snake_case__ , snake_case__=13 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=99 , snake_case__=32 , snake_case__=2 , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=16 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=3 , snake_case__=4 , snake_case__=None , snake_case__=0 , ): lowerCAmelCase : Optional[int] = parent lowerCAmelCase : Dict = batch_size lowerCAmelCase : Optional[Any] = seq_length lowerCAmelCase : Union[str, Any] = is_training lowerCAmelCase : Optional[Any] = use_input_mask lowerCAmelCase : List[str] = use_token_type_ids lowerCAmelCase : Tuple = use_labels lowerCAmelCase : int = vocab_size lowerCAmelCase : List[Any] = hidden_size lowerCAmelCase : Tuple = num_hidden_layers lowerCAmelCase : Any = num_attention_heads lowerCAmelCase : int = intermediate_size lowerCAmelCase : int = hidden_act lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : Optional[int] = attention_probs_dropout_prob lowerCAmelCase : List[Any] = max_position_embeddings lowerCAmelCase : Tuple = type_vocab_size lowerCAmelCase : List[Any] = type_sequence_label_size lowerCAmelCase : List[str] = initializer_range lowerCAmelCase : Optional[Any] = num_labels lowerCAmelCase : Any = num_choices lowerCAmelCase : Optional[int] = scope lowerCAmelCase : Any = projection_dim def lowercase ( self ): lowerCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Optional[Any] = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py lowerCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : Dict = None if self.use_token_type_ids: lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : Union[str, Any] = None lowerCAmelCase : Tuple = None lowerCAmelCase : Any = None if self.use_labels: lowerCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : Dict = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : List[Any] = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case__ , initializer_range=self.initializer_range , ) lowerCAmelCase : int = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : str = TFDPRContextEncoder(config=snake_case__ ) lowerCAmelCase : str = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) lowerCAmelCase : Union[str, Any] = model(snake_case__ , token_type_ids=snake_case__ ) lowerCAmelCase : Optional[int] = model(snake_case__ ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : int = TFDPRQuestionEncoder(config=snake_case__ ) lowerCAmelCase : List[Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) lowerCAmelCase : str = model(snake_case__ , token_type_ids=snake_case__ ) lowerCAmelCase : Tuple = model(snake_case__ ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : List[str] = TFDPRReader(config=snake_case__ ) lowerCAmelCase : Tuple = model(snake_case__ , attention_mask=snake_case__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def lowercase ( self ): lowerCAmelCase : str = self.prepare_config_and_inputs() ( lowerCAmelCase ) : Tuple = config_and_inputs lowerCAmelCase : Optional[Any] = {'''input_ids''': input_ids} return config, inputs_dict @require_tf class lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): _lowerCamelCase : Any = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) _lowerCamelCase : Any = {"""feature-extraction""": TFDPRQuestionEncoder} if is_tf_available() else {} _lowerCamelCase : Optional[Any] = False _lowerCamelCase : List[str] = False _lowerCamelCase : Optional[Any] = False _lowerCamelCase : str = False _lowerCamelCase : Optional[int] = False def lowercase ( self ): lowerCAmelCase : Tuple = TFDPRModelTester(self ) lowerCAmelCase : List[str] = ConfigTester(self , config_class=snake_case__ , hidden_size=37 ) def lowercase ( self ): self.config_tester.run_common_tests() def lowercase ( self ): lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*snake_case__ ) @slow def lowercase ( self ): for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : List[str] = TFDPRContextEncoder.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : Dict = TFDPRContextEncoder.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : List[str] = TFDPRQuestionEncoder.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : Union[str, Any] = TFDPRReader.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) @require_tf class lowerCAmelCase ( unittest.TestCase ): @slow def lowercase ( self ): lowerCAmelCase : List[Any] = TFDPRQuestionEncoder.from_pretrained('facebook/dpr-question_encoder-single-nq-base' ) lowerCAmelCase : List[Any] = tf.constant( [[101, 7592, 1010, 2003, 2026, 3899, 1_0140, 1029, 102]] ) # [CLS] hello, is my dog cute? [SEP] lowerCAmelCase : Tuple = model(snake_case__ )[0] # embedding shape = (1, 768) # compare the actual values for a slice. lowerCAmelCase : Any = tf.constant( [ [ 0.0_3_2_3_6_2_5_3, 0.1_2_7_5_3_3_3_5, 0.1_6_8_1_8_5_0_9, 0.0_0_2_7_9_7_8_6, 0.3_8_9_6_9_3_3, 0.2_4_2_6_4_9_4_5, 0.2_1_7_8_9_7_1, -0.0_2_3_3_5_2_2_7, -0.0_8_4_8_1_9_5_9, -0.1_4_3_2_4_1_1_7, ] ] ) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1e-4 ) )
719
'''simple docstring''' import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer _lowerCAmelCase : List[Any] = logging.getLogger(__name__) def __UpperCamelCase ( ) -> Any: """simple docstring""" lowerCAmelCase : str = argparse.ArgumentParser( description='Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.' ) parser.add_argument( '--dataset_name' , type=_A , default='wikitext' , help='Name of the training. Explore datasets at: hf.co/datasets.' , ) parser.add_argument( '--dataset_config' , type=_A , default='wikitext-103-raw-v1' , help='Configuration name of the dataset.' ) parser.add_argument( '--tokenizer_name_or_path' , type=_A , default='sayakpaul/unigram-tokenizer-wikitext' , help='Tokenizer identifier. Can be a local filepath or a Hub identifier.' , ) parser.add_argument( '--shard_size' , type=_A , default=10_00 , help='Number of entries to go in a single shard.' , ) parser.add_argument('--split' , type=_A , default='train' , choices=['train', 'test', 'validation'] ) parser.add_argument( '--limit' , default=_A , type=_A , help='Limit the number of shards (used for debugging).' , ) parser.add_argument( '--max_length' , type=_A , default=5_12 , help='Maximum sequence length. For training on TPUs, it helps to have a maximum' ' sequence length that is a multiple of 8.' , ) parser.add_argument( '--output_dir' , default='tf-tpu' , type=_A , help='Output directory where the TFRecord shards will be saved. If the' ' path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord' ' shards will be directly saved to a Google Cloud Storage bucket.' , ) lowerCAmelCase : Any = parser.parse_args() return args def __UpperCamelCase ( _A : Optional[int] ) -> int: """simple docstring""" def fn(_A : Tuple ): return tokenizer(examples['text'] ) return fn def __UpperCamelCase ( _A : int ) -> int: """simple docstring""" lowerCAmelCase : Tuple = [] for i in range(len(tokenized_data['input_ids'] ) ): lowerCAmelCase : Optional[Any] = { 'input_ids': tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data['input_ids'][i] ) ), 'attention_mask': tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data['attention_mask'][i] ) ), } lowerCAmelCase : Any = tf.train.Features(feature=_A ) lowerCAmelCase : List[str] = tf.train.Example(features=_A ) lowerCAmelCase : Tuple = example.SerializeToString() records.append(_A ) return records def __UpperCamelCase ( _A : int ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase : Union[str, Any] = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: lowerCAmelCase : Optional[Any] = min(len(_A ) , args.limit ) lowerCAmelCase : Dict = dataset.select(range(_A ) ) print(F"Limiting the dataset to {args.limit} entries." ) lowerCAmelCase : str = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) lowerCAmelCase : Any = os.path.join(args.output_dir , args.split ) if not os.path.exists(_A ): os.makedirs(_A ) else: lowerCAmelCase : List[Any] = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. lowerCAmelCase : Any = tokenize_function(_A ) lowerCAmelCase : Optional[int] = dataset.map(_A , batched=_A , num_proc=4 , remove_columns=['text'] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(_A : str ): # Concatenate all texts. lowerCAmelCase : Optional[int] = {k: sum(examples[k] , [] ) for k in examples.keys()} lowerCAmelCase : str = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 lowerCAmelCase : List[Any] = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. lowerCAmelCase : str = { k: [t[i : i + args.max_length] for i in range(0 , _A , args.max_length )] for k, t in concatenated_examples.items() } return result lowerCAmelCase : List[Any] = dataset_tokenized.map(_A , batched=_A , batch_size=10_00 , num_proc=4 ) lowerCAmelCase : Union[str, Any] = 0 lowerCAmelCase : Tuple = 0 for shard in range(0 , len(_A ) , args.shard_size ): lowerCAmelCase : Optional[Any] = grouped_dataset[shard : shard + args.shard_size] lowerCAmelCase : List[str] = len(dataset_snapshot['input_ids'] ) lowerCAmelCase : Union[str, Any] = os.path.join(_A , F"dataset-{shard_count}-{records_containing}.tfrecord" ) lowerCAmelCase : List[Any] = get_serialized_examples(_A ) with tf.io.TFRecordWriter(_A ) as out_file: for i in range(len(_A ) ): lowerCAmelCase : Union[str, Any] = serialized_examples[i] out_file.write(_A ) print('Wrote file {} containing {} records'.format(_A , _A ) ) shard_count += 1 total_records += records_containing with open(F"split-{args.split}-records-count.txt" , 'w' ) as f: print(F"Total {args.split} records: {total_records}" , file=_A ) if __name__ == "__main__": _lowerCAmelCase : List[Any] = parse_args() main(args)
646
0
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def __UpperCamelCase ( _A : Union[str, Any] ) -> List[Any]: """simple docstring""" lowerCAmelCase , lowerCAmelCase : Union[str, Any] = image.size lowerCAmelCase , lowerCAmelCase : Dict = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 lowerCAmelCase : int = image.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) lowerCAmelCase : List[Any] = np.array(UpperCamelCase__ ).astype(np.floataa ) / 2_55.0 lowerCAmelCase : Tuple = image[None].transpose(0 , 3 , 1 , 2 ) lowerCAmelCase : List[str] = torch.from_numpy(UpperCamelCase__ ) return 2.0 * image - 1.0 class lowerCAmelCase ( lowercase_ ): def __init__( self , snake_case__ , snake_case__ , snake_case__ , ): super().__init__() self.register_modules(vqvae=snake_case__ , unet=snake_case__ , scheduler=snake_case__ ) @torch.no_grad() def __call__( self , snake_case__ = None , snake_case__ = 1 , snake_case__ = 100 , snake_case__ = 0.0 , snake_case__ = None , snake_case__ = "pil" , snake_case__ = True , ): if isinstance(snake_case__ , PIL.Image.Image ): lowerCAmelCase : List[Any] = 1 elif isinstance(snake_case__ , torch.Tensor ): lowerCAmelCase : Any = image.shape[0] else: raise ValueError(f"`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(snake_case__ )}" ) if isinstance(snake_case__ , PIL.Image.Image ): lowerCAmelCase : Any = preprocess(snake_case__ ) lowerCAmelCase , lowerCAmelCase : int = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image lowerCAmelCase : Tuple = (batch_size, self.unet.config.in_channels // 2, height, width) lowerCAmelCase : str = next(self.unet.parameters() ).dtype lowerCAmelCase : Union[str, Any] = randn_tensor(snake_case__ , generator=snake_case__ , device=self.device , dtype=snake_case__ ) lowerCAmelCase : Any = image.to(device=self.device , dtype=snake_case__ ) # set timesteps and move to the correct device self.scheduler.set_timesteps(snake_case__ , device=self.device ) lowerCAmelCase : Tuple = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler lowerCAmelCase : Tuple = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowerCAmelCase : List[Any] = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCAmelCase : Tuple = {} if accepts_eta: lowerCAmelCase : List[Any] = eta for t in self.progress_bar(snake_case__ ): # concat latents and low resolution image in the channel dimension. lowerCAmelCase : Optional[Any] = torch.cat([latents, image] , dim=1 ) lowerCAmelCase : Optional[int] = self.scheduler.scale_model_input(snake_case__ , snake_case__ ) # predict the noise residual lowerCAmelCase : Optional[int] = self.unet(snake_case__ , snake_case__ ).sample # compute the previous noisy sample x_t -> x_t-1 lowerCAmelCase : Union[str, Any] = self.scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample # decode the image latents with the VQVAE lowerCAmelCase : str = self.vqvae.decode(snake_case__ ).sample lowerCAmelCase : Optional[Any] = torch.clamp(snake_case__ , -1.0 , 1.0 ) lowerCAmelCase : int = image / 2 + 0.5 lowerCAmelCase : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase : Dict = self.numpy_to_pil(snake_case__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=snake_case__ )
720
'''simple docstring''' import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() _lowerCAmelCase : List[str] = logging.get_logger('transformers.models.speecht5') def __UpperCamelCase ( _A : Any , _A : Dict , _A : Any ) -> Union[str, Any]: """simple docstring""" hf_model.apply_weight_norm() lowerCAmelCase : int = checkpoint['input_conv.weight_g'] lowerCAmelCase : Optional[int] = checkpoint['input_conv.weight_v'] lowerCAmelCase : Dict = checkpoint['input_conv.bias'] for i in range(len(config.upsample_rates ) ): lowerCAmelCase : Optional[Any] = checkpoint[F"upsamples.{i}.1.weight_g"] lowerCAmelCase : str = checkpoint[F"upsamples.{i}.1.weight_v"] lowerCAmelCase : str = checkpoint[F"upsamples.{i}.1.bias"] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): lowerCAmelCase : int = checkpoint[F"blocks.{i}.convs1.{j}.1.weight_g"] lowerCAmelCase : str = checkpoint[F"blocks.{i}.convs1.{j}.1.weight_v"] lowerCAmelCase : int = checkpoint[F"blocks.{i}.convs1.{j}.1.bias"] lowerCAmelCase : Optional[Any] = checkpoint[F"blocks.{i}.convs2.{j}.1.weight_g"] lowerCAmelCase : Tuple = checkpoint[F"blocks.{i}.convs2.{j}.1.weight_v"] lowerCAmelCase : Tuple = checkpoint[F"blocks.{i}.convs2.{j}.1.bias"] lowerCAmelCase : List[Any] = checkpoint['output_conv.1.weight_g'] lowerCAmelCase : List[str] = checkpoint['output_conv.1.weight_v'] lowerCAmelCase : Optional[Any] = checkpoint['output_conv.1.bias'] hf_model.remove_weight_norm() @torch.no_grad() def __UpperCamelCase ( _A : Dict , _A : Union[str, Any] , _A : List[Any] , _A : Any=None , _A : Any=None , ) -> Dict: """simple docstring""" if config_path is not None: lowerCAmelCase : Dict = SpeechTaHifiGanConfig.from_pretrained(_A ) else: lowerCAmelCase : Union[str, Any] = SpeechTaHifiGanConfig() lowerCAmelCase : List[Any] = SpeechTaHifiGan(_A ) lowerCAmelCase : List[str] = torch.load(_A ) load_weights(orig_checkpoint['model']['generator'] , _A , _A ) lowerCAmelCase : Tuple = np.load(_A ) lowerCAmelCase : List[Any] = stats[0].reshape(-1 ) lowerCAmelCase : int = stats[1].reshape(-1 ) lowerCAmelCase : Union[str, Any] = torch.from_numpy(_A ).float() lowerCAmelCase : int = torch.from_numpy(_A ).float() model.save_pretrained(_A ) if repo_id: print('Pushing to the hub...' ) model.push_to_hub(_A ) if __name__ == "__main__": _lowerCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--stats_path', required=True, default=None, type=str, help='Path to stats.npy file') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) _lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
646
0
'''simple docstring''' from __future__ import annotations import pandas as pd def __UpperCamelCase ( _A : Any , _A : List[Any] , _A : Optional[int] ) -> list[int]: """simple docstring""" lowerCAmelCase : int = [0] * no_of_processes lowerCAmelCase : Union[str, Any] = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(lowerCamelCase__ ): lowerCAmelCase : Dict = burst_time[i] lowerCAmelCase : Optional[Any] = 0 lowerCAmelCase : Union[str, Any] = 0 lowerCAmelCase : List[Any] = 9_99_99_99_99 lowerCAmelCase : Tuple = 0 lowerCAmelCase : Dict = False # Process until all processes are completed while complete != no_of_processes: for j in range(lowerCamelCase__ ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: lowerCAmelCase : str = remaining_time[j] lowerCAmelCase : Optional[Any] = j lowerCAmelCase : str = True if not check: increment_time += 1 continue remaining_time[short] -= 1 lowerCAmelCase : str = remaining_time[short] if minm == 0: lowerCAmelCase : List[Any] = 9_99_99_99_99 if remaining_time[short] == 0: complete += 1 lowerCAmelCase : Optional[Any] = False # Find finish time of current process lowerCAmelCase : str = increment_time + 1 # Calculate waiting time lowerCAmelCase : str = finish_time - arrival_time[short] lowerCAmelCase : Optional[int] = finar - burst_time[short] if waiting_time[short] < 0: lowerCAmelCase : str = 0 # Increment time increment_time += 1 return waiting_time def __UpperCamelCase ( _A : Optional[Any] , _A : Tuple , _A : Optional[int] ) -> list[int]: """simple docstring""" lowerCAmelCase : List[Any] = [0] * no_of_processes for i in range(lowerCamelCase__ ): lowerCAmelCase : Tuple = burst_time[i] + waiting_time[i] return turn_around_time def __UpperCamelCase ( _A : Union[str, Any] , _A : str , _A : Any ) -> None: """simple docstring""" lowerCAmelCase : Union[str, Any] = 0 lowerCAmelCase : List[str] = 0 for i in range(lowerCamelCase__ ): lowerCAmelCase : Tuple = total_waiting_time + waiting_time[i] lowerCAmelCase : Optional[Any] = total_turn_around_time + turn_around_time[i] print(F"Average waiting time = {total_waiting_time / no_of_processes:.5f}" ) print('Average turn around time =' , total_turn_around_time / no_of_processes ) if __name__ == "__main__": print('Enter how many process you want to analyze') _lowerCAmelCase : int = int(input()) _lowerCAmelCase : List[Any] = [0] * no_of_processes _lowerCAmelCase : Union[str, Any] = [0] * no_of_processes _lowerCAmelCase : List[str] = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print('Enter the arrival time and burst time for process:--' + str(i + 1)) _lowerCAmelCase , _lowerCAmelCase : int = map(int, input().split()) _lowerCAmelCase : Any = calculate_waitingtime(arrival_time, burst_time, no_of_processes) _lowerCAmelCase : Optional[int] = burst_time _lowerCAmelCase : Union[str, Any] = no_of_processes _lowerCAmelCase : Optional[int] = waiting_time _lowerCAmelCase : int = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) _lowerCAmelCase : Optional[Any] = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ 'Process', 'BurstTime', 'ArrivalTime', 'WaitingTime', 'TurnAroundTime', ], ) # Printing the dataFrame pd.set_option('display.max_rows', fcfs.shape[0] + 1) print(fcfs)
721
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets _lowerCAmelCase : Dict = '\\n@inproceedings{popovic-2015-chrf,\n title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",\n month = sep,\n year = "2015",\n address = "Lisbon, Portugal",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W15-3049",\n doi = "10.18653/v1/W15-3049",\n pages = "392--395",\n}\n@inproceedings{popovic-2017-chrf,\n title = "chr{F}++: words helping character n-grams",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Second Conference on Machine Translation",\n month = sep,\n year = "2017",\n address = "Copenhagen, Denmark",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W17-4770",\n doi = "10.18653/v1/W17-4770",\n pages = "612--618",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' _lowerCAmelCase : Optional[Any] = '\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n' _lowerCAmelCase : List[Any] = '\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n \'score\' (float): The chrF (chrF++) score,\n \'char_order\' (int): The character n-gram order,\n \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n \'beta\' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase ( datasets.Metric ): def lowercase ( self ): if version.parse(scb.__version__ ) < version.parse('1.4.12' ): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/mjpost/sacreBLEU#chrf--chrf' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/mjpost/sacreBLEU#chrf--chrf'] , reference_urls=[ 'https://github.com/m-popovic/chrF', ] , ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ = CHRF.CHAR_ORDER , snake_case__ = CHRF.WORD_ORDER , snake_case__ = CHRF.BETA , snake_case__ = False , snake_case__ = False , snake_case__ = False , ): lowerCAmelCase : List[str] = len(references[0] ) if any(len(snake_case__ ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) lowerCAmelCase : List[str] = [[refs[i] for refs in references] for i in range(snake_case__ )] lowerCAmelCase : Union[str, Any] = CHRF(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase : Dict = sb_chrf.corpus_score(snake_case__ , snake_case__ ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
646
0
'''simple docstring''' import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class lowerCAmelCase ( unittest.TestCase ): _lowerCamelCase : Any = inspect.getfile(accelerate.test_utils ) _lowerCamelCase : Any = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_cli.py"""] ) _lowerCamelCase : Optional[int] = ["""accelerate""", """launch"""] _lowerCamelCase : int = Path.home() / """.cache/huggingface/accelerate""" _lowerCamelCase : List[Any] = """default_config.yaml""" _lowerCamelCase : Any = config_folder / config_file _lowerCamelCase : List[str] = config_folder / """_default_config.yaml""" _lowerCamelCase : int = Path("""tests/test_configs""" ) @classmethod def lowercase ( cls ): if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def lowercase ( cls ): if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def lowercase ( self ): lowerCAmelCase : Optional[Any] = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() ) def lowercase ( self ): for config in sorted(self.test_config_path.glob('**/*.yaml' ) ): with self.subTest(config_file=snake_case__ ): execute_subprocess_async( self.base_cmd + ['--config_file', str(snake_case__ ), self.test_file_path] , env=os.environ.copy() ) def lowercase ( self ): execute_subprocess_async(['accelerate', 'test'] , env=os.environ.copy() ) class lowerCAmelCase ( unittest.TestCase ): _lowerCamelCase : int = """test-tpu""" _lowerCamelCase : Tuple = """us-central1-a""" _lowerCamelCase : Optional[int] = """ls""" _lowerCamelCase : Union[str, Any] = ["""accelerate""", """tpu-config"""] _lowerCamelCase : Optional[int] = """cd /usr/share""" _lowerCamelCase : List[str] = """tests/test_samples/test_command_file.sh""" _lowerCamelCase : Any = """Running gcloud compute tpus tpu-vm ssh""" def lowercase ( self ): lowerCAmelCase : Optional[int] = run_command( self.cmd + ['--command', self.command, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug'] , return_stdout=snake_case__ , ) self.assertIn( f"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all" , snake_case__ , ) def lowercase ( self ): lowerCAmelCase : Tuple = run_command( self.cmd + [ '--config_file', 'tests/test_configs/0_12_0.yaml', '--command', self.command, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug', ] , return_stdout=snake_case__ , ) self.assertIn( f"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all" , snake_case__ , ) def lowercase ( self ): lowerCAmelCase : int = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--debug'] , return_stdout=snake_case__ ) self.assertIn( f"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all" , snake_case__ , ) def lowercase ( self ): lowerCAmelCase : Tuple = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--command', self.command, '--debug'] , return_stdout=snake_case__ , ) self.assertIn( f"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all" , snake_case__ , ) def lowercase ( self ): lowerCAmelCase : Optional[Any] = run_command( self.cmd + [ '--config_file', 'tests/test_configs/latest.yaml', '--command', self.command, '--command', 'echo "Hello World"', '--debug', ] , return_stdout=snake_case__ , ) self.assertIn( f"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo \"Hello World\" --worker all" , snake_case__ , ) def lowercase ( self ): lowerCAmelCase : Dict = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--command_file', self.command_file, '--debug'] , return_stdout=snake_case__ , ) self.assertIn( f"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all" , snake_case__ , ) def lowercase ( self ): lowerCAmelCase : List[Any] = run_command( self.cmd + [ '--config_file', 'tests/test_configs/0_12_0.yaml', '--command_file', self.command_file, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug', ] , return_stdout=snake_case__ , ) self.assertIn( f"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all" , snake_case__ , ) def lowercase ( self ): lowerCAmelCase : List[Any] = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--install_accelerate', '--debug'] , return_stdout=snake_case__ , ) self.assertIn( f"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo \"hello world\"; echo \"this is a second command\" --worker all" , snake_case__ , ) def lowercase ( self ): lowerCAmelCase : Optional[Any] = run_command( self.cmd + [ '--config_file', 'tests/test_configs/latest.yaml', '--install_accelerate', '--accelerate_version', '12.0.0', '--debug', ] , return_stdout=snake_case__ , ) self.assertIn( f"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo \"hello world\"; echo \"this is a second command\" --worker all" , snake_case__ , )
700
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : str = logging.get_logger(__name__) _lowerCAmelCase : Tuple = { 's-JoL/Open-Llama-V1': 'https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json', } class lowerCAmelCase ( a ): _lowerCamelCase : Union[str, Any] = """open-llama""" def __init__( self , snake_case__=10_0000 , snake_case__=4096 , snake_case__=1_1008 , snake_case__=32 , snake_case__=32 , snake_case__="silu" , snake_case__=2048 , snake_case__=0.0_2 , snake_case__=1e-6 , snake_case__=True , snake_case__=0 , snake_case__=1 , snake_case__=2 , snake_case__=False , snake_case__=True , snake_case__=0.1 , snake_case__=0.1 , snake_case__=True , snake_case__=True , snake_case__=None , **snake_case__ , ): lowerCAmelCase : Tuple = vocab_size lowerCAmelCase : Optional[Any] = max_position_embeddings lowerCAmelCase : List[Any] = hidden_size lowerCAmelCase : List[Any] = intermediate_size lowerCAmelCase : Tuple = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : str = rms_norm_eps lowerCAmelCase : Optional[int] = use_cache lowerCAmelCase : Dict = kwargs.pop( 'use_memorry_efficient_attention' , snake_case__ ) lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : Optional[Any] = attention_dropout_prob lowerCAmelCase : Union[str, Any] = use_stable_embedding lowerCAmelCase : Tuple = shared_input_output_embedding lowerCAmelCase : Tuple = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , tie_word_embeddings=snake_case__ , **snake_case__ , ) def lowercase ( self ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , snake_case__ ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' f"got {self.rope_scaling}" ) lowerCAmelCase : List[Any] = self.rope_scaling.get('type' , snake_case__ ) lowerCAmelCase : List[str] = self.rope_scaling.get('factor' , snake_case__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(snake_case__ , snake_case__ ) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
646
0
import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class lowerCAmelCase ( unittest.TestCase ): def __init__( self , snake_case__ , snake_case__=13 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=99 , snake_case__=32 , snake_case__=5 , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=16 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=4 , ): lowerCAmelCase : List[str] = parent lowerCAmelCase : List[str] = batch_size lowerCAmelCase : Optional[int] = seq_length lowerCAmelCase : str = is_training lowerCAmelCase : Optional[int] = use_attention_mask lowerCAmelCase : Any = use_token_type_ids lowerCAmelCase : Union[str, Any] = use_labels lowerCAmelCase : Tuple = vocab_size lowerCAmelCase : List[str] = hidden_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : Optional[Any] = num_attention_heads lowerCAmelCase : int = intermediate_size lowerCAmelCase : Optional[int] = hidden_act lowerCAmelCase : str = hidden_dropout_prob lowerCAmelCase : Any = attention_probs_dropout_prob lowerCAmelCase : Optional[int] = max_position_embeddings lowerCAmelCase : List[Any] = type_vocab_size lowerCAmelCase : List[Any] = type_sequence_label_size lowerCAmelCase : List[Any] = initializer_range lowerCAmelCase : Dict = num_choices def lowercase ( self ): lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : str = None if self.use_attention_mask: lowerCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : List[Any] = None if self.use_token_type_ids: lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : Union[str, Any] = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowercase ( self ): lowerCAmelCase : Tuple = self.prepare_config_and_inputs() lowerCAmelCase : str = config_and_inputs lowerCAmelCase : str = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : Union[str, Any] = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def lowercase ( self ): lowerCAmelCase : Optional[int] = FlaxAlbertModelTester(self ) @slow def lowercase ( self ): for model_class_name in self.all_model_classes: lowerCAmelCase : Any = model_class_name.from_pretrained('albert-base-v2' ) lowerCAmelCase : Union[str, Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(snake_case__ ) @require_flax class lowerCAmelCase ( unittest.TestCase ): @slow def lowercase ( self ): lowerCAmelCase : Union[str, Any] = FlaxAlbertModel.from_pretrained('albert-base-v2' ) lowerCAmelCase : Union[str, Any] = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) lowerCAmelCase : Tuple = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) lowerCAmelCase : int = model(snake_case__ , attention_mask=snake_case__ )[0] lowerCAmelCase : Optional[Any] = (1, 11, 768) self.assertEqual(output.shape , snake_case__ ) lowerCAmelCase : Any = np.array( [[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , snake_case__ , atol=1e-4 ) )
701
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) _lowerCAmelCase : Dict = { 'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class lowerCAmelCase ( a ): _lowerCamelCase : Any = """deformable_detr""" _lowerCamelCase : List[str] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , snake_case__=True , snake_case__=None , snake_case__=3 , snake_case__=300 , snake_case__=1024 , snake_case__=6 , snake_case__=1024 , snake_case__=8 , snake_case__=6 , snake_case__=1024 , snake_case__=8 , snake_case__=0.0 , snake_case__=True , snake_case__="relu" , snake_case__=256 , snake_case__=0.1 , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.0_2 , snake_case__=1.0 , snake_case__=True , snake_case__=False , snake_case__="sine" , snake_case__="resnet50" , snake_case__=True , snake_case__=False , snake_case__=4 , snake_case__=4 , snake_case__=4 , snake_case__=False , snake_case__=300 , snake_case__=False , snake_case__=1 , snake_case__=5 , snake_case__=2 , snake_case__=1 , snake_case__=1 , snake_case__=5 , snake_case__=2 , snake_case__=0.1 , snake_case__=0.2_5 , snake_case__=False , **snake_case__ , ): if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) lowerCAmelCase : Optional[int] = CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : List[str] = backbone_config.get('model_type' ) lowerCAmelCase : str = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase : Optional[Any] = config_class.from_dict(snake_case__ ) lowerCAmelCase : Union[str, Any] = use_timm_backbone lowerCAmelCase : List[Any] = backbone_config lowerCAmelCase : Any = num_channels lowerCAmelCase : Tuple = num_queries lowerCAmelCase : Dict = max_position_embeddings lowerCAmelCase : int = d_model lowerCAmelCase : List[str] = encoder_ffn_dim lowerCAmelCase : List[str] = encoder_layers lowerCAmelCase : int = encoder_attention_heads lowerCAmelCase : str = decoder_ffn_dim lowerCAmelCase : str = decoder_layers lowerCAmelCase : Dict = decoder_attention_heads lowerCAmelCase : str = dropout lowerCAmelCase : List[str] = attention_dropout lowerCAmelCase : Union[str, Any] = activation_dropout lowerCAmelCase : str = activation_function lowerCAmelCase : Any = init_std lowerCAmelCase : Any = init_xavier_std lowerCAmelCase : Dict = encoder_layerdrop lowerCAmelCase : int = auxiliary_loss lowerCAmelCase : Optional[Any] = position_embedding_type lowerCAmelCase : List[str] = backbone lowerCAmelCase : int = use_pretrained_backbone lowerCAmelCase : int = dilation # deformable attributes lowerCAmelCase : List[str] = num_feature_levels lowerCAmelCase : List[str] = encoder_n_points lowerCAmelCase : Union[str, Any] = decoder_n_points lowerCAmelCase : Tuple = two_stage lowerCAmelCase : Dict = two_stage_num_proposals lowerCAmelCase : Union[str, Any] = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.' ) # Hungarian matcher lowerCAmelCase : Union[str, Any] = class_cost lowerCAmelCase : Dict = bbox_cost lowerCAmelCase : List[Any] = giou_cost # Loss coefficients lowerCAmelCase : Dict = mask_loss_coefficient lowerCAmelCase : Any = dice_loss_coefficient lowerCAmelCase : str = bbox_loss_coefficient lowerCAmelCase : Tuple = giou_loss_coefficient lowerCAmelCase : List[str] = eos_coefficient lowerCAmelCase : Any = focal_alpha lowerCAmelCase : Dict = disable_custom_kernels super().__init__(is_encoder_decoder=snake_case__ , **snake_case__ ) @property def lowercase ( self ): return self.encoder_attention_heads @property def lowercase ( self ): return self.d_model def lowercase ( self ): lowerCAmelCase : Union[str, Any] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: lowerCAmelCase : List[Any] = self.backbone_config.to_dict() lowerCAmelCase : str = self.__class__.model_type return output
646
0
'''simple docstring''' from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def __UpperCamelCase ( _A : str = "isbn/0140328726" ) -> dict: """simple docstring""" lowerCAmelCase : Union[str, Any] = olid.strip().strip('/' ) # Remove leading/trailing whitespace & slashes if new_olid.count('/' ) != 1: lowerCAmelCase : Optional[int] = F"{olid} is not a valid Open Library olid" raise ValueError(_A ) return requests.get(F"https://openlibrary.org/{new_olid}.json" ).json() def __UpperCamelCase ( _A : dict ) -> dict: """simple docstring""" lowerCAmelCase : List[str] = { 'title': 'Title', 'publish_date': 'Publish date', 'authors': 'Authors', 'number_of_pages': 'Number of pages:', 'first_sentence': 'First sentence', 'isbn_10': 'ISBN (10)', 'isbn_13': 'ISBN (13)', } lowerCAmelCase : Any = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} lowerCAmelCase : Tuple = [ get_openlibrary_data(author['key'] )['name'] for author in data['Authors'] ] lowerCAmelCase : Optional[int] = data['First sentence']['value'] for key, value in data.items(): if isinstance(_A , _A ): lowerCAmelCase : List[Any] = ', '.join(_A ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: _lowerCAmelCase : Optional[int] = input('\nEnter the ISBN code to search (or \'quit\' to stop): ').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(f"""Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.""") continue print(f"""\nSearching Open Library for ISBN: {isbn}...\n""") try: _lowerCAmelCase : List[str] = summarize_book(get_openlibrary_data(f"""isbn/{isbn}""")) print('\n'.join(f"""{key}: {value}""" for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(f"""Sorry, there are no results for ISBN: {isbn}.""")
702
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece_no_bos.model') @require_sentencepiece @require_tokenizers class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : str = PegasusTokenizer _lowerCamelCase : Union[str, Any] = PegasusTokenizerFast _lowerCamelCase : Optional[Any] = True _lowerCamelCase : Optional[Any] = True def lowercase ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : List[Any] = PegasusTokenizer(snake_case__ ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase ( self ): return PegasusTokenizer.from_pretrained('google/pegasus-large' ) def lowercase ( self , **snake_case__ ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def lowercase ( self , snake_case__ ): return ("This is a test", "This is a test") def lowercase ( self ): lowerCAmelCase : Optional[int] = '</s>' lowerCAmelCase : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '</s>' ) self.assertEqual(vocab_keys[-1] , 'v' ) self.assertEqual(len(snake_case__ ) , 1103 ) def lowercase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def lowercase ( self ): lowerCAmelCase : List[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : List[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : Optional[Any] = ( 'Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important' ' </s> <pad> <pad> <pad>' ) lowerCAmelCase : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] lowerCAmelCase : Optional[int] = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Any = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowerCAmelCase : List[str] = '<mask_1> To ensure a <mask_2> flow of bank resolutions.' lowerCAmelCase : Optional[Any] = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1] lowerCAmelCase : Optional[Any] = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Optional[Any] = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 lowerCAmelCase : List[Any] = 'To ensure a smooth flow of bank resolutions.' lowerCAmelCase : Optional[int] = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1] lowerCAmelCase : Any = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def lowercase ( self ): lowerCAmelCase : Union[str, Any] = ['This is going to be way too long.' * 150, 'short example'] lowerCAmelCase : int = ['not super long but more than 5 tokens', 'tiny'] lowerCAmelCase : Dict = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) lowerCAmelCase : Dict = self._large_tokenizer( text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(snake_case__ ) == 2 # input_ids, attention_mask. @slow def lowercase ( self ): # fmt: off lowerCAmelCase : Tuple = {'input_ids': [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name='google/bigbird-pegasus-large-arxiv' , revision='ba85d0851d708441f91440d509690f1ab6353415' , ) @require_sentencepiece @require_tokenizers class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : Optional[Any] = PegasusTokenizer _lowerCamelCase : str = PegasusTokenizerFast _lowerCamelCase : Tuple = True _lowerCamelCase : int = True def lowercase ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : int = PegasusTokenizer(snake_case__ , offset=0 , mask_token_sent=snake_case__ , mask_token='[MASK]' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase ( self ): return PegasusTokenizer.from_pretrained('google/bigbird-pegasus-large-arxiv' ) def lowercase ( self , **snake_case__ ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def lowercase ( self , snake_case__ ): return ("This is a test", "This is a test") def lowercase ( self ): lowerCAmelCase : Tuple = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : Union[str, Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : List[str] = ( 'Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>' ' <pad> <pad> <pad>' ) lowerCAmelCase : Dict = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] lowerCAmelCase : Union[str, Any] = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) @require_torch def lowercase ( self ): lowerCAmelCase : Optional[int] = ['This is going to be way too long.' * 1000, 'short example'] lowerCAmelCase : Union[str, Any] = ['not super long but more than 5 tokens', 'tiny'] lowerCAmelCase : List[str] = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) lowerCAmelCase : List[str] = self._large_tokenizer( text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(snake_case__ ) == 2 # input_ids, attention_mask. def lowercase ( self ): lowerCAmelCase : List[str] = ( 'This is an example string that is used to test the original TF implementation against the HF' ' implementation' ) lowerCAmelCase : Tuple = self._large_tokenizer(snake_case__ ).input_ids self.assertListEqual( snake_case__ , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
646
0
'''simple docstring''' import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() _lowerCAmelCase : List[str] = logging.get_logger('transformers.models.speecht5') def __UpperCamelCase ( _A : Any , _A : Dict , _A : Any ) -> Union[str, Any]: """simple docstring""" hf_model.apply_weight_norm() lowerCAmelCase : int = checkpoint['input_conv.weight_g'] lowerCAmelCase : Optional[int] = checkpoint['input_conv.weight_v'] lowerCAmelCase : Dict = checkpoint['input_conv.bias'] for i in range(len(config.upsample_rates ) ): lowerCAmelCase : Optional[Any] = checkpoint[F"upsamples.{i}.1.weight_g"] lowerCAmelCase : str = checkpoint[F"upsamples.{i}.1.weight_v"] lowerCAmelCase : str = checkpoint[F"upsamples.{i}.1.bias"] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): lowerCAmelCase : int = checkpoint[F"blocks.{i}.convs1.{j}.1.weight_g"] lowerCAmelCase : str = checkpoint[F"blocks.{i}.convs1.{j}.1.weight_v"] lowerCAmelCase : int = checkpoint[F"blocks.{i}.convs1.{j}.1.bias"] lowerCAmelCase : Optional[Any] = checkpoint[F"blocks.{i}.convs2.{j}.1.weight_g"] lowerCAmelCase : Tuple = checkpoint[F"blocks.{i}.convs2.{j}.1.weight_v"] lowerCAmelCase : Tuple = checkpoint[F"blocks.{i}.convs2.{j}.1.bias"] lowerCAmelCase : List[Any] = checkpoint['output_conv.1.weight_g'] lowerCAmelCase : List[str] = checkpoint['output_conv.1.weight_v'] lowerCAmelCase : Optional[Any] = checkpoint['output_conv.1.bias'] hf_model.remove_weight_norm() @torch.no_grad() def __UpperCamelCase ( _A : Dict , _A : Union[str, Any] , _A : List[Any] , _A : Any=None , _A : Any=None , ) -> Dict: """simple docstring""" if config_path is not None: lowerCAmelCase : Dict = SpeechTaHifiGanConfig.from_pretrained(_A ) else: lowerCAmelCase : Union[str, Any] = SpeechTaHifiGanConfig() lowerCAmelCase : List[Any] = SpeechTaHifiGan(_A ) lowerCAmelCase : List[str] = torch.load(_A ) load_weights(orig_checkpoint['model']['generator'] , _A , _A ) lowerCAmelCase : Tuple = np.load(_A ) lowerCAmelCase : List[Any] = stats[0].reshape(-1 ) lowerCAmelCase : int = stats[1].reshape(-1 ) lowerCAmelCase : Union[str, Any] = torch.from_numpy(_A ).float() lowerCAmelCase : int = torch.from_numpy(_A ).float() model.save_pretrained(_A ) if repo_id: print('Pushing to the hub...' ) model.push_to_hub(_A ) if __name__ == "__main__": _lowerCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--stats_path', required=True, default=None, type=str, help='Path to stats.npy file') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) _lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
703
'''simple docstring''' import math import sys import cva import numpy as np def __UpperCamelCase ( _A : np.ndarray , _A : float ) -> np.ndarray: """simple docstring""" lowerCAmelCase : Union[str, Any] = math.sqrt(_A ) lowerCAmelCase : Union[str, Any] = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def __UpperCamelCase ( _A : np.ndarray , _A : int , _A : int , _A : int ) -> np.ndarray: """simple docstring""" lowerCAmelCase : int = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def __UpperCamelCase ( _A : int , _A : float ) -> np.ndarray: """simple docstring""" lowerCAmelCase : Dict = np.zeros((kernel_size, kernel_size) ) for i in range(0 , _A ): for j in range(0 , _A ): lowerCAmelCase : Optional[int] = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(_A , _A ) def __UpperCamelCase ( _A : np.ndarray , _A : float , _A : float , _A : int , ) -> np.ndarray: """simple docstring""" lowerCAmelCase : str = np.zeros(img.shape ) lowerCAmelCase : int = get_gauss_kernel(_A , _A ) lowerCAmelCase , lowerCAmelCase : Dict = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): lowerCAmelCase : int = get_slice(_A , _A , _A , _A ) lowerCAmelCase : Any = img_s - img_s[kernel_size // 2, kernel_size // 2] lowerCAmelCase : str = vec_gaussian(_A , _A ) lowerCAmelCase : Optional[int] = np.multiply(_A , _A ) lowerCAmelCase : str = np.multiply(_A , _A ) lowerCAmelCase : Union[str, Any] = np.sum(_A ) / np.sum(_A ) lowerCAmelCase : Tuple = val return imga def __UpperCamelCase ( _A : list ) -> tuple: """simple docstring""" lowerCAmelCase : List[Any] = args[1] if args[1:] else '../image_data/lena.jpg' lowerCAmelCase : Any = float(args[2] ) if args[2:] else 1.0 lowerCAmelCase : Union[str, Any] = float(args[3] ) if args[3:] else 1.0 if args[4:]: lowerCAmelCase : int = int(args[4] ) lowerCAmelCase : Optional[Any] = kernel_size + abs(kernel_size % 2 - 1 ) else: lowerCAmelCase : Optional[int] = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Any = parse_args(sys.argv) _lowerCAmelCase : str = cva.imread(filename, 0) cva.imshow('input image', img) _lowerCAmelCase : Union[str, Any] = img / 255 _lowerCAmelCase : List[str] = out.astype('float32') _lowerCAmelCase : Optional[int] = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) _lowerCAmelCase : Union[str, Any] = out * 255 _lowerCAmelCase : Optional[Any] = np.uinta(out) cva.imshow('output image', out) cva.waitKey(0) cva.destroyAllWindows()
646
0
'''simple docstring''' import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCAmelCase : def __init__( self , snake_case__ , snake_case__=13 , snake_case__=[30, 30] , snake_case__=2 , snake_case__=3 , snake_case__=True , snake_case__=True , snake_case__=32 , snake_case__=5 , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=10 , snake_case__=0.0_2 , snake_case__=3 , snake_case__=None , snake_case__=8 , snake_case__=10 , ): lowerCAmelCase : str = parent lowerCAmelCase : Tuple = batch_size lowerCAmelCase : List[Any] = image_size lowerCAmelCase : List[Any] = patch_size lowerCAmelCase : Dict = num_channels lowerCAmelCase : int = is_training lowerCAmelCase : Optional[Any] = use_labels lowerCAmelCase : Optional[int] = hidden_size lowerCAmelCase : List[Any] = num_hidden_layers lowerCAmelCase : int = num_attention_heads lowerCAmelCase : Any = intermediate_size lowerCAmelCase : Union[str, Any] = hidden_act lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : Optional[int] = attention_probs_dropout_prob lowerCAmelCase : Optional[Any] = type_sequence_label_size lowerCAmelCase : Any = initializer_range lowerCAmelCase : str = num_labels lowerCAmelCase : Any = scope lowerCAmelCase : Dict = n_targets lowerCAmelCase : Tuple = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens lowerCAmelCase : List[Any] = (image_size[1] // patch_size) * (image_size[0] // patch_size) lowerCAmelCase : int = num_patches + 1 + self.num_detection_tokens def lowercase ( self ): lowerCAmelCase : str = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) lowerCAmelCase : int = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) lowerCAmelCase : Optional[int] = [] for i in range(self.batch_size ): lowerCAmelCase : Tuple = {} lowerCAmelCase : Dict = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=snake_case__ ) lowerCAmelCase : List[str] = torch.rand(self.n_targets , 4 , device=snake_case__ ) labels.append(snake_case__ ) lowerCAmelCase : Any = self.get_config() return config, pixel_values, labels def lowercase ( self ): return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case__ , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Any = YolosModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : List[Any] = model(snake_case__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = YolosForObjectDetection(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Union[str, Any] = model(pixel_values=snake_case__ ) lowerCAmelCase : Dict = model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) lowerCAmelCase : str = model(pixel_values=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def lowercase ( self ): lowerCAmelCase : List[str] = self.prepare_config_and_inputs() lowerCAmelCase : Optional[int] = config_and_inputs lowerCAmelCase : Dict = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase ( a , a , unittest.TestCase ): _lowerCamelCase : str = (YolosModel, YolosForObjectDetection) if is_torch_available() else () _lowerCamelCase : str = ( {"""feature-extraction""": YolosModel, """object-detection""": YolosForObjectDetection} if is_torch_available() else {} ) _lowerCamelCase : Optional[int] = False _lowerCamelCase : Dict = False _lowerCamelCase : Optional[Any] = False _lowerCamelCase : Union[str, Any] = False def lowercase ( self , snake_case__ , snake_case__ , snake_case__=False ): lowerCAmelCase : Any = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": lowerCAmelCase : Optional[Any] = [] for i in range(self.model_tester.batch_size ): lowerCAmelCase : List[str] = {} lowerCAmelCase : Tuple = torch.ones( size=(self.model_tester.n_targets,) , device=snake_case__ , dtype=torch.long ) lowerCAmelCase : Any = torch.ones( self.model_tester.n_targets , 4 , device=snake_case__ , dtype=torch.float ) labels.append(snake_case__ ) lowerCAmelCase : str = labels return inputs_dict def lowercase ( self ): lowerCAmelCase : int = YolosModelTester(self ) lowerCAmelCase : Optional[Any] = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=37 ) def lowercase ( self ): self.config_tester.run_common_tests() def lowercase ( self ): # YOLOS does not use inputs_embeds pass def lowercase ( self ): lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Union[str, Any] = model_class(snake_case__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCAmelCase : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case__ , nn.Linear ) ) def lowercase ( self ): lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : List[Any] = model_class(snake_case__ ) lowerCAmelCase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase : Optional[Any] = [*signature.parameters.keys()] lowerCAmelCase : Any = ['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : Union[str, Any] = True # in YOLOS, the seq_len is different lowerCAmelCase : Any = self.model_tester.expected_seq_len for model_class in self.all_model_classes: lowerCAmelCase : List[str] = True lowerCAmelCase : Optional[Any] = False lowerCAmelCase : int = True lowerCAmelCase : Dict = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): lowerCAmelCase : Optional[Any] = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) lowerCAmelCase : Any = outputs.attentions self.assertEqual(len(snake_case__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCAmelCase : str = True lowerCAmelCase : List[str] = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): lowerCAmelCase : Optional[int] = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) lowerCAmelCase : Any = outputs.attentions self.assertEqual(len(snake_case__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowerCAmelCase : Optional[int] = len(snake_case__ ) # Check attention is always last and order is fine lowerCAmelCase : Tuple = True lowerCAmelCase : Any = True lowerCAmelCase : Any = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): lowerCAmelCase : List[str] = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) lowerCAmelCase : Dict = 1 self.assertEqual(out_len + added_hidden_states , len(snake_case__ ) ) lowerCAmelCase : Optional[Any] = outputs.attentions self.assertEqual(len(snake_case__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def lowercase ( self ): def check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): lowerCAmelCase : str = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) lowerCAmelCase : Optional[Any] = outputs.hidden_states lowerCAmelCase : Dict = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(snake_case__ ) , snake_case__ ) # YOLOS has a different seq_length lowerCAmelCase : Union[str, Any] = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Any = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase : Dict = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*snake_case__ ) @slow def lowercase ( self ): for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : List[Any] = YolosModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def __UpperCamelCase ( ) -> Dict: """simple docstring""" lowerCAmelCase : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowerCAmelCase ( unittest.TestCase ): @cached_property def lowercase ( self ): return AutoImageProcessor.from_pretrained('hustvl/yolos-small' ) if is_vision_available() else None @slow def lowercase ( self ): lowerCAmelCase : Optional[int] = YolosForObjectDetection.from_pretrained('hustvl/yolos-small' ).to(snake_case__ ) lowerCAmelCase : Optional[Any] = self.default_image_processor lowerCAmelCase : List[Any] = prepare_img() lowerCAmelCase : List[Any] = image_processor(images=snake_case__ , return_tensors='pt' ).to(snake_case__ ) # forward pass with torch.no_grad(): lowerCAmelCase : Optional[int] = model(inputs.pixel_values ) # verify outputs lowerCAmelCase : Optional[Any] = torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape , snake_case__ ) lowerCAmelCase : Any = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] , device=snake_case__ , ) lowerCAmelCase : Dict = torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] , device=snake_case__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , snake_case__ , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , snake_case__ , atol=1e-4 ) ) # verify postprocessing lowerCAmelCase : Tuple = image_processor.post_process_object_detection( snake_case__ , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] lowerCAmelCase : Dict = torch.tensor([0.9_9_9_4, 0.9_7_9_0, 0.9_9_6_4, 0.9_9_7_2, 0.9_8_6_1] ).to(snake_case__ ) lowerCAmelCase : int = [75, 75, 17, 63, 17] lowerCAmelCase : str = torch.tensor([335.0609, 79.3848, 375.4216, 187.2495] ).to(snake_case__ ) self.assertEqual(len(results['scores'] ) , 5 ) self.assertTrue(torch.allclose(results['scores'] , snake_case__ , atol=1e-4 ) ) self.assertSequenceEqual(results['labels'].tolist() , snake_case__ ) self.assertTrue(torch.allclose(results['boxes'][0, :] , snake_case__ ) )
704
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowerCAmelCase : int = { 'configuration_nezha': ['NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NezhaConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Tuple = [ 'NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST', 'NezhaForNextSentencePrediction', 'NezhaForMaskedLM', 'NezhaForPreTraining', 'NezhaForMultipleChoice', 'NezhaForQuestionAnswering', 'NezhaForSequenceClassification', 'NezhaForTokenClassification', 'NezhaModel', 'NezhaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys _lowerCAmelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
646
0
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging _lowerCAmelCase : str = logging.get_logger(__name__) _lowerCAmelCase : str = {'vocab_file': 'spiece.model'} _lowerCAmelCase : int = { 'vocab_file': { 'TsinghuaAI/CPM-Generate': 'https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model', } } class lowerCAmelCase ( a ): def __init__( self , snake_case__ , snake_case__=False , snake_case__=True , snake_case__=False , snake_case__="<s>" , snake_case__="</s>" , snake_case__="<unk>" , snake_case__="<sep>" , snake_case__="<pad>" , snake_case__="<cls>" , snake_case__="<mask>" , snake_case__=["<eop>", "<eod>"] , snake_case__ = None , **snake_case__ , ): lowerCAmelCase : int = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else mask_token lowerCAmelCase : Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=snake_case__ , remove_space=snake_case__ , keep_accents=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , additional_special_tokens=snake_case__ , sp_model_kwargs=self.sp_model_kwargs , **snake_case__ , ) lowerCAmelCase : List[str] = 3 lowerCAmelCase : Tuple = do_lower_case lowerCAmelCase : Any = remove_space lowerCAmelCase : Tuple = keep_accents lowerCAmelCase : Dict = vocab_file lowerCAmelCase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(snake_case__ ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( 'You need to install jieba to use CpmTokenizer or CpmTokenizerFast. ' 'See https://pypi.org/project/jieba/ for installation.' ) lowerCAmelCase : Optional[Any] = jieba lowerCAmelCase : List[str] = str.maketrans(' \n' , '\u2582\u2583' ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def lowercase ( self ): return len(self.sp_model ) def lowercase ( self ): lowerCAmelCase : Dict = {self.convert_ids_to_tokens(snake_case__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): lowerCAmelCase : Tuple = self.__dict__.copy() lowerCAmelCase : int = None return state def __setstate__( self , snake_case__ ): lowerCAmelCase : str = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowerCAmelCase : str = {} lowerCAmelCase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase ( self , snake_case__ ): if self.remove_space: lowerCAmelCase : Optional[Any] = ' '.join(inputs.strip().split() ) else: lowerCAmelCase : Any = inputs lowerCAmelCase : Optional[int] = outputs.replace('``' , '"' ).replace('\'\'' , '"' ) if not self.keep_accents: lowerCAmelCase : List[Any] = unicodedata.normalize('NFKD' , snake_case__ ) lowerCAmelCase : List[str] = ''.join([c for c in outputs if not unicodedata.combining(snake_case__ )] ) if self.do_lower_case: lowerCAmelCase : Any = outputs.lower() return outputs def lowercase ( self , snake_case__ ): lowerCAmelCase : str = self.preprocess_text(snake_case__ ) lowerCAmelCase : Optional[int] = self.sp_model.encode(snake_case__ , out_type=snake_case__ ) lowerCAmelCase : Any = [] for piece in pieces: if len(snake_case__ ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit(): lowerCAmelCase : Optional[Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(snake_case__ , '' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: lowerCAmelCase : int = cur_pieces[1:] else: lowerCAmelCase : Optional[int] = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(snake_case__ ) else: new_pieces.append(snake_case__ ) return new_pieces def lowercase ( self , snake_case__ ): return self.sp_model.PieceToId(snake_case__ ) def lowercase ( self , snake_case__ ): return self.sp_model.IdToPiece(snake_case__ ) def lowercase ( self , snake_case__ ): lowerCAmelCase : Union[str, Any] = ''.join(snake_case__ ).replace(snake_case__ , ' ' ).strip() return out_string def lowercase ( self , snake_case__ , snake_case__ = None ): lowerCAmelCase : List[Any] = [self.sep_token_id] lowerCAmelCase : Dict = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def lowercase ( self , snake_case__ , snake_case__ = None , snake_case__ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is not None: return ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) + [1, 1] return ([0] * len(snake_case__ )) + [1, 1] def lowercase ( self , snake_case__ , snake_case__ = None ): lowerCAmelCase : str = [self.sep_token_id] lowerCAmelCase : int = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def lowercase ( self , snake_case__ , snake_case__ = None ): if not os.path.isdir(snake_case__ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return lowerCAmelCase : str = os.path.join( snake_case__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case__ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case__ , 'wb' ) as fi: lowerCAmelCase : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(snake_case__ ) return (out_vocab_file,) def lowercase ( self , *snake_case__ , **snake_case__ ): lowerCAmelCase : str = super()._decode(*snake_case__ , **snake_case__ ) lowerCAmelCase : Optional[int] = text.replace(' ' , '' ).replace('\u2582' , ' ' ).replace('\u2583' , '\n' ) return text
705
'''simple docstring''' from typing import Any class lowerCAmelCase : def __init__( self , snake_case__ ): lowerCAmelCase : Optional[int] = data lowerCAmelCase : Optional[Any] = None def __repr__( self ): return f"Node({self.data})" class lowerCAmelCase : def __init__( self ): lowerCAmelCase : Dict = None def __iter__( self ): lowerCAmelCase : Optional[Any] = self.head while node: yield node.data lowerCAmelCase : Optional[int] = node.next def __len__( self ): return sum(1 for _ in self ) def __repr__( self ): return "->".join([str(snake_case__ ) for item in self] ) def __getitem__( self , snake_case__ ): if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , snake_case__ , snake_case__ ): if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) lowerCAmelCase : Any = self.head for _ in range(snake_case__ ): lowerCAmelCase : List[str] = current.next lowerCAmelCase : int = data def lowercase ( self , snake_case__ ): self.insert_nth(len(self ) , snake_case__ ) def lowercase ( self , snake_case__ ): self.insert_nth(0 , snake_case__ ) def lowercase ( self , snake_case__ , snake_case__ ): if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) lowerCAmelCase : List[str] = Node(snake_case__ ) if self.head is None: lowerCAmelCase : int = new_node elif index == 0: lowerCAmelCase : List[Any] = self.head # link new_node to head lowerCAmelCase : List[Any] = new_node else: lowerCAmelCase : List[Any] = self.head for _ in range(index - 1 ): lowerCAmelCase : Union[str, Any] = temp.next lowerCAmelCase : Any = temp.next lowerCAmelCase : str = new_node def lowercase ( self ): # print every node data print(self ) def lowercase ( self ): return self.delete_nth(0 ) def lowercase ( self ): # delete from tail return self.delete_nth(len(self ) - 1 ) def lowercase ( self , snake_case__ = 0 ): if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) lowerCAmelCase : List[str] = self.head # default first node if index == 0: lowerCAmelCase : Tuple = self.head.next else: lowerCAmelCase : Dict = self.head for _ in range(index - 1 ): lowerCAmelCase : Tuple = temp.next lowerCAmelCase : Dict = temp.next lowerCAmelCase : Tuple = temp.next.next return delete_node.data def lowercase ( self ): return self.head is None def lowercase ( self ): lowerCAmelCase : List[Any] = None lowerCAmelCase : Any = self.head while current: # Store the current node's next node. lowerCAmelCase : List[str] = current.next # Make the current node's next point backwards lowerCAmelCase : int = prev # Make the previous node be the current node lowerCAmelCase : int = current # Make the current node the next node (to progress iteration) lowerCAmelCase : Optional[Any] = next_node # Return prev in order to put the head at the end lowerCAmelCase : List[Any] = prev def __UpperCamelCase ( ) -> None: """simple docstring""" lowerCAmelCase : Tuple = LinkedList() assert linked_list.is_empty() is True assert str(_A ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(_A ) == i linked_list.insert_nth(_A , i + 1 ) assert str(_A ) == "->".join(str(_A ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(_A ) == "->".join(str(_A ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(_A ) == 9 assert str(_A ) == "->".join(str(_A ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): lowerCAmelCase : Optional[Any] = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(_A ) == "->".join(str(_A ) for i in range(-8 , 1 ) ) def __UpperCamelCase ( ) -> None: """simple docstring""" lowerCAmelCase : Optional[int] = [ -9, 1_00, Node(77_34_51_12 ), 'dlrow olleH', 7, 55_55, 0, -1_92.5_55_55, 'Hello, world!', 77.9, Node(10 ), None, None, 12.20, ] lowerCAmelCase : Dict = LinkedList() for i in test_input: linked_list.insert_tail(_A ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(_A ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head lowerCAmelCase : Optional[Any] = linked_list.delete_head() assert result == -9 assert ( str(_A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail lowerCAmelCase : List[str] = linked_list.delete_tail() assert result == 12.2 assert ( str(_A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list lowerCAmelCase : List[str] = linked_list.delete_nth(10 ) assert result is None assert ( str(_A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(_A ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(_A ) assert ( str(_A ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(_A ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def __UpperCamelCase ( ) -> List[Any]: """simple docstring""" from doctest import testmod testmod() lowerCAmelCase : Optional[Any] = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(_A ) print('\nReading/changing Node data using indexing:' ) print(F"Element at Position 1: {linked_list[1]}" ) lowerCAmelCase : Tuple = input('Enter New Value: ' ).strip() print('New list:' ) print(_A ) print(F"length of linked_list is : {len(_A )}" ) if __name__ == "__main__": main()
646
0
'''simple docstring''' import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): debug_launcher(test_script.main ) def lowercase ( self ): debug_launcher(test_ops.main )
706
'''simple docstring''' _lowerCAmelCase : List[str] = {str(digit): digit**5 for digit in range(10)} def __UpperCamelCase ( _A : int ) -> int: """simple docstring""" return sum(DIGITS_FIFTH_POWER[digit] for digit in str(_A ) ) def __UpperCamelCase ( ) -> int: """simple docstring""" return sum( number for number in range(10_00 , 1_00_00_00 ) if number == digits_fifth_powers_sum(_A ) ) if __name__ == "__main__": print(solution())
646
0
'''simple docstring''' from __future__ import annotations def __UpperCamelCase ( _A : int , _A : int ) -> list[list[int]]: """simple docstring""" lowerCAmelCase : list[list[int]] = [] create_all_state(1 , _A , _A , [] , _A ) return result def __UpperCamelCase ( _A : int , _A : int , _A : int , _A : list[int] , _A : list[list[int]] , ) -> None: """simple docstring""" if level == 0: total_list.append(current_list[:] ) return for i in range(_A , total_number - level + 2 ): current_list.append(_A ) create_all_state(i + 1 , _A , level - 1 , _A , _A ) current_list.pop() def __UpperCamelCase ( _A : list[list[int]] ) -> None: """simple docstring""" for i in total_list: print(*_A ) if __name__ == "__main__": _lowerCAmelCase : Optional[Any] = 4 _lowerCAmelCase : Tuple = 2 _lowerCAmelCase : List[Any] = generate_all_combinations(n, k) print_all_state(total_list)
707
'''simple docstring''' def __UpperCamelCase ( _A : List[str] ) -> Optional[Any]: """simple docstring""" if not head: return True # split the list to two parts lowerCAmelCase , lowerCAmelCase : str = head.next, head while fast and fast.next: lowerCAmelCase : Optional[int] = fast.next.next lowerCAmelCase : int = slow.next lowerCAmelCase : int = slow.next lowerCAmelCase : Optional[Any] = None # Don't forget here! But forget still works! # reverse the second part lowerCAmelCase : List[Any] = None while second: lowerCAmelCase : List[Any] = second.next lowerCAmelCase : Union[str, Any] = node lowerCAmelCase : Optional[Any] = second lowerCAmelCase : Any = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False lowerCAmelCase : Optional[Any] = node.next lowerCAmelCase : Tuple = head.next return True def __UpperCamelCase ( _A : Optional[Any] ) -> Optional[int]: """simple docstring""" if not head or not head.next: return True # 1. Get the midpoint (slow) lowerCAmelCase : Optional[int] = head while fast and fast.next: lowerCAmelCase , lowerCAmelCase : Optional[Any] = fast.next.next, slow.next # 2. Push the second half into the stack lowerCAmelCase : Tuple = [slow.val] while slow.next: lowerCAmelCase : Tuple = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False lowerCAmelCase : Union[str, Any] = cur.next return True def __UpperCamelCase ( _A : Tuple ) -> Optional[int]: """simple docstring""" if not head or not head.next: return True lowerCAmelCase : Optional[int] = {} lowerCAmelCase : int = 0 while head: if head.val in d: d[head.val].append(_A ) else: lowerCAmelCase : Any = [pos] lowerCAmelCase : int = head.next pos += 1 lowerCAmelCase : str = pos - 1 lowerCAmelCase : Optional[Any] = 0 for v in d.values(): if len(_A ) % 2 != 0: middle += 1 else: lowerCAmelCase : Any = 0 for i in range(0 , len(_A ) ): if v[i] + v[len(_A ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
646
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) _lowerCAmelCase : Optional[int] = { 'configuration_perceiver': ['PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PerceiverConfig', 'PerceiverOnnxConfig'], 'tokenization_perceiver': ['PerceiverTokenizer'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : List[str] = ['PerceiverFeatureExtractor'] _lowerCAmelCase : Optional[Any] = ['PerceiverImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[Any] = [ 'PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PerceiverForImageClassificationConvProcessing', 'PerceiverForImageClassificationFourier', 'PerceiverForImageClassificationLearned', 'PerceiverForMaskedLM', 'PerceiverForMultimodalAutoencoding', 'PerceiverForOpticalFlow', 'PerceiverForSequenceClassification', 'PerceiverLayer', 'PerceiverModel', 'PerceiverPreTrainedModel', ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys _lowerCAmelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
708
'''simple docstring''' import math def __UpperCamelCase ( _A : int = 1_00 ) -> int: """simple docstring""" lowerCAmelCase : List[Any] = sum(i * i for i in range(1 , n + 1 ) ) lowerCAmelCase : Optional[Any] = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f"""{solution() = }""")
646
0
from __future__ import annotations _lowerCAmelCase : List[Any] = 8.988E9 # units = N * m^s * C^-2 def __UpperCamelCase ( _A : float , _A : float , _A : float , _A : float ) -> dict[str, float]: """simple docstring""" lowerCAmelCase : str = abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if distance < 0: raise ValueError('Distance cannot be negative' ) if force == 0: lowerCAmelCase : Union[str, Any] = COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: lowerCAmelCase : Optional[Any] = abs(_A ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: lowerCAmelCase : List[Any] = abs(_A ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: lowerCAmelCase : List[Any] = (COULOMBS_CONSTANT * charge_product / abs(_A )) ** 0.5 return {"distance": distance} raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
709
'''simple docstring''' import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece_with_bytefallback.model') @require_sentencepiece @require_tokenizers class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : Tuple = GPTSwaTokenizer _lowerCamelCase : str = False _lowerCamelCase : Dict = True _lowerCamelCase : Optional[Any] = False def lowercase ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : Tuple = GPTSwaTokenizer(snake_case__ , eos_token='<unk>' , bos_token='<unk>' , pad_token='<unk>' ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase ( self , snake_case__ ): lowerCAmelCase : List[Any] = 'This is a test' lowerCAmelCase : List[Any] = 'This is a test' return input_text, output_text def lowercase ( self ): lowerCAmelCase : Tuple = '<s>' lowerCAmelCase : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def lowercase ( self ): lowerCAmelCase : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(snake_case__ ) , 2000 ) def lowercase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 2000 ) def lowercase ( self ): lowerCAmelCase : List[Any] = GPTSwaTokenizer(snake_case__ ) lowerCAmelCase : Optional[Any] = tokenizer.tokenize('This is a test' ) self.assertListEqual(snake_case__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , [465, 287, 265, 631, 842] ) lowerCAmelCase : Tuple = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) # fmt: off self.assertListEqual( snake_case__ , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] , ) # fmt: on lowerCAmelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual( snake_case__ , [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] , ) lowerCAmelCase : int = tokenizer.convert_ids_to_tokens(snake_case__ ) # fmt: off self.assertListEqual( snake_case__ , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] ) # fmt: on def lowercase ( self ): lowerCAmelCase : str = GPTSwaTokenizer(snake_case__ ) lowerCAmelCase : Optional[int] = ['This is a test', 'I was born in 92000, and this is falsé.'] lowerCAmelCase : Tuple = [ [465, 287, 265, 631, 842], [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(snake_case__ , snake_case__ ): self.assertListEqual(tokenizer.encode_fast(snake_case__ ) , snake_case__ ) # Test that decode_fast returns the input text for text, token_ids in zip(snake_case__ , snake_case__ ): self.assertEqual(tokenizer.decode_fast(snake_case__ ) , snake_case__ ) @slow def lowercase ( self ): lowerCAmelCase : str = [ '<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')', 'Hey there, how are you doing this fine day?', 'This is a text with a trailing spaces followed by a dot .', 'Häj sväjs lillebrör! =)', 'Det är inget fel på Mr. Cool', ] # fmt: off lowerCAmelCase : Tuple = {'input_ids': [[6_3423, 5, 6811, 1_4954, 282, 816, 3821, 6_3466, 6_3425, 6_3462, 18, 6_3978, 678, 301, 1320, 6_3423, 6_3455, 6_3458, 18, 6_3982, 4246, 3940, 1901, 4_7789, 5547, 1_8994], [1_9630, 1100, 6_3446, 1342, 633, 544, 4488, 593, 5102, 2416, 6_3495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1652, 428, 268, 1936, 515, 268, 5_8593, 2_2413, 9106, 546, 268, 3_3213, 6_3979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_5130, 6_3450, 924, 6_3449, 2249, 4062, 1558, 318, 6_3504, 2_1498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2827, 2559, 332, 6575, 6_3443, 2_6801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name='AI-Sweden/gpt-sw3-126m' , sequences=snake_case__ , )
646
0
'''simple docstring''' import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer _lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) class lowerCAmelCase ( a ): _lowerCamelCase : int = """AutoTokenizer""" _lowerCamelCase : Tuple = ["""tokenizer"""] _lowerCamelCase : str = { """semantic_prompt""": 1, """coarse_prompt""": 2, """fine_prompt""": 2, } def __init__( self , snake_case__ , snake_case__=None ): super().__init__(snake_case__ ) lowerCAmelCase : List[str] = speaker_embeddings @classmethod def lowercase ( cls , snake_case__ , snake_case__="speaker_embeddings_path.json" , **snake_case__ ): if speaker_embeddings_dict_path is not None: lowerCAmelCase : Optional[int] = get_file_from_repo( snake_case__ , snake_case__ , subfolder=kwargs.pop('subfolder' , snake_case__ ) , cache_dir=kwargs.pop('cache_dir' , snake_case__ ) , force_download=kwargs.pop('force_download' , snake_case__ ) , proxies=kwargs.pop('proxies' , snake_case__ ) , resume_download=kwargs.pop('resume_download' , snake_case__ ) , local_files_only=kwargs.pop('local_files_only' , snake_case__ ) , use_auth_token=kwargs.pop('use_auth_token' , snake_case__ ) , revision=kwargs.pop('revision' , snake_case__ ) , ) if speaker_embeddings_path is None: logger.warning( f"`{os.path.join(snake_case__ , snake_case__ )}` does not exists\n , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json\n dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`." ) lowerCAmelCase : Optional[int] = None else: with open(snake_case__ ) as speaker_embeddings_json: lowerCAmelCase : Optional[Any] = json.load(snake_case__ ) else: lowerCAmelCase : Optional[Any] = None lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained(snake_case__ , **snake_case__ ) return cls(tokenizer=snake_case__ , speaker_embeddings=snake_case__ ) def lowercase ( self , snake_case__ , snake_case__="speaker_embeddings_path.json" , snake_case__="speaker_embeddings" , snake_case__ = False , **snake_case__ , ): if self.speaker_embeddings is not None: os.makedirs(os.path.join(snake_case__ , snake_case__ , 'v2' ) , exist_ok=snake_case__ ) lowerCAmelCase : str = {} lowerCAmelCase : Optional[Any] = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": lowerCAmelCase : Union[str, Any] = self._load_voice_preset(snake_case__ ) lowerCAmelCase : Dict = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict['repo_or_path'] , snake_case__ , f"{prompt_key}_{key}" ) , voice_preset[key] , allow_pickle=snake_case__ , ) lowerCAmelCase : Optional[Any] = os.path.join(snake_case__ , f"{prompt_key}_{key}.npy" ) lowerCAmelCase : Optional[int] = tmp_dict with open(os.path.join(snake_case__ , snake_case__ ) , 'w' ) as fp: json.dump(snake_case__ , snake_case__ ) super().save_pretrained(snake_case__ , snake_case__ , **snake_case__ ) def lowercase ( self , snake_case__ = None , **snake_case__ ): lowerCAmelCase : Optional[Any] = self.speaker_embeddings[voice_preset] lowerCAmelCase : Union[str, Any] = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( f"Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}]." ) lowerCAmelCase : str = get_file_from_repo( self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] , subfolder=kwargs.pop('subfolder' , snake_case__ ) , cache_dir=kwargs.pop('cache_dir' , snake_case__ ) , force_download=kwargs.pop('force_download' , snake_case__ ) , proxies=kwargs.pop('proxies' , snake_case__ ) , resume_download=kwargs.pop('resume_download' , snake_case__ ) , local_files_only=kwargs.pop('local_files_only' , snake_case__ ) , use_auth_token=kwargs.pop('use_auth_token' , snake_case__ ) , revision=kwargs.pop('revision' , snake_case__ ) , ) if path is None: raise ValueError( f"`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists\n , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset}\n embeddings." ) lowerCAmelCase : Any = np.load(snake_case__ ) return voice_preset_dict def lowercase ( self , snake_case__ = None ): for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(f"Voice preset unrecognized, missing {key} as a key." ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(f"{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray." ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(f"{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray." ) def __call__( self , snake_case__=None , snake_case__=None , snake_case__="pt" , snake_case__=256 , snake_case__=False , snake_case__=True , snake_case__=False , **snake_case__ , ): if voice_preset is not None and not isinstance(snake_case__ , snake_case__ ): if ( isinstance(snake_case__ , snake_case__ ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): lowerCAmelCase : Any = self._load_voice_preset(snake_case__ ) else: if isinstance(snake_case__ , snake_case__ ) and not voice_preset.endswith('.npz' ): lowerCAmelCase : List[str] = voice_preset + '.npz' lowerCAmelCase : Tuple = np.load(snake_case__ ) if voice_preset is not None: self._validate_voice_preset_dict(snake_case__ , **snake_case__ ) lowerCAmelCase : Union[str, Any] = BatchFeature(data=snake_case__ , tensor_type=snake_case__ ) lowerCAmelCase : List[Any] = self.tokenizer( snake_case__ , return_tensors=snake_case__ , padding='max_length' , max_length=snake_case__ , return_attention_mask=snake_case__ , return_token_type_ids=snake_case__ , add_special_tokens=snake_case__ , **snake_case__ , ) if voice_preset is not None: lowerCAmelCase : Tuple = voice_preset return encoded_text
710
'''simple docstring''' def __UpperCamelCase ( _A : int ) -> bool: """simple docstring""" return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
646
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer _lowerCAmelCase : Optional[int] = logging.get_logger(__name__) _lowerCAmelCase : Optional[int] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _lowerCAmelCase : str = { 'vocab_file': { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt' ), 'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt', 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json' ), 'distilbert-base-german-cased': ( 'https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json' ), 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json' ), }, } _lowerCAmelCase : int = { 'distilbert-base-uncased': 512, 'distilbert-base-uncased-distilled-squad': 512, 'distilbert-base-cased': 512, 'distilbert-base-cased-distilled-squad': 512, 'distilbert-base-german-cased': 512, 'distilbert-base-multilingual-cased': 512, } _lowerCAmelCase : Dict = { 'distilbert-base-uncased': {'do_lower_case': True}, 'distilbert-base-uncased-distilled-squad': {'do_lower_case': True}, 'distilbert-base-cased': {'do_lower_case': False}, 'distilbert-base-cased-distilled-squad': {'do_lower_case': False}, 'distilbert-base-german-cased': {'do_lower_case': False}, 'distilbert-base-multilingual-cased': {'do_lower_case': False}, } class lowerCAmelCase ( a ): _lowerCamelCase : int = VOCAB_FILES_NAMES _lowerCamelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase : Tuple = PRETRAINED_INIT_CONFIGURATION _lowerCamelCase : Tuple = ["""input_ids""", """attention_mask"""] _lowerCamelCase : List[Any] = DistilBertTokenizer def __init__( self , snake_case__=None , snake_case__=None , snake_case__=True , snake_case__="[UNK]" , snake_case__="[SEP]" , snake_case__="[PAD]" , snake_case__="[CLS]" , snake_case__="[MASK]" , snake_case__=True , snake_case__=None , **snake_case__ , ): super().__init__( snake_case__ , tokenizer_file=snake_case__ , do_lower_case=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , tokenize_chinese_chars=snake_case__ , strip_accents=snake_case__ , **snake_case__ , ) lowerCAmelCase : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , snake_case__ ) != do_lower_case or normalizer_state.get('strip_accents' , snake_case__ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , snake_case__ ) != tokenize_chinese_chars ): lowerCAmelCase : Any = getattr(snake_case__ , normalizer_state.pop('type' ) ) lowerCAmelCase : int = do_lower_case lowerCAmelCase : List[Any] = strip_accents lowerCAmelCase : List[Any] = tokenize_chinese_chars lowerCAmelCase : Optional[int] = normalizer_class(**snake_case__ ) lowerCAmelCase : int = do_lower_case def lowercase ( self , snake_case__ , snake_case__=None ): lowerCAmelCase : Optional[int] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase ( self , snake_case__ , snake_case__ = None ): lowerCAmelCase : int = [self.sep_token_id] lowerCAmelCase : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase ( self , snake_case__ , snake_case__ = None ): lowerCAmelCase : int = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ )
711
'''simple docstring''' import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( 'files' , [ ['full:README.md', 'dataset_infos.json'], ['empty:README.md', 'dataset_infos.json'], ['dataset_infos.json'], ['full:README.md'], ] , ) def __UpperCamelCase ( _A : str , _A : List[Any] ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase : Optional[int] = tmp_path_factory.mktemp('dset_infos_dir' ) if "full:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('---\ndataset_info:\n dataset_size: 42\n---' ) if "empty:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / 'dataset_infos.json' , 'w' ) as f: f.write('{"default": {"dataset_size": 42}}' ) lowerCAmelCase : Union[str, Any] = DatasetInfosDict.from_directory(_A ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( 'dataset_info' , [ DatasetInfo(), DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ), ] , ) def __UpperCamelCase ( _A : str , _A : DatasetInfo ) -> Optional[int]: """simple docstring""" lowerCAmelCase : str = str(_A ) dataset_info.write_to_directory(_A ) lowerCAmelCase : List[str] = DatasetInfo.from_directory(_A ) assert dataset_info == reloaded assert os.path.exists(os.path.join(_A , 'dataset_info.json' ) ) def __UpperCamelCase ( ) -> List[str]: """simple docstring""" lowerCAmelCase : Tuple = DatasetInfo( description='foo' , citation='bar' , homepage='https://foo.bar' , license='CC0' , features=Features({'a': Value('int32' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train', 'num_examples': 42}] , download_checksums={} , download_size=13_37 , post_processing_size=4_42 , dataset_size=12_34 , size_in_bytes=13_37 + 4_42 + 12_34 , ) lowerCAmelCase : Optional[int] = dataset_info._to_yaml_dict() assert sorted(_A ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) lowerCAmelCase : Any = yaml.safe_dump(_A ) lowerCAmelCase : int = yaml.safe_load(_A ) assert dataset_info_yaml_dict == reloaded def __UpperCamelCase ( ) -> Dict: """simple docstring""" lowerCAmelCase : Union[str, Any] = DatasetInfo() lowerCAmelCase : List[Any] = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( 'dataset_infos_dict' , [ DatasetInfosDict(), DatasetInfosDict({'default': DatasetInfo()} ), DatasetInfosDict({'my_config_name': DatasetInfo()} ), DatasetInfosDict( { 'default': DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ) } ), DatasetInfosDict( { 'v1': DatasetInfo(dataset_size=42 ), 'v2': DatasetInfo(dataset_size=13_37 ), } ), ] , ) def __UpperCamelCase ( _A : Tuple , _A : DatasetInfosDict ) -> List[Any]: """simple docstring""" lowerCAmelCase : Tuple = str(_A ) dataset_infos_dict.write_to_directory(_A ) lowerCAmelCase : List[str] = DatasetInfosDict.from_directory(_A ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): lowerCAmelCase : Tuple = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml lowerCAmelCase : Optional[Any] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(_A , 'README.md' ) )
646
0
import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def __UpperCamelCase ( _A : Union[str, Any] , _A : Optional[int] ) -> int: """simple docstring""" assert isinstance(_A , _A ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def __UpperCamelCase ( _A : Dict , _A : int , _A : Any ) -> str: """simple docstring""" lowerCAmelCase : str = tmp_path / 'cache' lowerCAmelCase : str = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCAmelCase : List[str] = JsonDatasetReader(_A , cache_dir=_A , keep_in_memory=_A ).read() _check_json_dataset(_A , _A ) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def __UpperCamelCase ( _A : int , _A : List[Any] , _A : Optional[Any] ) -> str: """simple docstring""" lowerCAmelCase : int = tmp_path / 'cache' lowerCAmelCase : Tuple = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} lowerCAmelCase : Union[str, Any] = features.copy() if features else default_expected_features lowerCAmelCase : Tuple = ( Features({feature: Value(_A ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCAmelCase : List[Any] = JsonDatasetReader(_A , features=_A , cache_dir=_A ).read() _check_json_dataset(_A , _A ) @pytest.mark.parametrize( 'features' , [ None, {'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'}, ] , ) def __UpperCamelCase ( _A : Any , _A : Dict , _A : Optional[Any] ) -> Dict: """simple docstring""" lowerCAmelCase : str = tmp_path / 'cache' lowerCAmelCase : Optional[int] = {'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'} lowerCAmelCase : Any = features.copy() if features else default_expected_features lowerCAmelCase : List[Any] = ( Features({feature: Value(_A ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCAmelCase : Optional[int] = JsonDatasetReader(_A , features=_A , cache_dir=_A ).read() assert isinstance(_A , _A ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def __UpperCamelCase ( _A : Dict , _A : Union[str, Any] ) -> Dict: """simple docstring""" lowerCAmelCase : int = {'col_2': 'int64', 'col_3': 'float64', 'col_1': 'string'} lowerCAmelCase : Optional[int] = features.copy() lowerCAmelCase : int = ( Features({feature: Value(_A ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCAmelCase : Any = tmp_path / 'cache' lowerCAmelCase : Dict = JsonDatasetReader(_A , features=_A , cache_dir=_A ).read() assert isinstance(_A , _A ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def __UpperCamelCase ( _A : Optional[int] , _A : int , _A : Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowerCAmelCase : Optional[Any] = tmp_path / 'cache' lowerCAmelCase : Dict = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} lowerCAmelCase : int = JsonDatasetReader(_A , cache_dir=_A , split=_A ).read() _check_json_dataset(_A , _A ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type' , [str, list] ) def __UpperCamelCase ( _A : Any , _A : str , _A : Dict ) -> List[str]: """simple docstring""" if issubclass(_A , _A ): lowerCAmelCase : Optional[int] = jsonl_path elif issubclass(_A , _A ): lowerCAmelCase : Optional[Any] = [jsonl_path] lowerCAmelCase : Any = tmp_path / 'cache' lowerCAmelCase : Union[str, Any] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} lowerCAmelCase : Dict = JsonDatasetReader(_A , cache_dir=_A ).read() _check_json_dataset(_A , _A ) def __UpperCamelCase ( _A : int , _A : int , _A : Optional[int]=("train",) ) -> int: """simple docstring""" assert isinstance(_A , _A ) for split in splits: lowerCAmelCase : str = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def __UpperCamelCase ( _A : Optional[Any] , _A : int , _A : List[str] ) -> List[Any]: """simple docstring""" lowerCAmelCase : Optional[int] = tmp_path / 'cache' lowerCAmelCase : List[Any] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCAmelCase : Optional[Any] = JsonDatasetReader({'train': jsonl_path} , cache_dir=_A , keep_in_memory=_A ).read() _check_json_datasetdict(_A , _A ) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def __UpperCamelCase ( _A : Optional[Any] , _A : Any , _A : Any ) -> Tuple: """simple docstring""" lowerCAmelCase : List[Any] = tmp_path / 'cache' lowerCAmelCase : Union[str, Any] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} lowerCAmelCase : Dict = features.copy() if features else default_expected_features lowerCAmelCase : Dict = ( Features({feature: Value(_A ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCAmelCase : Dict = JsonDatasetReader({'train': jsonl_path} , features=_A , cache_dir=_A ).read() _check_json_datasetdict(_A , _A ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def __UpperCamelCase ( _A : Any , _A : Optional[Any] , _A : Union[str, Any] ) -> str: """simple docstring""" if split: lowerCAmelCase : Optional[Any] = {split: jsonl_path} else: lowerCAmelCase : Any = 'train' lowerCAmelCase : Tuple = {'train': jsonl_path, 'test': jsonl_path} lowerCAmelCase : str = tmp_path / 'cache' lowerCAmelCase : Optional[Any] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} lowerCAmelCase : str = JsonDatasetReader(_A , cache_dir=_A ).read() _check_json_datasetdict(_A , _A , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def __UpperCamelCase ( _A : Union[str, Any] ) -> Optional[int]: """simple docstring""" return json.load(_A ) def __UpperCamelCase ( _A : Optional[int] ) -> List[str]: """simple docstring""" return [json.loads(_A ) for line in buffer] class lowerCAmelCase : @pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)] ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ ): with io.BytesIO() as buffer: JsonDatasetWriter(snake_case__ , snake_case__ , lines=snake_case__ ).write() buffer.seek(0 ) lowerCAmelCase : Optional[Any] = load_json_function(snake_case__ ) assert isinstance(snake_case__ , snake_case__ ) assert isinstance(exported_content[0] , snake_case__ ) assert len(snake_case__ ) == 10 @pytest.mark.parametrize( 'orient, container, keys, len_at' , [ ('records', list, {'tokens', 'labels', 'answers', 'id'}, None), ('split', dict, {'columns', 'data'}, 'data'), ('index', dict, set('0123456789' ), None), ('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'), ('values', list, None, None), ('table', dict, {'schema', 'data'}, 'data'), ] , ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): with io.BytesIO() as buffer: JsonDatasetWriter(snake_case__ , snake_case__ , lines=snake_case__ , orient=snake_case__ ).write() buffer.seek(0 ) lowerCAmelCase : List[str] = load_json(snake_case__ ) assert isinstance(snake_case__ , snake_case__ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(snake_case__ , 'keys' ) and not hasattr(exported_content[0] , 'keys' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(snake_case__ ) == 10 @pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)] ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ ): with io.BytesIO() as buffer: JsonDatasetWriter(snake_case__ , snake_case__ , lines=snake_case__ , num_proc=2 ).write() buffer.seek(0 ) lowerCAmelCase : Any = load_json_function(snake_case__ ) assert isinstance(snake_case__ , snake_case__ ) assert isinstance(exported_content[0] , snake_case__ ) assert len(snake_case__ ) == 10 @pytest.mark.parametrize( 'orient, container, keys, len_at' , [ ('records', list, {'tokens', 'labels', 'answers', 'id'}, None), ('split', dict, {'columns', 'data'}, 'data'), ('index', dict, set('0123456789' ), None), ('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'), ('values', list, None, None), ('table', dict, {'schema', 'data'}, 'data'), ] , ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): with io.BytesIO() as buffer: JsonDatasetWriter(snake_case__ , snake_case__ , lines=snake_case__ , orient=snake_case__ , num_proc=2 ).write() buffer.seek(0 ) lowerCAmelCase : List[Any] = load_json(snake_case__ ) assert isinstance(snake_case__ , snake_case__ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(snake_case__ , 'keys' ) and not hasattr(exported_content[0] , 'keys' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(snake_case__ ) == 10 def lowercase ( self , snake_case__ ): with pytest.raises(snake_case__ ): with io.BytesIO() as buffer: JsonDatasetWriter(snake_case__ , snake_case__ , num_proc=0 ) @pytest.mark.parametrize('compression, extension' , [('gzip', 'gz'), ('bz2', 'bz2'), ('xz', 'xz')] ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : int = tmp_path_factory.mktemp('data' ) / f"test.json.{extension}" lowerCAmelCase : Optional[int] = str(shared_datadir / f"test_file.json.{extension}" ) JsonDatasetWriter(snake_case__ , snake_case__ , compression=snake_case__ ).write() with fsspec.open(snake_case__ , 'rb' , compression='infer' ) as f: lowerCAmelCase : Union[str, Any] = f.read() with fsspec.open(snake_case__ , 'rb' , compression='infer' ) as f: lowerCAmelCase : Optional[int] = f.read() assert exported_content == original_content
712
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCAmelCase ( a ): def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): super().__init__() if safety_checker is None: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" ' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered' ' results in services or applications open to the public. Both the diffusers team and Hugging Face' ' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling' ' it only for use-cases that involve analyzing network behavior or auditing its results. For more' ' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .' ) self.register_modules( speech_model=snake_case__ , speech_processor=snake_case__ , vae=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , unet=snake_case__ , scheduler=snake_case__ , feature_extractor=snake_case__ , ) def lowercase ( self , snake_case__ = "auto" ): if slice_size == "auto": lowerCAmelCase : Union[str, Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(snake_case__ ) def lowercase ( self ): self.enable_attention_slicing(snake_case__ ) @torch.no_grad() def __call__( self , snake_case__ , snake_case__=1_6000 , snake_case__ = 512 , snake_case__ = 512 , snake_case__ = 50 , snake_case__ = 7.5 , snake_case__ = None , snake_case__ = 1 , snake_case__ = 0.0 , snake_case__ = None , snake_case__ = None , snake_case__ = "pil" , snake_case__ = True , snake_case__ = None , snake_case__ = 1 , **snake_case__ , ): lowerCAmelCase : List[str] = self.speech_processor.feature_extractor( snake_case__ , return_tensors='pt' , sampling_rate=snake_case__ ).input_features.to(self.device ) lowerCAmelCase : Optional[Any] = self.speech_model.generate(snake_case__ , max_length=48_0000 ) lowerCAmelCase : str = self.speech_processor.tokenizer.batch_decode(snake_case__ , skip_special_tokens=snake_case__ , normalize=snake_case__ )[ 0 ] if isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = 1 elif isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = len(snake_case__ ) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(snake_case__ )}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(snake_case__ , snake_case__ ) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(snake_case__ )}." ) # get prompt text embeddings lowerCAmelCase : str = self.tokenizer( snake_case__ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) lowerCAmelCase : Tuple = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowerCAmelCase : str = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) lowerCAmelCase : Union[str, Any] = text_input_ids[:, : self.tokenizer.model_max_length] lowerCAmelCase : Union[str, Any] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : int = text_embeddings.shape lowerCAmelCase : Any = text_embeddings.repeat(1 , snake_case__ , 1 ) lowerCAmelCase : Optional[int] = text_embeddings.view(bs_embed * num_images_per_prompt , snake_case__ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowerCAmelCase : List[str] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowerCAmelCase : List[str] if negative_prompt is None: lowerCAmelCase : Any = [''] * batch_size elif type(snake_case__ ) is not type(snake_case__ ): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(snake_case__ )} !=" f" {type(snake_case__ )}." ) elif isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = [negative_prompt] elif batch_size != len(snake_case__ ): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(snake_case__ )}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" ' the batch size of `prompt`.' ) else: lowerCAmelCase : Dict = negative_prompt lowerCAmelCase : Optional[int] = text_input_ids.shape[-1] lowerCAmelCase : int = self.tokenizer( snake_case__ , padding='max_length' , max_length=snake_case__ , truncation=snake_case__ , return_tensors='pt' , ) lowerCAmelCase : Union[str, Any] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowerCAmelCase : List[Any] = uncond_embeddings.shape[1] lowerCAmelCase : List[str] = uncond_embeddings.repeat(1 , snake_case__ , 1 ) lowerCAmelCase : Optional[Any] = uncond_embeddings.view(batch_size * num_images_per_prompt , snake_case__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCAmelCase : List[str] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowerCAmelCase : Union[str, Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowerCAmelCase : Dict = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowerCAmelCase : str = torch.randn(snake_case__ , generator=snake_case__ , device='cpu' , dtype=snake_case__ ).to( self.device ) else: lowerCAmelCase : Tuple = torch.randn(snake_case__ , generator=snake_case__ , device=self.device , dtype=snake_case__ ) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) lowerCAmelCase : str = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(snake_case__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowerCAmelCase : Union[str, Any] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowerCAmelCase : Any = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowerCAmelCase : Tuple = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCAmelCase : Union[str, Any] = {} if accepts_eta: lowerCAmelCase : int = eta for i, t in enumerate(self.progress_bar(snake_case__ ) ): # expand the latents if we are doing classifier free guidance lowerCAmelCase : Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCAmelCase : Tuple = self.scheduler.scale_model_input(snake_case__ , snake_case__ ) # predict the noise residual lowerCAmelCase : List[str] = self.unet(snake_case__ , snake_case__ , encoder_hidden_states=snake_case__ ).sample # perform guidance if do_classifier_free_guidance: lowerCAmelCase , lowerCAmelCase : Dict = noise_pred.chunk(2 ) lowerCAmelCase : Tuple = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowerCAmelCase : int = self.scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase : List[Any] = 1 / 0.1_8_2_1_5 * latents lowerCAmelCase : Dict = self.vae.decode(snake_case__ ).sample lowerCAmelCase : List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowerCAmelCase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowerCAmelCase : Dict = self.numpy_to_pil(snake_case__ ) if not return_dict: return image return StableDiffusionPipelineOutput(images=snake_case__ , nsfw_content_detected=snake_case__ )
646
0
class lowerCAmelCase : def __init__( self , snake_case__ ): # we need a list not a string, so do something to change the type lowerCAmelCase : List[str] = arr.split(',' ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = [int(self.array[0] )] * len(self.array ) lowerCAmelCase : Tuple = [int(self.array[0] )] * len(self.array ) for i in range(1 , len(self.array ) ): lowerCAmelCase : Dict = max( int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) ) lowerCAmelCase : Optional[Any] = max(sum_value[i] , rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": _lowerCAmelCase : Optional[int] = input('please input some numbers:') _lowerCAmelCase : Tuple = SubArray(whole_array) _lowerCAmelCase : Union[str, Any] = array.solve_sub_array() print(('the results is:', re))
713
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : List[Any] = LDMTextToImagePipeline _lowerCamelCase : Optional[Any] = TEXT_TO_IMAGE_PARAMS - { """negative_prompt""", """negative_prompt_embeds""", """cross_attention_kwargs""", """prompt_embeds""", } _lowerCamelCase : List[str] = PipelineTesterMixin.required_optional_params - { """num_images_per_prompt""", """callback""", """callback_steps""", } _lowerCamelCase : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS _lowerCamelCase : Optional[int] = False def lowercase ( self ): torch.manual_seed(0 ) lowerCAmelCase : Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) lowerCAmelCase : int = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , ) torch.manual_seed(0 ) lowerCAmelCase : str = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') , up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') , latent_channels=4 , ) torch.manual_seed(0 ) lowerCAmelCase : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowerCAmelCase : str = CLIPTextModel(snake_case__ ) lowerCAmelCase : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCAmelCase : List[Any] = { 'unet': unet, 'scheduler': scheduler, 'vqvae': vae, 'bert': text_encoder, 'tokenizer': tokenizer, } return components def lowercase ( self , snake_case__ , snake_case__=0 ): if str(snake_case__ ).startswith('mps' ): lowerCAmelCase : Optional[int] = torch.manual_seed(snake_case__ ) else: lowerCAmelCase : str = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) lowerCAmelCase : Tuple = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase ( self ): lowerCAmelCase : List[str] = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase : Optional[Any] = self.get_dummy_components() lowerCAmelCase : Optional[Any] = LDMTextToImagePipeline(**snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Tuple = self.get_dummy_inputs(snake_case__ ) lowerCAmelCase : Union[str, Any] = pipe(**snake_case__ ).images lowerCAmelCase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) lowerCAmelCase : List[Any] = np.array([0.6_1_0_1, 0.6_1_5_6, 0.5_6_2_2, 0.4_8_9_5, 0.6_6_6_1, 0.3_8_0_4, 0.5_7_4_8, 0.6_1_3_6, 0.5_0_1_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self , snake_case__ , snake_case__=torch.floataa , snake_case__=0 ): lowerCAmelCase : List[str] = torch.manual_seed(snake_case__ ) lowerCAmelCase : int = np.random.RandomState(snake_case__ ).standard_normal((1, 4, 32, 32) ) lowerCAmelCase : Optional[Any] = torch.from_numpy(snake_case__ ).to(device=snake_case__ , dtype=snake_case__ ) lowerCAmelCase : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase ( self ): lowerCAmelCase : Tuple = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Optional[Any] = self.get_inputs(snake_case__ ) lowerCAmelCase : List[Any] = pipe(**snake_case__ ).images lowerCAmelCase : str = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) lowerCAmelCase : Tuple = np.array([0.5_1_8_2_5, 0.5_2_8_5_0, 0.5_2_5_4_3, 0.5_4_2_5_8, 0.5_2_3_0_4, 0.5_2_5_6_9, 0.5_4_3_6_3, 0.5_5_2_7_6, 0.5_6_8_7_8] ) lowerCAmelCase : int = np.abs(expected_slice - image_slice ).max() assert max_diff < 1e-3 @nightly @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self , snake_case__ , snake_case__=torch.floataa , snake_case__=0 ): lowerCAmelCase : List[str] = torch.manual_seed(snake_case__ ) lowerCAmelCase : Any = np.random.RandomState(snake_case__ ).standard_normal((1, 4, 32, 32) ) lowerCAmelCase : List[Any] = torch.from_numpy(snake_case__ ).to(device=snake_case__ , dtype=snake_case__ ) lowerCAmelCase : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase ( self ): lowerCAmelCase : Optional[int] = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : int = self.get_inputs(snake_case__ ) lowerCAmelCase : Optional[int] = pipe(**snake_case__ ).images[0] lowerCAmelCase : Optional[int] = load_numpy( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy' ) lowerCAmelCase : List[str] = np.abs(expected_image - image ).max() assert max_diff < 1e-3
646
0
'''simple docstring''' def __UpperCamelCase ( _A : List[str] ) -> Optional[Any]: """simple docstring""" if not head: return True # split the list to two parts lowerCAmelCase : str = head.next, head while fast and fast.next: lowerCAmelCase : Optional[int] = fast.next.next lowerCAmelCase : int = slow.next lowerCAmelCase : int = slow.next lowerCAmelCase : Optional[Any] = None # Don't forget here! But forget still works! # reverse the second part lowerCAmelCase : List[Any] = None while second: lowerCAmelCase : List[Any] = second.next lowerCAmelCase : Union[str, Any] = node lowerCAmelCase : Optional[Any] = second lowerCAmelCase : Any = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False lowerCAmelCase : Optional[Any] = node.next lowerCAmelCase : Tuple = head.next return True def __UpperCamelCase ( _A : Optional[Any] ) -> Optional[int]: """simple docstring""" if not head or not head.next: return True # 1. Get the midpoint (slow) lowerCAmelCase : Optional[int] = head while fast and fast.next: lowerCAmelCase : Optional[Any] = fast.next.next, slow.next # 2. Push the second half into the stack lowerCAmelCase : Tuple = [slow.val] while slow.next: lowerCAmelCase : Tuple = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False lowerCAmelCase : Union[str, Any] = cur.next return True def __UpperCamelCase ( _A : Tuple ) -> Optional[int]: """simple docstring""" if not head or not head.next: return True lowerCAmelCase : Optional[int] = {} lowerCAmelCase : int = 0 while head: if head.val in d: d[head.val].append(_A ) else: lowerCAmelCase : Any = [pos] lowerCAmelCase : int = head.next pos += 1 lowerCAmelCase : str = pos - 1 lowerCAmelCase : Optional[Any] = 0 for v in d.values(): if len(_A ) % 2 != 0: middle += 1 else: lowerCAmelCase : Any = 0 for i in range(0 , len(_A ) ): if v[i] + v[len(_A ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
714
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Tuple = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { 'facebook/xmod-base': 'https://huggingface.co/facebook/xmod-base/resolve/main/config.json', 'facebook/xmod-large-prenorm': 'https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json', 'facebook/xmod-base-13-125k': 'https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json', 'facebook/xmod-base-30-125k': 'https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json', 'facebook/xmod-base-30-195k': 'https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json', 'facebook/xmod-base-60-125k': 'https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json', 'facebook/xmod-base-60-265k': 'https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json', 'facebook/xmod-base-75-125k': 'https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json', 'facebook/xmod-base-75-269k': 'https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json', } class lowerCAmelCase ( a ): _lowerCamelCase : int = """xmod""" def __init__( self , snake_case__=3_0522 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=1e-1_2 , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__="absolute" , snake_case__=True , snake_case__=None , snake_case__=False , snake_case__=2 , snake_case__=False , snake_case__=True , snake_case__=True , snake_case__=("en_XX",) , snake_case__=None , **snake_case__ , ): super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) lowerCAmelCase : Dict = vocab_size lowerCAmelCase : Optional[Any] = hidden_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob lowerCAmelCase : str = max_position_embeddings lowerCAmelCase : int = type_vocab_size lowerCAmelCase : List[Any] = initializer_range lowerCAmelCase : Any = layer_norm_eps lowerCAmelCase : Dict = position_embedding_type lowerCAmelCase : Optional[Any] = use_cache lowerCAmelCase : Union[str, Any] = classifier_dropout lowerCAmelCase : int = pre_norm lowerCAmelCase : Optional[Any] = adapter_reduction_factor lowerCAmelCase : Any = adapter_layer_norm lowerCAmelCase : Dict = adapter_reuse_layer_norm lowerCAmelCase : Any = ln_before_adapter lowerCAmelCase : Optional[Any] = list(snake_case__ ) lowerCAmelCase : List[Any] = default_language class lowerCAmelCase ( a ): @property def lowercase ( self ): if self.task == "multiple-choice": lowerCAmelCase : List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase : Optional[int] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
646
0
'''simple docstring''' import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class lowerCAmelCase : def __init__( self , snake_case__ , snake_case__=13 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=99 , snake_case__=64 , snake_case__=32 , snake_case__=5 , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=16 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=3 , snake_case__=4 , snake_case__=None , ): lowerCAmelCase : str = parent lowerCAmelCase : Optional[int] = batch_size lowerCAmelCase : Optional[Any] = seq_length lowerCAmelCase : Optional[Any] = is_training lowerCAmelCase : Dict = use_input_mask lowerCAmelCase : Tuple = use_token_type_ids lowerCAmelCase : int = use_labels lowerCAmelCase : int = vocab_size lowerCAmelCase : Any = hidden_size lowerCAmelCase : Optional[Any] = embedding_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : List[str] = num_attention_heads lowerCAmelCase : List[Any] = intermediate_size lowerCAmelCase : Dict = hidden_act lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : int = attention_probs_dropout_prob lowerCAmelCase : List[Any] = max_position_embeddings lowerCAmelCase : int = type_vocab_size lowerCAmelCase : List[str] = type_sequence_label_size lowerCAmelCase : Dict = initializer_range lowerCAmelCase : Any = num_labels lowerCAmelCase : str = num_choices lowerCAmelCase : int = scope def lowercase ( self ): lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Union[str, Any] = None if self.use_input_mask: lowerCAmelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : Optional[int] = None if self.use_token_type_ids: lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : Optional[Any] = None lowerCAmelCase : Optional[Any] = None lowerCAmelCase : Dict = None if self.use_labels: lowerCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase ( self ): return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case__ , initializer_range=self.initializer_range , ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = MobileBertModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : int = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) lowerCAmelCase : Optional[int] = model(snake_case__ , token_type_ids=snake_case__ ) lowerCAmelCase : Optional[Any] = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : int = MobileBertForMaskedLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : str = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = MobileBertForNextSentencePrediction(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : str = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : List[Any] = MobileBertForPreTraining(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Tuple = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , next_sentence_label=snake_case__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = MobileBertForQuestionAnswering(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : List[str] = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = self.num_labels lowerCAmelCase : List[Any] = MobileBertForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = self.num_labels lowerCAmelCase : int = MobileBertForTokenClassification(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : List[str] = self.num_choices lowerCAmelCase : Any = MobileBertForMultipleChoice(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : int = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : List[str] = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase ( self ): lowerCAmelCase : Any = self.prepare_config_and_inputs() ( lowerCAmelCase ) : Optional[Any] = config_and_inputs lowerCAmelCase : List[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase ( a , a , unittest.TestCase ): _lowerCamelCase : List[str] = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) _lowerCamelCase : Tuple = ( { """feature-extraction""": MobileBertModel, """fill-mask""": MobileBertForMaskedLM, """question-answering""": MobileBertForQuestionAnswering, """text-classification""": MobileBertForSequenceClassification, """token-classification""": MobileBertForTokenClassification, """zero-shot""": MobileBertForSequenceClassification, } if is_torch_available() else {} ) _lowerCamelCase : str = True def lowercase ( self , snake_case__ , snake_case__ , snake_case__=False ): lowerCAmelCase : int = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if return_labels: if model_class in get_values(snake_case__ ): lowerCAmelCase : str = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=snake_case__ ) lowerCAmelCase : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case__ ) return inputs_dict def lowercase ( self ): lowerCAmelCase : List[Any] = MobileBertModelTester(self ) lowerCAmelCase : Dict = ConfigTester(self , config_class=snake_case__ , hidden_size=37 ) def lowercase ( self ): self.config_tester.run_common_tests() def lowercase ( self ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*snake_case__ ) def __UpperCamelCase ( _A : Optional[Any] ) -> Optional[int]: """simple docstring""" return torch.tensor( _A , dtype=torch.long , device=_A , ) _lowerCAmelCase : Union[str, Any] = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase ( unittest.TestCase ): @slow def lowercase ( self ): lowerCAmelCase : List[str] = MobileBertModel.from_pretrained('google/mobilebert-uncased' ).to(snake_case__ ) lowerCAmelCase : List[Any] = _long_tensor([[101, 7110, 1005, 1056, 2023, 1_1333, 1_7413, 1029, 102]] ) with torch.no_grad(): lowerCAmelCase : Tuple = model(snake_case__ )[0] lowerCAmelCase : List[Any] = torch.Size((1, 9, 512) ) self.assertEqual(output.shape , snake_case__ ) lowerCAmelCase : Union[str, Any] = torch.tensor( [ [ [-2.4_7_3_6_5_2_6e0_7, 8.2_6_9_1_6_5_6e0_4, 1.6_5_2_1_8_3_8e0_5], [-5.7_5_4_1_7_0_4e-0_1, 3.9_0_5_6_0_2_2e0_0, 4.4_0_1_1_5_0_7e0_0], [2.6_0_4_7_3_5_9e0_0, 1.5_6_7_7_6_5_2e0_0, -1.7_3_2_4_1_8_8e-0_1], ] ] , device=snake_case__ , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE lowerCAmelCase : List[str] = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) lowerCAmelCase : Dict = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
715
'''simple docstring''' import argparse import os import re _lowerCAmelCase : Dict = 'src/diffusers' # Pattern that looks at the indentation in a line. _lowerCAmelCase : str = re.compile(r'^(\s*)\S') # Pattern that matches `"key":" and puts `key` in group 0. _lowerCAmelCase : Any = re.compile(r'^\s*"([^"]+)":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. _lowerCAmelCase : List[Any] = re.compile(r'^\s*_import_structure\["([^"]+)"\]') # Pattern that matches `"key",` and puts `key` in group 0. _lowerCAmelCase : int = re.compile(r'^\s*"([^"]+)",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. _lowerCAmelCase : Optional[Any] = re.compile(r'\[([^\]]+)\]') def __UpperCamelCase ( _A : Union[str, Any] ) -> Dict: """simple docstring""" lowerCAmelCase : Any = _re_indent.search(_A ) return "" if search is None else search.groups()[0] def __UpperCamelCase ( _A : Dict , _A : Any="" , _A : List[str]=None , _A : Any=None ) -> Tuple: """simple docstring""" lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Tuple = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(_A ): index += 1 lowerCAmelCase : Optional[int] = ['\n'.join(lines[:index] )] else: lowerCAmelCase : int = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowerCAmelCase : Tuple = [lines[index]] index += 1 while index < len(_A ) and (end_prompt is None or not lines[index].startswith(_A )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(_A ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(_A ) ) if index < len(_A ) - 1: lowerCAmelCase : List[Any] = [lines[index + 1]] index += 1 else: lowerCAmelCase : int = [] else: blocks.append('\n'.join(_A ) ) lowerCAmelCase : Any = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(_A ) > 0: blocks.append('\n'.join(_A ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(_A ): blocks.append('\n'.join(lines[index:] ) ) return blocks def __UpperCamelCase ( _A : Dict ) -> List[Any]: """simple docstring""" def _inner(_A : Tuple ): return key(_A ).lower().replace('_' , '' ) return _inner def __UpperCamelCase ( _A : Union[str, Any] , _A : Any=None ) -> Optional[Any]: """simple docstring""" def noop(_A : Any ): return x if key is None: lowerCAmelCase : List[str] = noop # Constants are all uppercase, they go first. lowerCAmelCase : str = [obj for obj in objects if key(_A ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowerCAmelCase : List[str] = [obj for obj in objects if key(_A )[0].isupper() and not key(_A ).isupper()] # Functions begin with a lowercase, they go last. lowerCAmelCase : Optional[Any] = [obj for obj in objects if not key(_A )[0].isupper()] lowerCAmelCase : Tuple = ignore_underscore(_A ) return sorted(_A , key=_A ) + sorted(_A , key=_A ) + sorted(_A , key=_A ) def __UpperCamelCase ( _A : Union[str, Any] ) -> int: """simple docstring""" def _replace(_A : List[Any] ): lowerCAmelCase : List[Any] = match.groups()[0] if "," not in imports: return F"[{imports}]" lowerCAmelCase : Dict = [part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase : List[str] = keys[:-1] return "[" + ", ".join([F"\"{k}\"" for k in sort_objects(_A )] ) + "]" lowerCAmelCase : Optional[int] = import_statement.split('\n' ) if len(_A ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowerCAmelCase : Optional[Any] = 2 if lines[1].strip() == '[' else 1 lowerCAmelCase : List[str] = [(i, _re_strip_line.search(_A ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowerCAmelCase : Optional[Any] = sort_objects(_A , key=lambda _A : x[1] ) lowerCAmelCase : Dict = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(_A ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowerCAmelCase : Optional[int] = _re_bracket_content.sub(_replace , lines[1] ) else: lowerCAmelCase : List[Any] = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase : int = keys[:-1] lowerCAmelCase : Tuple = get_indent(lines[1] ) + ', '.join([F"\"{k}\"" for k in sort_objects(_A )] ) return "\n".join(_A ) else: # Finally we have to deal with imports fitting on one line lowerCAmelCase : Union[str, Any] = _re_bracket_content.sub(_replace , _A ) return import_statement def __UpperCamelCase ( _A : str , _A : Tuple=True ) -> Optional[Any]: """simple docstring""" with open(_A , 'r' ) as f: lowerCAmelCase : Optional[int] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowerCAmelCase : List[Any] = split_code_in_indented_blocks( _A , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(_A ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowerCAmelCase : List[str] = main_blocks[block_idx] lowerCAmelCase : Union[str, Any] = block.split('\n' ) # Get to the start of the imports. lowerCAmelCase : Optional[Any] = 0 while line_idx < len(_A ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowerCAmelCase : Optional[Any] = len(_A ) else: line_idx += 1 if line_idx >= len(_A ): continue # Ignore beginning and last line: they don't contain anything. lowerCAmelCase : str = '\n'.join(block_lines[line_idx:-1] ) lowerCAmelCase : str = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowerCAmelCase : Optional[Any] = split_code_in_indented_blocks(_A , indent_level=_A ) # We have two categories of import key: list or _import_structure[key].append/extend lowerCAmelCase : Union[str, Any] = _re_direct_key if '_import_structure' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowerCAmelCase : int = [(pattern.search(_A ).groups()[0] if pattern.search(_A ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowerCAmelCase : Dict = [(i, key) for i, key in enumerate(_A ) if key is not None] lowerCAmelCase : List[Any] = [x[0] for x in sorted(_A , key=lambda _A : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowerCAmelCase : int = 0 lowerCAmelCase : Dict = [] for i in range(len(_A ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: lowerCAmelCase : str = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(_A ) count += 1 # And we put our main block back together with its first and last line. lowerCAmelCase : str = '\n'.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(_A ): if check_only: return True else: print(F"Overwriting {file}." ) with open(_A , 'w' ) as f: f.write('\n'.join(_A ) ) def __UpperCamelCase ( _A : Tuple=True ) -> Any: """simple docstring""" lowerCAmelCase : Tuple = [] for root, _, files in os.walk(_A ): if "__init__.py" in files: lowerCAmelCase : Any = sort_imports(os.path.join(_A , '__init__.py' ) , check_only=_A ) if result: lowerCAmelCase : Optional[Any] = [os.path.join(_A , '__init__.py' )] if len(_A ) > 0: raise ValueError(F"Would overwrite {len(_A )} files, run `make style`." ) if __name__ == "__main__": _lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') _lowerCAmelCase : Optional[int] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
646
0
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece_no_bos.model') @require_sentencepiece @require_tokenizers class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : str = PegasusTokenizer _lowerCamelCase : Union[str, Any] = PegasusTokenizerFast _lowerCamelCase : Optional[Any] = True _lowerCamelCase : Optional[Any] = True def lowercase ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : List[Any] = PegasusTokenizer(snake_case__ ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase ( self ): return PegasusTokenizer.from_pretrained('google/pegasus-large' ) def lowercase ( self , **snake_case__ ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def lowercase ( self , snake_case__ ): return ("This is a test", "This is a test") def lowercase ( self ): lowerCAmelCase : Optional[int] = '</s>' lowerCAmelCase : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '</s>' ) self.assertEqual(vocab_keys[-1] , 'v' ) self.assertEqual(len(snake_case__ ) , 1103 ) def lowercase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def lowercase ( self ): lowerCAmelCase : List[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : List[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : Optional[Any] = ( 'Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important' ' </s> <pad> <pad> <pad>' ) lowerCAmelCase : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] lowerCAmelCase : Optional[int] = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Any = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowerCAmelCase : List[str] = '<mask_1> To ensure a <mask_2> flow of bank resolutions.' lowerCAmelCase : Optional[Any] = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1] lowerCAmelCase : Optional[Any] = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Optional[Any] = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 lowerCAmelCase : List[Any] = 'To ensure a smooth flow of bank resolutions.' lowerCAmelCase : Optional[int] = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1] lowerCAmelCase : Any = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def lowercase ( self ): lowerCAmelCase : Union[str, Any] = ['This is going to be way too long.' * 150, 'short example'] lowerCAmelCase : int = ['not super long but more than 5 tokens', 'tiny'] lowerCAmelCase : Dict = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) lowerCAmelCase : Dict = self._large_tokenizer( text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(snake_case__ ) == 2 # input_ids, attention_mask. @slow def lowercase ( self ): # fmt: off lowerCAmelCase : Tuple = {'input_ids': [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name='google/bigbird-pegasus-large-arxiv' , revision='ba85d0851d708441f91440d509690f1ab6353415' , ) @require_sentencepiece @require_tokenizers class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : Optional[Any] = PegasusTokenizer _lowerCamelCase : str = PegasusTokenizerFast _lowerCamelCase : Tuple = True _lowerCamelCase : int = True def lowercase ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : int = PegasusTokenizer(snake_case__ , offset=0 , mask_token_sent=snake_case__ , mask_token='[MASK]' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase ( self ): return PegasusTokenizer.from_pretrained('google/bigbird-pegasus-large-arxiv' ) def lowercase ( self , **snake_case__ ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def lowercase ( self , snake_case__ ): return ("This is a test", "This is a test") def lowercase ( self ): lowerCAmelCase : Tuple = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : Union[str, Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : List[str] = ( 'Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>' ' <pad> <pad> <pad>' ) lowerCAmelCase : Dict = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] lowerCAmelCase : Union[str, Any] = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) @require_torch def lowercase ( self ): lowerCAmelCase : Optional[int] = ['This is going to be way too long.' * 1000, 'short example'] lowerCAmelCase : Union[str, Any] = ['not super long but more than 5 tokens', 'tiny'] lowerCAmelCase : List[str] = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) lowerCAmelCase : List[str] = self._large_tokenizer( text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(snake_case__ ) == 2 # input_ids, attention_mask. def lowercase ( self ): lowerCAmelCase : List[str] = ( 'This is an example string that is used to test the original TF implementation against the HF' ' implementation' ) lowerCAmelCase : Tuple = self._large_tokenizer(snake_case__ ).input_ids self.assertListEqual( snake_case__ , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
716
'''simple docstring''' import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class lowerCAmelCase : def __init__( self , snake_case__ , snake_case__=13 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=99 , snake_case__=64 , snake_case__=32 , snake_case__=5 , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=16 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=3 , snake_case__=4 , snake_case__=None , ): lowerCAmelCase : str = parent lowerCAmelCase : Optional[int] = batch_size lowerCAmelCase : Optional[Any] = seq_length lowerCAmelCase : Optional[Any] = is_training lowerCAmelCase : Dict = use_input_mask lowerCAmelCase : Tuple = use_token_type_ids lowerCAmelCase : int = use_labels lowerCAmelCase : int = vocab_size lowerCAmelCase : Any = hidden_size lowerCAmelCase : Optional[Any] = embedding_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : List[str] = num_attention_heads lowerCAmelCase : List[Any] = intermediate_size lowerCAmelCase : Dict = hidden_act lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : int = attention_probs_dropout_prob lowerCAmelCase : List[Any] = max_position_embeddings lowerCAmelCase : int = type_vocab_size lowerCAmelCase : List[str] = type_sequence_label_size lowerCAmelCase : Dict = initializer_range lowerCAmelCase : Any = num_labels lowerCAmelCase : str = num_choices lowerCAmelCase : int = scope def lowercase ( self ): lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Union[str, Any] = None if self.use_input_mask: lowerCAmelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : Optional[int] = None if self.use_token_type_ids: lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : Optional[Any] = None lowerCAmelCase : Optional[Any] = None lowerCAmelCase : Dict = None if self.use_labels: lowerCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase ( self ): return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case__ , initializer_range=self.initializer_range , ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = MobileBertModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : int = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) lowerCAmelCase : Optional[int] = model(snake_case__ , token_type_ids=snake_case__ ) lowerCAmelCase : Optional[Any] = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : int = MobileBertForMaskedLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : str = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = MobileBertForNextSentencePrediction(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : str = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : List[Any] = MobileBertForPreTraining(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Tuple = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , next_sentence_label=snake_case__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = MobileBertForQuestionAnswering(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : List[str] = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = self.num_labels lowerCAmelCase : List[Any] = MobileBertForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = self.num_labels lowerCAmelCase : int = MobileBertForTokenClassification(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : List[str] = self.num_choices lowerCAmelCase : Any = MobileBertForMultipleChoice(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : int = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : List[str] = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase ( self ): lowerCAmelCase : Any = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) : Optional[Any] = config_and_inputs lowerCAmelCase : List[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase ( a , a , unittest.TestCase ): _lowerCamelCase : List[str] = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) _lowerCamelCase : Tuple = ( { """feature-extraction""": MobileBertModel, """fill-mask""": MobileBertForMaskedLM, """question-answering""": MobileBertForQuestionAnswering, """text-classification""": MobileBertForSequenceClassification, """token-classification""": MobileBertForTokenClassification, """zero-shot""": MobileBertForSequenceClassification, } if is_torch_available() else {} ) _lowerCamelCase : str = True def lowercase ( self , snake_case__ , snake_case__ , snake_case__=False ): lowerCAmelCase : int = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if return_labels: if model_class in get_values(snake_case__ ): lowerCAmelCase : str = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=snake_case__ ) lowerCAmelCase : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case__ ) return inputs_dict def lowercase ( self ): lowerCAmelCase : List[Any] = MobileBertModelTester(self ) lowerCAmelCase : Dict = ConfigTester(self , config_class=snake_case__ , hidden_size=37 ) def lowercase ( self ): self.config_tester.run_common_tests() def lowercase ( self ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*snake_case__ ) def __UpperCamelCase ( _A : Optional[Any] ) -> Optional[int]: """simple docstring""" return torch.tensor( _A , dtype=torch.long , device=_A , ) _lowerCAmelCase : Union[str, Any] = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase ( unittest.TestCase ): @slow def lowercase ( self ): lowerCAmelCase : List[str] = MobileBertModel.from_pretrained('google/mobilebert-uncased' ).to(snake_case__ ) lowerCAmelCase : List[Any] = _long_tensor([[101, 7110, 1005, 1056, 2023, 1_1333, 1_7413, 1029, 102]] ) with torch.no_grad(): lowerCAmelCase : Tuple = model(snake_case__ )[0] lowerCAmelCase : List[Any] = torch.Size((1, 9, 512) ) self.assertEqual(output.shape , snake_case__ ) lowerCAmelCase : Union[str, Any] = torch.tensor( [ [ [-2.4_7_3_6_5_2_6e0_7, 8.2_6_9_1_6_5_6e0_4, 1.6_5_2_1_8_3_8e0_5], [-5.7_5_4_1_7_0_4e-0_1, 3.9_0_5_6_0_2_2e0_0, 4.4_0_1_1_5_0_7e0_0], [2.6_0_4_7_3_5_9e0_0, 1.5_6_7_7_6_5_2e0_0, -1.7_3_2_4_1_8_8e-0_1], ] ] , device=snake_case__ , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE lowerCAmelCase : List[str] = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) lowerCAmelCase : Dict = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
646
0
'''simple docstring''' import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer _lowerCAmelCase : List[Any] = logging.getLogger(__name__) def __UpperCamelCase ( ) -> Any: """simple docstring""" lowerCAmelCase : str = argparse.ArgumentParser( description='Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.' ) parser.add_argument( '--dataset_name' , type=_A , default='wikitext' , help='Name of the training. Explore datasets at: hf.co/datasets.' , ) parser.add_argument( '--dataset_config' , type=_A , default='wikitext-103-raw-v1' , help='Configuration name of the dataset.' ) parser.add_argument( '--tokenizer_name_or_path' , type=_A , default='sayakpaul/unigram-tokenizer-wikitext' , help='Tokenizer identifier. Can be a local filepath or a Hub identifier.' , ) parser.add_argument( '--shard_size' , type=_A , default=10_00 , help='Number of entries to go in a single shard.' , ) parser.add_argument('--split' , type=_A , default='train' , choices=['train', 'test', 'validation'] ) parser.add_argument( '--limit' , default=_A , type=_A , help='Limit the number of shards (used for debugging).' , ) parser.add_argument( '--max_length' , type=_A , default=5_12 , help='Maximum sequence length. For training on TPUs, it helps to have a maximum' ' sequence length that is a multiple of 8.' , ) parser.add_argument( '--output_dir' , default='tf-tpu' , type=_A , help='Output directory where the TFRecord shards will be saved. If the' ' path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord' ' shards will be directly saved to a Google Cloud Storage bucket.' , ) lowerCAmelCase : Any = parser.parse_args() return args def __UpperCamelCase ( _A : Optional[int] ) -> int: """simple docstring""" def fn(_A : Tuple ): return tokenizer(examples['text'] ) return fn def __UpperCamelCase ( _A : int ) -> int: """simple docstring""" lowerCAmelCase : Tuple = [] for i in range(len(tokenized_data['input_ids'] ) ): lowerCAmelCase : Optional[Any] = { 'input_ids': tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data['input_ids'][i] ) ), 'attention_mask': tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data['attention_mask'][i] ) ), } lowerCAmelCase : Any = tf.train.Features(feature=_A ) lowerCAmelCase : List[str] = tf.train.Example(features=_A ) lowerCAmelCase : Tuple = example.SerializeToString() records.append(_A ) return records def __UpperCamelCase ( _A : int ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase : Union[str, Any] = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: lowerCAmelCase : Optional[Any] = min(len(_A ) , args.limit ) lowerCAmelCase : Dict = dataset.select(range(_A ) ) print(F"Limiting the dataset to {args.limit} entries." ) lowerCAmelCase : str = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) lowerCAmelCase : Any = os.path.join(args.output_dir , args.split ) if not os.path.exists(_A ): os.makedirs(_A ) else: lowerCAmelCase : List[Any] = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. lowerCAmelCase : Any = tokenize_function(_A ) lowerCAmelCase : Optional[int] = dataset.map(_A , batched=_A , num_proc=4 , remove_columns=['text'] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(_A : str ): # Concatenate all texts. lowerCAmelCase : Optional[int] = {k: sum(examples[k] , [] ) for k in examples.keys()} lowerCAmelCase : str = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 lowerCAmelCase : List[Any] = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. lowerCAmelCase : str = { k: [t[i : i + args.max_length] for i in range(0 , _A , args.max_length )] for k, t in concatenated_examples.items() } return result lowerCAmelCase : List[Any] = dataset_tokenized.map(_A , batched=_A , batch_size=10_00 , num_proc=4 ) lowerCAmelCase : Union[str, Any] = 0 lowerCAmelCase : Tuple = 0 for shard in range(0 , len(_A ) , args.shard_size ): lowerCAmelCase : Optional[Any] = grouped_dataset[shard : shard + args.shard_size] lowerCAmelCase : List[str] = len(dataset_snapshot['input_ids'] ) lowerCAmelCase : Union[str, Any] = os.path.join(_A , F"dataset-{shard_count}-{records_containing}.tfrecord" ) lowerCAmelCase : List[Any] = get_serialized_examples(_A ) with tf.io.TFRecordWriter(_A ) as out_file: for i in range(len(_A ) ): lowerCAmelCase : Union[str, Any] = serialized_examples[i] out_file.write(_A ) print('Wrote file {} containing {} records'.format(_A , _A ) ) shard_count += 1 total_records += records_containing with open(F"split-{args.split}-records-count.txt" , 'w' ) as f: print(F"Total {args.split} records: {total_records}" , file=_A ) if __name__ == "__main__": _lowerCAmelCase : List[Any] = parse_args() main(args)
717
'''simple docstring''' import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __UpperCamelCase ( _A : Dict ) -> int: """simple docstring""" lowerCAmelCase : Tuple = [] embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight", F"stage{idx}.patch_embed.proj.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias", F"stage{idx}.patch_embed.proj.bias", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight", F"stage{idx}.patch_embed.norm.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias", F"stage{idx}.patch_embed.norm.bias", ) ) return embed def __UpperCamelCase ( _A : List[Any] , _A : Dict ) -> Any: """simple docstring""" lowerCAmelCase : str = [] attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight", F"stage{idx}.blocks.{cnt}.attn.proj_q.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias", F"stage{idx}.blocks.{cnt}.attn.proj_q.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight", F"stage{idx}.blocks.{cnt}.attn.proj_k.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias", F"stage{idx}.blocks.{cnt}.attn.proj_k.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight", F"stage{idx}.blocks.{cnt}.attn.proj_v.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias", F"stage{idx}.blocks.{cnt}.attn.proj_v.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight", F"stage{idx}.blocks.{cnt}.attn.proj.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias", F"stage{idx}.blocks.{cnt}.attn.proj.bias", ) ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc2.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight", F"stage{idx}.blocks.{cnt}.norm1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias", F"stage{idx}.blocks.{cnt}.norm1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight", F"stage{idx}.blocks.{cnt}.norm2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias", F"stage{idx}.blocks.{cnt}.norm2.bias") ) return attention_weights def __UpperCamelCase ( _A : Optional[int] ) -> Optional[int]: """simple docstring""" lowerCAmelCase : Optional[int] = [] token.append((F"cvt.encoder.stages.{idx}.cls_token", 'stage2.cls_token') ) return token def __UpperCamelCase ( ) -> int: """simple docstring""" lowerCAmelCase : List[Any] = [] head.append(('layernorm.weight', 'norm.weight') ) head.append(('layernorm.bias', 'norm.bias') ) head.append(('classifier.weight', 'head.weight') ) head.append(('classifier.bias', 'head.bias') ) return head def __UpperCamelCase ( _A : str , _A : Optional[Any] , _A : Dict , _A : str ) -> Optional[int]: """simple docstring""" lowerCAmelCase : List[str] = 'imagenet-1k-id2label.json' lowerCAmelCase : Tuple = 10_00 lowerCAmelCase : str = 'huggingface/label-files' lowerCAmelCase : List[Any] = num_labels lowerCAmelCase : Any = json.load(open(cached_download(hf_hub_url(_A , _A , repo_type='dataset' ) ) , 'r' ) ) lowerCAmelCase : List[str] = {int(_A ): v for k, v in idalabel.items()} lowerCAmelCase : List[str] = idalabel lowerCAmelCase : str = {v: k for k, v in idalabel.items()} lowerCAmelCase : int = CvtConfig(num_labels=_A , idalabel=_A , labelaid=_A ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13": lowerCAmelCase : List[str] = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21": lowerCAmelCase : Tuple = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: lowerCAmelCase : Any = [2, 2, 20] lowerCAmelCase : List[str] = [3, 12, 16] lowerCAmelCase : List[Any] = [1_92, 7_68, 10_24] lowerCAmelCase : Union[str, Any] = CvtForImageClassification(_A ) lowerCAmelCase : str = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) lowerCAmelCase : Optional[Any] = image_size lowerCAmelCase : List[Any] = torch.load(_A , map_location=torch.device('cpu' ) ) lowerCAmelCase : str = OrderedDict() lowerCAmelCase : int = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: lowerCAmelCase : List[str] = list_of_state_dict + cls_token(_A ) lowerCAmelCase : Optional[Any] = list_of_state_dict + embeddings(_A ) for cnt in range(config.depth[idx] ): lowerCAmelCase : List[Any] = list_of_state_dict + attention(_A , _A ) lowerCAmelCase : List[str] = list_of_state_dict + final() for gg in list_of_state_dict: print(_A ) for i in range(len(_A ) ): lowerCAmelCase : Tuple = original_weights[list_of_state_dict[i][1]] model.load_state_dict(_A ) model.save_pretrained(_A ) image_processor.save_pretrained(_A ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": _lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '--cvt_model', default='cvt-w24', type=str, help='Name of the cvt model you\'d like to convert.', ) parser.add_argument( '--image_size', default=384, type=int, help='Input Image Size', ) parser.add_argument( '--cvt_file_name', default=r'cvtmodels\CvT-w24-384x384-IN-22k.pth', type=str, help='Input Image Size', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) _lowerCAmelCase : str = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
646
0
'''simple docstring''' from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class lowerCAmelCase ( a ): _lowerCamelCase : str = """openai/whisper-base""" _lowerCamelCase : int = ( """This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the """ """transcribed text.""" ) _lowerCamelCase : int = """transcriber""" _lowerCamelCase : List[str] = WhisperProcessor _lowerCamelCase : Optional[int] = WhisperForConditionalGeneration _lowerCamelCase : List[Any] = ["""audio"""] _lowerCamelCase : List[str] = ["""text"""] def lowercase ( self , snake_case__ ): return self.pre_processor(snake_case__ , return_tensors='pt' ).input_features def lowercase ( self , snake_case__ ): return self.model.generate(inputs=snake_case__ ) def lowercase ( self , snake_case__ ): return self.pre_processor.batch_decode(snake_case__ , skip_special_tokens=snake_case__ )[0]
718
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Any = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { 'xlm-roberta-base': 'https://huggingface.co/xlm-roberta-base/resolve/main/config.json', 'xlm-roberta-large': 'https://huggingface.co/xlm-roberta-large/resolve/main/config.json', 'xlm-roberta-large-finetuned-conll02-dutch': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll02-spanish': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-english': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-german': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json' ), } class lowerCAmelCase ( a ): _lowerCamelCase : List[str] = """xlm-roberta""" def __init__( self , snake_case__=3_0522 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=1e-1_2 , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__="absolute" , snake_case__=True , snake_case__=None , **snake_case__ , ): super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) lowerCAmelCase : Optional[Any] = vocab_size lowerCAmelCase : Optional[Any] = hidden_size lowerCAmelCase : Optional[Any] = num_hidden_layers lowerCAmelCase : Any = num_attention_heads lowerCAmelCase : Optional[int] = hidden_act lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : Dict = hidden_dropout_prob lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob lowerCAmelCase : Optional[Any] = max_position_embeddings lowerCAmelCase : Optional[int] = type_vocab_size lowerCAmelCase : int = initializer_range lowerCAmelCase : List[Any] = layer_norm_eps lowerCAmelCase : Union[str, Any] = position_embedding_type lowerCAmelCase : Union[str, Any] = use_cache lowerCAmelCase : List[str] = classifier_dropout class lowerCAmelCase ( a ): @property def lowercase ( self ): if self.task == "multiple-choice": lowerCAmelCase : str = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase : Optional[int] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
646
0
'''simple docstring''' import math def __UpperCamelCase ( _A : int = 1_00 ) -> int: """simple docstring""" lowerCAmelCase : List[Any] = sum(i * i for i in range(1 , n + 1 ) ) lowerCAmelCase : Optional[Any] = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f"""{solution() = }""")
719
'''simple docstring''' import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer _lowerCAmelCase : List[Any] = logging.getLogger(__name__) def __UpperCamelCase ( ) -> Any: """simple docstring""" lowerCAmelCase : str = argparse.ArgumentParser( description='Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.' ) parser.add_argument( '--dataset_name' , type=_A , default='wikitext' , help='Name of the training. Explore datasets at: hf.co/datasets.' , ) parser.add_argument( '--dataset_config' , type=_A , default='wikitext-103-raw-v1' , help='Configuration name of the dataset.' ) parser.add_argument( '--tokenizer_name_or_path' , type=_A , default='sayakpaul/unigram-tokenizer-wikitext' , help='Tokenizer identifier. Can be a local filepath or a Hub identifier.' , ) parser.add_argument( '--shard_size' , type=_A , default=10_00 , help='Number of entries to go in a single shard.' , ) parser.add_argument('--split' , type=_A , default='train' , choices=['train', 'test', 'validation'] ) parser.add_argument( '--limit' , default=_A , type=_A , help='Limit the number of shards (used for debugging).' , ) parser.add_argument( '--max_length' , type=_A , default=5_12 , help='Maximum sequence length. For training on TPUs, it helps to have a maximum' ' sequence length that is a multiple of 8.' , ) parser.add_argument( '--output_dir' , default='tf-tpu' , type=_A , help='Output directory where the TFRecord shards will be saved. If the' ' path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord' ' shards will be directly saved to a Google Cloud Storage bucket.' , ) lowerCAmelCase : Any = parser.parse_args() return args def __UpperCamelCase ( _A : Optional[int] ) -> int: """simple docstring""" def fn(_A : Tuple ): return tokenizer(examples['text'] ) return fn def __UpperCamelCase ( _A : int ) -> int: """simple docstring""" lowerCAmelCase : Tuple = [] for i in range(len(tokenized_data['input_ids'] ) ): lowerCAmelCase : Optional[Any] = { 'input_ids': tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data['input_ids'][i] ) ), 'attention_mask': tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data['attention_mask'][i] ) ), } lowerCAmelCase : Any = tf.train.Features(feature=_A ) lowerCAmelCase : List[str] = tf.train.Example(features=_A ) lowerCAmelCase : Tuple = example.SerializeToString() records.append(_A ) return records def __UpperCamelCase ( _A : int ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase : Union[str, Any] = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: lowerCAmelCase : Optional[Any] = min(len(_A ) , args.limit ) lowerCAmelCase : Dict = dataset.select(range(_A ) ) print(F"Limiting the dataset to {args.limit} entries." ) lowerCAmelCase : str = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) lowerCAmelCase : Any = os.path.join(args.output_dir , args.split ) if not os.path.exists(_A ): os.makedirs(_A ) else: lowerCAmelCase : List[Any] = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. lowerCAmelCase : Any = tokenize_function(_A ) lowerCAmelCase : Optional[int] = dataset.map(_A , batched=_A , num_proc=4 , remove_columns=['text'] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(_A : str ): # Concatenate all texts. lowerCAmelCase : Optional[int] = {k: sum(examples[k] , [] ) for k in examples.keys()} lowerCAmelCase : str = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 lowerCAmelCase : List[Any] = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. lowerCAmelCase : str = { k: [t[i : i + args.max_length] for i in range(0 , _A , args.max_length )] for k, t in concatenated_examples.items() } return result lowerCAmelCase : List[Any] = dataset_tokenized.map(_A , batched=_A , batch_size=10_00 , num_proc=4 ) lowerCAmelCase : Union[str, Any] = 0 lowerCAmelCase : Tuple = 0 for shard in range(0 , len(_A ) , args.shard_size ): lowerCAmelCase : Optional[Any] = grouped_dataset[shard : shard + args.shard_size] lowerCAmelCase : List[str] = len(dataset_snapshot['input_ids'] ) lowerCAmelCase : Union[str, Any] = os.path.join(_A , F"dataset-{shard_count}-{records_containing}.tfrecord" ) lowerCAmelCase : List[Any] = get_serialized_examples(_A ) with tf.io.TFRecordWriter(_A ) as out_file: for i in range(len(_A ) ): lowerCAmelCase : Union[str, Any] = serialized_examples[i] out_file.write(_A ) print('Wrote file {} containing {} records'.format(_A , _A ) ) shard_count += 1 total_records += records_containing with open(F"split-{args.split}-records-count.txt" , 'w' ) as f: print(F"Total {args.split} records: {total_records}" , file=_A ) if __name__ == "__main__": _lowerCAmelCase : List[Any] = parse_args() main(args)
646
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase : int = { 'configuration_upernet': ['UperNetConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : str = [ 'UperNetForSemanticSegmentation', 'UperNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys _lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
720
'''simple docstring''' import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() _lowerCAmelCase : List[str] = logging.get_logger('transformers.models.speecht5') def __UpperCamelCase ( _A : Any , _A : Dict , _A : Any ) -> Union[str, Any]: """simple docstring""" hf_model.apply_weight_norm() lowerCAmelCase : int = checkpoint['input_conv.weight_g'] lowerCAmelCase : Optional[int] = checkpoint['input_conv.weight_v'] lowerCAmelCase : Dict = checkpoint['input_conv.bias'] for i in range(len(config.upsample_rates ) ): lowerCAmelCase : Optional[Any] = checkpoint[F"upsamples.{i}.1.weight_g"] lowerCAmelCase : str = checkpoint[F"upsamples.{i}.1.weight_v"] lowerCAmelCase : str = checkpoint[F"upsamples.{i}.1.bias"] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): lowerCAmelCase : int = checkpoint[F"blocks.{i}.convs1.{j}.1.weight_g"] lowerCAmelCase : str = checkpoint[F"blocks.{i}.convs1.{j}.1.weight_v"] lowerCAmelCase : int = checkpoint[F"blocks.{i}.convs1.{j}.1.bias"] lowerCAmelCase : Optional[Any] = checkpoint[F"blocks.{i}.convs2.{j}.1.weight_g"] lowerCAmelCase : Tuple = checkpoint[F"blocks.{i}.convs2.{j}.1.weight_v"] lowerCAmelCase : Tuple = checkpoint[F"blocks.{i}.convs2.{j}.1.bias"] lowerCAmelCase : List[Any] = checkpoint['output_conv.1.weight_g'] lowerCAmelCase : List[str] = checkpoint['output_conv.1.weight_v'] lowerCAmelCase : Optional[Any] = checkpoint['output_conv.1.bias'] hf_model.remove_weight_norm() @torch.no_grad() def __UpperCamelCase ( _A : Dict , _A : Union[str, Any] , _A : List[Any] , _A : Any=None , _A : Any=None , ) -> Dict: """simple docstring""" if config_path is not None: lowerCAmelCase : Dict = SpeechTaHifiGanConfig.from_pretrained(_A ) else: lowerCAmelCase : Union[str, Any] = SpeechTaHifiGanConfig() lowerCAmelCase : List[Any] = SpeechTaHifiGan(_A ) lowerCAmelCase : List[str] = torch.load(_A ) load_weights(orig_checkpoint['model']['generator'] , _A , _A ) lowerCAmelCase : Tuple = np.load(_A ) lowerCAmelCase : List[Any] = stats[0].reshape(-1 ) lowerCAmelCase : int = stats[1].reshape(-1 ) lowerCAmelCase : Union[str, Any] = torch.from_numpy(_A ).float() lowerCAmelCase : int = torch.from_numpy(_A ).float() model.save_pretrained(_A ) if repo_id: print('Pushing to the hub...' ) model.push_to_hub(_A ) if __name__ == "__main__": _lowerCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--stats_path', required=True, default=None, type=str, help='Path to stats.npy file') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) _lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
646
0
'''simple docstring''' import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging _lowerCAmelCase : Any = logging.get_logger(__name__) def __UpperCamelCase ( _A : List[Any] , _A : Any ) -> Optional[Any]: """simple docstring""" lowerCAmelCase : int = set() lowerCAmelCase : List[Any] = [] def parse_line(_A : Optional[int] ): for line in fp: if isinstance(_A , _A ): lowerCAmelCase : Optional[int] = line.decode('UTF-8' ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(' ' ): # process a single warning and move it to `selected_warnings`. if len(_A ) > 0: lowerCAmelCase : Optional[int] = '\n'.join(_A ) # Only keep the warnings specified in `targets` if any(F": {x}: " in warning for x in targets ): selected_warnings.add(_A ) buffer.clear() continue else: lowerCAmelCase : int = line.strip() buffer.append(_A ) if from_gh: for filename in os.listdir(_A ): lowerCAmelCase : Optional[int] = os.path.join(_A , _A ) if not os.path.isdir(_A ): # read the file if filename != "warnings.txt": continue with open(_A ) as fp: parse_line(_A ) else: try: with zipfile.ZipFile(_A ) as z: for filename in z.namelist(): if not os.path.isdir(_A ): # read the file if filename != "warnings.txt": continue with z.open(_A ) as fp: parse_line(_A ) except Exception: logger.warning( F"{artifact_path} is either an invalid zip file or something else wrong. This file is skipped." ) return selected_warnings def __UpperCamelCase ( _A : Dict , _A : Optional[int] ) -> Any: """simple docstring""" lowerCAmelCase : Tuple = set() lowerCAmelCase : Union[str, Any] = [os.path.join(_A , _A ) for p in os.listdir(_A ) if (p.endswith('.zip' ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(_A , _A ) ) return selected_warnings if __name__ == "__main__": def __UpperCamelCase ( _A : str ) -> int: """simple docstring""" return values.split(',' ) _lowerCAmelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') parser.add_argument( '--output_dir', type=str, required=True, help='Where to store the downloaded artifacts and other result files.', ) parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.') # optional parameters parser.add_argument( '--targets', default='DeprecationWarning,UserWarning,FutureWarning', type=list_str, help='Comma-separated list of target warning(s) which we want to extract.', ) parser.add_argument( '--from_gh', action='store_true', help='If running from a GitHub action workflow and collecting warnings from its artifacts.', ) _lowerCAmelCase : Dict = parser.parse_args() _lowerCAmelCase : Dict = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links _lowerCAmelCase : Any = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print('=' * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts _lowerCAmelCase : Optional[Any] = extract_warnings(args.output_dir, args.targets) _lowerCAmelCase : Tuple = sorted(selected_warnings) with open(os.path.join(args.output_dir, 'selected_warnings.json'), 'w', encoding='UTF-8') as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
721
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets _lowerCAmelCase : Dict = '\\n@inproceedings{popovic-2015-chrf,\n title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",\n month = sep,\n year = "2015",\n address = "Lisbon, Portugal",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W15-3049",\n doi = "10.18653/v1/W15-3049",\n pages = "392--395",\n}\n@inproceedings{popovic-2017-chrf,\n title = "chr{F}++: words helping character n-grams",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Second Conference on Machine Translation",\n month = sep,\n year = "2017",\n address = "Copenhagen, Denmark",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W17-4770",\n doi = "10.18653/v1/W17-4770",\n pages = "612--618",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' _lowerCAmelCase : Optional[Any] = '\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n' _lowerCAmelCase : List[Any] = '\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n \'score\' (float): The chrF (chrF++) score,\n \'char_order\' (int): The character n-gram order,\n \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n \'beta\' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase ( datasets.Metric ): def lowercase ( self ): if version.parse(scb.__version__ ) < version.parse('1.4.12' ): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/mjpost/sacreBLEU#chrf--chrf' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/mjpost/sacreBLEU#chrf--chrf'] , reference_urls=[ 'https://github.com/m-popovic/chrF', ] , ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ = CHRF.CHAR_ORDER , snake_case__ = CHRF.WORD_ORDER , snake_case__ = CHRF.BETA , snake_case__ = False , snake_case__ = False , snake_case__ = False , ): lowerCAmelCase : List[str] = len(references[0] ) if any(len(snake_case__ ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) lowerCAmelCase : List[str] = [[refs[i] for refs in references] for i in range(snake_case__ )] lowerCAmelCase : Union[str, Any] = CHRF(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase : Dict = sb_chrf.corpus_score(snake_case__ , snake_case__ ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
646
0
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _lowerCAmelCase : int = logging.getLogger(__name__) @dataclass class lowerCAmelCase : _lowerCamelCase : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) _lowerCamelCase : Optional[str] = field( default=a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) _lowerCamelCase : Optional[str] = field( default="""NER""" , metadata={"""help""": """Task type to fine tune in training (e.g. NER, POS, etc)"""} ) _lowerCamelCase : Optional[str] = field( default=a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) _lowerCamelCase : bool = field(default=a , metadata={"""help""": """Set this flag to use fast tokenization."""} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. _lowerCamelCase : Optional[str] = field( default=a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class lowerCAmelCase : _lowerCamelCase : str = field( metadata={"""help""": """The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."""} ) _lowerCamelCase : Optional[str] = field( default=a , metadata={"""help""": """Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."""} , ) _lowerCamelCase : int = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) _lowerCamelCase : bool = field( default=a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def __UpperCamelCase ( ) -> Optional[int]: """simple docstring""" lowerCAmelCase : int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCAmelCase : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCAmelCase : Optional[Any] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. Use" ' --overwrite_output_dir to overcome.' ) lowerCAmelCase : Dict = import_module('tasks' ) try: lowerCAmelCase : List[str] = getattr(_A , model_args.task_type ) lowerCAmelCase : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( F"Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. " F"Available tasks classes are: {TokenClassificationTask.__subclasses__()}" ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , _A ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task lowerCAmelCase : Optional[Any] = token_classification_task.get_labels(data_args.labels ) lowerCAmelCase : Dict[int, str] = dict(enumerate(_A ) ) lowerCAmelCase : Optional[Any] = len(_A ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCAmelCase : List[str] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_A , idalabel=_A , labelaid={label: i for i, label in enumerate(_A )} , cache_dir=model_args.cache_dir , ) lowerCAmelCase : Tuple = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) lowerCAmelCase : Optional[Any] = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_A , cache_dir=model_args.cache_dir , ) # Get datasets lowerCAmelCase : Dict = ( TokenClassificationDataset( token_classification_task=_A , data_dir=data_args.data_dir , tokenizer=_A , labels=_A , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) lowerCAmelCase : Union[str, Any] = ( TokenClassificationDataset( token_classification_task=_A , data_dir=data_args.data_dir , tokenizer=_A , labels=_A , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(_A : np.ndarray , _A : np.ndarray ) -> Tuple[List[int], List[int]]: lowerCAmelCase : List[Any] = np.argmax(_A , axis=2 ) lowerCAmelCase : List[Any] = preds.shape lowerCAmelCase : str = [[] for _ in range(_A )] lowerCAmelCase : Optional[int] = [[] for _ in range(_A )] for i in range(_A ): for j in range(_A ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(_A : EvalPrediction ) -> Dict: lowerCAmelCase : Optional[Any] = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(_A , _A ), "precision": precision_score(_A , _A ), "recall": recall_score(_A , _A ), "f1": fa_score(_A , _A ), } # Data collator lowerCAmelCase : Optional[int] = DataCollatorWithPadding(_A , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer lowerCAmelCase : List[str] = Trainer( model=_A , args=_A , train_dataset=_A , eval_dataset=_A , compute_metrics=_A , data_collator=_A , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowerCAmelCase : str = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) lowerCAmelCase : Union[str, Any] = trainer.evaluate() lowerCAmelCase : Optional[int] = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_process_zero(): with open(_A , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , _A , _A ) writer.write('%s = %s\n' % (key, value) ) results.update(_A ) # Predict if training_args.do_predict: lowerCAmelCase : Optional[Any] = TokenClassificationDataset( token_classification_task=_A , data_dir=data_args.data_dir , tokenizer=_A , labels=_A , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) lowerCAmelCase : Any = trainer.predict(_A ) lowerCAmelCase : List[Any] = align_predictions(_A , _A ) lowerCAmelCase : Optional[Any] = os.path.join(training_args.output_dir , 'test_results.txt' ) if trainer.is_world_process_zero(): with open(_A , 'w' ) as writer: for key, value in metrics.items(): logger.info(' %s = %s' , _A , _A ) writer.write('%s = %s\n' % (key, value) ) # Save predictions lowerCAmelCase : List[Any] = os.path.join(training_args.output_dir , 'test_predictions.txt' ) if trainer.is_world_process_zero(): with open(_A , 'w' ) as writer: with open(os.path.join(data_args.data_dir , 'test.txt' ) , 'r' ) as f: token_classification_task.write_predictions_to_file(_A , _A , _A ) return results def __UpperCamelCase ( _A : Optional[Any] ) -> int: """simple docstring""" main() if __name__ == "__main__": main()
700
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : str = logging.get_logger(__name__) _lowerCAmelCase : Tuple = { 's-JoL/Open-Llama-V1': 'https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json', } class lowerCAmelCase ( a ): _lowerCamelCase : Union[str, Any] = """open-llama""" def __init__( self , snake_case__=10_0000 , snake_case__=4096 , snake_case__=1_1008 , snake_case__=32 , snake_case__=32 , snake_case__="silu" , snake_case__=2048 , snake_case__=0.0_2 , snake_case__=1e-6 , snake_case__=True , snake_case__=0 , snake_case__=1 , snake_case__=2 , snake_case__=False , snake_case__=True , snake_case__=0.1 , snake_case__=0.1 , snake_case__=True , snake_case__=True , snake_case__=None , **snake_case__ , ): lowerCAmelCase : Tuple = vocab_size lowerCAmelCase : Optional[Any] = max_position_embeddings lowerCAmelCase : List[Any] = hidden_size lowerCAmelCase : List[Any] = intermediate_size lowerCAmelCase : Tuple = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : str = rms_norm_eps lowerCAmelCase : Optional[int] = use_cache lowerCAmelCase : Dict = kwargs.pop( 'use_memorry_efficient_attention' , snake_case__ ) lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : Optional[Any] = attention_dropout_prob lowerCAmelCase : Union[str, Any] = use_stable_embedding lowerCAmelCase : Tuple = shared_input_output_embedding lowerCAmelCase : Tuple = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , tie_word_embeddings=snake_case__ , **snake_case__ , ) def lowercase ( self ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , snake_case__ ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' f"got {self.rope_scaling}" ) lowerCAmelCase : List[Any] = self.rope_scaling.get('type' , snake_case__ ) lowerCAmelCase : List[str] = self.rope_scaling.get('factor' , snake_case__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(snake_case__ , snake_case__ ) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
646
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available _lowerCAmelCase : List[Any] = {'tokenization_herbert': ['HerbertTokenizer']} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : str = ['HerbertTokenizerFast'] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys _lowerCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
701
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) _lowerCAmelCase : Dict = { 'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class lowerCAmelCase ( a ): _lowerCamelCase : Any = """deformable_detr""" _lowerCamelCase : List[str] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , snake_case__=True , snake_case__=None , snake_case__=3 , snake_case__=300 , snake_case__=1024 , snake_case__=6 , snake_case__=1024 , snake_case__=8 , snake_case__=6 , snake_case__=1024 , snake_case__=8 , snake_case__=0.0 , snake_case__=True , snake_case__="relu" , snake_case__=256 , snake_case__=0.1 , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.0_2 , snake_case__=1.0 , snake_case__=True , snake_case__=False , snake_case__="sine" , snake_case__="resnet50" , snake_case__=True , snake_case__=False , snake_case__=4 , snake_case__=4 , snake_case__=4 , snake_case__=False , snake_case__=300 , snake_case__=False , snake_case__=1 , snake_case__=5 , snake_case__=2 , snake_case__=1 , snake_case__=1 , snake_case__=5 , snake_case__=2 , snake_case__=0.1 , snake_case__=0.2_5 , snake_case__=False , **snake_case__ , ): if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) lowerCAmelCase : Optional[int] = CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : List[str] = backbone_config.get('model_type' ) lowerCAmelCase : str = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase : Optional[Any] = config_class.from_dict(snake_case__ ) lowerCAmelCase : Union[str, Any] = use_timm_backbone lowerCAmelCase : List[Any] = backbone_config lowerCAmelCase : Any = num_channels lowerCAmelCase : Tuple = num_queries lowerCAmelCase : Dict = max_position_embeddings lowerCAmelCase : int = d_model lowerCAmelCase : List[str] = encoder_ffn_dim lowerCAmelCase : List[str] = encoder_layers lowerCAmelCase : int = encoder_attention_heads lowerCAmelCase : str = decoder_ffn_dim lowerCAmelCase : str = decoder_layers lowerCAmelCase : Dict = decoder_attention_heads lowerCAmelCase : str = dropout lowerCAmelCase : List[str] = attention_dropout lowerCAmelCase : Union[str, Any] = activation_dropout lowerCAmelCase : str = activation_function lowerCAmelCase : Any = init_std lowerCAmelCase : Any = init_xavier_std lowerCAmelCase : Dict = encoder_layerdrop lowerCAmelCase : int = auxiliary_loss lowerCAmelCase : Optional[Any] = position_embedding_type lowerCAmelCase : List[str] = backbone lowerCAmelCase : int = use_pretrained_backbone lowerCAmelCase : int = dilation # deformable attributes lowerCAmelCase : List[str] = num_feature_levels lowerCAmelCase : List[str] = encoder_n_points lowerCAmelCase : Union[str, Any] = decoder_n_points lowerCAmelCase : Tuple = two_stage lowerCAmelCase : Dict = two_stage_num_proposals lowerCAmelCase : Union[str, Any] = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.' ) # Hungarian matcher lowerCAmelCase : Union[str, Any] = class_cost lowerCAmelCase : Dict = bbox_cost lowerCAmelCase : List[Any] = giou_cost # Loss coefficients lowerCAmelCase : Dict = mask_loss_coefficient lowerCAmelCase : Any = dice_loss_coefficient lowerCAmelCase : str = bbox_loss_coefficient lowerCAmelCase : Tuple = giou_loss_coefficient lowerCAmelCase : List[str] = eos_coefficient lowerCAmelCase : Any = focal_alpha lowerCAmelCase : Dict = disable_custom_kernels super().__init__(is_encoder_decoder=snake_case__ , **snake_case__ ) @property def lowercase ( self ): return self.encoder_attention_heads @property def lowercase ( self ): return self.d_model def lowercase ( self ): lowerCAmelCase : Union[str, Any] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: lowerCAmelCase : List[Any] = self.backbone_config.to_dict() lowerCAmelCase : str = self.__class__.model_type return output
646
0
'''simple docstring''' _lowerCAmelCase : Optional[int] = 256 # Modulus to hash a string _lowerCAmelCase : List[Any] = 100_0003 def __UpperCamelCase ( _A : str , _A : str ) -> bool: """simple docstring""" lowerCAmelCase : Tuple = len(_A ) lowerCAmelCase : List[Any] = len(_A ) if p_len > t_len: return False lowerCAmelCase : Any = 0 lowerCAmelCase : List[str] = 0 lowerCAmelCase : List[str] = 1 # Calculating the hash of pattern and substring of text for i in range(_A ): lowerCAmelCase : List[Any] = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus lowerCAmelCase : Tuple = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue lowerCAmelCase : int = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash lowerCAmelCase : Tuple = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def __UpperCamelCase ( ) -> None: """simple docstring""" lowerCAmelCase : List[str] = 'abc1abc12' lowerCAmelCase : Dict = 'alskfjaldsabc1abc1abc12k23adsfabcabc' lowerCAmelCase : Union[str, Any] = 'alskfjaldsk23adsfabcabc' assert rabin_karp(_A , _A ) and not rabin_karp(_A , _A ) # Test 2) lowerCAmelCase : str = 'ABABX' lowerCAmelCase : Optional[Any] = 'ABABZABABYABABX' assert rabin_karp(_A , _A ) # Test 3) lowerCAmelCase : int = 'AAAB' lowerCAmelCase : int = 'ABAAAAAB' assert rabin_karp(_A , _A ) # Test 4) lowerCAmelCase : List[str] = 'abcdabcy' lowerCAmelCase : Tuple = 'abcxabcdabxabcdabcdabcy' assert rabin_karp(_A , _A ) # Test 5) lowerCAmelCase : List[Any] = 'Lü' lowerCAmelCase : Optional[Any] = 'Lüsai' assert rabin_karp(_A , _A ) lowerCAmelCase : Optional[Any] = 'Lue' assert not rabin_karp(_A , _A ) print('Success.' ) if __name__ == "__main__": test_rabin_karp()
702
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece_no_bos.model') @require_sentencepiece @require_tokenizers class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : str = PegasusTokenizer _lowerCamelCase : Union[str, Any] = PegasusTokenizerFast _lowerCamelCase : Optional[Any] = True _lowerCamelCase : Optional[Any] = True def lowercase ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : List[Any] = PegasusTokenizer(snake_case__ ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase ( self ): return PegasusTokenizer.from_pretrained('google/pegasus-large' ) def lowercase ( self , **snake_case__ ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def lowercase ( self , snake_case__ ): return ("This is a test", "This is a test") def lowercase ( self ): lowerCAmelCase : Optional[int] = '</s>' lowerCAmelCase : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '</s>' ) self.assertEqual(vocab_keys[-1] , 'v' ) self.assertEqual(len(snake_case__ ) , 1103 ) def lowercase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def lowercase ( self ): lowerCAmelCase : List[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : List[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : Optional[Any] = ( 'Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important' ' </s> <pad> <pad> <pad>' ) lowerCAmelCase : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] lowerCAmelCase : Optional[int] = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Any = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowerCAmelCase : List[str] = '<mask_1> To ensure a <mask_2> flow of bank resolutions.' lowerCAmelCase : Optional[Any] = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1] lowerCAmelCase : Optional[Any] = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Optional[Any] = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 lowerCAmelCase : List[Any] = 'To ensure a smooth flow of bank resolutions.' lowerCAmelCase : Optional[int] = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1] lowerCAmelCase : Any = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def lowercase ( self ): lowerCAmelCase : Union[str, Any] = ['This is going to be way too long.' * 150, 'short example'] lowerCAmelCase : int = ['not super long but more than 5 tokens', 'tiny'] lowerCAmelCase : Dict = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) lowerCAmelCase : Dict = self._large_tokenizer( text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(snake_case__ ) == 2 # input_ids, attention_mask. @slow def lowercase ( self ): # fmt: off lowerCAmelCase : Tuple = {'input_ids': [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name='google/bigbird-pegasus-large-arxiv' , revision='ba85d0851d708441f91440d509690f1ab6353415' , ) @require_sentencepiece @require_tokenizers class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : Optional[Any] = PegasusTokenizer _lowerCamelCase : str = PegasusTokenizerFast _lowerCamelCase : Tuple = True _lowerCamelCase : int = True def lowercase ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : int = PegasusTokenizer(snake_case__ , offset=0 , mask_token_sent=snake_case__ , mask_token='[MASK]' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase ( self ): return PegasusTokenizer.from_pretrained('google/bigbird-pegasus-large-arxiv' ) def lowercase ( self , **snake_case__ ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def lowercase ( self , snake_case__ ): return ("This is a test", "This is a test") def lowercase ( self ): lowerCAmelCase : Tuple = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : Union[str, Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : List[str] = ( 'Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>' ' <pad> <pad> <pad>' ) lowerCAmelCase : Dict = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] lowerCAmelCase : Union[str, Any] = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) @require_torch def lowercase ( self ): lowerCAmelCase : Optional[int] = ['This is going to be way too long.' * 1000, 'short example'] lowerCAmelCase : Union[str, Any] = ['not super long but more than 5 tokens', 'tiny'] lowerCAmelCase : List[str] = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) lowerCAmelCase : List[str] = self._large_tokenizer( text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(snake_case__ ) == 2 # input_ids, attention_mask. def lowercase ( self ): lowerCAmelCase : List[str] = ( 'This is an example string that is used to test the original TF implementation against the HF' ' implementation' ) lowerCAmelCase : Tuple = self._large_tokenizer(snake_case__ ).input_ids self.assertListEqual( snake_case__ , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
646
0
'''simple docstring''' from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
703
'''simple docstring''' import math import sys import cva import numpy as np def __UpperCamelCase ( _A : np.ndarray , _A : float ) -> np.ndarray: """simple docstring""" lowerCAmelCase : Union[str, Any] = math.sqrt(_A ) lowerCAmelCase : Union[str, Any] = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def __UpperCamelCase ( _A : np.ndarray , _A : int , _A : int , _A : int ) -> np.ndarray: """simple docstring""" lowerCAmelCase : int = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def __UpperCamelCase ( _A : int , _A : float ) -> np.ndarray: """simple docstring""" lowerCAmelCase : Dict = np.zeros((kernel_size, kernel_size) ) for i in range(0 , _A ): for j in range(0 , _A ): lowerCAmelCase : Optional[int] = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(_A , _A ) def __UpperCamelCase ( _A : np.ndarray , _A : float , _A : float , _A : int , ) -> np.ndarray: """simple docstring""" lowerCAmelCase : str = np.zeros(img.shape ) lowerCAmelCase : int = get_gauss_kernel(_A , _A ) lowerCAmelCase , lowerCAmelCase : Dict = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): lowerCAmelCase : int = get_slice(_A , _A , _A , _A ) lowerCAmelCase : Any = img_s - img_s[kernel_size // 2, kernel_size // 2] lowerCAmelCase : str = vec_gaussian(_A , _A ) lowerCAmelCase : Optional[int] = np.multiply(_A , _A ) lowerCAmelCase : str = np.multiply(_A , _A ) lowerCAmelCase : Union[str, Any] = np.sum(_A ) / np.sum(_A ) lowerCAmelCase : Tuple = val return imga def __UpperCamelCase ( _A : list ) -> tuple: """simple docstring""" lowerCAmelCase : List[Any] = args[1] if args[1:] else '../image_data/lena.jpg' lowerCAmelCase : Any = float(args[2] ) if args[2:] else 1.0 lowerCAmelCase : Union[str, Any] = float(args[3] ) if args[3:] else 1.0 if args[4:]: lowerCAmelCase : int = int(args[4] ) lowerCAmelCase : Optional[Any] = kernel_size + abs(kernel_size % 2 - 1 ) else: lowerCAmelCase : Optional[int] = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Any = parse_args(sys.argv) _lowerCAmelCase : str = cva.imread(filename, 0) cva.imshow('input image', img) _lowerCAmelCase : Union[str, Any] = img / 255 _lowerCAmelCase : List[str] = out.astype('float32') _lowerCAmelCase : Optional[int] = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) _lowerCAmelCase : Union[str, Any] = out * 255 _lowerCAmelCase : Optional[Any] = np.uinta(out) cva.imshow('output image', out) cva.waitKey(0) cva.destroyAllWindows()
646
0
'''simple docstring''' _lowerCAmelCase : dict[tuple[int, int, int], int] = {} def __UpperCamelCase ( _A : int , _A : int , _A : int ) -> int: """simple docstring""" if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on lowerCAmelCase : Union[str, Any] = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one lowerCAmelCase : str = _calculate(days - 1 , _A , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 lowerCAmelCase : Tuple = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter lowerCAmelCase : int = _calculate(days - 1 , _A , 0 ) lowerCAmelCase : Any = state_late + state_absent + state_ontime lowerCAmelCase : Any = prizestrings return prizestrings def __UpperCamelCase ( _A : int = 30 ) -> int: """simple docstring""" return _calculate(_A , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
704
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowerCAmelCase : int = { 'configuration_nezha': ['NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NezhaConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Tuple = [ 'NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST', 'NezhaForNextSentencePrediction', 'NezhaForMaskedLM', 'NezhaForPreTraining', 'NezhaForMultipleChoice', 'NezhaForQuestionAnswering', 'NezhaForSequenceClassification', 'NezhaForTokenClassification', 'NezhaModel', 'NezhaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys _lowerCAmelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
646
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) _lowerCAmelCase : Any = {'vocab_file': 'sentencepiece.bpe.model'} _lowerCAmelCase : List[str] = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, } _lowerCAmelCase : Optional[int] = { 'moussaKam/mbarthez': 1024, 'moussaKam/barthez': 1024, 'moussaKam/barthez-orangesum-title': 1024, } _lowerCAmelCase : List[Any] = '▁' class lowerCAmelCase ( a ): _lowerCamelCase : List[Any] = VOCAB_FILES_NAMES _lowerCamelCase : str = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase : Union[str, Any] = ["""input_ids""", """attention_mask"""] def __init__( self , snake_case__ , snake_case__="<s>" , snake_case__="</s>" , snake_case__="</s>" , snake_case__="<s>" , snake_case__="<unk>" , snake_case__="<pad>" , snake_case__="<mask>" , snake_case__ = None , **snake_case__ , ): # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase : Optional[Any] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else mask_token lowerCAmelCase : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , sp_model_kwargs=self.sp_model_kwargs , **snake_case__ , ) lowerCAmelCase : Dict = vocab_file lowerCAmelCase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(snake_case__ ) ) lowerCAmelCase : Optional[Any] = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} lowerCAmelCase : List[str] = len(self.sp_model ) - 1 lowerCAmelCase : Tuple = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def lowercase ( self , snake_case__ , snake_case__ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase : int = [self.cls_token_id] lowerCAmelCase : Optional[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase ( self , snake_case__ , snake_case__ = None , snake_case__ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) + [1] return [1] + ([0] * len(snake_case__ )) + [1, 1] + ([0] * len(snake_case__ )) + [1] def lowercase ( self , snake_case__ , snake_case__ = None ): lowerCAmelCase : Optional[int] = [self.sep_token_id] lowerCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowercase ( self ): return len(self.sp_model ) def lowercase ( self ): lowerCAmelCase : int = {self.convert_ids_to_tokens(snake_case__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowercase ( self , snake_case__ ): return self.sp_model.encode(snake_case__ , out_type=snake_case__ ) def lowercase ( self , snake_case__ ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCAmelCase : Dict = self.sp_model.PieceToId(snake_case__ ) return spm_id if spm_id else self.unk_token_id def lowercase ( self , snake_case__ ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(snake_case__ ) def lowercase ( self , snake_case__ ): lowerCAmelCase : Optional[Any] = [] lowerCAmelCase : Optional[int] = '' lowerCAmelCase : str = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(snake_case__ ) + token lowerCAmelCase : Optional[Any] = True lowerCAmelCase : List[Any] = [] else: current_sub_tokens.append(snake_case__ ) lowerCAmelCase : str = False out_string += self.sp_model.decode(snake_case__ ) return out_string.strip() def __getstate__( self ): lowerCAmelCase : Union[str, Any] = self.__dict__.copy() lowerCAmelCase : Union[str, Any] = None return state def __setstate__( self , snake_case__ ): lowerCAmelCase : Any = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowerCAmelCase : Tuple = {} lowerCAmelCase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase ( self , snake_case__ , snake_case__ = None ): if not os.path.isdir(snake_case__ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return lowerCAmelCase : List[str] = os.path.join( snake_case__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case__ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case__ , 'wb' ) as fi: lowerCAmelCase : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(snake_case__ ) return (out_vocab_file,)
705
'''simple docstring''' from typing import Any class lowerCAmelCase : def __init__( self , snake_case__ ): lowerCAmelCase : Optional[int] = data lowerCAmelCase : Optional[Any] = None def __repr__( self ): return f"Node({self.data})" class lowerCAmelCase : def __init__( self ): lowerCAmelCase : Dict = None def __iter__( self ): lowerCAmelCase : Optional[Any] = self.head while node: yield node.data lowerCAmelCase : Optional[int] = node.next def __len__( self ): return sum(1 for _ in self ) def __repr__( self ): return "->".join([str(snake_case__ ) for item in self] ) def __getitem__( self , snake_case__ ): if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , snake_case__ , snake_case__ ): if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) lowerCAmelCase : Any = self.head for _ in range(snake_case__ ): lowerCAmelCase : List[str] = current.next lowerCAmelCase : int = data def lowercase ( self , snake_case__ ): self.insert_nth(len(self ) , snake_case__ ) def lowercase ( self , snake_case__ ): self.insert_nth(0 , snake_case__ ) def lowercase ( self , snake_case__ , snake_case__ ): if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) lowerCAmelCase : List[str] = Node(snake_case__ ) if self.head is None: lowerCAmelCase : int = new_node elif index == 0: lowerCAmelCase : List[Any] = self.head # link new_node to head lowerCAmelCase : List[Any] = new_node else: lowerCAmelCase : List[Any] = self.head for _ in range(index - 1 ): lowerCAmelCase : Union[str, Any] = temp.next lowerCAmelCase : Any = temp.next lowerCAmelCase : str = new_node def lowercase ( self ): # print every node data print(self ) def lowercase ( self ): return self.delete_nth(0 ) def lowercase ( self ): # delete from tail return self.delete_nth(len(self ) - 1 ) def lowercase ( self , snake_case__ = 0 ): if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) lowerCAmelCase : List[str] = self.head # default first node if index == 0: lowerCAmelCase : Tuple = self.head.next else: lowerCAmelCase : Dict = self.head for _ in range(index - 1 ): lowerCAmelCase : Tuple = temp.next lowerCAmelCase : Dict = temp.next lowerCAmelCase : Tuple = temp.next.next return delete_node.data def lowercase ( self ): return self.head is None def lowercase ( self ): lowerCAmelCase : List[Any] = None lowerCAmelCase : Any = self.head while current: # Store the current node's next node. lowerCAmelCase : List[str] = current.next # Make the current node's next point backwards lowerCAmelCase : int = prev # Make the previous node be the current node lowerCAmelCase : int = current # Make the current node the next node (to progress iteration) lowerCAmelCase : Optional[Any] = next_node # Return prev in order to put the head at the end lowerCAmelCase : List[Any] = prev def __UpperCamelCase ( ) -> None: """simple docstring""" lowerCAmelCase : Tuple = LinkedList() assert linked_list.is_empty() is True assert str(_A ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(_A ) == i linked_list.insert_nth(_A , i + 1 ) assert str(_A ) == "->".join(str(_A ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(_A ) == "->".join(str(_A ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(_A ) == 9 assert str(_A ) == "->".join(str(_A ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): lowerCAmelCase : Optional[Any] = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(_A ) == "->".join(str(_A ) for i in range(-8 , 1 ) ) def __UpperCamelCase ( ) -> None: """simple docstring""" lowerCAmelCase : Optional[int] = [ -9, 1_00, Node(77_34_51_12 ), 'dlrow olleH', 7, 55_55, 0, -1_92.5_55_55, 'Hello, world!', 77.9, Node(10 ), None, None, 12.20, ] lowerCAmelCase : Dict = LinkedList() for i in test_input: linked_list.insert_tail(_A ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(_A ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head lowerCAmelCase : Optional[Any] = linked_list.delete_head() assert result == -9 assert ( str(_A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail lowerCAmelCase : List[str] = linked_list.delete_tail() assert result == 12.2 assert ( str(_A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list lowerCAmelCase : List[str] = linked_list.delete_nth(10 ) assert result is None assert ( str(_A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(_A ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(_A ) assert ( str(_A ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(_A ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def __UpperCamelCase ( ) -> List[Any]: """simple docstring""" from doctest import testmod testmod() lowerCAmelCase : Optional[Any] = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(_A ) print('\nReading/changing Node data using indexing:' ) print(F"Element at Position 1: {linked_list[1]}" ) lowerCAmelCase : Tuple = input('Enter New Value: ' ).strip() print('New list:' ) print(_A ) print(F"length of linked_list is : {len(_A )}" ) if __name__ == "__main__": main()
646
0
'''simple docstring''' import re def __UpperCamelCase ( _A : str ) -> bool: """simple docstring""" lowerCAmelCase : Tuple = re.compile(r'^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$' ) if match := re.search(_A , _A ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator('+918827897895'))
706
'''simple docstring''' _lowerCAmelCase : List[str] = {str(digit): digit**5 for digit in range(10)} def __UpperCamelCase ( _A : int ) -> int: """simple docstring""" return sum(DIGITS_FIFTH_POWER[digit] for digit in str(_A ) ) def __UpperCamelCase ( ) -> int: """simple docstring""" return sum( number for number in range(10_00 , 1_00_00_00 ) if number == digits_fifth_powers_sum(_A ) ) if __name__ == "__main__": print(solution())
646
0
'''simple docstring''' from typing import Any class lowerCAmelCase : def __init__( self , snake_case__ ): lowerCAmelCase : Optional[int] = data lowerCAmelCase : Optional[Any] = None def __repr__( self ): return f"Node({self.data})" class lowerCAmelCase : def __init__( self ): lowerCAmelCase : Dict = None def __iter__( self ): lowerCAmelCase : Optional[Any] = self.head while node: yield node.data lowerCAmelCase : Optional[int] = node.next def __len__( self ): return sum(1 for _ in self ) def __repr__( self ): return "->".join([str(snake_case__ ) for item in self] ) def __getitem__( self , snake_case__ ): if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , snake_case__ , snake_case__ ): if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) lowerCAmelCase : Any = self.head for _ in range(snake_case__ ): lowerCAmelCase : List[str] = current.next lowerCAmelCase : int = data def lowercase ( self , snake_case__ ): self.insert_nth(len(self ) , snake_case__ ) def lowercase ( self , snake_case__ ): self.insert_nth(0 , snake_case__ ) def lowercase ( self , snake_case__ , snake_case__ ): if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) lowerCAmelCase : List[str] = Node(snake_case__ ) if self.head is None: lowerCAmelCase : int = new_node elif index == 0: lowerCAmelCase : List[Any] = self.head # link new_node to head lowerCAmelCase : List[Any] = new_node else: lowerCAmelCase : List[Any] = self.head for _ in range(index - 1 ): lowerCAmelCase : Union[str, Any] = temp.next lowerCAmelCase : Any = temp.next lowerCAmelCase : str = new_node def lowercase ( self ): # print every node data print(self ) def lowercase ( self ): return self.delete_nth(0 ) def lowercase ( self ): # delete from tail return self.delete_nth(len(self ) - 1 ) def lowercase ( self , snake_case__ = 0 ): if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) lowerCAmelCase : List[str] = self.head # default first node if index == 0: lowerCAmelCase : Tuple = self.head.next else: lowerCAmelCase : Dict = self.head for _ in range(index - 1 ): lowerCAmelCase : Tuple = temp.next lowerCAmelCase : Dict = temp.next lowerCAmelCase : Tuple = temp.next.next return delete_node.data def lowercase ( self ): return self.head is None def lowercase ( self ): lowerCAmelCase : List[Any] = None lowerCAmelCase : Any = self.head while current: # Store the current node's next node. lowerCAmelCase : List[str] = current.next # Make the current node's next point backwards lowerCAmelCase : int = prev # Make the previous node be the current node lowerCAmelCase : int = current # Make the current node the next node (to progress iteration) lowerCAmelCase : Optional[Any] = next_node # Return prev in order to put the head at the end lowerCAmelCase : List[Any] = prev def __UpperCamelCase ( ) -> None: """simple docstring""" lowerCAmelCase : Tuple = LinkedList() assert linked_list.is_empty() is True assert str(_A ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(_A ) == i linked_list.insert_nth(_A , i + 1 ) assert str(_A ) == "->".join(str(_A ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(_A ) == "->".join(str(_A ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(_A ) == 9 assert str(_A ) == "->".join(str(_A ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): lowerCAmelCase : Optional[Any] = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(_A ) == "->".join(str(_A ) for i in range(-8 , 1 ) ) def __UpperCamelCase ( ) -> None: """simple docstring""" lowerCAmelCase : Optional[int] = [ -9, 1_00, Node(77_34_51_12 ), 'dlrow olleH', 7, 55_55, 0, -1_92.5_55_55, 'Hello, world!', 77.9, Node(10 ), None, None, 12.20, ] lowerCAmelCase : Dict = LinkedList() for i in test_input: linked_list.insert_tail(_A ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(_A ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head lowerCAmelCase : Optional[Any] = linked_list.delete_head() assert result == -9 assert ( str(_A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail lowerCAmelCase : List[str] = linked_list.delete_tail() assert result == 12.2 assert ( str(_A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list lowerCAmelCase : List[str] = linked_list.delete_nth(10 ) assert result is None assert ( str(_A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(_A ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(_A ) assert ( str(_A ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(_A ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def __UpperCamelCase ( ) -> List[Any]: """simple docstring""" from doctest import testmod testmod() lowerCAmelCase : Optional[Any] = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(_A ) print('\nReading/changing Node data using indexing:' ) print(F"Element at Position 1: {linked_list[1]}" ) lowerCAmelCase : Tuple = input('Enter New Value: ' ).strip() print('New list:' ) print(_A ) print(F"length of linked_list is : {len(_A )}" ) if __name__ == "__main__": main()
707
'''simple docstring''' def __UpperCamelCase ( _A : List[str] ) -> Optional[Any]: """simple docstring""" if not head: return True # split the list to two parts lowerCAmelCase , lowerCAmelCase : str = head.next, head while fast and fast.next: lowerCAmelCase : Optional[int] = fast.next.next lowerCAmelCase : int = slow.next lowerCAmelCase : int = slow.next lowerCAmelCase : Optional[Any] = None # Don't forget here! But forget still works! # reverse the second part lowerCAmelCase : List[Any] = None while second: lowerCAmelCase : List[Any] = second.next lowerCAmelCase : Union[str, Any] = node lowerCAmelCase : Optional[Any] = second lowerCAmelCase : Any = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False lowerCAmelCase : Optional[Any] = node.next lowerCAmelCase : Tuple = head.next return True def __UpperCamelCase ( _A : Optional[Any] ) -> Optional[int]: """simple docstring""" if not head or not head.next: return True # 1. Get the midpoint (slow) lowerCAmelCase : Optional[int] = head while fast and fast.next: lowerCAmelCase , lowerCAmelCase : Optional[Any] = fast.next.next, slow.next # 2. Push the second half into the stack lowerCAmelCase : Tuple = [slow.val] while slow.next: lowerCAmelCase : Tuple = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False lowerCAmelCase : Union[str, Any] = cur.next return True def __UpperCamelCase ( _A : Tuple ) -> Optional[int]: """simple docstring""" if not head or not head.next: return True lowerCAmelCase : Optional[int] = {} lowerCAmelCase : int = 0 while head: if head.val in d: d[head.val].append(_A ) else: lowerCAmelCase : Any = [pos] lowerCAmelCase : int = head.next pos += 1 lowerCAmelCase : str = pos - 1 lowerCAmelCase : Optional[Any] = 0 for v in d.values(): if len(_A ) % 2 != 0: middle += 1 else: lowerCAmelCase : Any = 0 for i in range(0 , len(_A ) ): if v[i] + v[len(_A ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
646
0
'''simple docstring''' from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo _lowerCAmelCase : Optional[int] = '\\n@misc{wu2016googles,\n title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n' _lowerCAmelCase : Tuple = '\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe \'GLEU score\'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore\'s range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n' _lowerCAmelCase : Optional[Any] = '\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n \'google_bleu\': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results["google_bleu"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results["google_bleu"], 2))\n 0.4\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase ( datasets.Metric ): def lowercase ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ), } ) , ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ = 1 , snake_case__ = 4 , ): return { "google_bleu": gleu_score.corpus_gleu( list_of_references=snake_case__ , hypotheses=snake_case__ , min_len=snake_case__ , max_len=snake_case__ ) }
708
'''simple docstring''' import math def __UpperCamelCase ( _A : int = 1_00 ) -> int: """simple docstring""" lowerCAmelCase : List[Any] = sum(i * i for i in range(1 , n + 1 ) ) lowerCAmelCase : Optional[Any] = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f"""{solution() = }""")
646
0
def __UpperCamelCase ( _A : int ) -> int: """simple docstring""" if not isinstance(_A , _A ): raise ValueError('multiplicative_persistence() only accepts integral values' ) if num < 0: raise ValueError('multiplicative_persistence() does not accept negative values' ) lowerCAmelCase : Optional[Any] = 0 lowerCAmelCase : str = str(_A ) while len(_A ) != 1: lowerCAmelCase : int = [int(_A ) for i in num_string] lowerCAmelCase : List[str] = 1 for i in range(0 , len(_A ) ): total *= numbers[i] lowerCAmelCase : Any = str(_A ) steps += 1 return steps def __UpperCamelCase ( _A : int ) -> int: """simple docstring""" if not isinstance(_A , _A ): raise ValueError('additive_persistence() only accepts integral values' ) if num < 0: raise ValueError('additive_persistence() does not accept negative values' ) lowerCAmelCase : int = 0 lowerCAmelCase : Optional[Any] = str(_A ) while len(_A ) != 1: lowerCAmelCase : str = [int(_A ) for i in num_string] lowerCAmelCase : List[Any] = 0 for i in range(0 , len(_A ) ): total += numbers[i] lowerCAmelCase : Any = str(_A ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
709
'''simple docstring''' import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece_with_bytefallback.model') @require_sentencepiece @require_tokenizers class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : Tuple = GPTSwaTokenizer _lowerCamelCase : str = False _lowerCamelCase : Dict = True _lowerCamelCase : Optional[Any] = False def lowercase ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : Tuple = GPTSwaTokenizer(snake_case__ , eos_token='<unk>' , bos_token='<unk>' , pad_token='<unk>' ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase ( self , snake_case__ ): lowerCAmelCase : List[Any] = 'This is a test' lowerCAmelCase : List[Any] = 'This is a test' return input_text, output_text def lowercase ( self ): lowerCAmelCase : Tuple = '<s>' lowerCAmelCase : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def lowercase ( self ): lowerCAmelCase : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(snake_case__ ) , 2000 ) def lowercase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 2000 ) def lowercase ( self ): lowerCAmelCase : List[Any] = GPTSwaTokenizer(snake_case__ ) lowerCAmelCase : Optional[Any] = tokenizer.tokenize('This is a test' ) self.assertListEqual(snake_case__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , [465, 287, 265, 631, 842] ) lowerCAmelCase : Tuple = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) # fmt: off self.assertListEqual( snake_case__ , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] , ) # fmt: on lowerCAmelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual( snake_case__ , [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] , ) lowerCAmelCase : int = tokenizer.convert_ids_to_tokens(snake_case__ ) # fmt: off self.assertListEqual( snake_case__ , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] ) # fmt: on def lowercase ( self ): lowerCAmelCase : str = GPTSwaTokenizer(snake_case__ ) lowerCAmelCase : Optional[int] = ['This is a test', 'I was born in 92000, and this is falsé.'] lowerCAmelCase : Tuple = [ [465, 287, 265, 631, 842], [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(snake_case__ , snake_case__ ): self.assertListEqual(tokenizer.encode_fast(snake_case__ ) , snake_case__ ) # Test that decode_fast returns the input text for text, token_ids in zip(snake_case__ , snake_case__ ): self.assertEqual(tokenizer.decode_fast(snake_case__ ) , snake_case__ ) @slow def lowercase ( self ): lowerCAmelCase : str = [ '<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')', 'Hey there, how are you doing this fine day?', 'This is a text with a trailing spaces followed by a dot .', 'Häj sväjs lillebrör! =)', 'Det är inget fel på Mr. Cool', ] # fmt: off lowerCAmelCase : Tuple = {'input_ids': [[6_3423, 5, 6811, 1_4954, 282, 816, 3821, 6_3466, 6_3425, 6_3462, 18, 6_3978, 678, 301, 1320, 6_3423, 6_3455, 6_3458, 18, 6_3982, 4246, 3940, 1901, 4_7789, 5547, 1_8994], [1_9630, 1100, 6_3446, 1342, 633, 544, 4488, 593, 5102, 2416, 6_3495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1652, 428, 268, 1936, 515, 268, 5_8593, 2_2413, 9106, 546, 268, 3_3213, 6_3979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_5130, 6_3450, 924, 6_3449, 2249, 4062, 1558, 318, 6_3504, 2_1498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2827, 2559, 332, 6575, 6_3443, 2_6801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name='AI-Sweden/gpt-sw3-126m' , sequences=snake_case__ , )
646
0
'''simple docstring''' from typing import Union import fire import torch from tqdm import tqdm def __UpperCamelCase ( _A : str , _A : str = "cpu" , _A : Union[str, None] = None ) -> None: """simple docstring""" lowerCAmelCase : List[Any] = torch.load(_A , map_location=_A ) for k, v in tqdm(state_dict.items() ): if not isinstance(_A , torch.Tensor ): raise TypeError('FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin' ) lowerCAmelCase : Optional[int] = v.half() if save_path is None: # overwrite src_path lowerCAmelCase : Dict = src_path torch.save(_A , _A ) if __name__ == "__main__": fire.Fire(convert)
710
'''simple docstring''' def __UpperCamelCase ( _A : int ) -> bool: """simple docstring""" return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
646
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase : List[Any] = { 'configuration_git': ['GIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GitConfig', 'GitVisionConfig'], 'processing_git': ['GitProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : int = [ 'GIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GitForCausalLM', 'GitModel', 'GitPreTrainedModel', 'GitVisionModel', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys _lowerCAmelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
711
'''simple docstring''' import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( 'files' , [ ['full:README.md', 'dataset_infos.json'], ['empty:README.md', 'dataset_infos.json'], ['dataset_infos.json'], ['full:README.md'], ] , ) def __UpperCamelCase ( _A : str , _A : List[Any] ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase : Optional[int] = tmp_path_factory.mktemp('dset_infos_dir' ) if "full:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('---\ndataset_info:\n dataset_size: 42\n---' ) if "empty:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / 'dataset_infos.json' , 'w' ) as f: f.write('{"default": {"dataset_size": 42}}' ) lowerCAmelCase : Union[str, Any] = DatasetInfosDict.from_directory(_A ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( 'dataset_info' , [ DatasetInfo(), DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ), ] , ) def __UpperCamelCase ( _A : str , _A : DatasetInfo ) -> Optional[int]: """simple docstring""" lowerCAmelCase : str = str(_A ) dataset_info.write_to_directory(_A ) lowerCAmelCase : List[str] = DatasetInfo.from_directory(_A ) assert dataset_info == reloaded assert os.path.exists(os.path.join(_A , 'dataset_info.json' ) ) def __UpperCamelCase ( ) -> List[str]: """simple docstring""" lowerCAmelCase : Tuple = DatasetInfo( description='foo' , citation='bar' , homepage='https://foo.bar' , license='CC0' , features=Features({'a': Value('int32' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train', 'num_examples': 42}] , download_checksums={} , download_size=13_37 , post_processing_size=4_42 , dataset_size=12_34 , size_in_bytes=13_37 + 4_42 + 12_34 , ) lowerCAmelCase : Optional[int] = dataset_info._to_yaml_dict() assert sorted(_A ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) lowerCAmelCase : Any = yaml.safe_dump(_A ) lowerCAmelCase : int = yaml.safe_load(_A ) assert dataset_info_yaml_dict == reloaded def __UpperCamelCase ( ) -> Dict: """simple docstring""" lowerCAmelCase : Union[str, Any] = DatasetInfo() lowerCAmelCase : List[Any] = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( 'dataset_infos_dict' , [ DatasetInfosDict(), DatasetInfosDict({'default': DatasetInfo()} ), DatasetInfosDict({'my_config_name': DatasetInfo()} ), DatasetInfosDict( { 'default': DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ) } ), DatasetInfosDict( { 'v1': DatasetInfo(dataset_size=42 ), 'v2': DatasetInfo(dataset_size=13_37 ), } ), ] , ) def __UpperCamelCase ( _A : Tuple , _A : DatasetInfosDict ) -> List[Any]: """simple docstring""" lowerCAmelCase : Tuple = str(_A ) dataset_infos_dict.write_to_directory(_A ) lowerCAmelCase : List[str] = DatasetInfosDict.from_directory(_A ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): lowerCAmelCase : Tuple = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml lowerCAmelCase : Optional[Any] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(_A , 'README.md' ) )
646
0
def __UpperCamelCase ( _A : int , _A : int ) -> int: """simple docstring""" lowerCAmelCase : Dict = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): lowerCAmelCase : Any = n - k # Calculate C(n,k) for i in range(_A ): result *= n - i result //= i + 1 return result def __UpperCamelCase ( _A : int ) -> int: """simple docstring""" return binomial_coefficient(2 * node_count , _A ) // (node_count + 1) def __UpperCamelCase ( _A : int ) -> int: """simple docstring""" if n < 0: raise ValueError('factorial() not defined for negative values' ) lowerCAmelCase : int = 1 for i in range(1 , n + 1 ): result *= i return result def __UpperCamelCase ( _A : int ) -> int: """simple docstring""" return catalan_number(_A ) * factorial(_A ) if __name__ == "__main__": _lowerCAmelCase : int = int(input('Enter the number of nodes: ').strip() or 0) if node_count <= 0: raise ValueError('We need some nodes to work with.') print( f"""Given {node_count} nodes, there are {binary_tree_count(node_count)} """ f"""binary trees and {catalan_number(node_count)} binary search trees.""" )
712
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCAmelCase ( a ): def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): super().__init__() if safety_checker is None: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" ' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered' ' results in services or applications open to the public. Both the diffusers team and Hugging Face' ' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling' ' it only for use-cases that involve analyzing network behavior or auditing its results. For more' ' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .' ) self.register_modules( speech_model=snake_case__ , speech_processor=snake_case__ , vae=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , unet=snake_case__ , scheduler=snake_case__ , feature_extractor=snake_case__ , ) def lowercase ( self , snake_case__ = "auto" ): if slice_size == "auto": lowerCAmelCase : Union[str, Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(snake_case__ ) def lowercase ( self ): self.enable_attention_slicing(snake_case__ ) @torch.no_grad() def __call__( self , snake_case__ , snake_case__=1_6000 , snake_case__ = 512 , snake_case__ = 512 , snake_case__ = 50 , snake_case__ = 7.5 , snake_case__ = None , snake_case__ = 1 , snake_case__ = 0.0 , snake_case__ = None , snake_case__ = None , snake_case__ = "pil" , snake_case__ = True , snake_case__ = None , snake_case__ = 1 , **snake_case__ , ): lowerCAmelCase : List[str] = self.speech_processor.feature_extractor( snake_case__ , return_tensors='pt' , sampling_rate=snake_case__ ).input_features.to(self.device ) lowerCAmelCase : Optional[Any] = self.speech_model.generate(snake_case__ , max_length=48_0000 ) lowerCAmelCase : str = self.speech_processor.tokenizer.batch_decode(snake_case__ , skip_special_tokens=snake_case__ , normalize=snake_case__ )[ 0 ] if isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = 1 elif isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = len(snake_case__ ) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(snake_case__ )}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(snake_case__ , snake_case__ ) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(snake_case__ )}." ) # get prompt text embeddings lowerCAmelCase : str = self.tokenizer( snake_case__ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) lowerCAmelCase : Tuple = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowerCAmelCase : str = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) lowerCAmelCase : Union[str, Any] = text_input_ids[:, : self.tokenizer.model_max_length] lowerCAmelCase : Union[str, Any] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : int = text_embeddings.shape lowerCAmelCase : Any = text_embeddings.repeat(1 , snake_case__ , 1 ) lowerCAmelCase : Optional[int] = text_embeddings.view(bs_embed * num_images_per_prompt , snake_case__ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowerCAmelCase : List[str] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowerCAmelCase : List[str] if negative_prompt is None: lowerCAmelCase : Any = [''] * batch_size elif type(snake_case__ ) is not type(snake_case__ ): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(snake_case__ )} !=" f" {type(snake_case__ )}." ) elif isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = [negative_prompt] elif batch_size != len(snake_case__ ): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(snake_case__ )}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" ' the batch size of `prompt`.' ) else: lowerCAmelCase : Dict = negative_prompt lowerCAmelCase : Optional[int] = text_input_ids.shape[-1] lowerCAmelCase : int = self.tokenizer( snake_case__ , padding='max_length' , max_length=snake_case__ , truncation=snake_case__ , return_tensors='pt' , ) lowerCAmelCase : Union[str, Any] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowerCAmelCase : List[Any] = uncond_embeddings.shape[1] lowerCAmelCase : List[str] = uncond_embeddings.repeat(1 , snake_case__ , 1 ) lowerCAmelCase : Optional[Any] = uncond_embeddings.view(batch_size * num_images_per_prompt , snake_case__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCAmelCase : List[str] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowerCAmelCase : Union[str, Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowerCAmelCase : Dict = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowerCAmelCase : str = torch.randn(snake_case__ , generator=snake_case__ , device='cpu' , dtype=snake_case__ ).to( self.device ) else: lowerCAmelCase : Tuple = torch.randn(snake_case__ , generator=snake_case__ , device=self.device , dtype=snake_case__ ) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) lowerCAmelCase : str = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(snake_case__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowerCAmelCase : Union[str, Any] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowerCAmelCase : Any = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowerCAmelCase : Tuple = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCAmelCase : Union[str, Any] = {} if accepts_eta: lowerCAmelCase : int = eta for i, t in enumerate(self.progress_bar(snake_case__ ) ): # expand the latents if we are doing classifier free guidance lowerCAmelCase : Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCAmelCase : Tuple = self.scheduler.scale_model_input(snake_case__ , snake_case__ ) # predict the noise residual lowerCAmelCase : List[str] = self.unet(snake_case__ , snake_case__ , encoder_hidden_states=snake_case__ ).sample # perform guidance if do_classifier_free_guidance: lowerCAmelCase , lowerCAmelCase : Dict = noise_pred.chunk(2 ) lowerCAmelCase : Tuple = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowerCAmelCase : int = self.scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase : List[Any] = 1 / 0.1_8_2_1_5 * latents lowerCAmelCase : Dict = self.vae.decode(snake_case__ ).sample lowerCAmelCase : List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowerCAmelCase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowerCAmelCase : Dict = self.numpy_to_pil(snake_case__ ) if not return_dict: return image return StableDiffusionPipelineOutput(images=snake_case__ , nsfw_content_detected=snake_case__ )
646
0
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) _lowerCAmelCase : Dict = pytest.mark.integration @pytest.mark.parametrize('path' , ['paws', 'csv'] ) def __UpperCamelCase ( _A : str , _A : Dict ) -> Tuple: """simple docstring""" inspect_dataset(_A , _A ) lowerCAmelCase : str = path + '.py' assert script_name in os.listdir(_A ) assert "__pycache__" not in os.listdir(_A ) @pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.parametrize('path' , ['accuracy'] ) def __UpperCamelCase ( _A : List[str] , _A : str ) -> Optional[int]: """simple docstring""" inspect_metric(_A , _A ) lowerCAmelCase : Tuple = path + '.py' assert script_name in os.listdir(_A ) assert "__pycache__" not in os.listdir(_A ) @pytest.mark.parametrize( 'path, config_name, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def __UpperCamelCase ( _A : Optional[int] , _A : str , _A : Tuple ) -> Optional[Any]: """simple docstring""" lowerCAmelCase : Tuple = get_dataset_config_info(_A , config_name=_A ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def __UpperCamelCase ( _A : List[Any] , _A : Tuple , _A : int ) -> Union[str, Any]: """simple docstring""" with pytest.raises(_A ): get_dataset_config_info(_A , config_name=_A ) @pytest.mark.parametrize( 'path, expected' , [ ('squad', 'plain_text'), ('acronym_identification', 'default'), ('lhoestq/squad', 'plain_text'), ('lhoestq/test', 'default'), ('lhoestq/demo1', 'lhoestq--demo1'), ('dalle-mini/wit', 'dalle-mini--wit'), ] , ) def __UpperCamelCase ( _A : Tuple , _A : Optional[Any] ) -> Any: """simple docstring""" lowerCAmelCase : Dict = get_dataset_config_names(_A ) assert expected in config_names @pytest.mark.parametrize( 'path, expected_configs, expected_splits_in_first_config' , [ ('squad', ['plain_text'], ['train', 'validation']), ('dalle-mini/wit', ['dalle-mini--wit'], ['train']), ('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']), ] , ) def __UpperCamelCase ( _A : Dict , _A : List[Any] , _A : Optional[int] ) -> Any: """simple docstring""" lowerCAmelCase : Optional[int] = get_dataset_infos(_A ) assert list(infos.keys() ) == expected_configs lowerCAmelCase : Union[str, Any] = expected_configs[0] assert expected_config in infos lowerCAmelCase : Dict = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( 'path, expected_config, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def __UpperCamelCase ( _A : Optional[int] , _A : Union[str, Any] , _A : List[Any] ) -> Optional[int]: """simple docstring""" lowerCAmelCase : Optional[int] = get_dataset_infos(_A ) assert expected_config in infos lowerCAmelCase : Optional[int] = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def __UpperCamelCase ( _A : str , _A : int , _A : Optional[int] ) -> List[Any]: """simple docstring""" with pytest.raises(_A ): get_dataset_split_names(_A , config_name=_A )
713
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : List[Any] = LDMTextToImagePipeline _lowerCamelCase : Optional[Any] = TEXT_TO_IMAGE_PARAMS - { """negative_prompt""", """negative_prompt_embeds""", """cross_attention_kwargs""", """prompt_embeds""", } _lowerCamelCase : List[str] = PipelineTesterMixin.required_optional_params - { """num_images_per_prompt""", """callback""", """callback_steps""", } _lowerCamelCase : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS _lowerCamelCase : Optional[int] = False def lowercase ( self ): torch.manual_seed(0 ) lowerCAmelCase : Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) lowerCAmelCase : int = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , ) torch.manual_seed(0 ) lowerCAmelCase : str = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') , up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') , latent_channels=4 , ) torch.manual_seed(0 ) lowerCAmelCase : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowerCAmelCase : str = CLIPTextModel(snake_case__ ) lowerCAmelCase : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCAmelCase : List[Any] = { 'unet': unet, 'scheduler': scheduler, 'vqvae': vae, 'bert': text_encoder, 'tokenizer': tokenizer, } return components def lowercase ( self , snake_case__ , snake_case__=0 ): if str(snake_case__ ).startswith('mps' ): lowerCAmelCase : Optional[int] = torch.manual_seed(snake_case__ ) else: lowerCAmelCase : str = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) lowerCAmelCase : Tuple = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase ( self ): lowerCAmelCase : List[str] = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase : Optional[Any] = self.get_dummy_components() lowerCAmelCase : Optional[Any] = LDMTextToImagePipeline(**snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Tuple = self.get_dummy_inputs(snake_case__ ) lowerCAmelCase : Union[str, Any] = pipe(**snake_case__ ).images lowerCAmelCase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) lowerCAmelCase : List[Any] = np.array([0.6_1_0_1, 0.6_1_5_6, 0.5_6_2_2, 0.4_8_9_5, 0.6_6_6_1, 0.3_8_0_4, 0.5_7_4_8, 0.6_1_3_6, 0.5_0_1_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self , snake_case__ , snake_case__=torch.floataa , snake_case__=0 ): lowerCAmelCase : List[str] = torch.manual_seed(snake_case__ ) lowerCAmelCase : int = np.random.RandomState(snake_case__ ).standard_normal((1, 4, 32, 32) ) lowerCAmelCase : Optional[Any] = torch.from_numpy(snake_case__ ).to(device=snake_case__ , dtype=snake_case__ ) lowerCAmelCase : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase ( self ): lowerCAmelCase : Tuple = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Optional[Any] = self.get_inputs(snake_case__ ) lowerCAmelCase : List[Any] = pipe(**snake_case__ ).images lowerCAmelCase : str = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) lowerCAmelCase : Tuple = np.array([0.5_1_8_2_5, 0.5_2_8_5_0, 0.5_2_5_4_3, 0.5_4_2_5_8, 0.5_2_3_0_4, 0.5_2_5_6_9, 0.5_4_3_6_3, 0.5_5_2_7_6, 0.5_6_8_7_8] ) lowerCAmelCase : int = np.abs(expected_slice - image_slice ).max() assert max_diff < 1e-3 @nightly @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self , snake_case__ , snake_case__=torch.floataa , snake_case__=0 ): lowerCAmelCase : List[str] = torch.manual_seed(snake_case__ ) lowerCAmelCase : Any = np.random.RandomState(snake_case__ ).standard_normal((1, 4, 32, 32) ) lowerCAmelCase : List[Any] = torch.from_numpy(snake_case__ ).to(device=snake_case__ , dtype=snake_case__ ) lowerCAmelCase : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase ( self ): lowerCAmelCase : Optional[int] = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : int = self.get_inputs(snake_case__ ) lowerCAmelCase : Optional[int] = pipe(**snake_case__ ).images[0] lowerCAmelCase : Optional[int] = load_numpy( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy' ) lowerCAmelCase : List[str] = np.abs(expected_image - image ).max() assert max_diff < 1e-3
646
0
'''simple docstring''' def __UpperCamelCase ( _A : int , _A : int ) -> int: """simple docstring""" return int((input_a, input_a).count(0 ) == 0 ) def __UpperCamelCase ( ) -> None: """simple docstring""" assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
714
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Tuple = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { 'facebook/xmod-base': 'https://huggingface.co/facebook/xmod-base/resolve/main/config.json', 'facebook/xmod-large-prenorm': 'https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json', 'facebook/xmod-base-13-125k': 'https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json', 'facebook/xmod-base-30-125k': 'https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json', 'facebook/xmod-base-30-195k': 'https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json', 'facebook/xmod-base-60-125k': 'https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json', 'facebook/xmod-base-60-265k': 'https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json', 'facebook/xmod-base-75-125k': 'https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json', 'facebook/xmod-base-75-269k': 'https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json', } class lowerCAmelCase ( a ): _lowerCamelCase : int = """xmod""" def __init__( self , snake_case__=3_0522 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=1e-1_2 , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__="absolute" , snake_case__=True , snake_case__=None , snake_case__=False , snake_case__=2 , snake_case__=False , snake_case__=True , snake_case__=True , snake_case__=("en_XX",) , snake_case__=None , **snake_case__ , ): super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) lowerCAmelCase : Dict = vocab_size lowerCAmelCase : Optional[Any] = hidden_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob lowerCAmelCase : str = max_position_embeddings lowerCAmelCase : int = type_vocab_size lowerCAmelCase : List[Any] = initializer_range lowerCAmelCase : Any = layer_norm_eps lowerCAmelCase : Dict = position_embedding_type lowerCAmelCase : Optional[Any] = use_cache lowerCAmelCase : Union[str, Any] = classifier_dropout lowerCAmelCase : int = pre_norm lowerCAmelCase : Optional[Any] = adapter_reduction_factor lowerCAmelCase : Any = adapter_layer_norm lowerCAmelCase : Dict = adapter_reuse_layer_norm lowerCAmelCase : Any = ln_before_adapter lowerCAmelCase : Optional[Any] = list(snake_case__ ) lowerCAmelCase : List[Any] = default_language class lowerCAmelCase ( a ): @property def lowercase ( self ): if self.task == "multiple-choice": lowerCAmelCase : List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase : Optional[int] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
646
0
'''simple docstring''' import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : Dict = logging.get_logger() @dataclass class lowerCAmelCase : _lowerCamelCase : nn.Module _lowerCamelCase : List[nn.Module] = field(default_factory=a ) _lowerCamelCase : list = field(default_factory=a ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Optional[Any] = len(list(m.modules() ) ) == 1 or isinstance(snake_case__ , nn.Convad ) or isinstance(snake_case__ , nn.BatchNormad ) if has_not_submodules: self.traced.append(snake_case__ ) def __call__( self , snake_case__ ): for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(snake_case__ ) [x.remove() for x in self.handles] return self @property def lowercase ( self ): # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda snake_case__ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class lowerCAmelCase : _lowerCamelCase : nn.Module _lowerCamelCase : nn.Module _lowerCamelCase : int = 0 _lowerCamelCase : List = field(default_factory=a ) _lowerCamelCase : List = field(default_factory=a ) def __call__( self , snake_case__ ): lowerCAmelCase : Union[str, Any] = Tracker(self.dest )(snake_case__ ).parametrized lowerCAmelCase : Optional[Any] = Tracker(self.src )(snake_case__ ).parametrized lowerCAmelCase : Optional[Any] = list(filter(lambda snake_case__ : type(snake_case__ ) not in self.src_skip , snake_case__ ) ) lowerCAmelCase : List[Any] = list(filter(lambda snake_case__ : type(snake_case__ ) not in self.dest_skip , snake_case__ ) ) if len(snake_case__ ) != len(snake_case__ ): raise Exception( f"Numbers of operations are different. Source module has {len(snake_case__ )} operations while" f" destination module has {len(snake_case__ )}." ) for dest_m, src_m in zip(snake_case__ , snake_case__ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f"Transfered from={src_m} to={dest_m}" ) def __UpperCamelCase ( _A : str , _A : ResNetConfig , _A : Path , _A : bool = True ) -> Optional[Any]: """simple docstring""" print(F"Converting {name}..." ) with torch.no_grad(): lowerCAmelCase : Any = timm.create_model(_A , pretrained=_A ).eval() lowerCAmelCase : Optional[int] = ResNetForImageClassification(_A ).eval() lowerCAmelCase : Optional[Any] = ModuleTransfer(src=_A , dest=_A ) lowerCAmelCase : List[Any] = torch.randn((1, 3, 2_24, 2_24) ) module_transfer(_A ) assert torch.allclose(from_model(_A ) , our_model(_A ).logits ), "The model logits don't match the original one." lowerCAmelCase : Union[str, Any] = F"resnet{'-'.join(name.split('resnet' ) )}" print(_A ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='Add model' , use_temp_dir=_A , ) # we can use the convnext one lowerCAmelCase : Dict = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='Add image processor' , use_temp_dir=_A , ) print(F"Pushed {checkpoint_name}" ) def __UpperCamelCase ( _A : Path , _A : str = None , _A : bool = True ) -> str: """simple docstring""" lowerCAmelCase : Optional[int] = 'imagenet-1k-id2label.json' lowerCAmelCase : Dict = 10_00 lowerCAmelCase : List[Any] = (1, num_labels) lowerCAmelCase : Any = 'huggingface/label-files' lowerCAmelCase : Tuple = num_labels lowerCAmelCase : List[Any] = json.load(open(hf_hub_download(_A , _A , repo_type='dataset' ) , 'r' ) ) lowerCAmelCase : Any = {int(_A ): v for k, v in idalabel.items()} lowerCAmelCase : Tuple = idalabel lowerCAmelCase : Dict = {v: k for k, v in idalabel.items()} lowerCAmelCase : Dict = partial(_A , num_labels=_A , idalabel=_A , labelaid=_A ) lowerCAmelCase : str = { 'resnet18': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 1_28, 2_56, 5_12] , layer_type='basic' ), 'resnet26': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type='bottleneck' ), 'resnet34': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 1_28, 2_56, 5_12] , layer_type='basic' ), 'resnet50': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type='bottleneck' ), 'resnet101': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type='bottleneck' ), 'resnet152': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type='bottleneck' ), } if model_name: convert_weight_and_push(_A , names_to_config[model_name] , _A , _A ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(_A , _A , _A , _A ) return config, expected_shape if __name__ == "__main__": _lowerCAmelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help=( 'The name of the model you wish to convert, it must be one of the supported resnet* architecture,' ' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=Path, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=True, type=bool, required=False, help='If True, push model and image processor to the hub.', ) _lowerCAmelCase : List[Any] = parser.parse_args() _lowerCAmelCase : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
715
'''simple docstring''' import argparse import os import re _lowerCAmelCase : Dict = 'src/diffusers' # Pattern that looks at the indentation in a line. _lowerCAmelCase : str = re.compile(r'^(\s*)\S') # Pattern that matches `"key":" and puts `key` in group 0. _lowerCAmelCase : Any = re.compile(r'^\s*"([^"]+)":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. _lowerCAmelCase : List[Any] = re.compile(r'^\s*_import_structure\["([^"]+)"\]') # Pattern that matches `"key",` and puts `key` in group 0. _lowerCAmelCase : int = re.compile(r'^\s*"([^"]+)",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. _lowerCAmelCase : Optional[Any] = re.compile(r'\[([^\]]+)\]') def __UpperCamelCase ( _A : Union[str, Any] ) -> Dict: """simple docstring""" lowerCAmelCase : Any = _re_indent.search(_A ) return "" if search is None else search.groups()[0] def __UpperCamelCase ( _A : Dict , _A : Any="" , _A : List[str]=None , _A : Any=None ) -> Tuple: """simple docstring""" lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Tuple = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(_A ): index += 1 lowerCAmelCase : Optional[int] = ['\n'.join(lines[:index] )] else: lowerCAmelCase : int = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowerCAmelCase : Tuple = [lines[index]] index += 1 while index < len(_A ) and (end_prompt is None or not lines[index].startswith(_A )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(_A ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(_A ) ) if index < len(_A ) - 1: lowerCAmelCase : List[Any] = [lines[index + 1]] index += 1 else: lowerCAmelCase : int = [] else: blocks.append('\n'.join(_A ) ) lowerCAmelCase : Any = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(_A ) > 0: blocks.append('\n'.join(_A ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(_A ): blocks.append('\n'.join(lines[index:] ) ) return blocks def __UpperCamelCase ( _A : Dict ) -> List[Any]: """simple docstring""" def _inner(_A : Tuple ): return key(_A ).lower().replace('_' , '' ) return _inner def __UpperCamelCase ( _A : Union[str, Any] , _A : Any=None ) -> Optional[Any]: """simple docstring""" def noop(_A : Any ): return x if key is None: lowerCAmelCase : List[str] = noop # Constants are all uppercase, they go first. lowerCAmelCase : str = [obj for obj in objects if key(_A ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowerCAmelCase : List[str] = [obj for obj in objects if key(_A )[0].isupper() and not key(_A ).isupper()] # Functions begin with a lowercase, they go last. lowerCAmelCase : Optional[Any] = [obj for obj in objects if not key(_A )[0].isupper()] lowerCAmelCase : Tuple = ignore_underscore(_A ) return sorted(_A , key=_A ) + sorted(_A , key=_A ) + sorted(_A , key=_A ) def __UpperCamelCase ( _A : Union[str, Any] ) -> int: """simple docstring""" def _replace(_A : List[Any] ): lowerCAmelCase : List[Any] = match.groups()[0] if "," not in imports: return F"[{imports}]" lowerCAmelCase : Dict = [part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase : List[str] = keys[:-1] return "[" + ", ".join([F"\"{k}\"" for k in sort_objects(_A )] ) + "]" lowerCAmelCase : Optional[int] = import_statement.split('\n' ) if len(_A ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowerCAmelCase : Optional[Any] = 2 if lines[1].strip() == '[' else 1 lowerCAmelCase : List[str] = [(i, _re_strip_line.search(_A ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowerCAmelCase : Optional[Any] = sort_objects(_A , key=lambda _A : x[1] ) lowerCAmelCase : Dict = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(_A ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowerCAmelCase : Optional[int] = _re_bracket_content.sub(_replace , lines[1] ) else: lowerCAmelCase : List[Any] = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase : int = keys[:-1] lowerCAmelCase : Tuple = get_indent(lines[1] ) + ', '.join([F"\"{k}\"" for k in sort_objects(_A )] ) return "\n".join(_A ) else: # Finally we have to deal with imports fitting on one line lowerCAmelCase : Union[str, Any] = _re_bracket_content.sub(_replace , _A ) return import_statement def __UpperCamelCase ( _A : str , _A : Tuple=True ) -> Optional[Any]: """simple docstring""" with open(_A , 'r' ) as f: lowerCAmelCase : Optional[int] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowerCAmelCase : List[Any] = split_code_in_indented_blocks( _A , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(_A ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowerCAmelCase : List[str] = main_blocks[block_idx] lowerCAmelCase : Union[str, Any] = block.split('\n' ) # Get to the start of the imports. lowerCAmelCase : Optional[Any] = 0 while line_idx < len(_A ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowerCAmelCase : Optional[Any] = len(_A ) else: line_idx += 1 if line_idx >= len(_A ): continue # Ignore beginning and last line: they don't contain anything. lowerCAmelCase : str = '\n'.join(block_lines[line_idx:-1] ) lowerCAmelCase : str = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowerCAmelCase : Optional[Any] = split_code_in_indented_blocks(_A , indent_level=_A ) # We have two categories of import key: list or _import_structure[key].append/extend lowerCAmelCase : Union[str, Any] = _re_direct_key if '_import_structure' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowerCAmelCase : int = [(pattern.search(_A ).groups()[0] if pattern.search(_A ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowerCAmelCase : Dict = [(i, key) for i, key in enumerate(_A ) if key is not None] lowerCAmelCase : List[Any] = [x[0] for x in sorted(_A , key=lambda _A : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowerCAmelCase : int = 0 lowerCAmelCase : Dict = [] for i in range(len(_A ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: lowerCAmelCase : str = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(_A ) count += 1 # And we put our main block back together with its first and last line. lowerCAmelCase : str = '\n'.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(_A ): if check_only: return True else: print(F"Overwriting {file}." ) with open(_A , 'w' ) as f: f.write('\n'.join(_A ) ) def __UpperCamelCase ( _A : Tuple=True ) -> Any: """simple docstring""" lowerCAmelCase : Tuple = [] for root, _, files in os.walk(_A ): if "__init__.py" in files: lowerCAmelCase : Any = sort_imports(os.path.join(_A , '__init__.py' ) , check_only=_A ) if result: lowerCAmelCase : Optional[Any] = [os.path.join(_A , '__init__.py' )] if len(_A ) > 0: raise ValueError(F"Would overwrite {len(_A )} files, run `make style`." ) if __name__ == "__main__": _lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') _lowerCAmelCase : Optional[int] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
646
0
'''simple docstring''' from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) _lowerCAmelCase : Any = { 'huggingface/time-series-transformer-tourism-monthly': ( 'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class lowerCAmelCase ( a ): _lowerCamelCase : Union[str, Any] = """time_series_transformer""" _lowerCamelCase : Optional[Any] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self , snake_case__ = None , snake_case__ = None , snake_case__ = "student_t" , snake_case__ = "nll" , snake_case__ = 1 , snake_case__ = [1, 2, 3, 4, 5, 6, 7] , snake_case__ = "mean" , snake_case__ = 0 , snake_case__ = 0 , snake_case__ = 0 , snake_case__ = 0 , snake_case__ = None , snake_case__ = None , snake_case__ = 32 , snake_case__ = 32 , snake_case__ = 2 , snake_case__ = 2 , snake_case__ = 2 , snake_case__ = 2 , snake_case__ = True , snake_case__ = "gelu" , snake_case__ = 64 , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 100 , snake_case__ = 0.0_2 , snake_case__=True , **snake_case__ , ): # time series specific configuration lowerCAmelCase : Tuple = prediction_length lowerCAmelCase : List[Any] = context_length or prediction_length lowerCAmelCase : int = distribution_output lowerCAmelCase : Dict = loss lowerCAmelCase : Tuple = input_size lowerCAmelCase : List[Any] = num_time_features lowerCAmelCase : Any = lags_sequence lowerCAmelCase : Tuple = scaling lowerCAmelCase : str = num_dynamic_real_features lowerCAmelCase : str = num_static_real_features lowerCAmelCase : str = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(snake_case__ ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) lowerCAmelCase : List[Any] = cardinality else: lowerCAmelCase : Any = [0] if embedding_dimension and num_static_categorical_features > 0: if len(snake_case__ ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) lowerCAmelCase : Optional[Any] = embedding_dimension else: lowerCAmelCase : Tuple = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] lowerCAmelCase : int = num_parallel_samples # Transformer architecture configuration lowerCAmelCase : Union[str, Any] = input_size * len(snake_case__ ) + self._number_of_features lowerCAmelCase : Optional[Any] = d_model lowerCAmelCase : Union[str, Any] = encoder_attention_heads lowerCAmelCase : int = decoder_attention_heads lowerCAmelCase : List[str] = encoder_ffn_dim lowerCAmelCase : Any = decoder_ffn_dim lowerCAmelCase : Tuple = encoder_layers lowerCAmelCase : Tuple = decoder_layers lowerCAmelCase : List[Any] = dropout lowerCAmelCase : Any = attention_dropout lowerCAmelCase : Optional[Any] = activation_dropout lowerCAmelCase : Union[str, Any] = encoder_layerdrop lowerCAmelCase : Union[str, Any] = decoder_layerdrop lowerCAmelCase : List[str] = activation_function lowerCAmelCase : List[str] = init_std lowerCAmelCase : Tuple = use_cache super().__init__(is_encoder_decoder=snake_case__ , **snake_case__ ) @property def lowercase ( self ): return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
716
'''simple docstring''' import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class lowerCAmelCase : def __init__( self , snake_case__ , snake_case__=13 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=99 , snake_case__=64 , snake_case__=32 , snake_case__=5 , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=16 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=3 , snake_case__=4 , snake_case__=None , ): lowerCAmelCase : str = parent lowerCAmelCase : Optional[int] = batch_size lowerCAmelCase : Optional[Any] = seq_length lowerCAmelCase : Optional[Any] = is_training lowerCAmelCase : Dict = use_input_mask lowerCAmelCase : Tuple = use_token_type_ids lowerCAmelCase : int = use_labels lowerCAmelCase : int = vocab_size lowerCAmelCase : Any = hidden_size lowerCAmelCase : Optional[Any] = embedding_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : List[str] = num_attention_heads lowerCAmelCase : List[Any] = intermediate_size lowerCAmelCase : Dict = hidden_act lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : int = attention_probs_dropout_prob lowerCAmelCase : List[Any] = max_position_embeddings lowerCAmelCase : int = type_vocab_size lowerCAmelCase : List[str] = type_sequence_label_size lowerCAmelCase : Dict = initializer_range lowerCAmelCase : Any = num_labels lowerCAmelCase : str = num_choices lowerCAmelCase : int = scope def lowercase ( self ): lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Union[str, Any] = None if self.use_input_mask: lowerCAmelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : Optional[int] = None if self.use_token_type_ids: lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : Optional[Any] = None lowerCAmelCase : Optional[Any] = None lowerCAmelCase : Dict = None if self.use_labels: lowerCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase ( self ): return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case__ , initializer_range=self.initializer_range , ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = MobileBertModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : int = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) lowerCAmelCase : Optional[int] = model(snake_case__ , token_type_ids=snake_case__ ) lowerCAmelCase : Optional[Any] = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : int = MobileBertForMaskedLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : str = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = MobileBertForNextSentencePrediction(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : str = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : List[Any] = MobileBertForPreTraining(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Tuple = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , next_sentence_label=snake_case__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = MobileBertForQuestionAnswering(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : List[str] = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = self.num_labels lowerCAmelCase : List[Any] = MobileBertForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = self.num_labels lowerCAmelCase : int = MobileBertForTokenClassification(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : List[str] = self.num_choices lowerCAmelCase : Any = MobileBertForMultipleChoice(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : int = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : List[str] = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase ( self ): lowerCAmelCase : Any = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) : Optional[Any] = config_and_inputs lowerCAmelCase : List[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase ( a , a , unittest.TestCase ): _lowerCamelCase : List[str] = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) _lowerCamelCase : Tuple = ( { """feature-extraction""": MobileBertModel, """fill-mask""": MobileBertForMaskedLM, """question-answering""": MobileBertForQuestionAnswering, """text-classification""": MobileBertForSequenceClassification, """token-classification""": MobileBertForTokenClassification, """zero-shot""": MobileBertForSequenceClassification, } if is_torch_available() else {} ) _lowerCamelCase : str = True def lowercase ( self , snake_case__ , snake_case__ , snake_case__=False ): lowerCAmelCase : int = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if return_labels: if model_class in get_values(snake_case__ ): lowerCAmelCase : str = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=snake_case__ ) lowerCAmelCase : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case__ ) return inputs_dict def lowercase ( self ): lowerCAmelCase : List[Any] = MobileBertModelTester(self ) lowerCAmelCase : Dict = ConfigTester(self , config_class=snake_case__ , hidden_size=37 ) def lowercase ( self ): self.config_tester.run_common_tests() def lowercase ( self ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*snake_case__ ) def __UpperCamelCase ( _A : Optional[Any] ) -> Optional[int]: """simple docstring""" return torch.tensor( _A , dtype=torch.long , device=_A , ) _lowerCAmelCase : Union[str, Any] = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase ( unittest.TestCase ): @slow def lowercase ( self ): lowerCAmelCase : List[str] = MobileBertModel.from_pretrained('google/mobilebert-uncased' ).to(snake_case__ ) lowerCAmelCase : List[Any] = _long_tensor([[101, 7110, 1005, 1056, 2023, 1_1333, 1_7413, 1029, 102]] ) with torch.no_grad(): lowerCAmelCase : Tuple = model(snake_case__ )[0] lowerCAmelCase : List[Any] = torch.Size((1, 9, 512) ) self.assertEqual(output.shape , snake_case__ ) lowerCAmelCase : Union[str, Any] = torch.tensor( [ [ [-2.4_7_3_6_5_2_6e0_7, 8.2_6_9_1_6_5_6e0_4, 1.6_5_2_1_8_3_8e0_5], [-5.7_5_4_1_7_0_4e-0_1, 3.9_0_5_6_0_2_2e0_0, 4.4_0_1_1_5_0_7e0_0], [2.6_0_4_7_3_5_9e0_0, 1.5_6_7_7_6_5_2e0_0, -1.7_3_2_4_1_8_8e-0_1], ] ] , device=snake_case__ , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE lowerCAmelCase : List[str] = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) lowerCAmelCase : Dict = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
646
0
'''simple docstring''' _lowerCAmelCase : List[str] = {str(digit): digit**5 for digit in range(10)} def __UpperCamelCase ( _A : int ) -> int: """simple docstring""" return sum(DIGITS_FIFTH_POWER[digit] for digit in str(_A ) ) def __UpperCamelCase ( ) -> int: """simple docstring""" return sum( number for number in range(10_00 , 1_00_00_00 ) if number == digits_fifth_powers_sum(_A ) ) if __name__ == "__main__": print(solution())
717
'''simple docstring''' import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __UpperCamelCase ( _A : Dict ) -> int: """simple docstring""" lowerCAmelCase : Tuple = [] embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight", F"stage{idx}.patch_embed.proj.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias", F"stage{idx}.patch_embed.proj.bias", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight", F"stage{idx}.patch_embed.norm.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias", F"stage{idx}.patch_embed.norm.bias", ) ) return embed def __UpperCamelCase ( _A : List[Any] , _A : Dict ) -> Any: """simple docstring""" lowerCAmelCase : str = [] attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight", F"stage{idx}.blocks.{cnt}.attn.proj_q.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias", F"stage{idx}.blocks.{cnt}.attn.proj_q.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight", F"stage{idx}.blocks.{cnt}.attn.proj_k.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias", F"stage{idx}.blocks.{cnt}.attn.proj_k.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight", F"stage{idx}.blocks.{cnt}.attn.proj_v.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias", F"stage{idx}.blocks.{cnt}.attn.proj_v.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight", F"stage{idx}.blocks.{cnt}.attn.proj.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias", F"stage{idx}.blocks.{cnt}.attn.proj.bias", ) ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc2.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight", F"stage{idx}.blocks.{cnt}.norm1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias", F"stage{idx}.blocks.{cnt}.norm1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight", F"stage{idx}.blocks.{cnt}.norm2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias", F"stage{idx}.blocks.{cnt}.norm2.bias") ) return attention_weights def __UpperCamelCase ( _A : Optional[int] ) -> Optional[int]: """simple docstring""" lowerCAmelCase : Optional[int] = [] token.append((F"cvt.encoder.stages.{idx}.cls_token", 'stage2.cls_token') ) return token def __UpperCamelCase ( ) -> int: """simple docstring""" lowerCAmelCase : List[Any] = [] head.append(('layernorm.weight', 'norm.weight') ) head.append(('layernorm.bias', 'norm.bias') ) head.append(('classifier.weight', 'head.weight') ) head.append(('classifier.bias', 'head.bias') ) return head def __UpperCamelCase ( _A : str , _A : Optional[Any] , _A : Dict , _A : str ) -> Optional[int]: """simple docstring""" lowerCAmelCase : List[str] = 'imagenet-1k-id2label.json' lowerCAmelCase : Tuple = 10_00 lowerCAmelCase : str = 'huggingface/label-files' lowerCAmelCase : List[Any] = num_labels lowerCAmelCase : Any = json.load(open(cached_download(hf_hub_url(_A , _A , repo_type='dataset' ) ) , 'r' ) ) lowerCAmelCase : List[str] = {int(_A ): v for k, v in idalabel.items()} lowerCAmelCase : List[str] = idalabel lowerCAmelCase : str = {v: k for k, v in idalabel.items()} lowerCAmelCase : int = CvtConfig(num_labels=_A , idalabel=_A , labelaid=_A ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13": lowerCAmelCase : List[str] = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21": lowerCAmelCase : Tuple = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: lowerCAmelCase : Any = [2, 2, 20] lowerCAmelCase : List[str] = [3, 12, 16] lowerCAmelCase : List[Any] = [1_92, 7_68, 10_24] lowerCAmelCase : Union[str, Any] = CvtForImageClassification(_A ) lowerCAmelCase : str = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) lowerCAmelCase : Optional[Any] = image_size lowerCAmelCase : List[Any] = torch.load(_A , map_location=torch.device('cpu' ) ) lowerCAmelCase : str = OrderedDict() lowerCAmelCase : int = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: lowerCAmelCase : List[str] = list_of_state_dict + cls_token(_A ) lowerCAmelCase : Optional[Any] = list_of_state_dict + embeddings(_A ) for cnt in range(config.depth[idx] ): lowerCAmelCase : List[Any] = list_of_state_dict + attention(_A , _A ) lowerCAmelCase : List[str] = list_of_state_dict + final() for gg in list_of_state_dict: print(_A ) for i in range(len(_A ) ): lowerCAmelCase : Tuple = original_weights[list_of_state_dict[i][1]] model.load_state_dict(_A ) model.save_pretrained(_A ) image_processor.save_pretrained(_A ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": _lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '--cvt_model', default='cvt-w24', type=str, help='Name of the cvt model you\'d like to convert.', ) parser.add_argument( '--image_size', default=384, type=int, help='Input Image Size', ) parser.add_argument( '--cvt_file_name', default=r'cvtmodels\CvT-w24-384x384-IN-22k.pth', type=str, help='Input Image Size', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) _lowerCAmelCase : str = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
646
0
'''simple docstring''' import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class lowerCAmelCase : def __init__( self , snake_case__ , snake_case__=13 , snake_case__=7 , snake_case__=False , snake_case__=True , snake_case__=False , snake_case__=False , snake_case__=19 , snake_case__=32 , snake_case__=5 , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=16 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=3 , snake_case__=4 , snake_case__=None , ): lowerCAmelCase : Any = parent lowerCAmelCase : Any = batch_size lowerCAmelCase : int = seq_length lowerCAmelCase : Dict = is_training lowerCAmelCase : Any = use_input_mask lowerCAmelCase : Tuple = use_token_type_ids lowerCAmelCase : Tuple = use_labels lowerCAmelCase : List[Any] = vocab_size lowerCAmelCase : Dict = hidden_size lowerCAmelCase : Optional[Any] = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : Tuple = intermediate_size lowerCAmelCase : Optional[Any] = hidden_act lowerCAmelCase : Optional[Any] = hidden_dropout_prob lowerCAmelCase : Any = attention_probs_dropout_prob lowerCAmelCase : Tuple = max_position_embeddings lowerCAmelCase : Tuple = type_vocab_size lowerCAmelCase : Optional[Any] = type_sequence_label_size lowerCAmelCase : str = initializer_range lowerCAmelCase : Optional[Any] = num_labels lowerCAmelCase : List[str] = num_choices lowerCAmelCase : Optional[int] = scope def lowercase ( self ): lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Union[str, Any] = None if self.use_input_mask: lowerCAmelCase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : Optional[int] = None lowerCAmelCase : int = None lowerCAmelCase : Union[str, Any] = None if self.use_labels: lowerCAmelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : Dict = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase ( self ): lowerCAmelCase : str = EsmConfig( vocab_size=33 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=snake_case__ , esmfold_config={'trunk': {'num_blocks': 2}, 'fp16_esm': False} , ) return config def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Any = EsmForProteinFolding(config=snake_case__ ).float() model.to(snake_case__ ) model.eval() lowerCAmelCase : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ ) lowerCAmelCase : Any = model(snake_case__ ) lowerCAmelCase : Dict = model(snake_case__ ) self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 14, 3) ) self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2) ) def lowercase ( self ): lowerCAmelCase : Optional[int] = self.prepare_config_and_inputs() ( lowerCAmelCase ) : str = config_and_inputs lowerCAmelCase : Any = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase ( a , a , unittest.TestCase ): _lowerCamelCase : Optional[int] = False _lowerCamelCase : List[str] = (EsmForProteinFolding,) if is_torch_available() else () _lowerCamelCase : List[Any] = () _lowerCamelCase : Tuple = {} if is_torch_available() else {} _lowerCamelCase : int = False def lowercase ( self ): lowerCAmelCase : Optional[int] = EsmFoldModelTester(self ) lowerCAmelCase : Any = ConfigTester(self , config_class=snake_case__ , hidden_size=37 ) def lowercase ( self ): self.config_tester.run_common_tests() def lowercase ( self ): lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) @unittest.skip('Does not support attention outputs' ) def lowercase ( self ): pass @unittest.skip def lowercase ( self ): pass @unittest.skip('Esm does not support embedding resizing' ) def lowercase ( self ): pass @unittest.skip('Esm does not support embedding resizing' ) def lowercase ( self ): pass @unittest.skip('ESMFold does not support passing input embeds!' ) def lowercase ( self ): pass @unittest.skip('ESMFold does not support head pruning.' ) def lowercase ( self ): pass @unittest.skip('ESMFold does not support head pruning.' ) def lowercase ( self ): pass @unittest.skip('ESMFold does not support head pruning.' ) def lowercase ( self ): pass @unittest.skip('ESMFold does not support head pruning.' ) def lowercase ( self ): pass @unittest.skip('ESMFold does not support head pruning.' ) def lowercase ( self ): pass @unittest.skip('ESMFold does not output hidden states in the normal way.' ) def lowercase ( self ): pass @unittest.skip('ESMfold does not output hidden states in the normal way.' ) def lowercase ( self ): pass @unittest.skip('ESMFold only has one output format.' ) def lowercase ( self ): pass @unittest.skip('This test doesn\'t work for ESMFold and doesn\'t test core functionality' ) def lowercase ( self ): pass @unittest.skip('ESMFold does not support input chunking.' ) def lowercase ( self ): pass @unittest.skip('ESMFold doesn\'t respect you and it certainly doesn\'t respect your initialization arguments.' ) def lowercase ( self ): pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def lowercase ( self ): pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def lowercase ( self ): pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def lowercase ( self ): pass @unittest.skip('ESMFold doesn\'t support data parallel.' ) def lowercase ( self ): pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase ( self ): pass @require_torch class lowerCAmelCase ( a ): @slow def lowercase ( self ): lowerCAmelCase : Optional[int] = EsmForProteinFolding.from_pretrained('facebook/esmfold_v1' ).float() model.eval() lowerCAmelCase : Tuple = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) lowerCAmelCase : Optional[Any] = model(snake_case__ )['positions'] lowerCAmelCase : Any = torch.tensor([2.5_8_2_8, 0.7_9_9_3, -10.9334] , dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , snake_case__ , atol=1e-4 ) )
718
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Any = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { 'xlm-roberta-base': 'https://huggingface.co/xlm-roberta-base/resolve/main/config.json', 'xlm-roberta-large': 'https://huggingface.co/xlm-roberta-large/resolve/main/config.json', 'xlm-roberta-large-finetuned-conll02-dutch': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll02-spanish': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-english': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-german': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json' ), } class lowerCAmelCase ( a ): _lowerCamelCase : List[str] = """xlm-roberta""" def __init__( self , snake_case__=3_0522 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=1e-1_2 , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__="absolute" , snake_case__=True , snake_case__=None , **snake_case__ , ): super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) lowerCAmelCase : Optional[Any] = vocab_size lowerCAmelCase : Optional[Any] = hidden_size lowerCAmelCase : Optional[Any] = num_hidden_layers lowerCAmelCase : Any = num_attention_heads lowerCAmelCase : Optional[int] = hidden_act lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : Dict = hidden_dropout_prob lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob lowerCAmelCase : Optional[Any] = max_position_embeddings lowerCAmelCase : Optional[int] = type_vocab_size lowerCAmelCase : int = initializer_range lowerCAmelCase : List[Any] = layer_norm_eps lowerCAmelCase : Union[str, Any] = position_embedding_type lowerCAmelCase : Union[str, Any] = use_cache lowerCAmelCase : List[str] = classifier_dropout class lowerCAmelCase ( a ): @property def lowercase ( self ): if self.task == "multiple-choice": lowerCAmelCase : str = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase : Optional[int] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
646
0
'''simple docstring''' from collections.abc import Sequence def __UpperCamelCase ( _A : Sequence[float] , _A : float ) -> float: """simple docstring""" return sum(c * (x**i) for i, c in enumerate(_A ) ) def __UpperCamelCase ( _A : Sequence[float] , _A : float ) -> float: """simple docstring""" lowerCAmelCase : Union[str, Any] = 0.0 for coeff in reversed(_A ): lowerCAmelCase : List[Any] = result * x + coeff return result if __name__ == "__main__": _lowerCAmelCase : Optional[int] = (0.0, 0.0, 5.0, 9.3, 7.0) _lowerCAmelCase : Union[str, Any] = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
719
'''simple docstring''' import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer _lowerCAmelCase : List[Any] = logging.getLogger(__name__) def __UpperCamelCase ( ) -> Any: """simple docstring""" lowerCAmelCase : str = argparse.ArgumentParser( description='Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.' ) parser.add_argument( '--dataset_name' , type=_A , default='wikitext' , help='Name of the training. Explore datasets at: hf.co/datasets.' , ) parser.add_argument( '--dataset_config' , type=_A , default='wikitext-103-raw-v1' , help='Configuration name of the dataset.' ) parser.add_argument( '--tokenizer_name_or_path' , type=_A , default='sayakpaul/unigram-tokenizer-wikitext' , help='Tokenizer identifier. Can be a local filepath or a Hub identifier.' , ) parser.add_argument( '--shard_size' , type=_A , default=10_00 , help='Number of entries to go in a single shard.' , ) parser.add_argument('--split' , type=_A , default='train' , choices=['train', 'test', 'validation'] ) parser.add_argument( '--limit' , default=_A , type=_A , help='Limit the number of shards (used for debugging).' , ) parser.add_argument( '--max_length' , type=_A , default=5_12 , help='Maximum sequence length. For training on TPUs, it helps to have a maximum' ' sequence length that is a multiple of 8.' , ) parser.add_argument( '--output_dir' , default='tf-tpu' , type=_A , help='Output directory where the TFRecord shards will be saved. If the' ' path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord' ' shards will be directly saved to a Google Cloud Storage bucket.' , ) lowerCAmelCase : Any = parser.parse_args() return args def __UpperCamelCase ( _A : Optional[int] ) -> int: """simple docstring""" def fn(_A : Tuple ): return tokenizer(examples['text'] ) return fn def __UpperCamelCase ( _A : int ) -> int: """simple docstring""" lowerCAmelCase : Tuple = [] for i in range(len(tokenized_data['input_ids'] ) ): lowerCAmelCase : Optional[Any] = { 'input_ids': tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data['input_ids'][i] ) ), 'attention_mask': tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data['attention_mask'][i] ) ), } lowerCAmelCase : Any = tf.train.Features(feature=_A ) lowerCAmelCase : List[str] = tf.train.Example(features=_A ) lowerCAmelCase : Tuple = example.SerializeToString() records.append(_A ) return records def __UpperCamelCase ( _A : int ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase : Union[str, Any] = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: lowerCAmelCase : Optional[Any] = min(len(_A ) , args.limit ) lowerCAmelCase : Dict = dataset.select(range(_A ) ) print(F"Limiting the dataset to {args.limit} entries." ) lowerCAmelCase : str = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) lowerCAmelCase : Any = os.path.join(args.output_dir , args.split ) if not os.path.exists(_A ): os.makedirs(_A ) else: lowerCAmelCase : List[Any] = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. lowerCAmelCase : Any = tokenize_function(_A ) lowerCAmelCase : Optional[int] = dataset.map(_A , batched=_A , num_proc=4 , remove_columns=['text'] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(_A : str ): # Concatenate all texts. lowerCAmelCase : Optional[int] = {k: sum(examples[k] , [] ) for k in examples.keys()} lowerCAmelCase : str = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 lowerCAmelCase : List[Any] = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. lowerCAmelCase : str = { k: [t[i : i + args.max_length] for i in range(0 , _A , args.max_length )] for k, t in concatenated_examples.items() } return result lowerCAmelCase : List[Any] = dataset_tokenized.map(_A , batched=_A , batch_size=10_00 , num_proc=4 ) lowerCAmelCase : Union[str, Any] = 0 lowerCAmelCase : Tuple = 0 for shard in range(0 , len(_A ) , args.shard_size ): lowerCAmelCase : Optional[Any] = grouped_dataset[shard : shard + args.shard_size] lowerCAmelCase : List[str] = len(dataset_snapshot['input_ids'] ) lowerCAmelCase : Union[str, Any] = os.path.join(_A , F"dataset-{shard_count}-{records_containing}.tfrecord" ) lowerCAmelCase : List[Any] = get_serialized_examples(_A ) with tf.io.TFRecordWriter(_A ) as out_file: for i in range(len(_A ) ): lowerCAmelCase : Union[str, Any] = serialized_examples[i] out_file.write(_A ) print('Wrote file {} containing {} records'.format(_A , _A ) ) shard_count += 1 total_records += records_containing with open(F"split-{args.split}-records-count.txt" , 'w' ) as f: print(F"Total {args.split} records: {total_records}" , file=_A ) if __name__ == "__main__": _lowerCAmelCase : List[Any] = parse_args() main(args)
646
0