code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class lowerCAmelCase ( unittest.TestCase , a ): def lowercase ( self ): lowerCAmelCase : Dict = load_tool('text-classification' ) self.tool.setup() lowerCAmelCase : int = load_tool('text-classification' , remote=snake_case__ ) def lowercase ( self ): lowerCAmelCase : Any = self.tool('That\'s quite cool' , ['positive', 'negative'] ) self.assertEqual(snake_case__ , 'positive' ) def lowercase ( self ): lowerCAmelCase : Dict = self.remote_tool('That\'s quite cool' , ['positive', 'negative'] ) self.assertEqual(snake_case__ , 'positive' ) def lowercase ( self ): lowerCAmelCase : int = self.tool(text='That\'s quite cool' , labels=['positive', 'negative'] ) self.assertEqual(snake_case__ , 'positive' ) def lowercase ( self ): lowerCAmelCase : List[Any] = self.remote_tool(text='That\'s quite cool' , labels=['positive', 'negative'] ) self.assertEqual(snake_case__ , 'positive' )
720
'''simple docstring''' import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() _lowerCAmelCase : List[str] = logging.get_logger('transformers.models.speecht5') def __UpperCamelCase ( _A : Any , _A : Dict , _A : Any ) -> Union[str, Any]: """simple docstring""" hf_model.apply_weight_norm() lowerCAmelCase : int = checkpoint['input_conv.weight_g'] lowerCAmelCase : Optional[int] = checkpoint['input_conv.weight_v'] lowerCAmelCase : Dict = checkpoint['input_conv.bias'] for i in range(len(config.upsample_rates ) ): lowerCAmelCase : Optional[Any] = checkpoint[F"upsamples.{i}.1.weight_g"] lowerCAmelCase : str = checkpoint[F"upsamples.{i}.1.weight_v"] lowerCAmelCase : str = checkpoint[F"upsamples.{i}.1.bias"] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): lowerCAmelCase : int = checkpoint[F"blocks.{i}.convs1.{j}.1.weight_g"] lowerCAmelCase : str = checkpoint[F"blocks.{i}.convs1.{j}.1.weight_v"] lowerCAmelCase : int = checkpoint[F"blocks.{i}.convs1.{j}.1.bias"] lowerCAmelCase : Optional[Any] = checkpoint[F"blocks.{i}.convs2.{j}.1.weight_g"] lowerCAmelCase : Tuple = checkpoint[F"blocks.{i}.convs2.{j}.1.weight_v"] lowerCAmelCase : Tuple = checkpoint[F"blocks.{i}.convs2.{j}.1.bias"] lowerCAmelCase : List[Any] = checkpoint['output_conv.1.weight_g'] lowerCAmelCase : List[str] = checkpoint['output_conv.1.weight_v'] lowerCAmelCase : Optional[Any] = checkpoint['output_conv.1.bias'] hf_model.remove_weight_norm() @torch.no_grad() def __UpperCamelCase ( _A : Dict , _A : Union[str, Any] , _A : List[Any] , _A : Any=None , _A : Any=None , ) -> Dict: """simple docstring""" if config_path is not None: lowerCAmelCase : Dict = SpeechTaHifiGanConfig.from_pretrained(_A ) else: lowerCAmelCase : Union[str, Any] = SpeechTaHifiGanConfig() lowerCAmelCase : List[Any] = SpeechTaHifiGan(_A ) lowerCAmelCase : List[str] = torch.load(_A ) load_weights(orig_checkpoint['model']['generator'] , _A , _A ) lowerCAmelCase : Tuple = np.load(_A ) lowerCAmelCase : List[Any] = stats[0].reshape(-1 ) lowerCAmelCase : int = stats[1].reshape(-1 ) lowerCAmelCase : Union[str, Any] = torch.from_numpy(_A ).float() lowerCAmelCase : int = torch.from_numpy(_A ).float() model.save_pretrained(_A ) if repo_id: print('Pushing to the hub...' ) model.push_to_hub(_A ) if __name__ == "__main__": _lowerCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--stats_path', required=True, default=None, type=str, help='Path to stats.npy file') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) _lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
646
0
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType _lowerCAmelCase : int = logging.get_logger(__name__) _lowerCAmelCase : int = { 'microsoft/deberta-v2-xlarge': 'https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json', 'microsoft/deberta-v2-xxlarge': 'https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json', 'microsoft/deberta-v2-xlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json' ), 'microsoft/deberta-v2-xxlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json' ), } class lowerCAmelCase ( a ): _lowerCamelCase : Tuple = """deberta-v2""" def __init__( self , snake_case__=12_8100 , snake_case__=1536 , snake_case__=24 , snake_case__=24 , snake_case__=6144 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=0 , snake_case__=0.0_2 , snake_case__=1e-7 , snake_case__=False , snake_case__=-1 , snake_case__=0 , snake_case__=True , snake_case__=None , snake_case__=0 , snake_case__="gelu" , **snake_case__ , ): super().__init__(**snake_case__ ) lowerCAmelCase : str = hidden_size lowerCAmelCase : Tuple = num_hidden_layers lowerCAmelCase : Union[str, Any] = num_attention_heads lowerCAmelCase : Tuple = intermediate_size lowerCAmelCase : Dict = hidden_act lowerCAmelCase : int = hidden_dropout_prob lowerCAmelCase : Any = attention_probs_dropout_prob lowerCAmelCase : Tuple = max_position_embeddings lowerCAmelCase : Tuple = type_vocab_size lowerCAmelCase : str = initializer_range lowerCAmelCase : Any = relative_attention lowerCAmelCase : Dict = max_relative_positions lowerCAmelCase : int = pad_token_id lowerCAmelCase : Union[str, Any] = position_biased_input # Backwards compatibility if type(snake_case__ ) == str: lowerCAmelCase : int = [x.strip() for x in pos_att_type.lower().split('|' )] lowerCAmelCase : List[str] = pos_att_type lowerCAmelCase : Optional[Any] = vocab_size lowerCAmelCase : Tuple = layer_norm_eps lowerCAmelCase : Dict = kwargs.get('pooler_hidden_size' , snake_case__ ) lowerCAmelCase : Optional[int] = pooler_dropout lowerCAmelCase : Optional[Any] = pooler_hidden_act class lowerCAmelCase ( a ): @property def lowercase ( self ): if self.task == "multiple-choice": lowerCAmelCase : str = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase : Union[str, Any] = {0: 'batch', 1: 'sequence'} if self._config.type_vocab_size > 0: return OrderedDict( [('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis)] ) else: return OrderedDict([('input_ids', dynamic_axis), ('attention_mask', dynamic_axis)] ) @property def lowercase ( self ): return 12 def lowercase ( self , snake_case__ , snake_case__ = -1 , snake_case__ = -1 , snake_case__ = -1 , snake_case__ = False , snake_case__ = None , snake_case__ = 3 , snake_case__ = 40 , snake_case__ = 40 , snake_case__ = None , ): lowerCAmelCase : Tuple = super().generate_dummy_inputs(preprocessor=snake_case__ , framework=snake_case__ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
721
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets _lowerCAmelCase : Dict = '\\n@inproceedings{popovic-2015-chrf,\n title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",\n month = sep,\n year = "2015",\n address = "Lisbon, Portugal",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W15-3049",\n doi = "10.18653/v1/W15-3049",\n pages = "392--395",\n}\n@inproceedings{popovic-2017-chrf,\n title = "chr{F}++: words helping character n-grams",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Second Conference on Machine Translation",\n month = sep,\n year = "2017",\n address = "Copenhagen, Denmark",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W17-4770",\n doi = "10.18653/v1/W17-4770",\n pages = "612--618",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' _lowerCAmelCase : Optional[Any] = '\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n' _lowerCAmelCase : List[Any] = '\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n \'score\' (float): The chrF (chrF++) score,\n \'char_order\' (int): The character n-gram order,\n \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n \'beta\' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase ( datasets.Metric ): def lowercase ( self ): if version.parse(scb.__version__ ) < version.parse('1.4.12' ): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/mjpost/sacreBLEU#chrf--chrf' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/mjpost/sacreBLEU#chrf--chrf'] , reference_urls=[ 'https://github.com/m-popovic/chrF', ] , ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ = CHRF.CHAR_ORDER , snake_case__ = CHRF.WORD_ORDER , snake_case__ = CHRF.BETA , snake_case__ = False , snake_case__ = False , snake_case__ = False , ): lowerCAmelCase : List[str] = len(references[0] ) if any(len(snake_case__ ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) lowerCAmelCase : List[str] = [[refs[i] for refs in references] for i in range(snake_case__ )] lowerCAmelCase : Union[str, Any] = CHRF(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase : Dict = sb_chrf.corpus_score(snake_case__ , snake_case__ ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
646
0
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowerCAmelCase ( a , a , unittest.TestCase ): _lowerCamelCase : List[str] = IFInpaintingSuperResolutionPipeline _lowerCamelCase : Tuple = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""} _lowerCamelCase : Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"""original_image"""} ) _lowerCamelCase : int = PipelineTesterMixin.required_optional_params - {"""latents"""} def lowercase ( self ): return self._get_superresolution_dummy_components() def lowercase ( self , snake_case__ , snake_case__=0 ): if str(snake_case__ ).startswith('mps' ): lowerCAmelCase : str = torch.manual_seed(snake_case__ ) else: lowerCAmelCase : Union[str, Any] = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) lowerCAmelCase : Any = floats_tensor((1, 3, 16, 16) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) lowerCAmelCase : str = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) lowerCAmelCase : Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) lowerCAmelCase : Any = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'original_image': original_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def lowercase ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def lowercase ( self ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def lowercase ( self ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def lowercase ( self ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def lowercase ( self ): self._test_save_load_local() def lowercase ( self ): self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
700
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : str = logging.get_logger(__name__) _lowerCAmelCase : Tuple = { 's-JoL/Open-Llama-V1': 'https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json', } class lowerCAmelCase ( a ): _lowerCamelCase : Union[str, Any] = """open-llama""" def __init__( self , snake_case__=10_0000 , snake_case__=4096 , snake_case__=1_1008 , snake_case__=32 , snake_case__=32 , snake_case__="silu" , snake_case__=2048 , snake_case__=0.0_2 , snake_case__=1e-6 , snake_case__=True , snake_case__=0 , snake_case__=1 , snake_case__=2 , snake_case__=False , snake_case__=True , snake_case__=0.1 , snake_case__=0.1 , snake_case__=True , snake_case__=True , snake_case__=None , **snake_case__ , ): lowerCAmelCase : Tuple = vocab_size lowerCAmelCase : Optional[Any] = max_position_embeddings lowerCAmelCase : List[Any] = hidden_size lowerCAmelCase : List[Any] = intermediate_size lowerCAmelCase : Tuple = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : str = rms_norm_eps lowerCAmelCase : Optional[int] = use_cache lowerCAmelCase : Dict = kwargs.pop( 'use_memorry_efficient_attention' , snake_case__ ) lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : Optional[Any] = attention_dropout_prob lowerCAmelCase : Union[str, Any] = use_stable_embedding lowerCAmelCase : Tuple = shared_input_output_embedding lowerCAmelCase : Tuple = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , tie_word_embeddings=snake_case__ , **snake_case__ , ) def lowercase ( self ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , snake_case__ ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' f"got {self.rope_scaling}" ) lowerCAmelCase : List[Any] = self.rope_scaling.get('type' , snake_case__ ) lowerCAmelCase : List[str] = self.rope_scaling.get('factor' , snake_case__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(snake_case__ , snake_case__ ) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
646
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _lowerCAmelCase : Dict = {'configuration_vit_mae': ['VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMAEConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : str = [ 'VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMAEForPreTraining', 'ViTMAELayer', 'ViTMAEModel', 'ViTMAEPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : str = [ 'TFViTMAEForPreTraining', 'TFViTMAEModel', 'TFViTMAEPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys _lowerCAmelCase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
701
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) _lowerCAmelCase : Dict = { 'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class lowerCAmelCase ( a ): _lowerCamelCase : Any = """deformable_detr""" _lowerCamelCase : List[str] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , snake_case__=True , snake_case__=None , snake_case__=3 , snake_case__=300 , snake_case__=1024 , snake_case__=6 , snake_case__=1024 , snake_case__=8 , snake_case__=6 , snake_case__=1024 , snake_case__=8 , snake_case__=0.0 , snake_case__=True , snake_case__="relu" , snake_case__=256 , snake_case__=0.1 , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.0_2 , snake_case__=1.0 , snake_case__=True , snake_case__=False , snake_case__="sine" , snake_case__="resnet50" , snake_case__=True , snake_case__=False , snake_case__=4 , snake_case__=4 , snake_case__=4 , snake_case__=False , snake_case__=300 , snake_case__=False , snake_case__=1 , snake_case__=5 , snake_case__=2 , snake_case__=1 , snake_case__=1 , snake_case__=5 , snake_case__=2 , snake_case__=0.1 , snake_case__=0.2_5 , snake_case__=False , **snake_case__ , ): if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) lowerCAmelCase : Optional[int] = CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : List[str] = backbone_config.get('model_type' ) lowerCAmelCase : str = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase : Optional[Any] = config_class.from_dict(snake_case__ ) lowerCAmelCase : Union[str, Any] = use_timm_backbone lowerCAmelCase : List[Any] = backbone_config lowerCAmelCase : Any = num_channels lowerCAmelCase : Tuple = num_queries lowerCAmelCase : Dict = max_position_embeddings lowerCAmelCase : int = d_model lowerCAmelCase : List[str] = encoder_ffn_dim lowerCAmelCase : List[str] = encoder_layers lowerCAmelCase : int = encoder_attention_heads lowerCAmelCase : str = decoder_ffn_dim lowerCAmelCase : str = decoder_layers lowerCAmelCase : Dict = decoder_attention_heads lowerCAmelCase : str = dropout lowerCAmelCase : List[str] = attention_dropout lowerCAmelCase : Union[str, Any] = activation_dropout lowerCAmelCase : str = activation_function lowerCAmelCase : Any = init_std lowerCAmelCase : Any = init_xavier_std lowerCAmelCase : Dict = encoder_layerdrop lowerCAmelCase : int = auxiliary_loss lowerCAmelCase : Optional[Any] = position_embedding_type lowerCAmelCase : List[str] = backbone lowerCAmelCase : int = use_pretrained_backbone lowerCAmelCase : int = dilation # deformable attributes lowerCAmelCase : List[str] = num_feature_levels lowerCAmelCase : List[str] = encoder_n_points lowerCAmelCase : Union[str, Any] = decoder_n_points lowerCAmelCase : Tuple = two_stage lowerCAmelCase : Dict = two_stage_num_proposals lowerCAmelCase : Union[str, Any] = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.' ) # Hungarian matcher lowerCAmelCase : Union[str, Any] = class_cost lowerCAmelCase : Dict = bbox_cost lowerCAmelCase : List[Any] = giou_cost # Loss coefficients lowerCAmelCase : Dict = mask_loss_coefficient lowerCAmelCase : Any = dice_loss_coefficient lowerCAmelCase : str = bbox_loss_coefficient lowerCAmelCase : Tuple = giou_loss_coefficient lowerCAmelCase : List[str] = eos_coefficient lowerCAmelCase : Any = focal_alpha lowerCAmelCase : Dict = disable_custom_kernels super().__init__(is_encoder_decoder=snake_case__ , **snake_case__ ) @property def lowercase ( self ): return self.encoder_attention_heads @property def lowercase ( self ): return self.d_model def lowercase ( self ): lowerCAmelCase : Union[str, Any] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: lowerCAmelCase : List[Any] = self.backbone_config.to_dict() lowerCAmelCase : str = self.__class__.model_type return output
646
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowerCAmelCase : Tuple = { 'configuration_conditional_detr': [ 'CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConditionalDetrConfig', 'ConditionalDetrOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Dict = ['ConditionalDetrFeatureExtractor'] _lowerCAmelCase : Dict = ['ConditionalDetrImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : List[str] = [ 'CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConditionalDetrForObjectDetection', 'ConditionalDetrForSegmentation', 'ConditionalDetrModel', 'ConditionalDetrPreTrainedModel', ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys _lowerCAmelCase : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
702
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece_no_bos.model') @require_sentencepiece @require_tokenizers class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : str = PegasusTokenizer _lowerCamelCase : Union[str, Any] = PegasusTokenizerFast _lowerCamelCase : Optional[Any] = True _lowerCamelCase : Optional[Any] = True def lowercase ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : List[Any] = PegasusTokenizer(snake_case__ ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase ( self ): return PegasusTokenizer.from_pretrained('google/pegasus-large' ) def lowercase ( self , **snake_case__ ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def lowercase ( self , snake_case__ ): return ("This is a test", "This is a test") def lowercase ( self ): lowerCAmelCase : Optional[int] = '</s>' lowerCAmelCase : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '</s>' ) self.assertEqual(vocab_keys[-1] , 'v' ) self.assertEqual(len(snake_case__ ) , 1103 ) def lowercase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def lowercase ( self ): lowerCAmelCase : List[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : List[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : Optional[Any] = ( 'Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important' ' </s> <pad> <pad> <pad>' ) lowerCAmelCase : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] lowerCAmelCase : Optional[int] = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Any = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowerCAmelCase : List[str] = '<mask_1> To ensure a <mask_2> flow of bank resolutions.' lowerCAmelCase : Optional[Any] = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1] lowerCAmelCase : Optional[Any] = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Optional[Any] = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 lowerCAmelCase : List[Any] = 'To ensure a smooth flow of bank resolutions.' lowerCAmelCase : Optional[int] = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1] lowerCAmelCase : Any = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def lowercase ( self ): lowerCAmelCase : Union[str, Any] = ['This is going to be way too long.' * 150, 'short example'] lowerCAmelCase : int = ['not super long but more than 5 tokens', 'tiny'] lowerCAmelCase : Dict = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) lowerCAmelCase : Dict = self._large_tokenizer( text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(snake_case__ ) == 2 # input_ids, attention_mask. @slow def lowercase ( self ): # fmt: off lowerCAmelCase : Tuple = {'input_ids': [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name='google/bigbird-pegasus-large-arxiv' , revision='ba85d0851d708441f91440d509690f1ab6353415' , ) @require_sentencepiece @require_tokenizers class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : Optional[Any] = PegasusTokenizer _lowerCamelCase : str = PegasusTokenizerFast _lowerCamelCase : Tuple = True _lowerCamelCase : int = True def lowercase ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : int = PegasusTokenizer(snake_case__ , offset=0 , mask_token_sent=snake_case__ , mask_token='[MASK]' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase ( self ): return PegasusTokenizer.from_pretrained('google/bigbird-pegasus-large-arxiv' ) def lowercase ( self , **snake_case__ ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def lowercase ( self , snake_case__ ): return ("This is a test", "This is a test") def lowercase ( self ): lowerCAmelCase : Tuple = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : Union[str, Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : List[str] = ( 'Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>' ' <pad> <pad> <pad>' ) lowerCAmelCase : Dict = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] lowerCAmelCase : Union[str, Any] = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) @require_torch def lowercase ( self ): lowerCAmelCase : Optional[int] = ['This is going to be way too long.' * 1000, 'short example'] lowerCAmelCase : Union[str, Any] = ['not super long but more than 5 tokens', 'tiny'] lowerCAmelCase : List[str] = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) lowerCAmelCase : List[str] = self._large_tokenizer( text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(snake_case__ ) == 2 # input_ids, attention_mask. def lowercase ( self ): lowerCAmelCase : List[str] = ( 'This is an example string that is used to test the original TF implementation against the HF' ' implementation' ) lowerCAmelCase : Tuple = self._large_tokenizer(snake_case__ ).input_ids self.assertListEqual( snake_case__ , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
646
0
'''simple docstring''' from __future__ import annotations _lowerCAmelCase : Any = 1.6021E-19 # units = C def __UpperCamelCase ( _A : float , _A : float , _A : float , ) -> tuple[str, float]: """simple docstring""" if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError('You cannot supply more or less than 2 values' ) elif conductivity < 0: raise ValueError('Conductivity cannot be negative' ) elif electron_conc < 0: raise ValueError('Electron concentration cannot be negative' ) elif mobility < 0: raise ValueError('mobility cannot be negative' ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
703
'''simple docstring''' import math import sys import cva import numpy as np def __UpperCamelCase ( _A : np.ndarray , _A : float ) -> np.ndarray: """simple docstring""" lowerCAmelCase : Union[str, Any] = math.sqrt(_A ) lowerCAmelCase : Union[str, Any] = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def __UpperCamelCase ( _A : np.ndarray , _A : int , _A : int , _A : int ) -> np.ndarray: """simple docstring""" lowerCAmelCase : int = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def __UpperCamelCase ( _A : int , _A : float ) -> np.ndarray: """simple docstring""" lowerCAmelCase : Dict = np.zeros((kernel_size, kernel_size) ) for i in range(0 , _A ): for j in range(0 , _A ): lowerCAmelCase : Optional[int] = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(_A , _A ) def __UpperCamelCase ( _A : np.ndarray , _A : float , _A : float , _A : int , ) -> np.ndarray: """simple docstring""" lowerCAmelCase : str = np.zeros(img.shape ) lowerCAmelCase : int = get_gauss_kernel(_A , _A ) lowerCAmelCase , lowerCAmelCase : Dict = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): lowerCAmelCase : int = get_slice(_A , _A , _A , _A ) lowerCAmelCase : Any = img_s - img_s[kernel_size // 2, kernel_size // 2] lowerCAmelCase : str = vec_gaussian(_A , _A ) lowerCAmelCase : Optional[int] = np.multiply(_A , _A ) lowerCAmelCase : str = np.multiply(_A , _A ) lowerCAmelCase : Union[str, Any] = np.sum(_A ) / np.sum(_A ) lowerCAmelCase : Tuple = val return imga def __UpperCamelCase ( _A : list ) -> tuple: """simple docstring""" lowerCAmelCase : List[Any] = args[1] if args[1:] else '../image_data/lena.jpg' lowerCAmelCase : Any = float(args[2] ) if args[2:] else 1.0 lowerCAmelCase : Union[str, Any] = float(args[3] ) if args[3:] else 1.0 if args[4:]: lowerCAmelCase : int = int(args[4] ) lowerCAmelCase : Optional[Any] = kernel_size + abs(kernel_size % 2 - 1 ) else: lowerCAmelCase : Optional[int] = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Any = parse_args(sys.argv) _lowerCAmelCase : str = cva.imread(filename, 0) cva.imshow('input image', img) _lowerCAmelCase : Union[str, Any] = img / 255 _lowerCAmelCase : List[str] = out.astype('float32') _lowerCAmelCase : Optional[int] = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) _lowerCAmelCase : Union[str, Any] = out * 255 _lowerCAmelCase : Optional[Any] = np.uinta(out) cva.imshow('output image', out) cva.waitKey(0) cva.destroyAllWindows()
646
0
'''simple docstring''' from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def __UpperCamelCase ( _A : Optional[Any] ) -> int: """simple docstring""" if isinstance(_A , collections.abc.Iterable ): return x return (x, x) @require_tf class lowerCAmelCase : def lowercase ( self , snake_case__ , snake_case__ ): pass def lowercase ( self ): pass def lowercase ( self ): pass def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=None , **snake_case__ ): lowerCAmelCase : Tuple = VisionTextDualEncoderConfig.from_vision_text_configs(snake_case__ , snake_case__ ) lowerCAmelCase : Any = TFVisionTextDualEncoderModel(snake_case__ ) lowerCAmelCase : int = model(input_ids=snake_case__ , pixel_values=snake_case__ , attention_mask=snake_case__ ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], config.projection_dim) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=None , **snake_case__ ): lowerCAmelCase : List[str] = self.get_vision_text_model(snake_case__ , snake_case__ ) lowerCAmelCase : Union[str, Any] = TFVisionTextDualEncoderModel(vision_model=snake_case__ , text_model=snake_case__ ) lowerCAmelCase : Optional[Any] = model(input_ids=snake_case__ , pixel_values=snake_case__ , attention_mask=snake_case__ ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=None , **snake_case__ ): lowerCAmelCase : List[Any] = self.get_vision_text_model(snake_case__ , snake_case__ ) lowerCAmelCase : str = {'vision_model': vision_model, 'text_model': text_model} lowerCAmelCase : Optional[int] = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**snake_case__ ) lowerCAmelCase : Optional[int] = model(input_ids=snake_case__ , pixel_values=snake_case__ , attention_mask=snake_case__ ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=None , **snake_case__ ): lowerCAmelCase : Any = self.get_vision_text_model(snake_case__ , snake_case__ ) lowerCAmelCase : Tuple = TFVisionTextDualEncoderModel(vision_model=snake_case__ , text_model=snake_case__ ) lowerCAmelCase : str = model(input_ids=snake_case__ , pixel_values=snake_case__ , attention_mask=snake_case__ ) lowerCAmelCase : List[str] = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case__ ) lowerCAmelCase : Any = TFVisionTextDualEncoderModel.from_pretrained(snake_case__ ) lowerCAmelCase : Union[str, Any] = model(input_ids=snake_case__ , pixel_values=snake_case__ , attention_mask=snake_case__ ) lowerCAmelCase : Union[str, Any] = after_output[0].numpy() lowerCAmelCase : str = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(snake_case__ , 1e-5 ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=None , **snake_case__ ): lowerCAmelCase : Union[str, Any] = self.get_vision_text_model(snake_case__ , snake_case__ ) lowerCAmelCase : str = TFVisionTextDualEncoderModel(vision_model=snake_case__ , text_model=snake_case__ ) lowerCAmelCase : List[Any] = model( input_ids=snake_case__ , pixel_values=snake_case__ , attention_mask=snake_case__ , output_attentions=snake_case__ ) lowerCAmelCase : str = output.vision_model_output.attentions self.assertEqual(len(snake_case__ ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCAmelCase : Optional[Any] = to_atuple(vision_model.config.image_size ) lowerCAmelCase : List[Any] = to_atuple(vision_model.config.patch_size ) lowerCAmelCase : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowerCAmelCase : Optional[int] = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) lowerCAmelCase : List[Any] = output.text_model_output.attentions self.assertEqual(len(snake_case__ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Optional[Any] = np.abs((a - b) ).max() self.assertLessEqual(snake_case__ , snake_case__ , f"Difference between torch and flax is {diff} (>= {tol})." ) def lowercase ( self ): lowerCAmelCase : Dict = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**snake_case__ ) def lowercase ( self ): lowerCAmelCase : Any = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**snake_case__ ) def lowercase ( self ): lowerCAmelCase : List[str] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**snake_case__ ) def lowercase ( self ): lowerCAmelCase : Any = self.prepare_config_and_inputs() self.check_save_load(**snake_case__ ) def lowercase ( self ): lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**snake_case__ ) @slow def lowercase ( self ): lowerCAmelCase : Dict = self.get_pretrained_model_and_inputs() lowerCAmelCase : Dict = model_a(**snake_case__ ) lowerCAmelCase : List[str] = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(snake_case__ ) lowerCAmelCase : Dict = TFVisionTextDualEncoderModel.from_pretrained(snake_case__ ) lowerCAmelCase : Dict = model_a(**snake_case__ ) lowerCAmelCase : int = after_outputs[0].numpy() lowerCAmelCase : Union[str, Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(snake_case__ , 1e-5 ) @require_tf class lowerCAmelCase ( a , unittest.TestCase ): def lowercase ( self ): lowerCAmelCase : Any = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-vit' , 'hf-internal-testing/tiny-random-bert' ) lowerCAmelCase : Dict = 13 lowerCAmelCase : List[str] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowerCAmelCase : Optional[Any] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) lowerCAmelCase : Union[str, Any] = random_attention_mask([batch_size, 4] ) lowerCAmelCase : List[Any] = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def lowercase ( self , snake_case__ , snake_case__ ): lowerCAmelCase : List[Any] = TFViTModel(snake_case__ , name='vision_model' ) lowerCAmelCase : Dict = TFBertModel(snake_case__ , name='text_model' ) return vision_model, text_model def lowercase ( self ): lowerCAmelCase : Tuple = TFViTModelTester(self ) lowerCAmelCase : Any = TFBertModelTester(self ) lowerCAmelCase : Any = vit_model_tester.prepare_config_and_inputs() lowerCAmelCase : Optional[Any] = bert_model_tester.prepare_config_and_inputs() lowerCAmelCase : List[str] = vision_config_and_inputs ( lowerCAmelCase ) : Tuple = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class lowerCAmelCase ( a , unittest.TestCase ): def lowercase ( self ): # DeiT repo doesn't have TF weights, but we don't actually use the weights at all so let's # just reinitialize it. lowerCAmelCase : List[str] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'Rocketknight1/tiny-random-deit-tf' , 'hf-internal-testing/tiny-random-roberta' ) lowerCAmelCase : Any = 13 lowerCAmelCase : Union[str, Any] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowerCAmelCase : str = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) lowerCAmelCase : Any = random_attention_mask([batch_size, 4] ) lowerCAmelCase : str = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=None , **snake_case__ ): lowerCAmelCase : Optional[int] = self.get_vision_text_model(snake_case__ , snake_case__ ) lowerCAmelCase : str = TFVisionTextDualEncoderModel(vision_model=snake_case__ , text_model=snake_case__ ) lowerCAmelCase : Optional[int] = model( input_ids=snake_case__ , pixel_values=snake_case__ , attention_mask=snake_case__ , output_attentions=snake_case__ ) lowerCAmelCase : str = output.vision_model_output.attentions self.assertEqual(len(snake_case__ ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) lowerCAmelCase : Union[str, Any] = to_atuple(vision_model.config.image_size ) lowerCAmelCase : Union[str, Any] = to_atuple(vision_model.config.patch_size ) lowerCAmelCase : str = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowerCAmelCase : int = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) lowerCAmelCase : Tuple = output.text_model_output.attentions self.assertEqual(len(snake_case__ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def lowercase ( self , snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = TFDeiTModel(snake_case__ , name='vision_model' ) lowerCAmelCase : List[str] = TFRobertaModel(snake_case__ , name='text_model' ) return vision_model, text_model def lowercase ( self ): lowerCAmelCase : str = TFDeiTModelTester(self ) lowerCAmelCase : int = TFRobertaModelTester(self ) lowerCAmelCase : List[str] = vit_model_tester.prepare_config_and_inputs() lowerCAmelCase : Any = bert_model_tester.prepare_config_and_inputs() lowerCAmelCase : Any = vision_config_and_inputs ( lowerCAmelCase ) : List[Any] = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class lowerCAmelCase ( a , unittest.TestCase ): def lowercase ( self ): lowerCAmelCase : Union[str, Any] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'Rocketknight1/tiny-random-clip-tf' , 'hf-internal-testing/tiny-random-bert' ) lowerCAmelCase : List[Any] = 13 lowerCAmelCase : Union[str, Any] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowerCAmelCase : Any = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) lowerCAmelCase : List[Any] = random_attention_mask([batch_size, 4] ) lowerCAmelCase : str = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def lowercase ( self , snake_case__ , snake_case__ ): lowerCAmelCase : List[Any] = TFCLIPVisionModel(snake_case__ , name='vision_model' ) lowerCAmelCase : List[str] = TFBertModel(snake_case__ , name='text_model' ) return vision_model, text_model def lowercase ( self ): lowerCAmelCase : Tuple = TFCLIPVisionModelTester(self ) lowerCAmelCase : List[str] = TFBertModelTester(self ) lowerCAmelCase : int = clip_model_tester.prepare_config_and_inputs() lowerCAmelCase : Optional[int] = bert_model_tester.prepare_config_and_inputs() lowerCAmelCase : Optional[int] = vision_config_and_inputs ( lowerCAmelCase ) : List[str] = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class lowerCAmelCase ( unittest.TestCase ): @slow def lowercase ( self ): lowerCAmelCase : int = TFVisionTextDualEncoderModel.from_pretrained( 'clip-italian/clip-italian' , logit_scale_init_value=1.0 , from_pt=snake_case__ ) lowerCAmelCase : Tuple = VisionTextDualEncoderProcessor.from_pretrained('clip-italian/clip-italian' ) lowerCAmelCase : Union[str, Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) lowerCAmelCase : Tuple = processor( text=['una foto di un gatto', 'una foto di un cane'] , images=snake_case__ , padding=snake_case__ , return_tensors='np' ) lowerCAmelCase : List[str] = model(**snake_case__ ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) lowerCAmelCase : List[Any] = np.array([[1.2_2_8_4_7_2_7, 0.3_1_0_4_1_2_2]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , snake_case__ , atol=1e-3 ) )
704
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowerCAmelCase : int = { 'configuration_nezha': ['NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NezhaConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Tuple = [ 'NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST', 'NezhaForNextSentencePrediction', 'NezhaForMaskedLM', 'NezhaForPreTraining', 'NezhaForMultipleChoice', 'NezhaForQuestionAnswering', 'NezhaForSequenceClassification', 'NezhaForTokenClassification', 'NezhaModel', 'NezhaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys _lowerCAmelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
646
0
from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class lowerCAmelCase : def __init__( self , snake_case__ , ): lowerCAmelCase : Optional[int] = parent lowerCAmelCase : Tuple = 13 lowerCAmelCase : List[Any] = 7 lowerCAmelCase : str = True lowerCAmelCase : Optional[Any] = True lowerCAmelCase : Tuple = False lowerCAmelCase : int = True lowerCAmelCase : str = 99 lowerCAmelCase : str = 32 lowerCAmelCase : Tuple = 2 lowerCAmelCase : List[Any] = 4 lowerCAmelCase : Dict = 37 lowerCAmelCase : int = 'gelu' lowerCAmelCase : Dict = 0.1 lowerCAmelCase : Dict = 0.1 lowerCAmelCase : str = 512 lowerCAmelCase : Optional[int] = 16 lowerCAmelCase : Tuple = 2 lowerCAmelCase : Tuple = 0.0_2 lowerCAmelCase : Tuple = 3 lowerCAmelCase : Optional[int] = 4 lowerCAmelCase : Union[str, Any] = None def lowercase ( self ): lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Tuple = None if self.use_input_mask: lowerCAmelCase : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : Union[str, Any] = None lowerCAmelCase : Optional[int] = None lowerCAmelCase : List[Any] = None if self.use_labels: lowerCAmelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : Dict = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : List[str] = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Any = TFDistilBertModel(config=snake_case__ ) lowerCAmelCase : List[Any] = {'input_ids': input_ids, 'attention_mask': input_mask} lowerCAmelCase : List[Any] = model(snake_case__ ) lowerCAmelCase : List[str] = [input_ids, input_mask] lowerCAmelCase : Optional[int] = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Tuple = TFDistilBertForMaskedLM(config=snake_case__ ) lowerCAmelCase : Union[str, Any] = {'input_ids': input_ids, 'attention_mask': input_mask} lowerCAmelCase : int = model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Optional[Any] = TFDistilBertForQuestionAnswering(config=snake_case__ ) lowerCAmelCase : Dict = { 'input_ids': input_ids, 'attention_mask': input_mask, } lowerCAmelCase : Optional[int] = model(snake_case__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = self.num_labels lowerCAmelCase : List[str] = TFDistilBertForSequenceClassification(snake_case__ ) lowerCAmelCase : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask} lowerCAmelCase : Dict = model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : List[str] = self.num_choices lowerCAmelCase : Optional[Any] = TFDistilBertForMultipleChoice(snake_case__ ) lowerCAmelCase : Dict = tf.tile(tf.expand_dims(snake_case__ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : List[Any] = tf.tile(tf.expand_dims(snake_case__ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : Any = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, } lowerCAmelCase : Union[str, Any] = model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Optional[Any] = self.num_labels lowerCAmelCase : str = TFDistilBertForTokenClassification(snake_case__ ) lowerCAmelCase : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask} lowerCAmelCase : List[str] = model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase ( self ): lowerCAmelCase : List[Any] = self.prepare_config_and_inputs() (lowerCAmelCase) : Tuple = config_and_inputs lowerCAmelCase : Union[str, Any] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class lowerCAmelCase ( a , a , unittest.TestCase ): _lowerCamelCase : Union[str, Any] = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) _lowerCamelCase : Optional[int] = ( { """feature-extraction""": TFDistilBertModel, """fill-mask""": TFDistilBertForMaskedLM, """question-answering""": TFDistilBertForQuestionAnswering, """text-classification""": TFDistilBertForSequenceClassification, """token-classification""": TFDistilBertForTokenClassification, """zero-shot""": TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) _lowerCamelCase : Union[str, Any] = False _lowerCamelCase : int = False def lowercase ( self ): lowerCAmelCase : str = TFDistilBertModelTester(self ) lowerCAmelCase : Any = ConfigTester(self , config_class=snake_case__ , dim=37 ) def lowercase ( self ): self.config_tester.run_common_tests() def lowercase ( self ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*snake_case__ ) @slow def lowercase ( self ): for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): lowerCAmelCase : Any = TFDistilBertModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) @require_tf class lowerCAmelCase ( unittest.TestCase ): @slow def lowercase ( self ): lowerCAmelCase : Optional[int] = TFDistilBertModel.from_pretrained('distilbert-base-uncased' ) lowerCAmelCase : List[str] = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCAmelCase : Any = model(snake_case__ )[0] lowerCAmelCase : List[str] = [1, 6, 768] self.assertEqual(output.shape , snake_case__ ) lowerCAmelCase : Union[str, Any] = tf.constant( [ [ [0.1_9_2_6_1_8_8_5, -0.1_3_7_3_2_9_5_5, 0.4_1_1_9_7_9_9], [0.2_2_1_5_0_1_5_6, -0.0_7_4_2_2_6_6_1, 0.3_9_0_3_7_2_0_4], [0.2_2_7_5_6_0_1_8, -0.0_8_9_6_4_1_4, 0.3_7_0_1_4_6_7], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , snake_case__ , atol=1e-4 )
705
'''simple docstring''' from typing import Any class lowerCAmelCase : def __init__( self , snake_case__ ): lowerCAmelCase : Optional[int] = data lowerCAmelCase : Optional[Any] = None def __repr__( self ): return f"Node({self.data})" class lowerCAmelCase : def __init__( self ): lowerCAmelCase : Dict = None def __iter__( self ): lowerCAmelCase : Optional[Any] = self.head while node: yield node.data lowerCAmelCase : Optional[int] = node.next def __len__( self ): return sum(1 for _ in self ) def __repr__( self ): return "->".join([str(snake_case__ ) for item in self] ) def __getitem__( self , snake_case__ ): if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , snake_case__ , snake_case__ ): if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) lowerCAmelCase : Any = self.head for _ in range(snake_case__ ): lowerCAmelCase : List[str] = current.next lowerCAmelCase : int = data def lowercase ( self , snake_case__ ): self.insert_nth(len(self ) , snake_case__ ) def lowercase ( self , snake_case__ ): self.insert_nth(0 , snake_case__ ) def lowercase ( self , snake_case__ , snake_case__ ): if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) lowerCAmelCase : List[str] = Node(snake_case__ ) if self.head is None: lowerCAmelCase : int = new_node elif index == 0: lowerCAmelCase : List[Any] = self.head # link new_node to head lowerCAmelCase : List[Any] = new_node else: lowerCAmelCase : List[Any] = self.head for _ in range(index - 1 ): lowerCAmelCase : Union[str, Any] = temp.next lowerCAmelCase : Any = temp.next lowerCAmelCase : str = new_node def lowercase ( self ): # print every node data print(self ) def lowercase ( self ): return self.delete_nth(0 ) def lowercase ( self ): # delete from tail return self.delete_nth(len(self ) - 1 ) def lowercase ( self , snake_case__ = 0 ): if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) lowerCAmelCase : List[str] = self.head # default first node if index == 0: lowerCAmelCase : Tuple = self.head.next else: lowerCAmelCase : Dict = self.head for _ in range(index - 1 ): lowerCAmelCase : Tuple = temp.next lowerCAmelCase : Dict = temp.next lowerCAmelCase : Tuple = temp.next.next return delete_node.data def lowercase ( self ): return self.head is None def lowercase ( self ): lowerCAmelCase : List[Any] = None lowerCAmelCase : Any = self.head while current: # Store the current node's next node. lowerCAmelCase : List[str] = current.next # Make the current node's next point backwards lowerCAmelCase : int = prev # Make the previous node be the current node lowerCAmelCase : int = current # Make the current node the next node (to progress iteration) lowerCAmelCase : Optional[Any] = next_node # Return prev in order to put the head at the end lowerCAmelCase : List[Any] = prev def __UpperCamelCase ( ) -> None: """simple docstring""" lowerCAmelCase : Tuple = LinkedList() assert linked_list.is_empty() is True assert str(_A ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(_A ) == i linked_list.insert_nth(_A , i + 1 ) assert str(_A ) == "->".join(str(_A ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(_A ) == "->".join(str(_A ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(_A ) == 9 assert str(_A ) == "->".join(str(_A ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): lowerCAmelCase : Optional[Any] = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(_A ) == "->".join(str(_A ) for i in range(-8 , 1 ) ) def __UpperCamelCase ( ) -> None: """simple docstring""" lowerCAmelCase : Optional[int] = [ -9, 1_00, Node(77_34_51_12 ), 'dlrow olleH', 7, 55_55, 0, -1_92.5_55_55, 'Hello, world!', 77.9, Node(10 ), None, None, 12.20, ] lowerCAmelCase : Dict = LinkedList() for i in test_input: linked_list.insert_tail(_A ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(_A ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head lowerCAmelCase : Optional[Any] = linked_list.delete_head() assert result == -9 assert ( str(_A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail lowerCAmelCase : List[str] = linked_list.delete_tail() assert result == 12.2 assert ( str(_A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list lowerCAmelCase : List[str] = linked_list.delete_nth(10 ) assert result is None assert ( str(_A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(_A ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(_A ) assert ( str(_A ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(_A ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def __UpperCamelCase ( ) -> List[Any]: """simple docstring""" from doctest import testmod testmod() lowerCAmelCase : Optional[Any] = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(_A ) print('\nReading/changing Node data using indexing:' ) print(F"Element at Position 1: {linked_list[1]}" ) lowerCAmelCase : Tuple = input('Enter New Value: ' ).strip() print('New list:' ) print(_A ) print(F"length of linked_list is : {len(_A )}" ) if __name__ == "__main__": main()
646
0
'''simple docstring''' from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class lowerCAmelCase : def __init__( self , snake_case__ , snake_case__=13 , snake_case__=30 , snake_case__=2 , snake_case__=3 , snake_case__=True , snake_case__=True , snake_case__=32 , snake_case__=2 , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=10 , snake_case__=0.0_2 , snake_case__=3 , snake_case__=None , snake_case__=2 , ): lowerCAmelCase : List[Any] = parent lowerCAmelCase : str = batch_size lowerCAmelCase : str = image_size lowerCAmelCase : str = patch_size lowerCAmelCase : Dict = num_channels lowerCAmelCase : List[Any] = is_training lowerCAmelCase : Any = use_labels lowerCAmelCase : List[str] = hidden_size lowerCAmelCase : Any = num_hidden_layers lowerCAmelCase : List[str] = num_attention_heads lowerCAmelCase : Union[str, Any] = intermediate_size lowerCAmelCase : int = hidden_act lowerCAmelCase : Union[str, Any] = hidden_dropout_prob lowerCAmelCase : Dict = attention_probs_dropout_prob lowerCAmelCase : str = type_sequence_label_size lowerCAmelCase : int = initializer_range lowerCAmelCase : int = scope lowerCAmelCase : str = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) lowerCAmelCase : List[str] = (image_size // patch_size) ** 2 lowerCAmelCase : str = num_patches + 2 def lowercase ( self ): lowerCAmelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase : Tuple = None if self.use_labels: lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Any = self.get_config() return config, pixel_values, labels def lowercase ( self ): return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Tuple = TFDeiTModel(config=snake_case__ ) lowerCAmelCase : str = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : List[str] = TFDeiTForMaskedImageModeling(config=snake_case__ ) lowerCAmelCase : int = model(snake_case__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCAmelCase : int = 1 lowerCAmelCase : Optional[int] = TFDeiTForMaskedImageModeling(snake_case__ ) lowerCAmelCase : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase : Any = model(snake_case__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Tuple = self.type_sequence_label_size lowerCAmelCase : str = TFDeiTForImageClassification(snake_case__ ) lowerCAmelCase : List[Any] = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCAmelCase : Any = 1 lowerCAmelCase : Any = TFDeiTForImageClassification(snake_case__ ) lowerCAmelCase : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase : Tuple = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() lowerCAmelCase : Dict = config_and_inputs lowerCAmelCase : List[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class lowerCAmelCase ( a , a , unittest.TestCase ): _lowerCamelCase : int = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) _lowerCamelCase : Optional[Any] = ( { """feature-extraction""": TFDeiTModel, """image-classification""": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) _lowerCamelCase : Any = False _lowerCamelCase : str = False _lowerCamelCase : List[Any] = False _lowerCamelCase : Dict = False def lowercase ( self ): lowerCAmelCase : List[str] = TFDeiTModelTester(self ) lowerCAmelCase : List[str] = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=37 ) def lowercase ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='DeiT does not use inputs_embeds' ) def lowercase ( self ): pass def lowercase ( self ): lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Any = model_class(snake_case__ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) lowerCAmelCase : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case__ , tf.keras.layers.Dense ) ) def lowercase ( self ): lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Tuple = model_class(snake_case__ ) lowerCAmelCase : List[str] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase : Tuple = [*signature.parameters.keys()] lowerCAmelCase : Optional[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case__ ) def lowercase ( self ): lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__=False ): lowerCAmelCase : List[str] = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def lowercase ( self ): for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : Tuple = TFDeiTModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def __UpperCamelCase ( ) -> Optional[int]: """simple docstring""" lowerCAmelCase : Union[str, Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class lowerCAmelCase ( unittest.TestCase ): @cached_property def lowercase ( self ): return ( DeiTImageProcessor.from_pretrained('facebook/deit-base-distilled-patch16-224' ) if is_vision_available() else None ) @slow def lowercase ( self ): lowerCAmelCase : str = TFDeiTForImageClassificationWithTeacher.from_pretrained('facebook/deit-base-distilled-patch16-224' ) lowerCAmelCase : Tuple = self.default_image_processor lowerCAmelCase : List[str] = prepare_img() lowerCAmelCase : Tuple = image_processor(images=snake_case__ , return_tensors='tf' ) # forward pass lowerCAmelCase : int = model(**snake_case__ ) # verify the logits lowerCAmelCase : Optional[int] = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , snake_case__ ) lowerCAmelCase : Tuple = tf.constant([-1.0_2_6_6, 0.1_9_1_2, -1.2_8_6_1] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , snake_case__ , atol=1e-4 ) )
706
'''simple docstring''' _lowerCAmelCase : List[str] = {str(digit): digit**5 for digit in range(10)} def __UpperCamelCase ( _A : int ) -> int: """simple docstring""" return sum(DIGITS_FIFTH_POWER[digit] for digit in str(_A ) ) def __UpperCamelCase ( ) -> int: """simple docstring""" return sum( number for number in range(10_00 , 1_00_00_00 ) if number == digits_fifth_powers_sum(_A ) ) if __name__ == "__main__": print(solution())
646
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : List[Any] = { 'unc-nlp/lxmert-base-uncased': 'https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json', } class lowerCAmelCase ( a ): _lowerCamelCase : Optional[Any] = """lxmert""" _lowerCamelCase : List[Any] = {} def __init__( self , snake_case__=3_0522 , snake_case__=768 , snake_case__=12 , snake_case__=9500 , snake_case__=1600 , snake_case__=400 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=1e-1_2 , snake_case__=9 , snake_case__=5 , snake_case__=5 , snake_case__=2048 , snake_case__=4 , snake_case__=6.6_7 , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=True , **snake_case__ , ): lowerCAmelCase : Tuple = vocab_size lowerCAmelCase : str = hidden_size lowerCAmelCase : Optional[Any] = num_attention_heads lowerCAmelCase : Dict = hidden_act lowerCAmelCase : List[str] = intermediate_size lowerCAmelCase : List[Any] = hidden_dropout_prob lowerCAmelCase : List[Any] = attention_probs_dropout_prob lowerCAmelCase : str = max_position_embeddings lowerCAmelCase : Union[str, Any] = type_vocab_size lowerCAmelCase : List[str] = initializer_range lowerCAmelCase : Dict = layer_norm_eps lowerCAmelCase : List[Any] = num_qa_labels lowerCAmelCase : Dict = num_object_labels lowerCAmelCase : str = num_attr_labels lowerCAmelCase : Union[str, Any] = l_layers lowerCAmelCase : int = x_layers lowerCAmelCase : Dict = r_layers lowerCAmelCase : int = visual_feat_dim lowerCAmelCase : Union[str, Any] = visual_pos_dim lowerCAmelCase : List[Any] = visual_loss_normalizer lowerCAmelCase : Dict = task_matched lowerCAmelCase : List[str] = task_mask_lm lowerCAmelCase : str = task_obj_predict lowerCAmelCase : Optional[int] = task_qa lowerCAmelCase : int = visual_obj_loss lowerCAmelCase : Dict = visual_attr_loss lowerCAmelCase : str = visual_feat_loss lowerCAmelCase : Optional[Any] = {'vision': r_layers, 'cross_encoder': x_layers, 'language': l_layers} super().__init__(**snake_case__ )
707
'''simple docstring''' def __UpperCamelCase ( _A : List[str] ) -> Optional[Any]: """simple docstring""" if not head: return True # split the list to two parts lowerCAmelCase , lowerCAmelCase : str = head.next, head while fast and fast.next: lowerCAmelCase : Optional[int] = fast.next.next lowerCAmelCase : int = slow.next lowerCAmelCase : int = slow.next lowerCAmelCase : Optional[Any] = None # Don't forget here! But forget still works! # reverse the second part lowerCAmelCase : List[Any] = None while second: lowerCAmelCase : List[Any] = second.next lowerCAmelCase : Union[str, Any] = node lowerCAmelCase : Optional[Any] = second lowerCAmelCase : Any = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False lowerCAmelCase : Optional[Any] = node.next lowerCAmelCase : Tuple = head.next return True def __UpperCamelCase ( _A : Optional[Any] ) -> Optional[int]: """simple docstring""" if not head or not head.next: return True # 1. Get the midpoint (slow) lowerCAmelCase : Optional[int] = head while fast and fast.next: lowerCAmelCase , lowerCAmelCase : Optional[Any] = fast.next.next, slow.next # 2. Push the second half into the stack lowerCAmelCase : Tuple = [slow.val] while slow.next: lowerCAmelCase : Tuple = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False lowerCAmelCase : Union[str, Any] = cur.next return True def __UpperCamelCase ( _A : Tuple ) -> Optional[int]: """simple docstring""" if not head or not head.next: return True lowerCAmelCase : Optional[int] = {} lowerCAmelCase : int = 0 while head: if head.val in d: d[head.val].append(_A ) else: lowerCAmelCase : Any = [pos] lowerCAmelCase : int = head.next pos += 1 lowerCAmelCase : str = pos - 1 lowerCAmelCase : Optional[Any] = 0 for v in d.values(): if len(_A ) % 2 != 0: middle += 1 else: lowerCAmelCase : Any = 0 for i in range(0 , len(_A ) ): if v[i] + v[len(_A ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
646
0
'''simple docstring''' class lowerCAmelCase : def __init__( self , snake_case__ ): lowerCAmelCase : Optional[Any] = len(snake_case__ ) lowerCAmelCase : Tuple = [0] * len_array if len_array > 0: lowerCAmelCase : Optional[int] = array[0] for i in range(1 , snake_case__ ): lowerCAmelCase : Any = self.prefix_sum[i - 1] + array[i] def lowercase ( self , snake_case__ , snake_case__ ): if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def lowercase ( self , snake_case__ ): lowerCAmelCase : Optional[Any] = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(snake_case__ ) return False if __name__ == "__main__": import doctest doctest.testmod()
708
'''simple docstring''' import math def __UpperCamelCase ( _A : int = 1_00 ) -> int: """simple docstring""" lowerCAmelCase : List[Any] = sum(i * i for i in range(1 , n + 1 ) ) lowerCAmelCase : Optional[Any] = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f"""{solution() = }""")
646
0
import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __UpperCamelCase ( _A : Dict ) -> int: """simple docstring""" lowerCAmelCase : Tuple = [] embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight", F"stage{idx}.patch_embed.proj.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias", F"stage{idx}.patch_embed.proj.bias", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight", F"stage{idx}.patch_embed.norm.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias", F"stage{idx}.patch_embed.norm.bias", ) ) return embed def __UpperCamelCase ( _A : List[Any] , _A : Dict ) -> Any: """simple docstring""" lowerCAmelCase : str = [] attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight", F"stage{idx}.blocks.{cnt}.attn.proj_q.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias", F"stage{idx}.blocks.{cnt}.attn.proj_q.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight", F"stage{idx}.blocks.{cnt}.attn.proj_k.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias", F"stage{idx}.blocks.{cnt}.attn.proj_k.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight", F"stage{idx}.blocks.{cnt}.attn.proj_v.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias", F"stage{idx}.blocks.{cnt}.attn.proj_v.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight", F"stage{idx}.blocks.{cnt}.attn.proj.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias", F"stage{idx}.blocks.{cnt}.attn.proj.bias", ) ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc2.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight", F"stage{idx}.blocks.{cnt}.norm1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias", F"stage{idx}.blocks.{cnt}.norm1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight", F"stage{idx}.blocks.{cnt}.norm2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias", F"stage{idx}.blocks.{cnt}.norm2.bias") ) return attention_weights def __UpperCamelCase ( _A : Optional[int] ) -> Optional[int]: """simple docstring""" lowerCAmelCase : Optional[int] = [] token.append((F"cvt.encoder.stages.{idx}.cls_token", 'stage2.cls_token') ) return token def __UpperCamelCase ( ) -> int: """simple docstring""" lowerCAmelCase : List[Any] = [] head.append(('layernorm.weight', 'norm.weight') ) head.append(('layernorm.bias', 'norm.bias') ) head.append(('classifier.weight', 'head.weight') ) head.append(('classifier.bias', 'head.bias') ) return head def __UpperCamelCase ( _A : str , _A : Optional[Any] , _A : Dict , _A : str ) -> Optional[int]: """simple docstring""" lowerCAmelCase : List[str] = 'imagenet-1k-id2label.json' lowerCAmelCase : Tuple = 10_00 lowerCAmelCase : str = 'huggingface/label-files' lowerCAmelCase : List[Any] = num_labels lowerCAmelCase : Any = json.load(open(cached_download(hf_hub_url(_A , _A , repo_type='dataset' ) ) , 'r' ) ) lowerCAmelCase : List[str] = {int(_A ): v for k, v in idalabel.items()} lowerCAmelCase : List[str] = idalabel lowerCAmelCase : str = {v: k for k, v in idalabel.items()} lowerCAmelCase : int = CvtConfig(num_labels=_A , idalabel=_A , labelaid=_A ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13": lowerCAmelCase : List[str] = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21": lowerCAmelCase : Tuple = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: lowerCAmelCase : Any = [2, 2, 20] lowerCAmelCase : List[str] = [3, 12, 16] lowerCAmelCase : List[Any] = [1_92, 7_68, 10_24] lowerCAmelCase : Union[str, Any] = CvtForImageClassification(_A ) lowerCAmelCase : str = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) lowerCAmelCase : Optional[Any] = image_size lowerCAmelCase : List[Any] = torch.load(_A , map_location=torch.device('cpu' ) ) lowerCAmelCase : str = OrderedDict() lowerCAmelCase : int = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: lowerCAmelCase : List[str] = list_of_state_dict + cls_token(_A ) lowerCAmelCase : Optional[Any] = list_of_state_dict + embeddings(_A ) for cnt in range(config.depth[idx] ): lowerCAmelCase : List[Any] = list_of_state_dict + attention(_A , _A ) lowerCAmelCase : List[str] = list_of_state_dict + final() for gg in list_of_state_dict: print(_A ) for i in range(len(_A ) ): lowerCAmelCase : Tuple = original_weights[list_of_state_dict[i][1]] model.load_state_dict(_A ) model.save_pretrained(_A ) image_processor.save_pretrained(_A ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": _lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '--cvt_model', default='cvt-w24', type=str, help='Name of the cvt model you\'d like to convert.', ) parser.add_argument( '--image_size', default=384, type=int, help='Input Image Size', ) parser.add_argument( '--cvt_file_name', default=r'cvtmodels\CvT-w24-384x384-IN-22k.pth', type=str, help='Input Image Size', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) _lowerCAmelCase : str = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
709
'''simple docstring''' import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece_with_bytefallback.model') @require_sentencepiece @require_tokenizers class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : Tuple = GPTSwaTokenizer _lowerCamelCase : str = False _lowerCamelCase : Dict = True _lowerCamelCase : Optional[Any] = False def lowercase ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : Tuple = GPTSwaTokenizer(snake_case__ , eos_token='<unk>' , bos_token='<unk>' , pad_token='<unk>' ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase ( self , snake_case__ ): lowerCAmelCase : List[Any] = 'This is a test' lowerCAmelCase : List[Any] = 'This is a test' return input_text, output_text def lowercase ( self ): lowerCAmelCase : Tuple = '<s>' lowerCAmelCase : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def lowercase ( self ): lowerCAmelCase : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(snake_case__ ) , 2000 ) def lowercase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 2000 ) def lowercase ( self ): lowerCAmelCase : List[Any] = GPTSwaTokenizer(snake_case__ ) lowerCAmelCase : Optional[Any] = tokenizer.tokenize('This is a test' ) self.assertListEqual(snake_case__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , [465, 287, 265, 631, 842] ) lowerCAmelCase : Tuple = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) # fmt: off self.assertListEqual( snake_case__ , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] , ) # fmt: on lowerCAmelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual( snake_case__ , [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] , ) lowerCAmelCase : int = tokenizer.convert_ids_to_tokens(snake_case__ ) # fmt: off self.assertListEqual( snake_case__ , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] ) # fmt: on def lowercase ( self ): lowerCAmelCase : str = GPTSwaTokenizer(snake_case__ ) lowerCAmelCase : Optional[int] = ['This is a test', 'I was born in 92000, and this is falsé.'] lowerCAmelCase : Tuple = [ [465, 287, 265, 631, 842], [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(snake_case__ , snake_case__ ): self.assertListEqual(tokenizer.encode_fast(snake_case__ ) , snake_case__ ) # Test that decode_fast returns the input text for text, token_ids in zip(snake_case__ , snake_case__ ): self.assertEqual(tokenizer.decode_fast(snake_case__ ) , snake_case__ ) @slow def lowercase ( self ): lowerCAmelCase : str = [ '<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')', 'Hey there, how are you doing this fine day?', 'This is a text with a trailing spaces followed by a dot .', 'Häj sväjs lillebrör! =)', 'Det är inget fel på Mr. Cool', ] # fmt: off lowerCAmelCase : Tuple = {'input_ids': [[6_3423, 5, 6811, 1_4954, 282, 816, 3821, 6_3466, 6_3425, 6_3462, 18, 6_3978, 678, 301, 1320, 6_3423, 6_3455, 6_3458, 18, 6_3982, 4246, 3940, 1901, 4_7789, 5547, 1_8994], [1_9630, 1100, 6_3446, 1342, 633, 544, 4488, 593, 5102, 2416, 6_3495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1652, 428, 268, 1936, 515, 268, 5_8593, 2_2413, 9106, 546, 268, 3_3213, 6_3979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_5130, 6_3450, 924, 6_3449, 2249, 4062, 1558, 318, 6_3504, 2_1498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2827, 2559, 332, 6575, 6_3443, 2_6801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name='AI-Sweden/gpt-sw3-126m' , sequences=snake_case__ , )
646
0
'''simple docstring''' from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class lowerCAmelCase ( yaml.SafeLoader ): def lowercase ( self , snake_case__ ): lowerCAmelCase : Union[str, Any] = [self.constructed_objects[key_node] for key_node, _ in node.value] lowerCAmelCase : Dict = [tuple(snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else key for key in keys] lowerCAmelCase : Union[str, Any] = Counter(snake_case__ ) lowerCAmelCase : Union[str, Any] = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(f"Got duplicate yaml keys: {duplicate_keys}" ) def lowercase ( self , snake_case__ , snake_case__=False ): lowerCAmelCase : Tuple = super().construct_mapping(snake_case__ , deep=snake_case__ ) self._check_no_duplicates_on_constructed_node(snake_case__ ) return mapping def __UpperCamelCase ( _A : str ) -> Tuple[Optional[str], str]: """simple docstring""" lowerCAmelCase : Dict = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: lowerCAmelCase : List[Any] = full_content[1:].index('---' ) + 1 lowerCAmelCase : Tuple = '\n'.join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(_A ) class lowerCAmelCase ( a ): # class attributes _lowerCamelCase : int = {"""train_eval_index"""} # train-eval-index in the YAML metadata @classmethod def lowercase ( cls , snake_case__ ): with open(snake_case__ , encoding='utf-8' ) as readme_file: lowerCAmelCase : Tuple = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(snake_case__ ) else: return cls() def lowercase ( self , snake_case__ ): if path.exists(): with open(snake_case__ , encoding='utf-8' ) as readme_file: lowerCAmelCase : str = readme_file.read() else: lowerCAmelCase : Optional[Any] = None lowerCAmelCase : Any = self._to_readme(snake_case__ ) with open(snake_case__ , 'w' , encoding='utf-8' ) as readme_file: readme_file.write(snake_case__ ) def lowercase ( self , snake_case__ = None ): if readme_content is not None: lowerCAmelCase : Tuple = _split_yaml_from_readme(snake_case__ ) lowerCAmelCase : Optional[int] = '---\n' + self.to_yaml_string() + '---\n' + content else: lowerCAmelCase : List[str] = '---\n' + self.to_yaml_string() + '---\n' return full_content @classmethod def lowercase ( cls , snake_case__ ): lowerCAmelCase : Dict = yaml.load(snake_case__ , Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields lowerCAmelCase : List[str] = { (key.replace('-' , '_' ) if key.replace('-' , '_' ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**snake_case__ ) def lowercase ( self ): return yaml.safe_dump( { (key.replace('_' , '-' ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } , sort_keys=snake_case__ , allow_unicode=snake_case__ , encoding='utf-8' , ).decode('utf-8' ) _lowerCAmelCase : int = { 'image-classification': [], 'translation': [], 'image-segmentation': [], 'fill-mask': [], 'automatic-speech-recognition': [], 'token-classification': [], 'sentence-similarity': [], 'audio-classification': [], 'question-answering': [], 'summarization': [], 'zero-shot-classification': [], 'table-to-text': [], 'feature-extraction': [], 'other': [], 'multiple-choice': [], 'text-classification': [], 'text-to-image': [], 'text2text-generation': [], 'zero-shot-image-classification': [], 'tabular-classification': [], 'tabular-regression': [], 'image-to-image': [], 'tabular-to-text': [], 'unconditional-image-generation': [], 'text-retrieval': [], 'text-to-speech': [], 'object-detection': [], 'audio-to-audio': [], 'text-generation': [], 'conversational': [], 'table-question-answering': [], 'visual-question-answering': [], 'image-to-text': [], 'reinforcement-learning': [], 'voice-activity-detection': [], 'time-series-forecasting': [], 'document-question-answering': [], } if __name__ == "__main__": from argparse import ArgumentParser _lowerCAmelCase : str = ArgumentParser(usage='Validate the yaml metadata block of a README.md file.') ap.add_argument('readme_filepath') _lowerCAmelCase : Optional[int] = ap.parse_args() _lowerCAmelCase : Dict = Path(args.readme_filepath) _lowerCAmelCase : Optional[int] = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
710
'''simple docstring''' def __UpperCamelCase ( _A : int ) -> bool: """simple docstring""" return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
646
0
'''simple docstring''' from collections import namedtuple _lowerCAmelCase : Tuple = namedtuple('from_to', 'from_ to') _lowerCAmelCase : List[Any] = { 'cubicmeter': from_to(1, 1), 'litre': from_to(0.0_0_1, 1000), 'kilolitre': from_to(1, 1), 'gallon': from_to(0.0_0_4_5_4, 264.172), 'cubicyard': from_to(0.7_6_4_5_5, 1.3_0_7_9_5), 'cubicfoot': from_to(0.0_2_8, 35.3147), 'cup': from_to(0.0_0_0_2_3_6_5_8_8, 4226.75), } def __UpperCamelCase ( _A : float , _A : str , _A : str ) -> float: """simple docstring""" if from_type not in METRIC_CONVERSION: raise ValueError( F"Invalid 'from_type' value: {from_type!r} Supported values are:\n" + ', '.join(_A ) ) if to_type not in METRIC_CONVERSION: raise ValueError( F"Invalid 'to_type' value: {to_type!r}. Supported values are:\n" + ', '.join(_A ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
711
'''simple docstring''' import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( 'files' , [ ['full:README.md', 'dataset_infos.json'], ['empty:README.md', 'dataset_infos.json'], ['dataset_infos.json'], ['full:README.md'], ] , ) def __UpperCamelCase ( _A : str , _A : List[Any] ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase : Optional[int] = tmp_path_factory.mktemp('dset_infos_dir' ) if "full:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('---\ndataset_info:\n dataset_size: 42\n---' ) if "empty:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / 'dataset_infos.json' , 'w' ) as f: f.write('{"default": {"dataset_size": 42}}' ) lowerCAmelCase : Union[str, Any] = DatasetInfosDict.from_directory(_A ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( 'dataset_info' , [ DatasetInfo(), DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ), ] , ) def __UpperCamelCase ( _A : str , _A : DatasetInfo ) -> Optional[int]: """simple docstring""" lowerCAmelCase : str = str(_A ) dataset_info.write_to_directory(_A ) lowerCAmelCase : List[str] = DatasetInfo.from_directory(_A ) assert dataset_info == reloaded assert os.path.exists(os.path.join(_A , 'dataset_info.json' ) ) def __UpperCamelCase ( ) -> List[str]: """simple docstring""" lowerCAmelCase : Tuple = DatasetInfo( description='foo' , citation='bar' , homepage='https://foo.bar' , license='CC0' , features=Features({'a': Value('int32' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train', 'num_examples': 42}] , download_checksums={} , download_size=13_37 , post_processing_size=4_42 , dataset_size=12_34 , size_in_bytes=13_37 + 4_42 + 12_34 , ) lowerCAmelCase : Optional[int] = dataset_info._to_yaml_dict() assert sorted(_A ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) lowerCAmelCase : Any = yaml.safe_dump(_A ) lowerCAmelCase : int = yaml.safe_load(_A ) assert dataset_info_yaml_dict == reloaded def __UpperCamelCase ( ) -> Dict: """simple docstring""" lowerCAmelCase : Union[str, Any] = DatasetInfo() lowerCAmelCase : List[Any] = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( 'dataset_infos_dict' , [ DatasetInfosDict(), DatasetInfosDict({'default': DatasetInfo()} ), DatasetInfosDict({'my_config_name': DatasetInfo()} ), DatasetInfosDict( { 'default': DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ) } ), DatasetInfosDict( { 'v1': DatasetInfo(dataset_size=42 ), 'v2': DatasetInfo(dataset_size=13_37 ), } ), ] , ) def __UpperCamelCase ( _A : Tuple , _A : DatasetInfosDict ) -> List[Any]: """simple docstring""" lowerCAmelCase : Tuple = str(_A ) dataset_infos_dict.write_to_directory(_A ) lowerCAmelCase : List[str] = DatasetInfosDict.from_directory(_A ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): lowerCAmelCase : Tuple = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml lowerCAmelCase : Optional[Any] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(_A , 'README.md' ) )
646
0
def __UpperCamelCase ( _A : dict ) -> set: """simple docstring""" lowerCAmelCase : int = set() # edges = list of graph's edges lowerCAmelCase : List[str] = get_edges(_A ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: lowerCAmelCase : Tuple = edges.pop() chosen_vertices.add(_A ) chosen_vertices.add(_A ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(_A ) return chosen_vertices def __UpperCamelCase ( _A : dict ) -> set: """simple docstring""" lowerCAmelCase : Optional[Any] = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
712
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCAmelCase ( a ): def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): super().__init__() if safety_checker is None: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" ' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered' ' results in services or applications open to the public. Both the diffusers team and Hugging Face' ' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling' ' it only for use-cases that involve analyzing network behavior or auditing its results. For more' ' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .' ) self.register_modules( speech_model=snake_case__ , speech_processor=snake_case__ , vae=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , unet=snake_case__ , scheduler=snake_case__ , feature_extractor=snake_case__ , ) def lowercase ( self , snake_case__ = "auto" ): if slice_size == "auto": lowerCAmelCase : Union[str, Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(snake_case__ ) def lowercase ( self ): self.enable_attention_slicing(snake_case__ ) @torch.no_grad() def __call__( self , snake_case__ , snake_case__=1_6000 , snake_case__ = 512 , snake_case__ = 512 , snake_case__ = 50 , snake_case__ = 7.5 , snake_case__ = None , snake_case__ = 1 , snake_case__ = 0.0 , snake_case__ = None , snake_case__ = None , snake_case__ = "pil" , snake_case__ = True , snake_case__ = None , snake_case__ = 1 , **snake_case__ , ): lowerCAmelCase : List[str] = self.speech_processor.feature_extractor( snake_case__ , return_tensors='pt' , sampling_rate=snake_case__ ).input_features.to(self.device ) lowerCAmelCase : Optional[Any] = self.speech_model.generate(snake_case__ , max_length=48_0000 ) lowerCAmelCase : str = self.speech_processor.tokenizer.batch_decode(snake_case__ , skip_special_tokens=snake_case__ , normalize=snake_case__ )[ 0 ] if isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = 1 elif isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = len(snake_case__ ) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(snake_case__ )}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(snake_case__ , snake_case__ ) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(snake_case__ )}." ) # get prompt text embeddings lowerCAmelCase : str = self.tokenizer( snake_case__ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) lowerCAmelCase : Tuple = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowerCAmelCase : str = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) lowerCAmelCase : Union[str, Any] = text_input_ids[:, : self.tokenizer.model_max_length] lowerCAmelCase : Union[str, Any] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : int = text_embeddings.shape lowerCAmelCase : Any = text_embeddings.repeat(1 , snake_case__ , 1 ) lowerCAmelCase : Optional[int] = text_embeddings.view(bs_embed * num_images_per_prompt , snake_case__ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowerCAmelCase : List[str] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowerCAmelCase : List[str] if negative_prompt is None: lowerCAmelCase : Any = [''] * batch_size elif type(snake_case__ ) is not type(snake_case__ ): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(snake_case__ )} !=" f" {type(snake_case__ )}." ) elif isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = [negative_prompt] elif batch_size != len(snake_case__ ): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(snake_case__ )}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" ' the batch size of `prompt`.' ) else: lowerCAmelCase : Dict = negative_prompt lowerCAmelCase : Optional[int] = text_input_ids.shape[-1] lowerCAmelCase : int = self.tokenizer( snake_case__ , padding='max_length' , max_length=snake_case__ , truncation=snake_case__ , return_tensors='pt' , ) lowerCAmelCase : Union[str, Any] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowerCAmelCase : List[Any] = uncond_embeddings.shape[1] lowerCAmelCase : List[str] = uncond_embeddings.repeat(1 , snake_case__ , 1 ) lowerCAmelCase : Optional[Any] = uncond_embeddings.view(batch_size * num_images_per_prompt , snake_case__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCAmelCase : List[str] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowerCAmelCase : Union[str, Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowerCAmelCase : Dict = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowerCAmelCase : str = torch.randn(snake_case__ , generator=snake_case__ , device='cpu' , dtype=snake_case__ ).to( self.device ) else: lowerCAmelCase : Tuple = torch.randn(snake_case__ , generator=snake_case__ , device=self.device , dtype=snake_case__ ) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) lowerCAmelCase : str = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(snake_case__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowerCAmelCase : Union[str, Any] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowerCAmelCase : Any = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowerCAmelCase : Tuple = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCAmelCase : Union[str, Any] = {} if accepts_eta: lowerCAmelCase : int = eta for i, t in enumerate(self.progress_bar(snake_case__ ) ): # expand the latents if we are doing classifier free guidance lowerCAmelCase : Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCAmelCase : Tuple = self.scheduler.scale_model_input(snake_case__ , snake_case__ ) # predict the noise residual lowerCAmelCase : List[str] = self.unet(snake_case__ , snake_case__ , encoder_hidden_states=snake_case__ ).sample # perform guidance if do_classifier_free_guidance: lowerCAmelCase , lowerCAmelCase : Dict = noise_pred.chunk(2 ) lowerCAmelCase : Tuple = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowerCAmelCase : int = self.scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase : List[Any] = 1 / 0.1_8_2_1_5 * latents lowerCAmelCase : Dict = self.vae.decode(snake_case__ ).sample lowerCAmelCase : List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowerCAmelCase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowerCAmelCase : Dict = self.numpy_to_pil(snake_case__ ) if not return_dict: return image return StableDiffusionPipelineOutput(images=snake_case__ , nsfw_content_detected=snake_case__ )
646
0
import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class lowerCAmelCase ( unittest.TestCase ): @slow def lowercase ( self ): for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(snake_case__ ): lowerCAmelCase : Tuple = AutoConfig.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) lowerCAmelCase : Any = FlaxAutoModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) @slow def lowercase ( self ): for model_name in ["roberta-base", "roberta-large"]: with self.subTest(snake_case__ ): lowerCAmelCase : Optional[Any] = AutoConfig.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) lowerCAmelCase : int = FlaxAutoModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) @slow def lowercase ( self ): for model_name in ["bert-base-cased", "bert-large-uncased"]: lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained(snake_case__ ) lowerCAmelCase : str = FlaxBertModel.from_pretrained(snake_case__ ) lowerCAmelCase : List[Any] = tokenizer('Do you support jax jitted function?' , return_tensors=TensorType.JAX ) @jax.jit def eval(**snake_case__ ): return model(**snake_case__ ) eval(**snake_case__ ).block_until_ready() @slow def lowercase ( self ): for model_name in ["roberta-base", "roberta-large"]: lowerCAmelCase : int = AutoTokenizer.from_pretrained(snake_case__ ) lowerCAmelCase : List[str] = FlaxRobertaModel.from_pretrained(snake_case__ ) lowerCAmelCase : str = tokenizer('Do you support jax jitted function?' , return_tensors=TensorType.JAX ) @jax.jit def eval(**snake_case__ ): return model(**snake_case__ ) eval(**snake_case__ ).block_until_ready() def lowercase ( self ): with self.assertRaisesRegex( snake_case__ , 'bert-base is not a local folder and is not a valid model identifier' ): lowerCAmelCase : Dict = FlaxAutoModel.from_pretrained('bert-base' ) def lowercase ( self ): with self.assertRaisesRegex( snake_case__ , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): lowerCAmelCase : int = FlaxAutoModel.from_pretrained(snake_case__ , revision='aaaaaa' ) def lowercase ( self ): with self.assertRaisesRegex( snake_case__ , 'hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack' , ): lowerCAmelCase : str = FlaxAutoModel.from_pretrained('hf-internal-testing/config-no-model' ) def lowercase ( self ): with self.assertRaisesRegex(snake_case__ , 'Use `from_pt=True` to load this model' ): lowerCAmelCase : Union[str, Any] = FlaxAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only' )
713
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : List[Any] = LDMTextToImagePipeline _lowerCamelCase : Optional[Any] = TEXT_TO_IMAGE_PARAMS - { """negative_prompt""", """negative_prompt_embeds""", """cross_attention_kwargs""", """prompt_embeds""", } _lowerCamelCase : List[str] = PipelineTesterMixin.required_optional_params - { """num_images_per_prompt""", """callback""", """callback_steps""", } _lowerCamelCase : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS _lowerCamelCase : Optional[int] = False def lowercase ( self ): torch.manual_seed(0 ) lowerCAmelCase : Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) lowerCAmelCase : int = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , ) torch.manual_seed(0 ) lowerCAmelCase : str = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') , up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') , latent_channels=4 , ) torch.manual_seed(0 ) lowerCAmelCase : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowerCAmelCase : str = CLIPTextModel(snake_case__ ) lowerCAmelCase : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCAmelCase : List[Any] = { 'unet': unet, 'scheduler': scheduler, 'vqvae': vae, 'bert': text_encoder, 'tokenizer': tokenizer, } return components def lowercase ( self , snake_case__ , snake_case__=0 ): if str(snake_case__ ).startswith('mps' ): lowerCAmelCase : Optional[int] = torch.manual_seed(snake_case__ ) else: lowerCAmelCase : str = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) lowerCAmelCase : Tuple = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase ( self ): lowerCAmelCase : List[str] = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase : Optional[Any] = self.get_dummy_components() lowerCAmelCase : Optional[Any] = LDMTextToImagePipeline(**snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Tuple = self.get_dummy_inputs(snake_case__ ) lowerCAmelCase : Union[str, Any] = pipe(**snake_case__ ).images lowerCAmelCase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) lowerCAmelCase : List[Any] = np.array([0.6_1_0_1, 0.6_1_5_6, 0.5_6_2_2, 0.4_8_9_5, 0.6_6_6_1, 0.3_8_0_4, 0.5_7_4_8, 0.6_1_3_6, 0.5_0_1_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self , snake_case__ , snake_case__=torch.floataa , snake_case__=0 ): lowerCAmelCase : List[str] = torch.manual_seed(snake_case__ ) lowerCAmelCase : int = np.random.RandomState(snake_case__ ).standard_normal((1, 4, 32, 32) ) lowerCAmelCase : Optional[Any] = torch.from_numpy(snake_case__ ).to(device=snake_case__ , dtype=snake_case__ ) lowerCAmelCase : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase ( self ): lowerCAmelCase : Tuple = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Optional[Any] = self.get_inputs(snake_case__ ) lowerCAmelCase : List[Any] = pipe(**snake_case__ ).images lowerCAmelCase : str = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) lowerCAmelCase : Tuple = np.array([0.5_1_8_2_5, 0.5_2_8_5_0, 0.5_2_5_4_3, 0.5_4_2_5_8, 0.5_2_3_0_4, 0.5_2_5_6_9, 0.5_4_3_6_3, 0.5_5_2_7_6, 0.5_6_8_7_8] ) lowerCAmelCase : int = np.abs(expected_slice - image_slice ).max() assert max_diff < 1e-3 @nightly @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self , snake_case__ , snake_case__=torch.floataa , snake_case__=0 ): lowerCAmelCase : List[str] = torch.manual_seed(snake_case__ ) lowerCAmelCase : Any = np.random.RandomState(snake_case__ ).standard_normal((1, 4, 32, 32) ) lowerCAmelCase : List[Any] = torch.from_numpy(snake_case__ ).to(device=snake_case__ , dtype=snake_case__ ) lowerCAmelCase : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase ( self ): lowerCAmelCase : Optional[int] = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : int = self.get_inputs(snake_case__ ) lowerCAmelCase : Optional[int] = pipe(**snake_case__ ).images[0] lowerCAmelCase : Optional[int] = load_numpy( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy' ) lowerCAmelCase : List[str] = np.abs(expected_image - image ).max() assert max_diff < 1e-3
646
0
'''simple docstring''' import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCAmelCase ( unittest.TestCase ): def __init__( self , snake_case__ , snake_case__=3 , snake_case__=32 , snake_case__=3 , snake_case__=10 , snake_case__=[10, 20, 30, 40] , snake_case__=[1, 1, 2, 1] , snake_case__=True , snake_case__=True , snake_case__="relu" , snake_case__=3 , snake_case__=None , ): lowerCAmelCase : Any = parent lowerCAmelCase : Tuple = batch_size lowerCAmelCase : Optional[int] = image_size lowerCAmelCase : List[str] = num_channels lowerCAmelCase : Any = embeddings_size lowerCAmelCase : Optional[Any] = hidden_sizes lowerCAmelCase : List[str] = depths lowerCAmelCase : Union[str, Any] = is_training lowerCAmelCase : Any = use_labels lowerCAmelCase : Any = hidden_act lowerCAmelCase : str = num_labels lowerCAmelCase : Dict = scope lowerCAmelCase : Optional[int] = len(snake_case__ ) def lowercase ( self ): lowerCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase : Any = self.get_config() return config, pixel_values def lowercase ( self ): return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowercase ( self , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = FlaxRegNetModel(config=snake_case__ ) lowerCAmelCase : Dict = model(snake_case__ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowercase ( self , snake_case__ , snake_case__ ): lowerCAmelCase : int = self.num_labels lowerCAmelCase : List[str] = FlaxRegNetForImageClassification(config=snake_case__ ) lowerCAmelCase : Tuple = model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self ): lowerCAmelCase : int = self.prepare_config_and_inputs() lowerCAmelCase : Tuple = config_and_inputs lowerCAmelCase : Dict = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : Dict = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () _lowerCamelCase : List[str] = False _lowerCamelCase : Optional[Any] = False _lowerCamelCase : Optional[Any] = False def lowercase ( self ): lowerCAmelCase : int = FlaxRegNetModelTester(self ) lowerCAmelCase : Optional[int] = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ ) def lowercase ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase ( self ): return def lowercase ( self ): lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) @unittest.skip(reason='RegNet does not use inputs_embeds' ) def lowercase ( self ): pass @unittest.skip(reason='RegNet does not support input and output embeddings' ) def lowercase ( self ): pass def lowercase ( self ): lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Dict = model_class(snake_case__ ) lowerCAmelCase : List[Any] = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase : List[str] = [*signature.parameters.keys()] lowerCAmelCase : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case__ ) def lowercase ( self ): def check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : List[str] = model_class(snake_case__ ) lowerCAmelCase : Optional[Any] = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) lowerCAmelCase : str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase : Tuple = self.model_tester.num_stages self.assertEqual(len(snake_case__ ) , expected_num_stages + 1 ) lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Tuple = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase : Optional[int] = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCAmelCase : List[str] = self._prepare_for_class(snake_case__ , snake_case__ ) lowerCAmelCase : Tuple = model_class(snake_case__ ) @jax.jit def model_jitted(snake_case__ , **snake_case__ ): return model(pixel_values=snake_case__ , **snake_case__ ) with self.subTest('JIT Enabled' ): lowerCAmelCase : Optional[int] = model_jitted(**snake_case__ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): lowerCAmelCase : Union[str, Any] = model_jitted(**snake_case__ ).to_tuple() self.assertEqual(len(snake_case__ ) , len(snake_case__ ) ) for jitted_output, output in zip(snake_case__ , snake_case__ ): self.assertEqual(jitted_output.shape , output.shape ) def __UpperCamelCase ( ) -> List[str]: """simple docstring""" lowerCAmelCase : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_flax class lowerCAmelCase ( unittest.TestCase ): @cached_property def lowercase ( self ): return AutoImageProcessor.from_pretrained('facebook/regnet-y-040' ) if is_vision_available() else None @slow def lowercase ( self ): lowerCAmelCase : Optional[Any] = FlaxRegNetForImageClassification.from_pretrained('facebook/regnet-y-040' ) lowerCAmelCase : Optional[Any] = self.default_image_processor lowerCAmelCase : int = prepare_img() lowerCAmelCase : Any = image_processor(images=snake_case__ , return_tensors='np' ) lowerCAmelCase : Dict = model(**snake_case__ ) # verify the logits lowerCAmelCase : Union[str, Any] = (1, 1000) self.assertEqual(outputs.logits.shape , snake_case__ ) lowerCAmelCase : List[str] = jnp.array([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , snake_case__ , atol=1e-4 ) )
714
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Tuple = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { 'facebook/xmod-base': 'https://huggingface.co/facebook/xmod-base/resolve/main/config.json', 'facebook/xmod-large-prenorm': 'https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json', 'facebook/xmod-base-13-125k': 'https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json', 'facebook/xmod-base-30-125k': 'https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json', 'facebook/xmod-base-30-195k': 'https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json', 'facebook/xmod-base-60-125k': 'https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json', 'facebook/xmod-base-60-265k': 'https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json', 'facebook/xmod-base-75-125k': 'https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json', 'facebook/xmod-base-75-269k': 'https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json', } class lowerCAmelCase ( a ): _lowerCamelCase : int = """xmod""" def __init__( self , snake_case__=3_0522 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=1e-1_2 , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__="absolute" , snake_case__=True , snake_case__=None , snake_case__=False , snake_case__=2 , snake_case__=False , snake_case__=True , snake_case__=True , snake_case__=("en_XX",) , snake_case__=None , **snake_case__ , ): super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) lowerCAmelCase : Dict = vocab_size lowerCAmelCase : Optional[Any] = hidden_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob lowerCAmelCase : str = max_position_embeddings lowerCAmelCase : int = type_vocab_size lowerCAmelCase : List[Any] = initializer_range lowerCAmelCase : Any = layer_norm_eps lowerCAmelCase : Dict = position_embedding_type lowerCAmelCase : Optional[Any] = use_cache lowerCAmelCase : Union[str, Any] = classifier_dropout lowerCAmelCase : int = pre_norm lowerCAmelCase : Optional[Any] = adapter_reduction_factor lowerCAmelCase : Any = adapter_layer_norm lowerCAmelCase : Dict = adapter_reuse_layer_norm lowerCAmelCase : Any = ln_before_adapter lowerCAmelCase : Optional[Any] = list(snake_case__ ) lowerCAmelCase : List[Any] = default_language class lowerCAmelCase ( a ): @property def lowercase ( self ): if self.task == "multiple-choice": lowerCAmelCase : List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase : Optional[int] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
646
0
'''simple docstring''' import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available _lowerCAmelCase : Tuple = logging.getLogger(__name__) @dataclass class lowerCAmelCase : _lowerCamelCase : str _lowerCamelCase : List[str] _lowerCamelCase : Optional[List[str]] @dataclass class lowerCAmelCase : _lowerCamelCase : List[int] _lowerCamelCase : List[int] _lowerCamelCase : Optional[List[int]] = None _lowerCamelCase : Optional[List[int]] = None class lowerCAmelCase ( a ): _lowerCamelCase : List[str] = """train""" _lowerCamelCase : Optional[int] = """dev""" _lowerCamelCase : Tuple = """test""" class lowerCAmelCase : @staticmethod def lowercase ( snake_case__ , snake_case__ ): raise NotImplementedError @staticmethod def lowercase ( snake_case__ ): raise NotImplementedError @staticmethod def lowercase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=False , snake_case__="[CLS]" , snake_case__=1 , snake_case__="[SEP]" , snake_case__=False , snake_case__=False , snake_case__=0 , snake_case__=0 , snake_case__=-100 , snake_case__=0 , snake_case__=True , ): lowerCAmelCase : Optional[int] = {label: i for i, label in enumerate(snake_case__ )} lowerCAmelCase : Tuple = [] for ex_index, example in enumerate(snake_case__ ): if ex_index % 1_0000 == 0: logger.info('Writing example %d of %d' , snake_case__ , len(snake_case__ ) ) lowerCAmelCase : Dict = [] lowerCAmelCase : Union[str, Any] = [] for word, label in zip(example.words , example.labels ): lowerCAmelCase : Any = tokenizer.tokenize(snake_case__ ) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(snake_case__ ) > 0: tokens.extend(snake_case__ ) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(snake_case__ ) - 1) ) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. lowerCAmelCase : Optional[int] = tokenizer.num_special_tokens_to_add() if len(snake_case__ ) > max_seq_length - special_tokens_count: lowerCAmelCase : Optional[Any] = tokens[: (max_seq_length - special_tokens_count)] lowerCAmelCase : List[Any] = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] lowerCAmelCase : Optional[Any] = [sequence_a_segment_id] * len(snake_case__ ) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: lowerCAmelCase : List[str] = [cls_token] + tokens lowerCAmelCase : List[str] = [pad_token_label_id] + label_ids lowerCAmelCase : List[str] = [cls_token_segment_id] + segment_ids lowerCAmelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(snake_case__ ) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. lowerCAmelCase : Dict = [1 if mask_padding_with_zero else 0] * len(snake_case__ ) # Zero-pad up to the sequence length. lowerCAmelCase : Any = max_seq_length - len(snake_case__ ) if pad_on_left: lowerCAmelCase : Union[str, Any] = ([pad_token] * padding_length) + input_ids lowerCAmelCase : Tuple = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask lowerCAmelCase : Union[str, Any] = ([pad_token_segment_id] * padding_length) + segment_ids lowerCAmelCase : Any = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(snake_case__ ) == max_seq_length assert len(snake_case__ ) == max_seq_length assert len(snake_case__ ) == max_seq_length assert len(snake_case__ ) == max_seq_length if ex_index < 5: logger.info('*** Example ***' ) logger.info('guid: %s' , example.guid ) logger.info('tokens: %s' , ' '.join([str(snake_case__ ) for x in tokens] ) ) logger.info('input_ids: %s' , ' '.join([str(snake_case__ ) for x in input_ids] ) ) logger.info('input_mask: %s' , ' '.join([str(snake_case__ ) for x in input_mask] ) ) logger.info('segment_ids: %s' , ' '.join([str(snake_case__ ) for x in segment_ids] ) ) logger.info('label_ids: %s' , ' '.join([str(snake_case__ ) for x in label_ids] ) ) if "token_type_ids" not in tokenizer.model_input_names: lowerCAmelCase : Optional[Any] = None features.append( InputFeatures( input_ids=snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , label_ids=snake_case__ ) ) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class lowerCAmelCase ( a ): _lowerCamelCase : List[InputFeatures] _lowerCamelCase : int = nn.CrossEntropyLoss().ignore_index def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , snake_case__=False , snake_case__ = Split.train , ): # Load data features from cache or dataset file lowerCAmelCase : List[Any] = os.path.join( snake_case__ , 'cached_{}_{}_{}'.format(mode.value , tokenizer.__class__.__name__ , str(snake_case__ ) ) , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCAmelCase : str = cached_features_file + '.lock' with FileLock(snake_case__ ): if os.path.exists(snake_case__ ) and not overwrite_cache: logger.info(f"Loading features from cached file {cached_features_file}" ) lowerCAmelCase : Any = torch.load(snake_case__ ) else: logger.info(f"Creating features from dataset file at {data_dir}" ) lowerCAmelCase : Union[str, Any] = token_classification_task.read_examples_from_file(snake_case__ , snake_case__ ) # TODO clean up all this to leverage built-in features of tokenizers lowerCAmelCase : str = token_classification_task.convert_examples_to_features( snake_case__ , snake_case__ , snake_case__ , snake_case__ , cls_token_at_end=bool(model_type in ['xlnet'] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['xlnet'] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=snake_case__ , pad_on_left=bool(tokenizer.padding_side == 'left' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info(f"Saving features into cached file {cached_features_file}" ) torch.save(self.features , snake_case__ ) def __len__( self ): return len(self.features ) def __getitem__( self , snake_case__ ): return self.features[i] if is_tf_available(): import tensorflow as tf class lowerCAmelCase : _lowerCamelCase : List[InputFeatures] _lowerCamelCase : int = -100 def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , snake_case__=False , snake_case__ = Split.train , ): lowerCAmelCase : Any = token_classification_task.read_examples_from_file(snake_case__ , snake_case__ ) # TODO clean up all this to leverage built-in features of tokenizers lowerCAmelCase : Dict = token_classification_task.convert_examples_to_features( snake_case__ , snake_case__ , snake_case__ , snake_case__ , cls_token_at_end=bool(model_type in ['xlnet'] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['xlnet'] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=snake_case__ , pad_on_left=bool(tokenizer.padding_side == 'left' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: lowerCAmelCase : List[Any] = tf.data.Dataset.from_generator( snake_case__ , ({'input_ids': tf.intaa, 'attention_mask': tf.intaa}, tf.intaa) , ( {'input_ids': tf.TensorShape([None] ), 'attention_mask': tf.TensorShape([None] )}, tf.TensorShape([None] ), ) , ) else: lowerCAmelCase : Tuple = tf.data.Dataset.from_generator( snake_case__ , ({'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa}, tf.intaa) , ( { 'input_ids': tf.TensorShape([None] ), 'attention_mask': tf.TensorShape([None] ), 'token_type_ids': tf.TensorShape([None] ), }, tf.TensorShape([None] ), ) , ) def lowercase ( self ): lowerCAmelCase : List[str] = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) ) return self.dataset def __len__( self ): return len(self.features ) def __getitem__( self , snake_case__ ): return self.features[i]
715
'''simple docstring''' import argparse import os import re _lowerCAmelCase : Dict = 'src/diffusers' # Pattern that looks at the indentation in a line. _lowerCAmelCase : str = re.compile(r'^(\s*)\S') # Pattern that matches `"key":" and puts `key` in group 0. _lowerCAmelCase : Any = re.compile(r'^\s*"([^"]+)":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. _lowerCAmelCase : List[Any] = re.compile(r'^\s*_import_structure\["([^"]+)"\]') # Pattern that matches `"key",` and puts `key` in group 0. _lowerCAmelCase : int = re.compile(r'^\s*"([^"]+)",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. _lowerCAmelCase : Optional[Any] = re.compile(r'\[([^\]]+)\]') def __UpperCamelCase ( _A : Union[str, Any] ) -> Dict: """simple docstring""" lowerCAmelCase : Any = _re_indent.search(_A ) return "" if search is None else search.groups()[0] def __UpperCamelCase ( _A : Dict , _A : Any="" , _A : List[str]=None , _A : Any=None ) -> Tuple: """simple docstring""" lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Tuple = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(_A ): index += 1 lowerCAmelCase : Optional[int] = ['\n'.join(lines[:index] )] else: lowerCAmelCase : int = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowerCAmelCase : Tuple = [lines[index]] index += 1 while index < len(_A ) and (end_prompt is None or not lines[index].startswith(_A )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(_A ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(_A ) ) if index < len(_A ) - 1: lowerCAmelCase : List[Any] = [lines[index + 1]] index += 1 else: lowerCAmelCase : int = [] else: blocks.append('\n'.join(_A ) ) lowerCAmelCase : Any = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(_A ) > 0: blocks.append('\n'.join(_A ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(_A ): blocks.append('\n'.join(lines[index:] ) ) return blocks def __UpperCamelCase ( _A : Dict ) -> List[Any]: """simple docstring""" def _inner(_A : Tuple ): return key(_A ).lower().replace('_' , '' ) return _inner def __UpperCamelCase ( _A : Union[str, Any] , _A : Any=None ) -> Optional[Any]: """simple docstring""" def noop(_A : Any ): return x if key is None: lowerCAmelCase : List[str] = noop # Constants are all uppercase, they go first. lowerCAmelCase : str = [obj for obj in objects if key(_A ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowerCAmelCase : List[str] = [obj for obj in objects if key(_A )[0].isupper() and not key(_A ).isupper()] # Functions begin with a lowercase, they go last. lowerCAmelCase : Optional[Any] = [obj for obj in objects if not key(_A )[0].isupper()] lowerCAmelCase : Tuple = ignore_underscore(_A ) return sorted(_A , key=_A ) + sorted(_A , key=_A ) + sorted(_A , key=_A ) def __UpperCamelCase ( _A : Union[str, Any] ) -> int: """simple docstring""" def _replace(_A : List[Any] ): lowerCAmelCase : List[Any] = match.groups()[0] if "," not in imports: return F"[{imports}]" lowerCAmelCase : Dict = [part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase : List[str] = keys[:-1] return "[" + ", ".join([F"\"{k}\"" for k in sort_objects(_A )] ) + "]" lowerCAmelCase : Optional[int] = import_statement.split('\n' ) if len(_A ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowerCAmelCase : Optional[Any] = 2 if lines[1].strip() == '[' else 1 lowerCAmelCase : List[str] = [(i, _re_strip_line.search(_A ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowerCAmelCase : Optional[Any] = sort_objects(_A , key=lambda _A : x[1] ) lowerCAmelCase : Dict = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(_A ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowerCAmelCase : Optional[int] = _re_bracket_content.sub(_replace , lines[1] ) else: lowerCAmelCase : List[Any] = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase : int = keys[:-1] lowerCAmelCase : Tuple = get_indent(lines[1] ) + ', '.join([F"\"{k}\"" for k in sort_objects(_A )] ) return "\n".join(_A ) else: # Finally we have to deal with imports fitting on one line lowerCAmelCase : Union[str, Any] = _re_bracket_content.sub(_replace , _A ) return import_statement def __UpperCamelCase ( _A : str , _A : Tuple=True ) -> Optional[Any]: """simple docstring""" with open(_A , 'r' ) as f: lowerCAmelCase : Optional[int] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowerCAmelCase : List[Any] = split_code_in_indented_blocks( _A , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(_A ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowerCAmelCase : List[str] = main_blocks[block_idx] lowerCAmelCase : Union[str, Any] = block.split('\n' ) # Get to the start of the imports. lowerCAmelCase : Optional[Any] = 0 while line_idx < len(_A ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowerCAmelCase : Optional[Any] = len(_A ) else: line_idx += 1 if line_idx >= len(_A ): continue # Ignore beginning and last line: they don't contain anything. lowerCAmelCase : str = '\n'.join(block_lines[line_idx:-1] ) lowerCAmelCase : str = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowerCAmelCase : Optional[Any] = split_code_in_indented_blocks(_A , indent_level=_A ) # We have two categories of import key: list or _import_structure[key].append/extend lowerCAmelCase : Union[str, Any] = _re_direct_key if '_import_structure' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowerCAmelCase : int = [(pattern.search(_A ).groups()[0] if pattern.search(_A ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowerCAmelCase : Dict = [(i, key) for i, key in enumerate(_A ) if key is not None] lowerCAmelCase : List[Any] = [x[0] for x in sorted(_A , key=lambda _A : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowerCAmelCase : int = 0 lowerCAmelCase : Dict = [] for i in range(len(_A ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: lowerCAmelCase : str = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(_A ) count += 1 # And we put our main block back together with its first and last line. lowerCAmelCase : str = '\n'.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(_A ): if check_only: return True else: print(F"Overwriting {file}." ) with open(_A , 'w' ) as f: f.write('\n'.join(_A ) ) def __UpperCamelCase ( _A : Tuple=True ) -> Any: """simple docstring""" lowerCAmelCase : Tuple = [] for root, _, files in os.walk(_A ): if "__init__.py" in files: lowerCAmelCase : Any = sort_imports(os.path.join(_A , '__init__.py' ) , check_only=_A ) if result: lowerCAmelCase : Optional[Any] = [os.path.join(_A , '__init__.py' )] if len(_A ) > 0: raise ValueError(F"Would overwrite {len(_A )} files, run `make style`." ) if __name__ == "__main__": _lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') _lowerCAmelCase : Optional[int] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
646
0
'''simple docstring''' import argparse import json from tqdm import tqdm def __UpperCamelCase ( ) -> Any: """simple docstring""" lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--src_path' , type=_A , default='biencoder-nq-dev.json' , help='Path to raw DPR training data' , ) parser.add_argument( '--evaluation_set' , type=_A , help='where to store parsed evaluation_set file' , ) parser.add_argument( '--gold_data_path' , type=_A , help='where to store parsed gold_data_path file' , ) lowerCAmelCase : str = parser.parse_args() with open(args.src_path , 'r' ) as src_file, open(args.evaluation_set , 'w' ) as eval_file, open( args.gold_data_path , 'w' ) as gold_file: lowerCAmelCase : Any = json.load(_A ) for dpr_record in tqdm(_A ): lowerCAmelCase : Dict = dpr_record['question'] lowerCAmelCase : Tuple = [context['title'] for context in dpr_record['positive_ctxs']] eval_file.write(question + '\n' ) gold_file.write('\t'.join(_A ) + '\n' ) if __name__ == "__main__": main()
716
'''simple docstring''' import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class lowerCAmelCase : def __init__( self , snake_case__ , snake_case__=13 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=99 , snake_case__=64 , snake_case__=32 , snake_case__=5 , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=16 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=3 , snake_case__=4 , snake_case__=None , ): lowerCAmelCase : str = parent lowerCAmelCase : Optional[int] = batch_size lowerCAmelCase : Optional[Any] = seq_length lowerCAmelCase : Optional[Any] = is_training lowerCAmelCase : Dict = use_input_mask lowerCAmelCase : Tuple = use_token_type_ids lowerCAmelCase : int = use_labels lowerCAmelCase : int = vocab_size lowerCAmelCase : Any = hidden_size lowerCAmelCase : Optional[Any] = embedding_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : List[str] = num_attention_heads lowerCAmelCase : List[Any] = intermediate_size lowerCAmelCase : Dict = hidden_act lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : int = attention_probs_dropout_prob lowerCAmelCase : List[Any] = max_position_embeddings lowerCAmelCase : int = type_vocab_size lowerCAmelCase : List[str] = type_sequence_label_size lowerCAmelCase : Dict = initializer_range lowerCAmelCase : Any = num_labels lowerCAmelCase : str = num_choices lowerCAmelCase : int = scope def lowercase ( self ): lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Union[str, Any] = None if self.use_input_mask: lowerCAmelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : Optional[int] = None if self.use_token_type_ids: lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : Optional[Any] = None lowerCAmelCase : Optional[Any] = None lowerCAmelCase : Dict = None if self.use_labels: lowerCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase ( self ): return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case__ , initializer_range=self.initializer_range , ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = MobileBertModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : int = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) lowerCAmelCase : Optional[int] = model(snake_case__ , token_type_ids=snake_case__ ) lowerCAmelCase : Optional[Any] = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : int = MobileBertForMaskedLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : str = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = MobileBertForNextSentencePrediction(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : str = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : List[Any] = MobileBertForPreTraining(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Tuple = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , next_sentence_label=snake_case__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = MobileBertForQuestionAnswering(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : List[str] = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = self.num_labels lowerCAmelCase : List[Any] = MobileBertForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = self.num_labels lowerCAmelCase : int = MobileBertForTokenClassification(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : List[str] = self.num_choices lowerCAmelCase : Any = MobileBertForMultipleChoice(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : int = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : List[str] = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase ( self ): lowerCAmelCase : Any = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) : Optional[Any] = config_and_inputs lowerCAmelCase : List[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase ( a , a , unittest.TestCase ): _lowerCamelCase : List[str] = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) _lowerCamelCase : Tuple = ( { """feature-extraction""": MobileBertModel, """fill-mask""": MobileBertForMaskedLM, """question-answering""": MobileBertForQuestionAnswering, """text-classification""": MobileBertForSequenceClassification, """token-classification""": MobileBertForTokenClassification, """zero-shot""": MobileBertForSequenceClassification, } if is_torch_available() else {} ) _lowerCamelCase : str = True def lowercase ( self , snake_case__ , snake_case__ , snake_case__=False ): lowerCAmelCase : int = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if return_labels: if model_class in get_values(snake_case__ ): lowerCAmelCase : str = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=snake_case__ ) lowerCAmelCase : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case__ ) return inputs_dict def lowercase ( self ): lowerCAmelCase : List[Any] = MobileBertModelTester(self ) lowerCAmelCase : Dict = ConfigTester(self , config_class=snake_case__ , hidden_size=37 ) def lowercase ( self ): self.config_tester.run_common_tests() def lowercase ( self ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*snake_case__ ) def __UpperCamelCase ( _A : Optional[Any] ) -> Optional[int]: """simple docstring""" return torch.tensor( _A , dtype=torch.long , device=_A , ) _lowerCAmelCase : Union[str, Any] = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase ( unittest.TestCase ): @slow def lowercase ( self ): lowerCAmelCase : List[str] = MobileBertModel.from_pretrained('google/mobilebert-uncased' ).to(snake_case__ ) lowerCAmelCase : List[Any] = _long_tensor([[101, 7110, 1005, 1056, 2023, 1_1333, 1_7413, 1029, 102]] ) with torch.no_grad(): lowerCAmelCase : Tuple = model(snake_case__ )[0] lowerCAmelCase : List[Any] = torch.Size((1, 9, 512) ) self.assertEqual(output.shape , snake_case__ ) lowerCAmelCase : Union[str, Any] = torch.tensor( [ [ [-2.4_7_3_6_5_2_6e0_7, 8.2_6_9_1_6_5_6e0_4, 1.6_5_2_1_8_3_8e0_5], [-5.7_5_4_1_7_0_4e-0_1, 3.9_0_5_6_0_2_2e0_0, 4.4_0_1_1_5_0_7e0_0], [2.6_0_4_7_3_5_9e0_0, 1.5_6_7_7_6_5_2e0_0, -1.7_3_2_4_1_8_8e-0_1], ] ] , device=snake_case__ , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE lowerCAmelCase : List[str] = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) lowerCAmelCase : Dict = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
646
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer _lowerCAmelCase : str = logging.get_logger(__name__) _lowerCAmelCase : Optional[int] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _lowerCAmelCase : Any = [ 'small', 'small-base', 'medium', 'medium-base', 'intermediate', 'intermediate-base', 'large', 'large-base', 'xlarge', 'xlarge-base', ] _lowerCAmelCase : Any = { 'vocab_file': { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt', 'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt', 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt', 'funnel-transformer/medium-base': ( 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt' ), 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt', 'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt', 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt', 'funnel-transformer/xlarge-base': ( 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json', 'funnel-transformer/small-base': ( 'https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json' ), 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json', 'funnel-transformer/medium-base': ( 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json' ), 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json', 'funnel-transformer/large-base': ( 'https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json' ), 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json', 'funnel-transformer/xlarge-base': ( 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json' ), }, } _lowerCAmelCase : List[Any] = {f"""funnel-transformer/{name}""": 512 for name in _model_names} _lowerCAmelCase : Optional[Any] = {f"""funnel-transformer/{name}""": {'do_lower_case': True} for name in _model_names} class lowerCAmelCase ( a ): _lowerCamelCase : Union[str, Any] = VOCAB_FILES_NAMES _lowerCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : int = PRETRAINED_INIT_CONFIGURATION _lowerCamelCase : Dict = FunnelTokenizer _lowerCamelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase : int = 2 def __init__( self , snake_case__=None , snake_case__=None , snake_case__=True , snake_case__="<unk>" , snake_case__="<sep>" , snake_case__="<pad>" , snake_case__="<cls>" , snake_case__="<mask>" , snake_case__="<s>" , snake_case__="</s>" , snake_case__=True , snake_case__=True , snake_case__=None , snake_case__="##" , **snake_case__ , ): super().__init__( snake_case__ , tokenizer_file=snake_case__ , do_lower_case=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , clean_text=snake_case__ , tokenize_chinese_chars=snake_case__ , strip_accents=snake_case__ , wordpieces_prefix=snake_case__ , **snake_case__ , ) lowerCAmelCase : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , snake_case__ ) != do_lower_case or normalizer_state.get('strip_accents' , snake_case__ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , snake_case__ ) != tokenize_chinese_chars ): lowerCAmelCase : List[str] = getattr(snake_case__ , normalizer_state.pop('type' ) ) lowerCAmelCase : int = do_lower_case lowerCAmelCase : Union[str, Any] = strip_accents lowerCAmelCase : Dict = tokenize_chinese_chars lowerCAmelCase : Any = normalizer_class(**snake_case__ ) lowerCAmelCase : List[Any] = do_lower_case def lowercase ( self , snake_case__ , snake_case__=None ): lowerCAmelCase : List[str] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase ( self , snake_case__ , snake_case__ = None ): lowerCAmelCase : Optional[Any] = [self.sep_token_id] lowerCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase ( self , snake_case__ , snake_case__ = None ): lowerCAmelCase : Dict = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ )
717
'''simple docstring''' import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __UpperCamelCase ( _A : Dict ) -> int: """simple docstring""" lowerCAmelCase : Tuple = [] embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight", F"stage{idx}.patch_embed.proj.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias", F"stage{idx}.patch_embed.proj.bias", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight", F"stage{idx}.patch_embed.norm.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias", F"stage{idx}.patch_embed.norm.bias", ) ) return embed def __UpperCamelCase ( _A : List[Any] , _A : Dict ) -> Any: """simple docstring""" lowerCAmelCase : str = [] attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight", F"stage{idx}.blocks.{cnt}.attn.proj_q.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias", F"stage{idx}.blocks.{cnt}.attn.proj_q.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight", F"stage{idx}.blocks.{cnt}.attn.proj_k.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias", F"stage{idx}.blocks.{cnt}.attn.proj_k.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight", F"stage{idx}.blocks.{cnt}.attn.proj_v.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias", F"stage{idx}.blocks.{cnt}.attn.proj_v.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight", F"stage{idx}.blocks.{cnt}.attn.proj.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias", F"stage{idx}.blocks.{cnt}.attn.proj.bias", ) ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc2.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight", F"stage{idx}.blocks.{cnt}.norm1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias", F"stage{idx}.blocks.{cnt}.norm1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight", F"stage{idx}.blocks.{cnt}.norm2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias", F"stage{idx}.blocks.{cnt}.norm2.bias") ) return attention_weights def __UpperCamelCase ( _A : Optional[int] ) -> Optional[int]: """simple docstring""" lowerCAmelCase : Optional[int] = [] token.append((F"cvt.encoder.stages.{idx}.cls_token", 'stage2.cls_token') ) return token def __UpperCamelCase ( ) -> int: """simple docstring""" lowerCAmelCase : List[Any] = [] head.append(('layernorm.weight', 'norm.weight') ) head.append(('layernorm.bias', 'norm.bias') ) head.append(('classifier.weight', 'head.weight') ) head.append(('classifier.bias', 'head.bias') ) return head def __UpperCamelCase ( _A : str , _A : Optional[Any] , _A : Dict , _A : str ) -> Optional[int]: """simple docstring""" lowerCAmelCase : List[str] = 'imagenet-1k-id2label.json' lowerCAmelCase : Tuple = 10_00 lowerCAmelCase : str = 'huggingface/label-files' lowerCAmelCase : List[Any] = num_labels lowerCAmelCase : Any = json.load(open(cached_download(hf_hub_url(_A , _A , repo_type='dataset' ) ) , 'r' ) ) lowerCAmelCase : List[str] = {int(_A ): v for k, v in idalabel.items()} lowerCAmelCase : List[str] = idalabel lowerCAmelCase : str = {v: k for k, v in idalabel.items()} lowerCAmelCase : int = CvtConfig(num_labels=_A , idalabel=_A , labelaid=_A ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13": lowerCAmelCase : List[str] = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21": lowerCAmelCase : Tuple = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: lowerCAmelCase : Any = [2, 2, 20] lowerCAmelCase : List[str] = [3, 12, 16] lowerCAmelCase : List[Any] = [1_92, 7_68, 10_24] lowerCAmelCase : Union[str, Any] = CvtForImageClassification(_A ) lowerCAmelCase : str = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) lowerCAmelCase : Optional[Any] = image_size lowerCAmelCase : List[Any] = torch.load(_A , map_location=torch.device('cpu' ) ) lowerCAmelCase : str = OrderedDict() lowerCAmelCase : int = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: lowerCAmelCase : List[str] = list_of_state_dict + cls_token(_A ) lowerCAmelCase : Optional[Any] = list_of_state_dict + embeddings(_A ) for cnt in range(config.depth[idx] ): lowerCAmelCase : List[Any] = list_of_state_dict + attention(_A , _A ) lowerCAmelCase : List[str] = list_of_state_dict + final() for gg in list_of_state_dict: print(_A ) for i in range(len(_A ) ): lowerCAmelCase : Tuple = original_weights[list_of_state_dict[i][1]] model.load_state_dict(_A ) model.save_pretrained(_A ) image_processor.save_pretrained(_A ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": _lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '--cvt_model', default='cvt-w24', type=str, help='Name of the cvt model you\'d like to convert.', ) parser.add_argument( '--image_size', default=384, type=int, help='Input Image Size', ) parser.add_argument( '--cvt_file_name', default=r'cvtmodels\CvT-w24-384x384-IN-22k.pth', type=str, help='Input Image Size', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) _lowerCAmelCase : str = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
646
0
'''simple docstring''' import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase ( a ): def __init__( self , snake_case__ , snake_case__=13 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=False , snake_case__=False , snake_case__=False , snake_case__=2 , snake_case__=99 , snake_case__=0 , snake_case__=32 , snake_case__=5 , snake_case__=4 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=12 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=3 , snake_case__=4 , snake_case__="last" , snake_case__=None , snake_case__=None , ): lowerCAmelCase : Tuple = parent lowerCAmelCase : Any = batch_size lowerCAmelCase : Union[str, Any] = seq_length lowerCAmelCase : str = is_training lowerCAmelCase : List[str] = use_input_lengths lowerCAmelCase : str = use_token_type_ids lowerCAmelCase : Tuple = use_labels lowerCAmelCase : List[str] = gelu_activation lowerCAmelCase : str = sinusoidal_embeddings lowerCAmelCase : str = causal lowerCAmelCase : Dict = asm lowerCAmelCase : List[str] = n_langs lowerCAmelCase : Tuple = vocab_size lowerCAmelCase : Optional[Any] = n_special lowerCAmelCase : Optional[int] = hidden_size lowerCAmelCase : Optional[int] = num_hidden_layers lowerCAmelCase : Dict = num_attention_heads lowerCAmelCase : List[Any] = hidden_dropout_prob lowerCAmelCase : List[str] = attention_probs_dropout_prob lowerCAmelCase : Optional[int] = max_position_embeddings lowerCAmelCase : List[str] = type_vocab_size lowerCAmelCase : Optional[int] = type_sequence_label_size lowerCAmelCase : Any = initializer_range lowerCAmelCase : Optional[int] = num_labels lowerCAmelCase : Tuple = num_choices lowerCAmelCase : Optional[int] = summary_type lowerCAmelCase : Optional[Any] = use_proj lowerCAmelCase : str = scope def lowercase ( self ): lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : Optional[int] = None if self.use_input_lengths: lowerCAmelCase : Dict = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowerCAmelCase : int = None if self.use_token_type_ids: lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) lowerCAmelCase : str = None lowerCAmelCase : List[str] = None lowerCAmelCase : List[str] = None if self.use_labels: lowerCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : Any = ids_tensor([self.batch_size] , 2 ).float() lowerCAmelCase : int = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : Tuple = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def lowercase ( self ): return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): lowerCAmelCase : int = FlaubertModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Optional[int] = model(snake_case__ , lengths=snake_case__ , langs=snake_case__ ) lowerCAmelCase : int = model(snake_case__ , langs=snake_case__ ) lowerCAmelCase : Union[str, Any] = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): lowerCAmelCase : str = FlaubertWithLMHeadModel(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Optional[int] = model(snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): lowerCAmelCase : Optional[Any] = FlaubertForQuestionAnsweringSimple(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : int = model(snake_case__ ) lowerCAmelCase : List[Any] = model(snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): lowerCAmelCase : Dict = FlaubertForQuestionAnswering(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Any = model(snake_case__ ) lowerCAmelCase : List[str] = model( snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , cls_index=snake_case__ , is_impossible=snake_case__ , p_mask=snake_case__ , ) lowerCAmelCase : List[Any] = model( snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , cls_index=snake_case__ , is_impossible=snake_case__ , ) (lowerCAmelCase ) : Any = result_with_labels.to_tuple() lowerCAmelCase : Tuple = model(snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ ) (lowerCAmelCase ) : str = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): lowerCAmelCase : str = FlaubertForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Tuple = model(snake_case__ ) lowerCAmelCase : Dict = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): lowerCAmelCase : Optional[Any] = self.num_labels lowerCAmelCase : Any = FlaubertForTokenClassification(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : int = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): lowerCAmelCase : Optional[Any] = self.num_choices lowerCAmelCase : Any = FlaubertForMultipleChoice(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : Tuple = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : int = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : Tuple = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase ( self ): lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( lowerCAmelCase ) : Tuple = config_and_inputs lowerCAmelCase : List[str] = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class lowerCAmelCase ( a , a , unittest.TestCase ): _lowerCamelCase : Union[str, Any] = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) _lowerCamelCase : Any = ( { """feature-extraction""": FlaubertModel, """fill-mask""": FlaubertWithLMHeadModel, """question-answering""": FlaubertForQuestionAnsweringSimple, """text-classification""": FlaubertForSequenceClassification, """token-classification""": FlaubertForTokenClassification, """zero-shot""": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def lowercase ( self , snake_case__ , snake_case__ , snake_case__=False ): lowerCAmelCase : Optional[int] = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": lowerCAmelCase : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case__ ) lowerCAmelCase : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case__ ) return inputs_dict def lowercase ( self ): lowerCAmelCase : Optional[Any] = FlaubertModelTester(self ) lowerCAmelCase : List[Any] = ConfigTester(self , config_class=snake_case__ , emb_dim=37 ) def lowercase ( self ): self.config_tester.run_common_tests() def lowercase ( self ): lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*snake_case__ ) @slow def lowercase ( self ): for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : Union[str, Any] = FlaubertModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) @slow @require_torch_gpu def lowercase ( self ): lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return lowerCAmelCase : Dict = True lowerCAmelCase : Optional[Any] = model_class(config=snake_case__ ) lowerCAmelCase : int = self._prepare_for_class(snake_case__ , snake_case__ ) lowerCAmelCase : str = torch.jit.trace( snake_case__ , (inputs_dict['input_ids'].to('cpu' ), inputs_dict['attention_mask'].to('cpu' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(snake_case__ , os.path.join(snake_case__ , 'traced_model.pt' ) ) lowerCAmelCase : List[Any] = torch.jit.load(os.path.join(snake_case__ , 'traced_model.pt' ) , map_location=snake_case__ ) loaded(inputs_dict['input_ids'].to(snake_case__ ) , inputs_dict['attention_mask'].to(snake_case__ ) ) @require_torch class lowerCAmelCase ( unittest.TestCase ): @slow def lowercase ( self ): lowerCAmelCase : int = FlaubertModel.from_pretrained('flaubert/flaubert_base_cased' ) lowerCAmelCase : Tuple = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): lowerCAmelCase : List[Any] = model(snake_case__ )[0] lowerCAmelCase : List[str] = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , snake_case__ ) lowerCAmelCase : str = torch.tensor( [[[-2.6_2_5_1, -1.4_2_9_8, -0.0_2_2_7], [-2.8_5_1_0, -1.6_3_8_7, 0.2_2_5_8], [-2.8_1_1_4, -1.1_8_3_2, -0.3_0_6_6]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case__ , atol=1e-4 ) )
718
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Any = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { 'xlm-roberta-base': 'https://huggingface.co/xlm-roberta-base/resolve/main/config.json', 'xlm-roberta-large': 'https://huggingface.co/xlm-roberta-large/resolve/main/config.json', 'xlm-roberta-large-finetuned-conll02-dutch': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll02-spanish': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-english': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-german': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json' ), } class lowerCAmelCase ( a ): _lowerCamelCase : List[str] = """xlm-roberta""" def __init__( self , snake_case__=3_0522 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=1e-1_2 , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__="absolute" , snake_case__=True , snake_case__=None , **snake_case__ , ): super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) lowerCAmelCase : Optional[Any] = vocab_size lowerCAmelCase : Optional[Any] = hidden_size lowerCAmelCase : Optional[Any] = num_hidden_layers lowerCAmelCase : Any = num_attention_heads lowerCAmelCase : Optional[int] = hidden_act lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : Dict = hidden_dropout_prob lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob lowerCAmelCase : Optional[Any] = max_position_embeddings lowerCAmelCase : Optional[int] = type_vocab_size lowerCAmelCase : int = initializer_range lowerCAmelCase : List[Any] = layer_norm_eps lowerCAmelCase : Union[str, Any] = position_embedding_type lowerCAmelCase : Union[str, Any] = use_cache lowerCAmelCase : List[str] = classifier_dropout class lowerCAmelCase ( a ): @property def lowercase ( self ): if self.task == "multiple-choice": lowerCAmelCase : str = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase : Optional[int] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
646
0
'''simple docstring''' def __UpperCamelCase ( _A : int ) -> bool: """simple docstring""" return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
719
'''simple docstring''' import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer _lowerCAmelCase : List[Any] = logging.getLogger(__name__) def __UpperCamelCase ( ) -> Any: """simple docstring""" lowerCAmelCase : str = argparse.ArgumentParser( description='Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.' ) parser.add_argument( '--dataset_name' , type=_A , default='wikitext' , help='Name of the training. Explore datasets at: hf.co/datasets.' , ) parser.add_argument( '--dataset_config' , type=_A , default='wikitext-103-raw-v1' , help='Configuration name of the dataset.' ) parser.add_argument( '--tokenizer_name_or_path' , type=_A , default='sayakpaul/unigram-tokenizer-wikitext' , help='Tokenizer identifier. Can be a local filepath or a Hub identifier.' , ) parser.add_argument( '--shard_size' , type=_A , default=10_00 , help='Number of entries to go in a single shard.' , ) parser.add_argument('--split' , type=_A , default='train' , choices=['train', 'test', 'validation'] ) parser.add_argument( '--limit' , default=_A , type=_A , help='Limit the number of shards (used for debugging).' , ) parser.add_argument( '--max_length' , type=_A , default=5_12 , help='Maximum sequence length. For training on TPUs, it helps to have a maximum' ' sequence length that is a multiple of 8.' , ) parser.add_argument( '--output_dir' , default='tf-tpu' , type=_A , help='Output directory where the TFRecord shards will be saved. If the' ' path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord' ' shards will be directly saved to a Google Cloud Storage bucket.' , ) lowerCAmelCase : Any = parser.parse_args() return args def __UpperCamelCase ( _A : Optional[int] ) -> int: """simple docstring""" def fn(_A : Tuple ): return tokenizer(examples['text'] ) return fn def __UpperCamelCase ( _A : int ) -> int: """simple docstring""" lowerCAmelCase : Tuple = [] for i in range(len(tokenized_data['input_ids'] ) ): lowerCAmelCase : Optional[Any] = { 'input_ids': tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data['input_ids'][i] ) ), 'attention_mask': tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data['attention_mask'][i] ) ), } lowerCAmelCase : Any = tf.train.Features(feature=_A ) lowerCAmelCase : List[str] = tf.train.Example(features=_A ) lowerCAmelCase : Tuple = example.SerializeToString() records.append(_A ) return records def __UpperCamelCase ( _A : int ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase : Union[str, Any] = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: lowerCAmelCase : Optional[Any] = min(len(_A ) , args.limit ) lowerCAmelCase : Dict = dataset.select(range(_A ) ) print(F"Limiting the dataset to {args.limit} entries." ) lowerCAmelCase : str = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) lowerCAmelCase : Any = os.path.join(args.output_dir , args.split ) if not os.path.exists(_A ): os.makedirs(_A ) else: lowerCAmelCase : List[Any] = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. lowerCAmelCase : Any = tokenize_function(_A ) lowerCAmelCase : Optional[int] = dataset.map(_A , batched=_A , num_proc=4 , remove_columns=['text'] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(_A : str ): # Concatenate all texts. lowerCAmelCase : Optional[int] = {k: sum(examples[k] , [] ) for k in examples.keys()} lowerCAmelCase : str = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 lowerCAmelCase : List[Any] = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. lowerCAmelCase : str = { k: [t[i : i + args.max_length] for i in range(0 , _A , args.max_length )] for k, t in concatenated_examples.items() } return result lowerCAmelCase : List[Any] = dataset_tokenized.map(_A , batched=_A , batch_size=10_00 , num_proc=4 ) lowerCAmelCase : Union[str, Any] = 0 lowerCAmelCase : Tuple = 0 for shard in range(0 , len(_A ) , args.shard_size ): lowerCAmelCase : Optional[Any] = grouped_dataset[shard : shard + args.shard_size] lowerCAmelCase : List[str] = len(dataset_snapshot['input_ids'] ) lowerCAmelCase : Union[str, Any] = os.path.join(_A , F"dataset-{shard_count}-{records_containing}.tfrecord" ) lowerCAmelCase : List[Any] = get_serialized_examples(_A ) with tf.io.TFRecordWriter(_A ) as out_file: for i in range(len(_A ) ): lowerCAmelCase : Union[str, Any] = serialized_examples[i] out_file.write(_A ) print('Wrote file {} containing {} records'.format(_A , _A ) ) shard_count += 1 total_records += records_containing with open(F"split-{args.split}-records-count.txt" , 'w' ) as f: print(F"Total {args.split} records: {total_records}" , file=_A ) if __name__ == "__main__": _lowerCAmelCase : List[Any] = parse_args() main(args)
646
0
'''simple docstring''' from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class lowerCAmelCase ( a ): def __init__( self , snake_case__ , snake_case__ = None , snake_case__ = None , snake_case__ = False , snake_case__ = False , snake_case__ = None , snake_case__ = None , **snake_case__ , ): super().__init__( features=snake_case__ , cache_dir=snake_case__ , keep_in_memory=snake_case__ , streaming=snake_case__ , num_proc=snake_case__ , **snake_case__ , ) lowerCAmelCase : List[str] = Generator( cache_dir=snake_case__ , features=snake_case__ , generator=snake_case__ , gen_kwargs=snake_case__ , **snake_case__ , ) def lowercase ( self ): # Build iterable dataset if self.streaming: lowerCAmelCase : Dict = self.builder.as_streaming_dataset(split='train' ) # Build regular (map-style) dataset else: lowerCAmelCase : List[Any] = None lowerCAmelCase : Optional[int] = None lowerCAmelCase : Any = None lowerCAmelCase : int = None self.builder.download_and_prepare( download_config=snake_case__ , download_mode=snake_case__ , verification_mode=snake_case__ , base_path=snake_case__ , num_proc=self.num_proc , ) lowerCAmelCase : Optional[int] = self.builder.as_dataset( split='train' , verification_mode=snake_case__ , in_memory=self.keep_in_memory ) return dataset
720
'''simple docstring''' import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() _lowerCAmelCase : List[str] = logging.get_logger('transformers.models.speecht5') def __UpperCamelCase ( _A : Any , _A : Dict , _A : Any ) -> Union[str, Any]: """simple docstring""" hf_model.apply_weight_norm() lowerCAmelCase : int = checkpoint['input_conv.weight_g'] lowerCAmelCase : Optional[int] = checkpoint['input_conv.weight_v'] lowerCAmelCase : Dict = checkpoint['input_conv.bias'] for i in range(len(config.upsample_rates ) ): lowerCAmelCase : Optional[Any] = checkpoint[F"upsamples.{i}.1.weight_g"] lowerCAmelCase : str = checkpoint[F"upsamples.{i}.1.weight_v"] lowerCAmelCase : str = checkpoint[F"upsamples.{i}.1.bias"] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): lowerCAmelCase : int = checkpoint[F"blocks.{i}.convs1.{j}.1.weight_g"] lowerCAmelCase : str = checkpoint[F"blocks.{i}.convs1.{j}.1.weight_v"] lowerCAmelCase : int = checkpoint[F"blocks.{i}.convs1.{j}.1.bias"] lowerCAmelCase : Optional[Any] = checkpoint[F"blocks.{i}.convs2.{j}.1.weight_g"] lowerCAmelCase : Tuple = checkpoint[F"blocks.{i}.convs2.{j}.1.weight_v"] lowerCAmelCase : Tuple = checkpoint[F"blocks.{i}.convs2.{j}.1.bias"] lowerCAmelCase : List[Any] = checkpoint['output_conv.1.weight_g'] lowerCAmelCase : List[str] = checkpoint['output_conv.1.weight_v'] lowerCAmelCase : Optional[Any] = checkpoint['output_conv.1.bias'] hf_model.remove_weight_norm() @torch.no_grad() def __UpperCamelCase ( _A : Dict , _A : Union[str, Any] , _A : List[Any] , _A : Any=None , _A : Any=None , ) -> Dict: """simple docstring""" if config_path is not None: lowerCAmelCase : Dict = SpeechTaHifiGanConfig.from_pretrained(_A ) else: lowerCAmelCase : Union[str, Any] = SpeechTaHifiGanConfig() lowerCAmelCase : List[Any] = SpeechTaHifiGan(_A ) lowerCAmelCase : List[str] = torch.load(_A ) load_weights(orig_checkpoint['model']['generator'] , _A , _A ) lowerCAmelCase : Tuple = np.load(_A ) lowerCAmelCase : List[Any] = stats[0].reshape(-1 ) lowerCAmelCase : int = stats[1].reshape(-1 ) lowerCAmelCase : Union[str, Any] = torch.from_numpy(_A ).float() lowerCAmelCase : int = torch.from_numpy(_A ).float() model.save_pretrained(_A ) if repo_id: print('Pushing to the hub...' ) model.push_to_hub(_A ) if __name__ == "__main__": _lowerCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--stats_path', required=True, default=None, type=str, help='Path to stats.npy file') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) _lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
646
0
'''simple docstring''' import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class lowerCAmelCase ( unittest.TestCase ): def __init__( self , snake_case__ , snake_case__=2 , snake_case__=56 , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=99 , snake_case__=32 , snake_case__=2 , snake_case__=2 , snake_case__=7 , snake_case__="gelu_new" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=16 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=4 , snake_case__="block_sparse" , snake_case__=True , snake_case__=False , snake_case__=2 , snake_case__=3 , ): lowerCAmelCase : Optional[int] = parent lowerCAmelCase : Optional[Any] = batch_size lowerCAmelCase : Any = seq_length lowerCAmelCase : str = is_training lowerCAmelCase : List[Any] = use_attention_mask lowerCAmelCase : List[Any] = use_token_type_ids lowerCAmelCase : Optional[Any] = use_labels lowerCAmelCase : Any = vocab_size lowerCAmelCase : Tuple = hidden_size lowerCAmelCase : Dict = num_hidden_layers lowerCAmelCase : int = num_attention_heads lowerCAmelCase : Optional[Any] = intermediate_size lowerCAmelCase : Any = hidden_act lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : Dict = attention_probs_dropout_prob lowerCAmelCase : str = max_position_embeddings lowerCAmelCase : List[Any] = type_vocab_size lowerCAmelCase : Tuple = type_sequence_label_size lowerCAmelCase : List[Any] = initializer_range lowerCAmelCase : int = num_choices lowerCAmelCase : Optional[int] = rescale_embeddings lowerCAmelCase : Dict = attention_type lowerCAmelCase : Any = use_bias lowerCAmelCase : Optional[Any] = block_size lowerCAmelCase : Dict = num_random_blocks def lowercase ( self ): lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Dict = None if self.use_attention_mask: lowerCAmelCase : str = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : Any = None if self.use_token_type_ids: lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : List[Any] = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case__ , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def lowercase ( self ): lowerCAmelCase : int = self.prepare_config_and_inputs() lowerCAmelCase : int = config_and_inputs lowerCAmelCase : Union[str, Any] = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask, } return config, inputs_dict @require_flax class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : int = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) _lowerCamelCase : Tuple = False _lowerCamelCase : str = False def lowercase ( self ): lowerCAmelCase : Optional[int] = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowercase ( self ): super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowercase ( self ): super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowercase ( self ): super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowercase ( self ): super().test_hidden_states_output() @slow def lowercase ( self ): for model_class_name in self.all_model_classes: lowerCAmelCase : Union[str, Any] = model_class_name.from_pretrained('google/bigbird-roberta-base' ) self.assertIsNotNone(snake_case__ ) def lowercase ( self ): if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowercase ( self ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCAmelCase : int = self._prepare_for_class(snake_case__ , snake_case__ ) lowerCAmelCase : int = model_class(snake_case__ ) @jax.jit def model_jitted(snake_case__ , snake_case__=None , **snake_case__ ): return model(input_ids=snake_case__ , attention_mask=snake_case__ , **snake_case__ ) with self.subTest('JIT Enabled' ): lowerCAmelCase : Tuple = model_jitted(**snake_case__ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): lowerCAmelCase : List[str] = model_jitted(**snake_case__ ).to_tuple() self.assertEqual(len(snake_case__ ) , len(snake_case__ ) ) for jitted_output, output in zip(snake_case__ , snake_case__ ): self.assertEqual(jitted_output.shape , output.shape ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__=1e-5 , snake_case__="outputs" , snake_case__=None ): # `bigbird_block_sparse_attention` in `FlaxBigBird` returns `attention_probs = None`, while in PyTorch version, # an effort was done to return `attention_probs` (yet to be verified). if name.startswith('outputs.attentions' ): return else: super().check_pt_flax_outputs(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ )
721
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets _lowerCAmelCase : Dict = '\\n@inproceedings{popovic-2015-chrf,\n title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",\n month = sep,\n year = "2015",\n address = "Lisbon, Portugal",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W15-3049",\n doi = "10.18653/v1/W15-3049",\n pages = "392--395",\n}\n@inproceedings{popovic-2017-chrf,\n title = "chr{F}++: words helping character n-grams",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Second Conference on Machine Translation",\n month = sep,\n year = "2017",\n address = "Copenhagen, Denmark",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W17-4770",\n doi = "10.18653/v1/W17-4770",\n pages = "612--618",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' _lowerCAmelCase : Optional[Any] = '\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n' _lowerCAmelCase : List[Any] = '\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n \'score\' (float): The chrF (chrF++) score,\n \'char_order\' (int): The character n-gram order,\n \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n \'beta\' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase ( datasets.Metric ): def lowercase ( self ): if version.parse(scb.__version__ ) < version.parse('1.4.12' ): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/mjpost/sacreBLEU#chrf--chrf' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/mjpost/sacreBLEU#chrf--chrf'] , reference_urls=[ 'https://github.com/m-popovic/chrF', ] , ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ = CHRF.CHAR_ORDER , snake_case__ = CHRF.WORD_ORDER , snake_case__ = CHRF.BETA , snake_case__ = False , snake_case__ = False , snake_case__ = False , ): lowerCAmelCase : List[str] = len(references[0] ) if any(len(snake_case__ ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) lowerCAmelCase : List[str] = [[refs[i] for refs in references] for i in range(snake_case__ )] lowerCAmelCase : Union[str, Any] = CHRF(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase : Dict = sb_chrf.corpus_score(snake_case__ , snake_case__ ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
646
0
'''simple docstring''' import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def __UpperCamelCase ( _A : List[Any]="" ) -> str: """simple docstring""" lowerCAmelCase : Tuple = tempfile.mkdtemp() return os.path.join(_A , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): lowerCAmelCase : Union[str, Any] = torch.rand(12 , dtype=torch.floataa ) - 0.5 lowerCAmelCase : Tuple = AgentAudio(snake_case__ ) lowerCAmelCase : List[Any] = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(snake_case__ , agent_type.to_raw() , atol=1e-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(snake_case__ ) ) # Ensure that the file contains the same value as the original tensor lowerCAmelCase : int = sf.read(snake_case__ ) self.assertTrue(torch.allclose(snake_case__ , torch.tensor(snake_case__ ) , atol=1e-4 ) ) def lowercase ( self ): lowerCAmelCase : Tuple = torch.rand(12 , dtype=torch.floataa ) - 0.5 lowerCAmelCase : str = get_new_path(suffix='.wav' ) sf.write(snake_case__ , snake_case__ , 1_6000 ) lowerCAmelCase : List[str] = AgentAudio(snake_case__ ) self.assertTrue(torch.allclose(snake_case__ , agent_type.to_raw() , atol=1e-4 ) ) self.assertEqual(agent_type.to_string() , snake_case__ ) @require_vision @require_torch class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): lowerCAmelCase : str = torch.randint(0 , 256 , (64, 64, 3) ) lowerCAmelCase : List[Any] = AgentImage(snake_case__ ) lowerCAmelCase : int = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(snake_case__ , agent_type._tensor , atol=1e-4 ) ) self.assertIsInstance(agent_type.to_raw() , Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(snake_case__ ) ) def lowercase ( self ): lowerCAmelCase : List[str] = Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png' lowerCAmelCase : int = Image.open(snake_case__ ) lowerCAmelCase : Optional[int] = AgentImage(snake_case__ ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(snake_case__ ) ) def lowercase ( self ): lowerCAmelCase : Any = Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png' lowerCAmelCase : Optional[Any] = Image.open(snake_case__ ) lowerCAmelCase : str = AgentImage(snake_case__ ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(snake_case__ ) ) class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): lowerCAmelCase : Optional[int] = 'Hey!' lowerCAmelCase : int = AgentText(snake_case__ ) self.assertEqual(snake_case__ , agent_type.to_string() ) self.assertEqual(snake_case__ , agent_type.to_raw() ) self.assertEqual(snake_case__ , snake_case__ )
700
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : str = logging.get_logger(__name__) _lowerCAmelCase : Tuple = { 's-JoL/Open-Llama-V1': 'https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json', } class lowerCAmelCase ( a ): _lowerCamelCase : Union[str, Any] = """open-llama""" def __init__( self , snake_case__=10_0000 , snake_case__=4096 , snake_case__=1_1008 , snake_case__=32 , snake_case__=32 , snake_case__="silu" , snake_case__=2048 , snake_case__=0.0_2 , snake_case__=1e-6 , snake_case__=True , snake_case__=0 , snake_case__=1 , snake_case__=2 , snake_case__=False , snake_case__=True , snake_case__=0.1 , snake_case__=0.1 , snake_case__=True , snake_case__=True , snake_case__=None , **snake_case__ , ): lowerCAmelCase : Tuple = vocab_size lowerCAmelCase : Optional[Any] = max_position_embeddings lowerCAmelCase : List[Any] = hidden_size lowerCAmelCase : List[Any] = intermediate_size lowerCAmelCase : Tuple = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : str = rms_norm_eps lowerCAmelCase : Optional[int] = use_cache lowerCAmelCase : Dict = kwargs.pop( 'use_memorry_efficient_attention' , snake_case__ ) lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : Optional[Any] = attention_dropout_prob lowerCAmelCase : Union[str, Any] = use_stable_embedding lowerCAmelCase : Tuple = shared_input_output_embedding lowerCAmelCase : Tuple = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , tie_word_embeddings=snake_case__ , **snake_case__ , ) def lowercase ( self ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , snake_case__ ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' f"got {self.rope_scaling}" ) lowerCAmelCase : List[Any] = self.rope_scaling.get('type' , snake_case__ ) lowerCAmelCase : List[str] = self.rope_scaling.get('factor' , snake_case__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(snake_case__ , snake_case__ ) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
646
0
from bisect import bisect from itertools import accumulate def __UpperCamelCase ( _A : Optional[Any] , _A : Tuple , _A : Dict , _A : List[Any] ) -> int: """simple docstring""" lowerCAmelCase : str = sorted(zip(_A , _A ) , key=lambda _A : x[0] / x[1] , reverse=_A ) lowerCAmelCase : Tuple = [i[0] for i in r], [i[1] for i in r] lowerCAmelCase : Optional[int] = list(accumulate(_A ) ) lowerCAmelCase : Optional[int] = bisect(_A , _A ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
701
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) _lowerCAmelCase : Dict = { 'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class lowerCAmelCase ( a ): _lowerCamelCase : Any = """deformable_detr""" _lowerCamelCase : List[str] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , snake_case__=True , snake_case__=None , snake_case__=3 , snake_case__=300 , snake_case__=1024 , snake_case__=6 , snake_case__=1024 , snake_case__=8 , snake_case__=6 , snake_case__=1024 , snake_case__=8 , snake_case__=0.0 , snake_case__=True , snake_case__="relu" , snake_case__=256 , snake_case__=0.1 , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.0_2 , snake_case__=1.0 , snake_case__=True , snake_case__=False , snake_case__="sine" , snake_case__="resnet50" , snake_case__=True , snake_case__=False , snake_case__=4 , snake_case__=4 , snake_case__=4 , snake_case__=False , snake_case__=300 , snake_case__=False , snake_case__=1 , snake_case__=5 , snake_case__=2 , snake_case__=1 , snake_case__=1 , snake_case__=5 , snake_case__=2 , snake_case__=0.1 , snake_case__=0.2_5 , snake_case__=False , **snake_case__ , ): if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) lowerCAmelCase : Optional[int] = CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : List[str] = backbone_config.get('model_type' ) lowerCAmelCase : str = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase : Optional[Any] = config_class.from_dict(snake_case__ ) lowerCAmelCase : Union[str, Any] = use_timm_backbone lowerCAmelCase : List[Any] = backbone_config lowerCAmelCase : Any = num_channels lowerCAmelCase : Tuple = num_queries lowerCAmelCase : Dict = max_position_embeddings lowerCAmelCase : int = d_model lowerCAmelCase : List[str] = encoder_ffn_dim lowerCAmelCase : List[str] = encoder_layers lowerCAmelCase : int = encoder_attention_heads lowerCAmelCase : str = decoder_ffn_dim lowerCAmelCase : str = decoder_layers lowerCAmelCase : Dict = decoder_attention_heads lowerCAmelCase : str = dropout lowerCAmelCase : List[str] = attention_dropout lowerCAmelCase : Union[str, Any] = activation_dropout lowerCAmelCase : str = activation_function lowerCAmelCase : Any = init_std lowerCAmelCase : Any = init_xavier_std lowerCAmelCase : Dict = encoder_layerdrop lowerCAmelCase : int = auxiliary_loss lowerCAmelCase : Optional[Any] = position_embedding_type lowerCAmelCase : List[str] = backbone lowerCAmelCase : int = use_pretrained_backbone lowerCAmelCase : int = dilation # deformable attributes lowerCAmelCase : List[str] = num_feature_levels lowerCAmelCase : List[str] = encoder_n_points lowerCAmelCase : Union[str, Any] = decoder_n_points lowerCAmelCase : Tuple = two_stage lowerCAmelCase : Dict = two_stage_num_proposals lowerCAmelCase : Union[str, Any] = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.' ) # Hungarian matcher lowerCAmelCase : Union[str, Any] = class_cost lowerCAmelCase : Dict = bbox_cost lowerCAmelCase : List[Any] = giou_cost # Loss coefficients lowerCAmelCase : Dict = mask_loss_coefficient lowerCAmelCase : Any = dice_loss_coefficient lowerCAmelCase : str = bbox_loss_coefficient lowerCAmelCase : Tuple = giou_loss_coefficient lowerCAmelCase : List[str] = eos_coefficient lowerCAmelCase : Any = focal_alpha lowerCAmelCase : Dict = disable_custom_kernels super().__init__(is_encoder_decoder=snake_case__ , **snake_case__ ) @property def lowercase ( self ): return self.encoder_attention_heads @property def lowercase ( self ): return self.d_model def lowercase ( self ): lowerCAmelCase : Union[str, Any] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: lowerCAmelCase : List[Any] = self.backbone_config.to_dict() lowerCAmelCase : str = self.__class__.model_type return output
646
0
'''simple docstring''' import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : List[str] = logging.get_logger(__name__) set_seed(770) _lowerCAmelCase : Optional[int] = { 'c_attn': 'att_proj', 'c_proj': 'out_proj', 'c_fc': 'in_proj', 'transformer.': '', 'h.': 'layers.', 'ln_1': 'layernorm_1', 'ln_2': 'layernorm_2', 'ln_f': 'layernorm_final', 'wpe': 'position_embeds_layer', 'wte': 'input_embeds_layer', } _lowerCAmelCase : int = { 'text_small': { 'repo_id': 'suno/bark', 'file_name': 'text.pt', }, 'coarse_small': { 'repo_id': 'suno/bark', 'file_name': 'coarse.pt', }, 'fine_small': { 'repo_id': 'suno/bark', 'file_name': 'fine.pt', }, 'text': { 'repo_id': 'suno/bark', 'file_name': 'text_2.pt', }, 'coarse': { 'repo_id': 'suno/bark', 'file_name': 'coarse_2.pt', }, 'fine': { 'repo_id': 'suno/bark', 'file_name': 'fine_2.pt', }, } _lowerCAmelCase : Any = os.path.dirname(os.path.abspath(__file__)) _lowerCAmelCase : List[Any] = os.path.join(os.path.expanduser('~'), '.cache') _lowerCAmelCase : Optional[int] = os.path.join(os.getenv('XDG_CACHE_HOME', default_cache_dir), 'suno', 'bark_v0') def __UpperCamelCase ( _A : List[str] , _A : List[Any]=False ) -> str: """simple docstring""" lowerCAmelCase : Dict = model_type if use_small: key += "_small" return os.path.join(_A , REMOTE_MODEL_PATHS[key]['file_name'] ) def __UpperCamelCase ( _A : Union[str, Any] , _A : List[str] ) -> List[str]: """simple docstring""" os.makedirs(_A , exist_ok=_A ) hf_hub_download(repo_id=_A , filename=_A , local_dir=_A ) def __UpperCamelCase ( _A : str , _A : Union[str, Any] , _A : Any=False , _A : Union[str, Any]="text" ) -> Optional[int]: """simple docstring""" if model_type == "text": lowerCAmelCase : int = BarkSemanticModel lowerCAmelCase : Optional[Any] = BarkSemanticConfig lowerCAmelCase : List[Any] = BarkSemanticGenerationConfig elif model_type == "coarse": lowerCAmelCase : str = BarkCoarseModel lowerCAmelCase : Dict = BarkCoarseConfig lowerCAmelCase : Optional[int] = BarkCoarseGenerationConfig elif model_type == "fine": lowerCAmelCase : Optional[int] = BarkFineModel lowerCAmelCase : str = BarkFineConfig lowerCAmelCase : str = BarkFineGenerationConfig else: raise NotImplementedError() lowerCAmelCase : Optional[Any] = F"{model_type}_small" if use_small else model_type lowerCAmelCase : Any = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(_A ): logger.info(F"{model_type} model not found, downloading into `{CACHE_DIR}`." ) _download(model_info['repo_id'] , model_info['file_name'] ) lowerCAmelCase : Optional[int] = torch.load(_A , map_location=_A ) # this is a hack lowerCAmelCase : List[Any] = checkpoint['model_args'] if "input_vocab_size" not in model_args: lowerCAmelCase : Any = model_args['vocab_size'] lowerCAmelCase : List[str] = model_args['vocab_size'] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments lowerCAmelCase : Any = model_args.pop('n_head' ) lowerCAmelCase : Tuple = model_args.pop('n_embd' ) lowerCAmelCase : List[str] = model_args.pop('n_layer' ) lowerCAmelCase : Tuple = ConfigClass(**checkpoint['model_args'] ) lowerCAmelCase : List[Any] = ModelClass(config=_A ) lowerCAmelCase : Union[str, Any] = GenerationConfigClass() lowerCAmelCase : Dict = model_generation_config lowerCAmelCase : List[Any] = checkpoint['model'] # fixup checkpoint lowerCAmelCase : Any = '_orig_mod.' for k, v in list(state_dict.items() ): if k.startswith(_A ): # replace part of the key with corresponding layer name in HF implementation lowerCAmelCase : Union[str, Any] = k[len(_A ) :] for old_layer_name in new_layer_name_dict: lowerCAmelCase : int = new_k.replace(_A , new_layer_name_dict[old_layer_name] ) lowerCAmelCase : Dict = state_dict.pop(_A ) lowerCAmelCase : Any = set(state_dict.keys() ) - set(model.state_dict().keys() ) lowerCAmelCase : str = {k for k in extra_keys if not k.endswith('.attn.bias' )} lowerCAmelCase : int = set(model.state_dict().keys() ) - set(state_dict.keys() ) lowerCAmelCase : Optional[int] = {k for k in missing_keys if not k.endswith('.attn.bias' )} if len(_A ) != 0: raise ValueError(F"extra keys found: {extra_keys}" ) if len(_A ) != 0: raise ValueError(F"missing keys: {missing_keys}" ) model.load_state_dict(_A , strict=_A ) lowerCAmelCase : Tuple = model.num_parameters(exclude_embeddings=_A ) lowerCAmelCase : int = checkpoint['best_val_loss'].item() logger.info(F"model loaded: {round(n_params/1e6 , 1 )}M params, {round(_A , 3 )} loss" ) model.eval() model.to(_A ) del checkpoint, state_dict return model def __UpperCamelCase ( _A : int , _A : List[str]=False , _A : Union[str, Any]="text" ) -> Optional[Any]: """simple docstring""" if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() lowerCAmelCase : str = 'cpu' # do conversion on cpu lowerCAmelCase : str = _get_ckpt_path(_A , use_small=_A ) lowerCAmelCase : List[Any] = _load_model(_A , _A , model_type=_A , use_small=_A ) # load bark initial model lowerCAmelCase : Any = _bark_load_model(_A , 'cpu' , model_type=_A , use_small=_A ) if model_type == "text": lowerCAmelCase : Optional[Any] = bark_model['model'] if model.num_parameters(exclude_embeddings=_A ) != bark_model.get_num_params(): raise ValueError('initial and new models don\'t have the same number of parameters' ) # check if same output as the bark model lowerCAmelCase : Union[str, Any] = 5 lowerCAmelCase : Optional[Any] = 10 if model_type in ["text", "coarse"]: lowerCAmelCase : int = torch.randint(2_56 , (batch_size, sequence_length) , dtype=torch.int ) lowerCAmelCase : Dict = bark_model(_A )[0] lowerCAmelCase : int = model(_A ) # take last logits lowerCAmelCase : Tuple = output_new_model_total.logits[:, [-1], :] else: lowerCAmelCase : int = 3 lowerCAmelCase : int = 8 lowerCAmelCase : List[str] = torch.randint(2_56 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) lowerCAmelCase : Optional[Any] = model(_A , _A ) lowerCAmelCase : int = bark_model(_A , _A ) lowerCAmelCase : Any = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError('initial and new outputs don\'t have the same shape' ) if (output_new_model - output_old_model).abs().max().item() > 1e-3: raise ValueError('initial and new outputs are not equal' ) Path(_A ).mkdir(exist_ok=_A ) model.save_pretrained(_A ) def __UpperCamelCase ( _A : str , _A : Union[str, Any] , _A : Any , _A : Optional[Any] , _A : List[str] , _A : Tuple , ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase : Optional[int] = os.path.join(_A , _A ) lowerCAmelCase : Dict = BarkSemanticConfig.from_pretrained(os.path.join(_A , 'config.json' ) ) lowerCAmelCase : int = BarkCoarseConfig.from_pretrained(os.path.join(_A , 'config.json' ) ) lowerCAmelCase : Tuple = BarkFineConfig.from_pretrained(os.path.join(_A , 'config.json' ) ) lowerCAmelCase : str = EncodecConfig.from_pretrained('facebook/encodec_24khz' ) lowerCAmelCase : int = BarkSemanticModel.from_pretrained(_A ) lowerCAmelCase : Optional[int] = BarkCoarseModel.from_pretrained(_A ) lowerCAmelCase : str = BarkFineModel.from_pretrained(_A ) lowerCAmelCase : List[str] = EncodecModel.from_pretrained('facebook/encodec_24khz' ) lowerCAmelCase : Optional[Any] = BarkConfig.from_sub_model_configs( _A , _A , _A , _A ) lowerCAmelCase : int = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) lowerCAmelCase : Dict = BarkModel(_A ) lowerCAmelCase : int = semantic lowerCAmelCase : Union[str, Any] = coarseAcoustic lowerCAmelCase : int = fineAcoustic lowerCAmelCase : Dict = codec lowerCAmelCase : List[Any] = bark_generation_config Path(_A ).mkdir(exist_ok=_A ) bark.save_pretrained(_A , repo_id=_A , push_to_hub=_A ) if __name__ == "__main__": _lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument('model_type', type=str, help='text, coarse or fine.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--is_small', action='store_true', help='convert the small version instead of the large.') _lowerCAmelCase : str = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
702
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece_no_bos.model') @require_sentencepiece @require_tokenizers class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : str = PegasusTokenizer _lowerCamelCase : Union[str, Any] = PegasusTokenizerFast _lowerCamelCase : Optional[Any] = True _lowerCamelCase : Optional[Any] = True def lowercase ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : List[Any] = PegasusTokenizer(snake_case__ ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase ( self ): return PegasusTokenizer.from_pretrained('google/pegasus-large' ) def lowercase ( self , **snake_case__ ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def lowercase ( self , snake_case__ ): return ("This is a test", "This is a test") def lowercase ( self ): lowerCAmelCase : Optional[int] = '</s>' lowerCAmelCase : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '</s>' ) self.assertEqual(vocab_keys[-1] , 'v' ) self.assertEqual(len(snake_case__ ) , 1103 ) def lowercase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def lowercase ( self ): lowerCAmelCase : List[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : List[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : Optional[Any] = ( 'Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important' ' </s> <pad> <pad> <pad>' ) lowerCAmelCase : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] lowerCAmelCase : Optional[int] = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Any = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowerCAmelCase : List[str] = '<mask_1> To ensure a <mask_2> flow of bank resolutions.' lowerCAmelCase : Optional[Any] = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1] lowerCAmelCase : Optional[Any] = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Optional[Any] = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 lowerCAmelCase : List[Any] = 'To ensure a smooth flow of bank resolutions.' lowerCAmelCase : Optional[int] = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1] lowerCAmelCase : Any = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def lowercase ( self ): lowerCAmelCase : Union[str, Any] = ['This is going to be way too long.' * 150, 'short example'] lowerCAmelCase : int = ['not super long but more than 5 tokens', 'tiny'] lowerCAmelCase : Dict = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) lowerCAmelCase : Dict = self._large_tokenizer( text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(snake_case__ ) == 2 # input_ids, attention_mask. @slow def lowercase ( self ): # fmt: off lowerCAmelCase : Tuple = {'input_ids': [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name='google/bigbird-pegasus-large-arxiv' , revision='ba85d0851d708441f91440d509690f1ab6353415' , ) @require_sentencepiece @require_tokenizers class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : Optional[Any] = PegasusTokenizer _lowerCamelCase : str = PegasusTokenizerFast _lowerCamelCase : Tuple = True _lowerCamelCase : int = True def lowercase ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : int = PegasusTokenizer(snake_case__ , offset=0 , mask_token_sent=snake_case__ , mask_token='[MASK]' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase ( self ): return PegasusTokenizer.from_pretrained('google/bigbird-pegasus-large-arxiv' ) def lowercase ( self , **snake_case__ ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def lowercase ( self , snake_case__ ): return ("This is a test", "This is a test") def lowercase ( self ): lowerCAmelCase : Tuple = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : Union[str, Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : List[str] = ( 'Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>' ' <pad> <pad> <pad>' ) lowerCAmelCase : Dict = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] lowerCAmelCase : Union[str, Any] = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) @require_torch def lowercase ( self ): lowerCAmelCase : Optional[int] = ['This is going to be way too long.' * 1000, 'short example'] lowerCAmelCase : Union[str, Any] = ['not super long but more than 5 tokens', 'tiny'] lowerCAmelCase : List[str] = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) lowerCAmelCase : List[str] = self._large_tokenizer( text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(snake_case__ ) == 2 # input_ids, attention_mask. def lowercase ( self ): lowerCAmelCase : List[str] = ( 'This is an example string that is used to test the original TF implementation against the HF' ' implementation' ) lowerCAmelCase : Tuple = self._large_tokenizer(snake_case__ ).input_ids self.assertListEqual( snake_case__ , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
646
0
'''simple docstring''' import numpy as np class lowerCAmelCase : def __init__( self , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=None ): self.set_matricies(red=snake_case__ , green=snake_case__ , blue=snake_case__ , red_edge=snake_case__ , nir=snake_case__ ) def lowercase ( self , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=None ): if red is not None: lowerCAmelCase : List[Any] = red if green is not None: lowerCAmelCase : Tuple = green if blue is not None: lowerCAmelCase : Optional[int] = blue if red_edge is not None: lowerCAmelCase : Tuple = red_edge if nir is not None: lowerCAmelCase : Any = nir return True def lowercase ( self , snake_case__="" , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=None ): self.set_matricies(red=snake_case__ , green=snake_case__ , blue=snake_case__ , red_edge=snake_case__ , nir=snake_case__ ) lowerCAmelCase : Any = { 'ARVI2': self.arvaa, 'CCCI': self.ccci, 'CVI': self.cvi, 'GLI': self.gli, 'NDVI': self.ndvi, 'BNDVI': self.bndvi, 'redEdgeNDVI': self.red_edge_ndvi, 'GNDVI': self.gndvi, 'GBNDVI': self.gbndvi, 'GRNDVI': self.grndvi, 'RBNDVI': self.rbndvi, 'PNDVI': self.pndvi, 'ATSAVI': self.atsavi, 'BWDRVI': self.bwdrvi, 'CIgreen': self.ci_green, 'CIrededge': self.ci_rededge, 'CI': self.ci, 'CTVI': self.ctvi, 'GDVI': self.gdvi, 'EVI': self.evi, 'GEMI': self.gemi, 'GOSAVI': self.gosavi, 'GSAVI': self.gsavi, 'Hue': self.hue, 'IVI': self.ivi, 'IPVI': self.ipvi, 'I': self.i, 'RVI': self.rvi, 'MRVI': self.mrvi, 'MSAVI': self.m_savi, 'NormG': self.norm_g, 'NormNIR': self.norm_nir, 'NormR': self.norm_r, 'NGRDI': self.ngrdi, 'RI': self.ri, 'S': self.s, 'IF': self._if, 'DVI': self.dvi, 'TVI': self.tvi, 'NDRE': self.ndre, } try: return funcs[index]() except KeyError: print('Index not in the list!' ) return False def lowercase ( self ): return -0.1_8 + (1.1_7 * ((self.nir - self.red) / (self.nir + self.red))) def lowercase ( self ): return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def lowercase ( self ): return self.nir * (self.red / (self.green**2)) def lowercase ( self ): return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def lowercase ( self ): return (self.nir - self.red) / (self.nir + self.red) def lowercase ( self ): return (self.nir - self.blue) / (self.nir + self.blue) def lowercase ( self ): return (self.redEdge - self.red) / (self.redEdge + self.red) def lowercase ( self ): return (self.nir - self.green) / (self.nir + self.green) def lowercase ( self ): return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def lowercase ( self ): return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def lowercase ( self ): return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def lowercase ( self ): return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def lowercase ( self , snake_case__=0.0_8 , snake_case__=1.2_2 , snake_case__=0.0_3 ): return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def lowercase ( self ): return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def lowercase ( self ): return (self.nir / self.green) - 1 def lowercase ( self ): return (self.nir / self.redEdge) - 1 def lowercase ( self ): return (self.red - self.blue) / self.red def lowercase ( self ): lowerCAmelCase : Optional[int] = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def lowercase ( self ): return self.nir - self.green def lowercase ( self ): return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def lowercase ( self ): lowerCAmelCase : int = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.2_5 * n) - (self.red - 0.1_2_5) / (1 - self.red) def lowercase ( self , snake_case__=0.1_6 ): return (self.nir - self.green) / (self.nir + self.green + y) def lowercase ( self , snake_case__=0.5 ): return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def lowercase ( self ): return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue) ) def lowercase ( self , snake_case__=None , snake_case__=None ): return (self.nir - b) / (a * self.red) def lowercase ( self ): return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def lowercase ( self ): return (self.red + self.green + self.blue) / 30.5 def lowercase ( self ): return self.nir / self.red def lowercase ( self ): return (self.rvi() - 1) / (self.rvi() + 1) def lowercase ( self ): return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def lowercase ( self ): return self.green / (self.nir + self.red + self.green) def lowercase ( self ): return self.nir / (self.nir + self.red + self.green) def lowercase ( self ): return self.red / (self.nir + self.red + self.green) def lowercase ( self ): return (self.green - self.red) / (self.green + self.red) def lowercase ( self ): return (self.red - self.green) / (self.red + self.green) def lowercase ( self ): lowerCAmelCase : List[str] = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) lowerCAmelCase : List[str] = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def lowercase ( self ): return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def lowercase ( self ): return self.nir / self.red def lowercase ( self ): return (self.ndvi() + 0.5) ** (1 / 2) def lowercase ( self ): return (self.nir - self.redEdge) / (self.nir + self.redEdge)
703
'''simple docstring''' import math import sys import cva import numpy as np def __UpperCamelCase ( _A : np.ndarray , _A : float ) -> np.ndarray: """simple docstring""" lowerCAmelCase : Union[str, Any] = math.sqrt(_A ) lowerCAmelCase : Union[str, Any] = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def __UpperCamelCase ( _A : np.ndarray , _A : int , _A : int , _A : int ) -> np.ndarray: """simple docstring""" lowerCAmelCase : int = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def __UpperCamelCase ( _A : int , _A : float ) -> np.ndarray: """simple docstring""" lowerCAmelCase : Dict = np.zeros((kernel_size, kernel_size) ) for i in range(0 , _A ): for j in range(0 , _A ): lowerCAmelCase : Optional[int] = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(_A , _A ) def __UpperCamelCase ( _A : np.ndarray , _A : float , _A : float , _A : int , ) -> np.ndarray: """simple docstring""" lowerCAmelCase : str = np.zeros(img.shape ) lowerCAmelCase : int = get_gauss_kernel(_A , _A ) lowerCAmelCase , lowerCAmelCase : Dict = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): lowerCAmelCase : int = get_slice(_A , _A , _A , _A ) lowerCAmelCase : Any = img_s - img_s[kernel_size // 2, kernel_size // 2] lowerCAmelCase : str = vec_gaussian(_A , _A ) lowerCAmelCase : Optional[int] = np.multiply(_A , _A ) lowerCAmelCase : str = np.multiply(_A , _A ) lowerCAmelCase : Union[str, Any] = np.sum(_A ) / np.sum(_A ) lowerCAmelCase : Tuple = val return imga def __UpperCamelCase ( _A : list ) -> tuple: """simple docstring""" lowerCAmelCase : List[Any] = args[1] if args[1:] else '../image_data/lena.jpg' lowerCAmelCase : Any = float(args[2] ) if args[2:] else 1.0 lowerCAmelCase : Union[str, Any] = float(args[3] ) if args[3:] else 1.0 if args[4:]: lowerCAmelCase : int = int(args[4] ) lowerCAmelCase : Optional[Any] = kernel_size + abs(kernel_size % 2 - 1 ) else: lowerCAmelCase : Optional[int] = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Any = parse_args(sys.argv) _lowerCAmelCase : str = cva.imread(filename, 0) cva.imshow('input image', img) _lowerCAmelCase : Union[str, Any] = img / 255 _lowerCAmelCase : List[str] = out.astype('float32') _lowerCAmelCase : Optional[int] = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) _lowerCAmelCase : Union[str, Any] = out * 255 _lowerCAmelCase : Optional[Any] = np.uinta(out) cva.imshow('output image', out) cva.waitKey(0) cva.destroyAllWindows()
646
0
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): lowerCAmelCase : Dict = tf.convert_to_tensor( [ [ 8.2_2_2_0_9_9_1, # 3rd highest value; idx. 0 -0.5_6_2_0_0_4_4, 5.2_3_2_2_9_7_5_2, 4.0_3_8_6_3_9_3, -6.8_7_9_8_3_7_8, -0.5_4_7_8_5_8_0_2, -3.2_0_1_2_1_5_3, 2.9_2_7_7_7_1_7_6, 1.8_8_1_7_1_9_5_3, 7.3_5_3_4_1_2_7_6, # 5th highest value; idx. 9 8.4_3_2_0_7_8_3_3, # 2nd highest value; idx. 10 -9.8_5_7_1_1_8_3_6, -5.9_6_2_0_9_2_3_6, -1.1_3_0_3_9_1_6_1, -7.1_1_1_5_2_9_4, -0.8_3_6_9_6_3_3, -5.3_1_8_6_4_0_8, 7.0_6_4_2_7_4_0_7, 0.8_1_3_6_9_3_4_4, -0.8_2_0_2_3_8_1_7, -5.9_1_7_9_7_9_6, 0.5_8_8_1_3_4_4_3, -6.9_9_7_7_8_4_3_8, 4.7_1_5_5_1_1_8_9, -0.1_8_7_7_1_6_3_7, 7.4_4_0_2_0_7_5_9, # 4th highest value; idx. 25 9.3_8_4_5_0_9_8_7, # 1st highest value; idx. 26 2.1_2_6_6_2_9_4_1, -9.3_2_5_6_2_0_3_8, 2.3_5_6_5_2_5_2_2, ], # cummulative prob of 5 highest values <= 0.6 [ 0.5_8_4_2_5_5_1_8, 4.5_3_1_3_9_2_3_8, -5.5_7_5_1_0_4_6_4, -6.2_8_0_3_0_6_9_9, -7.1_9_5_2_9_5_0_3, -4.0_2_1_2_2_5_5_1, 1.3_9_3_3_7_0_3_7, -6.0_6_7_0_7_0_5_7, 1.5_9_4_8_0_5_1_7, -9.6_4_3_1_1_9, 0.0_3_9_0_7_7_9_9, 0.6_7_2_3_1_7_6_2, -8.8_8_2_0_6_7_2_6, 6.2_7_1_1_5_9_2_2, # 4th highest value; idx. 13 2.2_8_5_2_0_7_2_3, 4.8_2_7_6_7_5_0_6, 4.3_0_4_2_1_3_6_8, 8.8_2_7_5_3_1_3, # 2nd highest value; idx. 17 5.4_4_0_2_9_9_5_8, # 5th highest value; idx. 18 -4.4_7_3_5_7_9_4, 7.3_8_5_7_9_5_3_6, # 3rd highest value; idx. 20 -2.9_1_0_5_1_6_6_3, 2.6_1_9_4_6_0_7_7, -2.5_6_7_4_7_6_2, -9.4_8_9_5_9_3_0_2, -4.0_2_9_2_2_6_4_5, -1.3_5_4_1_6_9_1_8, 9.6_7_7_0_2_3_2_3, # 1st highest value; idx. 27 -5.8_9_4_7_8_5_5_3, 1.8_5_3_7_0_4_6_7, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) lowerCAmelCase : str = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above lowerCAmelCase : Tuple = tf.convert_to_tensor( [8.2_2_2_0_9_9, 7.3_5_3_4_1_2_6, 8.4_3_2_0_7_8, 7.4_4_0_2_0_7_5, 9.3_8_4_5_1, 6.2_7_1_1_5_9, 8.8_2_7_5_3_1, 5.4_4_0_2_9_9_5, 7.3_8_5_7_9_5_6, 9.6_7_7_0_2_3] , dtype=tf.floataa , ) # expected non filtered values as noted above lowerCAmelCase : Union[str, Any] = tf_top_k_top_p_filtering(snake_case__ , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 ) lowerCAmelCase : List[str] = output[output != -float('inf' )] lowerCAmelCase : int = tf.cast( tf.where(tf.not_equal(snake_case__ , tf.constant(-float('inf' ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(snake_case__ , snake_case__ , rtol=1e-1_2 ) tf.debugging.assert_equal(snake_case__ , snake_case__ ) @require_tf class lowerCAmelCase ( unittest.TestCase , a ): # setting framework_dependent_parameters needs to be gated, just like its contents' imports if is_tf_available(): _lowerCamelCase : Optional[Any] = { """AutoModelForCausalLM""": TFAutoModelForCausalLM, """AutoModelForSpeechSeq2Seq""": TFAutoModelForSpeechSeqaSeq, """AutoModelForSeq2SeqLM""": TFAutoModelForSeqaSeqLM, """AutoModelForVision2Seq""": TFAutoModelForVisionaSeq, """LogitsProcessorList""": TFLogitsProcessorList, """MinLengthLogitsProcessor""": TFMinLengthLogitsProcessor, """create_tensor_fn""": tf.convert_to_tensor, """floats_tensor""": floats_tensor, """return_tensors""": """tf""", } @slow def lowercase ( self ): # TF-only test: tf.saved_model export lowerCAmelCase : int = TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) lowerCAmelCase : Union[str, Any] = 2 lowerCAmelCase : List[str] = 2 class lowerCAmelCase ( tf.Module ): def __init__( self , snake_case__ ): super(snake_case__ , self ).__init__() lowerCAmelCase : List[Any] = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name='input_ids' ), tf.TensorSpec((None, input_length) , tf.intaa , name='attention_mask' ), ) , jit_compile=snake_case__ , ) def lowercase ( self , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = self.model.generate( input_ids=snake_case__ , attention_mask=snake_case__ , max_new_tokens=snake_case__ , return_dict_in_generate=snake_case__ , ) return {"sequences": outputs["sequences"]} lowerCAmelCase : Optional[int] = [[2, 0], [102, 103]] lowerCAmelCase : List[Any] = [[1, 0], [1, 1]] lowerCAmelCase : List[Any] = DummyModel(model=snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(snake_case__ , snake_case__ , signatures={'serving_default': dummy_model.serving} ) lowerCAmelCase : int = tf.saved_model.load(snake_case__ ).signatures['serving_default'] for batch_size in range(1 , len(snake_case__ ) + 1 ): lowerCAmelCase : List[str] = { 'input_ids': tf.constant(dummy_input_ids[:batch_size] ), 'attention_mask': tf.constant(dummy_attention_masks[:batch_size] ), } lowerCAmelCase : Any = serving_func(**snake_case__ )['sequences'] lowerCAmelCase : Optional[int] = test_model.generate(**snake_case__ , max_new_tokens=snake_case__ ) tf.debugging.assert_equal(snake_case__ , snake_case__ ) @slow def lowercase ( self ): # TF-only test: tf.saved_model export lowerCAmelCase : str = TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) lowerCAmelCase : int = 1 lowerCAmelCase : Dict = 2 class lowerCAmelCase ( tf.Module ): def __init__( self , snake_case__ ): super(snake_case__ , self ).__init__() lowerCAmelCase : List[Any] = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name='input_ids' ), tf.TensorSpec((batch_size, None) , tf.intaa , name='attention_mask' ), ) , jit_compile=snake_case__ , ) def lowercase ( self , snake_case__ , snake_case__ ): lowerCAmelCase : int = self.model.generate( input_ids=snake_case__ , attention_mask=snake_case__ , max_new_tokens=snake_case__ , return_dict_in_generate=snake_case__ , ) return {"sequences": outputs["sequences"]} lowerCAmelCase : Dict = [[2], [102, 103]] lowerCAmelCase : Any = [[1], [1, 1]] lowerCAmelCase : List[Any] = DummyModel(model=snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(snake_case__ , snake_case__ , signatures={'serving_default': dummy_model.serving} ) lowerCAmelCase : Any = tf.saved_model.load(snake_case__ ).signatures['serving_default'] for input_row in range(len(snake_case__ ) ): lowerCAmelCase : int = { 'input_ids': tf.constant([dummy_input_ids[input_row]] ), 'attention_mask': tf.constant([dummy_attention_masks[input_row]] ), } lowerCAmelCase : Optional[Any] = serving_func(**snake_case__ )['sequences'] lowerCAmelCase : Any = test_model.generate(**snake_case__ , max_new_tokens=snake_case__ ) tf.debugging.assert_equal(snake_case__ , snake_case__ ) @slow @require_tensorflow_text def lowercase ( self ): # TF-only test: tf.saved_model export with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id='google/flan-t5-small' , filename='spiece.model' , local_dir=snake_case__ ) class lowerCAmelCase ( tf.keras.layers.Layer ): def __init__( self ): super().__init__() lowerCAmelCase : Optional[int] = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(snake_case__ , 'spiece.model' ) , 'rb' ).read() ) lowerCAmelCase : str = TFAutoModelForSeqaSeqLM.from_pretrained('hf-internal-testing/tiny-random-t5' ) def lowercase ( self , snake_case__ , *snake_case__ , **snake_case__ ): lowerCAmelCase : List[str] = self.tokenizer.tokenize(snake_case__ ) lowerCAmelCase : Any = text.pad_model_inputs( snake_case__ , max_seq_length=64 , pad_value=self.model.config.pad_token_id ) lowerCAmelCase : Optional[int] = self.model.generate(input_ids=snake_case__ , attention_mask=snake_case__ ) return self.tokenizer.detokenize(snake_case__ ) lowerCAmelCase : Optional[Any] = CompleteSentenceTransformer() lowerCAmelCase : List[str] = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name='inputs' ) lowerCAmelCase : Any = complete_model(snake_case__ ) lowerCAmelCase : str = tf.keras.Model(snake_case__ , snake_case__ ) keras_model.save(snake_case__ ) def lowercase ( self ): # Has PT equivalent: this test relies on random sampling lowerCAmelCase : Optional[Any] = { 'do_sample': True, 'num_beams': 1, 'top_p': 0.7, 'top_k': 10, 'temperature': 0.7, } lowerCAmelCase : Dict = 14 lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) lowerCAmelCase : Tuple = 'Hello, my dog is cute and' lowerCAmelCase : Union[str, Any] = tokenizer(snake_case__ , return_tensors='tf' ) lowerCAmelCase : int = TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) lowerCAmelCase : Union[str, Any] = 638 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(':/CPU:0' ): tf.random.set_seed(0 ) lowerCAmelCase : str = model.generate(**snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) lowerCAmelCase : Union[str, Any] = [638, 198] with tf.device(':/CPU:0' ): tf.random.set_seed(0 ) lowerCAmelCase : Union[str, Any] = model.generate(**snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def lowercase ( self ): # Has PT equivalent: ample use of framework-specific code lowerCAmelCase : Tuple = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-bart' ) lowerCAmelCase : Tuple = 'Hugging Face is a technology company based in New York and Paris.' lowerCAmelCase : Tuple = bart_tokenizer(snake_case__ , return_tensors='tf' ).input_ids lowerCAmelCase : Optional[Any] = TFBartForConditionalGeneration.from_pretrained('hf-internal-testing/tiny-random-bart' ) lowerCAmelCase : Tuple = bart_model.generate(snake_case__ ).numpy() class lowerCAmelCase ( a ): def lowercase ( self , snake_case__ , snake_case__=None , **snake_case__ ): return super().call(snake_case__ , **snake_case__ ) lowerCAmelCase : Optional[Any] = FakeBart.from_pretrained('hf-internal-testing/tiny-random-bart' ) lowerCAmelCase : Union[str, Any] = bart_model.generate(snake_case__ , foo='bar' ).numpy() self.assertTrue(np.array_equal(snake_case__ , snake_case__ ) ) class lowerCAmelCase ( bart_model.model.encoder.__class__ ): def lowercase ( self , snake_case__ , **snake_case__ ): return super().call(snake_case__ , **snake_case__ ) lowerCAmelCase : Union[str, Any] = FakeEncoder(bart_model.config , bart_model.model.shared ) lowerCAmelCase : List[str] = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) lowerCAmelCase : Any = bart_model.generate(snake_case__ ).numpy() with self.assertRaises(snake_case__ ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(snake_case__ , foo='bar' )
704
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowerCAmelCase : int = { 'configuration_nezha': ['NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NezhaConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Tuple = [ 'NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST', 'NezhaForNextSentencePrediction', 'NezhaForMaskedLM', 'NezhaForPreTraining', 'NezhaForMultipleChoice', 'NezhaForQuestionAnswering', 'NezhaForSequenceClassification', 'NezhaForTokenClassification', 'NezhaModel', 'NezhaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys _lowerCAmelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
646
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _lowerCAmelCase : Any = {'configuration_deit': ['DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DeiTConfig', 'DeiTOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Tuple = ['DeiTFeatureExtractor'] _lowerCAmelCase : Union[str, Any] = ['DeiTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[int] = [ 'DEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DeiTForImageClassification', 'DeiTForImageClassificationWithTeacher', 'DeiTForMaskedImageModeling', 'DeiTModel', 'DeiTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : List[str] = [ 'TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFDeiTForImageClassification', 'TFDeiTForImageClassificationWithTeacher', 'TFDeiTForMaskedImageModeling', 'TFDeiTModel', 'TFDeiTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys _lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
705
'''simple docstring''' from typing import Any class lowerCAmelCase : def __init__( self , snake_case__ ): lowerCAmelCase : Optional[int] = data lowerCAmelCase : Optional[Any] = None def __repr__( self ): return f"Node({self.data})" class lowerCAmelCase : def __init__( self ): lowerCAmelCase : Dict = None def __iter__( self ): lowerCAmelCase : Optional[Any] = self.head while node: yield node.data lowerCAmelCase : Optional[int] = node.next def __len__( self ): return sum(1 for _ in self ) def __repr__( self ): return "->".join([str(snake_case__ ) for item in self] ) def __getitem__( self , snake_case__ ): if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , snake_case__ , snake_case__ ): if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) lowerCAmelCase : Any = self.head for _ in range(snake_case__ ): lowerCAmelCase : List[str] = current.next lowerCAmelCase : int = data def lowercase ( self , snake_case__ ): self.insert_nth(len(self ) , snake_case__ ) def lowercase ( self , snake_case__ ): self.insert_nth(0 , snake_case__ ) def lowercase ( self , snake_case__ , snake_case__ ): if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) lowerCAmelCase : List[str] = Node(snake_case__ ) if self.head is None: lowerCAmelCase : int = new_node elif index == 0: lowerCAmelCase : List[Any] = self.head # link new_node to head lowerCAmelCase : List[Any] = new_node else: lowerCAmelCase : List[Any] = self.head for _ in range(index - 1 ): lowerCAmelCase : Union[str, Any] = temp.next lowerCAmelCase : Any = temp.next lowerCAmelCase : str = new_node def lowercase ( self ): # print every node data print(self ) def lowercase ( self ): return self.delete_nth(0 ) def lowercase ( self ): # delete from tail return self.delete_nth(len(self ) - 1 ) def lowercase ( self , snake_case__ = 0 ): if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) lowerCAmelCase : List[str] = self.head # default first node if index == 0: lowerCAmelCase : Tuple = self.head.next else: lowerCAmelCase : Dict = self.head for _ in range(index - 1 ): lowerCAmelCase : Tuple = temp.next lowerCAmelCase : Dict = temp.next lowerCAmelCase : Tuple = temp.next.next return delete_node.data def lowercase ( self ): return self.head is None def lowercase ( self ): lowerCAmelCase : List[Any] = None lowerCAmelCase : Any = self.head while current: # Store the current node's next node. lowerCAmelCase : List[str] = current.next # Make the current node's next point backwards lowerCAmelCase : int = prev # Make the previous node be the current node lowerCAmelCase : int = current # Make the current node the next node (to progress iteration) lowerCAmelCase : Optional[Any] = next_node # Return prev in order to put the head at the end lowerCAmelCase : List[Any] = prev def __UpperCamelCase ( ) -> None: """simple docstring""" lowerCAmelCase : Tuple = LinkedList() assert linked_list.is_empty() is True assert str(_A ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(_A ) == i linked_list.insert_nth(_A , i + 1 ) assert str(_A ) == "->".join(str(_A ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(_A ) == "->".join(str(_A ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(_A ) == 9 assert str(_A ) == "->".join(str(_A ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): lowerCAmelCase : Optional[Any] = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(_A ) == "->".join(str(_A ) for i in range(-8 , 1 ) ) def __UpperCamelCase ( ) -> None: """simple docstring""" lowerCAmelCase : Optional[int] = [ -9, 1_00, Node(77_34_51_12 ), 'dlrow olleH', 7, 55_55, 0, -1_92.5_55_55, 'Hello, world!', 77.9, Node(10 ), None, None, 12.20, ] lowerCAmelCase : Dict = LinkedList() for i in test_input: linked_list.insert_tail(_A ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(_A ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head lowerCAmelCase : Optional[Any] = linked_list.delete_head() assert result == -9 assert ( str(_A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail lowerCAmelCase : List[str] = linked_list.delete_tail() assert result == 12.2 assert ( str(_A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list lowerCAmelCase : List[str] = linked_list.delete_nth(10 ) assert result is None assert ( str(_A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(_A ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(_A ) assert ( str(_A ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(_A ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def __UpperCamelCase ( ) -> List[Any]: """simple docstring""" from doctest import testmod testmod() lowerCAmelCase : Optional[Any] = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(_A ) print('\nReading/changing Node data using indexing:' ) print(F"Element at Position 1: {linked_list[1]}" ) lowerCAmelCase : Tuple = input('Enter New Value: ' ).strip() print('New list:' ) print(_A ) print(F"length of linked_list is : {len(_A )}" ) if __name__ == "__main__": main()
646
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : str = logging.get_logger(__name__) _lowerCAmelCase : List[Any] = { 'naver-clova-ix/donut-base': 'https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json', # See all Donut models at https://huggingface.co/models?filter=donut-swin } class lowerCAmelCase ( a ): _lowerCamelCase : Tuple = """donut-swin""" _lowerCamelCase : Optional[int] = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self , snake_case__=224 , snake_case__=4 , snake_case__=3 , snake_case__=96 , snake_case__=[2, 2, 6, 2] , snake_case__=[3, 6, 12, 24] , snake_case__=7 , snake_case__=4.0 , snake_case__=True , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.1 , snake_case__="gelu" , snake_case__=False , snake_case__=0.0_2 , snake_case__=1e-5 , **snake_case__ , ): super().__init__(**snake_case__ ) lowerCAmelCase : List[str] = image_size lowerCAmelCase : int = patch_size lowerCAmelCase : str = num_channels lowerCAmelCase : List[str] = embed_dim lowerCAmelCase : Any = depths lowerCAmelCase : Tuple = len(snake_case__ ) lowerCAmelCase : Tuple = num_heads lowerCAmelCase : Dict = window_size lowerCAmelCase : Tuple = mlp_ratio lowerCAmelCase : List[Any] = qkv_bias lowerCAmelCase : Optional[Any] = hidden_dropout_prob lowerCAmelCase : Any = attention_probs_dropout_prob lowerCAmelCase : Dict = drop_path_rate lowerCAmelCase : int = hidden_act lowerCAmelCase : Any = use_absolute_embeddings lowerCAmelCase : Dict = layer_norm_eps lowerCAmelCase : List[str] = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase : Optional[Any] = int(embed_dim * 2 ** (len(snake_case__ ) - 1) )
706
'''simple docstring''' _lowerCAmelCase : List[str] = {str(digit): digit**5 for digit in range(10)} def __UpperCamelCase ( _A : int ) -> int: """simple docstring""" return sum(DIGITS_FIFTH_POWER[digit] for digit in str(_A ) ) def __UpperCamelCase ( ) -> int: """simple docstring""" return sum( number for number in range(10_00 , 1_00_00_00 ) if number == digits_fifth_powers_sum(_A ) ) if __name__ == "__main__": print(solution())
646
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class lowerCAmelCase ( unittest.TestCase ): @slow def lowercase ( self ): lowerCAmelCase : Union[str, Any] = TFCamembertModel.from_pretrained('jplu/tf-camembert-base' ) lowerCAmelCase : Optional[Any] = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 2_5543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" lowerCAmelCase : Tuple = model(snake_case__ )['last_hidden_state'] lowerCAmelCase : Optional[int] = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , snake_case__ ) # compare the actual values for a slice. lowerCAmelCase : str = tf.convert_to_tensor( [[[-0.0_2_5_4, 0.0_2_3_5, 0.1_0_2_7], [0.0_6_0_6, -0.1_8_1_1, -0.0_4_1_8], [-0.1_5_6_1, -0.1_1_2_7, 0.2_6_8_7]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
707
'''simple docstring''' def __UpperCamelCase ( _A : List[str] ) -> Optional[Any]: """simple docstring""" if not head: return True # split the list to two parts lowerCAmelCase , lowerCAmelCase : str = head.next, head while fast and fast.next: lowerCAmelCase : Optional[int] = fast.next.next lowerCAmelCase : int = slow.next lowerCAmelCase : int = slow.next lowerCAmelCase : Optional[Any] = None # Don't forget here! But forget still works! # reverse the second part lowerCAmelCase : List[Any] = None while second: lowerCAmelCase : List[Any] = second.next lowerCAmelCase : Union[str, Any] = node lowerCAmelCase : Optional[Any] = second lowerCAmelCase : Any = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False lowerCAmelCase : Optional[Any] = node.next lowerCAmelCase : Tuple = head.next return True def __UpperCamelCase ( _A : Optional[Any] ) -> Optional[int]: """simple docstring""" if not head or not head.next: return True # 1. Get the midpoint (slow) lowerCAmelCase : Optional[int] = head while fast and fast.next: lowerCAmelCase , lowerCAmelCase : Optional[Any] = fast.next.next, slow.next # 2. Push the second half into the stack lowerCAmelCase : Tuple = [slow.val] while slow.next: lowerCAmelCase : Tuple = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False lowerCAmelCase : Union[str, Any] = cur.next return True def __UpperCamelCase ( _A : Tuple ) -> Optional[int]: """simple docstring""" if not head or not head.next: return True lowerCAmelCase : Optional[int] = {} lowerCAmelCase : int = 0 while head: if head.val in d: d[head.val].append(_A ) else: lowerCAmelCase : Any = [pos] lowerCAmelCase : int = head.next pos += 1 lowerCAmelCase : str = pos - 1 lowerCAmelCase : Optional[Any] = 0 for v in d.values(): if len(_A ) % 2 != 0: middle += 1 else: lowerCAmelCase : Any = 0 for i in range(0 , len(_A ) ): if v[i] + v[len(_A ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
646
0
'''simple docstring''' from manim import * class lowerCAmelCase ( a ): def lowercase ( self ): lowerCAmelCase : int = Rectangle(height=0.5 , width=0.5 ) lowerCAmelCase : List[str] = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) lowerCAmelCase : Any = [mem.copy() for i in range(6 )] lowerCAmelCase : Union[str, Any] = [mem.copy() for i in range(6 )] lowerCAmelCase : str = VGroup(*snake_case__ ).arrange(snake_case__ , buff=0 ) lowerCAmelCase : Any = VGroup(*snake_case__ ).arrange(snake_case__ , buff=0 ) lowerCAmelCase : str = VGroup(snake_case__ , snake_case__ ).arrange(snake_case__ , buff=0 ) lowerCAmelCase : Dict = Text('CPU' , font_size=24 ) lowerCAmelCase : Union[str, Any] = Group(snake_case__ , snake_case__ ).arrange(snake_case__ , buff=0.5 , aligned_edge=snake_case__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(snake_case__ ) lowerCAmelCase : str = [mem.copy() for i in range(1 )] lowerCAmelCase : Any = VGroup(*snake_case__ ).arrange(snake_case__ , buff=0 ) lowerCAmelCase : Optional[int] = Text('GPU' , font_size=24 ) lowerCAmelCase : List[Any] = Group(snake_case__ , snake_case__ ).arrange(snake_case__ , buff=0.5 , aligned_edge=snake_case__ ) gpu.align_to(snake_case__ , snake_case__ ) gpu.set_x(gpu.get_x() - 1 ) self.add(snake_case__ ) lowerCAmelCase : Dict = [mem.copy() for i in range(6 )] lowerCAmelCase : Dict = VGroup(*snake_case__ ).arrange(snake_case__ , buff=0 ) lowerCAmelCase : Tuple = Text('Model' , font_size=24 ) lowerCAmelCase : Optional[Any] = Group(snake_case__ , snake_case__ ).arrange(snake_case__ , buff=0.5 , aligned_edge=snake_case__ ) model.move_to([3, -1.0, 0] ) self.play( Create(snake_case__ , run_time=1 ) , Create(snake_case__ , run_time=1 ) , Create(snake_case__ , run_time=1 ) , ) lowerCAmelCase : Tuple = MarkupText( f"First, an empty model skeleton is loaded\ninto <span fgcolor='{YELLOW}'>memory</span> without using much RAM." , font_size=24 , ) lowerCAmelCase : List[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCAmelCase : List[Any] = MarkupText( f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(snake_case__ , run_time=2.5 ) , Write(snake_case__ ) , Write(snake_case__ ) ) self.add(snake_case__ ) lowerCAmelCase : List[str] = [] lowerCAmelCase : Optional[Any] = [] lowerCAmelCase : List[Any] = [] for i, rect in enumerate(snake_case__ ): lowerCAmelCase : List[str] = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0.0 ).set_fill(snake_case__ , opacity=0.7 ) cpu_target.move_to(snake_case__ ) cpu_target.generate_target() lowerCAmelCase : str = 0.4_6 / 4 lowerCAmelCase : Optional[Any] = 0.4_6 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=snake_case__ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=snake_case__ , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=snake_case__ , buff=0.0 ) cpu_targs.append(snake_case__ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(snake_case__ ) ) second_animations.append(MoveToTarget(snake_case__ , run_time=1.5 ) ) self.play(*snake_case__ ) self.play(*snake_case__ ) self.wait()
708
'''simple docstring''' import math def __UpperCamelCase ( _A : int = 1_00 ) -> int: """simple docstring""" lowerCAmelCase : List[Any] = sum(i * i for i in range(1 , n + 1 ) ) lowerCAmelCase : Optional[Any] = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f"""{solution() = }""")
646
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Tuple = logging.get_logger(__name__) _lowerCAmelCase : str = {'openai-gpt': 'https://huggingface.co/openai-gpt/resolve/main/config.json'} class lowerCAmelCase ( a ): _lowerCamelCase : int = """openai-gpt""" _lowerCamelCase : Optional[int] = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , snake_case__=4_0478 , snake_case__=512 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=1e-5 , snake_case__=0.0_2 , snake_case__="cls_index" , snake_case__=True , snake_case__=None , snake_case__=True , snake_case__=0.1 , **snake_case__ , ): lowerCAmelCase : str = vocab_size lowerCAmelCase : Optional[Any] = n_positions lowerCAmelCase : Dict = n_embd lowerCAmelCase : Optional[int] = n_layer lowerCAmelCase : Union[str, Any] = n_head lowerCAmelCase : List[str] = afn lowerCAmelCase : Tuple = resid_pdrop lowerCAmelCase : List[str] = embd_pdrop lowerCAmelCase : List[Any] = attn_pdrop lowerCAmelCase : List[Any] = layer_norm_epsilon lowerCAmelCase : List[Any] = initializer_range lowerCAmelCase : Optional[Any] = summary_type lowerCAmelCase : List[str] = summary_use_proj lowerCAmelCase : List[str] = summary_activation lowerCAmelCase : Optional[Any] = summary_first_dropout lowerCAmelCase : Union[str, Any] = summary_proj_to_labels super().__init__(**snake_case__ )
709
'''simple docstring''' import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece_with_bytefallback.model') @require_sentencepiece @require_tokenizers class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : Tuple = GPTSwaTokenizer _lowerCamelCase : str = False _lowerCamelCase : Dict = True _lowerCamelCase : Optional[Any] = False def lowercase ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : Tuple = GPTSwaTokenizer(snake_case__ , eos_token='<unk>' , bos_token='<unk>' , pad_token='<unk>' ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase ( self , snake_case__ ): lowerCAmelCase : List[Any] = 'This is a test' lowerCAmelCase : List[Any] = 'This is a test' return input_text, output_text def lowercase ( self ): lowerCAmelCase : Tuple = '<s>' lowerCAmelCase : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def lowercase ( self ): lowerCAmelCase : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(snake_case__ ) , 2000 ) def lowercase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 2000 ) def lowercase ( self ): lowerCAmelCase : List[Any] = GPTSwaTokenizer(snake_case__ ) lowerCAmelCase : Optional[Any] = tokenizer.tokenize('This is a test' ) self.assertListEqual(snake_case__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , [465, 287, 265, 631, 842] ) lowerCAmelCase : Tuple = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) # fmt: off self.assertListEqual( snake_case__ , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] , ) # fmt: on lowerCAmelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual( snake_case__ , [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] , ) lowerCAmelCase : int = tokenizer.convert_ids_to_tokens(snake_case__ ) # fmt: off self.assertListEqual( snake_case__ , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] ) # fmt: on def lowercase ( self ): lowerCAmelCase : str = GPTSwaTokenizer(snake_case__ ) lowerCAmelCase : Optional[int] = ['This is a test', 'I was born in 92000, and this is falsé.'] lowerCAmelCase : Tuple = [ [465, 287, 265, 631, 842], [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(snake_case__ , snake_case__ ): self.assertListEqual(tokenizer.encode_fast(snake_case__ ) , snake_case__ ) # Test that decode_fast returns the input text for text, token_ids in zip(snake_case__ , snake_case__ ): self.assertEqual(tokenizer.decode_fast(snake_case__ ) , snake_case__ ) @slow def lowercase ( self ): lowerCAmelCase : str = [ '<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')', 'Hey there, how are you doing this fine day?', 'This is a text with a trailing spaces followed by a dot .', 'Häj sväjs lillebrör! =)', 'Det är inget fel på Mr. Cool', ] # fmt: off lowerCAmelCase : Tuple = {'input_ids': [[6_3423, 5, 6811, 1_4954, 282, 816, 3821, 6_3466, 6_3425, 6_3462, 18, 6_3978, 678, 301, 1320, 6_3423, 6_3455, 6_3458, 18, 6_3982, 4246, 3940, 1901, 4_7789, 5547, 1_8994], [1_9630, 1100, 6_3446, 1342, 633, 544, 4488, 593, 5102, 2416, 6_3495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1652, 428, 268, 1936, 515, 268, 5_8593, 2_2413, 9106, 546, 268, 3_3213, 6_3979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_5130, 6_3450, 924, 6_3449, 2249, 4062, 1558, 318, 6_3504, 2_1498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2827, 2559, 332, 6575, 6_3443, 2_6801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name='AI-Sweden/gpt-sw3-126m' , sequences=snake_case__ , )
646
0
'''simple docstring''' from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar _lowerCAmelCase : Dict = TypeVar('T') class lowerCAmelCase ( Generic[T] ): def __init__( self , snake_case__ = True ): lowerCAmelCase : dict[T, list[T]] = {} # dictionary of lists lowerCAmelCase : str = directed def lowercase ( self , snake_case__ , snake_case__ ): if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(snake_case__ ) self.adj_list[destination_vertex].append(snake_case__ ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(snake_case__ ) lowerCAmelCase : Dict = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(snake_case__ ) lowerCAmelCase : Optional[int] = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: lowerCAmelCase : Dict = [destination_vertex] lowerCAmelCase : Tuple = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(snake_case__ ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(snake_case__ ) lowerCAmelCase : Optional[int] = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: lowerCAmelCase : Optional[Any] = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: lowerCAmelCase : Dict = [destination_vertex] lowerCAmelCase : str = [] return self def __repr__( self ): return pformat(self.adj_list )
710
'''simple docstring''' def __UpperCamelCase ( _A : int ) -> bool: """simple docstring""" return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
646
0
'''simple docstring''' from collections.abc import Sequence def __UpperCamelCase ( _A : Sequence[float] , _A : bool = False ) -> float: """simple docstring""" if not arr: return 0 lowerCAmelCase : Union[str, Any] = 0 if allow_empty_subarrays else float('-inf' ) lowerCAmelCase : Optional[int] = 0.0 for num in arr: lowerCAmelCase : str = max(0 if allow_empty_subarrays else num , curr_sum + num ) lowerCAmelCase : Dict = max(_A , _A ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() _lowerCAmelCase : List[Any] = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(f"""{max_subarray_sum(nums) = }""")
711
'''simple docstring''' import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( 'files' , [ ['full:README.md', 'dataset_infos.json'], ['empty:README.md', 'dataset_infos.json'], ['dataset_infos.json'], ['full:README.md'], ] , ) def __UpperCamelCase ( _A : str , _A : List[Any] ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase : Optional[int] = tmp_path_factory.mktemp('dset_infos_dir' ) if "full:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('---\ndataset_info:\n dataset_size: 42\n---' ) if "empty:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / 'dataset_infos.json' , 'w' ) as f: f.write('{"default": {"dataset_size": 42}}' ) lowerCAmelCase : Union[str, Any] = DatasetInfosDict.from_directory(_A ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( 'dataset_info' , [ DatasetInfo(), DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ), ] , ) def __UpperCamelCase ( _A : str , _A : DatasetInfo ) -> Optional[int]: """simple docstring""" lowerCAmelCase : str = str(_A ) dataset_info.write_to_directory(_A ) lowerCAmelCase : List[str] = DatasetInfo.from_directory(_A ) assert dataset_info == reloaded assert os.path.exists(os.path.join(_A , 'dataset_info.json' ) ) def __UpperCamelCase ( ) -> List[str]: """simple docstring""" lowerCAmelCase : Tuple = DatasetInfo( description='foo' , citation='bar' , homepage='https://foo.bar' , license='CC0' , features=Features({'a': Value('int32' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train', 'num_examples': 42}] , download_checksums={} , download_size=13_37 , post_processing_size=4_42 , dataset_size=12_34 , size_in_bytes=13_37 + 4_42 + 12_34 , ) lowerCAmelCase : Optional[int] = dataset_info._to_yaml_dict() assert sorted(_A ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) lowerCAmelCase : Any = yaml.safe_dump(_A ) lowerCAmelCase : int = yaml.safe_load(_A ) assert dataset_info_yaml_dict == reloaded def __UpperCamelCase ( ) -> Dict: """simple docstring""" lowerCAmelCase : Union[str, Any] = DatasetInfo() lowerCAmelCase : List[Any] = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( 'dataset_infos_dict' , [ DatasetInfosDict(), DatasetInfosDict({'default': DatasetInfo()} ), DatasetInfosDict({'my_config_name': DatasetInfo()} ), DatasetInfosDict( { 'default': DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ) } ), DatasetInfosDict( { 'v1': DatasetInfo(dataset_size=42 ), 'v2': DatasetInfo(dataset_size=13_37 ), } ), ] , ) def __UpperCamelCase ( _A : Tuple , _A : DatasetInfosDict ) -> List[Any]: """simple docstring""" lowerCAmelCase : Tuple = str(_A ) dataset_infos_dict.write_to_directory(_A ) lowerCAmelCase : List[str] = DatasetInfosDict.from_directory(_A ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): lowerCAmelCase : Tuple = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml lowerCAmelCase : Optional[Any] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(_A , 'README.md' ) )
646
0
import operator as op _lowerCAmelCase : Any = 'scaler.pt' _lowerCAmelCase : List[str] = 'pytorch_model' _lowerCAmelCase : Union[str, Any] = 'random_states' _lowerCAmelCase : Tuple = 'optimizer' _lowerCAmelCase : List[str] = 'scheduler' _lowerCAmelCase : Tuple = 'pytorch_model.bin' _lowerCAmelCase : str = 'pytorch_model.bin.index.json' _lowerCAmelCase : Union[str, Any] = 'model.safetensors' _lowerCAmelCase : int = 'model.safetensors.index.json' _lowerCAmelCase : List[str] = '1.10.2' _lowerCAmelCase : int = 'py38' _lowerCAmelCase : Optional[Any] = '4.17.0' _lowerCAmelCase : List[str] = ['ml.p3.16xlarge', 'ml.p3dn.24xlarge', 'ml.p4dn.24xlarge'] _lowerCAmelCase : str = ['FULL_SHARD', 'SHARD_GRAD_OP', 'NO_SHARD', 'HYBRID_SHARD', 'HYBRID_SHARD_ZERO2'] _lowerCAmelCase : str = ['TRANSFORMER_BASED_WRAP', 'SIZE_BASED_WRAP', 'NO_WRAP'] _lowerCAmelCase : Union[str, Any] = ['BACKWARD_PRE', 'BACKWARD_POST', 'NO_PREFETCH'] _lowerCAmelCase : Dict = ['FULL_STATE_DICT', 'LOCAL_STATE_DICT', 'SHARDED_STATE_DICT'] _lowerCAmelCase : Any = '2.0.1' _lowerCAmelCase : int = ['pdsh', 'standard', 'openmpi', 'mvapich'] _lowerCAmelCase : Dict = ['default', 'reduce-overhead', 'max-autotune'] _lowerCAmelCase : str = {'>': op.gt, '>=': op.ge, '==': op.eq, '!=': op.ne, '<=': op.le, '<': op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 _lowerCAmelCase : Optional[int] = [ 'nnodes', 'nproc_per_node', 'rdzv_backend', 'rdzv_endpoint', 'rdzv_id', 'rdzv_conf', 'standalone', 'max_restarts', 'monitor_interval', 'start_method', 'role', 'module', 'm', 'no_python', 'run_path', 'log_dir', 'r', 'redirects', 't', 'tee', 'node_rank', 'master_addr', 'master_port', ] _lowerCAmelCase : List[Any] = ['DEEPSPEED', 'MULTI_GPU', 'FSDP', 'MEGATRON_LM'] _lowerCAmelCase : List[Any] = ['DEEPSPEED', 'MULTI_XPU', 'FSDP']
712
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCAmelCase ( a ): def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): super().__init__() if safety_checker is None: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" ' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered' ' results in services or applications open to the public. Both the diffusers team and Hugging Face' ' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling' ' it only for use-cases that involve analyzing network behavior or auditing its results. For more' ' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .' ) self.register_modules( speech_model=snake_case__ , speech_processor=snake_case__ , vae=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , unet=snake_case__ , scheduler=snake_case__ , feature_extractor=snake_case__ , ) def lowercase ( self , snake_case__ = "auto" ): if slice_size == "auto": lowerCAmelCase : Union[str, Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(snake_case__ ) def lowercase ( self ): self.enable_attention_slicing(snake_case__ ) @torch.no_grad() def __call__( self , snake_case__ , snake_case__=1_6000 , snake_case__ = 512 , snake_case__ = 512 , snake_case__ = 50 , snake_case__ = 7.5 , snake_case__ = None , snake_case__ = 1 , snake_case__ = 0.0 , snake_case__ = None , snake_case__ = None , snake_case__ = "pil" , snake_case__ = True , snake_case__ = None , snake_case__ = 1 , **snake_case__ , ): lowerCAmelCase : List[str] = self.speech_processor.feature_extractor( snake_case__ , return_tensors='pt' , sampling_rate=snake_case__ ).input_features.to(self.device ) lowerCAmelCase : Optional[Any] = self.speech_model.generate(snake_case__ , max_length=48_0000 ) lowerCAmelCase : str = self.speech_processor.tokenizer.batch_decode(snake_case__ , skip_special_tokens=snake_case__ , normalize=snake_case__ )[ 0 ] if isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = 1 elif isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = len(snake_case__ ) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(snake_case__ )}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(snake_case__ , snake_case__ ) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(snake_case__ )}." ) # get prompt text embeddings lowerCAmelCase : str = self.tokenizer( snake_case__ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) lowerCAmelCase : Tuple = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowerCAmelCase : str = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) lowerCAmelCase : Union[str, Any] = text_input_ids[:, : self.tokenizer.model_max_length] lowerCAmelCase : Union[str, Any] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : int = text_embeddings.shape lowerCAmelCase : Any = text_embeddings.repeat(1 , snake_case__ , 1 ) lowerCAmelCase : Optional[int] = text_embeddings.view(bs_embed * num_images_per_prompt , snake_case__ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowerCAmelCase : List[str] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowerCAmelCase : List[str] if negative_prompt is None: lowerCAmelCase : Any = [''] * batch_size elif type(snake_case__ ) is not type(snake_case__ ): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(snake_case__ )} !=" f" {type(snake_case__ )}." ) elif isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = [negative_prompt] elif batch_size != len(snake_case__ ): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(snake_case__ )}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" ' the batch size of `prompt`.' ) else: lowerCAmelCase : Dict = negative_prompt lowerCAmelCase : Optional[int] = text_input_ids.shape[-1] lowerCAmelCase : int = self.tokenizer( snake_case__ , padding='max_length' , max_length=snake_case__ , truncation=snake_case__ , return_tensors='pt' , ) lowerCAmelCase : Union[str, Any] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowerCAmelCase : List[Any] = uncond_embeddings.shape[1] lowerCAmelCase : List[str] = uncond_embeddings.repeat(1 , snake_case__ , 1 ) lowerCAmelCase : Optional[Any] = uncond_embeddings.view(batch_size * num_images_per_prompt , snake_case__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCAmelCase : List[str] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowerCAmelCase : Union[str, Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowerCAmelCase : Dict = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowerCAmelCase : str = torch.randn(snake_case__ , generator=snake_case__ , device='cpu' , dtype=snake_case__ ).to( self.device ) else: lowerCAmelCase : Tuple = torch.randn(snake_case__ , generator=snake_case__ , device=self.device , dtype=snake_case__ ) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) lowerCAmelCase : str = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(snake_case__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowerCAmelCase : Union[str, Any] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowerCAmelCase : Any = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowerCAmelCase : Tuple = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCAmelCase : Union[str, Any] = {} if accepts_eta: lowerCAmelCase : int = eta for i, t in enumerate(self.progress_bar(snake_case__ ) ): # expand the latents if we are doing classifier free guidance lowerCAmelCase : Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCAmelCase : Tuple = self.scheduler.scale_model_input(snake_case__ , snake_case__ ) # predict the noise residual lowerCAmelCase : List[str] = self.unet(snake_case__ , snake_case__ , encoder_hidden_states=snake_case__ ).sample # perform guidance if do_classifier_free_guidance: lowerCAmelCase , lowerCAmelCase : Dict = noise_pred.chunk(2 ) lowerCAmelCase : Tuple = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowerCAmelCase : int = self.scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase : List[Any] = 1 / 0.1_8_2_1_5 * latents lowerCAmelCase : Dict = self.vae.decode(snake_case__ ).sample lowerCAmelCase : List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowerCAmelCase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowerCAmelCase : Dict = self.numpy_to_pil(snake_case__ ) if not return_dict: return image return StableDiffusionPipelineOutput(images=snake_case__ , nsfw_content_detected=snake_case__ )
646
0
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('9.1.0'): _lowerCAmelCase : Any = { 'linear': PIL.Image.Resampling.BILINEAR, 'bilinear': PIL.Image.Resampling.BILINEAR, 'bicubic': PIL.Image.Resampling.BICUBIC, 'lanczos': PIL.Image.Resampling.LANCZOS, 'nearest': PIL.Image.Resampling.NEAREST, } else: _lowerCAmelCase : List[str] = { 'linear': PIL.Image.LINEAR, 'bilinear': PIL.Image.BILINEAR, 'bicubic': PIL.Image.BICUBIC, 'lanczos': PIL.Image.LANCZOS, 'nearest': PIL.Image.NEAREST, } def __UpperCamelCase ( _A : List[str] ) -> List[str]: """simple docstring""" lowerCAmelCase : List[str] = (images / 2 + 0.5).clamp(0 , 1 ) lowerCAmelCase : Dict = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowerCAmelCase : str = numpy_to_pil(_A ) return images def __UpperCamelCase ( _A : Any ) -> Optional[int]: """simple docstring""" if images.ndim == 3: lowerCAmelCase : int = images[None, ...] lowerCAmelCase : Union[str, Any] = (images * 2_55).round().astype('uint8' ) if images.shape[-1] == 1: # special case for grayscale (single channel) images lowerCAmelCase : List[str] = [Image.fromarray(image.squeeze() , mode='L' ) for image in images] else: lowerCAmelCase : Any = [Image.fromarray(_A ) for image in images] return pil_images
713
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : List[Any] = LDMTextToImagePipeline _lowerCamelCase : Optional[Any] = TEXT_TO_IMAGE_PARAMS - { """negative_prompt""", """negative_prompt_embeds""", """cross_attention_kwargs""", """prompt_embeds""", } _lowerCamelCase : List[str] = PipelineTesterMixin.required_optional_params - { """num_images_per_prompt""", """callback""", """callback_steps""", } _lowerCamelCase : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS _lowerCamelCase : Optional[int] = False def lowercase ( self ): torch.manual_seed(0 ) lowerCAmelCase : Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) lowerCAmelCase : int = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , ) torch.manual_seed(0 ) lowerCAmelCase : str = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') , up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') , latent_channels=4 , ) torch.manual_seed(0 ) lowerCAmelCase : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowerCAmelCase : str = CLIPTextModel(snake_case__ ) lowerCAmelCase : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCAmelCase : List[Any] = { 'unet': unet, 'scheduler': scheduler, 'vqvae': vae, 'bert': text_encoder, 'tokenizer': tokenizer, } return components def lowercase ( self , snake_case__ , snake_case__=0 ): if str(snake_case__ ).startswith('mps' ): lowerCAmelCase : Optional[int] = torch.manual_seed(snake_case__ ) else: lowerCAmelCase : str = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) lowerCAmelCase : Tuple = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase ( self ): lowerCAmelCase : List[str] = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase : Optional[Any] = self.get_dummy_components() lowerCAmelCase : Optional[Any] = LDMTextToImagePipeline(**snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Tuple = self.get_dummy_inputs(snake_case__ ) lowerCAmelCase : Union[str, Any] = pipe(**snake_case__ ).images lowerCAmelCase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) lowerCAmelCase : List[Any] = np.array([0.6_1_0_1, 0.6_1_5_6, 0.5_6_2_2, 0.4_8_9_5, 0.6_6_6_1, 0.3_8_0_4, 0.5_7_4_8, 0.6_1_3_6, 0.5_0_1_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self , snake_case__ , snake_case__=torch.floataa , snake_case__=0 ): lowerCAmelCase : List[str] = torch.manual_seed(snake_case__ ) lowerCAmelCase : int = np.random.RandomState(snake_case__ ).standard_normal((1, 4, 32, 32) ) lowerCAmelCase : Optional[Any] = torch.from_numpy(snake_case__ ).to(device=snake_case__ , dtype=snake_case__ ) lowerCAmelCase : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase ( self ): lowerCAmelCase : Tuple = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Optional[Any] = self.get_inputs(snake_case__ ) lowerCAmelCase : List[Any] = pipe(**snake_case__ ).images lowerCAmelCase : str = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) lowerCAmelCase : Tuple = np.array([0.5_1_8_2_5, 0.5_2_8_5_0, 0.5_2_5_4_3, 0.5_4_2_5_8, 0.5_2_3_0_4, 0.5_2_5_6_9, 0.5_4_3_6_3, 0.5_5_2_7_6, 0.5_6_8_7_8] ) lowerCAmelCase : int = np.abs(expected_slice - image_slice ).max() assert max_diff < 1e-3 @nightly @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self , snake_case__ , snake_case__=torch.floataa , snake_case__=0 ): lowerCAmelCase : List[str] = torch.manual_seed(snake_case__ ) lowerCAmelCase : Any = np.random.RandomState(snake_case__ ).standard_normal((1, 4, 32, 32) ) lowerCAmelCase : List[Any] = torch.from_numpy(snake_case__ ).to(device=snake_case__ , dtype=snake_case__ ) lowerCAmelCase : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase ( self ): lowerCAmelCase : Optional[int] = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : int = self.get_inputs(snake_case__ ) lowerCAmelCase : Optional[int] = pipe(**snake_case__ ).images[0] lowerCAmelCase : Optional[int] = load_numpy( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy' ) lowerCAmelCase : List[str] = np.abs(expected_image - image ).max() assert max_diff < 1e-3
646
0
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets _lowerCAmelCase : Dict = '\\n@inproceedings{popovic-2015-chrf,\n title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",\n month = sep,\n year = "2015",\n address = "Lisbon, Portugal",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W15-3049",\n doi = "10.18653/v1/W15-3049",\n pages = "392--395",\n}\n@inproceedings{popovic-2017-chrf,\n title = "chr{F}++: words helping character n-grams",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Second Conference on Machine Translation",\n month = sep,\n year = "2017",\n address = "Copenhagen, Denmark",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W17-4770",\n doi = "10.18653/v1/W17-4770",\n pages = "612--618",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' _lowerCAmelCase : Optional[Any] = '\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n' _lowerCAmelCase : List[Any] = '\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n \'score\' (float): The chrF (chrF++) score,\n \'char_order\' (int): The character n-gram order,\n \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n \'beta\' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase ( datasets.Metric ): def lowercase ( self ): if version.parse(scb.__version__ ) < version.parse('1.4.12' ): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/mjpost/sacreBLEU#chrf--chrf' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/mjpost/sacreBLEU#chrf--chrf'] , reference_urls=[ 'https://github.com/m-popovic/chrF', ] , ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ = CHRF.CHAR_ORDER , snake_case__ = CHRF.WORD_ORDER , snake_case__ = CHRF.BETA , snake_case__ = False , snake_case__ = False , snake_case__ = False , ): lowerCAmelCase : List[str] = len(references[0] ) if any(len(snake_case__ ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) lowerCAmelCase : List[str] = [[refs[i] for refs in references] for i in range(snake_case__ )] lowerCAmelCase : Union[str, Any] = CHRF(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase : Dict = sb_chrf.corpus_score(snake_case__ , snake_case__ ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
714
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Tuple = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { 'facebook/xmod-base': 'https://huggingface.co/facebook/xmod-base/resolve/main/config.json', 'facebook/xmod-large-prenorm': 'https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json', 'facebook/xmod-base-13-125k': 'https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json', 'facebook/xmod-base-30-125k': 'https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json', 'facebook/xmod-base-30-195k': 'https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json', 'facebook/xmod-base-60-125k': 'https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json', 'facebook/xmod-base-60-265k': 'https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json', 'facebook/xmod-base-75-125k': 'https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json', 'facebook/xmod-base-75-269k': 'https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json', } class lowerCAmelCase ( a ): _lowerCamelCase : int = """xmod""" def __init__( self , snake_case__=3_0522 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=1e-1_2 , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__="absolute" , snake_case__=True , snake_case__=None , snake_case__=False , snake_case__=2 , snake_case__=False , snake_case__=True , snake_case__=True , snake_case__=("en_XX",) , snake_case__=None , **snake_case__ , ): super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) lowerCAmelCase : Dict = vocab_size lowerCAmelCase : Optional[Any] = hidden_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob lowerCAmelCase : str = max_position_embeddings lowerCAmelCase : int = type_vocab_size lowerCAmelCase : List[Any] = initializer_range lowerCAmelCase : Any = layer_norm_eps lowerCAmelCase : Dict = position_embedding_type lowerCAmelCase : Optional[Any] = use_cache lowerCAmelCase : Union[str, Any] = classifier_dropout lowerCAmelCase : int = pre_norm lowerCAmelCase : Optional[Any] = adapter_reduction_factor lowerCAmelCase : Any = adapter_layer_norm lowerCAmelCase : Dict = adapter_reuse_layer_norm lowerCAmelCase : Any = ln_before_adapter lowerCAmelCase : Optional[Any] = list(snake_case__ ) lowerCAmelCase : List[Any] = default_language class lowerCAmelCase ( a ): @property def lowercase ( self ): if self.task == "multiple-choice": lowerCAmelCase : List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase : Optional[int] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
646
0
'''simple docstring''' from string import ascii_uppercase _lowerCAmelCase : List[str] = {char: i for i, char in enumerate(ascii_uppercase)} _lowerCAmelCase : List[Any] = dict(enumerate(ascii_uppercase)) def __UpperCamelCase ( _A : str , _A : str ) -> str: """simple docstring""" lowerCAmelCase : Any = len(_A ) lowerCAmelCase : Tuple = 0 while True: if x == i: lowerCAmelCase : str = 0 if len(_A ) == len(_A ): break key += key[i] i += 1 return key def __UpperCamelCase ( _A : str , _A : str ) -> str: """simple docstring""" lowerCAmelCase : str = '' lowerCAmelCase : Any = 0 for letter in message: if letter == " ": cipher_text += " " else: lowerCAmelCase : List[str] = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def __UpperCamelCase ( _A : str , _A : str ) -> str: """simple docstring""" lowerCAmelCase : Tuple = '' lowerCAmelCase : Union[str, Any] = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: lowerCAmelCase : str = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def __UpperCamelCase ( ) -> None: """simple docstring""" lowerCAmelCase : Union[str, Any] = 'THE GERMAN ATTACK' lowerCAmelCase : Tuple = 'SECRET' lowerCAmelCase : int = generate_key(_A , _A ) lowerCAmelCase : Union[str, Any] = cipher_text(_A , _A ) print(F"Encrypted Text = {s}" ) print(F"Original Text = {original_text(_A , _A )}" ) if __name__ == "__main__": import doctest doctest.testmod() main()
715
'''simple docstring''' import argparse import os import re _lowerCAmelCase : Dict = 'src/diffusers' # Pattern that looks at the indentation in a line. _lowerCAmelCase : str = re.compile(r'^(\s*)\S') # Pattern that matches `"key":" and puts `key` in group 0. _lowerCAmelCase : Any = re.compile(r'^\s*"([^"]+)":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. _lowerCAmelCase : List[Any] = re.compile(r'^\s*_import_structure\["([^"]+)"\]') # Pattern that matches `"key",` and puts `key` in group 0. _lowerCAmelCase : int = re.compile(r'^\s*"([^"]+)",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. _lowerCAmelCase : Optional[Any] = re.compile(r'\[([^\]]+)\]') def __UpperCamelCase ( _A : Union[str, Any] ) -> Dict: """simple docstring""" lowerCAmelCase : Any = _re_indent.search(_A ) return "" if search is None else search.groups()[0] def __UpperCamelCase ( _A : Dict , _A : Any="" , _A : List[str]=None , _A : Any=None ) -> Tuple: """simple docstring""" lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Tuple = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(_A ): index += 1 lowerCAmelCase : Optional[int] = ['\n'.join(lines[:index] )] else: lowerCAmelCase : int = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowerCAmelCase : Tuple = [lines[index]] index += 1 while index < len(_A ) and (end_prompt is None or not lines[index].startswith(_A )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(_A ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(_A ) ) if index < len(_A ) - 1: lowerCAmelCase : List[Any] = [lines[index + 1]] index += 1 else: lowerCAmelCase : int = [] else: blocks.append('\n'.join(_A ) ) lowerCAmelCase : Any = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(_A ) > 0: blocks.append('\n'.join(_A ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(_A ): blocks.append('\n'.join(lines[index:] ) ) return blocks def __UpperCamelCase ( _A : Dict ) -> List[Any]: """simple docstring""" def _inner(_A : Tuple ): return key(_A ).lower().replace('_' , '' ) return _inner def __UpperCamelCase ( _A : Union[str, Any] , _A : Any=None ) -> Optional[Any]: """simple docstring""" def noop(_A : Any ): return x if key is None: lowerCAmelCase : List[str] = noop # Constants are all uppercase, they go first. lowerCAmelCase : str = [obj for obj in objects if key(_A ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowerCAmelCase : List[str] = [obj for obj in objects if key(_A )[0].isupper() and not key(_A ).isupper()] # Functions begin with a lowercase, they go last. lowerCAmelCase : Optional[Any] = [obj for obj in objects if not key(_A )[0].isupper()] lowerCAmelCase : Tuple = ignore_underscore(_A ) return sorted(_A , key=_A ) + sorted(_A , key=_A ) + sorted(_A , key=_A ) def __UpperCamelCase ( _A : Union[str, Any] ) -> int: """simple docstring""" def _replace(_A : List[Any] ): lowerCAmelCase : List[Any] = match.groups()[0] if "," not in imports: return F"[{imports}]" lowerCAmelCase : Dict = [part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase : List[str] = keys[:-1] return "[" + ", ".join([F"\"{k}\"" for k in sort_objects(_A )] ) + "]" lowerCAmelCase : Optional[int] = import_statement.split('\n' ) if len(_A ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowerCAmelCase : Optional[Any] = 2 if lines[1].strip() == '[' else 1 lowerCAmelCase : List[str] = [(i, _re_strip_line.search(_A ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowerCAmelCase : Optional[Any] = sort_objects(_A , key=lambda _A : x[1] ) lowerCAmelCase : Dict = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(_A ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowerCAmelCase : Optional[int] = _re_bracket_content.sub(_replace , lines[1] ) else: lowerCAmelCase : List[Any] = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase : int = keys[:-1] lowerCAmelCase : Tuple = get_indent(lines[1] ) + ', '.join([F"\"{k}\"" for k in sort_objects(_A )] ) return "\n".join(_A ) else: # Finally we have to deal with imports fitting on one line lowerCAmelCase : Union[str, Any] = _re_bracket_content.sub(_replace , _A ) return import_statement def __UpperCamelCase ( _A : str , _A : Tuple=True ) -> Optional[Any]: """simple docstring""" with open(_A , 'r' ) as f: lowerCAmelCase : Optional[int] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowerCAmelCase : List[Any] = split_code_in_indented_blocks( _A , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(_A ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowerCAmelCase : List[str] = main_blocks[block_idx] lowerCAmelCase : Union[str, Any] = block.split('\n' ) # Get to the start of the imports. lowerCAmelCase : Optional[Any] = 0 while line_idx < len(_A ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowerCAmelCase : Optional[Any] = len(_A ) else: line_idx += 1 if line_idx >= len(_A ): continue # Ignore beginning and last line: they don't contain anything. lowerCAmelCase : str = '\n'.join(block_lines[line_idx:-1] ) lowerCAmelCase : str = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowerCAmelCase : Optional[Any] = split_code_in_indented_blocks(_A , indent_level=_A ) # We have two categories of import key: list or _import_structure[key].append/extend lowerCAmelCase : Union[str, Any] = _re_direct_key if '_import_structure' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowerCAmelCase : int = [(pattern.search(_A ).groups()[0] if pattern.search(_A ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowerCAmelCase : Dict = [(i, key) for i, key in enumerate(_A ) if key is not None] lowerCAmelCase : List[Any] = [x[0] for x in sorted(_A , key=lambda _A : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowerCAmelCase : int = 0 lowerCAmelCase : Dict = [] for i in range(len(_A ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: lowerCAmelCase : str = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(_A ) count += 1 # And we put our main block back together with its first and last line. lowerCAmelCase : str = '\n'.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(_A ): if check_only: return True else: print(F"Overwriting {file}." ) with open(_A , 'w' ) as f: f.write('\n'.join(_A ) ) def __UpperCamelCase ( _A : Tuple=True ) -> Any: """simple docstring""" lowerCAmelCase : Tuple = [] for root, _, files in os.walk(_A ): if "__init__.py" in files: lowerCAmelCase : Any = sort_imports(os.path.join(_A , '__init__.py' ) , check_only=_A ) if result: lowerCAmelCase : Optional[Any] = [os.path.join(_A , '__init__.py' )] if len(_A ) > 0: raise ValueError(F"Would overwrite {len(_A )} files, run `make style`." ) if __name__ == "__main__": _lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') _lowerCAmelCase : Optional[int] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
646
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: _lowerCAmelCase : Union[str, Any] = None _lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCAmelCase : Optional[Any] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} _lowerCAmelCase : int = { 'vocab_file': { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model', 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model' ), }, 'tokenizer_file': { 'google/bigbird-roberta-base': ( 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json' ), 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json' ), }, } _lowerCAmelCase : Any = { 'google/bigbird-roberta-base': 4096, 'google/bigbird-roberta-large': 4096, 'google/bigbird-base-trivia-itc': 4096, } _lowerCAmelCase : Any = '▁' class lowerCAmelCase ( a ): _lowerCamelCase : Any = VOCAB_FILES_NAMES _lowerCamelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase : str = BigBirdTokenizer _lowerCamelCase : Dict = ["""input_ids""", """attention_mask"""] _lowerCamelCase : List[int] = [] def __init__( self , snake_case__=None , snake_case__=None , snake_case__="<unk>" , snake_case__="<s>" , snake_case__="</s>" , snake_case__="<pad>" , snake_case__="[SEP]" , snake_case__="[MASK]" , snake_case__="[CLS]" , **snake_case__ , ): lowerCAmelCase : Tuple = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else bos_token lowerCAmelCase : List[str] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else eos_token lowerCAmelCase : str = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else unk_token lowerCAmelCase : Optional[Any] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else pad_token lowerCAmelCase : Tuple = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else cls_token lowerCAmelCase : Union[str, Any] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase : Optional[Any] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else mask_token super().__init__( snake_case__ , tokenizer_file=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , **snake_case__ , ) lowerCAmelCase : Optional[int] = vocab_file lowerCAmelCase : Union[str, Any] = False if not self.vocab_file else True def lowercase ( self , snake_case__ , snake_case__ = None ): lowerCAmelCase : Dict = [self.sep_token_id] lowerCAmelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowercase ( self , snake_case__ , snake_case__ = None , snake_case__ = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) + [1] return [1] + ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) + [1] def lowercase ( self , snake_case__ , snake_case__ = None ): lowerCAmelCase : List[Any] = [self.sep_token_id] lowerCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase ( self , snake_case__ , snake_case__ = None ): if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(snake_case__ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return lowerCAmelCase : str = os.path.join( snake_case__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ): copyfile(self.vocab_file , snake_case__ ) return (out_vocab_file,)
716
'''simple docstring''' import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class lowerCAmelCase : def __init__( self , snake_case__ , snake_case__=13 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=99 , snake_case__=64 , snake_case__=32 , snake_case__=5 , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=16 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=3 , snake_case__=4 , snake_case__=None , ): lowerCAmelCase : str = parent lowerCAmelCase : Optional[int] = batch_size lowerCAmelCase : Optional[Any] = seq_length lowerCAmelCase : Optional[Any] = is_training lowerCAmelCase : Dict = use_input_mask lowerCAmelCase : Tuple = use_token_type_ids lowerCAmelCase : int = use_labels lowerCAmelCase : int = vocab_size lowerCAmelCase : Any = hidden_size lowerCAmelCase : Optional[Any] = embedding_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : List[str] = num_attention_heads lowerCAmelCase : List[Any] = intermediate_size lowerCAmelCase : Dict = hidden_act lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : int = attention_probs_dropout_prob lowerCAmelCase : List[Any] = max_position_embeddings lowerCAmelCase : int = type_vocab_size lowerCAmelCase : List[str] = type_sequence_label_size lowerCAmelCase : Dict = initializer_range lowerCAmelCase : Any = num_labels lowerCAmelCase : str = num_choices lowerCAmelCase : int = scope def lowercase ( self ): lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Union[str, Any] = None if self.use_input_mask: lowerCAmelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : Optional[int] = None if self.use_token_type_ids: lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : Optional[Any] = None lowerCAmelCase : Optional[Any] = None lowerCAmelCase : Dict = None if self.use_labels: lowerCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase ( self ): return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case__ , initializer_range=self.initializer_range , ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = MobileBertModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : int = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) lowerCAmelCase : Optional[int] = model(snake_case__ , token_type_ids=snake_case__ ) lowerCAmelCase : Optional[Any] = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : int = MobileBertForMaskedLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : str = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = MobileBertForNextSentencePrediction(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : str = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : List[Any] = MobileBertForPreTraining(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Tuple = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , next_sentence_label=snake_case__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = MobileBertForQuestionAnswering(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : List[str] = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = self.num_labels lowerCAmelCase : List[Any] = MobileBertForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = self.num_labels lowerCAmelCase : int = MobileBertForTokenClassification(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : List[str] = self.num_choices lowerCAmelCase : Any = MobileBertForMultipleChoice(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : int = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : List[str] = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase ( self ): lowerCAmelCase : Any = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) : Optional[Any] = config_and_inputs lowerCAmelCase : List[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase ( a , a , unittest.TestCase ): _lowerCamelCase : List[str] = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) _lowerCamelCase : Tuple = ( { """feature-extraction""": MobileBertModel, """fill-mask""": MobileBertForMaskedLM, """question-answering""": MobileBertForQuestionAnswering, """text-classification""": MobileBertForSequenceClassification, """token-classification""": MobileBertForTokenClassification, """zero-shot""": MobileBertForSequenceClassification, } if is_torch_available() else {} ) _lowerCamelCase : str = True def lowercase ( self , snake_case__ , snake_case__ , snake_case__=False ): lowerCAmelCase : int = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if return_labels: if model_class in get_values(snake_case__ ): lowerCAmelCase : str = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=snake_case__ ) lowerCAmelCase : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case__ ) return inputs_dict def lowercase ( self ): lowerCAmelCase : List[Any] = MobileBertModelTester(self ) lowerCAmelCase : Dict = ConfigTester(self , config_class=snake_case__ , hidden_size=37 ) def lowercase ( self ): self.config_tester.run_common_tests() def lowercase ( self ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*snake_case__ ) def __UpperCamelCase ( _A : Optional[Any] ) -> Optional[int]: """simple docstring""" return torch.tensor( _A , dtype=torch.long , device=_A , ) _lowerCAmelCase : Union[str, Any] = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase ( unittest.TestCase ): @slow def lowercase ( self ): lowerCAmelCase : List[str] = MobileBertModel.from_pretrained('google/mobilebert-uncased' ).to(snake_case__ ) lowerCAmelCase : List[Any] = _long_tensor([[101, 7110, 1005, 1056, 2023, 1_1333, 1_7413, 1029, 102]] ) with torch.no_grad(): lowerCAmelCase : Tuple = model(snake_case__ )[0] lowerCAmelCase : List[Any] = torch.Size((1, 9, 512) ) self.assertEqual(output.shape , snake_case__ ) lowerCAmelCase : Union[str, Any] = torch.tensor( [ [ [-2.4_7_3_6_5_2_6e0_7, 8.2_6_9_1_6_5_6e0_4, 1.6_5_2_1_8_3_8e0_5], [-5.7_5_4_1_7_0_4e-0_1, 3.9_0_5_6_0_2_2e0_0, 4.4_0_1_1_5_0_7e0_0], [2.6_0_4_7_3_5_9e0_0, 1.5_6_7_7_6_5_2e0_0, -1.7_3_2_4_1_8_8e-0_1], ] ] , device=snake_case__ , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE lowerCAmelCase : List[str] = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) lowerCAmelCase : Dict = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
646
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCAmelCase ( a , a , unittest.TestCase ): _lowerCamelCase : int = CycleDiffusionPipeline _lowerCamelCase : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { """negative_prompt""", """height""", """width""", """negative_prompt_embeds""", } _lowerCamelCase : Optional[int] = PipelineTesterMixin.required_optional_params - {"""latents"""} _lowerCamelCase : Tuple = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""source_prompt"""} ) _lowerCamelCase : Tuple = IMAGE_TO_IMAGE_IMAGE_PARAMS _lowerCamelCase : str = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowercase ( self ): torch.manual_seed(0 ) lowerCAmelCase : Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) lowerCAmelCase : str = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , num_train_timesteps=1000 , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , ) torch.manual_seed(0 ) lowerCAmelCase : List[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) lowerCAmelCase : Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowerCAmelCase : Dict = CLIPTextModel(snake_case__ ) lowerCAmelCase : Optional[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCAmelCase : List[Any] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def lowercase ( self , snake_case__ , snake_case__=0 ): lowerCAmelCase : List[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) lowerCAmelCase : Dict = image / 2 + 0.5 if str(snake_case__ ).startswith('mps' ): lowerCAmelCase : Optional[Any] = torch.manual_seed(snake_case__ ) else: lowerCAmelCase : Dict = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) lowerCAmelCase : str = { 'prompt': 'An astronaut riding an elephant', 'source_prompt': 'An astronaut riding a horse', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'eta': 0.1, 'strength': 0.8, 'guidance_scale': 3, 'source_guidance_scale': 1, 'output_type': 'numpy', } return inputs def lowercase ( self ): lowerCAmelCase : str = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase : Union[str, Any] = self.get_dummy_components() lowerCAmelCase : Optional[int] = CycleDiffusionPipeline(**snake_case__ ) lowerCAmelCase : str = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Tuple = self.get_dummy_inputs(snake_case__ ) lowerCAmelCase : Optional[Any] = pipe(**snake_case__ ) lowerCAmelCase : Optional[Any] = output.images lowerCAmelCase : Optional[Any] = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) lowerCAmelCase : Optional[Any] = np.array([0.4_4_5_9, 0.4_9_4_3, 0.4_5_4_4, 0.6_6_4_3, 0.5_4_7_4, 0.4_3_2_7, 0.5_7_0_1, 0.5_9_5_9, 0.5_1_7_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def lowercase ( self ): lowerCAmelCase : Any = self.get_dummy_components() for name, module in components.items(): if hasattr(snake_case__ , 'half' ): lowerCAmelCase : Optional[int] = module.half() lowerCAmelCase : List[str] = CycleDiffusionPipeline(**snake_case__ ) lowerCAmelCase : List[str] = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Union[str, Any] = self.get_dummy_inputs(snake_case__ ) lowerCAmelCase : List[str] = pipe(**snake_case__ ) lowerCAmelCase : List[Any] = output.images lowerCAmelCase : Tuple = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) lowerCAmelCase : Tuple = np.array([0.3_5_0_6, 0.4_5_4_3, 0.4_4_6, 0.4_5_7_5, 0.5_1_9_5, 0.4_1_5_5, 0.5_2_7_3, 0.5_1_8, 0.4_1_1_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def lowercase ( self ): return super().test_save_load_local() @unittest.skip('non-deterministic pipeline' ) def lowercase ( self ): return super().test_inference_batch_single_identical() @skip_mps def lowercase ( self ): return super().test_dict_tuple_outputs_equivalent() @skip_mps def lowercase ( self ): return super().test_save_load_optional_components() @skip_mps def lowercase ( self ): return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self ): lowerCAmelCase : List[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/cycle-diffusion/black_colored_car.png' ) lowerCAmelCase : Optional[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy' ) lowerCAmelCase : List[Any] = init_image.resize((512, 512) ) lowerCAmelCase : List[str] = 'CompVis/stable-diffusion-v1-4' lowerCAmelCase : List[Any] = DDIMScheduler.from_pretrained(snake_case__ , subfolder='scheduler' ) lowerCAmelCase : int = CycleDiffusionPipeline.from_pretrained( snake_case__ , scheduler=snake_case__ , safety_checker=snake_case__ , torch_dtype=torch.floataa , revision='fp16' ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing() lowerCAmelCase : Optional[Any] = 'A black colored car' lowerCAmelCase : Union[str, Any] = 'A blue colored car' lowerCAmelCase : Dict = torch.manual_seed(0 ) lowerCAmelCase : Any = pipe( prompt=snake_case__ , source_prompt=snake_case__ , image=snake_case__ , num_inference_steps=100 , eta=0.1 , strength=0.8_5 , guidance_scale=3 , source_guidance_scale=1 , generator=snake_case__ , output_type='np' , ) lowerCAmelCase : Dict = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5e-1 def lowercase ( self ): lowerCAmelCase : Optional[int] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/cycle-diffusion/black_colored_car.png' ) lowerCAmelCase : str = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy' ) lowerCAmelCase : Union[str, Any] = init_image.resize((512, 512) ) lowerCAmelCase : str = 'CompVis/stable-diffusion-v1-4' lowerCAmelCase : Optional[int] = DDIMScheduler.from_pretrained(snake_case__ , subfolder='scheduler' ) lowerCAmelCase : Optional[Any] = CycleDiffusionPipeline.from_pretrained(snake_case__ , scheduler=snake_case__ , safety_checker=snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing() lowerCAmelCase : Tuple = 'A black colored car' lowerCAmelCase : List[Any] = 'A blue colored car' lowerCAmelCase : Union[str, Any] = torch.manual_seed(0 ) lowerCAmelCase : Dict = pipe( prompt=snake_case__ , source_prompt=snake_case__ , image=snake_case__ , num_inference_steps=100 , eta=0.1 , strength=0.8_5 , guidance_scale=3 , source_guidance_scale=1 , generator=snake_case__ , output_type='np' , ) lowerCAmelCase : Dict = output.images assert np.abs(image - expected_image ).max() < 2e-2
717
'''simple docstring''' import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __UpperCamelCase ( _A : Dict ) -> int: """simple docstring""" lowerCAmelCase : Tuple = [] embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight", F"stage{idx}.patch_embed.proj.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias", F"stage{idx}.patch_embed.proj.bias", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight", F"stage{idx}.patch_embed.norm.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias", F"stage{idx}.patch_embed.norm.bias", ) ) return embed def __UpperCamelCase ( _A : List[Any] , _A : Dict ) -> Any: """simple docstring""" lowerCAmelCase : str = [] attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight", F"stage{idx}.blocks.{cnt}.attn.proj_q.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias", F"stage{idx}.blocks.{cnt}.attn.proj_q.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight", F"stage{idx}.blocks.{cnt}.attn.proj_k.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias", F"stage{idx}.blocks.{cnt}.attn.proj_k.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight", F"stage{idx}.blocks.{cnt}.attn.proj_v.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias", F"stage{idx}.blocks.{cnt}.attn.proj_v.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight", F"stage{idx}.blocks.{cnt}.attn.proj.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias", F"stage{idx}.blocks.{cnt}.attn.proj.bias", ) ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc2.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight", F"stage{idx}.blocks.{cnt}.norm1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias", F"stage{idx}.blocks.{cnt}.norm1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight", F"stage{idx}.blocks.{cnt}.norm2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias", F"stage{idx}.blocks.{cnt}.norm2.bias") ) return attention_weights def __UpperCamelCase ( _A : Optional[int] ) -> Optional[int]: """simple docstring""" lowerCAmelCase : Optional[int] = [] token.append((F"cvt.encoder.stages.{idx}.cls_token", 'stage2.cls_token') ) return token def __UpperCamelCase ( ) -> int: """simple docstring""" lowerCAmelCase : List[Any] = [] head.append(('layernorm.weight', 'norm.weight') ) head.append(('layernorm.bias', 'norm.bias') ) head.append(('classifier.weight', 'head.weight') ) head.append(('classifier.bias', 'head.bias') ) return head def __UpperCamelCase ( _A : str , _A : Optional[Any] , _A : Dict , _A : str ) -> Optional[int]: """simple docstring""" lowerCAmelCase : List[str] = 'imagenet-1k-id2label.json' lowerCAmelCase : Tuple = 10_00 lowerCAmelCase : str = 'huggingface/label-files' lowerCAmelCase : List[Any] = num_labels lowerCAmelCase : Any = json.load(open(cached_download(hf_hub_url(_A , _A , repo_type='dataset' ) ) , 'r' ) ) lowerCAmelCase : List[str] = {int(_A ): v for k, v in idalabel.items()} lowerCAmelCase : List[str] = idalabel lowerCAmelCase : str = {v: k for k, v in idalabel.items()} lowerCAmelCase : int = CvtConfig(num_labels=_A , idalabel=_A , labelaid=_A ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13": lowerCAmelCase : List[str] = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21": lowerCAmelCase : Tuple = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: lowerCAmelCase : Any = [2, 2, 20] lowerCAmelCase : List[str] = [3, 12, 16] lowerCAmelCase : List[Any] = [1_92, 7_68, 10_24] lowerCAmelCase : Union[str, Any] = CvtForImageClassification(_A ) lowerCAmelCase : str = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) lowerCAmelCase : Optional[Any] = image_size lowerCAmelCase : List[Any] = torch.load(_A , map_location=torch.device('cpu' ) ) lowerCAmelCase : str = OrderedDict() lowerCAmelCase : int = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: lowerCAmelCase : List[str] = list_of_state_dict + cls_token(_A ) lowerCAmelCase : Optional[Any] = list_of_state_dict + embeddings(_A ) for cnt in range(config.depth[idx] ): lowerCAmelCase : List[Any] = list_of_state_dict + attention(_A , _A ) lowerCAmelCase : List[str] = list_of_state_dict + final() for gg in list_of_state_dict: print(_A ) for i in range(len(_A ) ): lowerCAmelCase : Tuple = original_weights[list_of_state_dict[i][1]] model.load_state_dict(_A ) model.save_pretrained(_A ) image_processor.save_pretrained(_A ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": _lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '--cvt_model', default='cvt-w24', type=str, help='Name of the cvt model you\'d like to convert.', ) parser.add_argument( '--image_size', default=384, type=int, help='Input Image Size', ) parser.add_argument( '--cvt_file_name', default=r'cvtmodels\CvT-w24-384x384-IN-22k.pth', type=str, help='Input Image Size', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) _lowerCAmelCase : str = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
646
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : List[str] = KandinskyVaaImgaImgPipeline _lowerCamelCase : int = ["""image_embeds""", """negative_image_embeds""", """image"""] _lowerCamelCase : Any = [ """image_embeds""", """negative_image_embeds""", """image""", ] _lowerCamelCase : Any = [ """generator""", """height""", """width""", """strength""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] _lowerCamelCase : Dict = False @property def lowercase ( self ): return 32 @property def lowercase ( self ): return 32 @property def lowercase ( self ): return self.time_input_dim @property def lowercase ( self ): return self.time_input_dim * 4 @property def lowercase ( self ): return 100 @property def lowercase ( self ): torch.manual_seed(0 ) lowerCAmelCase : List[Any] = { 'in_channels': 4, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } lowerCAmelCase : Union[str, Any] = UNetaDConditionModel(**snake_case__ ) return model @property def lowercase ( self ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowercase ( self ): torch.manual_seed(0 ) lowerCAmelCase : Any = VQModel(**self.dummy_movq_kwargs ) return model def lowercase ( self ): lowerCAmelCase : Optional[int] = self.dummy_unet lowerCAmelCase : Tuple = self.dummy_movq lowerCAmelCase : List[Any] = { 'num_train_timesteps': 1000, 'beta_schedule': 'linear', 'beta_start': 0.0_0_0_8_5, 'beta_end': 0.0_1_2, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } lowerCAmelCase : List[Any] = DDIMScheduler(**snake_case__ ) lowerCAmelCase : Optional[int] = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def lowercase ( self , snake_case__ , snake_case__=0 ): lowerCAmelCase : Dict = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) lowerCAmelCase : List[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( snake_case__ ) # create init_image lowerCAmelCase : Optional[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) lowerCAmelCase : Tuple = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase : Dict = Image.fromarray(np.uinta(snake_case__ ) ).convert('RGB' ).resize((256, 256) ) if str(snake_case__ ).startswith('mps' ): lowerCAmelCase : Union[str, Any] = torch.manual_seed(snake_case__ ) else: lowerCAmelCase : Union[str, Any] = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) lowerCAmelCase : str = { 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 10, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def lowercase ( self ): lowerCAmelCase : Union[str, Any] = 'cpu' lowerCAmelCase : Optional[int] = self.get_dummy_components() lowerCAmelCase : Tuple = self.pipeline_class(**snake_case__ ) lowerCAmelCase : str = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Union[str, Any] = pipe(**self.get_dummy_inputs(snake_case__ ) ) lowerCAmelCase : int = output.images lowerCAmelCase : Tuple = pipe( **self.get_dummy_inputs(snake_case__ ) , return_dict=snake_case__ , )[0] lowerCAmelCase : str = image[0, -3:, -3:, -1] lowerCAmelCase : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase : Tuple = np.array( [0.6_1_9_9_7_7_8, 0.6_3_9_8_4_4_0_6, 0.4_6_1_4_5_7_8_5, 0.6_2_9_4_4_9_8_4, 0.5_6_2_2_2_1_5, 0.4_7_3_0_6_1_3_2, 0.4_7_4_4_1_4_5_6, 0.4_6_0_7_6_0_6, 0.4_8_7_1_9_2_6_3] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self ): lowerCAmelCase : Tuple = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_img2img_frog.npy' ) lowerCAmelCase : Optional[int] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) lowerCAmelCase : Optional[Any] = 'A red cartoon frog, 4k' lowerCAmelCase : List[str] = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(snake_case__ ) lowerCAmelCase : Any = KandinskyVaaImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-decoder' , torch_dtype=torch.floataa ) lowerCAmelCase : Optional[int] = pipeline.to(snake_case__ ) pipeline.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : int = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCAmelCase : Dict = pipe_prior( snake_case__ , generator=snake_case__ , num_inference_steps=5 , negative_prompt='' , ).to_tuple() lowerCAmelCase : Optional[int] = pipeline( image=snake_case__ , image_embeds=snake_case__ , negative_image_embeds=snake_case__ , generator=snake_case__ , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='np' , ) lowerCAmelCase : Optional[int] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(snake_case__ , snake_case__ )
718
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Any = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { 'xlm-roberta-base': 'https://huggingface.co/xlm-roberta-base/resolve/main/config.json', 'xlm-roberta-large': 'https://huggingface.co/xlm-roberta-large/resolve/main/config.json', 'xlm-roberta-large-finetuned-conll02-dutch': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll02-spanish': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-english': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-german': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json' ), } class lowerCAmelCase ( a ): _lowerCamelCase : List[str] = """xlm-roberta""" def __init__( self , snake_case__=3_0522 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=1e-1_2 , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__="absolute" , snake_case__=True , snake_case__=None , **snake_case__ , ): super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) lowerCAmelCase : Optional[Any] = vocab_size lowerCAmelCase : Optional[Any] = hidden_size lowerCAmelCase : Optional[Any] = num_hidden_layers lowerCAmelCase : Any = num_attention_heads lowerCAmelCase : Optional[int] = hidden_act lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : Dict = hidden_dropout_prob lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob lowerCAmelCase : Optional[Any] = max_position_embeddings lowerCAmelCase : Optional[int] = type_vocab_size lowerCAmelCase : int = initializer_range lowerCAmelCase : List[Any] = layer_norm_eps lowerCAmelCase : Union[str, Any] = position_embedding_type lowerCAmelCase : Union[str, Any] = use_cache lowerCAmelCase : List[str] = classifier_dropout class lowerCAmelCase ( a ): @property def lowercase ( self ): if self.task == "multiple-choice": lowerCAmelCase : str = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase : Optional[int] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
646
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : str = logging.get_logger(__name__) def __UpperCamelCase ( _A : Tuple ) -> Optional[Any]: """simple docstring""" lowerCAmelCase : List[Any] = DPTConfig(embedding_type='hybrid' ) if "large" in checkpoint_url: lowerCAmelCase : Dict = 10_24 lowerCAmelCase : List[Any] = 40_96 lowerCAmelCase : Optional[Any] = 24 lowerCAmelCase : Any = 16 lowerCAmelCase : Any = [5, 11, 17, 23] lowerCAmelCase : Optional[int] = [2_56, 5_12, 10_24, 10_24] lowerCAmelCase : Dict = (1, 3_84, 3_84) if "nyu" or "midas" in checkpoint_url: lowerCAmelCase : int = 7_68 lowerCAmelCase : Optional[int] = [1, 1, 1, 0.5] lowerCAmelCase : Any = [2_56, 5_12, 7_68, 7_68] lowerCAmelCase : Tuple = 1_50 lowerCAmelCase : List[str] = 16 lowerCAmelCase : Dict = (1, 3_84, 3_84) lowerCAmelCase : List[Any] = False lowerCAmelCase : Tuple = 'project' if "ade" in checkpoint_url: lowerCAmelCase : str = True lowerCAmelCase : Tuple = 7_68 lowerCAmelCase : Optional[Any] = [1, 1, 1, 0.5] lowerCAmelCase : Optional[int] = 1_50 lowerCAmelCase : Optional[Any] = 16 lowerCAmelCase : List[Any] = 'huggingface/label-files' lowerCAmelCase : str = 'ade20k-id2label.json' lowerCAmelCase : str = json.load(open(cached_download(hf_hub_url(_A , _A , repo_type='dataset' ) ) , 'r' ) ) lowerCAmelCase : Optional[Any] = {int(_A ): v for k, v in idalabel.items()} lowerCAmelCase : str = idalabel lowerCAmelCase : Dict = {v: k for k, v in idalabel.items()} lowerCAmelCase : Optional[int] = [1, 1_50, 4_80, 4_80] return config, expected_shape def __UpperCamelCase ( _A : int ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase : List[str] = ['pretrained.model.head.weight', 'pretrained.model.head.bias'] for k in ignore_keys: state_dict.pop(_A , _A ) def __UpperCamelCase ( _A : Optional[Any] ) -> str: """simple docstring""" if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): lowerCAmelCase : List[str] = name.replace('pretrained.model' , 'dpt.encoder' ) if "pretrained.model" in name: lowerCAmelCase : List[Any] = name.replace('pretrained.model' , 'dpt.embeddings' ) if "patch_embed" in name: lowerCAmelCase : Tuple = name.replace('patch_embed' , '' ) if "pos_embed" in name: lowerCAmelCase : Union[str, Any] = name.replace('pos_embed' , 'position_embeddings' ) if "attn.proj" in name: lowerCAmelCase : Optional[Any] = name.replace('attn.proj' , 'attention.output.dense' ) if "proj" in name and "project" not in name: lowerCAmelCase : Dict = name.replace('proj' , 'projection' ) if "blocks" in name: lowerCAmelCase : Any = name.replace('blocks' , 'layer' ) if "mlp.fc1" in name: lowerCAmelCase : Union[str, Any] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: lowerCAmelCase : str = name.replace('mlp.fc2' , 'output.dense' ) if "norm1" in name and "backbone" not in name: lowerCAmelCase : List[Any] = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name and "backbone" not in name: lowerCAmelCase : Any = name.replace('norm2' , 'layernorm_after' ) if "scratch.output_conv" in name: lowerCAmelCase : Tuple = name.replace('scratch.output_conv' , 'head' ) if "scratch" in name: lowerCAmelCase : List[Any] = name.replace('scratch' , 'neck' ) if "layer1_rn" in name: lowerCAmelCase : Dict = name.replace('layer1_rn' , 'convs.0' ) if "layer2_rn" in name: lowerCAmelCase : Any = name.replace('layer2_rn' , 'convs.1' ) if "layer3_rn" in name: lowerCAmelCase : int = name.replace('layer3_rn' , 'convs.2' ) if "layer4_rn" in name: lowerCAmelCase : Dict = name.replace('layer4_rn' , 'convs.3' ) if "refinenet" in name: lowerCAmelCase : Tuple = int(name[len('neck.refinenet' ) : len('neck.refinenet' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 lowerCAmelCase : Any = name.replace(F"refinenet{layer_idx}" , F"fusion_stage.layers.{abs(layer_idx-4 )}" ) if "out_conv" in name: lowerCAmelCase : Any = name.replace('out_conv' , 'projection' ) if "resConfUnit1" in name: lowerCAmelCase : Union[str, Any] = name.replace('resConfUnit1' , 'residual_layer1' ) if "resConfUnit2" in name: lowerCAmelCase : List[Any] = name.replace('resConfUnit2' , 'residual_layer2' ) if "conv1" in name: lowerCAmelCase : Tuple = name.replace('conv1' , 'convolution1' ) if "conv2" in name: lowerCAmelCase : Tuple = name.replace('conv2' , 'convolution2' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: lowerCAmelCase : List[Any] = name.replace('pretrained.act_postprocess1.0.project.0' , 'neck.reassemble_stage.readout_projects.0.0' ) if "pretrained.act_postprocess2.0.project.0" in name: lowerCAmelCase : Optional[int] = name.replace('pretrained.act_postprocess2.0.project.0' , 'neck.reassemble_stage.readout_projects.1.0' ) if "pretrained.act_postprocess3.0.project.0" in name: lowerCAmelCase : List[str] = name.replace('pretrained.act_postprocess3.0.project.0' , 'neck.reassemble_stage.readout_projects.2.0' ) if "pretrained.act_postprocess4.0.project.0" in name: lowerCAmelCase : int = name.replace('pretrained.act_postprocess4.0.project.0' , 'neck.reassemble_stage.readout_projects.3.0' ) # resize blocks if "pretrained.act_postprocess1.3" in name: lowerCAmelCase : Dict = name.replace('pretrained.act_postprocess1.3' , 'neck.reassemble_stage.layers.0.projection' ) if "pretrained.act_postprocess1.4" in name: lowerCAmelCase : Any = name.replace('pretrained.act_postprocess1.4' , 'neck.reassemble_stage.layers.0.resize' ) if "pretrained.act_postprocess2.3" in name: lowerCAmelCase : Dict = name.replace('pretrained.act_postprocess2.3' , 'neck.reassemble_stage.layers.1.projection' ) if "pretrained.act_postprocess2.4" in name: lowerCAmelCase : Dict = name.replace('pretrained.act_postprocess2.4' , 'neck.reassemble_stage.layers.1.resize' ) if "pretrained.act_postprocess3.3" in name: lowerCAmelCase : List[str] = name.replace('pretrained.act_postprocess3.3' , 'neck.reassemble_stage.layers.2.projection' ) if "pretrained.act_postprocess4.3" in name: lowerCAmelCase : Optional[Any] = name.replace('pretrained.act_postprocess4.3' , 'neck.reassemble_stage.layers.3.projection' ) if "pretrained.act_postprocess4.4" in name: lowerCAmelCase : Dict = name.replace('pretrained.act_postprocess4.4' , 'neck.reassemble_stage.layers.3.resize' ) if "pretrained" in name: lowerCAmelCase : List[Any] = name.replace('pretrained' , 'dpt' ) if "bn" in name: lowerCAmelCase : Union[str, Any] = name.replace('bn' , 'batch_norm' ) if "head" in name: lowerCAmelCase : Union[str, Any] = name.replace('head' , 'head.head' ) if "encoder.norm" in name: lowerCAmelCase : int = name.replace('encoder.norm' , 'layernorm' ) if "auxlayer" in name: lowerCAmelCase : List[str] = name.replace('auxlayer' , 'auxiliary_head.head' ) if "backbone" in name: lowerCAmelCase : List[Any] = name.replace('backbone' , 'backbone.bit.encoder' ) if ".." in name: lowerCAmelCase : List[Any] = name.replace('..' , '.' ) if "stem.conv" in name: lowerCAmelCase : List[str] = name.replace('stem.conv' , 'bit.embedder.convolution' ) if "blocks" in name: lowerCAmelCase : Optional[int] = name.replace('blocks' , 'layers' ) if "convolution" in name and "backbone" in name: lowerCAmelCase : Union[str, Any] = name.replace('convolution' , 'conv' ) if "layer" in name and "backbone" in name: lowerCAmelCase : str = name.replace('layer' , 'layers' ) if "backbone.bit.encoder.bit" in name: lowerCAmelCase : Any = name.replace('backbone.bit.encoder.bit' , 'backbone.bit' ) if "embedder.conv" in name: lowerCAmelCase : Union[str, Any] = name.replace('embedder.conv' , 'embedder.convolution' ) if "backbone.bit.encoder.stem.norm" in name: lowerCAmelCase : Optional[int] = name.replace('backbone.bit.encoder.stem.norm' , 'backbone.bit.embedder.norm' ) return name def __UpperCamelCase ( _A : Dict , _A : str ) -> Union[str, Any]: """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase : Union[str, Any] = state_dict.pop(F"dpt.encoder.layer.{i}.attn.qkv.weight" ) lowerCAmelCase : Optional[Any] = state_dict.pop(F"dpt.encoder.layer.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase : Dict = in_proj_weight[: config.hidden_size, :] lowerCAmelCase : Optional[int] = in_proj_bias[: config.hidden_size] lowerCAmelCase : Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase : Optional[int] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase : Union[str, Any] = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase : str = in_proj_bias[-config.hidden_size :] def __UpperCamelCase ( ) -> List[Any]: """simple docstring""" lowerCAmelCase : int = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCAmelCase : Dict = Image.open(requests.get(_A , stream=_A ).raw ) return im @torch.no_grad() def __UpperCamelCase ( _A : Dict , _A : Union[str, Any] , _A : List[str] , _A : Optional[int] , _A : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase : List[str] = get_dpt_config(_A ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") lowerCAmelCase : str = torch.load(_A , map_location='cpu' ) # remove certain keys remove_ignore_keys_(_A ) # rename keys for key in state_dict.copy().keys(): lowerCAmelCase : str = state_dict.pop(_A ) lowerCAmelCase : Union[str, Any] = val # read in qkv matrices read_in_q_k_v(_A , _A ) # load HuggingFace model lowerCAmelCase : Any = DPTForSemanticSegmentation(_A ) if 'ade' in checkpoint_url else DPTForDepthEstimation(_A ) model.load_state_dict(_A ) model.eval() # Check outputs on an image lowerCAmelCase : List[str] = 4_80 if 'ade' in checkpoint_url else 3_84 lowerCAmelCase : Any = DPTImageProcessor(size=_A ) lowerCAmelCase : Tuple = prepare_img() lowerCAmelCase : int = image_processor(_A , return_tensors='pt' ) # forward pass lowerCAmelCase : Optional[Any] = model(**_A ).logits if 'ade' in checkpoint_url else model(**_A ).predicted_depth if show_prediction: lowerCAmelCase : Union[str, Any] = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode='bicubic' , align_corners=_A , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 2_55 ).show() if pytorch_dump_folder_path is not None: Path(_A ).mkdir(exist_ok=_A ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(_A ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_A ) if push_to_hub: model.push_to_hub('ybelkada/dpt-hybrid-midas' ) image_processor.push_to_hub('ybelkada/dpt-hybrid-midas' ) if __name__ == "__main__": _lowerCAmelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) parser.add_argument( '--show_prediction', action='store_true', ) _lowerCAmelCase : Any = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
719
'''simple docstring''' import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer _lowerCAmelCase : List[Any] = logging.getLogger(__name__) def __UpperCamelCase ( ) -> Any: """simple docstring""" lowerCAmelCase : str = argparse.ArgumentParser( description='Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.' ) parser.add_argument( '--dataset_name' , type=_A , default='wikitext' , help='Name of the training. Explore datasets at: hf.co/datasets.' , ) parser.add_argument( '--dataset_config' , type=_A , default='wikitext-103-raw-v1' , help='Configuration name of the dataset.' ) parser.add_argument( '--tokenizer_name_or_path' , type=_A , default='sayakpaul/unigram-tokenizer-wikitext' , help='Tokenizer identifier. Can be a local filepath or a Hub identifier.' , ) parser.add_argument( '--shard_size' , type=_A , default=10_00 , help='Number of entries to go in a single shard.' , ) parser.add_argument('--split' , type=_A , default='train' , choices=['train', 'test', 'validation'] ) parser.add_argument( '--limit' , default=_A , type=_A , help='Limit the number of shards (used for debugging).' , ) parser.add_argument( '--max_length' , type=_A , default=5_12 , help='Maximum sequence length. For training on TPUs, it helps to have a maximum' ' sequence length that is a multiple of 8.' , ) parser.add_argument( '--output_dir' , default='tf-tpu' , type=_A , help='Output directory where the TFRecord shards will be saved. If the' ' path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord' ' shards will be directly saved to a Google Cloud Storage bucket.' , ) lowerCAmelCase : Any = parser.parse_args() return args def __UpperCamelCase ( _A : Optional[int] ) -> int: """simple docstring""" def fn(_A : Tuple ): return tokenizer(examples['text'] ) return fn def __UpperCamelCase ( _A : int ) -> int: """simple docstring""" lowerCAmelCase : Tuple = [] for i in range(len(tokenized_data['input_ids'] ) ): lowerCAmelCase : Optional[Any] = { 'input_ids': tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data['input_ids'][i] ) ), 'attention_mask': tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data['attention_mask'][i] ) ), } lowerCAmelCase : Any = tf.train.Features(feature=_A ) lowerCAmelCase : List[str] = tf.train.Example(features=_A ) lowerCAmelCase : Tuple = example.SerializeToString() records.append(_A ) return records def __UpperCamelCase ( _A : int ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase : Union[str, Any] = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: lowerCAmelCase : Optional[Any] = min(len(_A ) , args.limit ) lowerCAmelCase : Dict = dataset.select(range(_A ) ) print(F"Limiting the dataset to {args.limit} entries." ) lowerCAmelCase : str = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) lowerCAmelCase : Any = os.path.join(args.output_dir , args.split ) if not os.path.exists(_A ): os.makedirs(_A ) else: lowerCAmelCase : List[Any] = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. lowerCAmelCase : Any = tokenize_function(_A ) lowerCAmelCase : Optional[int] = dataset.map(_A , batched=_A , num_proc=4 , remove_columns=['text'] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(_A : str ): # Concatenate all texts. lowerCAmelCase : Optional[int] = {k: sum(examples[k] , [] ) for k in examples.keys()} lowerCAmelCase : str = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 lowerCAmelCase : List[Any] = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. lowerCAmelCase : str = { k: [t[i : i + args.max_length] for i in range(0 , _A , args.max_length )] for k, t in concatenated_examples.items() } return result lowerCAmelCase : List[Any] = dataset_tokenized.map(_A , batched=_A , batch_size=10_00 , num_proc=4 ) lowerCAmelCase : Union[str, Any] = 0 lowerCAmelCase : Tuple = 0 for shard in range(0 , len(_A ) , args.shard_size ): lowerCAmelCase : Optional[Any] = grouped_dataset[shard : shard + args.shard_size] lowerCAmelCase : List[str] = len(dataset_snapshot['input_ids'] ) lowerCAmelCase : Union[str, Any] = os.path.join(_A , F"dataset-{shard_count}-{records_containing}.tfrecord" ) lowerCAmelCase : List[Any] = get_serialized_examples(_A ) with tf.io.TFRecordWriter(_A ) as out_file: for i in range(len(_A ) ): lowerCAmelCase : Union[str, Any] = serialized_examples[i] out_file.write(_A ) print('Wrote file {} containing {} records'.format(_A , _A ) ) shard_count += 1 total_records += records_containing with open(F"split-{args.split}-records-count.txt" , 'w' ) as f: print(F"Total {args.split} records: {total_records}" , file=_A ) if __name__ == "__main__": _lowerCAmelCase : List[Any] = parse_args() main(args)
646
0
'''simple docstring''' def __UpperCamelCase ( _A : int ) -> bool: """simple docstring""" if num < 0: return False lowerCAmelCase : int = num lowerCAmelCase : int = 0 while num > 0: lowerCAmelCase : List[str] = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
720
'''simple docstring''' import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() _lowerCAmelCase : List[str] = logging.get_logger('transformers.models.speecht5') def __UpperCamelCase ( _A : Any , _A : Dict , _A : Any ) -> Union[str, Any]: """simple docstring""" hf_model.apply_weight_norm() lowerCAmelCase : int = checkpoint['input_conv.weight_g'] lowerCAmelCase : Optional[int] = checkpoint['input_conv.weight_v'] lowerCAmelCase : Dict = checkpoint['input_conv.bias'] for i in range(len(config.upsample_rates ) ): lowerCAmelCase : Optional[Any] = checkpoint[F"upsamples.{i}.1.weight_g"] lowerCAmelCase : str = checkpoint[F"upsamples.{i}.1.weight_v"] lowerCAmelCase : str = checkpoint[F"upsamples.{i}.1.bias"] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): lowerCAmelCase : int = checkpoint[F"blocks.{i}.convs1.{j}.1.weight_g"] lowerCAmelCase : str = checkpoint[F"blocks.{i}.convs1.{j}.1.weight_v"] lowerCAmelCase : int = checkpoint[F"blocks.{i}.convs1.{j}.1.bias"] lowerCAmelCase : Optional[Any] = checkpoint[F"blocks.{i}.convs2.{j}.1.weight_g"] lowerCAmelCase : Tuple = checkpoint[F"blocks.{i}.convs2.{j}.1.weight_v"] lowerCAmelCase : Tuple = checkpoint[F"blocks.{i}.convs2.{j}.1.bias"] lowerCAmelCase : List[Any] = checkpoint['output_conv.1.weight_g'] lowerCAmelCase : List[str] = checkpoint['output_conv.1.weight_v'] lowerCAmelCase : Optional[Any] = checkpoint['output_conv.1.bias'] hf_model.remove_weight_norm() @torch.no_grad() def __UpperCamelCase ( _A : Dict , _A : Union[str, Any] , _A : List[Any] , _A : Any=None , _A : Any=None , ) -> Dict: """simple docstring""" if config_path is not None: lowerCAmelCase : Dict = SpeechTaHifiGanConfig.from_pretrained(_A ) else: lowerCAmelCase : Union[str, Any] = SpeechTaHifiGanConfig() lowerCAmelCase : List[Any] = SpeechTaHifiGan(_A ) lowerCAmelCase : List[str] = torch.load(_A ) load_weights(orig_checkpoint['model']['generator'] , _A , _A ) lowerCAmelCase : Tuple = np.load(_A ) lowerCAmelCase : List[Any] = stats[0].reshape(-1 ) lowerCAmelCase : int = stats[1].reshape(-1 ) lowerCAmelCase : Union[str, Any] = torch.from_numpy(_A ).float() lowerCAmelCase : int = torch.from_numpy(_A ).float() model.save_pretrained(_A ) if repo_id: print('Pushing to the hub...' ) model.push_to_hub(_A ) if __name__ == "__main__": _lowerCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--stats_path', required=True, default=None, type=str, help='Path to stats.npy file') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) _lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
646
0
'''simple docstring''' import warnings from typing import Dict, List, Optional, Tuple from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowerCAmelCase : List[Any] = logging.get_logger(__name__) class lowerCAmelCase ( a ): _lowerCamelCase : Tuple = ["""input_ids""", """attention_mask"""] def __init__( self , snake_case__="</s>" , snake_case__="<unk>" , snake_case__="<pad>" , snake_case__=125 , snake_case__=None , **snake_case__ , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: lowerCAmelCase : int = [f"<extra_id_{i}>" for i in range(snake_case__ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens lowerCAmelCase : Tuple = len(set(filter(lambda snake_case__ : bool('extra_id' in str(snake_case__ ) ) , snake_case__ ) ) ) if extra_tokens != extra_ids: raise ValueError( f"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are" ' provided to ByT5Tokenizer. In this case the additional_special_tokens must include the' ' extra_ids tokens' ) lowerCAmelCase : int = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else pad_token lowerCAmelCase : int = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else eos_token lowerCAmelCase : str = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else unk_token super().__init__( eos_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , extra_ids=snake_case__ , additional_special_tokens=snake_case__ , **snake_case__ , ) lowerCAmelCase : Dict = extra_ids lowerCAmelCase : Any = 2**8 # utf is 8 bits # define special tokens dict lowerCAmelCase : Dict[int, str] = { self.pad_token: 0, self.eos_token: 1, self.unk_token: 2, } lowerCAmelCase : Any = len(self.special_tokens_encoder ) lowerCAmelCase : int = len(snake_case__ ) for i, token in enumerate(snake_case__ ): lowerCAmelCase : int = self.vocab_size + i - n lowerCAmelCase : Dict[str, int] = {v: k for k, v in self.special_tokens_encoder.items()} @property def lowercase ( self ): return self._utf_vocab_size + self._num_special_tokens + self._extra_ids def lowercase ( self , snake_case__ , snake_case__ = None , snake_case__ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(snake_case__ )) + [1] return ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) + [1] def lowercase ( self , snake_case__ ): if len(snake_case__ ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f"This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated" ' eos tokens being added.' ) return token_ids else: return token_ids + [self.eos_token_id] def lowercase ( self , snake_case__ , snake_case__ = None ): lowerCAmelCase : List[str] = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def lowercase ( self , snake_case__ , snake_case__ = None ): lowerCAmelCase : Dict = self._add_eos_if_not_present(snake_case__ ) if token_ids_a is None: return token_ids_a else: lowerCAmelCase : int = self._add_eos_if_not_present(snake_case__ ) return token_ids_a + token_ids_a def lowercase ( self , snake_case__ ): lowerCAmelCase : Union[str, Any] = [chr(snake_case__ ) for i in text.encode('utf-8' )] return tokens def lowercase ( self , snake_case__ ): if token in self.special_tokens_encoder: lowerCAmelCase : int = self.special_tokens_encoder[token] elif token in self.added_tokens_encoder: lowerCAmelCase : int = self.added_tokens_encoder[token] elif len(snake_case__ ) != 1: lowerCAmelCase : Union[str, Any] = self.unk_token_id else: lowerCAmelCase : Any = ord(snake_case__ ) + self._num_special_tokens return token_id def lowercase ( self , snake_case__ ): if index in self.special_tokens_decoder: lowerCAmelCase : Any = self.special_tokens_decoder[index] else: lowerCAmelCase : int = chr(index - self._num_special_tokens ) return token def lowercase ( self , snake_case__ ): lowerCAmelCase : Dict = B'' for token in tokens: if token in self.special_tokens_decoder: lowerCAmelCase : Dict = self.special_tokens_decoder[token].encode('utf-8' ) elif token in self.added_tokens_decoder: lowerCAmelCase : Any = self.special_tokens_decoder[token].encode('utf-8' ) elif token in self.special_tokens_encoder: lowerCAmelCase : Tuple = token.encode('utf-8' ) elif token in self.added_tokens_encoder: lowerCAmelCase : List[str] = token.encode('utf-8' ) else: lowerCAmelCase : Dict = bytes([ord(snake_case__ )] ) bstring += tok_string lowerCAmelCase : Any = bstring.decode('utf-8' , errors='ignore' ) return string def lowercase ( self , snake_case__ , snake_case__ = None ): return ()
721
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets _lowerCAmelCase : Dict = '\\n@inproceedings{popovic-2015-chrf,\n title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",\n month = sep,\n year = "2015",\n address = "Lisbon, Portugal",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W15-3049",\n doi = "10.18653/v1/W15-3049",\n pages = "392--395",\n}\n@inproceedings{popovic-2017-chrf,\n title = "chr{F}++: words helping character n-grams",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Second Conference on Machine Translation",\n month = sep,\n year = "2017",\n address = "Copenhagen, Denmark",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W17-4770",\n doi = "10.18653/v1/W17-4770",\n pages = "612--618",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' _lowerCAmelCase : Optional[Any] = '\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n' _lowerCAmelCase : List[Any] = '\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n \'score\' (float): The chrF (chrF++) score,\n \'char_order\' (int): The character n-gram order,\n \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n \'beta\' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase ( datasets.Metric ): def lowercase ( self ): if version.parse(scb.__version__ ) < version.parse('1.4.12' ): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/mjpost/sacreBLEU#chrf--chrf' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/mjpost/sacreBLEU#chrf--chrf'] , reference_urls=[ 'https://github.com/m-popovic/chrF', ] , ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ = CHRF.CHAR_ORDER , snake_case__ = CHRF.WORD_ORDER , snake_case__ = CHRF.BETA , snake_case__ = False , snake_case__ = False , snake_case__ = False , ): lowerCAmelCase : List[str] = len(references[0] ) if any(len(snake_case__ ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) lowerCAmelCase : List[str] = [[refs[i] for refs in references] for i in range(snake_case__ )] lowerCAmelCase : Union[str, Any] = CHRF(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase : Dict = sb_chrf.corpus_score(snake_case__ , snake_case__ ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
646
0
'''simple docstring''' import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def __UpperCamelCase ( _A : Any , _A : List[str] ) -> List[Any]: """simple docstring""" lowerCAmelCase : Optional[Any] = XCLIPTextConfig() # derive patch size from model name lowerCAmelCase : str = model_name.find('patch' ) lowerCAmelCase : Tuple = int(model_name[start_idx + len('patch' ) : start_idx + len('patch' ) + 2] ) lowerCAmelCase : List[Any] = XCLIPVisionConfig(patch_size=_A , num_frames=_A ) if "large" in model_name: lowerCAmelCase : List[Any] = 7_68 lowerCAmelCase : List[str] = 30_72 lowerCAmelCase : Dict = 12 lowerCAmelCase : Tuple = 10_24 lowerCAmelCase : Any = 40_96 lowerCAmelCase : str = 16 lowerCAmelCase : Union[str, Any] = 24 lowerCAmelCase : Union[str, Any] = 7_68 lowerCAmelCase : Optional[Any] = 30_72 if model_name == "xclip-large-patch14-16-frames": lowerCAmelCase : Optional[Any] = 3_36 lowerCAmelCase : Tuple = XCLIPConfig.from_text_vision_configs(_A , _A ) if "large" in model_name: lowerCAmelCase : int = 7_68 return config def __UpperCamelCase ( _A : Union[str, Any] ) -> Optional[int]: """simple docstring""" if name == "token_embedding.weight": lowerCAmelCase : Optional[Any] = name.replace('token_embedding.weight' , 'text_model.embeddings.token_embedding.weight' ) if name == "positional_embedding": lowerCAmelCase : Dict = name.replace('positional_embedding' , 'text_model.embeddings.position_embedding.weight' ) if "ln_1" in name: lowerCAmelCase : Optional[Any] = name.replace('ln_1' , 'layer_norm1' ) if "ln_2" in name: lowerCAmelCase : List[Any] = name.replace('ln_2' , 'layer_norm2' ) if "c_fc" in name: lowerCAmelCase : Dict = name.replace('c_fc' , 'fc1' ) if "c_proj" in name: lowerCAmelCase : Dict = name.replace('c_proj' , 'fc2' ) if name.startswith('transformer.resblocks' ): lowerCAmelCase : Tuple = name.replace('transformer.resblocks' , 'text_model.encoder.layers' ) if "attn.out_proj" in name and "message" not in name: lowerCAmelCase : Optional[Any] = name.replace('attn.out_proj' , 'self_attn.out_proj' ) if "ln_final" in name: lowerCAmelCase : List[Any] = name.replace('ln_final' , 'text_model.final_layer_norm' ) # visual encoder if name == "visual.class_embedding": lowerCAmelCase : int = name.replace('visual.class_embedding' , 'vision_model.embeddings.class_embedding' ) if name == "visual.positional_embedding": lowerCAmelCase : Union[str, Any] = name.replace('visual.positional_embedding' , 'vision_model.embeddings.position_embedding.weight' ) if name.startswith('visual.transformer.resblocks' ): lowerCAmelCase : int = name.replace('visual.transformer.resblocks' , 'vision_model.encoder.layers' ) if "visual.conv1" in name: lowerCAmelCase : str = name.replace('visual.conv1' , 'vision_model.embeddings.patch_embedding' ) if "visual.ln_pre" in name: lowerCAmelCase : List[Any] = name.replace('visual.ln_pre' , 'vision_model.pre_layernorm' ) if "visual.ln_post" in name: lowerCAmelCase : List[str] = name.replace('visual.ln_post' , 'vision_model.post_layernorm' ) if "visual.proj" in name: lowerCAmelCase : int = name.replace('visual.proj' , 'visual_projection.weight' ) if "text_projection" in name: lowerCAmelCase : List[Any] = name.replace('text_projection' , 'text_projection.weight' ) # things on top if "prompts_visual_proj" in name: lowerCAmelCase : str = name.replace('prompts_visual_proj' , 'prompts_visual_projection' ) if "prompts_visual_ln" in name: lowerCAmelCase : str = name.replace('prompts_visual_ln' , 'prompts_visual_layernorm' ) # mit if name == "mit.positional_embedding": lowerCAmelCase : str = name.replace('positional' , 'position' ) if name.startswith('mit.resblocks' ): lowerCAmelCase : str = name.replace('mit.resblocks' , 'mit.encoder.layers' ) # prompts generator if name.startswith('prompts_generator.norm' ): lowerCAmelCase : List[str] = name.replace('prompts_generator.norm' , 'prompts_generator.layernorm' ) return name def __UpperCamelCase ( _A : Optional[int] , _A : Any ) -> str: """simple docstring""" for key in orig_state_dict.copy().keys(): lowerCAmelCase : List[str] = orig_state_dict.pop(_A ) if "attn.in_proj" in key: lowerCAmelCase : Optional[int] = key.split('.' ) if key.startswith('visual' ): lowerCAmelCase : str = key_split[3] lowerCAmelCase : int = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: lowerCAmelCase : Optional[Any] = val[ :dim, : ] lowerCAmelCase : Dict = val[ dim : dim * 2, : ] lowerCAmelCase : int = val[ -dim:, : ] else: lowerCAmelCase : int = val[ :dim ] lowerCAmelCase : Union[str, Any] = val[ dim : dim * 2 ] lowerCAmelCase : Optional[int] = val[ -dim: ] else: if "weight" in key: lowerCAmelCase : Any = val[ :dim, : ] lowerCAmelCase : List[str] = val[ dim : dim * 2, : ] lowerCAmelCase : str = val[ -dim:, : ] else: lowerCAmelCase : int = val[:dim] lowerCAmelCase : List[Any] = val[ dim : dim * 2 ] lowerCAmelCase : str = val[-dim:] elif key.startswith('mit' ): lowerCAmelCase : List[Any] = key_split[2] lowerCAmelCase : Union[str, Any] = config.vision_config.mit_hidden_size if "weight" in key: lowerCAmelCase : List[str] = val[:dim, :] lowerCAmelCase : str = val[dim : dim * 2, :] lowerCAmelCase : Tuple = val[-dim:, :] else: lowerCAmelCase : Optional[int] = val[:dim] lowerCAmelCase : str = val[dim : dim * 2] lowerCAmelCase : int = val[-dim:] else: lowerCAmelCase : str = key_split[2] lowerCAmelCase : str = config.text_config.hidden_size if "weight" in key: lowerCAmelCase : Union[str, Any] = val[:dim, :] lowerCAmelCase : Union[str, Any] = val[ dim : dim * 2, : ] lowerCAmelCase : Tuple = val[-dim:, :] else: lowerCAmelCase : Union[str, Any] = val[:dim] lowerCAmelCase : Dict = val[ dim : dim * 2 ] lowerCAmelCase : Optional[int] = val[-dim:] else: lowerCAmelCase : int = rename_key(_A ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: lowerCAmelCase : Dict = val.T lowerCAmelCase : Optional[Any] = val return orig_state_dict def __UpperCamelCase ( _A : Any ) -> Optional[Any]: """simple docstring""" if num_frames == 8: lowerCAmelCase : Dict = 'eating_spaghetti_8_frames.npy' elif num_frames == 16: lowerCAmelCase : Union[str, Any] = 'eating_spaghetti.npy' elif num_frames == 32: lowerCAmelCase : Optional[int] = 'eating_spaghetti_32_frames.npy' lowerCAmelCase : List[Any] = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename=_A , repo_type='dataset' , ) lowerCAmelCase : Any = np.load(_A ) return list(_A ) def __UpperCamelCase ( _A : Optional[Any] , _A : Union[str, Any]=None , _A : Dict=False ) -> List[str]: """simple docstring""" lowerCAmelCase : int = { # fully supervised kinetics-400 checkpoints 'xclip-base-patch32': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth', 'xclip-base-patch32-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth' ), 'xclip-base-patch16': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth', 'xclip-base-patch16-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth' ), 'xclip-large-patch14': 'https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb', 'xclip-large-patch14-16-frames': 'https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f', # fully supervised kinetics-600 checkpoints 'xclip-base-patch16-kinetics-600': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth' ), 'xclip-base-patch16-kinetics-600-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth' ), 'xclip-large-patch14-kinetics-600': 'https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be', # few shot 'xclip-base-patch16-hmdb-2-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth' ), 'xclip-base-patch16-hmdb-4-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth' ), 'xclip-base-patch16-hmdb-8-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth' ), 'xclip-base-patch16-hmdb-16-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth' ), 'xclip-base-patch16-ucf-2-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth' ), 'xclip-base-patch16-ucf-4-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth' ), 'xclip-base-patch16-ucf-8-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth' ), 'xclip-base-patch16-ucf-16-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth' ), # zero shot 'xclip-base-patch16-zero-shot': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth', } lowerCAmelCase : Any = model_to_url[model_name] lowerCAmelCase : Optional[Any] = 8 if "16-frames" in model_name: lowerCAmelCase : Union[str, Any] = 16 elif "shot" in model_name: lowerCAmelCase : Optional[Any] = 32 lowerCAmelCase : Dict = get_xclip_config(_A , _A ) lowerCAmelCase : Tuple = XCLIPModel(_A ) model.eval() if "drive" in checkpoint_url: lowerCAmelCase : Union[str, Any] = 'pytorch_model.bin' gdown.cached_download(_A , _A , quiet=_A ) lowerCAmelCase : Optional[Any] = torch.load(_A , map_location='cpu' )['model'] else: lowerCAmelCase : List[str] = torch.hub.load_state_dict_from_url(_A )['model'] lowerCAmelCase : Optional[int] = convert_state_dict(_A , _A ) lowerCAmelCase : int = XCLIPModel(_A ) lowerCAmelCase : Union[str, Any] = model.load_state_dict(_A , strict=_A ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() lowerCAmelCase : int = 3_36 if model_name == 'xclip-large-patch14-16-frames' else 2_24 lowerCAmelCase : Dict = VideoMAEImageProcessor(size=_A ) lowerCAmelCase : Optional[int] = CLIPTokenizer.from_pretrained('openai/clip-vit-base-patch32' ) lowerCAmelCase : Union[str, Any] = CLIPTokenizerFast.from_pretrained('openai/clip-vit-base-patch32' ) lowerCAmelCase : Optional[int] = XCLIPProcessor(image_processor=_A , tokenizer=_A ) lowerCAmelCase : Dict = prepare_video(_A ) lowerCAmelCase : List[str] = processor( text=['playing sports', 'eating spaghetti', 'go shopping'] , videos=_A , return_tensors='pt' , padding=_A ) print('Shape of pixel values:' , inputs.pixel_values.shape ) with torch.no_grad(): lowerCAmelCase : Any = model(**_A ) # Verify outputs lowerCAmelCase : str = outputs.logits_per_video lowerCAmelCase : List[str] = logits_per_video.softmax(dim=1 ) print('Probs:' , _A ) # kinetics-400 if model_name == "xclip-base-patch32": lowerCAmelCase : Any = torch.tensor([[0.00_19, 0.99_51, 0.00_30]] ) elif model_name == "xclip-base-patch32-16-frames": lowerCAmelCase : str = torch.tensor([[7.0_999e-04, 9.9_883e-01, 4.5_580e-04]] ) elif model_name == "xclip-base-patch16": lowerCAmelCase : Union[str, Any] = torch.tensor([[0.00_83, 0.96_81, 0.02_36]] ) elif model_name == "xclip-base-patch16-16-frames": lowerCAmelCase : Optional[Any] = torch.tensor([[7.6_937e-04, 9.9_728e-01, 1.9_473e-03]] ) elif model_name == "xclip-large-patch14": lowerCAmelCase : List[str] = torch.tensor([[0.00_62, 0.98_64, 0.00_75]] ) elif model_name == "xclip-large-patch14-16-frames": lowerCAmelCase : str = torch.tensor([[3.3_877e-04, 9.9_937e-01, 2.8_888e-04]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": lowerCAmelCase : Optional[Any] = torch.tensor([[0.05_55, 0.89_14, 0.05_31]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": lowerCAmelCase : str = torch.tensor([[3.8_554e-04, 9.9_929e-01, 3.2_754e-04]] ) elif model_name == "xclip-large-patch14-kinetics-600": lowerCAmelCase : str = torch.tensor([[0.00_36, 0.99_20, 0.00_45]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": lowerCAmelCase : Tuple = torch.tensor([[7.1_890e-06, 9.9_994e-01, 5.6_559e-05]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": lowerCAmelCase : List[str] = torch.tensor([[1.0_320e-05, 9.9_993e-01, 6.2_435e-05]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": lowerCAmelCase : Optional[int] = torch.tensor([[4.1_377e-06, 9.9_990e-01, 9.8_386e-05]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": lowerCAmelCase : List[Any] = torch.tensor([[4.1_347e-05, 9.9_962e-01, 3.3_411e-04]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": lowerCAmelCase : Union[str, Any] = torch.tensor([[8.5_857e-05, 9.9_928e-01, 6.3_291e-04]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": lowerCAmelCase : Optional[Any] = torch.tensor([[8.5_857e-05, 9.9_928e-01, 6.3_291e-04]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": lowerCAmelCase : Optional[Any] = torch.tensor([[0.00_27, 0.99_04, 0.00_70]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": lowerCAmelCase : Any = torch.tensor([[9.8_219e-04, 9.9_593e-01, 3.0_863e-03]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": lowerCAmelCase : List[str] = torch.tensor([[3.5_082e-04, 9.9_785e-01, 1.7_966e-03]] ) else: raise ValueError(F"Model name {model_name} not supported" ) assert torch.allclose(_A , _A , atol=1e-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_A ) if push_to_hub: print('Pushing model, processor and slow tokenizer files to the hub...' ) model.push_to_hub(_A , organization='nielsr' ) processor.push_to_hub(_A , organization='nielsr' ) slow_tokenizer.push_to_hub(_A , organization='nielsr' ) if __name__ == "__main__": _lowerCAmelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='xclip-base-patch32', type=str, help='Name of the model.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _lowerCAmelCase : Dict = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
700
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : str = logging.get_logger(__name__) _lowerCAmelCase : Tuple = { 's-JoL/Open-Llama-V1': 'https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json', } class lowerCAmelCase ( a ): _lowerCamelCase : Union[str, Any] = """open-llama""" def __init__( self , snake_case__=10_0000 , snake_case__=4096 , snake_case__=1_1008 , snake_case__=32 , snake_case__=32 , snake_case__="silu" , snake_case__=2048 , snake_case__=0.0_2 , snake_case__=1e-6 , snake_case__=True , snake_case__=0 , snake_case__=1 , snake_case__=2 , snake_case__=False , snake_case__=True , snake_case__=0.1 , snake_case__=0.1 , snake_case__=True , snake_case__=True , snake_case__=None , **snake_case__ , ): lowerCAmelCase : Tuple = vocab_size lowerCAmelCase : Optional[Any] = max_position_embeddings lowerCAmelCase : List[Any] = hidden_size lowerCAmelCase : List[Any] = intermediate_size lowerCAmelCase : Tuple = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : str = rms_norm_eps lowerCAmelCase : Optional[int] = use_cache lowerCAmelCase : Dict = kwargs.pop( 'use_memorry_efficient_attention' , snake_case__ ) lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : Optional[Any] = attention_dropout_prob lowerCAmelCase : Union[str, Any] = use_stable_embedding lowerCAmelCase : Tuple = shared_input_output_embedding lowerCAmelCase : Tuple = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , tie_word_embeddings=snake_case__ , **snake_case__ , ) def lowercase ( self ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , snake_case__ ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' f"got {self.rope_scaling}" ) lowerCAmelCase : List[Any] = self.rope_scaling.get('type' , snake_case__ ) lowerCAmelCase : List[str] = self.rope_scaling.get('factor' , snake_case__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(snake_case__ , snake_case__ ) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
646
0
from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge _lowerCAmelCase : List[str] = [ 'Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of the' ' final seconds on board Flight 9525. The Germanwings co-pilot says he had a "previous episode of severe' ' depression\" German airline confirms it knew of Andreas Lubitz\'s depression years before he took control.', 'The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal' ' accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC\'s' ' founding Rome Statute in January. Israel and the United States opposed the Palestinians\' efforts to join the' ' body.', 'Amnesty International releases its annual report on the death penalty. The report catalogs the use of' ' state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the' ' world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital' ' punishment.', ] _lowerCAmelCase : Optional[Any] = [ 'Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .' ' Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz' ' had informed his Lufthansa training school of an episode of severe depression, airline says .', 'Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June .' ' Israel and the United States opposed the move, which could open the door to war crimes investigations against' ' Israelis .', 'Amnesty\'s annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to' ' death . Organization claims that governments around the world are using the threat of terrorism to advance' ' executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death' ' sentences up by 28% .', ] def __UpperCamelCase ( ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase : List[Any] = calculate_rouge(_A , _A , bootstrap_aggregation=_A , rouge_keys=['rouge2', 'rougeL'] ) assert isinstance(_A , _A ) lowerCAmelCase : Tuple = calculate_rouge(_A , _A , bootstrap_aggregation=_A , rouge_keys=['rouge2'] ) assert ( pd.DataFrame(no_aggregation['rouge2'] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra['rouge2'] ).fmeasure.mean() ) def __UpperCamelCase ( ) -> List[Any]: """simple docstring""" lowerCAmelCase : Optional[Any] = 'rougeLsum' lowerCAmelCase : Union[str, Any] = calculate_rouge(_A , _A , newline_sep=_A , rouge_keys=[k] )[k] lowerCAmelCase : Tuple = calculate_rouge(_A , _A , newline_sep=_A , rouge_keys=[k] )[k] assert score > score_no_sep def __UpperCamelCase ( ) -> Tuple: """simple docstring""" lowerCAmelCase : List[str] = ['rouge1', 'rouge2', 'rougeL'] lowerCAmelCase : Optional[int] = calculate_rouge(_A , _A , newline_sep=_A , rouge_keys=_A ) lowerCAmelCase : Optional[int] = calculate_rouge(_A , _A , newline_sep=_A , rouge_keys=_A ) assert score_sep == score_no_sep def __UpperCamelCase ( ) -> Optional[Any]: """simple docstring""" lowerCAmelCase : Optional[int] = [ 'Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.', 'Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .', ] lowerCAmelCase : Union[str, Any] = [ 'Margot Frank, died in 1945, a month earlier than previously thought.', 'Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of' ' the final seconds on board Flight 9525.', ] assert calculate_rouge(_A , _A , newline_sep=_A ) == calculate_rouge(_A , _A , newline_sep=_A ) def __UpperCamelCase ( ) -> List[str]: """simple docstring""" lowerCAmelCase : List[Any] = [ '" "a person who has such a video needs to immediately give it to the investigators," prosecutor says .<n> "it is a very disturbing scene," editor-in-chief of bild online tells "erin burnett: outfront" ' ] lowerCAmelCase : Union[str, Any] = [ ' Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports . Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .' ] lowerCAmelCase : Any = calculate_rouge(_A , _A , rouge_keys=['rougeLsum'] , newline_sep=_A )['rougeLsum'] lowerCAmelCase : Any = calculate_rouge(_A , _A , rouge_keys=['rougeLsum'] )['rougeLsum'] assert new_score > prev_score def __UpperCamelCase ( ) -> Dict: """simple docstring""" lowerCAmelCase : int = Path('examples/seq2seq/test_data/wmt_en_ro' ) lowerCAmelCase : Union[str, Any] = calculate_rouge_path(data_dir.joinpath('test.source' ) , data_dir.joinpath('test.target' ) ) assert isinstance(_A , _A ) lowerCAmelCase : Union[str, Any] = calculate_rouge_path( data_dir.joinpath('test.source' ) , data_dir.joinpath('test.target' ) , bootstrap_aggregation=_A ) assert isinstance(_A , _A )
701
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) _lowerCAmelCase : Dict = { 'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class lowerCAmelCase ( a ): _lowerCamelCase : Any = """deformable_detr""" _lowerCamelCase : List[str] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , snake_case__=True , snake_case__=None , snake_case__=3 , snake_case__=300 , snake_case__=1024 , snake_case__=6 , snake_case__=1024 , snake_case__=8 , snake_case__=6 , snake_case__=1024 , snake_case__=8 , snake_case__=0.0 , snake_case__=True , snake_case__="relu" , snake_case__=256 , snake_case__=0.1 , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.0_2 , snake_case__=1.0 , snake_case__=True , snake_case__=False , snake_case__="sine" , snake_case__="resnet50" , snake_case__=True , snake_case__=False , snake_case__=4 , snake_case__=4 , snake_case__=4 , snake_case__=False , snake_case__=300 , snake_case__=False , snake_case__=1 , snake_case__=5 , snake_case__=2 , snake_case__=1 , snake_case__=1 , snake_case__=5 , snake_case__=2 , snake_case__=0.1 , snake_case__=0.2_5 , snake_case__=False , **snake_case__ , ): if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) lowerCAmelCase : Optional[int] = CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : List[str] = backbone_config.get('model_type' ) lowerCAmelCase : str = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase : Optional[Any] = config_class.from_dict(snake_case__ ) lowerCAmelCase : Union[str, Any] = use_timm_backbone lowerCAmelCase : List[Any] = backbone_config lowerCAmelCase : Any = num_channels lowerCAmelCase : Tuple = num_queries lowerCAmelCase : Dict = max_position_embeddings lowerCAmelCase : int = d_model lowerCAmelCase : List[str] = encoder_ffn_dim lowerCAmelCase : List[str] = encoder_layers lowerCAmelCase : int = encoder_attention_heads lowerCAmelCase : str = decoder_ffn_dim lowerCAmelCase : str = decoder_layers lowerCAmelCase : Dict = decoder_attention_heads lowerCAmelCase : str = dropout lowerCAmelCase : List[str] = attention_dropout lowerCAmelCase : Union[str, Any] = activation_dropout lowerCAmelCase : str = activation_function lowerCAmelCase : Any = init_std lowerCAmelCase : Any = init_xavier_std lowerCAmelCase : Dict = encoder_layerdrop lowerCAmelCase : int = auxiliary_loss lowerCAmelCase : Optional[Any] = position_embedding_type lowerCAmelCase : List[str] = backbone lowerCAmelCase : int = use_pretrained_backbone lowerCAmelCase : int = dilation # deformable attributes lowerCAmelCase : List[str] = num_feature_levels lowerCAmelCase : List[str] = encoder_n_points lowerCAmelCase : Union[str, Any] = decoder_n_points lowerCAmelCase : Tuple = two_stage lowerCAmelCase : Dict = two_stage_num_proposals lowerCAmelCase : Union[str, Any] = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.' ) # Hungarian matcher lowerCAmelCase : Union[str, Any] = class_cost lowerCAmelCase : Dict = bbox_cost lowerCAmelCase : List[Any] = giou_cost # Loss coefficients lowerCAmelCase : Dict = mask_loss_coefficient lowerCAmelCase : Any = dice_loss_coefficient lowerCAmelCase : str = bbox_loss_coefficient lowerCAmelCase : Tuple = giou_loss_coefficient lowerCAmelCase : List[str] = eos_coefficient lowerCAmelCase : Any = focal_alpha lowerCAmelCase : Dict = disable_custom_kernels super().__init__(is_encoder_decoder=snake_case__ , **snake_case__ ) @property def lowercase ( self ): return self.encoder_attention_heads @property def lowercase ( self ): return self.d_model def lowercase ( self ): lowerCAmelCase : Union[str, Any] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: lowerCAmelCase : List[Any] = self.backbone_config.to_dict() lowerCAmelCase : str = self.__class__.model_type return output
646
0
'''simple docstring''' import math from collections.abc import Iterator from itertools import takewhile def __UpperCamelCase ( _A : int ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_A ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __UpperCamelCase ( ) -> Iterator[int]: """simple docstring""" lowerCAmelCase : List[str] = 2 while True: if is_prime(_A ): yield num num += 1 def __UpperCamelCase ( _A : int = 2_00_00_00 ) -> int: """simple docstring""" return sum(takewhile(lambda _A : x < n , prime_generator() ) ) if __name__ == "__main__": print(f"""{solution() = }""")
702
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece_no_bos.model') @require_sentencepiece @require_tokenizers class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : str = PegasusTokenizer _lowerCamelCase : Union[str, Any] = PegasusTokenizerFast _lowerCamelCase : Optional[Any] = True _lowerCamelCase : Optional[Any] = True def lowercase ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : List[Any] = PegasusTokenizer(snake_case__ ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase ( self ): return PegasusTokenizer.from_pretrained('google/pegasus-large' ) def lowercase ( self , **snake_case__ ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def lowercase ( self , snake_case__ ): return ("This is a test", "This is a test") def lowercase ( self ): lowerCAmelCase : Optional[int] = '</s>' lowerCAmelCase : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '</s>' ) self.assertEqual(vocab_keys[-1] , 'v' ) self.assertEqual(len(snake_case__ ) , 1103 ) def lowercase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def lowercase ( self ): lowerCAmelCase : List[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : List[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : Optional[Any] = ( 'Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important' ' </s> <pad> <pad> <pad>' ) lowerCAmelCase : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] lowerCAmelCase : Optional[int] = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Any = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowerCAmelCase : List[str] = '<mask_1> To ensure a <mask_2> flow of bank resolutions.' lowerCAmelCase : Optional[Any] = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1] lowerCAmelCase : Optional[Any] = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Optional[Any] = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 lowerCAmelCase : List[Any] = 'To ensure a smooth flow of bank resolutions.' lowerCAmelCase : Optional[int] = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1] lowerCAmelCase : Any = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def lowercase ( self ): lowerCAmelCase : Union[str, Any] = ['This is going to be way too long.' * 150, 'short example'] lowerCAmelCase : int = ['not super long but more than 5 tokens', 'tiny'] lowerCAmelCase : Dict = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) lowerCAmelCase : Dict = self._large_tokenizer( text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(snake_case__ ) == 2 # input_ids, attention_mask. @slow def lowercase ( self ): # fmt: off lowerCAmelCase : Tuple = {'input_ids': [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name='google/bigbird-pegasus-large-arxiv' , revision='ba85d0851d708441f91440d509690f1ab6353415' , ) @require_sentencepiece @require_tokenizers class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : Optional[Any] = PegasusTokenizer _lowerCamelCase : str = PegasusTokenizerFast _lowerCamelCase : Tuple = True _lowerCamelCase : int = True def lowercase ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : int = PegasusTokenizer(snake_case__ , offset=0 , mask_token_sent=snake_case__ , mask_token='[MASK]' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase ( self ): return PegasusTokenizer.from_pretrained('google/bigbird-pegasus-large-arxiv' ) def lowercase ( self , **snake_case__ ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def lowercase ( self , snake_case__ ): return ("This is a test", "This is a test") def lowercase ( self ): lowerCAmelCase : Tuple = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : Union[str, Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase : List[str] = ( 'Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>' ' <pad> <pad> <pad>' ) lowerCAmelCase : Dict = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] lowerCAmelCase : Union[str, Any] = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) @require_torch def lowercase ( self ): lowerCAmelCase : Optional[int] = ['This is going to be way too long.' * 1000, 'short example'] lowerCAmelCase : Union[str, Any] = ['not super long but more than 5 tokens', 'tiny'] lowerCAmelCase : List[str] = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) lowerCAmelCase : List[str] = self._large_tokenizer( text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(snake_case__ ) == 2 # input_ids, attention_mask. def lowercase ( self ): lowerCAmelCase : List[str] = ( 'This is an example string that is used to test the original TF implementation against the HF' ' implementation' ) lowerCAmelCase : Tuple = self._large_tokenizer(snake_case__ ).input_ids self.assertListEqual( snake_case__ , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
646
0
'''simple docstring''' def __UpperCamelCase ( _A : str ) -> bool: """simple docstring""" if not all(x.isalpha() for x in string ): raise ValueError('String must only contain alphabetic characters.' ) lowerCAmelCase : List[Any] = sorted(string.lower() ) return len(_A ) == len(set(_A ) ) if __name__ == "__main__": _lowerCAmelCase : Tuple = input('Enter a string ').strip() _lowerCAmelCase : Dict = is_isogram(input_str) print(f"""{input_str} is {'an' if isogram else 'not an'} isogram.""")
703
'''simple docstring''' import math import sys import cva import numpy as np def __UpperCamelCase ( _A : np.ndarray , _A : float ) -> np.ndarray: """simple docstring""" lowerCAmelCase : Union[str, Any] = math.sqrt(_A ) lowerCAmelCase : Union[str, Any] = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def __UpperCamelCase ( _A : np.ndarray , _A : int , _A : int , _A : int ) -> np.ndarray: """simple docstring""" lowerCAmelCase : int = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def __UpperCamelCase ( _A : int , _A : float ) -> np.ndarray: """simple docstring""" lowerCAmelCase : Dict = np.zeros((kernel_size, kernel_size) ) for i in range(0 , _A ): for j in range(0 , _A ): lowerCAmelCase : Optional[int] = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(_A , _A ) def __UpperCamelCase ( _A : np.ndarray , _A : float , _A : float , _A : int , ) -> np.ndarray: """simple docstring""" lowerCAmelCase : str = np.zeros(img.shape ) lowerCAmelCase : int = get_gauss_kernel(_A , _A ) lowerCAmelCase , lowerCAmelCase : Dict = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): lowerCAmelCase : int = get_slice(_A , _A , _A , _A ) lowerCAmelCase : Any = img_s - img_s[kernel_size // 2, kernel_size // 2] lowerCAmelCase : str = vec_gaussian(_A , _A ) lowerCAmelCase : Optional[int] = np.multiply(_A , _A ) lowerCAmelCase : str = np.multiply(_A , _A ) lowerCAmelCase : Union[str, Any] = np.sum(_A ) / np.sum(_A ) lowerCAmelCase : Tuple = val return imga def __UpperCamelCase ( _A : list ) -> tuple: """simple docstring""" lowerCAmelCase : List[Any] = args[1] if args[1:] else '../image_data/lena.jpg' lowerCAmelCase : Any = float(args[2] ) if args[2:] else 1.0 lowerCAmelCase : Union[str, Any] = float(args[3] ) if args[3:] else 1.0 if args[4:]: lowerCAmelCase : int = int(args[4] ) lowerCAmelCase : Optional[Any] = kernel_size + abs(kernel_size % 2 - 1 ) else: lowerCAmelCase : Optional[int] = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Any = parse_args(sys.argv) _lowerCAmelCase : str = cva.imread(filename, 0) cva.imshow('input image', img) _lowerCAmelCase : Union[str, Any] = img / 255 _lowerCAmelCase : List[str] = out.astype('float32') _lowerCAmelCase : Optional[int] = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) _lowerCAmelCase : Union[str, Any] = out * 255 _lowerCAmelCase : Optional[Any] = np.uinta(out) cva.imshow('output image', out) cva.waitKey(0) cva.destroyAllWindows()
646
0
'''simple docstring''' import argparse import os import re _lowerCAmelCase : Dict = 'src/diffusers' # Pattern that looks at the indentation in a line. _lowerCAmelCase : str = re.compile(r'^(\s*)\S') # Pattern that matches `"key":" and puts `key` in group 0. _lowerCAmelCase : Any = re.compile(r'^\s*"([^"]+)":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. _lowerCAmelCase : List[Any] = re.compile(r'^\s*_import_structure\["([^"]+)"\]') # Pattern that matches `"key",` and puts `key` in group 0. _lowerCAmelCase : int = re.compile(r'^\s*"([^"]+)",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. _lowerCAmelCase : Optional[Any] = re.compile(r'\[([^\]]+)\]') def __UpperCamelCase ( _A : Union[str, Any] ) -> Dict: """simple docstring""" lowerCAmelCase : Any = _re_indent.search(_A ) return "" if search is None else search.groups()[0] def __UpperCamelCase ( _A : Dict , _A : Any="" , _A : List[str]=None , _A : Any=None ) -> Tuple: """simple docstring""" lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Tuple = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(_A ): index += 1 lowerCAmelCase : Optional[int] = ['\n'.join(lines[:index] )] else: lowerCAmelCase : int = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowerCAmelCase : Tuple = [lines[index]] index += 1 while index < len(_A ) and (end_prompt is None or not lines[index].startswith(_A )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(_A ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(_A ) ) if index < len(_A ) - 1: lowerCAmelCase : List[Any] = [lines[index + 1]] index += 1 else: lowerCAmelCase : int = [] else: blocks.append('\n'.join(_A ) ) lowerCAmelCase : Any = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(_A ) > 0: blocks.append('\n'.join(_A ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(_A ): blocks.append('\n'.join(lines[index:] ) ) return blocks def __UpperCamelCase ( _A : Dict ) -> List[Any]: """simple docstring""" def _inner(_A : Tuple ): return key(_A ).lower().replace('_' , '' ) return _inner def __UpperCamelCase ( _A : Union[str, Any] , _A : Any=None ) -> Optional[Any]: """simple docstring""" def noop(_A : Any ): return x if key is None: lowerCAmelCase : List[str] = noop # Constants are all uppercase, they go first. lowerCAmelCase : str = [obj for obj in objects if key(_A ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowerCAmelCase : List[str] = [obj for obj in objects if key(_A )[0].isupper() and not key(_A ).isupper()] # Functions begin with a lowercase, they go last. lowerCAmelCase : Optional[Any] = [obj for obj in objects if not key(_A )[0].isupper()] lowerCAmelCase : Tuple = ignore_underscore(_A ) return sorted(_A , key=_A ) + sorted(_A , key=_A ) + sorted(_A , key=_A ) def __UpperCamelCase ( _A : Union[str, Any] ) -> int: """simple docstring""" def _replace(_A : List[Any] ): lowerCAmelCase : List[Any] = match.groups()[0] if "," not in imports: return F"[{imports}]" lowerCAmelCase : Dict = [part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase : List[str] = keys[:-1] return "[" + ", ".join([F"\"{k}\"" for k in sort_objects(_A )] ) + "]" lowerCAmelCase : Optional[int] = import_statement.split('\n' ) if len(_A ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowerCAmelCase : Optional[Any] = 2 if lines[1].strip() == '[' else 1 lowerCAmelCase : List[str] = [(i, _re_strip_line.search(_A ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowerCAmelCase : Optional[Any] = sort_objects(_A , key=lambda _A : x[1] ) lowerCAmelCase : Dict = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(_A ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowerCAmelCase : Optional[int] = _re_bracket_content.sub(_replace , lines[1] ) else: lowerCAmelCase : List[Any] = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase : int = keys[:-1] lowerCAmelCase : Tuple = get_indent(lines[1] ) + ', '.join([F"\"{k}\"" for k in sort_objects(_A )] ) return "\n".join(_A ) else: # Finally we have to deal with imports fitting on one line lowerCAmelCase : Union[str, Any] = _re_bracket_content.sub(_replace , _A ) return import_statement def __UpperCamelCase ( _A : str , _A : Tuple=True ) -> Optional[Any]: """simple docstring""" with open(_A , 'r' ) as f: lowerCAmelCase : Optional[int] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowerCAmelCase : List[Any] = split_code_in_indented_blocks( _A , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(_A ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowerCAmelCase : List[str] = main_blocks[block_idx] lowerCAmelCase : Union[str, Any] = block.split('\n' ) # Get to the start of the imports. lowerCAmelCase : Optional[Any] = 0 while line_idx < len(_A ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowerCAmelCase : Optional[Any] = len(_A ) else: line_idx += 1 if line_idx >= len(_A ): continue # Ignore beginning and last line: they don't contain anything. lowerCAmelCase : str = '\n'.join(block_lines[line_idx:-1] ) lowerCAmelCase : str = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowerCAmelCase : Optional[Any] = split_code_in_indented_blocks(_A , indent_level=_A ) # We have two categories of import key: list or _import_structure[key].append/extend lowerCAmelCase : Union[str, Any] = _re_direct_key if '_import_structure' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowerCAmelCase : int = [(pattern.search(_A ).groups()[0] if pattern.search(_A ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowerCAmelCase : Dict = [(i, key) for i, key in enumerate(_A ) if key is not None] lowerCAmelCase : List[Any] = [x[0] for x in sorted(_A , key=lambda _A : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowerCAmelCase : int = 0 lowerCAmelCase : Dict = [] for i in range(len(_A ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: lowerCAmelCase : str = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(_A ) count += 1 # And we put our main block back together with its first and last line. lowerCAmelCase : str = '\n'.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(_A ): if check_only: return True else: print(F"Overwriting {file}." ) with open(_A , 'w' ) as f: f.write('\n'.join(_A ) ) def __UpperCamelCase ( _A : Tuple=True ) -> Any: """simple docstring""" lowerCAmelCase : Tuple = [] for root, _, files in os.walk(_A ): if "__init__.py" in files: lowerCAmelCase : Any = sort_imports(os.path.join(_A , '__init__.py' ) , check_only=_A ) if result: lowerCAmelCase : Optional[Any] = [os.path.join(_A , '__init__.py' )] if len(_A ) > 0: raise ValueError(F"Would overwrite {len(_A )} files, run `make style`." ) if __name__ == "__main__": _lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') _lowerCAmelCase : Optional[int] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
704
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowerCAmelCase : int = { 'configuration_nezha': ['NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NezhaConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Tuple = [ 'NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST', 'NezhaForNextSentencePrediction', 'NezhaForMaskedLM', 'NezhaForPreTraining', 'NezhaForMultipleChoice', 'NezhaForQuestionAnswering', 'NezhaForSequenceClassification', 'NezhaForTokenClassification', 'NezhaModel', 'NezhaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys _lowerCAmelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
646
0
import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class lowerCAmelCase : def __init__( self , snake_case__ , snake_case__=13 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=False , snake_case__=True , snake_case__=99 , snake_case__=64 , snake_case__=5 , snake_case__=4 , snake_case__=64 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=16 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=3 , snake_case__=4 , snake_case__=None , ): lowerCAmelCase : int = parent lowerCAmelCase : Any = batch_size lowerCAmelCase : Dict = seq_length lowerCAmelCase : List[Any] = is_training lowerCAmelCase : List[str] = use_input_mask lowerCAmelCase : Dict = use_token_type_ids lowerCAmelCase : Tuple = use_labels lowerCAmelCase : List[Any] = vocab_size lowerCAmelCase : List[str] = hidden_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : List[str] = num_attention_heads lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : Optional[Any] = hidden_dropout_prob lowerCAmelCase : int = attention_probs_dropout_prob lowerCAmelCase : int = max_position_embeddings lowerCAmelCase : Dict = type_vocab_size lowerCAmelCase : List[str] = type_sequence_label_size lowerCAmelCase : Optional[Any] = initializer_range lowerCAmelCase : Tuple = num_labels lowerCAmelCase : List[Any] = num_choices lowerCAmelCase : List[str] = scope def lowercase ( self ): return MPNetConfig.from_pretrained('microsoft/mpnet-base' ) def lowercase ( self ): lowerCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Dict = None if self.use_input_mask: lowerCAmelCase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : str = None lowerCAmelCase : str = None lowerCAmelCase : Optional[int] = None if self.use_labels: lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : Optional[int] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase ( self ): return MPNetConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = MPNetModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : str = model(snake_case__ , snake_case__ ) lowerCAmelCase : Dict = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : List[str] = MPNetForQuestionAnswering(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : List[Any] = model( snake_case__ , attention_mask=snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : str = self.num_labels lowerCAmelCase : Any = MPNetForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Optional[int] = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Optional[Any] = self.num_choices lowerCAmelCase : Optional[int] = MPNetForMultipleChoice(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : Tuple = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : Tuple = model( snake_case__ , attention_mask=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Tuple = self.num_labels lowerCAmelCase : Optional[int] = MPNetForTokenClassification(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : List[Any] = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase ( self ): lowerCAmelCase : str = self.prepare_config_and_inputs() (lowerCAmelCase) : Optional[int] = config_and_inputs lowerCAmelCase : List[Any] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase ( a , a , unittest.TestCase ): _lowerCamelCase : List[str] = ( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) _lowerCamelCase : Dict = ( { """feature-extraction""": MPNetModel, """fill-mask""": MPNetForMaskedLM, """question-answering""": MPNetForQuestionAnswering, """text-classification""": MPNetForSequenceClassification, """token-classification""": MPNetForTokenClassification, """zero-shot""": MPNetForSequenceClassification, } if is_torch_available() else {} ) _lowerCamelCase : List[Any] = False _lowerCamelCase : Union[str, Any] = True def lowercase ( self ): lowerCAmelCase : Any = MPNetModelTester(self ) lowerCAmelCase : int = ConfigTester(self , config_class=snake_case__ , hidden_size=37 ) def lowercase ( self ): self.config_tester.run_common_tests() def lowercase ( self ): lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*snake_case__ ) @require_torch class lowerCAmelCase ( unittest.TestCase ): @slow def lowercase ( self ): lowerCAmelCase : Union[str, Any] = MPNetModel.from_pretrained('microsoft/mpnet-base' ) lowerCAmelCase : str = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) lowerCAmelCase : Tuple = model(snake_case__ )[0] lowerCAmelCase : Optional[int] = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , snake_case__ ) lowerCAmelCase : Optional[Any] = torch.tensor( [[[-0.0_5_5_0, 0.1_9_4_3, -0.0_7_4_0], [-0.0_5_6_2, 0.2_2_1_1, -0.0_5_7_9], [-0.0_4_3_7, 0.3_3_3_7, -0.0_6_4_1]]] ) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case__ , atol=1e-4 ) )
705
'''simple docstring''' from typing import Any class lowerCAmelCase : def __init__( self , snake_case__ ): lowerCAmelCase : Optional[int] = data lowerCAmelCase : Optional[Any] = None def __repr__( self ): return f"Node({self.data})" class lowerCAmelCase : def __init__( self ): lowerCAmelCase : Dict = None def __iter__( self ): lowerCAmelCase : Optional[Any] = self.head while node: yield node.data lowerCAmelCase : Optional[int] = node.next def __len__( self ): return sum(1 for _ in self ) def __repr__( self ): return "->".join([str(snake_case__ ) for item in self] ) def __getitem__( self , snake_case__ ): if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , snake_case__ , snake_case__ ): if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) lowerCAmelCase : Any = self.head for _ in range(snake_case__ ): lowerCAmelCase : List[str] = current.next lowerCAmelCase : int = data def lowercase ( self , snake_case__ ): self.insert_nth(len(self ) , snake_case__ ) def lowercase ( self , snake_case__ ): self.insert_nth(0 , snake_case__ ) def lowercase ( self , snake_case__ , snake_case__ ): if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) lowerCAmelCase : List[str] = Node(snake_case__ ) if self.head is None: lowerCAmelCase : int = new_node elif index == 0: lowerCAmelCase : List[Any] = self.head # link new_node to head lowerCAmelCase : List[Any] = new_node else: lowerCAmelCase : List[Any] = self.head for _ in range(index - 1 ): lowerCAmelCase : Union[str, Any] = temp.next lowerCAmelCase : Any = temp.next lowerCAmelCase : str = new_node def lowercase ( self ): # print every node data print(self ) def lowercase ( self ): return self.delete_nth(0 ) def lowercase ( self ): # delete from tail return self.delete_nth(len(self ) - 1 ) def lowercase ( self , snake_case__ = 0 ): if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) lowerCAmelCase : List[str] = self.head # default first node if index == 0: lowerCAmelCase : Tuple = self.head.next else: lowerCAmelCase : Dict = self.head for _ in range(index - 1 ): lowerCAmelCase : Tuple = temp.next lowerCAmelCase : Dict = temp.next lowerCAmelCase : Tuple = temp.next.next return delete_node.data def lowercase ( self ): return self.head is None def lowercase ( self ): lowerCAmelCase : List[Any] = None lowerCAmelCase : Any = self.head while current: # Store the current node's next node. lowerCAmelCase : List[str] = current.next # Make the current node's next point backwards lowerCAmelCase : int = prev # Make the previous node be the current node lowerCAmelCase : int = current # Make the current node the next node (to progress iteration) lowerCAmelCase : Optional[Any] = next_node # Return prev in order to put the head at the end lowerCAmelCase : List[Any] = prev def __UpperCamelCase ( ) -> None: """simple docstring""" lowerCAmelCase : Tuple = LinkedList() assert linked_list.is_empty() is True assert str(_A ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(_A ) == i linked_list.insert_nth(_A , i + 1 ) assert str(_A ) == "->".join(str(_A ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(_A ) == "->".join(str(_A ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(_A ) == 9 assert str(_A ) == "->".join(str(_A ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): lowerCAmelCase : Optional[Any] = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(_A ) == "->".join(str(_A ) for i in range(-8 , 1 ) ) def __UpperCamelCase ( ) -> None: """simple docstring""" lowerCAmelCase : Optional[int] = [ -9, 1_00, Node(77_34_51_12 ), 'dlrow olleH', 7, 55_55, 0, -1_92.5_55_55, 'Hello, world!', 77.9, Node(10 ), None, None, 12.20, ] lowerCAmelCase : Dict = LinkedList() for i in test_input: linked_list.insert_tail(_A ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(_A ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head lowerCAmelCase : Optional[Any] = linked_list.delete_head() assert result == -9 assert ( str(_A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail lowerCAmelCase : List[str] = linked_list.delete_tail() assert result == 12.2 assert ( str(_A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list lowerCAmelCase : List[str] = linked_list.delete_nth(10 ) assert result is None assert ( str(_A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(_A ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(_A ) assert ( str(_A ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(_A ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def __UpperCamelCase ( ) -> List[Any]: """simple docstring""" from doctest import testmod testmod() lowerCAmelCase : Optional[Any] = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(_A ) print('\nReading/changing Node data using indexing:' ) print(F"Element at Position 1: {linked_list[1]}" ) lowerCAmelCase : Tuple = input('Enter New Value: ' ).strip() print('New list:' ) print(_A ) print(F"length of linked_list is : {len(_A )}" ) if __name__ == "__main__": main()
646
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : Dict = KandinskyVaaControlnetImgaImgPipeline _lowerCamelCase : int = ["""image_embeds""", """negative_image_embeds""", """image""", """hint"""] _lowerCamelCase : Union[str, Any] = ["""image_embeds""", """negative_image_embeds""", """image""", """hint"""] _lowerCamelCase : Optional[int] = [ """generator""", """height""", """width""", """strength""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] _lowerCamelCase : Any = False @property def lowercase ( self ): return 32 @property def lowercase ( self ): return 32 @property def lowercase ( self ): return self.time_input_dim @property def lowercase ( self ): return self.time_input_dim * 4 @property def lowercase ( self ): return 100 @property def lowercase ( self ): torch.manual_seed(0 ) lowerCAmelCase : Optional[int] = { 'in_channels': 8, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image_hint', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } lowerCAmelCase : int = UNetaDConditionModel(**snake_case__ ) return model @property def lowercase ( self ): return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def lowercase ( self ): torch.manual_seed(0 ) lowerCAmelCase : List[Any] = VQModel(**self.dummy_movq_kwargs ) return model def lowercase ( self ): lowerCAmelCase : Dict = self.dummy_unet lowerCAmelCase : int = self.dummy_movq lowerCAmelCase : str = { 'num_train_timesteps': 1000, 'beta_schedule': 'linear', 'beta_start': 0.0_0_0_8_5, 'beta_end': 0.0_1_2, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } lowerCAmelCase : Dict = DDIMScheduler(**snake_case__ ) lowerCAmelCase : str = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def lowercase ( self , snake_case__ , snake_case__=0 ): lowerCAmelCase : int = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) lowerCAmelCase : Tuple = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( snake_case__ ) # create init_image lowerCAmelCase : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) lowerCAmelCase : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase : int = Image.fromarray(np.uinta(snake_case__ ) ).convert('RGB' ).resize((256, 256) ) # create hint lowerCAmelCase : List[str] = floats_tensor((1, 3, 64, 64) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) if str(snake_case__ ).startswith('mps' ): lowerCAmelCase : Dict = torch.manual_seed(snake_case__ ) else: lowerCAmelCase : str = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) lowerCAmelCase : str = { 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'hint': hint, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 10, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def lowercase ( self ): lowerCAmelCase : Tuple = 'cpu' lowerCAmelCase : int = self.get_dummy_components() lowerCAmelCase : Optional[Any] = self.pipeline_class(**snake_case__ ) lowerCAmelCase : Optional[Any] = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : int = pipe(**self.get_dummy_inputs(snake_case__ ) ) lowerCAmelCase : Any = output.images lowerCAmelCase : str = pipe( **self.get_dummy_inputs(snake_case__ ) , return_dict=snake_case__ , )[0] lowerCAmelCase : int = image[0, -3:, -3:, -1] lowerCAmelCase : List[str] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase : List[Any] = np.array( [0.5_4_9_8_5_0_3_4, 0.5_5_5_0_9_3_6_5, 0.5_2_5_6_1_5_0_4, 0.5_5_7_0_4_9_4, 0.5_5_9_3_8_1_8, 0.5_2_6_3_9_7_9, 0.5_0_2_8_5_6_4_3, 0.5_0_6_9_8_4_6, 0.5_1_1_9_6_7_3_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self ): lowerCAmelCase : Optional[int] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy' ) lowerCAmelCase : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) lowerCAmelCase : List[Any] = init_image.resize((512, 512) ) lowerCAmelCase : str = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/hint_image_cat.png' ) lowerCAmelCase : Union[str, Any] = torch.from_numpy(np.array(snake_case__ ) ).float() / 255.0 lowerCAmelCase : int = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) lowerCAmelCase : List[str] = 'A robot, 4k photo' lowerCAmelCase : int = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(snake_case__ ) lowerCAmelCase : Union[str, Any] = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-controlnet-depth' , torch_dtype=torch.floataa ) lowerCAmelCase : str = pipeline.to(snake_case__ ) pipeline.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Dict = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCAmelCase : int = pipe_prior( snake_case__ , image=snake_case__ , strength=0.8_5 , generator=snake_case__ , negative_prompt='' , ).to_tuple() lowerCAmelCase : int = pipeline( image=snake_case__ , image_embeds=snake_case__ , negative_image_embeds=snake_case__ , hint=snake_case__ , generator=snake_case__ , num_inference_steps=100 , height=512 , width=512 , strength=0.5 , output_type='np' , ) lowerCAmelCase : List[str] = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(snake_case__ , snake_case__ )
706
'''simple docstring''' _lowerCAmelCase : List[str] = {str(digit): digit**5 for digit in range(10)} def __UpperCamelCase ( _A : int ) -> int: """simple docstring""" return sum(DIGITS_FIFTH_POWER[digit] for digit in str(_A ) ) def __UpperCamelCase ( ) -> int: """simple docstring""" return sum( number for number in range(10_00 , 1_00_00_00 ) if number == digits_fifth_powers_sum(_A ) ) if __name__ == "__main__": print(solution())
646
0
'''simple docstring''' import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( 'files' , [ ['full:README.md', 'dataset_infos.json'], ['empty:README.md', 'dataset_infos.json'], ['dataset_infos.json'], ['full:README.md'], ] , ) def __UpperCamelCase ( _A : str , _A : List[Any] ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase : Optional[int] = tmp_path_factory.mktemp('dset_infos_dir' ) if "full:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('---\ndataset_info:\n dataset_size: 42\n---' ) if "empty:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / 'dataset_infos.json' , 'w' ) as f: f.write('{"default": {"dataset_size": 42}}' ) lowerCAmelCase : Union[str, Any] = DatasetInfosDict.from_directory(_A ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( 'dataset_info' , [ DatasetInfo(), DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ), ] , ) def __UpperCamelCase ( _A : str , _A : DatasetInfo ) -> Optional[int]: """simple docstring""" lowerCAmelCase : str = str(_A ) dataset_info.write_to_directory(_A ) lowerCAmelCase : List[str] = DatasetInfo.from_directory(_A ) assert dataset_info == reloaded assert os.path.exists(os.path.join(_A , 'dataset_info.json' ) ) def __UpperCamelCase ( ) -> List[str]: """simple docstring""" lowerCAmelCase : Tuple = DatasetInfo( description='foo' , citation='bar' , homepage='https://foo.bar' , license='CC0' , features=Features({'a': Value('int32' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train', 'num_examples': 42}] , download_checksums={} , download_size=13_37 , post_processing_size=4_42 , dataset_size=12_34 , size_in_bytes=13_37 + 4_42 + 12_34 , ) lowerCAmelCase : Optional[int] = dataset_info._to_yaml_dict() assert sorted(_A ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) lowerCAmelCase : Any = yaml.safe_dump(_A ) lowerCAmelCase : int = yaml.safe_load(_A ) assert dataset_info_yaml_dict == reloaded def __UpperCamelCase ( ) -> Dict: """simple docstring""" lowerCAmelCase : Union[str, Any] = DatasetInfo() lowerCAmelCase : List[Any] = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( 'dataset_infos_dict' , [ DatasetInfosDict(), DatasetInfosDict({'default': DatasetInfo()} ), DatasetInfosDict({'my_config_name': DatasetInfo()} ), DatasetInfosDict( { 'default': DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ) } ), DatasetInfosDict( { 'v1': DatasetInfo(dataset_size=42 ), 'v2': DatasetInfo(dataset_size=13_37 ), } ), ] , ) def __UpperCamelCase ( _A : Tuple , _A : DatasetInfosDict ) -> List[Any]: """simple docstring""" lowerCAmelCase : Tuple = str(_A ) dataset_infos_dict.write_to_directory(_A ) lowerCAmelCase : List[str] = DatasetInfosDict.from_directory(_A ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): lowerCAmelCase : Tuple = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml lowerCAmelCase : Optional[Any] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(_A , 'README.md' ) )
707
'''simple docstring''' def __UpperCamelCase ( _A : List[str] ) -> Optional[Any]: """simple docstring""" if not head: return True # split the list to two parts lowerCAmelCase , lowerCAmelCase : str = head.next, head while fast and fast.next: lowerCAmelCase : Optional[int] = fast.next.next lowerCAmelCase : int = slow.next lowerCAmelCase : int = slow.next lowerCAmelCase : Optional[Any] = None # Don't forget here! But forget still works! # reverse the second part lowerCAmelCase : List[Any] = None while second: lowerCAmelCase : List[Any] = second.next lowerCAmelCase : Union[str, Any] = node lowerCAmelCase : Optional[Any] = second lowerCAmelCase : Any = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False lowerCAmelCase : Optional[Any] = node.next lowerCAmelCase : Tuple = head.next return True def __UpperCamelCase ( _A : Optional[Any] ) -> Optional[int]: """simple docstring""" if not head or not head.next: return True # 1. Get the midpoint (slow) lowerCAmelCase : Optional[int] = head while fast and fast.next: lowerCAmelCase , lowerCAmelCase : Optional[Any] = fast.next.next, slow.next # 2. Push the second half into the stack lowerCAmelCase : Tuple = [slow.val] while slow.next: lowerCAmelCase : Tuple = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False lowerCAmelCase : Union[str, Any] = cur.next return True def __UpperCamelCase ( _A : Tuple ) -> Optional[int]: """simple docstring""" if not head or not head.next: return True lowerCAmelCase : Optional[int] = {} lowerCAmelCase : int = 0 while head: if head.val in d: d[head.val].append(_A ) else: lowerCAmelCase : Any = [pos] lowerCAmelCase : int = head.next pos += 1 lowerCAmelCase : str = pos - 1 lowerCAmelCase : Optional[Any] = 0 for v in d.values(): if len(_A ) % 2 != 0: middle += 1 else: lowerCAmelCase : Any = 0 for i in range(0 , len(_A ) ): if v[i] + v[len(_A ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
646
0
'''simple docstring''' import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class lowerCAmelCase ( unittest.TestCase ): def __init__( self , snake_case__ , snake_case__ = True , snake_case__ = None , snake_case__ = 32 , snake_case__ = True , snake_case__ = 1 / 255 , snake_case__ = True , snake_case__ = True , snake_case__ = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , snake_case__ = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , snake_case__ = True , snake_case__=7 , snake_case__=30 , snake_case__=400 , snake_case__=3 , ): lowerCAmelCase : Tuple = parent lowerCAmelCase : Union[str, Any] = do_resize lowerCAmelCase : List[Any] = size if size is not None else {'shortest_edge': 288} lowerCAmelCase : str = size_divisor lowerCAmelCase : Optional[int] = do_rescale lowerCAmelCase : List[Any] = rescale_factor lowerCAmelCase : Tuple = do_normalize lowerCAmelCase : Union[str, Any] = do_center_crop lowerCAmelCase : str = image_mean lowerCAmelCase : List[str] = image_std lowerCAmelCase : Dict = do_pad lowerCAmelCase : List[Any] = batch_size lowerCAmelCase : Optional[int] = num_channels lowerCAmelCase : str = min_resolution lowerCAmelCase : Union[str, Any] = max_resolution def lowercase ( self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def lowercase ( self , snake_case__ , snake_case__=False ): if not batched: lowerCAmelCase : Optional[int] = self.size['shortest_edge'] lowerCAmelCase : Union[str, Any] = image_inputs[0] if isinstance(snake_case__ , Image.Image ): lowerCAmelCase : Optional[Any] = image.size else: lowerCAmelCase : Optional[Any] = image.shape[1], image.shape[2] lowerCAmelCase : int = size / min(snake_case__ , snake_case__ ) if h < w: lowerCAmelCase : int = size, scale * w else: lowerCAmelCase : str = scale * h, size lowerCAmelCase : str = int((1333 / 800) * size ) if max(snake_case__ , snake_case__ ) > max_size: lowerCAmelCase : Dict = max_size / max(snake_case__ , snake_case__ ) lowerCAmelCase : List[str] = newh * scale lowerCAmelCase : Any = neww * scale lowerCAmelCase : List[str] = int(newh + 0.5 ), int(neww + 0.5 ) lowerCAmelCase : Tuple = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: lowerCAmelCase : Optional[int] = [] for image in image_inputs: lowerCAmelCase : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCAmelCase : Optional[Any] = max(snake_case__ , key=lambda snake_case__ : item[0] )[0] lowerCAmelCase : str = max(snake_case__ , key=lambda snake_case__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : int = BridgeTowerImageProcessor if is_vision_available() else None def lowercase ( self ): lowerCAmelCase : Dict = BridgeTowerImageProcessingTester(self ) @property def lowercase ( self ): return self.image_processor_tester.prepare_image_processor_dict() def lowercase ( self ): lowerCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ , 'image_mean' ) ) self.assertTrue(hasattr(snake_case__ , 'image_std' ) ) self.assertTrue(hasattr(snake_case__ , 'do_normalize' ) ) self.assertTrue(hasattr(snake_case__ , 'do_resize' ) ) self.assertTrue(hasattr(snake_case__ , 'size' ) ) self.assertTrue(hasattr(snake_case__ , 'size_divisor' ) ) def lowercase ( self ): pass def lowercase ( self ): # Initialize image processor lowerCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , Image.Image ) # Test not batched input lowerCAmelCase : Any = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values lowerCAmelCase : Tuple = self.image_processor_tester.get_expected_values(snake_case__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase : Union[str, Any] = image_processing(snake_case__ , return_tensors='pt' ).pixel_values lowerCAmelCase : Optional[int] = self.image_processor_tester.get_expected_values(snake_case__ , batched=snake_case__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase ( self ): # Initialize image processor lowerCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , numpify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , np.ndarray ) # Test not batched input lowerCAmelCase : int = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values lowerCAmelCase : Any = self.image_processor_tester.get_expected_values(snake_case__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase : Optional[int] = image_processing(snake_case__ , return_tensors='pt' ).pixel_values lowerCAmelCase : Any = self.image_processor_tester.get_expected_values(snake_case__ , batched=snake_case__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase ( self ): # Initialize image processor lowerCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , torchify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , torch.Tensor ) # Test not batched input lowerCAmelCase : Dict = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values lowerCAmelCase : int = self.image_processor_tester.get_expected_values(snake_case__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase : Optional[Any] = image_processing(snake_case__ , return_tensors='pt' ).pixel_values lowerCAmelCase : Union[str, Any] = self.image_processor_tester.get_expected_values(snake_case__ , batched=snake_case__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
708
'''simple docstring''' import math def __UpperCamelCase ( _A : int = 1_00 ) -> int: """simple docstring""" lowerCAmelCase : List[Any] = sum(i * i for i in range(1 , n + 1 ) ) lowerCAmelCase : Optional[Any] = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f"""{solution() = }""")
646
0
import random from .binary_exp_mod import bin_exp_mod def __UpperCamelCase ( _A : List[str] , _A : Optional[int]=10_00 ) -> Any: """simple docstring""" if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd lowerCAmelCase : Union[str, Any] = n - 1 lowerCAmelCase : Dict = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) lowerCAmelCase : str = 0 while count < prec: lowerCAmelCase : int = random.randint(2 , n - 1 ) lowerCAmelCase : Tuple = bin_exp_mod(_A , _A , _A ) if b != 1: lowerCAmelCase : Tuple = True for _ in range(_A ): if b == n - 1: lowerCAmelCase : str = False break lowerCAmelCase : List[str] = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": _lowerCAmelCase : Union[str, Any] = abs(int(input('Enter bound : ').strip())) print('Here\'s the list of primes:') print(', '.join(str(i) for i in range(n + 1) if is_prime_big(i)))
709
'''simple docstring''' import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece_with_bytefallback.model') @require_sentencepiece @require_tokenizers class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : Tuple = GPTSwaTokenizer _lowerCamelCase : str = False _lowerCamelCase : Dict = True _lowerCamelCase : Optional[Any] = False def lowercase ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : Tuple = GPTSwaTokenizer(snake_case__ , eos_token='<unk>' , bos_token='<unk>' , pad_token='<unk>' ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase ( self , snake_case__ ): lowerCAmelCase : List[Any] = 'This is a test' lowerCAmelCase : List[Any] = 'This is a test' return input_text, output_text def lowercase ( self ): lowerCAmelCase : Tuple = '<s>' lowerCAmelCase : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def lowercase ( self ): lowerCAmelCase : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(snake_case__ ) , 2000 ) def lowercase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 2000 ) def lowercase ( self ): lowerCAmelCase : List[Any] = GPTSwaTokenizer(snake_case__ ) lowerCAmelCase : Optional[Any] = tokenizer.tokenize('This is a test' ) self.assertListEqual(snake_case__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , [465, 287, 265, 631, 842] ) lowerCAmelCase : Tuple = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) # fmt: off self.assertListEqual( snake_case__ , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] , ) # fmt: on lowerCAmelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual( snake_case__ , [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] , ) lowerCAmelCase : int = tokenizer.convert_ids_to_tokens(snake_case__ ) # fmt: off self.assertListEqual( snake_case__ , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] ) # fmt: on def lowercase ( self ): lowerCAmelCase : str = GPTSwaTokenizer(snake_case__ ) lowerCAmelCase : Optional[int] = ['This is a test', 'I was born in 92000, and this is falsé.'] lowerCAmelCase : Tuple = [ [465, 287, 265, 631, 842], [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(snake_case__ , snake_case__ ): self.assertListEqual(tokenizer.encode_fast(snake_case__ ) , snake_case__ ) # Test that decode_fast returns the input text for text, token_ids in zip(snake_case__ , snake_case__ ): self.assertEqual(tokenizer.decode_fast(snake_case__ ) , snake_case__ ) @slow def lowercase ( self ): lowerCAmelCase : str = [ '<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')', 'Hey there, how are you doing this fine day?', 'This is a text with a trailing spaces followed by a dot .', 'Häj sväjs lillebrör! =)', 'Det är inget fel på Mr. Cool', ] # fmt: off lowerCAmelCase : Tuple = {'input_ids': [[6_3423, 5, 6811, 1_4954, 282, 816, 3821, 6_3466, 6_3425, 6_3462, 18, 6_3978, 678, 301, 1320, 6_3423, 6_3455, 6_3458, 18, 6_3982, 4246, 3940, 1901, 4_7789, 5547, 1_8994], [1_9630, 1100, 6_3446, 1342, 633, 544, 4488, 593, 5102, 2416, 6_3495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1652, 428, 268, 1936, 515, 268, 5_8593, 2_2413, 9106, 546, 268, 3_3213, 6_3979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_5130, 6_3450, 924, 6_3449, 2249, 4062, 1558, 318, 6_3504, 2_1498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2827, 2559, 332, 6575, 6_3443, 2_6801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name='AI-Sweden/gpt-sw3-126m' , sequences=snake_case__ , )
646
0
'''simple docstring''' from cva import destroyAllWindows, imread, imshow, waitKey def __UpperCamelCase ( _A : Tuple ) -> List[Any]: """simple docstring""" lowerCAmelCase : int = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(_A ): for j in range(_A ): lowerCAmelCase : str = [2_55, 2_55, 2_55] - img[i][j] return img if __name__ == "__main__": # read original image _lowerCAmelCase : int = imread('image_data/lena.jpg', 1) # convert to its negative _lowerCAmelCase : List[str] = convert_to_negative(img) # show result image imshow('negative of original image', img) waitKey(0) destroyAllWindows()
710
'''simple docstring''' def __UpperCamelCase ( _A : int ) -> bool: """simple docstring""" return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
646
0
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCAmelCase ( a ): def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): super().__init__() if safety_checker is None: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" ' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered' ' results in services or applications open to the public. Both the diffusers team and Hugging Face' ' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling' ' it only for use-cases that involve analyzing network behavior or auditing its results. For more' ' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .' ) self.register_modules( speech_model=snake_case__ , speech_processor=snake_case__ , vae=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , unet=snake_case__ , scheduler=snake_case__ , feature_extractor=snake_case__ , ) def lowercase ( self , snake_case__ = "auto" ): if slice_size == "auto": lowerCAmelCase : Union[str, Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(snake_case__ ) def lowercase ( self ): self.enable_attention_slicing(snake_case__ ) @torch.no_grad() def __call__( self , snake_case__ , snake_case__=1_6000 , snake_case__ = 512 , snake_case__ = 512 , snake_case__ = 50 , snake_case__ = 7.5 , snake_case__ = None , snake_case__ = 1 , snake_case__ = 0.0 , snake_case__ = None , snake_case__ = None , snake_case__ = "pil" , snake_case__ = True , snake_case__ = None , snake_case__ = 1 , **snake_case__ , ): lowerCAmelCase : List[str] = self.speech_processor.feature_extractor( snake_case__ , return_tensors='pt' , sampling_rate=snake_case__ ).input_features.to(self.device ) lowerCAmelCase : Optional[Any] = self.speech_model.generate(snake_case__ , max_length=48_0000 ) lowerCAmelCase : str = self.speech_processor.tokenizer.batch_decode(snake_case__ , skip_special_tokens=snake_case__ , normalize=snake_case__ )[ 0 ] if isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = 1 elif isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = len(snake_case__ ) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(snake_case__ )}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(snake_case__ , snake_case__ ) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(snake_case__ )}." ) # get prompt text embeddings lowerCAmelCase : str = self.tokenizer( snake_case__ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) lowerCAmelCase : Tuple = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowerCAmelCase : str = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) lowerCAmelCase : Union[str, Any] = text_input_ids[:, : self.tokenizer.model_max_length] lowerCAmelCase : Union[str, Any] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowerCAmelCase : int = text_embeddings.shape lowerCAmelCase : Any = text_embeddings.repeat(1 , snake_case__ , 1 ) lowerCAmelCase : Optional[int] = text_embeddings.view(bs_embed * num_images_per_prompt , snake_case__ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowerCAmelCase : List[str] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowerCAmelCase : List[str] if negative_prompt is None: lowerCAmelCase : Any = [''] * batch_size elif type(snake_case__ ) is not type(snake_case__ ): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(snake_case__ )} !=" f" {type(snake_case__ )}." ) elif isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = [negative_prompt] elif batch_size != len(snake_case__ ): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(snake_case__ )}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" ' the batch size of `prompt`.' ) else: lowerCAmelCase : Dict = negative_prompt lowerCAmelCase : Optional[int] = text_input_ids.shape[-1] lowerCAmelCase : int = self.tokenizer( snake_case__ , padding='max_length' , max_length=snake_case__ , truncation=snake_case__ , return_tensors='pt' , ) lowerCAmelCase : Union[str, Any] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowerCAmelCase : List[Any] = uncond_embeddings.shape[1] lowerCAmelCase : List[str] = uncond_embeddings.repeat(1 , snake_case__ , 1 ) lowerCAmelCase : Optional[Any] = uncond_embeddings.view(batch_size * num_images_per_prompt , snake_case__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCAmelCase : List[str] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowerCAmelCase : Union[str, Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowerCAmelCase : Dict = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowerCAmelCase : str = torch.randn(snake_case__ , generator=snake_case__ , device='cpu' , dtype=snake_case__ ).to( self.device ) else: lowerCAmelCase : Tuple = torch.randn(snake_case__ , generator=snake_case__ , device=self.device , dtype=snake_case__ ) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) lowerCAmelCase : str = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(snake_case__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowerCAmelCase : Union[str, Any] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowerCAmelCase : Any = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowerCAmelCase : Tuple = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCAmelCase : Union[str, Any] = {} if accepts_eta: lowerCAmelCase : int = eta for i, t in enumerate(self.progress_bar(snake_case__ ) ): # expand the latents if we are doing classifier free guidance lowerCAmelCase : Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCAmelCase : Tuple = self.scheduler.scale_model_input(snake_case__ , snake_case__ ) # predict the noise residual lowerCAmelCase : List[str] = self.unet(snake_case__ , snake_case__ , encoder_hidden_states=snake_case__ ).sample # perform guidance if do_classifier_free_guidance: lowerCAmelCase : Dict = noise_pred.chunk(2 ) lowerCAmelCase : Tuple = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowerCAmelCase : int = self.scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase : List[Any] = 1 / 0.1_8_2_1_5 * latents lowerCAmelCase : Dict = self.vae.decode(snake_case__ ).sample lowerCAmelCase : List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowerCAmelCase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowerCAmelCase : Dict = self.numpy_to_pil(snake_case__ ) if not return_dict: return image return StableDiffusionPipelineOutput(images=snake_case__ , nsfw_content_detected=snake_case__ )
711
'''simple docstring''' import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( 'files' , [ ['full:README.md', 'dataset_infos.json'], ['empty:README.md', 'dataset_infos.json'], ['dataset_infos.json'], ['full:README.md'], ] , ) def __UpperCamelCase ( _A : str , _A : List[Any] ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase : Optional[int] = tmp_path_factory.mktemp('dset_infos_dir' ) if "full:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('---\ndataset_info:\n dataset_size: 42\n---' ) if "empty:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / 'dataset_infos.json' , 'w' ) as f: f.write('{"default": {"dataset_size": 42}}' ) lowerCAmelCase : Union[str, Any] = DatasetInfosDict.from_directory(_A ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( 'dataset_info' , [ DatasetInfo(), DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ), ] , ) def __UpperCamelCase ( _A : str , _A : DatasetInfo ) -> Optional[int]: """simple docstring""" lowerCAmelCase : str = str(_A ) dataset_info.write_to_directory(_A ) lowerCAmelCase : List[str] = DatasetInfo.from_directory(_A ) assert dataset_info == reloaded assert os.path.exists(os.path.join(_A , 'dataset_info.json' ) ) def __UpperCamelCase ( ) -> List[str]: """simple docstring""" lowerCAmelCase : Tuple = DatasetInfo( description='foo' , citation='bar' , homepage='https://foo.bar' , license='CC0' , features=Features({'a': Value('int32' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train', 'num_examples': 42}] , download_checksums={} , download_size=13_37 , post_processing_size=4_42 , dataset_size=12_34 , size_in_bytes=13_37 + 4_42 + 12_34 , ) lowerCAmelCase : Optional[int] = dataset_info._to_yaml_dict() assert sorted(_A ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) lowerCAmelCase : Any = yaml.safe_dump(_A ) lowerCAmelCase : int = yaml.safe_load(_A ) assert dataset_info_yaml_dict == reloaded def __UpperCamelCase ( ) -> Dict: """simple docstring""" lowerCAmelCase : Union[str, Any] = DatasetInfo() lowerCAmelCase : List[Any] = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( 'dataset_infos_dict' , [ DatasetInfosDict(), DatasetInfosDict({'default': DatasetInfo()} ), DatasetInfosDict({'my_config_name': DatasetInfo()} ), DatasetInfosDict( { 'default': DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ) } ), DatasetInfosDict( { 'v1': DatasetInfo(dataset_size=42 ), 'v2': DatasetInfo(dataset_size=13_37 ), } ), ] , ) def __UpperCamelCase ( _A : Tuple , _A : DatasetInfosDict ) -> List[Any]: """simple docstring""" lowerCAmelCase : Tuple = str(_A ) dataset_infos_dict.write_to_directory(_A ) lowerCAmelCase : List[str] = DatasetInfosDict.from_directory(_A ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): lowerCAmelCase : Tuple = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml lowerCAmelCase : Optional[Any] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(_A , 'README.md' ) )
646
0
import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter _lowerCAmelCase : Optional[Any] = True except ImportError: _lowerCAmelCase : List[str] = False _lowerCAmelCase : Any = logging.get_logger(__name__) # pylint: disable=invalid-name def __UpperCamelCase ( _A : Namespace ) -> Any: """simple docstring""" return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class lowerCAmelCase ( a ): @staticmethod def lowercase ( snake_case__ ): lowerCAmelCase : Any = parser.add_parser('add-new-model' ) add_new_model_parser.add_argument('--testing' , action='store_true' , help='If in testing mode.' ) add_new_model_parser.add_argument('--testing_file' , type=snake_case__ , help='Configuration file on which to run.' ) add_new_model_parser.add_argument( '--path' , type=snake_case__ , help='Path to cookiecutter. Should only be used for testing purposes.' ) add_new_model_parser.set_defaults(func=snake_case__ ) def __init__( self , snake_case__ , snake_case__ , snake_case__=None , *snake_case__ ): lowerCAmelCase : List[Any] = testing lowerCAmelCase : Any = testing_file lowerCAmelCase : Any = path def lowercase ( self ): warnings.warn( 'The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. ' 'It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality ' 'checks, you should use `transformers-cli add-new-model-like` instead.' ) if not _has_cookiecutter: raise ImportError( 'Model creation dependencies are required to use the `add_new_model` command. Install them by running ' 'the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n' ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory lowerCAmelCase : Optional[Any] = [directory for directory in os.listdir() if 'cookiecutter-template-' == directory[:22]] if len(snake_case__ ) > 0: raise ValueError( 'Several directories starting with `cookiecutter-template-` in current working directory. ' 'Please clean your directory by removing all folders starting with `cookiecutter-template-` or ' 'change your working directory.' ) lowerCAmelCase : str = ( Path(snake_case__ ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) lowerCAmelCase : Tuple = path_to_transformer_root / 'templates' / 'adding_a_new_model' # Execute cookiecutter if not self._testing: cookiecutter(str(snake_case__ ) ) else: with open(self._testing_file , 'r' ) as configuration_file: lowerCAmelCase : Optional[Any] = json.load(snake_case__ ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) , no_input=snake_case__ , extra_context=snake_case__ , ) lowerCAmelCase : Union[str, Any] = [directory for directory in os.listdir() if 'cookiecutter-template-' in directory[:22]][0] # Retrieve configuration with open(directory + '/configuration.json' , 'r' ) as configuration_file: lowerCAmelCase : Any = json.load(snake_case__ ) lowerCAmelCase : Union[str, Any] = configuration['lowercase_modelname'] lowerCAmelCase : Optional[Any] = configuration['generate_tensorflow_pytorch_and_flax'] os.remove(f"{directory}/configuration.json" ) lowerCAmelCase : Any = 'PyTorch' in generate_tensorflow_pytorch_and_flax lowerCAmelCase : Dict = 'TensorFlow' in generate_tensorflow_pytorch_and_flax lowerCAmelCase : int = 'Flax' in generate_tensorflow_pytorch_and_flax lowerCAmelCase : str = f"{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}" os.makedirs(snake_case__ , exist_ok=snake_case__ ) os.makedirs(f"{path_to_transformer_root}/tests/models/{lowercase_model_name}" , exist_ok=snake_case__ ) # Tests require submodules as they have parent imports with open(f"{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py" , 'w' ): pass shutil.move( f"{directory}/__init__.py" , f"{model_dir}/__init__.py" , ) shutil.move( f"{directory}/configuration_{lowercase_model_name}.py" , f"{model_dir}/configuration_{lowercase_model_name}.py" , ) def remove_copy_lines(snake_case__ ): with open(snake_case__ , 'r' ) as f: lowerCAmelCase : Union[str, Any] = f.readlines() with open(snake_case__ , 'w' ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(snake_case__ ) if output_pytorch: if not self._testing: remove_copy_lines(f"{directory}/modeling_{lowercase_model_name}.py" ) shutil.move( f"{directory}/modeling_{lowercase_model_name}.py" , f"{model_dir}/modeling_{lowercase_model_name}.py" , ) shutil.move( f"{directory}/test_modeling_{lowercase_model_name}.py" , f"{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py" , ) else: os.remove(f"{directory}/modeling_{lowercase_model_name}.py" ) os.remove(f"{directory}/test_modeling_{lowercase_model_name}.py" ) if output_tensorflow: if not self._testing: remove_copy_lines(f"{directory}/modeling_tf_{lowercase_model_name}.py" ) shutil.move( f"{directory}/modeling_tf_{lowercase_model_name}.py" , f"{model_dir}/modeling_tf_{lowercase_model_name}.py" , ) shutil.move( f"{directory}/test_modeling_tf_{lowercase_model_name}.py" , f"{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py" , ) else: os.remove(f"{directory}/modeling_tf_{lowercase_model_name}.py" ) os.remove(f"{directory}/test_modeling_tf_{lowercase_model_name}.py" ) if output_flax: if not self._testing: remove_copy_lines(f"{directory}/modeling_flax_{lowercase_model_name}.py" ) shutil.move( f"{directory}/modeling_flax_{lowercase_model_name}.py" , f"{model_dir}/modeling_flax_{lowercase_model_name}.py" , ) shutil.move( f"{directory}/test_modeling_flax_{lowercase_model_name}.py" , f"{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py" , ) else: os.remove(f"{directory}/modeling_flax_{lowercase_model_name}.py" ) os.remove(f"{directory}/test_modeling_flax_{lowercase_model_name}.py" ) shutil.move( f"{directory}/{lowercase_model_name}.md" , f"{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md" , ) shutil.move( f"{directory}/tokenization_{lowercase_model_name}.py" , f"{model_dir}/tokenization_{lowercase_model_name}.py" , ) shutil.move( f"{directory}/tokenization_fast_{lowercase_model_name}.py" , f"{model_dir}/tokenization_{lowercase_model_name}_fast.py" , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(snake_case__ , snake_case__ , snake_case__ ): # Create temp file lowerCAmelCase : Dict = mkstemp() lowerCAmelCase : Any = False with fdopen(snake_case__ , 'w' ) as new_file: with open(snake_case__ ) as old_file: for line in old_file: new_file.write(snake_case__ ) if line_to_copy_below in line: lowerCAmelCase : Tuple = True for line_to_copy in lines_to_copy: new_file.write(snake_case__ ) if not line_found: raise ValueError(f"Line {line_to_copy_below} was not found in file." ) # Copy the file permissions from the old file to the new file copymode(snake_case__ , snake_case__ ) # Remove original file remove(snake_case__ ) # Move new file move(snake_case__ , snake_case__ ) def skip_units(snake_case__ ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(snake_case__ ): with open(snake_case__ ) as datafile: lowerCAmelCase : Union[str, Any] = [] lowerCAmelCase : Dict = False lowerCAmelCase : Any = False for line in datafile: if "# To replace in: " in line and "##" not in line: lowerCAmelCase : Dict = line.split('"' )[1] lowerCAmelCase : List[str] = skip_units(snake_case__ ) elif "# Below: " in line and "##" not in line: lowerCAmelCase : Tuple = line.split('"' )[1] lowerCAmelCase : Any = skip_units(snake_case__ ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase : Any = [] elif "# Replace with" in line and "##" not in line: lowerCAmelCase : Optional[Any] = [] elif "##" not in line: lines_to_copy.append(snake_case__ ) remove(snake_case__ ) replace_in_files(f"{directory}/to_replace_{lowercase_model_name}.py" ) os.rmdir(snake_case__ )
712
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCAmelCase ( a ): def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): super().__init__() if safety_checker is None: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" ' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered' ' results in services or applications open to the public. Both the diffusers team and Hugging Face' ' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling' ' it only for use-cases that involve analyzing network behavior or auditing its results. For more' ' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .' ) self.register_modules( speech_model=snake_case__ , speech_processor=snake_case__ , vae=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , unet=snake_case__ , scheduler=snake_case__ , feature_extractor=snake_case__ , ) def lowercase ( self , snake_case__ = "auto" ): if slice_size == "auto": lowerCAmelCase : Union[str, Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(snake_case__ ) def lowercase ( self ): self.enable_attention_slicing(snake_case__ ) @torch.no_grad() def __call__( self , snake_case__ , snake_case__=1_6000 , snake_case__ = 512 , snake_case__ = 512 , snake_case__ = 50 , snake_case__ = 7.5 , snake_case__ = None , snake_case__ = 1 , snake_case__ = 0.0 , snake_case__ = None , snake_case__ = None , snake_case__ = "pil" , snake_case__ = True , snake_case__ = None , snake_case__ = 1 , **snake_case__ , ): lowerCAmelCase : List[str] = self.speech_processor.feature_extractor( snake_case__ , return_tensors='pt' , sampling_rate=snake_case__ ).input_features.to(self.device ) lowerCAmelCase : Optional[Any] = self.speech_model.generate(snake_case__ , max_length=48_0000 ) lowerCAmelCase : str = self.speech_processor.tokenizer.batch_decode(snake_case__ , skip_special_tokens=snake_case__ , normalize=snake_case__ )[ 0 ] if isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = 1 elif isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = len(snake_case__ ) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(snake_case__ )}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(snake_case__ , snake_case__ ) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(snake_case__ )}." ) # get prompt text embeddings lowerCAmelCase : str = self.tokenizer( snake_case__ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) lowerCAmelCase : Tuple = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowerCAmelCase : str = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) lowerCAmelCase : Union[str, Any] = text_input_ids[:, : self.tokenizer.model_max_length] lowerCAmelCase : Union[str, Any] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : int = text_embeddings.shape lowerCAmelCase : Any = text_embeddings.repeat(1 , snake_case__ , 1 ) lowerCAmelCase : Optional[int] = text_embeddings.view(bs_embed * num_images_per_prompt , snake_case__ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowerCAmelCase : List[str] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowerCAmelCase : List[str] if negative_prompt is None: lowerCAmelCase : Any = [''] * batch_size elif type(snake_case__ ) is not type(snake_case__ ): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(snake_case__ )} !=" f" {type(snake_case__ )}." ) elif isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = [negative_prompt] elif batch_size != len(snake_case__ ): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(snake_case__ )}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" ' the batch size of `prompt`.' ) else: lowerCAmelCase : Dict = negative_prompt lowerCAmelCase : Optional[int] = text_input_ids.shape[-1] lowerCAmelCase : int = self.tokenizer( snake_case__ , padding='max_length' , max_length=snake_case__ , truncation=snake_case__ , return_tensors='pt' , ) lowerCAmelCase : Union[str, Any] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowerCAmelCase : List[Any] = uncond_embeddings.shape[1] lowerCAmelCase : List[str] = uncond_embeddings.repeat(1 , snake_case__ , 1 ) lowerCAmelCase : Optional[Any] = uncond_embeddings.view(batch_size * num_images_per_prompt , snake_case__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCAmelCase : List[str] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowerCAmelCase : Union[str, Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowerCAmelCase : Dict = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowerCAmelCase : str = torch.randn(snake_case__ , generator=snake_case__ , device='cpu' , dtype=snake_case__ ).to( self.device ) else: lowerCAmelCase : Tuple = torch.randn(snake_case__ , generator=snake_case__ , device=self.device , dtype=snake_case__ ) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) lowerCAmelCase : str = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(snake_case__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowerCAmelCase : Union[str, Any] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowerCAmelCase : Any = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowerCAmelCase : Tuple = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCAmelCase : Union[str, Any] = {} if accepts_eta: lowerCAmelCase : int = eta for i, t in enumerate(self.progress_bar(snake_case__ ) ): # expand the latents if we are doing classifier free guidance lowerCAmelCase : Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCAmelCase : Tuple = self.scheduler.scale_model_input(snake_case__ , snake_case__ ) # predict the noise residual lowerCAmelCase : List[str] = self.unet(snake_case__ , snake_case__ , encoder_hidden_states=snake_case__ ).sample # perform guidance if do_classifier_free_guidance: lowerCAmelCase , lowerCAmelCase : Dict = noise_pred.chunk(2 ) lowerCAmelCase : Tuple = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowerCAmelCase : int = self.scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase : List[Any] = 1 / 0.1_8_2_1_5 * latents lowerCAmelCase : Dict = self.vae.decode(snake_case__ ).sample lowerCAmelCase : List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowerCAmelCase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowerCAmelCase : Dict = self.numpy_to_pil(snake_case__ ) if not return_dict: return image return StableDiffusionPipelineOutput(images=snake_case__ , nsfw_content_detected=snake_case__ )
646
0
from math import sqrt def __UpperCamelCase ( _A : int = 1_00_00_00 ) -> int: """simple docstring""" lowerCAmelCase : int = 0 lowerCAmelCase : int = 0 lowerCAmelCase : int while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(_A , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f"""{solution() = }""")
713
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : List[Any] = LDMTextToImagePipeline _lowerCamelCase : Optional[Any] = TEXT_TO_IMAGE_PARAMS - { """negative_prompt""", """negative_prompt_embeds""", """cross_attention_kwargs""", """prompt_embeds""", } _lowerCamelCase : List[str] = PipelineTesterMixin.required_optional_params - { """num_images_per_prompt""", """callback""", """callback_steps""", } _lowerCamelCase : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS _lowerCamelCase : Optional[int] = False def lowercase ( self ): torch.manual_seed(0 ) lowerCAmelCase : Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) lowerCAmelCase : int = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , ) torch.manual_seed(0 ) lowerCAmelCase : str = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') , up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') , latent_channels=4 , ) torch.manual_seed(0 ) lowerCAmelCase : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowerCAmelCase : str = CLIPTextModel(snake_case__ ) lowerCAmelCase : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCAmelCase : List[Any] = { 'unet': unet, 'scheduler': scheduler, 'vqvae': vae, 'bert': text_encoder, 'tokenizer': tokenizer, } return components def lowercase ( self , snake_case__ , snake_case__=0 ): if str(snake_case__ ).startswith('mps' ): lowerCAmelCase : Optional[int] = torch.manual_seed(snake_case__ ) else: lowerCAmelCase : str = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) lowerCAmelCase : Tuple = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase ( self ): lowerCAmelCase : List[str] = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase : Optional[Any] = self.get_dummy_components() lowerCAmelCase : Optional[Any] = LDMTextToImagePipeline(**snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Tuple = self.get_dummy_inputs(snake_case__ ) lowerCAmelCase : Union[str, Any] = pipe(**snake_case__ ).images lowerCAmelCase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) lowerCAmelCase : List[Any] = np.array([0.6_1_0_1, 0.6_1_5_6, 0.5_6_2_2, 0.4_8_9_5, 0.6_6_6_1, 0.3_8_0_4, 0.5_7_4_8, 0.6_1_3_6, 0.5_0_1_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self , snake_case__ , snake_case__=torch.floataa , snake_case__=0 ): lowerCAmelCase : List[str] = torch.manual_seed(snake_case__ ) lowerCAmelCase : int = np.random.RandomState(snake_case__ ).standard_normal((1, 4, 32, 32) ) lowerCAmelCase : Optional[Any] = torch.from_numpy(snake_case__ ).to(device=snake_case__ , dtype=snake_case__ ) lowerCAmelCase : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase ( self ): lowerCAmelCase : Tuple = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Optional[Any] = self.get_inputs(snake_case__ ) lowerCAmelCase : List[Any] = pipe(**snake_case__ ).images lowerCAmelCase : str = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) lowerCAmelCase : Tuple = np.array([0.5_1_8_2_5, 0.5_2_8_5_0, 0.5_2_5_4_3, 0.5_4_2_5_8, 0.5_2_3_0_4, 0.5_2_5_6_9, 0.5_4_3_6_3, 0.5_5_2_7_6, 0.5_6_8_7_8] ) lowerCAmelCase : int = np.abs(expected_slice - image_slice ).max() assert max_diff < 1e-3 @nightly @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self , snake_case__ , snake_case__=torch.floataa , snake_case__=0 ): lowerCAmelCase : List[str] = torch.manual_seed(snake_case__ ) lowerCAmelCase : Any = np.random.RandomState(snake_case__ ).standard_normal((1, 4, 32, 32) ) lowerCAmelCase : List[Any] = torch.from_numpy(snake_case__ ).to(device=snake_case__ , dtype=snake_case__ ) lowerCAmelCase : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase ( self ): lowerCAmelCase : Optional[int] = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : int = self.get_inputs(snake_case__ ) lowerCAmelCase : Optional[int] = pipe(**snake_case__ ).images[0] lowerCAmelCase : Optional[int] = load_numpy( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy' ) lowerCAmelCase : List[str] = np.abs(expected_image - image ).max() assert max_diff < 1e-3
646
0
'''simple docstring''' from typing import Dict, Optional import numpy as np import datasets _lowerCAmelCase : int = '\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n' _lowerCAmelCase : List[str] = '\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric("mean_iou")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mean_iou\': 0.47750000000000004, \'mean_accuracy\': 0.5916666666666666, \'overall_accuracy\': 0.5263157894736842, \'per_category_iou\': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), \'per_category_accuracy\': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n' _lowerCAmelCase : List[str] = '\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}' def __UpperCamelCase ( _A : Any , _A : Optional[Any] , _A : Union[str, Any] , _A : bool , _A : Optional[Dict[int, int]] = None , _A : bool = False , ) -> Any: """simple docstring""" if label_map is not None: for old_id, new_id in label_map.items(): lowerCAmelCase : str = new_id # turn into Numpy arrays lowerCAmelCase : List[str] = np.array(_A ) lowerCAmelCase : List[str] = np.array(_A ) if reduce_labels: lowerCAmelCase : List[Any] = 2_55 lowerCAmelCase : Dict = label - 1 lowerCAmelCase : int = 2_55 lowerCAmelCase : Dict = label != ignore_index lowerCAmelCase : Optional[Any] = np.not_equal(_A , _A ) lowerCAmelCase : List[Any] = pred_label[mask] lowerCAmelCase : Any = np.array(_A )[mask] lowerCAmelCase : List[str] = pred_label[pred_label == label] lowerCAmelCase : Any = np.histogram(_A , bins=_A , range=(0, num_labels - 1) )[0] lowerCAmelCase : Union[str, Any] = np.histogram(_A , bins=_A , range=(0, num_labels - 1) )[0] lowerCAmelCase : int = np.histogram(_A , bins=_A , range=(0, num_labels - 1) )[0] lowerCAmelCase : List[str] = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def __UpperCamelCase ( _A : Optional[int] , _A : Dict , _A : Dict , _A : bool , _A : Optional[Dict[int, int]] = None , _A : bool = False , ) -> Optional[int]: """simple docstring""" lowerCAmelCase : List[str] = np.zeros((num_labels,) , dtype=np.floataa ) lowerCAmelCase : Tuple = np.zeros((num_labels,) , dtype=np.floataa ) lowerCAmelCase : Any = np.zeros((num_labels,) , dtype=np.floataa ) lowerCAmelCase : Tuple = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(_A , _A ): lowerCAmelCase : Any = intersect_and_union( _A , _A , _A , _A , _A , _A ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def __UpperCamelCase ( _A : Tuple , _A : Dict , _A : Optional[int] , _A : bool , _A : Optional[int] = None , _A : Optional[Dict[int, int]] = None , _A : bool = False , ) -> int: """simple docstring""" lowerCAmelCase : List[str] = total_intersect_and_union( _A , _A , _A , _A , _A , _A ) # compute metrics lowerCAmelCase : List[str] = {} lowerCAmelCase : Any = total_area_intersect.sum() / total_area_label.sum() lowerCAmelCase : Optional[Any] = total_area_intersect / total_area_union lowerCAmelCase : Union[str, Any] = total_area_intersect / total_area_label lowerCAmelCase : Tuple = np.nanmean(_A ) lowerCAmelCase : Tuple = np.nanmean(_A ) lowerCAmelCase : int = all_acc lowerCAmelCase : Optional[Any] = iou lowerCAmelCase : str = acc if nan_to_num is not None: lowerCAmelCase : Optional[Any] = {metric: np.nan_to_num(_A , nan=_A ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase ( datasets.Metric ): def lowercase ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { 'predictions': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), 'references': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), } ) , reference_urls=[ 'https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py' ] , ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , snake_case__ = None , snake_case__ = False , ): lowerCAmelCase : Optional[Any] = mean_iou( results=snake_case__ , gt_seg_maps=snake_case__ , num_labels=snake_case__ , ignore_index=snake_case__ , nan_to_num=snake_case__ , label_map=snake_case__ , reduce_labels=snake_case__ , ) return iou_result
714
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Tuple = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { 'facebook/xmod-base': 'https://huggingface.co/facebook/xmod-base/resolve/main/config.json', 'facebook/xmod-large-prenorm': 'https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json', 'facebook/xmod-base-13-125k': 'https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json', 'facebook/xmod-base-30-125k': 'https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json', 'facebook/xmod-base-30-195k': 'https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json', 'facebook/xmod-base-60-125k': 'https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json', 'facebook/xmod-base-60-265k': 'https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json', 'facebook/xmod-base-75-125k': 'https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json', 'facebook/xmod-base-75-269k': 'https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json', } class lowerCAmelCase ( a ): _lowerCamelCase : int = """xmod""" def __init__( self , snake_case__=3_0522 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=1e-1_2 , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__="absolute" , snake_case__=True , snake_case__=None , snake_case__=False , snake_case__=2 , snake_case__=False , snake_case__=True , snake_case__=True , snake_case__=("en_XX",) , snake_case__=None , **snake_case__ , ): super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) lowerCAmelCase : Dict = vocab_size lowerCAmelCase : Optional[Any] = hidden_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob lowerCAmelCase : str = max_position_embeddings lowerCAmelCase : int = type_vocab_size lowerCAmelCase : List[Any] = initializer_range lowerCAmelCase : Any = layer_norm_eps lowerCAmelCase : Dict = position_embedding_type lowerCAmelCase : Optional[Any] = use_cache lowerCAmelCase : Union[str, Any] = classifier_dropout lowerCAmelCase : int = pre_norm lowerCAmelCase : Optional[Any] = adapter_reduction_factor lowerCAmelCase : Any = adapter_layer_norm lowerCAmelCase : Dict = adapter_reuse_layer_norm lowerCAmelCase : Any = ln_before_adapter lowerCAmelCase : Optional[Any] = list(snake_case__ ) lowerCAmelCase : List[Any] = default_language class lowerCAmelCase ( a ): @property def lowercase ( self ): if self.task == "multiple-choice": lowerCAmelCase : List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase : Optional[int] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
646
0
'''simple docstring''' from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def __UpperCamelCase ( _A : int ) -> bool: """simple docstring""" lowerCAmelCase : int = int(number**0.5 ) return number == sq * sq def __UpperCamelCase ( _A : int , _A : int , _A : int , _A : int , _A : int , _A : int ) -> tuple[int, int]: """simple docstring""" lowerCAmelCase : int = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den lowerCAmelCase : int = x_den * y_den * z_den lowerCAmelCase : int = gcd(_A , _A ) top //= hcf bottom //= hcf return top, bottom def __UpperCamelCase ( _A : int = 35 ) -> int: """simple docstring""" lowerCAmelCase : set = set() lowerCAmelCase : int lowerCAmelCase : Fraction = Fraction(0 ) lowerCAmelCase : tuple[int, int] for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 lowerCAmelCase : str = x_num * y_den + x_den * y_num lowerCAmelCase : str = x_den * y_den lowerCAmelCase : List[str] = gcd(_A , _A ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowerCAmelCase : Any = add_three( _A , _A , _A , _A , _A , _A ) unique_s.add(_A ) # n=2 lowerCAmelCase : str = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) lowerCAmelCase : Any = x_den * x_den * y_den * y_den if is_sq(_A ) and is_sq(_A ): lowerCAmelCase : Tuple = int(sqrt(_A ) ) lowerCAmelCase : List[Any] = int(sqrt(_A ) ) lowerCAmelCase : str = gcd(_A , _A ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowerCAmelCase : str = add_three( _A , _A , _A , _A , _A , _A ) unique_s.add(_A ) # n=-1 lowerCAmelCase : List[Any] = x_num * y_num lowerCAmelCase : Dict = x_den * y_num + x_num * y_den lowerCAmelCase : Any = gcd(_A , _A ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowerCAmelCase : int = add_three( _A , _A , _A , _A , _A , _A ) unique_s.add(_A ) # n=2 lowerCAmelCase : List[Any] = x_num * x_num * y_num * y_num lowerCAmelCase : List[str] = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(_A ) and is_sq(_A ): lowerCAmelCase : List[str] = int(sqrt(_A ) ) lowerCAmelCase : Union[str, Any] = int(sqrt(_A ) ) lowerCAmelCase : str = gcd(_A , _A ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowerCAmelCase : str = add_three( _A , _A , _A , _A , _A , _A ) unique_s.add(_A ) for num, den in unique_s: total += Fraction(_A , _A ) return total.denominator + total.numerator if __name__ == "__main__": print(f"""{solution() = }""")
715
'''simple docstring''' import argparse import os import re _lowerCAmelCase : Dict = 'src/diffusers' # Pattern that looks at the indentation in a line. _lowerCAmelCase : str = re.compile(r'^(\s*)\S') # Pattern that matches `"key":" and puts `key` in group 0. _lowerCAmelCase : Any = re.compile(r'^\s*"([^"]+)":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. _lowerCAmelCase : List[Any] = re.compile(r'^\s*_import_structure\["([^"]+)"\]') # Pattern that matches `"key",` and puts `key` in group 0. _lowerCAmelCase : int = re.compile(r'^\s*"([^"]+)",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. _lowerCAmelCase : Optional[Any] = re.compile(r'\[([^\]]+)\]') def __UpperCamelCase ( _A : Union[str, Any] ) -> Dict: """simple docstring""" lowerCAmelCase : Any = _re_indent.search(_A ) return "" if search is None else search.groups()[0] def __UpperCamelCase ( _A : Dict , _A : Any="" , _A : List[str]=None , _A : Any=None ) -> Tuple: """simple docstring""" lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Tuple = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(_A ): index += 1 lowerCAmelCase : Optional[int] = ['\n'.join(lines[:index] )] else: lowerCAmelCase : int = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowerCAmelCase : Tuple = [lines[index]] index += 1 while index < len(_A ) and (end_prompt is None or not lines[index].startswith(_A )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(_A ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(_A ) ) if index < len(_A ) - 1: lowerCAmelCase : List[Any] = [lines[index + 1]] index += 1 else: lowerCAmelCase : int = [] else: blocks.append('\n'.join(_A ) ) lowerCAmelCase : Any = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(_A ) > 0: blocks.append('\n'.join(_A ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(_A ): blocks.append('\n'.join(lines[index:] ) ) return blocks def __UpperCamelCase ( _A : Dict ) -> List[Any]: """simple docstring""" def _inner(_A : Tuple ): return key(_A ).lower().replace('_' , '' ) return _inner def __UpperCamelCase ( _A : Union[str, Any] , _A : Any=None ) -> Optional[Any]: """simple docstring""" def noop(_A : Any ): return x if key is None: lowerCAmelCase : List[str] = noop # Constants are all uppercase, they go first. lowerCAmelCase : str = [obj for obj in objects if key(_A ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowerCAmelCase : List[str] = [obj for obj in objects if key(_A )[0].isupper() and not key(_A ).isupper()] # Functions begin with a lowercase, they go last. lowerCAmelCase : Optional[Any] = [obj for obj in objects if not key(_A )[0].isupper()] lowerCAmelCase : Tuple = ignore_underscore(_A ) return sorted(_A , key=_A ) + sorted(_A , key=_A ) + sorted(_A , key=_A ) def __UpperCamelCase ( _A : Union[str, Any] ) -> int: """simple docstring""" def _replace(_A : List[Any] ): lowerCAmelCase : List[Any] = match.groups()[0] if "," not in imports: return F"[{imports}]" lowerCAmelCase : Dict = [part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase : List[str] = keys[:-1] return "[" + ", ".join([F"\"{k}\"" for k in sort_objects(_A )] ) + "]" lowerCAmelCase : Optional[int] = import_statement.split('\n' ) if len(_A ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowerCAmelCase : Optional[Any] = 2 if lines[1].strip() == '[' else 1 lowerCAmelCase : List[str] = [(i, _re_strip_line.search(_A ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowerCAmelCase : Optional[Any] = sort_objects(_A , key=lambda _A : x[1] ) lowerCAmelCase : Dict = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(_A ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowerCAmelCase : Optional[int] = _re_bracket_content.sub(_replace , lines[1] ) else: lowerCAmelCase : List[Any] = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase : int = keys[:-1] lowerCAmelCase : Tuple = get_indent(lines[1] ) + ', '.join([F"\"{k}\"" for k in sort_objects(_A )] ) return "\n".join(_A ) else: # Finally we have to deal with imports fitting on one line lowerCAmelCase : Union[str, Any] = _re_bracket_content.sub(_replace , _A ) return import_statement def __UpperCamelCase ( _A : str , _A : Tuple=True ) -> Optional[Any]: """simple docstring""" with open(_A , 'r' ) as f: lowerCAmelCase : Optional[int] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowerCAmelCase : List[Any] = split_code_in_indented_blocks( _A , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(_A ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowerCAmelCase : List[str] = main_blocks[block_idx] lowerCAmelCase : Union[str, Any] = block.split('\n' ) # Get to the start of the imports. lowerCAmelCase : Optional[Any] = 0 while line_idx < len(_A ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowerCAmelCase : Optional[Any] = len(_A ) else: line_idx += 1 if line_idx >= len(_A ): continue # Ignore beginning and last line: they don't contain anything. lowerCAmelCase : str = '\n'.join(block_lines[line_idx:-1] ) lowerCAmelCase : str = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowerCAmelCase : Optional[Any] = split_code_in_indented_blocks(_A , indent_level=_A ) # We have two categories of import key: list or _import_structure[key].append/extend lowerCAmelCase : Union[str, Any] = _re_direct_key if '_import_structure' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowerCAmelCase : int = [(pattern.search(_A ).groups()[0] if pattern.search(_A ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowerCAmelCase : Dict = [(i, key) for i, key in enumerate(_A ) if key is not None] lowerCAmelCase : List[Any] = [x[0] for x in sorted(_A , key=lambda _A : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowerCAmelCase : int = 0 lowerCAmelCase : Dict = [] for i in range(len(_A ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: lowerCAmelCase : str = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(_A ) count += 1 # And we put our main block back together with its first and last line. lowerCAmelCase : str = '\n'.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(_A ): if check_only: return True else: print(F"Overwriting {file}." ) with open(_A , 'w' ) as f: f.write('\n'.join(_A ) ) def __UpperCamelCase ( _A : Tuple=True ) -> Any: """simple docstring""" lowerCAmelCase : Tuple = [] for root, _, files in os.walk(_A ): if "__init__.py" in files: lowerCAmelCase : Any = sort_imports(os.path.join(_A , '__init__.py' ) , check_only=_A ) if result: lowerCAmelCase : Optional[Any] = [os.path.join(_A , '__init__.py' )] if len(_A ) > 0: raise ValueError(F"Would overwrite {len(_A )} files, run `make style`." ) if __name__ == "__main__": _lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') _lowerCAmelCase : Optional[int] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
646
0
'''simple docstring''' import requests from bsa import BeautifulSoup def __UpperCamelCase ( _A : str , _A : dict ) -> str: """simple docstring""" lowerCAmelCase : List[Any] = BeautifulSoup(requests.get(_A , params=_A ).content , 'html.parser' ) lowerCAmelCase : List[str] = soup.find('div' , attrs={'class': 'gs_ri'} ) lowerCAmelCase : Dict = div.find('div' , attrs={'class': 'gs_fl'} ).find_all('a' ) return anchors[2].get_text() if __name__ == "__main__": _lowerCAmelCase : Union[str, Any] = { 'title': ( 'Precisely geometry controlled microsupercapacitors for ultrahigh areal ' 'capacitance, volumetric capacitance, and energy density' ), 'journal': 'Chem. Mater.', 'volume': 30, 'pages': '3979-3990', 'year': 2018, 'hl': 'en', } print(get_citation('https://scholar.google.com/scholar_lookup', params=params))
716
'''simple docstring''' import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class lowerCAmelCase : def __init__( self , snake_case__ , snake_case__=13 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=99 , snake_case__=64 , snake_case__=32 , snake_case__=5 , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=16 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=3 , snake_case__=4 , snake_case__=None , ): lowerCAmelCase : str = parent lowerCAmelCase : Optional[int] = batch_size lowerCAmelCase : Optional[Any] = seq_length lowerCAmelCase : Optional[Any] = is_training lowerCAmelCase : Dict = use_input_mask lowerCAmelCase : Tuple = use_token_type_ids lowerCAmelCase : int = use_labels lowerCAmelCase : int = vocab_size lowerCAmelCase : Any = hidden_size lowerCAmelCase : Optional[Any] = embedding_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : List[str] = num_attention_heads lowerCAmelCase : List[Any] = intermediate_size lowerCAmelCase : Dict = hidden_act lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : int = attention_probs_dropout_prob lowerCAmelCase : List[Any] = max_position_embeddings lowerCAmelCase : int = type_vocab_size lowerCAmelCase : List[str] = type_sequence_label_size lowerCAmelCase : Dict = initializer_range lowerCAmelCase : Any = num_labels lowerCAmelCase : str = num_choices lowerCAmelCase : int = scope def lowercase ( self ): lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Union[str, Any] = None if self.use_input_mask: lowerCAmelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : Optional[int] = None if self.use_token_type_ids: lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : Optional[Any] = None lowerCAmelCase : Optional[Any] = None lowerCAmelCase : Dict = None if self.use_labels: lowerCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase ( self ): return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case__ , initializer_range=self.initializer_range , ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = MobileBertModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : int = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) lowerCAmelCase : Optional[int] = model(snake_case__ , token_type_ids=snake_case__ ) lowerCAmelCase : Optional[Any] = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : int = MobileBertForMaskedLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : str = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = MobileBertForNextSentencePrediction(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : str = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : List[Any] = MobileBertForPreTraining(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Tuple = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , next_sentence_label=snake_case__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = MobileBertForQuestionAnswering(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : List[str] = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = self.num_labels lowerCAmelCase : List[Any] = MobileBertForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = self.num_labels lowerCAmelCase : int = MobileBertForTokenClassification(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : List[str] = self.num_choices lowerCAmelCase : Any = MobileBertForMultipleChoice(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : int = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : List[str] = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase ( self ): lowerCAmelCase : Any = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) : Optional[Any] = config_and_inputs lowerCAmelCase : List[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase ( a , a , unittest.TestCase ): _lowerCamelCase : List[str] = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) _lowerCamelCase : Tuple = ( { """feature-extraction""": MobileBertModel, """fill-mask""": MobileBertForMaskedLM, """question-answering""": MobileBertForQuestionAnswering, """text-classification""": MobileBertForSequenceClassification, """token-classification""": MobileBertForTokenClassification, """zero-shot""": MobileBertForSequenceClassification, } if is_torch_available() else {} ) _lowerCamelCase : str = True def lowercase ( self , snake_case__ , snake_case__ , snake_case__=False ): lowerCAmelCase : int = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if return_labels: if model_class in get_values(snake_case__ ): lowerCAmelCase : str = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=snake_case__ ) lowerCAmelCase : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case__ ) return inputs_dict def lowercase ( self ): lowerCAmelCase : List[Any] = MobileBertModelTester(self ) lowerCAmelCase : Dict = ConfigTester(self , config_class=snake_case__ , hidden_size=37 ) def lowercase ( self ): self.config_tester.run_common_tests() def lowercase ( self ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*snake_case__ ) def __UpperCamelCase ( _A : Optional[Any] ) -> Optional[int]: """simple docstring""" return torch.tensor( _A , dtype=torch.long , device=_A , ) _lowerCAmelCase : Union[str, Any] = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase ( unittest.TestCase ): @slow def lowercase ( self ): lowerCAmelCase : List[str] = MobileBertModel.from_pretrained('google/mobilebert-uncased' ).to(snake_case__ ) lowerCAmelCase : List[Any] = _long_tensor([[101, 7110, 1005, 1056, 2023, 1_1333, 1_7413, 1029, 102]] ) with torch.no_grad(): lowerCAmelCase : Tuple = model(snake_case__ )[0] lowerCAmelCase : List[Any] = torch.Size((1, 9, 512) ) self.assertEqual(output.shape , snake_case__ ) lowerCAmelCase : Union[str, Any] = torch.tensor( [ [ [-2.4_7_3_6_5_2_6e0_7, 8.2_6_9_1_6_5_6e0_4, 1.6_5_2_1_8_3_8e0_5], [-5.7_5_4_1_7_0_4e-0_1, 3.9_0_5_6_0_2_2e0_0, 4.4_0_1_1_5_0_7e0_0], [2.6_0_4_7_3_5_9e0_0, 1.5_6_7_7_6_5_2e0_0, -1.7_3_2_4_1_8_8e-0_1], ] ] , device=snake_case__ , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE lowerCAmelCase : List[str] = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) lowerCAmelCase : Dict = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
646
0
'''simple docstring''' import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def __UpperCamelCase ( _A : str , _A : str , _A : List[Any] ) -> List[Any]: """simple docstring""" lowerCAmelCase : Any = AlbertConfig.from_json_file(_A ) print(F"Building PyTorch model from configuration: {config}" ) lowerCAmelCase : Optional[int] = AlbertForPreTraining(_A ) # Load weights from tf checkpoint load_tf_weights_in_albert(_A , _A , _A ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , _A ) if __name__ == "__main__": _lowerCAmelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--albert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained ALBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _lowerCAmelCase : str = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
717
'''simple docstring''' import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __UpperCamelCase ( _A : Dict ) -> int: """simple docstring""" lowerCAmelCase : Tuple = [] embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight", F"stage{idx}.patch_embed.proj.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias", F"stage{idx}.patch_embed.proj.bias", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight", F"stage{idx}.patch_embed.norm.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias", F"stage{idx}.patch_embed.norm.bias", ) ) return embed def __UpperCamelCase ( _A : List[Any] , _A : Dict ) -> Any: """simple docstring""" lowerCAmelCase : str = [] attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight", F"stage{idx}.blocks.{cnt}.attn.proj_q.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias", F"stage{idx}.blocks.{cnt}.attn.proj_q.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight", F"stage{idx}.blocks.{cnt}.attn.proj_k.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias", F"stage{idx}.blocks.{cnt}.attn.proj_k.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight", F"stage{idx}.blocks.{cnt}.attn.proj_v.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias", F"stage{idx}.blocks.{cnt}.attn.proj_v.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight", F"stage{idx}.blocks.{cnt}.attn.proj.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias", F"stage{idx}.blocks.{cnt}.attn.proj.bias", ) ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc2.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight", F"stage{idx}.blocks.{cnt}.norm1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias", F"stage{idx}.blocks.{cnt}.norm1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight", F"stage{idx}.blocks.{cnt}.norm2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias", F"stage{idx}.blocks.{cnt}.norm2.bias") ) return attention_weights def __UpperCamelCase ( _A : Optional[int] ) -> Optional[int]: """simple docstring""" lowerCAmelCase : Optional[int] = [] token.append((F"cvt.encoder.stages.{idx}.cls_token", 'stage2.cls_token') ) return token def __UpperCamelCase ( ) -> int: """simple docstring""" lowerCAmelCase : List[Any] = [] head.append(('layernorm.weight', 'norm.weight') ) head.append(('layernorm.bias', 'norm.bias') ) head.append(('classifier.weight', 'head.weight') ) head.append(('classifier.bias', 'head.bias') ) return head def __UpperCamelCase ( _A : str , _A : Optional[Any] , _A : Dict , _A : str ) -> Optional[int]: """simple docstring""" lowerCAmelCase : List[str] = 'imagenet-1k-id2label.json' lowerCAmelCase : Tuple = 10_00 lowerCAmelCase : str = 'huggingface/label-files' lowerCAmelCase : List[Any] = num_labels lowerCAmelCase : Any = json.load(open(cached_download(hf_hub_url(_A , _A , repo_type='dataset' ) ) , 'r' ) ) lowerCAmelCase : List[str] = {int(_A ): v for k, v in idalabel.items()} lowerCAmelCase : List[str] = idalabel lowerCAmelCase : str = {v: k for k, v in idalabel.items()} lowerCAmelCase : int = CvtConfig(num_labels=_A , idalabel=_A , labelaid=_A ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13": lowerCAmelCase : List[str] = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21": lowerCAmelCase : Tuple = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: lowerCAmelCase : Any = [2, 2, 20] lowerCAmelCase : List[str] = [3, 12, 16] lowerCAmelCase : List[Any] = [1_92, 7_68, 10_24] lowerCAmelCase : Union[str, Any] = CvtForImageClassification(_A ) lowerCAmelCase : str = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) lowerCAmelCase : Optional[Any] = image_size lowerCAmelCase : List[Any] = torch.load(_A , map_location=torch.device('cpu' ) ) lowerCAmelCase : str = OrderedDict() lowerCAmelCase : int = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: lowerCAmelCase : List[str] = list_of_state_dict + cls_token(_A ) lowerCAmelCase : Optional[Any] = list_of_state_dict + embeddings(_A ) for cnt in range(config.depth[idx] ): lowerCAmelCase : List[Any] = list_of_state_dict + attention(_A , _A ) lowerCAmelCase : List[str] = list_of_state_dict + final() for gg in list_of_state_dict: print(_A ) for i in range(len(_A ) ): lowerCAmelCase : Tuple = original_weights[list_of_state_dict[i][1]] model.load_state_dict(_A ) model.save_pretrained(_A ) image_processor.save_pretrained(_A ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": _lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '--cvt_model', default='cvt-w24', type=str, help='Name of the cvt model you\'d like to convert.', ) parser.add_argument( '--image_size', default=384, type=int, help='Input Image Size', ) parser.add_argument( '--cvt_file_name', default=r'cvtmodels\CvT-w24-384x384-IN-22k.pth', type=str, help='Input Image Size', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) _lowerCAmelCase : str = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
646
0
'''simple docstring''' import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def __UpperCamelCase ( _A , _A , _A=0 ) -> Optional[int]: """simple docstring""" if name is None: lowerCAmelCase : Optional[int] = None else: lowerCAmelCase : Any = '.' * max(0 , spaces - 2 ) + '# {:' + str(50 - spaces ) + 's}' lowerCAmelCase : Dict = fmt.format(_A ) # Print and recurse (if needed). if isinstance(_A , _A ): if msg is not None: print(_A ) for k in val.keys(): recursive_print(_A , val[k] , spaces + 2 ) elif isinstance(_A , torch.Tensor ): print(_A , ':' , val.size() ) else: print(_A , ':' , _A ) def __UpperCamelCase ( _A , _A , _A , _A , _A ) -> Any: """simple docstring""" lowerCAmelCase : Optional[Any] = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] lowerCAmelCase : Tuple = (num_heads, hidden_size, num_splits) + input_shape[1:] lowerCAmelCase : Tuple = param.view(*_A ) lowerCAmelCase : Any = param.transpose(0 , 2 ) lowerCAmelCase : Union[str, Any] = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] lowerCAmelCase : Tuple = (num_heads, num_splits, hidden_size) + input_shape[1:] lowerCAmelCase : Any = param.view(*_A ) lowerCAmelCase : str = param.transpose(0 , 1 ).contiguous() lowerCAmelCase : Optional[int] = param.view(*_A ) return param def __UpperCamelCase ( _A , _A , _A ) -> str: """simple docstring""" lowerCAmelCase : Optional[Any] = {} # old versions did not store training args lowerCAmelCase : Any = input_state_dict.get('args' , _A ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) lowerCAmelCase : Optional[int] = ds_args.padded_vocab_size lowerCAmelCase : Tuple = ds_args.max_position_embeddings lowerCAmelCase : Dict = ds_args.hidden_size lowerCAmelCase : Optional[int] = ds_args.num_layers lowerCAmelCase : Union[str, Any] = ds_args.num_attention_heads lowerCAmelCase : str = ds_args.ffn_hidden_size # pprint(config) # The number of heads. lowerCAmelCase : str = config.n_head # The hidden_size per head. lowerCAmelCase : Optional[Any] = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): lowerCAmelCase : int = input_state_dict['checkpoint_version'] else: lowerCAmelCase : Optional[Any] = 0.0 # The model. lowerCAmelCase : Tuple = input_state_dict['model'] # The language model. lowerCAmelCase : int = model['language_model'] # The embeddings. lowerCAmelCase : Dict = lm['embedding'] # The word embeddings. lowerCAmelCase : Union[str, Any] = embeddings['word_embeddings']['weight'] # Truncate the embedding table to vocab_size rows. lowerCAmelCase : List[str] = word_embeddings[: config.vocab_size, :] lowerCAmelCase : int = word_embeddings # The position embeddings. lowerCAmelCase : Optional[Any] = embeddings['position_embeddings']['weight'] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] lowerCAmelCase : int = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( F"pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don't match" ) # Store the position embeddings. lowerCAmelCase : int = pos_embeddings # The transformer. lowerCAmelCase : Union[str, Any] = lm['transformer'] if 'transformer' in lm.keys() else lm['encoder'] # The regex to extract layer names. lowerCAmelCase : Dict = re.compile(r'layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)' ) # The simple map of names for "automated" rules. lowerCAmelCase : str = { 'attention.dense': '.attn.c_proj.', 'self_attention.dense': '.attn.c_proj.', 'mlp.dense_h_to_4h': '.mlp.c_fc.', 'mlp.dense_4h_to_h': '.mlp.c_proj.', } # Extract the layers. for key, val in transformer.items(): # Match the name. lowerCAmelCase : Optional[Any] = layer_re.match(_A ) # Stop if that's not a layer if m is None: break # The index of the layer. lowerCAmelCase : int = int(m.group(1 ) ) # The name of the operation. lowerCAmelCase : str = m.group(2 ) # Is it a weight or a bias? lowerCAmelCase : Tuple = m.group(3 ) # The name of the layer. lowerCAmelCase : Any = F"transformer.h.{layer_idx}" # For layernorm(s), simply store the layer norm. if op_name.endswith('layernorm' ): lowerCAmelCase : Tuple = 'ln_1' if op_name.startswith('input' ) else 'ln_2' lowerCAmelCase : str = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. lowerCAmelCase : int = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , _A , _A ) lowerCAmelCase : Optional[int] = causal_mask # Insert a "dummy" tensor for masked_bias. lowerCAmelCase : Optional[int] = torch.tensor(-1e4 , dtype=torch.floataa ) lowerCAmelCase : str = masked_bias lowerCAmelCase : int = fix_query_key_value_ordering(_A , _A , 3 , _A , _A ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. lowerCAmelCase : Optional[Any] = out_val.transpose(0 , 1 ).contiguous() # Store. lowerCAmelCase : List[Any] = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": lowerCAmelCase : Optional[Any] = fix_query_key_value_ordering(_A , _A , 3 , _A , _A ) # Store. No change of shape. lowerCAmelCase : List[Any] = out_val # Transpose the weights. elif weight_or_bias == "weight": lowerCAmelCase : List[str] = megatron_to_transformers[op_name] lowerCAmelCase : Optional[Any] = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": lowerCAmelCase : Union[str, Any] = megatron_to_transformers[op_name] lowerCAmelCase : Tuple = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. lowerCAmelCase : Tuple = transformer['final_layernorm.weight'] lowerCAmelCase : List[Any] = transformer['final_layernorm.bias'] # For LM head, transformers' wants the matrix to weight embeddings. lowerCAmelCase : List[str] = word_embeddings # It should be done! return output_state_dict def __UpperCamelCase ( ) -> str: """simple docstring""" lowerCAmelCase : int = argparse.ArgumentParser() parser.add_argument('--print-checkpoint-structure' , action='store_true' ) parser.add_argument( 'path_to_checkpoint' , type=_A , help='Path to the checkpoint file (.zip archive or direct .pt file)' , ) parser.add_argument( '--config_file' , default='' , type=_A , help='An optional config json file describing the pre-trained model.' , ) lowerCAmelCase : List[str] = parser.parse_args() # Extract the basename. lowerCAmelCase : Optional[Any] = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(F"Extracting PyTorch state dictionary from {args.path_to_checkpoint}" ) if args.path_to_checkpoint.endswith('.zip' ): with zipfile.ZipFile(args.path_to_checkpoint , 'r' ) as checkpoint: with checkpoint.open('release/mp_rank_00/model_optim_rng.pt' ) as pytorch_dict: lowerCAmelCase : List[Any] = torch.load(_A , map_location='cpu' ) else: lowerCAmelCase : Any = torch.load(args.path_to_checkpoint , map_location='cpu' ) lowerCAmelCase : str = input_state_dict.get('args' , _A ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: lowerCAmelCase : int = 'gelu_fast' elif ds_args.openai_gelu: lowerCAmelCase : List[str] = 'gelu_new' else: lowerCAmelCase : Any = 'gelu' else: # in the very early days this used to be "gelu_new" lowerCAmelCase : Union[str, Any] = 'gelu_new' # Spell out all parameters in case the defaults change. lowerCAmelCase : List[Any] = GPTaConfig( vocab_size=5_02_57 , n_positions=10_24 , n_embd=10_24 , n_layer=24 , n_head=16 , n_inner=40_96 , activation_function=_A , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1e-5 , initializer_range=0.02 , summary_type='cls_index' , summary_use_proj=_A , summary_activation=_A , summary_proj_to_labels=_A , summary_first_dropout=0.1 , scale_attn_weights=_A , use_cache=_A , bos_token_id=5_02_56 , eos_token_id=5_02_56 , ) else: lowerCAmelCase : Dict = GPTaConfig.from_json_file(args.config_file ) lowerCAmelCase : str = ['GPT2LMHeadModel'] # Convert. print('Converting' ) lowerCAmelCase : List[Any] = convert_megatron_checkpoint(_A , _A , _A ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(_A , _A ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: lowerCAmelCase : Tuple = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": lowerCAmelCase : Dict = 'gpt2' elif tokenizer_type == "PretrainedFromHF": lowerCAmelCase : int = ds_args.tokenizer_name_or_path else: raise ValueError(F"Unrecognized tokenizer_type {tokenizer_type}" ) else: lowerCAmelCase : List[str] = 'gpt2' lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained(_A ) lowerCAmelCase : Dict = type(_A ).__name__ lowerCAmelCase : str = tokenizer_class # Store the config to file. print('Saving config' ) config.save_pretrained(_A ) # Save tokenizer based on args print(F"Adding {tokenizer_class} tokenizer files" ) tokenizer.save_pretrained(_A ) # Store the state_dict to file. lowerCAmelCase : Tuple = os.path.join(_A , 'pytorch_model.bin' ) print(F"Saving checkpoint to \"{output_checkpoint_file}\"" ) torch.save(_A , _A ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
718
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Any = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { 'xlm-roberta-base': 'https://huggingface.co/xlm-roberta-base/resolve/main/config.json', 'xlm-roberta-large': 'https://huggingface.co/xlm-roberta-large/resolve/main/config.json', 'xlm-roberta-large-finetuned-conll02-dutch': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll02-spanish': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-english': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-german': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json' ), } class lowerCAmelCase ( a ): _lowerCamelCase : List[str] = """xlm-roberta""" def __init__( self , snake_case__=3_0522 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=1e-1_2 , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__="absolute" , snake_case__=True , snake_case__=None , **snake_case__ , ): super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) lowerCAmelCase : Optional[Any] = vocab_size lowerCAmelCase : Optional[Any] = hidden_size lowerCAmelCase : Optional[Any] = num_hidden_layers lowerCAmelCase : Any = num_attention_heads lowerCAmelCase : Optional[int] = hidden_act lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : Dict = hidden_dropout_prob lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob lowerCAmelCase : Optional[Any] = max_position_embeddings lowerCAmelCase : Optional[int] = type_vocab_size lowerCAmelCase : int = initializer_range lowerCAmelCase : List[Any] = layer_norm_eps lowerCAmelCase : Union[str, Any] = position_embedding_type lowerCAmelCase : Union[str, Any] = use_cache lowerCAmelCase : List[str] = classifier_dropout class lowerCAmelCase ( a ): @property def lowercase ( self ): if self.task == "multiple-choice": lowerCAmelCase : str = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase : Optional[int] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
646
0
'''simple docstring''' import pickle import numpy as np from matplotlib import pyplot as plt class lowerCAmelCase : def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=0.2 , snake_case__=0.2 ): lowerCAmelCase : Optional[Any] = bp_numa lowerCAmelCase : List[str] = bp_numa lowerCAmelCase : List[str] = bp_numa lowerCAmelCase : List[Any] = conva_get[:2] lowerCAmelCase : Union[str, Any] = conva_get[2] lowerCAmelCase : Dict = size_pa lowerCAmelCase : Dict = rate_w lowerCAmelCase : List[Any] = rate_t lowerCAmelCase : Union[str, Any] = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] lowerCAmelCase : int = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) lowerCAmelCase : Union[str, Any] = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) lowerCAmelCase : Union[str, Any] = -2 * np.random.rand(self.conva[1] ) + 1 lowerCAmelCase : List[str] = -2 * np.random.rand(self.num_bpa ) + 1 lowerCAmelCase : str = -2 * np.random.rand(self.num_bpa ) + 1 def lowercase ( self , snake_case__ ): # save model dict with pickle lowerCAmelCase : Union[str, Any] = { 'num_bp1': self.num_bpa, 'num_bp2': self.num_bpa, 'num_bp3': self.num_bpa, 'conv1': self.conva, 'step_conv1': self.step_conva, 'size_pooling1': self.size_poolinga, 'rate_weight': self.rate_weight, 'rate_thre': self.rate_thre, 'w_conv1': self.w_conva, 'wkj': self.wkj, 'vji': self.vji, 'thre_conv1': self.thre_conva, 'thre_bp2': self.thre_bpa, 'thre_bp3': self.thre_bpa, } with open(snake_case__ , 'wb' ) as f: pickle.dump(snake_case__ , snake_case__ ) print(f"Model saved: {save_path}" ) @classmethod def lowercase ( cls , snake_case__ ): # read saved model with open(snake_case__ , 'rb' ) as f: lowerCAmelCase : Tuple = pickle.load(snake_case__ ) # noqa: S301 lowerCAmelCase : Dict = model_dic.get('conv1' ) conv_get.append(model_dic.get('step_conv1' ) ) lowerCAmelCase : Any = model_dic.get('size_pooling1' ) lowerCAmelCase : str = model_dic.get('num_bp1' ) lowerCAmelCase : Dict = model_dic.get('num_bp2' ) lowerCAmelCase : List[str] = model_dic.get('num_bp3' ) lowerCAmelCase : str = model_dic.get('rate_weight' ) lowerCAmelCase : List[str] = model_dic.get('rate_thre' ) # create model instance lowerCAmelCase : int = CNN(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # modify model parameter lowerCAmelCase : Optional[Any] = model_dic.get('w_conv1' ) lowerCAmelCase : Any = model_dic.get('wkj' ) lowerCAmelCase : int = model_dic.get('vji' ) lowerCAmelCase : str = model_dic.get('thre_conv1' ) lowerCAmelCase : Union[str, Any] = model_dic.get('thre_bp2' ) lowerCAmelCase : Dict = model_dic.get('thre_bp3' ) return conv_ins def lowercase ( self , snake_case__ ): return 1 / (1 + np.exp(-1 * x )) def lowercase ( self , snake_case__ ): return round(snake_case__ , 3 ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): # convolution process lowerCAmelCase : List[str] = convs[0] lowerCAmelCase : str = convs[1] lowerCAmelCase : Tuple = np.shape(snake_case__ )[0] # get the data slice of original image data, data_focus lowerCAmelCase : Any = [] for i_focus in range(0 , size_data - size_conv + 1 , snake_case__ ): for j_focus in range(0 , size_data - size_conv + 1 , snake_case__ ): lowerCAmelCase : int = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(snake_case__ ) # calculate the feature map of every single kernel, and saved as list of matrix lowerCAmelCase : Union[str, Any] = [] lowerCAmelCase : List[str] = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(snake_case__ ): lowerCAmelCase : Optional[int] = [] for i_focus in range(len(snake_case__ ) ): lowerCAmelCase : Optional[Any] = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(snake_case__ ) ) lowerCAmelCase : List[Any] = np.asmatrix(snake_case__ ).reshape( snake_case__ , snake_case__ ) data_featuremap.append(snake_case__ ) # expanding the data slice to One dimenssion lowerCAmelCase : Tuple = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(snake_case__ ) ) lowerCAmelCase : int = np.asarray(snake_case__ ) return focus_list, data_featuremap def lowercase ( self , snake_case__ , snake_case__ , snake_case__="average_pool" ): # pooling process lowerCAmelCase : Optional[Any] = len(featuremaps[0] ) lowerCAmelCase : List[str] = int(size_map / size_pooling ) lowerCAmelCase : int = [] for i_map in range(len(snake_case__ ) ): lowerCAmelCase : List[Any] = featuremaps[i_map] lowerCAmelCase : Union[str, Any] = [] for i_focus in range(0 , snake_case__ , snake_case__ ): for j_focus in range(0 , snake_case__ , snake_case__ ): lowerCAmelCase : Optional[Any] = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(snake_case__ ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(snake_case__ ) ) lowerCAmelCase : Union[str, Any] = np.asmatrix(snake_case__ ).reshape(snake_case__ , snake_case__ ) featuremap_pooled.append(snake_case__ ) return featuremap_pooled def lowercase ( self , snake_case__ ): # expanding three dimension data to one dimension list lowerCAmelCase : Optional[Any] = [] for i in range(len(snake_case__ ) ): lowerCAmelCase : Optional[Any] = np.shape(data[i] ) lowerCAmelCase : Any = data[i].reshape(1 , shapes[0] * shapes[1] ) lowerCAmelCase : Tuple = data_listed.getA().tolist()[0] data_expanded.extend(snake_case__ ) lowerCAmelCase : Optional[Any] = np.asarray(snake_case__ ) return data_expanded def lowercase ( self , snake_case__ ): # expanding matrix to one dimension list lowerCAmelCase : List[str] = np.asarray(snake_case__ ) lowerCAmelCase : int = np.shape(snake_case__ ) lowerCAmelCase : str = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Tuple = [] lowerCAmelCase : Tuple = 0 for i_map in range(snake_case__ ): lowerCAmelCase : Dict = np.ones((size_map, size_map) ) for i in range(0 , snake_case__ , snake_case__ ): for j in range(0 , snake_case__ , snake_case__ ): lowerCAmelCase : List[str] = pd_pool[ i_pool ] lowerCAmelCase : Union[str, Any] = i_pool + 1 lowerCAmelCase : Tuple = np.multiply( snake_case__ , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(snake_case__ ) return pd_all def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=bool ): # model traning print('----------------------Start Training-------------------------' ) print((' - - Shape: Train_Data ', np.shape(snake_case__ )) ) print((' - - Shape: Teach_Data ', np.shape(snake_case__ )) ) lowerCAmelCase : Dict = 0 lowerCAmelCase : Optional[int] = [] lowerCAmelCase : Optional[Any] = 1_0000 while rp < n_repeat and mse >= error_accuracy: lowerCAmelCase : Tuple = 0 print(f"-------------Learning Time {rp}--------------" ) for p in range(len(snake_case__ ) ): # print('------------Learning Image: %d--------------'%p) lowerCAmelCase : List[str] = np.asmatrix(datas_train[p] ) lowerCAmelCase : List[Any] = np.asarray(datas_teach[p] ) lowerCAmelCase : Union[str, Any] = self.convolute( snake_case__ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowerCAmelCase : Dict = self.pooling(snake_case__ , self.size_poolinga ) lowerCAmelCase : Dict = np.shape(snake_case__ ) lowerCAmelCase : Any = self._expand(snake_case__ ) lowerCAmelCase : Tuple = data_bp_input lowerCAmelCase : Union[str, Any] = np.dot(snake_case__ , self.vji.T ) - self.thre_bpa lowerCAmelCase : str = self.sig(snake_case__ ) lowerCAmelCase : Union[str, Any] = np.dot(snake_case__ , self.wkj.T ) - self.thre_bpa lowerCAmelCase : Union[str, Any] = self.sig(snake_case__ ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- lowerCAmelCase : List[Any] = np.multiply( (data_teach - bp_outa) , np.multiply(snake_case__ , (1 - bp_outa) ) ) lowerCAmelCase : str = np.multiply( np.dot(snake_case__ , self.wkj ) , np.multiply(snake_case__ , (1 - bp_outa) ) ) lowerCAmelCase : List[str] = np.dot(snake_case__ , self.vji ) lowerCAmelCase : Dict = pd_i_all / (self.size_poolinga * self.size_poolinga) lowerCAmelCase : Tuple = pd_conva_pooled.T.getA().tolist() lowerCAmelCase : List[Any] = self._calculate_gradient_from_pool( snake_case__ , snake_case__ , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): lowerCAmelCase : Tuple = self._expand_mat(pd_conva_all[k_conv] ) lowerCAmelCase : int = self.rate_weight * np.dot(snake_case__ , snake_case__ ) lowerCAmelCase : Dict = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) lowerCAmelCase : Tuple = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer lowerCAmelCase : Any = self.wkj + pd_k_all.T * bp_outa * self.rate_weight lowerCAmelCase : str = self.vji + pd_j_all.T * bp_outa * self.rate_weight lowerCAmelCase : str = self.thre_bpa - pd_k_all * self.rate_thre lowerCAmelCase : Any = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image lowerCAmelCase : int = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) lowerCAmelCase : int = rp + 1 lowerCAmelCase : int = error_count / patterns all_mse.append(snake_case__ ) def draw_error(): lowerCAmelCase : Union[str, Any] = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(snake_case__ , '+-' ) plt.plot(snake_case__ , 'r--' ) plt.xlabel('Learning Times' ) plt.ylabel('All_mse' ) plt.grid(snake_case__ , alpha=0.5 ) plt.show() print('------------------Training Complished---------------------' ) print((' - - Training epoch: ', rp, f" - - Mse: {mse:.6f}") ) if draw_e: draw_error() return mse def lowercase ( self , snake_case__ ): # model predict lowerCAmelCase : Union[str, Any] = [] print('-------------------Start Testing-------------------------' ) print((' - - Shape: Test_Data ', np.shape(snake_case__ )) ) for p in range(len(snake_case__ ) ): lowerCAmelCase : Dict = np.asmatrix(datas_test[p] ) lowerCAmelCase : str = self.convolute( snake_case__ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowerCAmelCase : Any = self.pooling(snake_case__ , self.size_poolinga ) lowerCAmelCase : Union[str, Any] = self._expand(snake_case__ ) lowerCAmelCase : Optional[Any] = data_bp_input lowerCAmelCase : Tuple = bp_outa * self.vji.T - self.thre_bpa lowerCAmelCase : Any = self.sig(snake_case__ ) lowerCAmelCase : Any = bp_outa * self.wkj.T - self.thre_bpa lowerCAmelCase : List[str] = self.sig(snake_case__ ) produce_out.extend(bp_outa.getA().tolist() ) lowerCAmelCase : Optional[int] = [list(map(self.do_round , snake_case__ ) ) for each in produce_out] return np.asarray(snake_case__ ) def lowercase ( self , snake_case__ ): # return the data of image after convoluting process so we can check it out lowerCAmelCase : Optional[Any] = np.asmatrix(snake_case__ ) lowerCAmelCase : List[Any] = self.convolute( snake_case__ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowerCAmelCase : int = self.pooling(snake_case__ , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
719
'''simple docstring''' import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer _lowerCAmelCase : List[Any] = logging.getLogger(__name__) def __UpperCamelCase ( ) -> Any: """simple docstring""" lowerCAmelCase : str = argparse.ArgumentParser( description='Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.' ) parser.add_argument( '--dataset_name' , type=_A , default='wikitext' , help='Name of the training. Explore datasets at: hf.co/datasets.' , ) parser.add_argument( '--dataset_config' , type=_A , default='wikitext-103-raw-v1' , help='Configuration name of the dataset.' ) parser.add_argument( '--tokenizer_name_or_path' , type=_A , default='sayakpaul/unigram-tokenizer-wikitext' , help='Tokenizer identifier. Can be a local filepath or a Hub identifier.' , ) parser.add_argument( '--shard_size' , type=_A , default=10_00 , help='Number of entries to go in a single shard.' , ) parser.add_argument('--split' , type=_A , default='train' , choices=['train', 'test', 'validation'] ) parser.add_argument( '--limit' , default=_A , type=_A , help='Limit the number of shards (used for debugging).' , ) parser.add_argument( '--max_length' , type=_A , default=5_12 , help='Maximum sequence length. For training on TPUs, it helps to have a maximum' ' sequence length that is a multiple of 8.' , ) parser.add_argument( '--output_dir' , default='tf-tpu' , type=_A , help='Output directory where the TFRecord shards will be saved. If the' ' path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord' ' shards will be directly saved to a Google Cloud Storage bucket.' , ) lowerCAmelCase : Any = parser.parse_args() return args def __UpperCamelCase ( _A : Optional[int] ) -> int: """simple docstring""" def fn(_A : Tuple ): return tokenizer(examples['text'] ) return fn def __UpperCamelCase ( _A : int ) -> int: """simple docstring""" lowerCAmelCase : Tuple = [] for i in range(len(tokenized_data['input_ids'] ) ): lowerCAmelCase : Optional[Any] = { 'input_ids': tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data['input_ids'][i] ) ), 'attention_mask': tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data['attention_mask'][i] ) ), } lowerCAmelCase : Any = tf.train.Features(feature=_A ) lowerCAmelCase : List[str] = tf.train.Example(features=_A ) lowerCAmelCase : Tuple = example.SerializeToString() records.append(_A ) return records def __UpperCamelCase ( _A : int ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase : Union[str, Any] = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: lowerCAmelCase : Optional[Any] = min(len(_A ) , args.limit ) lowerCAmelCase : Dict = dataset.select(range(_A ) ) print(F"Limiting the dataset to {args.limit} entries." ) lowerCAmelCase : str = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) lowerCAmelCase : Any = os.path.join(args.output_dir , args.split ) if not os.path.exists(_A ): os.makedirs(_A ) else: lowerCAmelCase : List[Any] = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. lowerCAmelCase : Any = tokenize_function(_A ) lowerCAmelCase : Optional[int] = dataset.map(_A , batched=_A , num_proc=4 , remove_columns=['text'] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(_A : str ): # Concatenate all texts. lowerCAmelCase : Optional[int] = {k: sum(examples[k] , [] ) for k in examples.keys()} lowerCAmelCase : str = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 lowerCAmelCase : List[Any] = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. lowerCAmelCase : str = { k: [t[i : i + args.max_length] for i in range(0 , _A , args.max_length )] for k, t in concatenated_examples.items() } return result lowerCAmelCase : List[Any] = dataset_tokenized.map(_A , batched=_A , batch_size=10_00 , num_proc=4 ) lowerCAmelCase : Union[str, Any] = 0 lowerCAmelCase : Tuple = 0 for shard in range(0 , len(_A ) , args.shard_size ): lowerCAmelCase : Optional[Any] = grouped_dataset[shard : shard + args.shard_size] lowerCAmelCase : List[str] = len(dataset_snapshot['input_ids'] ) lowerCAmelCase : Union[str, Any] = os.path.join(_A , F"dataset-{shard_count}-{records_containing}.tfrecord" ) lowerCAmelCase : List[Any] = get_serialized_examples(_A ) with tf.io.TFRecordWriter(_A ) as out_file: for i in range(len(_A ) ): lowerCAmelCase : Union[str, Any] = serialized_examples[i] out_file.write(_A ) print('Wrote file {} containing {} records'.format(_A , _A ) ) shard_count += 1 total_records += records_containing with open(F"split-{args.split}-records-count.txt" , 'w' ) as f: print(F"Total {args.split} records: {total_records}" , file=_A ) if __name__ == "__main__": _lowerCAmelCase : List[Any] = parse_args() main(args)
646
0
'''simple docstring''' def __UpperCamelCase ( _A : list[int] ) -> list[list[int]]: """simple docstring""" lowerCAmelCase : Optional[int] = [] if len(_A ) == 1: return [nums.copy()] for _ in range(len(_A ) ): lowerCAmelCase : Optional[Any] = nums.pop(0 ) lowerCAmelCase : Optional[Any] = permute(_A ) for perm in permutations: perm.append(_A ) result.extend(_A ) nums.append(_A ) return result def __UpperCamelCase ( _A : Union[str, Any] ) -> Tuple: """simple docstring""" def backtrack(_A : List[Any] ): if start == len(_A ) - 1: output.append(nums[:] ) else: for i in range(_A , len(_A ) ): lowerCAmelCase : Optional[Any] = nums[i], nums[start] backtrack(start + 1 ) lowerCAmelCase : Optional[Any] = nums[i], nums[start] # backtrack lowerCAmelCase : Optional[Any] = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function _lowerCAmelCase : Tuple = permutea([1, 2, 3]) print(res) doctest.testmod()
720
'''simple docstring''' import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() _lowerCAmelCase : List[str] = logging.get_logger('transformers.models.speecht5') def __UpperCamelCase ( _A : Any , _A : Dict , _A : Any ) -> Union[str, Any]: """simple docstring""" hf_model.apply_weight_norm() lowerCAmelCase : int = checkpoint['input_conv.weight_g'] lowerCAmelCase : Optional[int] = checkpoint['input_conv.weight_v'] lowerCAmelCase : Dict = checkpoint['input_conv.bias'] for i in range(len(config.upsample_rates ) ): lowerCAmelCase : Optional[Any] = checkpoint[F"upsamples.{i}.1.weight_g"] lowerCAmelCase : str = checkpoint[F"upsamples.{i}.1.weight_v"] lowerCAmelCase : str = checkpoint[F"upsamples.{i}.1.bias"] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): lowerCAmelCase : int = checkpoint[F"blocks.{i}.convs1.{j}.1.weight_g"] lowerCAmelCase : str = checkpoint[F"blocks.{i}.convs1.{j}.1.weight_v"] lowerCAmelCase : int = checkpoint[F"blocks.{i}.convs1.{j}.1.bias"] lowerCAmelCase : Optional[Any] = checkpoint[F"blocks.{i}.convs2.{j}.1.weight_g"] lowerCAmelCase : Tuple = checkpoint[F"blocks.{i}.convs2.{j}.1.weight_v"] lowerCAmelCase : Tuple = checkpoint[F"blocks.{i}.convs2.{j}.1.bias"] lowerCAmelCase : List[Any] = checkpoint['output_conv.1.weight_g'] lowerCAmelCase : List[str] = checkpoint['output_conv.1.weight_v'] lowerCAmelCase : Optional[Any] = checkpoint['output_conv.1.bias'] hf_model.remove_weight_norm() @torch.no_grad() def __UpperCamelCase ( _A : Dict , _A : Union[str, Any] , _A : List[Any] , _A : Any=None , _A : Any=None , ) -> Dict: """simple docstring""" if config_path is not None: lowerCAmelCase : Dict = SpeechTaHifiGanConfig.from_pretrained(_A ) else: lowerCAmelCase : Union[str, Any] = SpeechTaHifiGanConfig() lowerCAmelCase : List[Any] = SpeechTaHifiGan(_A ) lowerCAmelCase : List[str] = torch.load(_A ) load_weights(orig_checkpoint['model']['generator'] , _A , _A ) lowerCAmelCase : Tuple = np.load(_A ) lowerCAmelCase : List[Any] = stats[0].reshape(-1 ) lowerCAmelCase : int = stats[1].reshape(-1 ) lowerCAmelCase : Union[str, Any] = torch.from_numpy(_A ).float() lowerCAmelCase : int = torch.from_numpy(_A ).float() model.save_pretrained(_A ) if repo_id: print('Pushing to the hub...' ) model.push_to_hub(_A ) if __name__ == "__main__": _lowerCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--stats_path', required=True, default=None, type=str, help='Path to stats.npy file') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) _lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
646
0
'''simple docstring''' _lowerCAmelCase : List[str] = { 'A': '.-', 'B': '-...', 'C': '-.-.', 'D': '-..', 'E': '.', 'F': '..-.', 'G': '--.', 'H': '....', 'I': '..', 'J': '.---', 'K': '-.-', 'L': '.-..', 'M': '--', 'N': '-.', 'O': '---', 'P': '.--.', 'Q': '--.-', 'R': '.-.', 'S': '...', 'T': '-', 'U': '..-', 'V': '...-', 'W': '.--', 'X': '-..-', 'Y': '-.--', 'Z': '--..', '1': '.----', '2': '..---', '3': '...--', '4': '....-', '5': '.....', '6': '-....', '7': '--...', '8': '---..', '9': '----.', '0': '-----', '&': '.-...', '@': '.--.-.', ':': '---...', ',': '--..--', '.': '.-.-.-', '\'': '.----.', '"': '.-..-.', '?': '..--..', '/': '-..-.', '=': '-...-', '+': '.-.-.', '-': '-....-', '(': '-.--.', ')': '-.--.-', '!': '-.-.--', ' ': '/' } # Exclamation mark is not in ITU-R recommendation # fmt: on _lowerCAmelCase : List[Any] = {value: key for key, value in MORSE_CODE_DICT.items()} def __UpperCamelCase ( _A : str ) -> str: """simple docstring""" return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def __UpperCamelCase ( _A : str ) -> str: """simple docstring""" return "".join(REVERSE_DICT[char] for char in message.split() ) def __UpperCamelCase ( ) -> None: """simple docstring""" lowerCAmelCase : Union[str, Any] = 'Morse code here!' print(_A ) lowerCAmelCase : List[Any] = encrypt(_A ) print(_A ) lowerCAmelCase : Optional[int] = decrypt(_A ) print(_A ) if __name__ == "__main__": main()
721
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets _lowerCAmelCase : Dict = '\\n@inproceedings{popovic-2015-chrf,\n title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",\n month = sep,\n year = "2015",\n address = "Lisbon, Portugal",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W15-3049",\n doi = "10.18653/v1/W15-3049",\n pages = "392--395",\n}\n@inproceedings{popovic-2017-chrf,\n title = "chr{F}++: words helping character n-grams",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Second Conference on Machine Translation",\n month = sep,\n year = "2017",\n address = "Copenhagen, Denmark",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W17-4770",\n doi = "10.18653/v1/W17-4770",\n pages = "612--618",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' _lowerCAmelCase : Optional[Any] = '\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n' _lowerCAmelCase : List[Any] = '\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n \'score\' (float): The chrF (chrF++) score,\n \'char_order\' (int): The character n-gram order,\n \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n \'beta\' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase ( datasets.Metric ): def lowercase ( self ): if version.parse(scb.__version__ ) < version.parse('1.4.12' ): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/mjpost/sacreBLEU#chrf--chrf' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/mjpost/sacreBLEU#chrf--chrf'] , reference_urls=[ 'https://github.com/m-popovic/chrF', ] , ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ = CHRF.CHAR_ORDER , snake_case__ = CHRF.WORD_ORDER , snake_case__ = CHRF.BETA , snake_case__ = False , snake_case__ = False , snake_case__ = False , ): lowerCAmelCase : List[str] = len(references[0] ) if any(len(snake_case__ ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) lowerCAmelCase : List[str] = [[refs[i] for refs in references] for i in range(snake_case__ )] lowerCAmelCase : Union[str, Any] = CHRF(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase : Dict = sb_chrf.corpus_score(snake_case__ , snake_case__ ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
646
0
import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def __lowerCamelCase (): SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("--model_ckpt" , type=UpperCAmelCase__ , default="microsoft/unixcoder-base-nine" ) parser.add_argument("--num_epochs" , type=UpperCAmelCase__ , default=5 ) parser.add_argument("--batch_size" , type=UpperCAmelCase__ , default=6 ) parser.add_argument("--gradient_accumulation_steps" , type=UpperCAmelCase__ , default=1 ) parser.add_argument("--freeze" , type=UpperCAmelCase__ , default=UpperCAmelCase__ ) parser.add_argument("--learning_rate" , type=UpperCAmelCase__ , default=5e-4 ) parser.add_argument("--seed" , type=UpperCAmelCase__ , default=0 ) parser.add_argument("--lr_scheduler_type" , type=UpperCAmelCase__ , default="cosine" ) parser.add_argument("--num_warmup_steps" , type=UpperCAmelCase__ , default=1_0 ) parser.add_argument("--weight_decay" , type=UpperCAmelCase__ , default=0.01 ) parser.add_argument("--output_dir" , type=UpperCAmelCase__ , default="./results" ) return parser.parse_args() _lowerCamelCase : str = load('''accuracy''') def __lowerCamelCase (UpperCAmelCase__ : Any ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = eval_pred SCREAMING_SNAKE_CASE = np.argmax(UpperCAmelCase__ , axis=1 ) return metric.compute(predictions=UpperCAmelCase__ , references=UpperCAmelCase__ ) class lowercase ( a ): def __init__( self : Optional[Any] , _UpperCamelCase : Optional[Any] ) -> None: '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE = trainer def __snake_case( self : int , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str , _UpperCamelCase : Dict , **_UpperCamelCase : Union[str, Any] ) -> Dict: '''simple docstring''' if control.should_evaluate: SCREAMING_SNAKE_CASE = deepcopy(_UpperCamelCase ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix="train" ) return control_copy def __lowerCamelCase (): SCREAMING_SNAKE_CASE = get_args() set_seed(args.seed ) SCREAMING_SNAKE_CASE = load_dataset("codeparrot/codecomplex" , split="train" ) SCREAMING_SNAKE_CASE = dataset.train_test_split(test_size=0.2 ) SCREAMING_SNAKE_CASE = train_test["test"].train_test_split(test_size=0.5 ) SCREAMING_SNAKE_CASE = DatasetDict( { "train": train_test["train"], "test": test_validation["train"], "valid": test_validation["test"], } ) print("Loading tokenizer and model" ) SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(args.model_ckpt ) SCREAMING_SNAKE_CASE = tokenizer.eos_token SCREAMING_SNAKE_CASE = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) SCREAMING_SNAKE_CASE = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = ClassLabel(num_classes=7 , names=list(set(train_test_validation["train"]["complexity"] ) ) ) def tokenize(UpperCAmelCase__ : List[Any] ): SCREAMING_SNAKE_CASE = tokenizer(example["src"] , truncation=UpperCAmelCase__ , max_length=1_0_2_4 ) SCREAMING_SNAKE_CASE = labels.straint(example["complexity"] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } SCREAMING_SNAKE_CASE = train_test_validation.map( UpperCAmelCase__ , batched=UpperCAmelCase__ , remove_columns=train_test_validation["train"].column_names , ) SCREAMING_SNAKE_CASE = DataCollatorWithPadding(tokenizer=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy="epoch" , save_strategy="epoch" , logging_strategy="epoch" , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model="accuracy" , run_name="complexity-java" , report_to="wandb" , ) SCREAMING_SNAKE_CASE = Trainer( model=UpperCAmelCase__ , args=UpperCAmelCase__ , train_dataset=tokenized_datasets["train"] , eval_dataset=tokenized_datasets["valid"] , tokenizer=UpperCAmelCase__ , data_collator=UpperCAmelCase__ , compute_metrics=UpperCAmelCase__ , ) print("Training..." ) trainer.add_callback(CustomCallback(UpperCAmelCase__ ) ) trainer.train() if __name__ == "__main__": main()
647
import numpy as np def __lowerCamelCase (UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : float = 1e-12 , UpperCAmelCase__ : int = 1_0_0 , ): assert np.shape(UpperCAmelCase__ )[0] == np.shape(UpperCAmelCase__ )[1] # Ensure proper dimensionality. assert np.shape(UpperCAmelCase__ )[0] == np.shape(UpperCAmelCase__ )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(UpperCAmelCase__ ) == np.iscomplexobj(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = np.iscomplexobj(UpperCAmelCase__ ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(UpperCAmelCase__ , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 1e12 while not convergence: # Multiple matrix by the vector. SCREAMING_SNAKE_CASE = np.dot(UpperCAmelCase__ , UpperCAmelCase__ ) # Normalize the resulting output vector. SCREAMING_SNAKE_CASE = w / np.linalg.norm(UpperCAmelCase__ ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) SCREAMING_SNAKE_CASE = vector.conj().T if is_complex else vector.T SCREAMING_SNAKE_CASE = np.dot(UpperCAmelCase__ , np.dot(UpperCAmelCase__ , UpperCAmelCase__ ) ) # Check convergence. SCREAMING_SNAKE_CASE = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = lambda_ if is_complex: SCREAMING_SNAKE_CASE = np.real(lambda_ ) return lambda_, vector def __lowerCamelCase (): SCREAMING_SNAKE_CASE = np.array([[4_1, 4, 2_0], [4, 2_6, 3_0], [2_0, 3_0, 5_0]] ) SCREAMING_SNAKE_CASE = np.array([4_1, 4, 2_0] ) SCREAMING_SNAKE_CASE = real_input_matrix.astype(np.complexaaa ) SCREAMING_SNAKE_CASE = np.triu(1j * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T SCREAMING_SNAKE_CASE = np.array([4_1, 4, 2_0] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": SCREAMING_SNAKE_CASE = real_input_matrix SCREAMING_SNAKE_CASE = real_vector elif problem_type == "complex": SCREAMING_SNAKE_CASE = complex_input_matrix SCREAMING_SNAKE_CASE = complex_vector # Our implementation. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = power_iteration(UpperCAmelCase__ , UpperCAmelCase__ ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = np.linalg.eigh(UpperCAmelCase__ ) # Last eigenvalue is the maximum one. SCREAMING_SNAKE_CASE = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. SCREAMING_SNAKE_CASE = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1e-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(UpperCAmelCase__ ) - np.abs(UpperCAmelCase__ ) ) <= 1e-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
647
1
def __lowerCamelCase (UpperCAmelCase__ : str = "The quick brown fox jumps over the lazy dog" , ): SCREAMING_SNAKE_CASE = set() # Replace all the whitespace in our sentence SCREAMING_SNAKE_CASE = input_str.replace(" " , "" ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(UpperCAmelCase__ ) == 2_6 def __lowerCamelCase (UpperCAmelCase__ : str = "The quick brown fox jumps over the lazy dog" , ): SCREAMING_SNAKE_CASE = [False] * 2_6 for char in input_str: if char.islower(): SCREAMING_SNAKE_CASE = True elif char.isupper(): SCREAMING_SNAKE_CASE = True return all(UpperCAmelCase__ ) def __lowerCamelCase (UpperCAmelCase__ : str = "The quick brown fox jumps over the lazy dog" , ): return len({char for char in input_str.lower() if char.isalpha()} ) == 2_6 def __lowerCamelCase (): from timeit import timeit SCREAMING_SNAKE_CASE = "from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest" print(timeit("is_pangram()" , setup=UpperCAmelCase__ ) ) print(timeit("is_pangram_faster()" , setup=UpperCAmelCase__ ) ) print(timeit("is_pangram_fastest()" , setup=UpperCAmelCase__ ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
647
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) class lowercase ( a ): lowercase__ : Optional[Any] = ["""input_features""", """is_longer"""] def __init__( self : str , _UpperCamelCase : Optional[int]=64 , _UpperCamelCase : Any=48_000 , _UpperCamelCase : Optional[Any]=480 , _UpperCamelCase : List[Any]=10 , _UpperCamelCase : Any=1_024 , _UpperCamelCase : List[Any]=0.0 , _UpperCamelCase : Any=False , _UpperCamelCase : float = 0 , _UpperCamelCase : float = 14_000 , _UpperCamelCase : int = None , _UpperCamelCase : str = "fusion" , _UpperCamelCase : str = "repeatpad" , **_UpperCamelCase : Optional[Any] , ) -> Dict: '''simple docstring''' super().__init__( feature_size=_UpperCamelCase , sampling_rate=_UpperCamelCase , padding_value=_UpperCamelCase , return_attention_mask=_UpperCamelCase , **_UpperCamelCase , ) SCREAMING_SNAKE_CASE = top_db SCREAMING_SNAKE_CASE = truncation SCREAMING_SNAKE_CASE = padding SCREAMING_SNAKE_CASE = fft_window_size SCREAMING_SNAKE_CASE = (fft_window_size >> 1) + 1 SCREAMING_SNAKE_CASE = hop_length SCREAMING_SNAKE_CASE = max_length_s SCREAMING_SNAKE_CASE = max_length_s * sampling_rate SCREAMING_SNAKE_CASE = sampling_rate SCREAMING_SNAKE_CASE = frequency_min SCREAMING_SNAKE_CASE = frequency_max SCREAMING_SNAKE_CASE = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_UpperCamelCase , min_frequency=_UpperCamelCase , max_frequency=_UpperCamelCase , sampling_rate=_UpperCamelCase , norm=_UpperCamelCase , mel_scale="htk" , ) SCREAMING_SNAKE_CASE = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_UpperCamelCase , min_frequency=_UpperCamelCase , max_frequency=_UpperCamelCase , sampling_rate=_UpperCamelCase , norm="slaney" , mel_scale="slaney" , ) def __snake_case( self : str ) -> Dict[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def __snake_case( self : Optional[Any] , _UpperCamelCase : np.array , _UpperCamelCase : Optional[np.array] = None ) -> np.ndarray: '''simple docstring''' SCREAMING_SNAKE_CASE = spectrogram( _UpperCamelCase , window_function(self.fft_window_size , "hann" ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=_UpperCamelCase , log_mel="dB" , ) return log_mel_spectrogram.T def __snake_case( self : str , _UpperCamelCase : Tuple , _UpperCamelCase : Any , _UpperCamelCase : str ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk SCREAMING_SNAKE_CASE = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk SCREAMING_SNAKE_CASE = [0] # randomly choose index for each part SCREAMING_SNAKE_CASE = np.random.choice(ranges[0] ) SCREAMING_SNAKE_CASE = np.random.choice(ranges[1] ) SCREAMING_SNAKE_CASE = np.random.choice(ranges[2] ) SCREAMING_SNAKE_CASE = mel[idx_front : idx_front + chunk_frames, :] SCREAMING_SNAKE_CASE = mel[idx_middle : idx_middle + chunk_frames, :] SCREAMING_SNAKE_CASE = mel[idx_back : idx_back + chunk_frames, :] SCREAMING_SNAKE_CASE = torch.tensor(mel[None, None, :] ) SCREAMING_SNAKE_CASE = torch.nn.functional.interpolate( _UpperCamelCase , size=[chunk_frames, 64] , mode="bilinear" , align_corners=_UpperCamelCase ) SCREAMING_SNAKE_CASE = mel_shrink[0][0].numpy() SCREAMING_SNAKE_CASE = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def __snake_case( self : Optional[int] , _UpperCamelCase : np.array , _UpperCamelCase : Dict , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[str] ) -> np.array: '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": SCREAMING_SNAKE_CASE = True # random crop to max_length (for compatibility) -> this should be handled by self.pad SCREAMING_SNAKE_CASE = len(_UpperCamelCase ) - max_length SCREAMING_SNAKE_CASE = np.random.randint(0 , overflow + 1 ) SCREAMING_SNAKE_CASE = waveform[idx : idx + max_length] SCREAMING_SNAKE_CASE = self._np_extract_fbank_features(_UpperCamelCase , self.mel_filters_slaney )[None, :] elif truncation == "fusion": SCREAMING_SNAKE_CASE = self._np_extract_fbank_features(_UpperCamelCase , self.mel_filters ) SCREAMING_SNAKE_CASE = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed SCREAMING_SNAKE_CASE = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. SCREAMING_SNAKE_CASE = np.stack([mel, mel, mel, mel] , axis=0 ) SCREAMING_SNAKE_CASE = False else: SCREAMING_SNAKE_CASE = self._random_mel_fusion(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = True else: raise NotImplementedError(F"data_truncating {truncation} not implemented" ) else: SCREAMING_SNAKE_CASE = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": SCREAMING_SNAKE_CASE = int(max_length / len(_UpperCamelCase ) ) SCREAMING_SNAKE_CASE = np.stack(np.tile(_UpperCamelCase , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": SCREAMING_SNAKE_CASE = int(max_length / len(_UpperCamelCase ) ) SCREAMING_SNAKE_CASE = np.stack(np.tile(_UpperCamelCase , _UpperCamelCase ) ) SCREAMING_SNAKE_CASE = np.pad(_UpperCamelCase , (0, max_length - waveform.shape[0]) , mode="constant" , constant_values=0 ) if truncation == "fusion": SCREAMING_SNAKE_CASE = self._np_extract_fbank_features(_UpperCamelCase , self.mel_filters ) SCREAMING_SNAKE_CASE = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: SCREAMING_SNAKE_CASE = self._np_extract_fbank_features(_UpperCamelCase , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : Dict , _UpperCamelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _UpperCamelCase : str = None , _UpperCamelCase : Optional[str] = None , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : Optional[Union[str, TensorType]] = None , **_UpperCamelCase : Tuple , ) -> BatchFeature: '''simple docstring''' SCREAMING_SNAKE_CASE = truncation if truncation is not None else self.truncation SCREAMING_SNAKE_CASE = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a" F" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input" F" was sampled with {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) SCREAMING_SNAKE_CASE = isinstance(_UpperCamelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"Only mono-channel audio is supported for input to {self}" ) SCREAMING_SNAKE_CASE = is_batched_numpy or ( isinstance(_UpperCamelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: SCREAMING_SNAKE_CASE = [np.asarray(_UpperCamelCase , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_UpperCamelCase , np.ndarray ): SCREAMING_SNAKE_CASE = np.asarray(_UpperCamelCase , dtype=np.floataa ) elif isinstance(_UpperCamelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): SCREAMING_SNAKE_CASE = raw_speech.astype(np.floataa ) # always return batch if not is_batched: SCREAMING_SNAKE_CASE = [np.asarray(_UpperCamelCase )] # convert to mel spectrogram, truncate and pad if needed. SCREAMING_SNAKE_CASE = [ self._get_input_mel(_UpperCamelCase , max_length if max_length else self.nb_max_samples , _UpperCamelCase , _UpperCamelCase ) for waveform in raw_speech ] SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] for mel, longer in padded_inputs: input_mel.append(_UpperCamelCase ) is_longer.append(_UpperCamelCase ) if truncation == "fusion" and sum(_UpperCamelCase ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer SCREAMING_SNAKE_CASE = np.random.randint(0 , len(_UpperCamelCase ) ) SCREAMING_SNAKE_CASE = True if isinstance(input_mel[0] , _UpperCamelCase ): SCREAMING_SNAKE_CASE = [np.asarray(_UpperCamelCase , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool SCREAMING_SNAKE_CASE = [[longer] for longer in is_longer] SCREAMING_SNAKE_CASE = {"input_features": input_mel, "is_longer": is_longer} SCREAMING_SNAKE_CASE = BatchFeature(_UpperCamelCase ) if return_tensors is not None: SCREAMING_SNAKE_CASE = input_features.convert_to_tensors(_UpperCamelCase ) return input_features
647
1
from __future__ import annotations class lowercase : def __init__( self : Dict , _UpperCamelCase : str , _UpperCamelCase : str ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = text, pattern SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = len(_UpperCamelCase ), len(_UpperCamelCase ) def __snake_case( self : Optional[int] , _UpperCamelCase : str ) -> int: '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def __snake_case( self : Union[str, Any] , _UpperCamelCase : int ) -> int: '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def __snake_case( self : Optional[int] ) -> list[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = [] for i in range(self.textLen - self.patLen + 1 ): SCREAMING_SNAKE_CASE = self.mismatch_in_text(_UpperCamelCase ) if mismatch_index == -1: positions.append(_UpperCamelCase ) else: SCREAMING_SNAKE_CASE = self.match_in_pattern(self.text[mismatch_index] ) SCREAMING_SNAKE_CASE = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions _lowerCamelCase : Optional[int] = '''ABAABA''' _lowerCamelCase : Tuple = '''AB''' _lowerCamelCase : str = BoyerMooreSearch(text, pattern) _lowerCamelCase : Union[str, Any] = bms.bad_character_heuristic() if len(positions) == 0: print('''No match found''') else: print('''Pattern found in following positions: ''') print(positions)
647
import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) _lowerCamelCase : Optional[int] = logging.getLogger(__name__) _lowerCamelCase : Optional[int] = '''Hello world! cécé herlolip''' _lowerCamelCase : List[Any] = namedtuple( '''BertAbsConfig''', [ '''temp_dir''', '''large''', '''use_bert_emb''', '''finetune_bert''', '''encoder''', '''share_emb''', '''max_pos''', '''enc_layers''', '''enc_hidden_size''', '''enc_heads''', '''enc_ff_size''', '''enc_dropout''', '''dec_layers''', '''dec_hidden_size''', '''dec_heads''', '''dec_ff_size''', '''dec_dropout''', ], ) def __lowerCamelCase (UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[int] ): SCREAMING_SNAKE_CASE = BertAbsConfig( temp_dir="." , finetune_bert=UpperCAmelCase__ , large=UpperCAmelCase__ , share_emb=UpperCAmelCase__ , use_bert_emb=UpperCAmelCase__ , encoder="bert" , max_pos=5_1_2 , enc_layers=6 , enc_hidden_size=5_1_2 , enc_heads=8 , enc_ff_size=5_1_2 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=7_6_8 , dec_heads=8 , dec_ff_size=2_0_4_8 , dec_dropout=0.2 , ) SCREAMING_SNAKE_CASE = torch.load(UpperCAmelCase__ , lambda UpperCAmelCase__ , UpperCAmelCase__ : storage ) SCREAMING_SNAKE_CASE = AbsSummarizer(UpperCAmelCase__ , torch.device("cpu" ) , UpperCAmelCase__ ) original.eval() SCREAMING_SNAKE_CASE = BertAbsSummarizer(UpperCAmelCase__ , torch.device("cpu" ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info("convert the model" ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info("Make sure that the models' outputs are identical" ) SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained("bert-base-uncased" ) # prepare the model inputs SCREAMING_SNAKE_CASE = tokenizer.encode("This is sample éàalj'-." ) encoder_input_ids.extend([tokenizer.pad_token_id] * (5_1_2 - len(UpperCAmelCase__ )) ) SCREAMING_SNAKE_CASE = torch.tensor(UpperCAmelCase__ ).unsqueeze(0 ) SCREAMING_SNAKE_CASE = tokenizer.encode("This is sample 3 éàalj'-." ) decoder_input_ids.extend([tokenizer.pad_token_id] * (5_1_2 - len(UpperCAmelCase__ )) ) SCREAMING_SNAKE_CASE = torch.tensor(UpperCAmelCase__ ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass SCREAMING_SNAKE_CASE = encoder_input_ids SCREAMING_SNAKE_CASE = decoder_input_ids SCREAMING_SNAKE_CASE = SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical SCREAMING_SNAKE_CASE = original(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )[0] SCREAMING_SNAKE_CASE = original.generator(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = new_model( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )[0] SCREAMING_SNAKE_CASE = new_model.generator(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print("Maximum absolute difference beween weights: {:.2f}".format(UpperCAmelCase__ ) ) SCREAMING_SNAKE_CASE = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print("Maximum absolute difference beween weights: {:.2f}".format(UpperCAmelCase__ ) ) SCREAMING_SNAKE_CASE = torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1e-3 ) if are_identical: logging.info("all weights are equal up to 1e-3" ) else: raise ValueError("the weights are different. The new model is likely different from the original one." ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info("saving the model's state dictionary" ) torch.save( new_model.state_dict() , "./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin" ) if __name__ == "__main__": _lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '''--bertabs_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''', ) _lowerCamelCase : Any = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
647
1
from scipy.stats import pearsonr import datasets _lowerCamelCase : Any = ''' Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. ''' _lowerCamelCase : Dict = ''' Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric("pearsonr") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results[\'pearsonr\'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric("pearsonr") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) [\'p-value\', \'pearsonr\'] >>> print(round(results[\'pearsonr\'], 2)) -0.74 >>> print(round(results[\'p-value\'], 2)) 0.15 ''' _lowerCamelCase : Union[str, Any] = ''' @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): def __snake_case( self : Dict ) -> Union[str, Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } ) , reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"] , ) def __snake_case( self : Union[str, Any] , _UpperCamelCase : int , _UpperCamelCase : List[Any] , _UpperCamelCase : Union[str, Any]=False ) -> Union[str, Any]: '''simple docstring''' if return_pvalue: SCREAMING_SNAKE_CASE = pearsonr(_UpperCamelCase , _UpperCamelCase ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(_UpperCamelCase , _UpperCamelCase )[0] )}
647
def __lowerCamelCase (UpperCAmelCase__ : int ): assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ), F"The input value of [n={number}] is not an integer" if number == 1: return 2 elif number < 1: SCREAMING_SNAKE_CASE = F"The input value of [n={number}] has to be > 0" raise ValueError(UpperCAmelCase__ ) else: SCREAMING_SNAKE_CASE = sylvester(number - 1 ) SCREAMING_SNAKE_CASE = num - 1 SCREAMING_SNAKE_CASE = num return lower * upper + 1 if __name__ == "__main__": print(f"""The 8th number in Sylvester's sequence: {sylvester(8)}""")
647
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) _lowerCamelCase : List[Any] = { '''uw-madison/mra-base-512-4''': '''https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json''', } class lowercase ( a ): lowercase__ : Optional[Any] = """mra""" def __init__( self : Optional[Any] , _UpperCamelCase : Union[str, Any]=50_265 , _UpperCamelCase : Dict=768 , _UpperCamelCase : List[str]=12 , _UpperCamelCase : List[str]=12 , _UpperCamelCase : str=3_072 , _UpperCamelCase : List[Any]="gelu" , _UpperCamelCase : Tuple=0.1 , _UpperCamelCase : str=0.1 , _UpperCamelCase : Tuple=512 , _UpperCamelCase : Tuple=1 , _UpperCamelCase : Optional[Any]=0.0_2 , _UpperCamelCase : Tuple=1e-5 , _UpperCamelCase : List[Any]="absolute" , _UpperCamelCase : Any=4 , _UpperCamelCase : str="full" , _UpperCamelCase : List[str]=0 , _UpperCamelCase : Any=0 , _UpperCamelCase : List[Any]=1 , _UpperCamelCase : Any=0 , _UpperCamelCase : Optional[Any]=2 , **_UpperCamelCase : str , ) -> Union[str, Any]: '''simple docstring''' super().__init__(pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = position_embedding_type SCREAMING_SNAKE_CASE = block_per_row SCREAMING_SNAKE_CASE = approx_mode SCREAMING_SNAKE_CASE = initial_prior_first_n_blocks SCREAMING_SNAKE_CASE = initial_prior_diagonal_n_blocks
647
import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class lowercase ( unittest.TestCase ): def __snake_case( self : Union[str, Any] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = inspect.getfile(accelerate.test_utils ) SCREAMING_SNAKE_CASE = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_script.py"] ) SCREAMING_SNAKE_CASE = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["scripts", "test_distributed_data_loop.py"] ) SCREAMING_SNAKE_CASE = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_ops.py"] ) @require_multi_gpu def __snake_case( self : Optional[int] ) -> Any: '''simple docstring''' print(F"Found {torch.cuda.device_count()} devices." ) SCREAMING_SNAKE_CASE = ["torchrun", F"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_UpperCamelCase , env=os.environ.copy() ) @require_multi_gpu def __snake_case( self : List[Any] ) -> int: '''simple docstring''' print(F"Found {torch.cuda.device_count()} devices." ) SCREAMING_SNAKE_CASE = ["torchrun", F"--nproc_per_node={torch.cuda.device_count()}", self.operation_file_path] print(F"Command: {cmd}" ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_UpperCamelCase , env=os.environ.copy() ) @require_multi_gpu def __snake_case( self : int ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = ["torchrun", F"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_UpperCamelCase , env=os.environ.copy() ) @require_multi_gpu def __snake_case( self : int ) -> int: '''simple docstring''' print(F"Found {torch.cuda.device_count()} devices, using 2 devices only" ) SCREAMING_SNAKE_CASE = ["torchrun", F"--nproc_per_node={torch.cuda.device_count()}", self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices="0,1" ): execute_subprocess_async(_UpperCamelCase , env=os.environ.copy() ) if __name__ == "__main__": _lowerCamelCase : str = Accelerator() _lowerCamelCase : List[str] = (accelerator.state.process_index + 2, 10) _lowerCamelCase : str = torch.randint(0, 10, shape).to(accelerator.device) _lowerCamelCase : Optional[Any] = '''''' _lowerCamelCase : str = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." _lowerCamelCase : Any = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." _lowerCamelCase : int = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
647
1
import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class lowercase : def __init__( self : Optional[int] , _UpperCamelCase : int , _UpperCamelCase : Dict=13 , _UpperCamelCase : Any=32 , _UpperCamelCase : str=2 , _UpperCamelCase : Any=3 , _UpperCamelCase : Optional[Any]=16 , _UpperCamelCase : int=[1, 2, 1] , _UpperCamelCase : Union[str, Any]=[2, 2, 4] , _UpperCamelCase : Optional[int]=2 , _UpperCamelCase : int=2.0 , _UpperCamelCase : List[str]=True , _UpperCamelCase : str=0.0 , _UpperCamelCase : Union[str, Any]=0.0 , _UpperCamelCase : List[str]=0.1 , _UpperCamelCase : List[Any]="gelu" , _UpperCamelCase : str=False , _UpperCamelCase : int=True , _UpperCamelCase : int=0.0_2 , _UpperCamelCase : List[Any]=1e-5 , _UpperCamelCase : int=True , _UpperCamelCase : Tuple=None , _UpperCamelCase : Tuple=True , _UpperCamelCase : List[str]=10 , _UpperCamelCase : Dict=8 , _UpperCamelCase : List[Any]=["stage1", "stage2", "stage3"] , _UpperCamelCase : List[Any]=[1, 2, 3] , ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = embed_dim SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = num_heads SCREAMING_SNAKE_CASE = window_size SCREAMING_SNAKE_CASE = mlp_ratio SCREAMING_SNAKE_CASE = qkv_bias SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = drop_path_rate SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = use_absolute_embeddings SCREAMING_SNAKE_CASE = patch_norm SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = scope SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = type_sequence_label_size SCREAMING_SNAKE_CASE = encoder_stride SCREAMING_SNAKE_CASE = out_features SCREAMING_SNAKE_CASE = out_indices def __snake_case( self : str ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def __snake_case( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def __snake_case( self : Union[str, Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[str] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = MaskFormerSwinModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(_UpperCamelCase ) SCREAMING_SNAKE_CASE = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) SCREAMING_SNAKE_CASE = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __snake_case( self : Tuple , _UpperCamelCase : int , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = MaskFormerSwinBackbone(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(_UpperCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(_UpperCamelCase ): SCREAMING_SNAKE_CASE = ["stem"] SCREAMING_SNAKE_CASE = MaskFormerSwinBackbone(config=_UpperCamelCase ) def __snake_case( self : List[Any] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = config_and_inputs SCREAMING_SNAKE_CASE = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowercase ( a , a , unittest.TestCase ): lowercase__ : List[Any] = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) lowercase__ : Optional[Any] = {"""feature-extraction""": MaskFormerSwinModel} if is_torch_available() else {} lowercase__ : Optional[Any] = False lowercase__ : List[Any] = False lowercase__ : Optional[Any] = False lowercase__ : List[str] = False lowercase__ : Optional[int] = False def __snake_case( self : Any ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = MaskFormerSwinModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=_UpperCamelCase , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( "`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with" " `nn.DataParallel`" ) ) def __snake_case( self : str ) -> Dict: '''simple docstring''' pass def __snake_case( self : List[str] ) -> Optional[int]: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __snake_case( self : List[Any] ) -> Dict: '''simple docstring''' return def __snake_case( self : Tuple ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def __snake_case( self : Tuple ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_UpperCamelCase ) @unittest.skip("Swin does not use inputs_embeds" ) def __snake_case( self : str ) -> Dict: '''simple docstring''' pass @unittest.skip("Swin does not support feedforward chunking" ) def __snake_case( self : Tuple ) -> List[str]: '''simple docstring''' pass def __snake_case( self : Any ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(_UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) SCREAMING_SNAKE_CASE = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCamelCase , nn.Linear ) ) def __snake_case( self : Dict ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(_UpperCamelCase ) SCREAMING_SNAKE_CASE = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE = ["pixel_values"] self.assertListEqual(arg_names[:1] , _UpperCamelCase ) @unittest.skip(reason="MaskFormerSwin is only used as backbone and doesn't support output_attentions" ) def __snake_case( self : List[str] ) -> int: '''simple docstring''' pass @unittest.skip(reason="MaskFormerSwin is only used as an internal backbone" ) def __snake_case( self : int ) -> List[Any]: '''simple docstring''' pass def __snake_case( self : Dict , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : str , _UpperCamelCase : Union[str, Any] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) ) SCREAMING_SNAKE_CASE = outputs.hidden_states SCREAMING_SNAKE_CASE = getattr( self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_UpperCamelCase ) , _UpperCamelCase ) # Swin has a different seq_length SCREAMING_SNAKE_CASE = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) SCREAMING_SNAKE_CASE = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __snake_case( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = True self.check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE = True self.check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def __snake_case( self : Optional[int] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) SCREAMING_SNAKE_CASE = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) SCREAMING_SNAKE_CASE = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) SCREAMING_SNAKE_CASE = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = True self.check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE = True self.check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , (padded_height, padded_width) ) @unittest.skip(reason="MaskFormerSwin doesn't have pretrained checkpoints" ) def __snake_case( self : List[Any] ) -> List[Any]: '''simple docstring''' pass @unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin" ) def __snake_case( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin" ) def __snake_case( self : Any ) -> Tuple: '''simple docstring''' pass def __snake_case( self : List[Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(_UpperCamelCase : List[str] ): SCREAMING_SNAKE_CASE = 0 return t def check_equivalence(_UpperCamelCase : Tuple , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Dict , _UpperCamelCase : Optional[int]={} ): with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**_UpperCamelCase , return_dict=_UpperCamelCase , **_UpperCamelCase ) SCREAMING_SNAKE_CASE = model(**_UpperCamelCase , return_dict=_UpperCamelCase , **_UpperCamelCase ).to_tuple() def recursive_check(_UpperCamelCase : Optional[int] , _UpperCamelCase : str ): if isinstance(_UpperCamelCase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(_UpperCamelCase , _UpperCamelCase ): recursive_check(_UpperCamelCase , _UpperCamelCase ) elif isinstance(_UpperCamelCase , _UpperCamelCase ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(_UpperCamelCase , _UpperCamelCase ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(_UpperCamelCase ) , set_nan_tensor_to_zero(_UpperCamelCase ) , atol=1e-5 ) , msg=( "Tuple and dict output are not equal. Difference:" F" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:" F" {torch.isnan(_UpperCamelCase ).any()} and `inf`: {torch.isinf(_UpperCamelCase )}. Dict has" F" `nan`: {torch.isnan(_UpperCamelCase ).any()} and `inf`: {torch.isinf(_UpperCamelCase )}." ) , ) recursive_check(_UpperCamelCase , _UpperCamelCase ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() SCREAMING_SNAKE_CASE = self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) check_equivalence(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = self._prepare_for_class(_UpperCamelCase , _UpperCamelCase , return_labels=_UpperCamelCase ) SCREAMING_SNAKE_CASE = self._prepare_for_class(_UpperCamelCase , _UpperCamelCase , return_labels=_UpperCamelCase ) check_equivalence(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) check_equivalence(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , {"output_hidden_states": True} ) SCREAMING_SNAKE_CASE = self._prepare_for_class(_UpperCamelCase , _UpperCamelCase , return_labels=_UpperCamelCase ) SCREAMING_SNAKE_CASE = self._prepare_for_class(_UpperCamelCase , _UpperCamelCase , return_labels=_UpperCamelCase ) check_equivalence(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , {"output_hidden_states": True} ) @require_torch class lowercase ( unittest.TestCase , a ): lowercase__ : Union[str, Any] = (MaskFormerSwinBackbone,) if is_torch_available() else () lowercase__ : List[str] = MaskFormerSwinConfig def __snake_case( self : Optional[Any] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = MaskFormerSwinModelTester(self ) def __snake_case( self : Optional[int] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = inputs_dict["pixel_values"].shape[0] for backbone_class in self.all_model_classes: SCREAMING_SNAKE_CASE = backbone_class(_UpperCamelCase ) backbone.to(_UpperCamelCase ) backbone.eval() SCREAMING_SNAKE_CASE = backbone(**_UpperCamelCase ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , _UpperCamelCase ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True SCREAMING_SNAKE_CASE = backbone(**_UpperCamelCase , output_hidden_states=_UpperCamelCase ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: SCREAMING_SNAKE_CASE = backbone(**_UpperCamelCase , output_attentions=_UpperCamelCase ) self.assertIsNotNone(outputs.attentions )
647
import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class lowercase ( a ): lowercase__ : Tuple = (KDPMaDiscreteScheduler,) lowercase__ : Optional[int] = 10 def __snake_case( self : Optional[Any] , **_UpperCamelCase : List[Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = { "num_train_timesteps": 1_100, "beta_start": 0.0_0_0_1, "beta_end": 0.0_2, "beta_schedule": "linear", } config.update(**_UpperCamelCase ) return config def __snake_case( self : int ) -> List[Any]: '''simple docstring''' for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=_UpperCamelCase ) def __snake_case( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=_UpperCamelCase , beta_end=_UpperCamelCase ) def __snake_case( self : Union[str, Any] ) -> str: '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_UpperCamelCase ) def __snake_case( self : Optional[int] ) -> int: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCamelCase ) def __snake_case( self : Optional[int] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = self.scheduler_classes[0] SCREAMING_SNAKE_CASE = self.get_scheduler_config(prediction_type="v_prediction" ) SCREAMING_SNAKE_CASE = scheduler_class(**_UpperCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) SCREAMING_SNAKE_CASE = self.dummy_model() SCREAMING_SNAKE_CASE = self.dummy_sample_deter * scheduler.init_noise_sigma SCREAMING_SNAKE_CASE = sample.to(_UpperCamelCase ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = model(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = output.prev_sample SCREAMING_SNAKE_CASE = torch.sum(torch.abs(_UpperCamelCase ) ) SCREAMING_SNAKE_CASE = torch.mean(torch.abs(_UpperCamelCase ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6_934e-07 ) < 1e-2 assert abs(result_mean.item() - 6.1_112e-10 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 4.693_428_650_170_972e-07 ) < 1e-2 assert abs(result_mean.item() - 0.0_0_0_2 ) < 1e-3 def __snake_case( self : Dict ) -> int: '''simple docstring''' if torch_device == "mps": return SCREAMING_SNAKE_CASE = self.scheduler_classes[0] SCREAMING_SNAKE_CASE = self.get_scheduler_config() SCREAMING_SNAKE_CASE = scheduler_class(**_UpperCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) SCREAMING_SNAKE_CASE = self.dummy_model() SCREAMING_SNAKE_CASE = self.dummy_sample_deter * scheduler.init_noise_sigma SCREAMING_SNAKE_CASE = sample.to(_UpperCamelCase ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = model(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = output.prev_sample SCREAMING_SNAKE_CASE = torch.sum(torch.abs(_UpperCamelCase ) ) SCREAMING_SNAKE_CASE = torch.mean(torch.abs(_UpperCamelCase ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1e-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1e-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1e-3 def __snake_case( self : Tuple ) -> str: '''simple docstring''' if torch_device == "mps": return SCREAMING_SNAKE_CASE = self.scheduler_classes[0] SCREAMING_SNAKE_CASE = self.get_scheduler_config() SCREAMING_SNAKE_CASE = scheduler_class(**_UpperCamelCase ) scheduler.set_timesteps(self.num_inference_steps , device=_UpperCamelCase ) SCREAMING_SNAKE_CASE = self.dummy_model() SCREAMING_SNAKE_CASE = self.dummy_sample_deter.to(_UpperCamelCase ) * scheduler.init_noise_sigma for t in scheduler.timesteps: SCREAMING_SNAKE_CASE = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = model(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = output.prev_sample SCREAMING_SNAKE_CASE = torch.sum(torch.abs(_UpperCamelCase ) ) SCREAMING_SNAKE_CASE = torch.mean(torch.abs(_UpperCamelCase ) ) if str(_UpperCamelCase ).startswith("cpu" ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1e-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1e-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1e-3
647
1
def __lowerCamelCase (): return 1 def __lowerCamelCase (UpperCAmelCase__ : int ): return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def __lowerCamelCase (UpperCAmelCase__ : int ): return 0 if x < 0 else five_pence(x - 5 ) + two_pence(UpperCAmelCase__ ) def __lowerCamelCase (UpperCAmelCase__ : int ): return 0 if x < 0 else ten_pence(x - 1_0 ) + five_pence(UpperCAmelCase__ ) def __lowerCamelCase (UpperCAmelCase__ : int ): return 0 if x < 0 else twenty_pence(x - 2_0 ) + ten_pence(UpperCAmelCase__ ) def __lowerCamelCase (UpperCAmelCase__ : int ): return 0 if x < 0 else fifty_pence(x - 5_0 ) + twenty_pence(UpperCAmelCase__ ) def __lowerCamelCase (UpperCAmelCase__ : int ): return 0 if x < 0 else one_pound(x - 1_0_0 ) + fifty_pence(UpperCAmelCase__ ) def __lowerCamelCase (UpperCAmelCase__ : int ): return 0 if x < 0 else two_pound(x - 2_0_0 ) + one_pound(UpperCAmelCase__ ) def __lowerCamelCase (UpperCAmelCase__ : int = 2_0_0 ): return two_pound(UpperCAmelCase__ ) if __name__ == "__main__": print(solution(int(input().strip())))
647
from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig _lowerCamelCase : Tuple = { '''susnato/ernie-m-base_pytorch''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json''', '''susnato/ernie-m-large_pytorch''': '''https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json''', } class lowercase ( a ): lowercase__ : Optional[Any] = """ernie_m""" lowercase__ : Dict[str, str] = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self : Optional[int] , _UpperCamelCase : int = 250_002 , _UpperCamelCase : int = 768 , _UpperCamelCase : int = 12 , _UpperCamelCase : int = 12 , _UpperCamelCase : int = 3_072 , _UpperCamelCase : str = "gelu" , _UpperCamelCase : float = 0.1 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : int = 514 , _UpperCamelCase : float = 0.0_2 , _UpperCamelCase : int = 1 , _UpperCamelCase : float = 1e-05 , _UpperCamelCase : int=None , _UpperCamelCase : int=False , _UpperCamelCase : int=0.0 , **_UpperCamelCase : Union[str, Any] , ) -> Optional[Any]: '''simple docstring''' super().__init__(pad_token_id=_UpperCamelCase , **_UpperCamelCase ) SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = classifier_dropout SCREAMING_SNAKE_CASE = is_decoder SCREAMING_SNAKE_CASE = act_dropout
647
1
def __lowerCamelCase (UpperCAmelCase__ : int = 1_0**9 ): SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value SCREAMING_SNAKE_CASE = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f"""{solution() = }""")
647
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCamelCase : Optional[int] = { '''configuration_blenderbot''': [ '''BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BlenderbotConfig''', '''BlenderbotOnnxConfig''', ], '''tokenization_blenderbot''': ['''BlenderbotTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[Any] = ['''BlenderbotTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Tuple = [ '''BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BlenderbotForCausalLM''', '''BlenderbotForConditionalGeneration''', '''BlenderbotModel''', '''BlenderbotPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[str] = [ '''TFBlenderbotForConditionalGeneration''', '''TFBlenderbotModel''', '''TFBlenderbotPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[int] = [ '''FlaxBlenderbotForConditionalGeneration''', '''FlaxBlenderbotModel''', '''FlaxBlenderbotPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys _lowerCamelCase : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
647
1
import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor _lowerCamelCase : Any = logging.get_logger(__name__) class lowercase ( a ): def __init__( self : str , *_UpperCamelCase : Optional[int] , **_UpperCamelCase : Union[str, Any] ) -> None: '''simple docstring''' warnings.warn( "The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use OwlViTImageProcessor instead." , _UpperCamelCase , ) super().__init__(*_UpperCamelCase , **_UpperCamelCase )
647
from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar _lowerCamelCase : Optional[Any] = TypeVar('''T''') class lowercase ( Generic[T] ): def __init__( self : Any , _UpperCamelCase : T ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = data SCREAMING_SNAKE_CASE = None def __str__( self : Union[str, Any] ) -> str: '''simple docstring''' return F"{self.data}" class lowercase ( Generic[T] ): def __init__( self : Optional[int] ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE = None def __iter__( self : str ) -> Iterator[T]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.top while node: yield node.data SCREAMING_SNAKE_CASE = node.next def __str__( self : int ) -> str: '''simple docstring''' return "->".join([str(_UpperCamelCase ) for item in self] ) def __len__( self : Tuple ) -> int: '''simple docstring''' return len(tuple(iter(self ) ) ) def __snake_case( self : Union[str, Any] ) -> bool: '''simple docstring''' return self.top is None def __snake_case( self : str , _UpperCamelCase : T ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE = Node(_UpperCamelCase ) if not self.is_empty(): SCREAMING_SNAKE_CASE = self.top SCREAMING_SNAKE_CASE = node def __snake_case( self : Union[str, Any] ) -> T: '''simple docstring''' if self.is_empty(): raise IndexError("pop from empty stack" ) assert isinstance(self.top , _UpperCamelCase ) SCREAMING_SNAKE_CASE = self.top SCREAMING_SNAKE_CASE = self.top.next return pop_node.data def __snake_case( self : Union[str, Any] ) -> T: '''simple docstring''' if self.is_empty(): raise IndexError("peek from empty stack" ) assert self.top is not None return self.top.data def __snake_case( self : Dict ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE = None if __name__ == "__main__": from doctest import testmod testmod()
647
1
import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class lowercase ( unittest.TestCase ): def __snake_case( self : Optional[int] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = inspect.getfile(accelerate.test_utils ) SCREAMING_SNAKE_CASE = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_script.py"] ) SCREAMING_SNAKE_CASE = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def __snake_case( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = F"\n {self.test_dir}/xla_spawn.py\n --num_cores 8\n {self.test_file_path}\n ".split() SCREAMING_SNAKE_CASE = [sys.executable] + distributed_args execute_subprocess_async(_UpperCamelCase , env=os.environ.copy() )
647
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys _lowerCamelCase : List[Any] = '''3''' print('''Python version:''', sys.version) print('''OS platform:''', platform.platform()) print('''OS architecture:''', platform.machine()) try: import torch print('''Torch version:''', torch.__version__) print('''Cuda available:''', torch.cuda.is_available()) print('''Cuda version:''', torch.version.cuda) print('''CuDNN version:''', torch.backends.cudnn.version()) print('''Number of GPUs available:''', torch.cuda.device_count()) except ImportError: print('''Torch version:''', None) try: import transformers print('''transformers version:''', transformers.__version__) except ImportError: print('''transformers version:''', None)
647
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCamelCase : Any = logging.get_logger(__name__) _lowerCamelCase : Union[str, Any] = { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/config.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/config.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/config.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/config.json''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json''', '''roberta-large-openai-detector''': '''https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json''', } class lowercase ( a ): lowercase__ : int = """roberta""" def __init__( self : int , _UpperCamelCase : Union[str, Any]=50_265 , _UpperCamelCase : Any=768 , _UpperCamelCase : Any=12 , _UpperCamelCase : List[str]=12 , _UpperCamelCase : Optional[Any]=3_072 , _UpperCamelCase : int="gelu" , _UpperCamelCase : List[str]=0.1 , _UpperCamelCase : int=0.1 , _UpperCamelCase : int=512 , _UpperCamelCase : Union[str, Any]=2 , _UpperCamelCase : List[str]=0.0_2 , _UpperCamelCase : Any=1e-12 , _UpperCamelCase : Tuple=1 , _UpperCamelCase : List[Any]=0 , _UpperCamelCase : Optional[int]=2 , _UpperCamelCase : List[Any]="absolute" , _UpperCamelCase : List[str]=True , _UpperCamelCase : Optional[int]=None , **_UpperCamelCase : Optional[Any] , ) -> int: '''simple docstring''' super().__init__(pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = position_embedding_type SCREAMING_SNAKE_CASE = use_cache SCREAMING_SNAKE_CASE = classifier_dropout class lowercase ( a ): @property def __snake_case( self : List[str] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": SCREAMING_SNAKE_CASE = {0: "batch", 1: "choice", 2: "sequence"} else: SCREAMING_SNAKE_CASE = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
647
def __lowerCamelCase (UpperCAmelCase__ : list[int] ): if not numbers: return 0 if not isinstance(UpperCAmelCase__ , (list, tuple) ) or not all( isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) for number in numbers ): raise ValueError("numbers must be an iterable of integers" ) SCREAMING_SNAKE_CASE = SCREAMING_SNAKE_CASE = SCREAMING_SNAKE_CASE = numbers[0] for i in range(1 , len(UpperCAmelCase__ ) ): # update the maximum and minimum subarray products SCREAMING_SNAKE_CASE = numbers[i] if number < 0: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = min_till_now, max_till_now SCREAMING_SNAKE_CASE = max(UpperCAmelCase__ , max_till_now * number ) SCREAMING_SNAKE_CASE = min(UpperCAmelCase__ , min_till_now * number ) # update the maximum product found till now SCREAMING_SNAKE_CASE = max(UpperCAmelCase__ , UpperCAmelCase__ ) return max_prod
647
1
import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class lowercase ( unittest.TestCase ): def __snake_case( self : Union[str, Any] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = inspect.getfile(accelerate.test_utils ) SCREAMING_SNAKE_CASE = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_script.py"] ) SCREAMING_SNAKE_CASE = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["scripts", "test_distributed_data_loop.py"] ) SCREAMING_SNAKE_CASE = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_ops.py"] ) @require_multi_gpu def __snake_case( self : Optional[int] ) -> Any: '''simple docstring''' print(F"Found {torch.cuda.device_count()} devices." ) SCREAMING_SNAKE_CASE = ["torchrun", F"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_UpperCamelCase , env=os.environ.copy() ) @require_multi_gpu def __snake_case( self : List[Any] ) -> int: '''simple docstring''' print(F"Found {torch.cuda.device_count()} devices." ) SCREAMING_SNAKE_CASE = ["torchrun", F"--nproc_per_node={torch.cuda.device_count()}", self.operation_file_path] print(F"Command: {cmd}" ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_UpperCamelCase , env=os.environ.copy() ) @require_multi_gpu def __snake_case( self : int ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = ["torchrun", F"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_UpperCamelCase , env=os.environ.copy() ) @require_multi_gpu def __snake_case( self : int ) -> int: '''simple docstring''' print(F"Found {torch.cuda.device_count()} devices, using 2 devices only" ) SCREAMING_SNAKE_CASE = ["torchrun", F"--nproc_per_node={torch.cuda.device_count()}", self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices="0,1" ): execute_subprocess_async(_UpperCamelCase , env=os.environ.copy() ) if __name__ == "__main__": _lowerCamelCase : str = Accelerator() _lowerCamelCase : List[str] = (accelerator.state.process_index + 2, 10) _lowerCamelCase : str = torch.randint(0, 10, shape).to(accelerator.device) _lowerCamelCase : Optional[Any] = '''''' _lowerCamelCase : str = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." _lowerCamelCase : Any = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." _lowerCamelCase : int = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
647
import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib _lowerCamelCase : str = threading.Lock() _lowerCamelCase : Optional[logging.Handler] = None _lowerCamelCase : Any = { '''debug''': logging.DEBUG, '''info''': logging.INFO, '''warning''': logging.WARNING, '''error''': logging.ERROR, '''critical''': logging.CRITICAL, } _lowerCamelCase : Union[str, Any] = logging.WARNING _lowerCamelCase : List[Any] = True def __lowerCamelCase (): SCREAMING_SNAKE_CASE = os.getenv("TRANSFORMERS_VERBOSITY" , UpperCAmelCase__ ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F"Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, " F"has to be one of: { ', '.join(log_levels.keys() ) }" ) return _default_log_level def __lowerCamelCase (): return __name__.split("." )[0] def __lowerCamelCase (): return logging.getLogger(_get_library_name() ) def __lowerCamelCase (): global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return SCREAMING_SNAKE_CASE = logging.StreamHandler() # Set sys.stderr as stream. SCREAMING_SNAKE_CASE = sys.stderr.flush # Apply our default configuration to the library root logger. SCREAMING_SNAKE_CASE = _get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) SCREAMING_SNAKE_CASE = False def __lowerCamelCase (): global _default_handler with _lock: if not _default_handler: return SCREAMING_SNAKE_CASE = _get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) SCREAMING_SNAKE_CASE = None def __lowerCamelCase (): return log_levels def __lowerCamelCase (UpperCAmelCase__ : Optional[str] = None ): if name is None: SCREAMING_SNAKE_CASE = _get_library_name() _configure_library_root_logger() return logging.getLogger(UpperCAmelCase__ ) def __lowerCamelCase (): _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def __lowerCamelCase (UpperCAmelCase__ : int ): _configure_library_root_logger() _get_library_root_logger().setLevel(UpperCAmelCase__ ) def __lowerCamelCase (): return set_verbosity(UpperCAmelCase__ ) def __lowerCamelCase (): return set_verbosity(UpperCAmelCase__ ) def __lowerCamelCase (): return set_verbosity(UpperCAmelCase__ ) def __lowerCamelCase (): return set_verbosity(UpperCAmelCase__ ) def __lowerCamelCase (): _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def __lowerCamelCase (): _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def __lowerCamelCase (UpperCAmelCase__ : logging.Handler ): _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(UpperCAmelCase__ ) def __lowerCamelCase (UpperCAmelCase__ : logging.Handler ): _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(UpperCAmelCase__ ) def __lowerCamelCase (): _configure_library_root_logger() SCREAMING_SNAKE_CASE = False def __lowerCamelCase (): _configure_library_root_logger() SCREAMING_SNAKE_CASE = True def __lowerCamelCase (): SCREAMING_SNAKE_CASE = _get_library_root_logger().handlers for handler in handlers: SCREAMING_SNAKE_CASE = logging.Formatter("[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s" ) handler.setFormatter(UpperCAmelCase__ ) def __lowerCamelCase (): SCREAMING_SNAKE_CASE = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(UpperCAmelCase__ ) def __lowerCamelCase (self : str , *UpperCAmelCase__ : Union[str, Any] , **UpperCAmelCase__ : List[str] ): SCREAMING_SNAKE_CASE = os.getenv("TRANSFORMERS_NO_ADVISORY_WARNINGS" , UpperCAmelCase__ ) if no_advisory_warnings: return self.warning(*UpperCAmelCase__ , **UpperCAmelCase__ ) _lowerCamelCase : str = warning_advice @functools.lru_cache(UpperCAmelCase__ ) def __lowerCamelCase (self : List[str] , *UpperCAmelCase__ : Tuple , **UpperCAmelCase__ : int ): self.warning(*UpperCAmelCase__ , **UpperCAmelCase__ ) _lowerCamelCase : Dict = warning_once class lowercase : def __init__( self : List[Any] , *_UpperCamelCase : Union[str, Any] , **_UpperCamelCase : str ) -> List[Any]: # pylint: disable=unused-argument '''simple docstring''' SCREAMING_SNAKE_CASE = args[0] if args else None def __iter__( self : Optional[Any] ) -> str: '''simple docstring''' return iter(self._iterator ) def __getattr__( self : List[str] , _UpperCamelCase : Any ) -> List[Any]: '''simple docstring''' def empty_fn(*_UpperCamelCase : List[str] , **_UpperCamelCase : Union[str, Any] ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : Any ) -> Optional[Any]: '''simple docstring''' return self def __exit__( self : Optional[Any] , _UpperCamelCase : Tuple , _UpperCamelCase : str , _UpperCamelCase : List[str] ) -> Union[str, Any]: '''simple docstring''' return class lowercase : def __call__( self : Union[str, Any] , *_UpperCamelCase : Optional[Any] , **_UpperCamelCase : Tuple ) -> Tuple: '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm(*_UpperCamelCase , **_UpperCamelCase ) else: return EmptyTqdm(*_UpperCamelCase , **_UpperCamelCase ) def __snake_case( self : Dict , *_UpperCamelCase : Dict , **_UpperCamelCase : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*_UpperCamelCase , **_UpperCamelCase ) def __snake_case( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm.get_lock() _lowerCamelCase : Union[str, Any] = _tqdm_cls() def __lowerCamelCase (): global _tqdm_active return bool(_tqdm_active ) def __lowerCamelCase (): global _tqdm_active SCREAMING_SNAKE_CASE = True hf_hub_utils.enable_progress_bars() def __lowerCamelCase (): global _tqdm_active SCREAMING_SNAKE_CASE = False hf_hub_utils.disable_progress_bars()
647
1
def __lowerCamelCase (UpperCAmelCase__ : list[list] ): SCREAMING_SNAKE_CASE = current_set.copy() for row_index, row in enumerate(UpperCAmelCase__ ): SCREAMING_SNAKE_CASE = row[0] for column_index, column in enumerate(UpperCAmelCase__ ): if magnitude == 0: SCREAMING_SNAKE_CASE = column continue SCREAMING_SNAKE_CASE = column / magnitude # Subtract to cancel term SCREAMING_SNAKE_CASE = current_set[0] SCREAMING_SNAKE_CASE = [first_row] SCREAMING_SNAKE_CASE = current_set[1::] for row in current_set: SCREAMING_SNAKE_CASE = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(UpperCAmelCase__ ) continue for column_index in range(len(UpperCAmelCase__ ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(UpperCAmelCase__ ) # Create next recursion iteration set if len(final_set[0] ) != 3: SCREAMING_SNAKE_CASE = final_set[0] SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) SCREAMING_SNAKE_CASE = simplify(UpperCAmelCase__ ) for i in range(len(UpperCAmelCase__ ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = resultant return final_set def __lowerCamelCase (UpperCAmelCase__ : list[list] ): if len(UpperCAmelCase__ ) == 0: raise IndexError("solve_simultaneous() requires n lists of length n+1" ) SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ ) + 1 if any(len(UpperCAmelCase__ ) != _length for item in equations ): raise IndexError("solve_simultaneous() requires n lists of length n+1" ) for row in equations: if any(not isinstance(UpperCAmelCase__ , (int, float) ) for column in row ): raise ValueError("solve_simultaneous() requires lists of integers" ) if len(UpperCAmelCase__ ) == 1: return [equations[0][-1] / equations[0][0]] SCREAMING_SNAKE_CASE = equations.copy() if any(0 in row for row in data_set ): SCREAMING_SNAKE_CASE = data_set.copy() SCREAMING_SNAKE_CASE = [] for row_index, row in enumerate(UpperCAmelCase__ ): if 0 not in row: SCREAMING_SNAKE_CASE = data_set.pop(UpperCAmelCase__ ) break if not full_row: raise ValueError("solve_simultaneous() requires at least 1 full equation" ) data_set.insert(0 , UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = data_set.copy() SCREAMING_SNAKE_CASE = simplify(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = simplified[::-1] SCREAMING_SNAKE_CASE = [] for row in simplified: SCREAMING_SNAKE_CASE = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue SCREAMING_SNAKE_CASE = row.copy()[: len(UpperCAmelCase__ ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(UpperCAmelCase__ ) == 0: solutions.append(0 ) continue SCREAMING_SNAKE_CASE = temp_row[1::] SCREAMING_SNAKE_CASE = temp_row[::-1] for column_index, column in enumerate(UpperCAmelCase__ ): current_solution -= column * solutions[column_index] solutions.append(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = [] for item in solutions: final.append(float(round(UpperCAmelCase__ , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() _lowerCamelCase : Tuple = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
647
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(a ) , """Tatoeba directory does not exist.""" ) class lowercase ( unittest.TestCase ): @cached_property def __snake_case( self : int ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = tempfile.mkdtemp() return TatoebaConverter(save_dir=_UpperCamelCase ) @slow def __snake_case( self : Tuple ) -> List[Any]: '''simple docstring''' self.resolver.convert_models(["heb-eng"] ) @slow def __snake_case( self : Any ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.resolver.write_model_card("opus-mt-he-en" , dry_run=_UpperCamelCase ) assert mmeta["long_pair"] == "heb-eng"
647
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowerCamelCase : Any = { '''configuration_mobilenet_v2''': [ '''MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileNetV2Config''', '''MobileNetV2OnnxConfig''', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Union[str, Any] = ['''MobileNetV2FeatureExtractor'''] _lowerCamelCase : Optional[int] = ['''MobileNetV2ImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : str = [ '''MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileNetV2ForImageClassification''', '''MobileNetV2ForSemanticSegmentation''', '''MobileNetV2Model''', '''MobileNetV2PreTrainedModel''', '''load_tf_weights_in_mobilenet_v2''', ] if TYPE_CHECKING: from .configuration_mobilenet_va import ( MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileNetVaConfig, MobileNetVaOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilenet_va import MobileNetVaFeatureExtractor from .image_processing_mobilenet_va import MobileNetVaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilenet_va import ( MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel, MobileNetVaPreTrainedModel, load_tf_weights_in_mobilenet_va, ) else: import sys _lowerCamelCase : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
647
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class lowercase : def __init__( self : Any , _UpperCamelCase : Any , _UpperCamelCase : Dict=13 , _UpperCamelCase : List[Any]=64 , _UpperCamelCase : Union[str, Any]=2 , _UpperCamelCase : int=3 , _UpperCamelCase : Union[str, Any]=True , _UpperCamelCase : Optional[int]=True , _UpperCamelCase : Tuple=32 , _UpperCamelCase : str=5 , _UpperCamelCase : Tuple=4 , _UpperCamelCase : Any=37 , _UpperCamelCase : List[str]="gelu" , _UpperCamelCase : int=0.1 , _UpperCamelCase : int=0.1 , _UpperCamelCase : Optional[int]=10 , _UpperCamelCase : Tuple=0.0_2 , _UpperCamelCase : Union[str, Any]=[1, 16, 4, 4] , _UpperCamelCase : Optional[Any]=None , ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = type_sequence_label_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = scope SCREAMING_SNAKE_CASE = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size SCREAMING_SNAKE_CASE = (self.image_size // 32) ** 2 SCREAMING_SNAKE_CASE = num_patches + 1 def __snake_case( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def __snake_case( self : Dict ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, "hidden_sizes": [4, 8, 16, 32], "num_groups": 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=_UpperCamelCase , ) def __snake_case( self : Dict , _UpperCamelCase : int , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[int] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = ViTHybridModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __snake_case( self : Any , _UpperCamelCase : List[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : Tuple ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.type_sequence_label_size SCREAMING_SNAKE_CASE = ViTHybridForImageClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __snake_case( self : str ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = config_and_inputs SCREAMING_SNAKE_CASE = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowercase ( a , a , unittest.TestCase ): lowercase__ : Optional[int] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () lowercase__ : List[Any] = ( {"""feature-extraction""": ViTHybridModel, """image-classification""": ViTHybridForImageClassification} if is_torch_available() else {} ) lowercase__ : int = False lowercase__ : Any = False lowercase__ : Optional[int] = False def __snake_case( self : Union[str, Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = ViTHybridModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=_UpperCamelCase , has_text_modality=_UpperCamelCase , hidden_size=37 ) def __snake_case( self : Optional[Any] ) -> Any: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def __snake_case( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' pass def __snake_case( self : List[Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(_UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) SCREAMING_SNAKE_CASE = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCamelCase , nn.Linear ) ) def __snake_case( self : Optional[int] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(_UpperCamelCase ) SCREAMING_SNAKE_CASE = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE = ["pixel_values"] self.assertListEqual(arg_names[:1] , _UpperCamelCase ) def __snake_case( self : List[str] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def __snake_case( self : Dict ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCamelCase ) def __snake_case( self : Optional[int] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = _config_zero_init(_UpperCamelCase ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(config=_UpperCamelCase ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": SCREAMING_SNAKE_CASE = [F"{name}.{key}" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) @slow def __snake_case( self : Any ) -> List[Any]: '''simple docstring''' for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = ViTHybridModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def __lowerCamelCase (): SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): @cached_property def __snake_case( self : List[Any] ) -> Any: '''simple docstring''' return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __snake_case( self : Tuple ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( _UpperCamelCase ) SCREAMING_SNAKE_CASE = self.default_image_processor SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=_UpperCamelCase , return_tensors="pt" ).to(_UpperCamelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**_UpperCamelCase ) # verify the logits SCREAMING_SNAKE_CASE = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , _UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.tensor([-1.9_0_9_0, -0.4_9_9_3, -0.2_3_8_9] ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCamelCase , atol=1e-4 ) ) @slow @require_accelerate def __snake_case( self : Optional[Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = ViTHybridImageProcessor.from_pretrained("google/vit-hybrid-base-bit-384" ) SCREAMING_SNAKE_CASE = ViTHybridForImageClassification.from_pretrained("google/vit-hybrid-base-bit-384" , device_map="auto" ) SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=_UpperCamelCase , return_tensors="pt" ) SCREAMING_SNAKE_CASE = model(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = outputs.logits # model predicts one of the 1000 ImageNet classes SCREAMING_SNAKE_CASE = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , "tabby, tabby cat" )
647
1
from math import asin, atan, cos, radians, sin, sqrt, tan _lowerCamelCase : Dict = 6_378_137.0 _lowerCamelCase : List[str] = 6_356_752.314_245 _lowerCamelCase : str = 6_37_81_37 def __lowerCamelCase (UpperCAmelCase__ : float , UpperCAmelCase__ : float , UpperCAmelCase__ : float , UpperCAmelCase__ : float ): SCREAMING_SNAKE_CASE = (AXIS_A - AXIS_B) / AXIS_A SCREAMING_SNAKE_CASE = atan((1 - flattening) * tan(radians(UpperCAmelCase__ ) ) ) SCREAMING_SNAKE_CASE = atan((1 - flattening) * tan(radians(UpperCAmelCase__ ) ) ) SCREAMING_SNAKE_CASE = radians(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = radians(UpperCAmelCase__ ) # Equation SCREAMING_SNAKE_CASE = sin((phi_a - phi_a) / 2 ) SCREAMING_SNAKE_CASE = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda SCREAMING_SNAKE_CASE = sqrt(sin_sq_phi + (cos(UpperCAmelCase__ ) * cos(UpperCAmelCase__ ) * sin_sq_lambda) ) return 2 * RADIUS * asin(UpperCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
647
from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) def __lowerCamelCase (UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[Any] ): return [ int(1_0_0_0 * (box[0] / width) ), int(1_0_0_0 * (box[1] / height) ), int(1_0_0_0 * (box[2] / width) ), int(1_0_0_0 * (box[3] / height) ), ] def __lowerCamelCase (UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : Optional[str] , UpperCAmelCase__ : Optional[str] = None ): SCREAMING_SNAKE_CASE = tesseract_config if tesseract_config is not None else "" # apply OCR SCREAMING_SNAKE_CASE = to_pil_image(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = pil_image.size SCREAMING_SNAKE_CASE = pytesseract.image_to_data(UpperCAmelCase__ , lang=UpperCAmelCase__ , output_type="dict" , config=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = data["text"], data["left"], data["top"], data["width"], data["height"] # filter empty words and corresponding coordinates SCREAMING_SNAKE_CASE = [idx for idx, word in enumerate(UpperCAmelCase__ ) if not word.strip()] SCREAMING_SNAKE_CASE = [word for idx, word in enumerate(UpperCAmelCase__ ) if idx not in irrelevant_indices] SCREAMING_SNAKE_CASE = [coord for idx, coord in enumerate(UpperCAmelCase__ ) if idx not in irrelevant_indices] SCREAMING_SNAKE_CASE = [coord for idx, coord in enumerate(UpperCAmelCase__ ) if idx not in irrelevant_indices] SCREAMING_SNAKE_CASE = [coord for idx, coord in enumerate(UpperCAmelCase__ ) if idx not in irrelevant_indices] SCREAMING_SNAKE_CASE = [coord for idx, coord in enumerate(UpperCAmelCase__ ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format SCREAMING_SNAKE_CASE = [] for x, y, w, h in zip(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): SCREAMING_SNAKE_CASE = [x, y, x + w, y + h] actual_boxes.append(UpperCAmelCase__ ) # finally, normalize the bounding boxes SCREAMING_SNAKE_CASE = [] for box in actual_boxes: normalized_boxes.append(normalize_box(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ), "Not as many words as there are bounding boxes" return words, normalized_boxes class lowercase ( a ): lowercase__ : Optional[int] = ["""pixel_values"""] def __init__( self : int , _UpperCamelCase : bool = True , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCamelCase : bool = True , _UpperCamelCase : Optional[str] = None , _UpperCamelCase : Optional[str] = "" , **_UpperCamelCase : Optional[int] , ) -> None: '''simple docstring''' super().__init__(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = size if size is not None else {"height": 224, "width": 224} SCREAMING_SNAKE_CASE = get_size_dict(_UpperCamelCase ) SCREAMING_SNAKE_CASE = do_resize SCREAMING_SNAKE_CASE = size SCREAMING_SNAKE_CASE = resample SCREAMING_SNAKE_CASE = apply_ocr SCREAMING_SNAKE_CASE = ocr_lang SCREAMING_SNAKE_CASE = tesseract_config def __snake_case( self : List[Any] , _UpperCamelCase : np.ndarray , _UpperCamelCase : Dict[str, int] , _UpperCamelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : Any , ) -> np.ndarray: '''simple docstring''' SCREAMING_SNAKE_CASE = get_size_dict(_UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F"The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}" ) SCREAMING_SNAKE_CASE = (size["height"], size["width"]) return resize(_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def __snake_case( self : Tuple , _UpperCamelCase : ImageInput , _UpperCamelCase : bool = None , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : PILImageResampling = None , _UpperCamelCase : bool = None , _UpperCamelCase : Optional[str] = None , _UpperCamelCase : Optional[str] = None , _UpperCamelCase : Optional[Union[str, TensorType]] = None , _UpperCamelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCamelCase : str , ) -> PIL.Image.Image: '''simple docstring''' SCREAMING_SNAKE_CASE = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE = size if size is not None else self.size SCREAMING_SNAKE_CASE = get_size_dict(_UpperCamelCase ) SCREAMING_SNAKE_CASE = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE = apply_ocr if apply_ocr is not None else self.apply_ocr SCREAMING_SNAKE_CASE = ocr_lang if ocr_lang is not None else self.ocr_lang SCREAMING_SNAKE_CASE = tesseract_config if tesseract_config is not None else self.tesseract_config SCREAMING_SNAKE_CASE = make_list_of_images(_UpperCamelCase ) if not valid_images(_UpperCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE = [to_numpy_array(_UpperCamelCase ) for image in images] if apply_ocr: requires_backends(self , "pytesseract" ) SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] for image in images: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = apply_tesseract(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) words_batch.append(_UpperCamelCase ) boxes_batch.append(_UpperCamelCase ) if do_resize: SCREAMING_SNAKE_CASE = [self.resize(image=_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) SCREAMING_SNAKE_CASE = [flip_channel_order(_UpperCamelCase ) for image in images] SCREAMING_SNAKE_CASE = [to_channel_dimension_format(_UpperCamelCase , _UpperCamelCase ) for image in images] SCREAMING_SNAKE_CASE = BatchFeature(data={"pixel_values": images} , tensor_type=_UpperCamelCase ) if apply_ocr: SCREAMING_SNAKE_CASE = words_batch SCREAMING_SNAKE_CASE = boxes_batch return data
647
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class lowercase ( a ): def __init__( self : Optional[int] , _UpperCamelCase : str ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = data def __iter__( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' for element in self.data: yield element def __lowerCamelCase (UpperCAmelCase__ : int=True ): SCREAMING_SNAKE_CASE = Accelerator(even_batches=UpperCAmelCase__ ) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def __lowerCamelCase (UpperCAmelCase__ : Accelerator , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : bool = False ): if iterable: SCREAMING_SNAKE_CASE = DummyIterableDataset(torch.as_tensor(range(UpperCAmelCase__ ) ) ) else: SCREAMING_SNAKE_CASE = TensorDataset(torch.as_tensor(range(UpperCAmelCase__ ) ) ) SCREAMING_SNAKE_CASE = DataLoader(UpperCAmelCase__ , batch_size=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = accelerator.prepare(UpperCAmelCase__ ) return dl def __lowerCamelCase (UpperCAmelCase__ : Accelerator , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : List[int] , ): SCREAMING_SNAKE_CASE = create_dataloader(accelerator=UpperCAmelCase__ , dataset_size=UpperCAmelCase__ , batch_size=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = [len(batch[0] ) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def __lowerCamelCase (): SCREAMING_SNAKE_CASE = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( UpperCAmelCase__ , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( UpperCAmelCase__ , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def __lowerCamelCase (): SCREAMING_SNAKE_CASE = create_accelerator(even_batches=UpperCAmelCase__ ) verify_dataloader_batch_sizes( UpperCAmelCase__ , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( UpperCAmelCase__ , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def __lowerCamelCase (): SCREAMING_SNAKE_CASE = create_accelerator(even_batches=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = torch.nn.Linear(1 , 1 ) SCREAMING_SNAKE_CASE = accelerator.prepare(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = create_dataloader(UpperCAmelCase__ , dataset_size=3 , batch_size=1 ) SCREAMING_SNAKE_CASE = [] with accelerator.join_uneven_inputs([ddp_model] ): for batch_idx, batch in enumerate(UpperCAmelCase__ ): SCREAMING_SNAKE_CASE = ddp_model(batch[0].float() ) SCREAMING_SNAKE_CASE = output.sum() loss.backward() batch_idxs.append(UpperCAmelCase__ ) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def __lowerCamelCase (UpperCAmelCase__ : List[Any] ): with warnings.catch_warnings(record=UpperCAmelCase__ ) as w: with accelerator.join_uneven_inputs([Mock()] ): pass assert issubclass(w[-1].category , UpperCAmelCase__ ) assert "only supported for multi-GPU" in str(w[-1].message ) def __lowerCamelCase (): SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = create_accelerator(even_batches=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = torch.nn.Linear(1 , 1 ) SCREAMING_SNAKE_CASE = accelerator.prepare(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = create_dataloader(UpperCAmelCase__ , dataset_size=3 , batch_size=1 ) SCREAMING_SNAKE_CASE = create_dataloader(UpperCAmelCase__ , dataset_size=3 , batch_size=1 ) with accelerator.join_uneven_inputs([ddp_model] , even_batches=UpperCAmelCase__ ): SCREAMING_SNAKE_CASE = train_dl.batch_sampler.even_batches SCREAMING_SNAKE_CASE = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def __lowerCamelCase (): SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = create_accelerator(even_batches=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = torch.nn.Linear(1 , 1 ) SCREAMING_SNAKE_CASE = accelerator.prepare(UpperCAmelCase__ ) create_dataloader(UpperCAmelCase__ , dataset_size=3 , batch_size=1 , iterable=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = create_dataloader(UpperCAmelCase__ , dataset_size=3 , batch_size=1 ) with warnings.catch_warnings(): warnings.filterwarnings("ignore" ) try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=UpperCAmelCase__ ): SCREAMING_SNAKE_CASE = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def __lowerCamelCase (): SCREAMING_SNAKE_CASE = create_accelerator() SCREAMING_SNAKE_CASE = torch.nn.Linear(1 , 1 ) SCREAMING_SNAKE_CASE = accelerator.prepare(UpperCAmelCase__ ) create_dataloader(UpperCAmelCase__ , dataset_size=3 , batch_size=1 , iterable=UpperCAmelCase__ ) with warnings.catch_warnings(record=UpperCAmelCase__ ) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=UpperCAmelCase__ ): pass assert issubclass(w[-1].category , UpperCAmelCase__ ) assert "only supported for map-style datasets" in str(w[-1].message ) def __lowerCamelCase (): SCREAMING_SNAKE_CASE = create_accelerator() accelerator.print("Test that even_batches variable ensures uniform batches across processes" ) test_default_ensures_even_batch_sizes() accelerator.print("Run tests with even_batches disabled" ) test_can_disable_even_batches() accelerator.print("Test joining uneven inputs" ) test_can_join_uneven_inputs() accelerator.print("Test overriding even_batches when joining uneven inputs" ) test_join_can_override_even_batches() accelerator.print("Test overriding even_batches for mixed dataloader types" ) test_join_can_override_for_mixed_type_dataloaders() accelerator.print("Test overriding even_batches raises a warning for iterable dataloaders" ) test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print("Test join with non DDP distributed raises warning" ) SCREAMING_SNAKE_CASE = accelerator.state.distributed_type SCREAMING_SNAKE_CASE = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = original_state if __name__ == "__main__": main()
647
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class lowercase ( unittest.TestCase ): def __init__( self : Optional[int] , _UpperCamelCase : Any , _UpperCamelCase : Dict=7 , _UpperCamelCase : Union[str, Any]=3 , _UpperCamelCase : Optional[int]=30 , _UpperCamelCase : List[Any]=400 , _UpperCamelCase : Dict=True , _UpperCamelCase : Union[str, Any]=None , _UpperCamelCase : Any=True , _UpperCamelCase : List[Any]=[0.5, 0.5, 0.5] , _UpperCamelCase : Tuple=[0.5, 0.5, 0.5] , _UpperCamelCase : Tuple=True , _UpperCamelCase : List[Any]=1 / 255 , _UpperCamelCase : Optional[Any]=True , ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = size if size is not None else {"shortest_edge": 18, "longest_edge": 1_333} SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = min_resolution SCREAMING_SNAKE_CASE = max_resolution SCREAMING_SNAKE_CASE = do_resize SCREAMING_SNAKE_CASE = size SCREAMING_SNAKE_CASE = do_normalize SCREAMING_SNAKE_CASE = image_mean SCREAMING_SNAKE_CASE = image_std SCREAMING_SNAKE_CASE = do_rescale SCREAMING_SNAKE_CASE = rescale_factor SCREAMING_SNAKE_CASE = do_pad def __snake_case( self : List[str] ) -> Union[str, Any]: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def __snake_case( self : Any , _UpperCamelCase : List[str] , _UpperCamelCase : List[Any]=False ) -> List[Any]: '''simple docstring''' if not batched: SCREAMING_SNAKE_CASE = image_inputs[0] if isinstance(_UpperCamelCase , Image.Image ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = image.size else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = image.shape[1], image.shape[2] if w < h: SCREAMING_SNAKE_CASE = int(self.size["shortest_edge"] * h / w ) SCREAMING_SNAKE_CASE = self.size["shortest_edge"] elif w > h: SCREAMING_SNAKE_CASE = self.size["shortest_edge"] SCREAMING_SNAKE_CASE = int(self.size["shortest_edge"] * w / h ) else: SCREAMING_SNAKE_CASE = self.size["shortest_edge"] SCREAMING_SNAKE_CASE = self.size["shortest_edge"] else: SCREAMING_SNAKE_CASE = [] for image in image_inputs: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) SCREAMING_SNAKE_CASE = max(_UpperCamelCase , key=lambda _UpperCamelCase : item[0] )[0] SCREAMING_SNAKE_CASE = max(_UpperCamelCase , key=lambda _UpperCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowercase ( a , unittest.TestCase ): lowercase__ : Optional[int] = DetaImageProcessor if is_vision_available() else None def __snake_case( self : List[str] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = DetaImageProcessingTester(self ) @property def __snake_case( self : int ) -> Tuple: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __snake_case( self : List[Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCamelCase , "image_mean" ) ) self.assertTrue(hasattr(_UpperCamelCase , "image_std" ) ) self.assertTrue(hasattr(_UpperCamelCase , "do_normalize" ) ) self.assertTrue(hasattr(_UpperCamelCase , "do_resize" ) ) self.assertTrue(hasattr(_UpperCamelCase , "do_rescale" ) ) self.assertTrue(hasattr(_UpperCamelCase , "do_pad" ) ) self.assertTrue(hasattr(_UpperCamelCase , "size" ) ) def __snake_case( self : Optional[Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 1_333} ) self.assertEqual(image_processor.do_pad , _UpperCamelCase ) def __snake_case( self : str ) -> List[Any]: '''simple docstring''' pass def __snake_case( self : List[Any] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(_UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(_UpperCamelCase , batched=_UpperCamelCase ) SCREAMING_SNAKE_CASE = image_processing(_UpperCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __snake_case( self : List[str] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase , numpify=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(_UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE = image_processing(_UpperCamelCase , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(_UpperCamelCase , batched=_UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __snake_case( self : str ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase , torchify=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(_UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE = image_processing(_UpperCamelCase , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(_UpperCamelCase , batched=_UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def __snake_case( self : Dict ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: SCREAMING_SNAKE_CASE = json.loads(f.read() ) SCREAMING_SNAKE_CASE = {"image_id": 39_769, "annotations": target} # encode them SCREAMING_SNAKE_CASE = DetaImageProcessor() SCREAMING_SNAKE_CASE = image_processing(images=_UpperCamelCase , annotations=_UpperCamelCase , return_tensors="pt" ) # verify pixel values SCREAMING_SNAKE_CASE = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding["pixel_values"].shape , _UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , _UpperCamelCase , atol=1e-4 ) ) # verify area SCREAMING_SNAKE_CASE = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , _UpperCamelCase ) ) # verify boxes SCREAMING_SNAKE_CASE = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , _UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , _UpperCamelCase , atol=1e-3 ) ) # verify image_id SCREAMING_SNAKE_CASE = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , _UpperCamelCase ) ) # verify is_crowd SCREAMING_SNAKE_CASE = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , _UpperCamelCase ) ) # verify class_labels SCREAMING_SNAKE_CASE = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , _UpperCamelCase ) ) # verify orig_size SCREAMING_SNAKE_CASE = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , _UpperCamelCase ) ) # verify size SCREAMING_SNAKE_CASE = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , _UpperCamelCase ) ) @slow def __snake_case( self : Dict ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: SCREAMING_SNAKE_CASE = json.loads(f.read() ) SCREAMING_SNAKE_CASE = {"file_name": "000000039769.png", "image_id": 39_769, "segments_info": target} SCREAMING_SNAKE_CASE = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them SCREAMING_SNAKE_CASE = DetaImageProcessor(format="coco_panoptic" ) SCREAMING_SNAKE_CASE = image_processing(images=_UpperCamelCase , annotations=_UpperCamelCase , masks_path=_UpperCamelCase , return_tensors="pt" ) # verify pixel values SCREAMING_SNAKE_CASE = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding["pixel_values"].shape , _UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , _UpperCamelCase , atol=1e-4 ) ) # verify area SCREAMING_SNAKE_CASE = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , _UpperCamelCase ) ) # verify boxes SCREAMING_SNAKE_CASE = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , _UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , _UpperCamelCase , atol=1e-3 ) ) # verify image_id SCREAMING_SNAKE_CASE = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , _UpperCamelCase ) ) # verify is_crowd SCREAMING_SNAKE_CASE = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , _UpperCamelCase ) ) # verify class_labels SCREAMING_SNAKE_CASE = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , _UpperCamelCase ) ) # verify masks SCREAMING_SNAKE_CASE = 822_873 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , _UpperCamelCase ) # verify orig_size SCREAMING_SNAKE_CASE = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , _UpperCamelCase ) ) # verify size SCREAMING_SNAKE_CASE = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , _UpperCamelCase ) )
647
1
import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument _lowerCamelCase : Union[str, Any] = { '''/attention/''': '''/0/SelfAttention/''', '''/self_attention/''': '''/0/SelfAttention/''', '''/encoder_decoder_attention/''': '''/1/EncDecAttention/''', '''value''': '''v''', '''query''': '''q''', '''key''': '''k''', '''out''': '''o''', '''pre_self_attention_layer_norm''': '''0/layer_norm''', '''pre_cross_attention_layer_norm''': '''1/layer_norm''', '''pre_attention_layer_norm''': '''0/layer_norm''', # previously 1, but seems wrong '''token_embedder''': '''shared''', '''encoder_norm''': '''final_layer_norm''', '''decoder_norm''': '''final_layer_norm''', '''relpos_bias/rel_embedding''': '''block/0/layer/0/SelfAttention/relative_attention_bias/weight''', '''router/router_weights/w/''': '''router/classifier/''', '''roer/roer_weights/w/''': '''router/classifier/''', '''logits_dense''': '''lm_head''', } def __lowerCamelCase (UpperCAmelCase__ : Tuple ): # 1. in HF T5, we have block.{x}.layer.{y}. which corresponds to layer.{x} in # the original model SCREAMING_SNAKE_CASE = list(s_dict.keys() ) for key in keys: SCREAMING_SNAKE_CASE = r".*/layers_(\d+)" SCREAMING_SNAKE_CASE = key if re.match(UpperCAmelCase__ , UpperCAmelCase__ ): SCREAMING_SNAKE_CASE = re.sub(r"layers_(\d+)" , r"block/\1/layer" , UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = r"(encoder|decoder)\/" if re.match(UpperCAmelCase__ , UpperCAmelCase__ ): SCREAMING_SNAKE_CASE = re.match(UpperCAmelCase__ , UpperCAmelCase__ ).groups() if groups[0] == "encoder": SCREAMING_SNAKE_CASE = re.sub(r"/mlp/" , r"/1/mlp/" , UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = re.sub(r"/pre_mlp_layer_norm/" , r"/1/layer_norm/" , UpperCAmelCase__ ) elif groups[0] == "decoder": SCREAMING_SNAKE_CASE = re.sub(r"/mlp/" , r"/2/mlp/" , UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = re.sub(r"/pre_mlp_layer_norm/" , r"/2/layer_norm/" , UpperCAmelCase__ ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: SCREAMING_SNAKE_CASE = new_key.replace(UpperCAmelCase__ , UpperCAmelCase__ ) print(F"{key} -> {new_key}" ) SCREAMING_SNAKE_CASE = s_dict.pop(UpperCAmelCase__ ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: SCREAMING_SNAKE_CASE = s_dict[ "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: SCREAMING_SNAKE_CASE = s_dict[ "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: SCREAMING_SNAKE_CASE = s_dict[key].shape[0] SCREAMING_SNAKE_CASE = s_dict[key] for idx in range(UpperCAmelCase__ ): SCREAMING_SNAKE_CASE = expert_weihts[idx] print(F"{key} -> {key.replace('expert/' , 'nested fstring' )}" ) s_dict.pop(UpperCAmelCase__ ) return s_dict _lowerCamelCase : Optional[Any] = { '''NUM_ENCODER_LAYERS''': '''num_layers''', '''NUM_DECODER_LAYERS''': '''num_decoder_layers''', '''NUM_HEADS''': '''num_heads''', '''HEAD_DIM''': '''d_kv''', '''EMBED_DIM''': '''d_model''', '''MLP_DIM''': '''d_ff''', '''NUM_SELECTED_EXPERTS''': '''num_selected_experts''', '''NUM_ENCODER_SPARSE_LAYERS''': '''num_sparse_encoder_layers''', '''NUM_DECODER_SPARSE_LAYERS''': '''num_sparse_decoder_layers''', '''dense.MlpBlock.activations''': '''feed_forward_proj''', } def __lowerCamelCase (UpperCAmelCase__ : int , UpperCAmelCase__ : List[Any] ): # Convert a google style config to the hugging face fromat import regex as re with open(UpperCAmelCase__ , "r" ) as f: SCREAMING_SNAKE_CASE = f.read() SCREAMING_SNAKE_CASE = re.findall(r"(.*) = ([0-9.]*)" , UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": SCREAMING_SNAKE_CASE = float(UpperCAmelCase__ ) if "." in value else int(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = re.findall(r"(.*activations) = \(\'(.*)\',\)" , UpperCAmelCase__ )[0] SCREAMING_SNAKE_CASE = str(activation[1] ) SCREAMING_SNAKE_CASE = num_experts SCREAMING_SNAKE_CASE = SwitchTransformersConfig(**UpperCAmelCase__ ) return config def __lowerCamelCase (UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : Optional[int]="./" , UpperCAmelCase__ : Any=8 ): # Initialise PyTorch model print(F"Loading flax weights from : {flax_checkpoint_path}" ) SCREAMING_SNAKE_CASE = checkpoints.load_tax_checkpoint(UpperCAmelCase__ ) if gin_file is not None: SCREAMING_SNAKE_CASE = convert_gin_to_config(UpperCAmelCase__ , UpperCAmelCase__ ) else: SCREAMING_SNAKE_CASE = SwitchTransformersConfig.from_pretrained(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = SwitchTransformersForConditionalGeneration(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = flax_params["target"] SCREAMING_SNAKE_CASE = flatten_dict(UpperCAmelCase__ , sep="/" ) SCREAMING_SNAKE_CASE = rename_keys(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = unflatten_dict(UpperCAmelCase__ , sep="/" ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(UpperCAmelCase__ , UpperCAmelCase__ ) print(F"Save PyTorch model to {pytorch_dump_path}" ) pt_model.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": _lowerCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--switch_t5x_checkpoint_path''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the''' ''' model architecture. If not provided, a `gin_file` has to be provided.''' ), ) parser.add_argument( '''--gin_file''', default=None, type=str, required=False, help='''Path to the gin config file. If not provided, a `config_file` has to be passed ''', ) parser.add_argument( '''--config_name''', default=None, type=str, required=False, help='''Config name of SwitchTransformers model.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output pytorch model.''' ) parser.add_argument('''--num_experts''', default=8, type=int, required=False, help='''Number of experts''') _lowerCamelCase : Any = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
647
from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) class lowercase ( a ): def __init__( self : str , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : float , **_UpperCamelCase : str ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = feature_size SCREAMING_SNAKE_CASE = sampling_rate SCREAMING_SNAKE_CASE = padding_value SCREAMING_SNAKE_CASE = kwargs.pop("padding_side" , "right" ) SCREAMING_SNAKE_CASE = kwargs.pop("return_attention_mask" , _UpperCamelCase ) super().__init__(**_UpperCamelCase ) def __snake_case( self : List[Any] , _UpperCamelCase : Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] , _UpperCamelCase : Union[bool, str, PaddingStrategy] = True , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : bool = False , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : Optional[bool] = None , _UpperCamelCase : Optional[Union[str, TensorType]] = None , ) -> BatchFeature: '''simple docstring''' if isinstance(_UpperCamelCase , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): SCREAMING_SNAKE_CASE = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( "You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`" F" to this method that includes {self.model_input_names[0]}, but you provided" F" {list(processed_features.keys() )}" ) SCREAMING_SNAKE_CASE = processed_features[self.model_input_names[0]] SCREAMING_SNAKE_CASE = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(_UpperCamelCase ) == 0: if return_attention_mask: SCREAMING_SNAKE_CASE = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch SCREAMING_SNAKE_CASE = required_input[0] if isinstance(_UpperCamelCase , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. SCREAMING_SNAKE_CASE = 0 while len(required_input[index] ) == 0: index += 1 if index < len(_UpperCamelCase ): SCREAMING_SNAKE_CASE = required_input[index][0] if return_tensors is None: if is_tf_tensor(_UpperCamelCase ): SCREAMING_SNAKE_CASE = "tf" elif is_torch_tensor(_UpperCamelCase ): SCREAMING_SNAKE_CASE = "pt" elif isinstance(_UpperCamelCase , (int, float, list, tuple, np.ndarray) ): SCREAMING_SNAKE_CASE = "np" else: raise ValueError( F"type of {first_element} unknown: {type(_UpperCamelCase )}. " "Should be one of a python, numpy, pytorch or tensorflow object." ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): SCREAMING_SNAKE_CASE = to_numpy(_UpperCamelCase ) else: SCREAMING_SNAKE_CASE = [to_numpy(_UpperCamelCase ) for v in value] # Convert padding_strategy in PaddingStrategy SCREAMING_SNAKE_CASE = self._get_padding_strategies(padding=_UpperCamelCase , max_length=_UpperCamelCase ) SCREAMING_SNAKE_CASE = processed_features[self.model_input_names[0]] SCREAMING_SNAKE_CASE = len(_UpperCamelCase ) if not all(len(_UpperCamelCase ) == batch_size for v in processed_features.values() ): raise ValueError("Some items in the output dictionary have a different batch size than others." ) SCREAMING_SNAKE_CASE = [] for i in range(_UpperCamelCase ): SCREAMING_SNAKE_CASE = {k: v[i] for k, v in processed_features.items()} # truncation SCREAMING_SNAKE_CASE = self._truncate( _UpperCamelCase , max_length=_UpperCamelCase , pad_to_multiple_of=_UpperCamelCase , truncation=_UpperCamelCase , ) truncated_inputs.append(_UpperCamelCase ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length SCREAMING_SNAKE_CASE = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) SCREAMING_SNAKE_CASE = PaddingStrategy.MAX_LENGTH SCREAMING_SNAKE_CASE = {} for i in range(_UpperCamelCase ): # padding SCREAMING_SNAKE_CASE = self._pad( truncated_inputs[i] , max_length=_UpperCamelCase , padding_strategy=_UpperCamelCase , pad_to_multiple_of=_UpperCamelCase , return_attention_mask=_UpperCamelCase , ) for key, value in outputs.items(): if key not in batch_outputs: SCREAMING_SNAKE_CASE = [] if value.dtype is np.dtype(np.floataa ): SCREAMING_SNAKE_CASE = value.astype(np.floataa ) batch_outputs[key].append(_UpperCamelCase ) return BatchFeature(_UpperCamelCase , tensor_type=_UpperCamelCase ) def __snake_case( self : Union[str, Any] , _UpperCamelCase : Union[Dict[str, np.ndarray], BatchFeature] , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : Optional[bool] = None , ) -> dict: '''simple docstring''' SCREAMING_SNAKE_CASE = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: SCREAMING_SNAKE_CASE = len(_UpperCamelCase ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): SCREAMING_SNAKE_CASE = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of SCREAMING_SNAKE_CASE = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(_UpperCamelCase ) < max_length if return_attention_mask and "attention_mask" not in processed_features: SCREAMING_SNAKE_CASE = np.ones(len(_UpperCamelCase ) , dtype=np.intaa ) if needs_to_be_padded: SCREAMING_SNAKE_CASE = max_length - len(_UpperCamelCase ) if self.padding_side == "right": if return_attention_mask: SCREAMING_SNAKE_CASE = np.pad( processed_features["attention_mask"] , (0, difference) ) SCREAMING_SNAKE_CASE = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) SCREAMING_SNAKE_CASE = np.pad( _UpperCamelCase , _UpperCamelCase , "constant" , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: SCREAMING_SNAKE_CASE = np.pad( processed_features["attention_mask"] , (difference, 0) ) SCREAMING_SNAKE_CASE = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) SCREAMING_SNAKE_CASE = np.pad( _UpperCamelCase , _UpperCamelCase , "constant" , constant_values=self.padding_value ) else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return processed_features def __snake_case( self : Dict , _UpperCamelCase : Union[Dict[str, np.ndarray], BatchFeature] , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : Optional[bool] = None , ) -> Optional[int]: '''simple docstring''' if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("When setting ``truncation=True``, make sure that ``max_length`` is defined." ) SCREAMING_SNAKE_CASE = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): SCREAMING_SNAKE_CASE = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of SCREAMING_SNAKE_CASE = len(_UpperCamelCase ) > max_length if needs_to_be_truncated: SCREAMING_SNAKE_CASE = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: SCREAMING_SNAKE_CASE = processed_features["attention_mask"][:max_length] return processed_features def __snake_case( self : Optional[Any] , _UpperCamelCase : int=False , _UpperCamelCase : Tuple=None ) -> Tuple: '''simple docstring''' if padding is not False: if padding is True: SCREAMING_SNAKE_CASE = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(_UpperCamelCase , _UpperCamelCase ): SCREAMING_SNAKE_CASE = PaddingStrategy(_UpperCamelCase ) elif isinstance(_UpperCamelCase , _UpperCamelCase ): SCREAMING_SNAKE_CASE = padding else: SCREAMING_SNAKE_CASE = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( F"When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( "Asking to pad but the feature_extractor does not have a padding value. Please select a value to use" " as `padding_value`. For example: `feature_extractor.padding_value = 0.0`." ) return padding_strategy
647
1
import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class lowercase ( a ): def __snake_case( self : Tuple ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_UpperCamelCase , "hidden_sizes" ) ) self.parent.assertTrue(hasattr(_UpperCamelCase , "num_attention_heads" ) ) self.parent.assertTrue(hasattr(_UpperCamelCase , "num_encoder_blocks" ) ) class lowercase : def __init__( self : Union[str, Any] , _UpperCamelCase : int , _UpperCamelCase : Optional[int]=13 , _UpperCamelCase : Union[str, Any]=64 , _UpperCamelCase : Optional[int]=3 , _UpperCamelCase : Optional[int]=4 , _UpperCamelCase : Dict=[2, 2, 2, 2] , _UpperCamelCase : Union[str, Any]=[8, 4, 2, 1] , _UpperCamelCase : Optional[int]=[16, 32, 64, 128] , _UpperCamelCase : Union[str, Any]=[1, 4, 8, 16] , _UpperCamelCase : List[str]=[1, 2, 4, 8] , _UpperCamelCase : Dict=True , _UpperCamelCase : Union[str, Any]=True , _UpperCamelCase : List[str]="gelu" , _UpperCamelCase : Optional[int]=0.1 , _UpperCamelCase : List[str]=0.1 , _UpperCamelCase : Tuple=0.0_2 , _UpperCamelCase : Tuple=3 , _UpperCamelCase : Optional[int]=None , ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = num_encoder_blocks SCREAMING_SNAKE_CASE = sr_ratios SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = hidden_sizes SCREAMING_SNAKE_CASE = downsampling_rates SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = scope def __snake_case( self : Tuple ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def __snake_case( self : Tuple ) -> Optional[int]: '''simple docstring''' return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def __snake_case( self : List[Any] , _UpperCamelCase : Dict , _UpperCamelCase : Optional[Any] , _UpperCamelCase : int ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = SegformerModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(_UpperCamelCase ) SCREAMING_SNAKE_CASE = SCREAMING_SNAKE_CASE = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def __snake_case( self : Union[str, Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : int , _UpperCamelCase : Any ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = SegformerForSemanticSegmentation(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(_UpperCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) SCREAMING_SNAKE_CASE = model(_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss , 0.0 ) def __snake_case( self : List[str] , _UpperCamelCase : Tuple , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : int ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = SegformerForSemanticSegmentation(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() SCREAMING_SNAKE_CASE = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size) ).to(_UpperCamelCase ) SCREAMING_SNAKE_CASE = model(_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertGreater(result.loss , 0.0 ) def __snake_case( self : Tuple ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = config_and_inputs SCREAMING_SNAKE_CASE = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowercase ( a , a , unittest.TestCase ): lowercase__ : str = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) lowercase__ : Any = ( { """feature-extraction""": SegformerModel, """image-classification""": SegformerForImageClassification, """image-segmentation""": SegformerForSemanticSegmentation, } if is_torch_available() else {} ) lowercase__ : Optional[Any] = True lowercase__ : Union[str, Any] = False lowercase__ : Union[str, Any] = False lowercase__ : int = False def __snake_case( self : List[Any] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = SegformerModelTester(self ) SCREAMING_SNAKE_CASE = SegformerConfigTester(self , config_class=_UpperCamelCase ) def __snake_case( self : Any ) -> Any: '''simple docstring''' self.config_tester.run_common_tests() def __snake_case( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def __snake_case( self : Optional[int] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*_UpperCamelCase ) def __snake_case( self : str ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*_UpperCamelCase ) @unittest.skip("SegFormer does not use inputs_embeds" ) def __snake_case( self : Any ) -> List[str]: '''simple docstring''' pass @unittest.skip("SegFormer does not have get_input_embeddings method and get_output_embeddings methods" ) def __snake_case( self : str ) -> List[Any]: '''simple docstring''' pass def __snake_case( self : str ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(_UpperCamelCase ) SCREAMING_SNAKE_CASE = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE = ["pixel_values"] self.assertListEqual(arg_names[:1] , _UpperCamelCase ) def __snake_case( self : int ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = True for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) ) SCREAMING_SNAKE_CASE = outputs.attentions SCREAMING_SNAKE_CASE = sum(self.model_tester.depths ) self.assertEqual(len(_UpperCamelCase ) , _UpperCamelCase ) # check that output_attentions also work using config del inputs_dict["output_attentions"] SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) ) SCREAMING_SNAKE_CASE = outputs.attentions self.assertEqual(len(_UpperCamelCase ) , _UpperCamelCase ) # verify the first attentions (first block, first layer) SCREAMING_SNAKE_CASE = (self.model_tester.image_size // 4) ** 2 SCREAMING_SNAKE_CASE = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) SCREAMING_SNAKE_CASE = (self.model_tester.image_size // 32) ** 2 SCREAMING_SNAKE_CASE = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:] ) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) SCREAMING_SNAKE_CASE = len(_UpperCamelCase ) # Check attention is always last and order is fine SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) ) self.assertEqual(out_len + 1 , len(_UpperCamelCase ) ) SCREAMING_SNAKE_CASE = outputs.attentions self.assertEqual(len(_UpperCamelCase ) , _UpperCamelCase ) # verify the first attentions (first block, first layer) SCREAMING_SNAKE_CASE = (self.model_tester.image_size // 4) ** 2 SCREAMING_SNAKE_CASE = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def __snake_case( self : Any ) -> Optional[int]: '''simple docstring''' def check_hidden_states_output(_UpperCamelCase : Dict , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) ) SCREAMING_SNAKE_CASE = outputs.hidden_states SCREAMING_SNAKE_CASE = self.model_tester.num_encoder_blocks self.assertEqual(len(_UpperCamelCase ) , _UpperCamelCase ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = True check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE = True check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def __snake_case( self : int ) -> Any: '''simple docstring''' if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = True for model_class in self.all_model_classes: if model_class in get_values(_UpperCamelCase ): continue SCREAMING_SNAKE_CASE = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.train() SCREAMING_SNAKE_CASE = self._prepare_for_class(_UpperCamelCase , _UpperCamelCase , return_labels=_UpperCamelCase ) SCREAMING_SNAKE_CASE = model(**_UpperCamelCase ).loss loss.backward() @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def __snake_case( self : Optional[int] ) -> int: '''simple docstring''' pass @slow def __snake_case( self : List[Any] ) -> Optional[Any]: '''simple docstring''' for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = SegformerModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def __lowerCamelCase (): SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch class lowercase ( unittest.TestCase ): @slow def __snake_case( self : Any ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=_UpperCamelCase , align=_UpperCamelCase , do_random_crop=_UpperCamelCase ) SCREAMING_SNAKE_CASE = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512" ).to( _UpperCamelCase ) SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=_UpperCamelCase , return_tensors="pt" ) SCREAMING_SNAKE_CASE = encoded_inputs.pixel_values.to(_UpperCamelCase ) with torch.no_grad(): SCREAMING_SNAKE_CASE = model(_UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.Size((1, model.config.num_labels, 128, 128) ) self.assertEqual(outputs.logits.shape , _UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.tensor( [ [[-4.6_3_1_0, -5.5_2_3_2, -6.2_3_5_6], [-5.1_9_2_1, -6.1_4_4_4, -6.5_9_9_6], [-5.4_4_2_4, -6.2_7_9_0, -6.7_5_7_4]], [[-1_2.1_3_9_1, -1_3.3_1_2_2, -1_3.9_5_5_4], [-1_2.8_7_3_2, -1_3.9_3_5_2, -1_4.3_5_6_3], [-1_2.9_4_3_8, -1_3.8_2_2_6, -1_4.2_5_1_3]], [[-1_2.5_1_3_4, -1_3.4_6_8_6, -1_4.4_9_1_5], [-1_2.8_6_6_9, -1_4.4_3_4_3, -1_4.7_7_5_8], [-1_3.2_5_2_3, -1_4.5_8_1_9, -1_5.0_6_9_4]], ] ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , _UpperCamelCase , atol=1e-4 ) ) @slow def __snake_case( self : int ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=_UpperCamelCase , align=_UpperCamelCase , do_random_crop=_UpperCamelCase ) SCREAMING_SNAKE_CASE = SegformerForSemanticSegmentation.from_pretrained( "nvidia/segformer-b1-finetuned-cityscapes-1024-1024" ).to(_UpperCamelCase ) SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=_UpperCamelCase , return_tensors="pt" ) SCREAMING_SNAKE_CASE = encoded_inputs.pixel_values.to(_UpperCamelCase ) with torch.no_grad(): SCREAMING_SNAKE_CASE = model(_UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.Size((1, model.config.num_labels, 128, 128) ) self.assertEqual(outputs.logits.shape , _UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.tensor( [ [[-1_3.5_7_4_8, -1_3.9_1_1_1, -1_2.6_5_0_0], [-1_4.3_5_0_0, -1_5.3_6_8_3, -1_4.2_3_2_8], [-1_4.7_5_3_2, -1_6.0_4_2_4, -1_5.6_0_8_7]], [[-1_7.1_6_5_1, -1_5.8_7_2_5, -1_2.9_6_5_3], [-1_7.2_5_8_0, -1_7.3_7_1_8, -1_4.8_2_2_3], [-1_6.6_0_5_8, -1_6.8_7_8_3, -1_6.7_4_5_2]], [[-3.6_4_5_6, -3.0_2_0_9, -1.4_2_0_3], [-3.0_7_9_7, -3.1_9_5_9, -2.0_0_0_0], [-1.8_7_5_7, -1.9_2_1_7, -1.6_9_9_7]], ] ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , _UpperCamelCase , atol=1e-1 ) ) @slow def __snake_case( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=_UpperCamelCase , align=_UpperCamelCase , do_random_crop=_UpperCamelCase ) SCREAMING_SNAKE_CASE = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512" ).to( _UpperCamelCase ) SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=_UpperCamelCase , return_tensors="pt" ) SCREAMING_SNAKE_CASE = encoded_inputs.pixel_values.to(_UpperCamelCase ) with torch.no_grad(): SCREAMING_SNAKE_CASE = model(_UpperCamelCase ) SCREAMING_SNAKE_CASE = outputs.logits.detach().cpu() SCREAMING_SNAKE_CASE = image_processor.post_process_semantic_segmentation(outputs=_UpperCamelCase , target_sizes=[(500, 300)] ) SCREAMING_SNAKE_CASE = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , _UpperCamelCase ) SCREAMING_SNAKE_CASE = image_processor.post_process_semantic_segmentation(outputs=_UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.Size((128, 128) ) self.assertEqual(segmentation[0].shape , _UpperCamelCase )
647
import functools def __lowerCamelCase (UpperCAmelCase__ : list[int] , UpperCAmelCase__ : list[int] ): # Validation if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) or not all(isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) for day in days ): raise ValueError("The parameter days should be a list of integers" ) if len(UpperCAmelCase__ ) != 3 or not all(isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) for cost in costs ): raise ValueError("The parameter costs should be a list of three integers" ) if len(UpperCAmelCase__ ) == 0: return 0 if min(UpperCAmelCase__ ) <= 0: raise ValueError("All days elements should be greater than 0" ) if max(UpperCAmelCase__ ) >= 3_6_6: raise ValueError("All days elements should be less than 366" ) SCREAMING_SNAKE_CASE = set(UpperCAmelCase__ ) @functools.cache def dynamic_programming(UpperCAmelCase__ : int ) -> int: if index > 3_6_5: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 3_0 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
647
1
import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _lowerCamelCase : str = logging.getLogger(__name__) @dataclass class lowercase : lowercase__ : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) lowercase__ : Optional[str] = field( default=a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) lowercase__ : Optional[str] = field( default="""NER""" , metadata={"""help""": """Task type to fine tune in training (e.g. NER, POS, etc)"""} ) lowercase__ : Optional[str] = field( default=a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) lowercase__ : bool = field(default=a , metadata={"""help""": """Set this flag to use fast tokenization."""} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. lowercase__ : Optional[str] = field( default=a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class lowercase : lowercase__ : str = field( metadata={"""help""": """The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."""} ) lowercase__ : Optional[str] = field( default=a , metadata={"""help""": """Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."""} , ) lowercase__ : int = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) lowercase__ : bool = field( default=a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def __lowerCamelCase (): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. SCREAMING_SNAKE_CASE = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. Use" " --overwrite_output_dir to overcome." ) SCREAMING_SNAKE_CASE = import_module("tasks" ) try: SCREAMING_SNAKE_CASE = getattr(UpperCAmelCase__ , model_args.task_type ) SCREAMING_SNAKE_CASE = token_classification_task_clazz() except AttributeError: raise ValueError( F"Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. " F"Available tasks classes are: {TokenClassificationTask.__subclasses__()}" ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s" , UpperCAmelCase__ ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task SCREAMING_SNAKE_CASE = token_classification_task.get_labels(data_args.labels ) SCREAMING_SNAKE_CASE = dict(enumerate(UpperCAmelCase__ ) ) SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=UpperCAmelCase__ , idalabel=UpperCAmelCase__ , labelaid={label: i for i, label in enumerate(UpperCAmelCase__ )} , cache_dir=model_args.cache_dir , ) SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) SCREAMING_SNAKE_CASE = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=UpperCAmelCase__ , cache_dir=model_args.cache_dir , ) # Get datasets SCREAMING_SNAKE_CASE = ( TokenClassificationDataset( token_classification_task=UpperCAmelCase__ , data_dir=data_args.data_dir , tokenizer=UpperCAmelCase__ , labels=UpperCAmelCase__ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) SCREAMING_SNAKE_CASE = ( TokenClassificationDataset( token_classification_task=UpperCAmelCase__ , data_dir=data_args.data_dir , tokenizer=UpperCAmelCase__ , labels=UpperCAmelCase__ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : np.ndarray ) -> Tuple[List[int], List[int]]: SCREAMING_SNAKE_CASE = np.argmax(UpperCAmelCase__ , axis=2 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = preds.shape SCREAMING_SNAKE_CASE = [[] for _ in range(UpperCAmelCase__ )] SCREAMING_SNAKE_CASE = [[] for _ in range(UpperCAmelCase__ )] for i in range(UpperCAmelCase__ ): for j in range(UpperCAmelCase__ ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(UpperCAmelCase__ : EvalPrediction ) -> Dict: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(UpperCAmelCase__ , UpperCAmelCase__ ), "precision": precision_score(UpperCAmelCase__ , UpperCAmelCase__ ), "recall": recall_score(UpperCAmelCase__ , UpperCAmelCase__ ), "f1": fa_score(UpperCAmelCase__ , UpperCAmelCase__ ), } # Data collator SCREAMING_SNAKE_CASE = DataCollatorWithPadding(UpperCAmelCase__ , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer SCREAMING_SNAKE_CASE = Trainer( model=UpperCAmelCase__ , args=UpperCAmelCase__ , train_dataset=UpperCAmelCase__ , eval_dataset=UpperCAmelCase__ , compute_metrics=UpperCAmelCase__ , data_collator=UpperCAmelCase__ , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation SCREAMING_SNAKE_CASE = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) SCREAMING_SNAKE_CASE = trainer.evaluate() SCREAMING_SNAKE_CASE = os.path.join(training_args.output_dir , "eval_results.txt" ) if trainer.is_world_process_zero(): with open(UpperCAmelCase__ , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(" %s = %s" , UpperCAmelCase__ , UpperCAmelCase__ ) writer.write("%s = %s\n" % (key, value) ) results.update(UpperCAmelCase__ ) # Predict if training_args.do_predict: SCREAMING_SNAKE_CASE = TokenClassificationDataset( token_classification_task=UpperCAmelCase__ , data_dir=data_args.data_dir , tokenizer=UpperCAmelCase__ , labels=UpperCAmelCase__ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = trainer.predict(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = align_predictions(UpperCAmelCase__ , UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = os.path.join(training_args.output_dir , "test_results.txt" ) if trainer.is_world_process_zero(): with open(UpperCAmelCase__ , "w" ) as writer: for key, value in metrics.items(): logger.info(" %s = %s" , UpperCAmelCase__ , UpperCAmelCase__ ) writer.write("%s = %s\n" % (key, value) ) # Save predictions SCREAMING_SNAKE_CASE = os.path.join(training_args.output_dir , "test_predictions.txt" ) if trainer.is_world_process_zero(): with open(UpperCAmelCase__ , "w" ) as writer: with open(os.path.join(data_args.data_dir , "test.txt" ) , "r" ) as f: token_classification_task.write_predictions_to_file(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) return results def __lowerCamelCase (UpperCAmelCase__ : Optional[Any] ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
647
from __future__ import annotations import math def __lowerCamelCase (UpperCAmelCase__ : int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(UpperCAmelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True _lowerCamelCase : Tuple = [num for num in range(3, 10_00_01, 2) if not is_prime(num)] def __lowerCamelCase (UpperCAmelCase__ : int ): if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise ValueError("n must be an integer" ) if n <= 0: raise ValueError("n must be >= 0" ) SCREAMING_SNAKE_CASE = [] for num in range(len(UpperCAmelCase__ ) ): SCREAMING_SNAKE_CASE = 0 while 2 * i * i <= odd_composites[num]: SCREAMING_SNAKE_CASE = odd_composites[num] - 2 * i * i if is_prime(UpperCAmelCase__ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(UpperCAmelCase__ ) == n: return list_nums return [] def __lowerCamelCase (): return compute_nums(1 )[0] if __name__ == "__main__": print(f"""{solution() = }""")
647
1
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowercase ( a , unittest.TestCase ): lowercase__ : Dict = KandinskyVaaInpaintPipeline lowercase__ : Optional[int] = ["""image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] lowercase__ : Union[str, Any] = [ """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] lowercase__ : Union[str, Any] = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] lowercase__ : int = False @property def __snake_case( self : Tuple ) -> List[Any]: '''simple docstring''' return 32 @property def __snake_case( self : Tuple ) -> str: '''simple docstring''' return 32 @property def __snake_case( self : Optional[Any] ) -> int: '''simple docstring''' return self.time_input_dim @property def __snake_case( self : str ) -> List[str]: '''simple docstring''' return self.time_input_dim * 4 @property def __snake_case( self : List[Any] ) -> Optional[int]: '''simple docstring''' return 100 @property def __snake_case( self : Any ) -> Any: '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = { "in_channels": 9, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } SCREAMING_SNAKE_CASE = UNetaDConditionModel(**_UpperCamelCase ) return model @property def __snake_case( self : List[Any] ) -> int: '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __snake_case( self : Dict ) -> int: '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = VQModel(**self.dummy_movq_kwargs ) return model def __snake_case( self : Optional[Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = self.dummy_unet SCREAMING_SNAKE_CASE = self.dummy_movq SCREAMING_SNAKE_CASE = DDIMScheduler( num_train_timesteps=1_000 , beta_schedule="linear" , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=_UpperCamelCase , set_alpha_to_one=_UpperCamelCase , steps_offset=1 , prediction_type="epsilon" , thresholding=_UpperCamelCase , ) SCREAMING_SNAKE_CASE = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def __snake_case( self : Tuple , _UpperCamelCase : str , _UpperCamelCase : Union[str, Any]=0 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_UpperCamelCase ) ).to(_UpperCamelCase ) SCREAMING_SNAKE_CASE = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _UpperCamelCase ) # create init_image SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 64, 64) , rng=random.Random(_UpperCamelCase ) ).to(_UpperCamelCase ) SCREAMING_SNAKE_CASE = image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE = Image.fromarray(np.uinta(_UpperCamelCase ) ).convert("RGB" ).resize((256, 256) ) # create mask SCREAMING_SNAKE_CASE = np.ones((64, 64) , dtype=np.floataa ) SCREAMING_SNAKE_CASE = 0 if str(_UpperCamelCase ).startswith("mps" ): SCREAMING_SNAKE_CASE = torch.manual_seed(_UpperCamelCase ) else: SCREAMING_SNAKE_CASE = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) SCREAMING_SNAKE_CASE = { "image": init_image, "mask_image": mask, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 2, "guidance_scale": 4.0, "output_type": "np", } return inputs def __snake_case( self : List[str] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = "cpu" SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = self.pipeline_class(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) SCREAMING_SNAKE_CASE = pipe(**self.get_dummy_inputs(_UpperCamelCase ) ) SCREAMING_SNAKE_CASE = output.images SCREAMING_SNAKE_CASE = pipe( **self.get_dummy_inputs(_UpperCamelCase ) , return_dict=_UpperCamelCase , )[0] SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE = image_from_tuple[0, -3:, -3:, -1] print(F"image.shape {image.shape}" ) assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE = np.array( [0.5_0_7_7_5_9_0_3, 0.4_9_5_2_7_1_9_5, 0.4_8_8_2_4_5_4_3, 0.5_0_1_9_2_2_3_7, 0.4_8_6_4_4_9_0_6, 0.4_9_3_7_3_8_1_4, 0.4_7_8_0_5_9_8, 0.4_7_2_3_4_8_2_7, 0.4_8_3_2_7_8_4_8] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" def __snake_case( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class lowercase ( unittest.TestCase ): def __snake_case( self : Optional[int] ) -> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __snake_case( self : List[str] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy" ) SCREAMING_SNAKE_CASE = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) SCREAMING_SNAKE_CASE = np.ones((768, 768) , dtype=np.floataa ) SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = "a hat" SCREAMING_SNAKE_CASE = KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(_UpperCamelCase ) SCREAMING_SNAKE_CASE = KandinskyVaaInpaintPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder-inpaint" , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE = pipeline.to(_UpperCamelCase ) pipeline.set_progress_bar_config(disable=_UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.Generator(device="cpu" ).manual_seed(0 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = pipe_prior( _UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=5 , negative_prompt="" , ).to_tuple() SCREAMING_SNAKE_CASE = pipeline( image=_UpperCamelCase , mask_image=_UpperCamelCase , image_embeds=_UpperCamelCase , negative_image_embeds=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=100 , height=768 , width=768 , output_type="np" , ) SCREAMING_SNAKE_CASE = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase )
647
import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class lowercase ( unittest.TestCase ): def __init__( self : Union[str, Any] , _UpperCamelCase : Tuple , _UpperCamelCase : List[Any]=7 , _UpperCamelCase : Any=3 , _UpperCamelCase : str=18 , _UpperCamelCase : Tuple=30 , _UpperCamelCase : Optional[int]=400 , _UpperCamelCase : Optional[int]=True , _UpperCamelCase : Optional[Any]=None , _UpperCamelCase : int=True , _UpperCamelCase : Optional[int]=[0.5, 0.5, 0.5] , _UpperCamelCase : List[str]=[0.5, 0.5, 0.5] , ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = size if size is not None else {"height": 18, "width": 18} SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = min_resolution SCREAMING_SNAKE_CASE = max_resolution SCREAMING_SNAKE_CASE = do_resize SCREAMING_SNAKE_CASE = size SCREAMING_SNAKE_CASE = do_normalize SCREAMING_SNAKE_CASE = image_mean SCREAMING_SNAKE_CASE = image_std def __snake_case( self : List[Any] ) -> Any: '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class lowercase ( a , unittest.TestCase ): lowercase__ : Any = DPTImageProcessor if is_vision_available() else None def __snake_case( self : List[str] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = DPTImageProcessingTester(self ) @property def __snake_case( self : List[Any] ) -> List[str]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __snake_case( self : str ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCamelCase , "image_mean" ) ) self.assertTrue(hasattr(_UpperCamelCase , "image_std" ) ) self.assertTrue(hasattr(_UpperCamelCase , "do_normalize" ) ) self.assertTrue(hasattr(_UpperCamelCase , "do_resize" ) ) self.assertTrue(hasattr(_UpperCamelCase , "size" ) ) def __snake_case( self : Dict ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 18, "width": 18} ) SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) def __snake_case( self : Union[str, Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched SCREAMING_SNAKE_CASE = image_processing(_UpperCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def __snake_case( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase , numpify=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched SCREAMING_SNAKE_CASE = image_processing(_UpperCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def __snake_case( self : Optional[Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase , torchify=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched SCREAMING_SNAKE_CASE = image_processing(_UpperCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , )
647
1
from math import factorial, radians def __lowerCamelCase (UpperCAmelCase__ : float , UpperCAmelCase__ : int = 1_8 , UpperCAmelCase__ : int = 1_0 ): SCREAMING_SNAKE_CASE = angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0) # Converting from degrees to radians SCREAMING_SNAKE_CASE = radians(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = angle_in_radians SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = -1 for _ in range(UpperCAmelCase__ ): result += (b * (angle_in_radians**a)) / factorial(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(UpperCAmelCase__ , UpperCAmelCase__ ) if __name__ == "__main__": __import__('''doctest''').testmod()
647
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def __lowerCamelCase (UpperCAmelCase__ : Any , UpperCAmelCase__ : Dict=False ): SCREAMING_SNAKE_CASE = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"module.blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"module.blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (F"module.blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((F"module.blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"module.blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"module.blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"module.blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"module.blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"module.blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"module.blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("module.cls_token", "vit.embeddings.cls_token"), ("module.patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("module.patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("module.pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("module.norm.weight", "layernorm.weight"), ("module.norm.bias", "layernorm.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" SCREAMING_SNAKE_CASE = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def __lowerCamelCase (UpperCAmelCase__ : Tuple , UpperCAmelCase__ : int , UpperCAmelCase__ : str=False ): for i in range(config.num_hidden_layers ): if base_model: SCREAMING_SNAKE_CASE = "" else: SCREAMING_SNAKE_CASE = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) SCREAMING_SNAKE_CASE = state_dict.pop(F"module.blocks.{i}.attn.qkv.weight" ) SCREAMING_SNAKE_CASE = state_dict.pop(F"module.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE = in_proj_weight[ : config.hidden_size, : ] SCREAMING_SNAKE_CASE = in_proj_bias[: config.hidden_size] SCREAMING_SNAKE_CASE = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] SCREAMING_SNAKE_CASE = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] SCREAMING_SNAKE_CASE = in_proj_weight[ -config.hidden_size :, : ] SCREAMING_SNAKE_CASE = in_proj_bias[-config.hidden_size :] def __lowerCamelCase (UpperCAmelCase__ : Tuple ): SCREAMING_SNAKE_CASE = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(UpperCAmelCase__ , UpperCAmelCase__ ) def __lowerCamelCase (UpperCAmelCase__ : Any ): # projection head is used in the self-supervised pre-training in MSN, # for downstream task it's not needed. SCREAMING_SNAKE_CASE = [ "module.fc.fc1.weight", "module.fc.fc1.bias", "module.fc.bn1.weight", "module.fc.bn1.bias", "module.fc.bn1.running_mean", "module.fc.bn1.running_var", "module.fc.bn1.num_batches_tracked", "module.fc.fc2.weight", "module.fc.fc2.bias", "module.fc.bn2.weight", "module.fc.bn2.bias", "module.fc.bn2.running_mean", "module.fc.bn2.running_var", "module.fc.bn2.num_batches_tracked", "module.fc.fc3.weight", "module.fc.fc3.bias", ] for k in ignore_keys: state_dict.pop(UpperCAmelCase__ , UpperCAmelCase__ ) def __lowerCamelCase (UpperCAmelCase__ : int , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Dict ): SCREAMING_SNAKE_CASE = dct.pop(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = val def __lowerCamelCase (UpperCAmelCase__ : Tuple , UpperCAmelCase__ : str ): SCREAMING_SNAKE_CASE = ViTMSNConfig() SCREAMING_SNAKE_CASE = 1_0_0_0 SCREAMING_SNAKE_CASE = "datasets/huggingface/label-files" SCREAMING_SNAKE_CASE = "imagenet-1k-id2label.json" SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(UpperCAmelCase__ , UpperCAmelCase__ ) , "r" ) ) SCREAMING_SNAKE_CASE = {int(UpperCAmelCase__ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE = idalabel SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: SCREAMING_SNAKE_CASE = 3_8_4 SCREAMING_SNAKE_CASE = 1_5_3_6 SCREAMING_SNAKE_CASE = 6 elif "l16" in checkpoint_url: SCREAMING_SNAKE_CASE = 1_0_2_4 SCREAMING_SNAKE_CASE = 4_0_9_6 SCREAMING_SNAKE_CASE = 2_4 SCREAMING_SNAKE_CASE = 1_6 SCREAMING_SNAKE_CASE = 0.1 elif "b4" in checkpoint_url: SCREAMING_SNAKE_CASE = 4 elif "l7" in checkpoint_url: SCREAMING_SNAKE_CASE = 7 SCREAMING_SNAKE_CASE = 1_0_2_4 SCREAMING_SNAKE_CASE = 4_0_9_6 SCREAMING_SNAKE_CASE = 2_4 SCREAMING_SNAKE_CASE = 1_6 SCREAMING_SNAKE_CASE = 0.1 SCREAMING_SNAKE_CASE = ViTMSNModel(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = torch.hub.load_state_dict_from_url(UpperCAmelCase__ , map_location="cpu" )["target_encoder"] SCREAMING_SNAKE_CASE = ViTImageProcessor(size=config.image_size ) remove_projection_head(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = create_rename_keys(UpperCAmelCase__ , base_model=UpperCAmelCase__ ) for src, dest in rename_keys: rename_key(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) read_in_q_k_v(UpperCAmelCase__ , UpperCAmelCase__ , base_model=UpperCAmelCase__ ) model.load_state_dict(UpperCAmelCase__ ) model.eval() SCREAMING_SNAKE_CASE = "http://images.cocodataset.org/val2017/000000039769.jpg" SCREAMING_SNAKE_CASE = Image.open(requests.get(UpperCAmelCase__ , stream=UpperCAmelCase__ ).raw ) SCREAMING_SNAKE_CASE = ViTImageProcessor( size=config.image_size , image_mean=UpperCAmelCase__ , image_std=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = image_processor(images=UpperCAmelCase__ , return_tensors="pt" ) # forward pass torch.manual_seed(2 ) SCREAMING_SNAKE_CASE = model(**UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: SCREAMING_SNAKE_CASE = torch.tensor([[-1.0915, -1.4876, -1.1809]] ) elif "b16" in checkpoint_url: SCREAMING_SNAKE_CASE = torch.tensor([[14.2889, -18.9045, 11.7281]] ) elif "l16" in checkpoint_url: SCREAMING_SNAKE_CASE = torch.tensor([[41.5028, -22.8681, 45.6475]] ) elif "b4" in checkpoint_url: SCREAMING_SNAKE_CASE = torch.tensor([[-4.3868, 5.2932, -0.4137]] ) else: SCREAMING_SNAKE_CASE = torch.tensor([[-0.1792, -0.6465, 2.4263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , UpperCAmelCase__ , atol=1e-4 ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(UpperCAmelCase__ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": _lowerCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) _lowerCamelCase : Optional[Any] = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
647
1
def __lowerCamelCase (UpperCAmelCase__ : int = 1_0_0_0_0_0_0 ): SCREAMING_SNAKE_CASE = set(range(3 , UpperCAmelCase__ , 2 ) ) primes.add(2 ) for p in range(3 , UpperCAmelCase__ , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , UpperCAmelCase__ , UpperCAmelCase__ ) ) ) SCREAMING_SNAKE_CASE = [float(UpperCAmelCase__ ) for n in range(limit + 1 )] for p in primes: for n in range(UpperCAmelCase__ , limit + 1 , UpperCAmelCase__ ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(f"""{solution() = }""")
647
import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCamelCase : Dict = logging.get_logger(__name__) _lowerCamelCase : List[Any] = '''▁''' _lowerCamelCase : Optional[int] = {'''vocab_file''': '''prophetnet.tokenizer'''} _lowerCamelCase : str = { '''vocab_file''': { '''microsoft/xprophetnet-large-wiki100-cased''': ( '''https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer''' ), } } _lowerCamelCase : Optional[Any] = { '''microsoft/xprophetnet-large-wiki100-cased''': {'''do_lower_case''': False}, } _lowerCamelCase : Optional[Any] = { '''microsoft/xprophetnet-large-wiki100-cased''': 5_12, } def __lowerCamelCase (UpperCAmelCase__ : Optional[Any] ): SCREAMING_SNAKE_CASE = collections.OrderedDict() with open(UpperCAmelCase__ , "r" , encoding="utf-8" ) as reader: SCREAMING_SNAKE_CASE = reader.readlines() for index, token in enumerate(UpperCAmelCase__ ): SCREAMING_SNAKE_CASE = token.rstrip("\n" ) SCREAMING_SNAKE_CASE = index return vocab class lowercase ( a ): lowercase__ : Optional[int] = VOCAB_FILES_NAMES lowercase__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : Any = ["""input_ids""", """attention_mask"""] def __init__( self : Optional[int] , _UpperCamelCase : List[str] , _UpperCamelCase : str="[SEP]" , _UpperCamelCase : str="[SEP]" , _UpperCamelCase : Dict="[SEP]" , _UpperCamelCase : Tuple="[UNK]" , _UpperCamelCase : Dict="[PAD]" , _UpperCamelCase : Any="[CLS]" , _UpperCamelCase : Optional[Any]="[MASK]" , _UpperCamelCase : Optional[Dict[str, Any]] = None , **_UpperCamelCase : Dict , ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , sep_token=_UpperCamelCase , unk_token=_UpperCamelCase , pad_token=_UpperCamelCase , cls_token=_UpperCamelCase , mask_token=_UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCamelCase , ) try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece" ) raise SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_UpperCamelCase ) ) SCREAMING_SNAKE_CASE = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab SCREAMING_SNAKE_CASE = {"[PAD]": 0, "[CLS]": 1, "[SEP]": 2, "[UNK]": 3, "[MASK]": 4} for i in range(10 ): SCREAMING_SNAKE_CASE = F"[unused{i}]" SCREAMING_SNAKE_CASE = 5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab SCREAMING_SNAKE_CASE = 12 SCREAMING_SNAKE_CASE = {v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(_UpperCamelCase ) def __getstate__( self : Dict ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = self.__dict__.copy() SCREAMING_SNAKE_CASE = None return state def __setstate__( self : List[Any] , _UpperCamelCase : Union[str, Any] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = d try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece" ) raise # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __snake_case( self : Dict , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase ) if token_ids_a is None: return ([0] * len(_UpperCamelCase )) + [1] return ([0] * len(_UpperCamelCase )) + [1] + ([0] * len(_UpperCamelCase )) + [1] def __snake_case( self : str , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = [self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep ) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __snake_case( self : Dict ) -> Optional[Any]: '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset def __snake_case( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __snake_case( self : Union[str, Any] , _UpperCamelCase : str ) -> str: '''simple docstring''' return self.sp_model.encode(_UpperCamelCase , out_type=_UpperCamelCase ) def __snake_case( self : Optional[Any] , _UpperCamelCase : List[Any] ) -> List[str]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] SCREAMING_SNAKE_CASE = self.sp_model.PieceToId(_UpperCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __snake_case( self : str , _UpperCamelCase : str ) -> int: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __snake_case( self : List[str] , _UpperCamelCase : Dict ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = "".join(_UpperCamelCase ).replace(_UpperCamelCase , " " ).strip() return out_string def __snake_case( self : Optional[Any] , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(_UpperCamelCase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE = os.path.join( _UpperCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCamelCase , "wb" ) as fi: SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto() fi.write(_UpperCamelCase ) return (out_vocab_file,) def __snake_case( self : Optional[Any] , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
647
1
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class lowercase ( unittest.TestCase ): def __snake_case( self : int ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = tempfile.mkdtemp() SCREAMING_SNAKE_CASE = BlipImageProcessor() SCREAMING_SNAKE_CASE = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" ) SCREAMING_SNAKE_CASE = BertTokenizerFast.from_pretrained("hf-internal-testing/tiny-random-bert" ) SCREAMING_SNAKE_CASE = InstructBlipProcessor(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) processor.save_pretrained(self.tmpdirname ) def __snake_case( self : List[str] , **_UpperCamelCase : int ) -> str: '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCamelCase ).tokenizer def __snake_case( self : List[str] , **_UpperCamelCase : List[str] ) -> Optional[int]: '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCamelCase ).image_processor def __snake_case( self : str , **_UpperCamelCase : int ) -> int: '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCamelCase ).qformer_tokenizer def __snake_case( self : int ) -> Union[str, Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __snake_case( self : Tuple ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] SCREAMING_SNAKE_CASE = [Image.fromarray(np.moveaxis(_UpperCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __snake_case( self : Optional[int] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) SCREAMING_SNAKE_CASE = self.get_image_processor(do_normalize=_UpperCamelCase , padding_value=1.0 ) SCREAMING_SNAKE_CASE = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=_UpperCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _UpperCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCamelCase ) self.assertIsInstance(processor.qformer_tokenizer , _UpperCamelCase ) def __snake_case( self : str ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = self.get_qformer_tokenizer() SCREAMING_SNAKE_CASE = InstructBlipProcessor( tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase , qformer_tokenizer=_UpperCamelCase ) SCREAMING_SNAKE_CASE = self.prepare_image_inputs() SCREAMING_SNAKE_CASE = image_processor(_UpperCamelCase , return_tensors="np" ) SCREAMING_SNAKE_CASE = processor(images=_UpperCamelCase , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __snake_case( self : Dict ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = self.get_qformer_tokenizer() SCREAMING_SNAKE_CASE = InstructBlipProcessor( tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase , qformer_tokenizer=_UpperCamelCase ) SCREAMING_SNAKE_CASE = "lower newer" SCREAMING_SNAKE_CASE = processor(text=_UpperCamelCase ) SCREAMING_SNAKE_CASE = tokenizer(_UpperCamelCase , return_token_type_ids=_UpperCamelCase ) SCREAMING_SNAKE_CASE = qformer_tokenizer(_UpperCamelCase , return_token_type_ids=_UpperCamelCase ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor["qformer_" + key] ) def __snake_case( self : str ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = self.get_qformer_tokenizer() SCREAMING_SNAKE_CASE = InstructBlipProcessor( tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase , qformer_tokenizer=_UpperCamelCase ) SCREAMING_SNAKE_CASE = "lower newer" SCREAMING_SNAKE_CASE = self.prepare_image_inputs() SCREAMING_SNAKE_CASE = processor(text=_UpperCamelCase , images=_UpperCamelCase ) self.assertListEqual( list(inputs.keys() ) , ["input_ids", "attention_mask", "qformer_input_ids", "qformer_attention_mask", "pixel_values"] , ) # test if it raises when no input is passed with pytest.raises(_UpperCamelCase ): processor() def __snake_case( self : Optional[int] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = self.get_qformer_tokenizer() SCREAMING_SNAKE_CASE = InstructBlipProcessor( tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase , qformer_tokenizer=_UpperCamelCase ) SCREAMING_SNAKE_CASE = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE = processor.batch_decode(_UpperCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.batch_decode(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) def __snake_case( self : Optional[int] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = self.get_qformer_tokenizer() SCREAMING_SNAKE_CASE = InstructBlipProcessor( tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase , qformer_tokenizer=_UpperCamelCase ) SCREAMING_SNAKE_CASE = "lower newer" SCREAMING_SNAKE_CASE = self.prepare_image_inputs() SCREAMING_SNAKE_CASE = processor(text=_UpperCamelCase , images=_UpperCamelCase ) self.assertListEqual( list(inputs.keys() ) , ["input_ids", "attention_mask", "qformer_input_ids", "qformer_attention_mask", "pixel_values"] , )
647
import numpy as np def __lowerCamelCase (UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : float = 1e-12 , UpperCAmelCase__ : int = 1_0_0 , ): assert np.shape(UpperCAmelCase__ )[0] == np.shape(UpperCAmelCase__ )[1] # Ensure proper dimensionality. assert np.shape(UpperCAmelCase__ )[0] == np.shape(UpperCAmelCase__ )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(UpperCAmelCase__ ) == np.iscomplexobj(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = np.iscomplexobj(UpperCAmelCase__ ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(UpperCAmelCase__ , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 1e12 while not convergence: # Multiple matrix by the vector. SCREAMING_SNAKE_CASE = np.dot(UpperCAmelCase__ , UpperCAmelCase__ ) # Normalize the resulting output vector. SCREAMING_SNAKE_CASE = w / np.linalg.norm(UpperCAmelCase__ ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) SCREAMING_SNAKE_CASE = vector.conj().T if is_complex else vector.T SCREAMING_SNAKE_CASE = np.dot(UpperCAmelCase__ , np.dot(UpperCAmelCase__ , UpperCAmelCase__ ) ) # Check convergence. SCREAMING_SNAKE_CASE = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = lambda_ if is_complex: SCREAMING_SNAKE_CASE = np.real(lambda_ ) return lambda_, vector def __lowerCamelCase (): SCREAMING_SNAKE_CASE = np.array([[4_1, 4, 2_0], [4, 2_6, 3_0], [2_0, 3_0, 5_0]] ) SCREAMING_SNAKE_CASE = np.array([4_1, 4, 2_0] ) SCREAMING_SNAKE_CASE = real_input_matrix.astype(np.complexaaa ) SCREAMING_SNAKE_CASE = np.triu(1j * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T SCREAMING_SNAKE_CASE = np.array([4_1, 4, 2_0] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": SCREAMING_SNAKE_CASE = real_input_matrix SCREAMING_SNAKE_CASE = real_vector elif problem_type == "complex": SCREAMING_SNAKE_CASE = complex_input_matrix SCREAMING_SNAKE_CASE = complex_vector # Our implementation. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = power_iteration(UpperCAmelCase__ , UpperCAmelCase__ ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = np.linalg.eigh(UpperCAmelCase__ ) # Last eigenvalue is the maximum one. SCREAMING_SNAKE_CASE = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. SCREAMING_SNAKE_CASE = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1e-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(UpperCAmelCase__ ) - np.abs(UpperCAmelCase__ ) ) <= 1e-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
647
1
from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration _lowerCamelCase : str = HfArgumentParser(InitializationArguments) _lowerCamelCase : Optional[Any] = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization _lowerCamelCase : str = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks _lowerCamelCase : str = { '''vocab_size''': len(tokenizer), '''scale_attn_by_inverse_layer_idx''': True, '''reorder_and_upcast_attn''': True, } # Load model config (GPT-2 large in this case) _lowerCamelCase : List[str] = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config _lowerCamelCase : int = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
647
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) class lowercase ( a ): lowercase__ : Optional[Any] = ["""input_features""", """is_longer"""] def __init__( self : str , _UpperCamelCase : Optional[int]=64 , _UpperCamelCase : Any=48_000 , _UpperCamelCase : Optional[Any]=480 , _UpperCamelCase : List[Any]=10 , _UpperCamelCase : Any=1_024 , _UpperCamelCase : List[Any]=0.0 , _UpperCamelCase : Any=False , _UpperCamelCase : float = 0 , _UpperCamelCase : float = 14_000 , _UpperCamelCase : int = None , _UpperCamelCase : str = "fusion" , _UpperCamelCase : str = "repeatpad" , **_UpperCamelCase : Optional[Any] , ) -> Dict: '''simple docstring''' super().__init__( feature_size=_UpperCamelCase , sampling_rate=_UpperCamelCase , padding_value=_UpperCamelCase , return_attention_mask=_UpperCamelCase , **_UpperCamelCase , ) SCREAMING_SNAKE_CASE = top_db SCREAMING_SNAKE_CASE = truncation SCREAMING_SNAKE_CASE = padding SCREAMING_SNAKE_CASE = fft_window_size SCREAMING_SNAKE_CASE = (fft_window_size >> 1) + 1 SCREAMING_SNAKE_CASE = hop_length SCREAMING_SNAKE_CASE = max_length_s SCREAMING_SNAKE_CASE = max_length_s * sampling_rate SCREAMING_SNAKE_CASE = sampling_rate SCREAMING_SNAKE_CASE = frequency_min SCREAMING_SNAKE_CASE = frequency_max SCREAMING_SNAKE_CASE = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_UpperCamelCase , min_frequency=_UpperCamelCase , max_frequency=_UpperCamelCase , sampling_rate=_UpperCamelCase , norm=_UpperCamelCase , mel_scale="htk" , ) SCREAMING_SNAKE_CASE = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_UpperCamelCase , min_frequency=_UpperCamelCase , max_frequency=_UpperCamelCase , sampling_rate=_UpperCamelCase , norm="slaney" , mel_scale="slaney" , ) def __snake_case( self : str ) -> Dict[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def __snake_case( self : Optional[Any] , _UpperCamelCase : np.array , _UpperCamelCase : Optional[np.array] = None ) -> np.ndarray: '''simple docstring''' SCREAMING_SNAKE_CASE = spectrogram( _UpperCamelCase , window_function(self.fft_window_size , "hann" ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=_UpperCamelCase , log_mel="dB" , ) return log_mel_spectrogram.T def __snake_case( self : str , _UpperCamelCase : Tuple , _UpperCamelCase : Any , _UpperCamelCase : str ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk SCREAMING_SNAKE_CASE = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk SCREAMING_SNAKE_CASE = [0] # randomly choose index for each part SCREAMING_SNAKE_CASE = np.random.choice(ranges[0] ) SCREAMING_SNAKE_CASE = np.random.choice(ranges[1] ) SCREAMING_SNAKE_CASE = np.random.choice(ranges[2] ) SCREAMING_SNAKE_CASE = mel[idx_front : idx_front + chunk_frames, :] SCREAMING_SNAKE_CASE = mel[idx_middle : idx_middle + chunk_frames, :] SCREAMING_SNAKE_CASE = mel[idx_back : idx_back + chunk_frames, :] SCREAMING_SNAKE_CASE = torch.tensor(mel[None, None, :] ) SCREAMING_SNAKE_CASE = torch.nn.functional.interpolate( _UpperCamelCase , size=[chunk_frames, 64] , mode="bilinear" , align_corners=_UpperCamelCase ) SCREAMING_SNAKE_CASE = mel_shrink[0][0].numpy() SCREAMING_SNAKE_CASE = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def __snake_case( self : Optional[int] , _UpperCamelCase : np.array , _UpperCamelCase : Dict , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[str] ) -> np.array: '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": SCREAMING_SNAKE_CASE = True # random crop to max_length (for compatibility) -> this should be handled by self.pad SCREAMING_SNAKE_CASE = len(_UpperCamelCase ) - max_length SCREAMING_SNAKE_CASE = np.random.randint(0 , overflow + 1 ) SCREAMING_SNAKE_CASE = waveform[idx : idx + max_length] SCREAMING_SNAKE_CASE = self._np_extract_fbank_features(_UpperCamelCase , self.mel_filters_slaney )[None, :] elif truncation == "fusion": SCREAMING_SNAKE_CASE = self._np_extract_fbank_features(_UpperCamelCase , self.mel_filters ) SCREAMING_SNAKE_CASE = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed SCREAMING_SNAKE_CASE = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. SCREAMING_SNAKE_CASE = np.stack([mel, mel, mel, mel] , axis=0 ) SCREAMING_SNAKE_CASE = False else: SCREAMING_SNAKE_CASE = self._random_mel_fusion(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = True else: raise NotImplementedError(F"data_truncating {truncation} not implemented" ) else: SCREAMING_SNAKE_CASE = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": SCREAMING_SNAKE_CASE = int(max_length / len(_UpperCamelCase ) ) SCREAMING_SNAKE_CASE = np.stack(np.tile(_UpperCamelCase , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": SCREAMING_SNAKE_CASE = int(max_length / len(_UpperCamelCase ) ) SCREAMING_SNAKE_CASE = np.stack(np.tile(_UpperCamelCase , _UpperCamelCase ) ) SCREAMING_SNAKE_CASE = np.pad(_UpperCamelCase , (0, max_length - waveform.shape[0]) , mode="constant" , constant_values=0 ) if truncation == "fusion": SCREAMING_SNAKE_CASE = self._np_extract_fbank_features(_UpperCamelCase , self.mel_filters ) SCREAMING_SNAKE_CASE = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: SCREAMING_SNAKE_CASE = self._np_extract_fbank_features(_UpperCamelCase , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : Dict , _UpperCamelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _UpperCamelCase : str = None , _UpperCamelCase : Optional[str] = None , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : Optional[Union[str, TensorType]] = None , **_UpperCamelCase : Tuple , ) -> BatchFeature: '''simple docstring''' SCREAMING_SNAKE_CASE = truncation if truncation is not None else self.truncation SCREAMING_SNAKE_CASE = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a" F" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input" F" was sampled with {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) SCREAMING_SNAKE_CASE = isinstance(_UpperCamelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"Only mono-channel audio is supported for input to {self}" ) SCREAMING_SNAKE_CASE = is_batched_numpy or ( isinstance(_UpperCamelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: SCREAMING_SNAKE_CASE = [np.asarray(_UpperCamelCase , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_UpperCamelCase , np.ndarray ): SCREAMING_SNAKE_CASE = np.asarray(_UpperCamelCase , dtype=np.floataa ) elif isinstance(_UpperCamelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): SCREAMING_SNAKE_CASE = raw_speech.astype(np.floataa ) # always return batch if not is_batched: SCREAMING_SNAKE_CASE = [np.asarray(_UpperCamelCase )] # convert to mel spectrogram, truncate and pad if needed. SCREAMING_SNAKE_CASE = [ self._get_input_mel(_UpperCamelCase , max_length if max_length else self.nb_max_samples , _UpperCamelCase , _UpperCamelCase ) for waveform in raw_speech ] SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] for mel, longer in padded_inputs: input_mel.append(_UpperCamelCase ) is_longer.append(_UpperCamelCase ) if truncation == "fusion" and sum(_UpperCamelCase ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer SCREAMING_SNAKE_CASE = np.random.randint(0 , len(_UpperCamelCase ) ) SCREAMING_SNAKE_CASE = True if isinstance(input_mel[0] , _UpperCamelCase ): SCREAMING_SNAKE_CASE = [np.asarray(_UpperCamelCase , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool SCREAMING_SNAKE_CASE = [[longer] for longer in is_longer] SCREAMING_SNAKE_CASE = {"input_features": input_mel, "is_longer": is_longer} SCREAMING_SNAKE_CASE = BatchFeature(_UpperCamelCase ) if return_tensors is not None: SCREAMING_SNAKE_CASE = input_features.convert_to_tensors(_UpperCamelCase ) return input_features
647
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) _lowerCamelCase : str = { '''shi-labs/nat-mini-in1k-224''': '''https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json''', # See all Nat models at https://huggingface.co/models?filter=nat } class lowercase ( a , a ): lowercase__ : str = """nat""" lowercase__ : Tuple = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : Tuple , _UpperCamelCase : str=4 , _UpperCamelCase : Optional[Any]=3 , _UpperCamelCase : Any=64 , _UpperCamelCase : int=[3, 4, 6, 5] , _UpperCamelCase : List[str]=[2, 4, 8, 16] , _UpperCamelCase : Dict=7 , _UpperCamelCase : Union[str, Any]=3.0 , _UpperCamelCase : List[Any]=True , _UpperCamelCase : Optional[int]=0.0 , _UpperCamelCase : Any=0.0 , _UpperCamelCase : str=0.1 , _UpperCamelCase : int="gelu" , _UpperCamelCase : int=0.0_2 , _UpperCamelCase : Optional[Any]=1e-5 , _UpperCamelCase : Union[str, Any]=0.0 , _UpperCamelCase : Dict=None , _UpperCamelCase : Dict=None , **_UpperCamelCase : str , ) -> Any: '''simple docstring''' super().__init__(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = embed_dim SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = len(_UpperCamelCase ) SCREAMING_SNAKE_CASE = num_heads SCREAMING_SNAKE_CASE = kernel_size SCREAMING_SNAKE_CASE = mlp_ratio SCREAMING_SNAKE_CASE = qkv_bias SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = drop_path_rate SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model SCREAMING_SNAKE_CASE = int(embed_dim * 2 ** (len(_UpperCamelCase ) - 1) ) SCREAMING_SNAKE_CASE = layer_scale_init_value SCREAMING_SNAKE_CASE = ["stem"] + [F"stage{idx}" for idx in range(1 , len(_UpperCamelCase ) + 1 )] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_aligned_output_features_output_indices( out_features=_UpperCamelCase , out_indices=_UpperCamelCase , stage_names=self.stage_names )
647
import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) _lowerCamelCase : Optional[int] = logging.getLogger(__name__) _lowerCamelCase : Optional[int] = '''Hello world! cécé herlolip''' _lowerCamelCase : List[Any] = namedtuple( '''BertAbsConfig''', [ '''temp_dir''', '''large''', '''use_bert_emb''', '''finetune_bert''', '''encoder''', '''share_emb''', '''max_pos''', '''enc_layers''', '''enc_hidden_size''', '''enc_heads''', '''enc_ff_size''', '''enc_dropout''', '''dec_layers''', '''dec_hidden_size''', '''dec_heads''', '''dec_ff_size''', '''dec_dropout''', ], ) def __lowerCamelCase (UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[int] ): SCREAMING_SNAKE_CASE = BertAbsConfig( temp_dir="." , finetune_bert=UpperCAmelCase__ , large=UpperCAmelCase__ , share_emb=UpperCAmelCase__ , use_bert_emb=UpperCAmelCase__ , encoder="bert" , max_pos=5_1_2 , enc_layers=6 , enc_hidden_size=5_1_2 , enc_heads=8 , enc_ff_size=5_1_2 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=7_6_8 , dec_heads=8 , dec_ff_size=2_0_4_8 , dec_dropout=0.2 , ) SCREAMING_SNAKE_CASE = torch.load(UpperCAmelCase__ , lambda UpperCAmelCase__ , UpperCAmelCase__ : storage ) SCREAMING_SNAKE_CASE = AbsSummarizer(UpperCAmelCase__ , torch.device("cpu" ) , UpperCAmelCase__ ) original.eval() SCREAMING_SNAKE_CASE = BertAbsSummarizer(UpperCAmelCase__ , torch.device("cpu" ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info("convert the model" ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info("Make sure that the models' outputs are identical" ) SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained("bert-base-uncased" ) # prepare the model inputs SCREAMING_SNAKE_CASE = tokenizer.encode("This is sample éàalj'-." ) encoder_input_ids.extend([tokenizer.pad_token_id] * (5_1_2 - len(UpperCAmelCase__ )) ) SCREAMING_SNAKE_CASE = torch.tensor(UpperCAmelCase__ ).unsqueeze(0 ) SCREAMING_SNAKE_CASE = tokenizer.encode("This is sample 3 éàalj'-." ) decoder_input_ids.extend([tokenizer.pad_token_id] * (5_1_2 - len(UpperCAmelCase__ )) ) SCREAMING_SNAKE_CASE = torch.tensor(UpperCAmelCase__ ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass SCREAMING_SNAKE_CASE = encoder_input_ids SCREAMING_SNAKE_CASE = decoder_input_ids SCREAMING_SNAKE_CASE = SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical SCREAMING_SNAKE_CASE = original(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )[0] SCREAMING_SNAKE_CASE = original.generator(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = new_model( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )[0] SCREAMING_SNAKE_CASE = new_model.generator(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print("Maximum absolute difference beween weights: {:.2f}".format(UpperCAmelCase__ ) ) SCREAMING_SNAKE_CASE = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print("Maximum absolute difference beween weights: {:.2f}".format(UpperCAmelCase__ ) ) SCREAMING_SNAKE_CASE = torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1e-3 ) if are_identical: logging.info("all weights are equal up to 1e-3" ) else: raise ValueError("the weights are different. The new model is likely different from the original one." ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info("saving the model's state dictionary" ) torch.save( new_model.state_dict() , "./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin" ) if __name__ == "__main__": _lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '''--bertabs_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''', ) _lowerCamelCase : Any = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
647
1
import os import unittest from tempfile import TemporaryDirectory import torch import torch.nn as nn from accelerate.utils import ( OffloadedWeightsLoader, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, ) class lowercase ( nn.Module ): def __init__( self : Optional[Any] ) -> Any: '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE = nn.Linear(3 , 4 ) SCREAMING_SNAKE_CASE = nn.BatchNormad(4 ) SCREAMING_SNAKE_CASE = nn.Linear(4 , 5 ) def __snake_case( self : Tuple , _UpperCamelCase : List[Any] ) -> Optional[Any]: '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(_UpperCamelCase ) ) ) class lowercase ( unittest.TestCase ): def __snake_case( self : Optional[int] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = ModelForTest() with TemporaryDirectory() as tmp_dir: offload_state_dict(_UpperCamelCase , model.state_dict() ) SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , "index.json" ) self.assertTrue(os.path.isfile(_UpperCamelCase ) ) # TODO: add tests on what is inside the index for key in ["linear1.weight", "linear1.bias", "linear2.weight", "linear2.bias"]: SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , F"{key}.dat" ) self.assertTrue(os.path.isfile(_UpperCamelCase ) ) # TODO: add tests on the fact weights are properly loaded def __snake_case( self : Any ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = [torch.floataa, torch.floataa, torch.bfloataa] for dtype in dtypes: SCREAMING_SNAKE_CASE = torch.randn(2 , 3 , dtype=_UpperCamelCase ) with TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE = offload_weight(_UpperCamelCase , "weight" , _UpperCamelCase , {} ) SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , "weight.dat" ) self.assertTrue(os.path.isfile(_UpperCamelCase ) ) self.assertDictEqual(_UpperCamelCase , {"weight": {"shape": [2, 3], "dtype": str(_UpperCamelCase ).split("." )[1]}} ) SCREAMING_SNAKE_CASE = load_offloaded_weight(_UpperCamelCase , index["weight"] ) self.assertTrue(torch.equal(_UpperCamelCase , _UpperCamelCase ) ) def __snake_case( self : Dict ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = ModelForTest() SCREAMING_SNAKE_CASE = model.state_dict() SCREAMING_SNAKE_CASE = {k: v for k, v in state_dict.items() if "linear2" not in k} SCREAMING_SNAKE_CASE = {k: v for k, v in state_dict.items() if "linear2" in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = OffloadedWeightsLoader(state_dict=_UpperCamelCase , save_folder=_UpperCamelCase ) # Every key is there with the right value self.assertEqual(sorted(_UpperCamelCase ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(_UpperCamelCase , weight_map[key] ) ) SCREAMING_SNAKE_CASE = {k: v for k, v in state_dict.items() if "weight" in k} SCREAMING_SNAKE_CASE = {k: v for k, v in state_dict.items() if "weight" not in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = OffloadedWeightsLoader(state_dict=_UpperCamelCase , save_folder=_UpperCamelCase ) # Every key is there with the right value self.assertEqual(sorted(_UpperCamelCase ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(_UpperCamelCase , weight_map[key] ) ) with TemporaryDirectory() as tmp_dir: offload_state_dict(_UpperCamelCase , _UpperCamelCase ) # Duplicates are removed SCREAMING_SNAKE_CASE = OffloadedWeightsLoader(state_dict=_UpperCamelCase , save_folder=_UpperCamelCase ) # Every key is there with the right value self.assertEqual(sorted(_UpperCamelCase ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(_UpperCamelCase , weight_map[key] ) ) def __snake_case( self : List[Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = {"a.1": 0, "a.10": 1, "a.2": 2} SCREAMING_SNAKE_CASE = extract_submodules_state_dict(_UpperCamelCase , ["a.1", "a.2"] ) self.assertDictEqual(_UpperCamelCase , {"a.1": 0, "a.2": 2} ) SCREAMING_SNAKE_CASE = {"a.1.a": 0, "a.10.a": 1, "a.2.a": 2} SCREAMING_SNAKE_CASE = extract_submodules_state_dict(_UpperCamelCase , ["a.1", "a.2"] ) self.assertDictEqual(_UpperCamelCase , {"a.1.a": 0, "a.2.a": 2} )
647
def __lowerCamelCase (UpperCAmelCase__ : int ): assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ), F"The input value of [n={number}] is not an integer" if number == 1: return 2 elif number < 1: SCREAMING_SNAKE_CASE = F"The input value of [n={number}] has to be > 0" raise ValueError(UpperCAmelCase__ ) else: SCREAMING_SNAKE_CASE = sylvester(number - 1 ) SCREAMING_SNAKE_CASE = num - 1 SCREAMING_SNAKE_CASE = num return lower * upper + 1 if __name__ == "__main__": print(f"""The 8th number in Sylvester's sequence: {sylvester(8)}""")
647
1
import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCamelCase : int = logging.get_logger(__name__) _lowerCamelCase : Optional[Any] = { '''nvidia/segformer-b0-finetuned-ade-512-512''': ( '''https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json''' ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class lowercase ( a ): lowercase__ : Dict = """segformer""" def __init__( self : str , _UpperCamelCase : str=3 , _UpperCamelCase : int=4 , _UpperCamelCase : Any=[2, 2, 2, 2] , _UpperCamelCase : str=[8, 4, 2, 1] , _UpperCamelCase : List[Any]=[32, 64, 160, 256] , _UpperCamelCase : Optional[Any]=[7, 3, 3, 3] , _UpperCamelCase : Tuple=[4, 2, 2, 2] , _UpperCamelCase : List[Any]=[1, 2, 5, 8] , _UpperCamelCase : int=[4, 4, 4, 4] , _UpperCamelCase : List[Any]="gelu" , _UpperCamelCase : int=0.0 , _UpperCamelCase : Any=0.0 , _UpperCamelCase : int=0.1 , _UpperCamelCase : Any=0.0_2 , _UpperCamelCase : List[Any]=0.1 , _UpperCamelCase : Optional[Any]=1e-6 , _UpperCamelCase : Tuple=256 , _UpperCamelCase : Optional[Any]=255 , **_UpperCamelCase : Dict , ) -> List[Any]: '''simple docstring''' super().__init__(**_UpperCamelCase ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( "Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be" " removed, as the behaviour will default to that of reshape_last_stage = True." , _UpperCamelCase , ) SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = num_encoder_blocks SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = sr_ratios SCREAMING_SNAKE_CASE = hidden_sizes SCREAMING_SNAKE_CASE = patch_sizes SCREAMING_SNAKE_CASE = strides SCREAMING_SNAKE_CASE = mlp_ratios SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = classifier_dropout_prob SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = drop_path_rate SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = decoder_hidden_size SCREAMING_SNAKE_CASE = kwargs.get("reshape_last_stage" , _UpperCamelCase ) SCREAMING_SNAKE_CASE = semantic_loss_ignore_index class lowercase ( a ): lowercase__ : str = version.parse("""1.11""" ) @property def __snake_case( self : str ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def __snake_case( self : Any ) -> float: '''simple docstring''' return 1e-4 @property def __snake_case( self : Any ) -> int: '''simple docstring''' return 12
647
import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class lowercase ( unittest.TestCase ): def __snake_case( self : Union[str, Any] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = inspect.getfile(accelerate.test_utils ) SCREAMING_SNAKE_CASE = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_script.py"] ) SCREAMING_SNAKE_CASE = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["scripts", "test_distributed_data_loop.py"] ) SCREAMING_SNAKE_CASE = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_ops.py"] ) @require_multi_gpu def __snake_case( self : Optional[int] ) -> Any: '''simple docstring''' print(F"Found {torch.cuda.device_count()} devices." ) SCREAMING_SNAKE_CASE = ["torchrun", F"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_UpperCamelCase , env=os.environ.copy() ) @require_multi_gpu def __snake_case( self : List[Any] ) -> int: '''simple docstring''' print(F"Found {torch.cuda.device_count()} devices." ) SCREAMING_SNAKE_CASE = ["torchrun", F"--nproc_per_node={torch.cuda.device_count()}", self.operation_file_path] print(F"Command: {cmd}" ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_UpperCamelCase , env=os.environ.copy() ) @require_multi_gpu def __snake_case( self : int ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = ["torchrun", F"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_UpperCamelCase , env=os.environ.copy() ) @require_multi_gpu def __snake_case( self : int ) -> int: '''simple docstring''' print(F"Found {torch.cuda.device_count()} devices, using 2 devices only" ) SCREAMING_SNAKE_CASE = ["torchrun", F"--nproc_per_node={torch.cuda.device_count()}", self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices="0,1" ): execute_subprocess_async(_UpperCamelCase , env=os.environ.copy() ) if __name__ == "__main__": _lowerCamelCase : str = Accelerator() _lowerCamelCase : List[str] = (accelerator.state.process_index + 2, 10) _lowerCamelCase : str = torch.randint(0, 10, shape).to(accelerator.device) _lowerCamelCase : Optional[Any] = '''''' _lowerCamelCase : str = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." _lowerCamelCase : Any = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." _lowerCamelCase : int = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
647
1
def __lowerCamelCase (UpperCAmelCase__ : int ): if upper_limit < 0: raise ValueError("Limit for the Catalan sequence must be ≥ 0" ) SCREAMING_SNAKE_CASE = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 SCREAMING_SNAKE_CASE = 1 if upper_limit > 0: SCREAMING_SNAKE_CASE = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(UpperCAmelCase__ ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print('''\n********* Catalan Numbers Using Dynamic Programming ************\n''') print('''\n*** Enter -1 at any time to quit ***''') print('''\nEnter the upper limit (≥ 0) for the Catalan number sequence: ''', end='''''') try: while True: _lowerCamelCase : str = int(input().strip()) if N < 0: print('''\n********* Goodbye!! ************''') break else: print(f"""The Catalan numbers from 0 through {N} are:""") print(catalan_numbers(N)) print('''Try another upper limit for the sequence: ''', end='''''') except (NameError, ValueError): print('''\n********* Invalid input, goodbye! ************\n''') import doctest doctest.testmod()
647
import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class lowercase ( a ): lowercase__ : Tuple = (KDPMaDiscreteScheduler,) lowercase__ : Optional[int] = 10 def __snake_case( self : Optional[Any] , **_UpperCamelCase : List[Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = { "num_train_timesteps": 1_100, "beta_start": 0.0_0_0_1, "beta_end": 0.0_2, "beta_schedule": "linear", } config.update(**_UpperCamelCase ) return config def __snake_case( self : int ) -> List[Any]: '''simple docstring''' for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=_UpperCamelCase ) def __snake_case( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=_UpperCamelCase , beta_end=_UpperCamelCase ) def __snake_case( self : Union[str, Any] ) -> str: '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_UpperCamelCase ) def __snake_case( self : Optional[int] ) -> int: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCamelCase ) def __snake_case( self : Optional[int] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = self.scheduler_classes[0] SCREAMING_SNAKE_CASE = self.get_scheduler_config(prediction_type="v_prediction" ) SCREAMING_SNAKE_CASE = scheduler_class(**_UpperCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) SCREAMING_SNAKE_CASE = self.dummy_model() SCREAMING_SNAKE_CASE = self.dummy_sample_deter * scheduler.init_noise_sigma SCREAMING_SNAKE_CASE = sample.to(_UpperCamelCase ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = model(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = output.prev_sample SCREAMING_SNAKE_CASE = torch.sum(torch.abs(_UpperCamelCase ) ) SCREAMING_SNAKE_CASE = torch.mean(torch.abs(_UpperCamelCase ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6_934e-07 ) < 1e-2 assert abs(result_mean.item() - 6.1_112e-10 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 4.693_428_650_170_972e-07 ) < 1e-2 assert abs(result_mean.item() - 0.0_0_0_2 ) < 1e-3 def __snake_case( self : Dict ) -> int: '''simple docstring''' if torch_device == "mps": return SCREAMING_SNAKE_CASE = self.scheduler_classes[0] SCREAMING_SNAKE_CASE = self.get_scheduler_config() SCREAMING_SNAKE_CASE = scheduler_class(**_UpperCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) SCREAMING_SNAKE_CASE = self.dummy_model() SCREAMING_SNAKE_CASE = self.dummy_sample_deter * scheduler.init_noise_sigma SCREAMING_SNAKE_CASE = sample.to(_UpperCamelCase ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = model(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = output.prev_sample SCREAMING_SNAKE_CASE = torch.sum(torch.abs(_UpperCamelCase ) ) SCREAMING_SNAKE_CASE = torch.mean(torch.abs(_UpperCamelCase ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1e-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1e-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1e-3 def __snake_case( self : Tuple ) -> str: '''simple docstring''' if torch_device == "mps": return SCREAMING_SNAKE_CASE = self.scheduler_classes[0] SCREAMING_SNAKE_CASE = self.get_scheduler_config() SCREAMING_SNAKE_CASE = scheduler_class(**_UpperCamelCase ) scheduler.set_timesteps(self.num_inference_steps , device=_UpperCamelCase ) SCREAMING_SNAKE_CASE = self.dummy_model() SCREAMING_SNAKE_CASE = self.dummy_sample_deter.to(_UpperCamelCase ) * scheduler.init_noise_sigma for t in scheduler.timesteps: SCREAMING_SNAKE_CASE = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = model(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = output.prev_sample SCREAMING_SNAKE_CASE = torch.sum(torch.abs(_UpperCamelCase ) ) SCREAMING_SNAKE_CASE = torch.mean(torch.abs(_UpperCamelCase ) ) if str(_UpperCamelCase ).startswith("cpu" ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1e-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1e-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1e-3
647
1
def __lowerCamelCase (UpperCAmelCase__ : int ): if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise TypeError("'float' object cannot be interpreted as an integer" ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise TypeError("'str' object cannot be interpreted as an integer" ) if num == 0: return "0b0" SCREAMING_SNAKE_CASE = False if num < 0: SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = -num SCREAMING_SNAKE_CASE = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(UpperCAmelCase__ ) for e in binary ) return "0b" + "".join(str(UpperCAmelCase__ ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
647
from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig _lowerCamelCase : Tuple = { '''susnato/ernie-m-base_pytorch''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json''', '''susnato/ernie-m-large_pytorch''': '''https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json''', } class lowercase ( a ): lowercase__ : Optional[Any] = """ernie_m""" lowercase__ : Dict[str, str] = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self : Optional[int] , _UpperCamelCase : int = 250_002 , _UpperCamelCase : int = 768 , _UpperCamelCase : int = 12 , _UpperCamelCase : int = 12 , _UpperCamelCase : int = 3_072 , _UpperCamelCase : str = "gelu" , _UpperCamelCase : float = 0.1 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : int = 514 , _UpperCamelCase : float = 0.0_2 , _UpperCamelCase : int = 1 , _UpperCamelCase : float = 1e-05 , _UpperCamelCase : int=None , _UpperCamelCase : int=False , _UpperCamelCase : int=0.0 , **_UpperCamelCase : Union[str, Any] , ) -> Optional[Any]: '''simple docstring''' super().__init__(pad_token_id=_UpperCamelCase , **_UpperCamelCase ) SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = classifier_dropout SCREAMING_SNAKE_CASE = is_decoder SCREAMING_SNAKE_CASE = act_dropout
647
1
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("""TEST_SAGEMAKER""" , """False""" ) ) is not True , reason="""Skipping test because should only be run when releasing minor transformers version""" , ) @pytest.mark.usefixtures("""sm_env""" ) @parameterized_class( [ { """framework""": """pytorch""", """script""": """run_glue.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.g4dn.xlarge""", """results""": {"""train_runtime""": 650, """eval_accuracy""": 0.6, """eval_loss""": 0.9}, }, { """framework""": """tensorflow""", """script""": """run_tf.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.g4dn.xlarge""", """results""": {"""train_runtime""": 600, """eval_accuracy""": 0.3, """eval_loss""": 0.9}, }, ] ) class lowercase ( unittest.TestCase ): def __snake_case( self : int ) -> str: '''simple docstring''' if self.framework == "pytorch": subprocess.run( F"cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split() , encoding="utf-8" , check=_UpperCamelCase , ) assert hasattr(self , "env" ) def __snake_case( self : int , _UpperCamelCase : Optional[Any]=1 ) -> Union[str, Any]: '''simple docstring''' return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F"{self.env.base_job_name}-single" , instance_count=_UpperCamelCase , instance_type=self.instance_type , debugger_hook_config=_UpperCamelCase , hyperparameters={**self.env.hyperparameters, "model_name_or_path": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version="py36" , ) def __snake_case( self : str , _UpperCamelCase : Optional[Any] ) -> List[str]: '''simple docstring''' TrainingJobAnalytics(_UpperCamelCase ).export_csv(F"{self.env.test_path}/{job_name}_metrics.csv" ) def __snake_case( self : str ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = self.create_estimator() # run training estimator.fit() # result dataframe SCREAMING_SNAKE_CASE = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis SCREAMING_SNAKE_CASE = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] ) SCREAMING_SNAKE_CASE = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping SCREAMING_SNAKE_CASE = ( Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds" , 999_999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy ) assert all(t <= self.results["eval_loss"] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"{estimator.latest_training_job.name}.json" , "w" ) as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , _UpperCamelCase )
647
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCamelCase : Optional[int] = { '''configuration_blenderbot''': [ '''BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BlenderbotConfig''', '''BlenderbotOnnxConfig''', ], '''tokenization_blenderbot''': ['''BlenderbotTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[Any] = ['''BlenderbotTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Tuple = [ '''BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BlenderbotForCausalLM''', '''BlenderbotForConditionalGeneration''', '''BlenderbotModel''', '''BlenderbotPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[str] = [ '''TFBlenderbotForConditionalGeneration''', '''TFBlenderbotModel''', '''TFBlenderbotPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[int] = [ '''FlaxBlenderbotForConditionalGeneration''', '''FlaxBlenderbotModel''', '''FlaxBlenderbotPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys _lowerCamelCase : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
647
1
import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class lowercase : def __init__( self : List[str] , _UpperCamelCase : Dict , _UpperCamelCase : Optional[int]=100 , _UpperCamelCase : Any=13 , _UpperCamelCase : Optional[Any]=30 , _UpperCamelCase : Tuple=2 , _UpperCamelCase : List[str]=3 , _UpperCamelCase : List[Any]=True , _UpperCamelCase : str=True , _UpperCamelCase : Any=32 , _UpperCamelCase : List[str]=4 , _UpperCamelCase : List[Any]=4 , _UpperCamelCase : Tuple=37 , _UpperCamelCase : List[Any]="gelu" , _UpperCamelCase : str=0.1 , _UpperCamelCase : Optional[Any]=0.1 , _UpperCamelCase : Any=10 , _UpperCamelCase : Optional[Any]=0.0_2 , _UpperCamelCase : int=3 , _UpperCamelCase : Tuple=None , _UpperCamelCase : Union[str, Any]=[0, 1, 2, 3] , ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = 100 SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = type_sequence_label_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = scope SCREAMING_SNAKE_CASE = out_indices SCREAMING_SNAKE_CASE = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE = num_patches + 1 def __snake_case( self : Dict ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels, pixel_labels def __snake_case( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def __snake_case( self : List[str] , _UpperCamelCase : List[Any] , _UpperCamelCase : str , _UpperCamelCase : List[str] , _UpperCamelCase : Union[str, Any] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = BeitModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __snake_case( self : Optional[Any] , _UpperCamelCase : int , _UpperCamelCase : Tuple , _UpperCamelCase : Any , _UpperCamelCase : Tuple ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = BeitForMaskedImageModeling(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def __snake_case( self : Tuple , _UpperCamelCase : Optional[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : int ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.type_sequence_label_size SCREAMING_SNAKE_CASE = BeitForImageClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = BeitForImageClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = model(_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __snake_case( self : int , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int] , _UpperCamelCase : str , _UpperCamelCase : Any ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = BeitForSemanticSegmentation(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(_UpperCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) SCREAMING_SNAKE_CASE = model(_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def __snake_case( self : int ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = config_and_inputs SCREAMING_SNAKE_CASE = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowercase ( a , a , unittest.TestCase ): lowercase__ : Dict = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) lowercase__ : List[Any] = ( { """feature-extraction""": BeitModel, """image-classification""": BeitForImageClassification, """image-segmentation""": BeitForSemanticSegmentation, } if is_torch_available() else {} ) lowercase__ : str = False lowercase__ : int = False lowercase__ : Any = False def __snake_case( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = BeitModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=_UpperCamelCase , has_text_modality=_UpperCamelCase , hidden_size=37 ) def __snake_case( self : List[str] ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="BEiT does not use inputs_embeds" ) def __snake_case( self : List[str] ) -> str: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def __snake_case( self : List[str] ) -> Optional[int]: '''simple docstring''' pass def __snake_case( self : List[Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(_UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) SCREAMING_SNAKE_CASE = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCamelCase , nn.Linear ) ) def __snake_case( self : List[Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(_UpperCamelCase ) SCREAMING_SNAKE_CASE = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE = ["pixel_values"] self.assertListEqual(arg_names[:1] , _UpperCamelCase ) def __snake_case( self : str ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def __snake_case( self : List[str] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCamelCase ) def __snake_case( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCamelCase ) def __snake_case( self : Tuple ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_UpperCamelCase ) def __snake_case( self : str ) -> List[str]: '''simple docstring''' if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(_UpperCamelCase ), BeitForMaskedImageModeling]: continue SCREAMING_SNAKE_CASE = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.train() SCREAMING_SNAKE_CASE = self._prepare_for_class(_UpperCamelCase , _UpperCamelCase , return_labels=_UpperCamelCase ) SCREAMING_SNAKE_CASE = model(**_UpperCamelCase ).loss loss.backward() def __snake_case( self : Tuple ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(_UpperCamelCase ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue SCREAMING_SNAKE_CASE = model_class(_UpperCamelCase ) model.gradient_checkpointing_enable() model.to(_UpperCamelCase ) model.train() SCREAMING_SNAKE_CASE = self._prepare_for_class(_UpperCamelCase , _UpperCamelCase , return_labels=_UpperCamelCase ) SCREAMING_SNAKE_CASE = model(**_UpperCamelCase ).loss loss.backward() def __snake_case( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = _config_zero_init(_UpperCamelCase ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(config=_UpperCamelCase ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) @slow def __snake_case( self : List[str] ) -> str: '''simple docstring''' for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = BeitModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def __lowerCamelCase (): SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): @cached_property def __snake_case( self : Dict ) -> List[str]: '''simple docstring''' return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None @slow def __snake_case( self : Any ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ).to(_UpperCamelCase ) SCREAMING_SNAKE_CASE = self.default_image_processor SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=_UpperCamelCase , return_tensors="pt" ).pixel_values.to(_UpperCamelCase ) # prepare bool_masked_pos SCREAMING_SNAKE_CASE = torch.ones((1, 196) , dtype=torch.bool ).to(_UpperCamelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE = model(pixel_values=_UpperCamelCase , bool_masked_pos=_UpperCamelCase ) SCREAMING_SNAKE_CASE = outputs.logits # verify the logits SCREAMING_SNAKE_CASE = torch.Size((1, 196, 8_192) ) self.assertEqual(logits.shape , _UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.tensor( [[-3.2_4_3_7, 0.5_0_7_2, -1_3.9_1_7_4], [-3.2_4_5_6, 0.4_9_4_8, -1_3.9_4_0_1], [-3.2_0_3_3, 0.5_1_2_1, -1_3.8_5_5_0]] ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , _UpperCamelCase , atol=1e-2 ) ) @slow def __snake_case( self : List[Any] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = BeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ).to(_UpperCamelCase ) SCREAMING_SNAKE_CASE = self.default_image_processor SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=_UpperCamelCase , return_tensors="pt" ).to(_UpperCamelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = outputs.logits # verify the logits SCREAMING_SNAKE_CASE = torch.Size((1, 1_000) ) self.assertEqual(logits.shape , _UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.tensor([-1.2_3_8_5, -1.0_9_8_7, -1.0_1_0_8] ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(logits[0, :3] , _UpperCamelCase , atol=1e-4 ) ) SCREAMING_SNAKE_CASE = 281 self.assertEqual(logits.argmax(-1 ).item() , _UpperCamelCase ) @slow def __snake_case( self : Any ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = BeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ).to( _UpperCamelCase ) SCREAMING_SNAKE_CASE = self.default_image_processor SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=_UpperCamelCase , return_tensors="pt" ).to(_UpperCamelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = outputs.logits # verify the logits SCREAMING_SNAKE_CASE = torch.Size((1, 21_841) ) self.assertEqual(logits.shape , _UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.tensor([1.6_8_8_1, -0.2_7_8_7, 0.5_9_0_1] ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(logits[0, :3] , _UpperCamelCase , atol=1e-4 ) ) SCREAMING_SNAKE_CASE = 2_396 self.assertEqual(logits.argmax(-1 ).item() , _UpperCamelCase ) @slow def __snake_case( self : List[str] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) SCREAMING_SNAKE_CASE = model.to(_UpperCamelCase ) SCREAMING_SNAKE_CASE = BeitImageProcessor(do_resize=_UpperCamelCase , size=640 , do_center_crop=_UpperCamelCase ) SCREAMING_SNAKE_CASE = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) SCREAMING_SNAKE_CASE = Image.open(ds[0]["file"] ) SCREAMING_SNAKE_CASE = image_processor(images=_UpperCamelCase , return_tensors="pt" ).to(_UpperCamelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = outputs.logits # verify the logits SCREAMING_SNAKE_CASE = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , _UpperCamelCase ) SCREAMING_SNAKE_CASE = version.parse(PIL.__version__ ) < version.parse("9.0.0" ) if is_pillow_less_than_a: SCREAMING_SNAKE_CASE = torch.tensor( [ [[-4.9_2_2_5, -2.3_9_5_4, -3.0_5_2_2], [-2.8_8_2_2, -1.0_0_4_6, -1.7_5_6_1], [-2.9_5_4_9, -1.3_2_2_8, -2.1_3_4_7]], [[-5.8_1_6_8, -3.4_1_2_9, -4.0_7_7_8], [-3.8_6_5_1, -2.2_2_1_4, -3.0_2_7_7], [-3.8_3_5_6, -2.4_6_4_3, -3.3_5_3_5]], [[-0.0_0_7_8, 3.9_9_5_2, 4.0_7_5_4], [2.9_8_5_6, 4.6_9_4_4, 5.0_0_3_5], [3.2_4_1_3, 4.7_8_1_3, 4.9_9_6_9]], ] , device=_UpperCamelCase , ) else: SCREAMING_SNAKE_CASE = torch.tensor( [ [[-4.8_9_6_0, -2.3_6_8_8, -3.0_3_5_5], [-2.8_4_7_8, -0.9_8_3_6, -1.7_4_1_8], [-2.9_4_4_9, -1.3_3_3_2, -2.1_4_5_6]], [[-5.8_0_8_1, -3.4_1_2_4, -4.1_0_0_6], [-3.8_5_6_1, -2.2_0_8_1, -3.0_3_2_3], [-3.8_3_6_5, -2.4_6_0_1, -3.3_6_6_9]], [[-0.0_3_0_9, 3.9_8_6_8, 4.0_5_4_0], [2.9_6_4_0, 4.6_8_7_7, 4.9_9_7_6], [3.2_0_8_1, 4.7_6_9_0, 4.9_9_4_2]], ] , device=_UpperCamelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _UpperCamelCase , atol=1e-4 ) ) @slow def __snake_case( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) SCREAMING_SNAKE_CASE = model.to(_UpperCamelCase ) SCREAMING_SNAKE_CASE = BeitImageProcessor(do_resize=_UpperCamelCase , size=640 , do_center_crop=_UpperCamelCase ) SCREAMING_SNAKE_CASE = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) SCREAMING_SNAKE_CASE = Image.open(ds[0]["file"] ) SCREAMING_SNAKE_CASE = image_processor(images=_UpperCamelCase , return_tensors="pt" ).to(_UpperCamelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = outputs.logits.detach().cpu() SCREAMING_SNAKE_CASE = image_processor.post_process_semantic_segmentation(outputs=_UpperCamelCase , target_sizes=[(500, 300)] ) SCREAMING_SNAKE_CASE = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , _UpperCamelCase ) SCREAMING_SNAKE_CASE = image_processor.post_process_semantic_segmentation(outputs=_UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , _UpperCamelCase )
647
from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar _lowerCamelCase : Optional[Any] = TypeVar('''T''') class lowercase ( Generic[T] ): def __init__( self : Any , _UpperCamelCase : T ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = data SCREAMING_SNAKE_CASE = None def __str__( self : Union[str, Any] ) -> str: '''simple docstring''' return F"{self.data}" class lowercase ( Generic[T] ): def __init__( self : Optional[int] ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE = None def __iter__( self : str ) -> Iterator[T]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.top while node: yield node.data SCREAMING_SNAKE_CASE = node.next def __str__( self : int ) -> str: '''simple docstring''' return "->".join([str(_UpperCamelCase ) for item in self] ) def __len__( self : Tuple ) -> int: '''simple docstring''' return len(tuple(iter(self ) ) ) def __snake_case( self : Union[str, Any] ) -> bool: '''simple docstring''' return self.top is None def __snake_case( self : str , _UpperCamelCase : T ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE = Node(_UpperCamelCase ) if not self.is_empty(): SCREAMING_SNAKE_CASE = self.top SCREAMING_SNAKE_CASE = node def __snake_case( self : Union[str, Any] ) -> T: '''simple docstring''' if self.is_empty(): raise IndexError("pop from empty stack" ) assert isinstance(self.top , _UpperCamelCase ) SCREAMING_SNAKE_CASE = self.top SCREAMING_SNAKE_CASE = self.top.next return pop_node.data def __snake_case( self : Union[str, Any] ) -> T: '''simple docstring''' if self.is_empty(): raise IndexError("peek from empty stack" ) assert self.top is not None return self.top.data def __snake_case( self : Dict ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE = None if __name__ == "__main__": from doctest import testmod testmod()
647
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowerCamelCase : Tuple = { '''configuration_mvp''': ['''MVP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MvpConfig''', '''MvpOnnxConfig'''], '''tokenization_mvp''': ['''MvpTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[str] = ['''MvpTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Union[str, Any] = [ '''MVP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MvpForCausalLM''', '''MvpForConditionalGeneration''', '''MvpForQuestionAnswering''', '''MvpForSequenceClassification''', '''MvpModel''', '''MvpPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys _lowerCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
647
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys _lowerCamelCase : List[Any] = '''3''' print('''Python version:''', sys.version) print('''OS platform:''', platform.platform()) print('''OS architecture:''', platform.machine()) try: import torch print('''Torch version:''', torch.__version__) print('''Cuda available:''', torch.cuda.is_available()) print('''Cuda version:''', torch.version.cuda) print('''CuDNN version:''', torch.backends.cudnn.version()) print('''Number of GPUs available:''', torch.cuda.device_count()) except ImportError: print('''Torch version:''', None) try: import transformers print('''transformers version:''', transformers.__version__) except ImportError: print('''transformers version:''', None)
647
1