code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" from string import ascii_lowercase, ascii_uppercase def a_ ( _lowerCAmelCase : List[str] ): '''simple docstring''' if not sentence: return "" lowercase__ : List[str] = dict(zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) return lower_to_upper.get(sentence[0] , sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
704
"""simple docstring""" import math def a_ ( _lowerCAmelCase : int = 100 ): '''simple docstring''' lowercase__ : Union[str, Any] = sum(i * i for i in range(1 , n + 1 ) ) lowercase__ : str = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f'''{solution() = }''')
645
0
"""simple docstring""" from __future__ import annotations import pandas as pd def a_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple ): '''simple docstring''' lowercase__ : Dict = [0] * no_of_processes lowercase__ : str = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(_lowerCAmelCase ): lowercase__ : Optional[int] = burst_time[i] lowercase__ : Any = 0 lowercase__ : int = 0 lowercase__ : Any = 9_9999_9999 lowercase__ : Optional[Any] = 0 lowercase__ : Tuple = False # Process until all processes are completed while complete != no_of_processes: for j in range(_lowerCAmelCase ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: lowercase__ : Dict = remaining_time[j] lowercase__ : List[Any] = j lowercase__ : Any = True if not check: increment_time += 1 continue remaining_time[short] -= 1 lowercase__ : Optional[Any] = remaining_time[short] if minm == 0: lowercase__ : Dict = 9_9999_9999 if remaining_time[short] == 0: complete += 1 lowercase__ : Union[str, Any] = False # Find finish time of current process lowercase__ : int = increment_time + 1 # Calculate waiting time lowercase__ : Dict = finish_time - arrival_time[short] lowercase__ : str = finar - burst_time[short] if waiting_time[short] < 0: lowercase__ : Tuple = 0 # Increment time increment_time += 1 return waiting_time def a_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any ): '''simple docstring''' lowercase__ : Optional[int] = [0] * no_of_processes for i in range(_lowerCAmelCase ): lowercase__ : Union[str, Any] = burst_time[i] + waiting_time[i] return turn_around_time def a_ ( _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[int] ): '''simple docstring''' lowercase__ : List[str] = 0 lowercase__ : Optional[Any] = 0 for i in range(_lowerCAmelCase ): lowercase__ : Optional[Any] = total_waiting_time + waiting_time[i] lowercase__ : Tuple = total_turn_around_time + turn_around_time[i] print(f"""Average waiting time = {total_waiting_time / no_of_processes:.5f}""" ) print('Average turn around time =' , total_turn_around_time / no_of_processes ) if __name__ == "__main__": print("Enter how many process you want to analyze") _UpperCamelCase : Tuple = int(input()) _UpperCamelCase : Tuple = [0] * no_of_processes _UpperCamelCase : Optional[int] = [0] * no_of_processes _UpperCamelCase : int = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print("Enter the arrival time and burst time for process:--" + str(i + 1)) _UpperCamelCase : Optional[int] = map(int, input().split()) _UpperCamelCase : str = calculate_waitingtime(arrival_time, burst_time, no_of_processes) _UpperCamelCase : Any = burst_time _UpperCamelCase : Dict = no_of_processes _UpperCamelCase : Tuple = waiting_time _UpperCamelCase : str = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) _UpperCamelCase : Dict = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ "Process", "BurstTime", "ArrivalTime", "WaitingTime", "TurnAroundTime", ], ) # Printing the dataFrame pd.set_option("display.max_rows", fcfs.shape[0] + 1) print(fcfs)
705
"""simple docstring""" import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class UpperCAmelCase_ ( unittest.TestCase): def _UpperCAmelCase ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() def _UpperCAmelCase ( self ) -> Tuple: lowercase__ , lowercase__ : str = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-canny' , from_pt=a , dtype=jnp.bfloataa ) lowercase__ , lowercase__ : List[str] = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , controlnet=a , from_pt=a , dtype=jnp.bfloataa ) lowercase__ : List[Any] = controlnet_params lowercase__ : int = 'bird' lowercase__ : List[Any] = jax.device_count() lowercase__ : Dict = pipe.prepare_text_inputs([prompts] * num_samples ) lowercase__ : Union[str, Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png' ) lowercase__ : Optional[int] = pipe.prepare_image_inputs([canny_image] * num_samples ) lowercase__ : List[Any] = jax.random.PRNGKey(0 ) lowercase__ : Tuple = jax.random.split(a , jax.device_count() ) lowercase__ : str = replicate(a ) lowercase__ : List[str] = shard(a ) lowercase__ : Dict = shard(a ) lowercase__ : List[Any] = pipe( prompt_ids=a , image=a , params=a , prng_seed=a , num_inference_steps=5_0 , jit=a , ).images assert images.shape == (jax.device_count(), 1, 7_6_8, 5_1_2, 3) lowercase__ : Any = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowercase__ : Tuple = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] lowercase__ : int = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowercase__ : Optional[Any] = jnp.array( [0.167_969, 0.116_699, 0.081_543, 0.154_297, 0.132_812, 0.108_887, 0.169_922, 0.169_922, 0.205_078] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def _UpperCAmelCase ( self ) -> List[str]: lowercase__ , lowercase__ : int = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-openpose' , from_pt=a , dtype=jnp.bfloataa ) lowercase__ , lowercase__ : Optional[Any] = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , controlnet=a , from_pt=a , dtype=jnp.bfloataa ) lowercase__ : Optional[Any] = controlnet_params lowercase__ : List[Any] = 'Chef in the kitchen' lowercase__ : List[str] = jax.device_count() lowercase__ : Dict = pipe.prepare_text_inputs([prompts] * num_samples ) lowercase__ : Optional[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png' ) lowercase__ : Optional[int] = pipe.prepare_image_inputs([pose_image] * num_samples ) lowercase__ : List[str] = jax.random.PRNGKey(0 ) lowercase__ : str = jax.random.split(a , jax.device_count() ) lowercase__ : Optional[Any] = replicate(a ) lowercase__ : Optional[Any] = shard(a ) lowercase__ : List[Any] = shard(a ) lowercase__ : List[Any] = pipe( prompt_ids=a , image=a , params=a , prng_seed=a , num_inference_steps=5_0 , jit=a , ).images assert images.shape == (jax.device_count(), 1, 7_6_8, 5_1_2, 3) lowercase__ : Union[str, Any] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowercase__ : List[str] = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] lowercase__ : Optional[int] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowercase__ : str = jnp.array( [[0.271_484, 0.261_719, 0.275_391, 0.277_344, 0.279_297, 0.291_016, 0.294_922, 0.302_734, 0.302_734]] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
645
0
"""simple docstring""" from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class UpperCAmelCase_ ( __lowercase): def _UpperCAmelCase ( self ) -> Dict: return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : List[str] = {"col_1": [3, 2, 1, 0], "col_2": ["a", "b", "c", "d"]} return Dataset.from_dict(a ) def _UpperCAmelCase ( self ) -> int: lowercase__ : List[str] = self._create_example_records() lowercase__ : Optional[int] = Dataset.from_list(a ) self.assertListEqual(dset.column_names , ['col_1', 'col_2'] ) for i, r in enumerate(a ): self.assertDictEqual(a , example_records[i] ) def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ : Optional[int] = self._create_example_records() lowercase__ : Dict = Dataset.from_list(a ) lowercase__ : Optional[int] = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def _UpperCAmelCase ( self ) -> Optional[int]: # checks what happens with missing columns lowercase__ : List[Any] = [{"col_1": 1}, {"col_2": "x"}] lowercase__ : int = Dataset.from_list(a ) self.assertDictEqual(dset[0] , {'col_1': 1} ) self.assertDictEqual(dset[1] , {'col_1': None} ) # NB: first record is used for columns def _UpperCAmelCase ( self ) -> Tuple: # checks if the type can be inferred from the second record lowercase__ : int = [{"col_1": []}, {"col_1": [1, 2]}] lowercase__ : Any = Dataset.from_list(a ) self.assertEqual(dset.info.features['col_1'] , Sequence(Value('int64' ) ) ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : Optional[Any] = Dataset.from_list([] ) self.assertEqual(len(a ) , 0 ) self.assertListEqual(dset.column_names , [] )
706
"""simple docstring""" from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
645
0
"""simple docstring""" import functools def a_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : list[int] ): '''simple docstring''' if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or not all(isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(_SCREAMING_SNAKE_CASE ) != 3 or not all(isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(_SCREAMING_SNAKE_CASE ) == 0: return 0 if min(_SCREAMING_SNAKE_CASE ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(_SCREAMING_SNAKE_CASE ) >= 366: raise ValueError('All days elements should be less than 366' ) lowercase__ : List[Any] = set(_SCREAMING_SNAKE_CASE ) @functools.cache def dynamic_programming(_lowerCAmelCase : int ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
707
"""simple docstring""" import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase): @slow def _UpperCAmelCase ( self ) -> str: lowercase__ : Optional[Any] = AutoImageProcessor.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' ) lowercase__ : Union[str, Any] = AutoModelForImageClassification.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' ) model.to(a ) from datasets import load_dataset lowercase__ : str = load_dataset('nielsr/rvlcdip-demo' ) lowercase__ : Tuple = dataset['train'][0]['image'].convert('RGB' ) lowercase__ : int = image_processor(a , return_tensors='pt' ).to(a ) # forward pass with torch.no_grad(): lowercase__ : List[str] = model(**a ) lowercase__ : List[Any] = outputs.logits lowercase__ : Union[str, Any] = torch.Size((1, 1_6) ) self.assertEqual(logits.shape , a ) lowercase__ : Tuple = torch.tensor( [-0.4_158, -0.4_092, -0.4_347] , device=a , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , a , atol=1e-4 ) )
645
0
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. _UpperCamelCase : Any = {"LayoutLMv2Config", "LayoutLMv3Config"} @is_pipeline_test class UpperCAmelCase_ ( unittest.TestCase): lowerCamelCase__ : List[Any] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING lowerCamelCase__ : Union[str, Any] = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: lowerCamelCase__ : Dict = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: lowerCamelCase__ : List[str] = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def _UpperCAmelCase ( self ) -> Any: lowercase__ : Optional[Any] = pipeline( task='text-classification' , model='hf-internal-testing/tiny-random-distilbert' , framework='pt' ) lowercase__ : Tuple = text_classifier('This is great !' ) self.assertEqual(nested_simplify(a ) , [{'label': 'LABEL_0', 'score': 0.504}] ) lowercase__ : int = text_classifier('This is great !' , top_k=2 ) self.assertEqual( nested_simplify(a ) , [{'label': 'LABEL_0', 'score': 0.504}, {'label': 'LABEL_1', 'score': 0.496}] ) lowercase__ : List[str] = text_classifier(['This is great !', 'This is bad'] , top_k=2 ) self.assertEqual( nested_simplify(a ) , [ [{'label': 'LABEL_0', 'score': 0.504}, {'label': 'LABEL_1', 'score': 0.496}], [{'label': 'LABEL_0', 'score': 0.504}, {'label': 'LABEL_1', 'score': 0.496}], ] , ) lowercase__ : int = text_classifier('This is great !' , top_k=1 ) self.assertEqual(nested_simplify(a ) , [{'label': 'LABEL_0', 'score': 0.504}] ) # Legacy behavior lowercase__ : Optional[Any] = text_classifier('This is great !' , return_all_scores=a ) self.assertEqual(nested_simplify(a ) , [{'label': 'LABEL_0', 'score': 0.504}] ) lowercase__ : List[str] = text_classifier('This is great !' , return_all_scores=a ) self.assertEqual( nested_simplify(a ) , [[{'label': 'LABEL_0', 'score': 0.504}, {'label': 'LABEL_1', 'score': 0.496}]] ) lowercase__ : Union[str, Any] = text_classifier(['This is great !', 'Something else'] , return_all_scores=a ) self.assertEqual( nested_simplify(a ) , [ [{'label': 'LABEL_0', 'score': 0.504}, {'label': 'LABEL_1', 'score': 0.496}], [{'label': 'LABEL_0', 'score': 0.504}, {'label': 'LABEL_1', 'score': 0.496}], ] , ) lowercase__ : List[str] = text_classifier(['This is great !', 'Something else'] , return_all_scores=a ) self.assertEqual( nested_simplify(a ) , [ {'label': 'LABEL_0', 'score': 0.504}, {'label': 'LABEL_0', 'score': 0.504}, ] , ) @require_torch def _UpperCAmelCase ( self ) -> Optional[Any]: import torch lowercase__ : Tuple = pipeline( task='text-classification' , model='hf-internal-testing/tiny-random-distilbert' , framework='pt' , device=torch.device('cpu' ) , ) lowercase__ : str = text_classifier('This is great !' ) self.assertEqual(nested_simplify(a ) , [{'label': 'LABEL_0', 'score': 0.504}] ) @require_tf def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : Any = pipeline( task='text-classification' , model='hf-internal-testing/tiny-random-distilbert' , framework='tf' ) lowercase__ : Tuple = text_classifier('This is great !' ) self.assertEqual(nested_simplify(a ) , [{'label': 'LABEL_0', 'score': 0.504}] ) @slow @require_torch def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ : str = pipeline('text-classification' ) lowercase__ : str = text_classifier('This is great !' ) self.assertEqual(nested_simplify(a ) , [{'label': 'POSITIVE', 'score': 1.0}] ) lowercase__ : Tuple = text_classifier('This is bad !' ) self.assertEqual(nested_simplify(a ) , [{'label': 'NEGATIVE', 'score': 1.0}] ) lowercase__ : Optional[int] = text_classifier('Birds are a type of animal' ) self.assertEqual(nested_simplify(a ) , [{'label': 'POSITIVE', 'score': 0.988}] ) @slow @require_tf def _UpperCAmelCase ( self ) -> str: lowercase__ : Optional[Any] = pipeline('text-classification' , framework='tf' ) lowercase__ : str = text_classifier('This is great !' ) self.assertEqual(nested_simplify(a ) , [{'label': 'POSITIVE', 'score': 1.0}] ) lowercase__ : Dict = text_classifier('This is bad !' ) self.assertEqual(nested_simplify(a ) , [{'label': 'NEGATIVE', 'score': 1.0}] ) lowercase__ : str = text_classifier('Birds are a type of animal' ) self.assertEqual(nested_simplify(a ) , [{'label': 'POSITIVE', 'score': 0.988}] ) def _UpperCAmelCase ( self , a , a , a ) -> Tuple: lowercase__ : List[str] = TextClassificationPipeline(model=a , tokenizer=a ) return text_classifier, ["HuggingFace is in", "This is another test"] def _UpperCAmelCase ( self , a , a ) -> Dict: lowercase__ : Dict = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 lowercase__ : int = """HuggingFace is in""" lowercase__ : Optional[Any] = text_classifier(a ) self.assertEqual(nested_simplify(a ) , [{'label': ANY(a ), 'score': ANY(a )}] ) self.assertTrue(outputs[0]['label'] in model.config.idalabel.values() ) lowercase__ : List[Any] = ["""HuggingFace is in """, """Paris is in France"""] lowercase__ : Dict = text_classifier(a ) self.assertEqual( nested_simplify(a ) , [{'label': ANY(a ), 'score': ANY(a )}, {'label': ANY(a ), 'score': ANY(a )}] , ) self.assertTrue(outputs[0]['label'] in model.config.idalabel.values() ) self.assertTrue(outputs[1]['label'] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format lowercase__ : Any = text_classifier(a , top_k=a ) lowercase__ : Dict = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(a ) , [[{'label': ANY(a ), 'score': ANY(a )}] * N, [{'label': ANY(a ), 'score': ANY(a )}] * N] , ) lowercase__ : Tuple = {"""text""": """HuggingFace is in """, """text_pair""": """Paris is in France"""} lowercase__ : Dict = text_classifier(a ) self.assertEqual( nested_simplify(a ) , {'label': ANY(a ), 'score': ANY(a )} , ) self.assertTrue(outputs['label'] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. lowercase__ : Union[str, Any] = [["""HuggingFace is in """, """Paris is in France"""]] with self.assertRaises(a ): text_classifier(a ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility lowercase__ : Any = text_classifier([[['HuggingFace is in ', 'Paris is in France']]] ) self.assertEqual( nested_simplify(a ) , [{'label': ANY(a ), 'score': ANY(a )}] , ) self.assertTrue(outputs[0]['label'] in model.config.idalabel.values() )
708
"""simple docstring""" import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class UpperCAmelCase_ : @staticmethod def _UpperCAmelCase ( *a , **a ) -> int: pass def a_ ( _lowerCAmelCase : Image ): '''simple docstring''' lowercase__ : List[str] = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class UpperCAmelCase_ ( unittest.TestCase): lowerCamelCase__ : Union[str, Any] = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def _UpperCAmelCase ( self , a , a , a ) -> Dict: lowercase__ : Union[str, Any] = DepthEstimationPipeline(model=a , image_processor=a ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def _UpperCAmelCase ( self , a , a ) -> Optional[int]: lowercase__ : Tuple = depth_estimator('./tests/fixtures/tests_samples/COCO/000000039769.png' ) self.assertEqual({'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )} , a ) import datasets lowercase__ : Tuple = datasets.load_dataset('hf-internal-testing/fixtures_image_utils' , 'image' , split='test' ) lowercase__ : List[Any] = depth_estimator( [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] ) self.assertEqual( [ {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, ] , a , ) @require_tf @unittest.skip('Depth estimation is not implemented in TF' ) def _UpperCAmelCase ( self ) -> Optional[int]: pass @slow @require_torch def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Tuple = 'Intel/dpt-large' lowercase__ : Optional[int] = pipeline('depth-estimation' , model=a ) lowercase__ : List[Any] = depth_estimator('http://images.cocodataset.org/val2017/000000039769.jpg' ) lowercase__ : Optional[Any] = hashimage(outputs['depth'] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['predicted_depth'].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs['predicted_depth'].min().item() ) , 2.662 ) @require_torch def _UpperCAmelCase ( self ) -> Optional[int]: # This is highly irregular to have no small tests. self.skipTest('There is not hf-internal-testing tiny model for either GLPN nor DPT' )
645
0
"""simple docstring""" import sys import turtle def a_ ( _lowerCAmelCase : tuple[float, float] , _lowerCAmelCase : tuple[float, float] ) -> int: '''simple docstring''' return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def a_ ( _lowerCAmelCase : tuple[float, float] , _lowerCAmelCase : tuple[float, float] , _lowerCAmelCase : tuple[float, float] , _lowerCAmelCase : int , ) -> Tuple: '''simple docstring''' my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(lowerCAmelCase__ , get_mid(lowerCAmelCase__ , lowerCAmelCase__ ) , get_mid(lowerCAmelCase__ , lowerCAmelCase__ ) , depth - 1 ) triangle(lowerCAmelCase__ , get_mid(lowerCAmelCase__ , lowerCAmelCase__ ) , get_mid(lowerCAmelCase__ , lowerCAmelCase__ ) , depth - 1 ) triangle(lowerCAmelCase__ , get_mid(lowerCAmelCase__ , lowerCAmelCase__ ) , get_mid(lowerCAmelCase__ , lowerCAmelCase__ ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( "Correct format for using this script: " "python fractals.py <int:depth_for_fractal>" ) _UpperCamelCase : Optional[int] = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor("red") _UpperCamelCase : Union[str, Any] = [(-1_75, -1_25), (0, 1_75), (1_75, -1_25)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
709
"""simple docstring""" import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class UpperCAmelCase_ ( _a): def __init__( self ) -> Any: lowercase__ : Tuple = [] def _UpperCAmelCase ( self , a , a , a , **a ) -> Any: self.events.append('on_init_end' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Optional[int]: self.events.append('on_train_begin' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> List[str]: self.events.append('on_train_end' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> int: self.events.append('on_epoch_begin' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Optional[Any]: self.events.append('on_epoch_end' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> int: self.events.append('on_step_begin' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> str: self.events.append('on_step_end' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> int: self.events.append('on_evaluate' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Tuple: self.events.append('on_predict' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Union[str, Any]: self.events.append('on_save' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> List[str]: self.events.append('on_log' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Any: self.events.append('on_prediction_step' ) @require_torch class UpperCAmelCase_ ( unittest.TestCase): def _UpperCAmelCase ( self ) -> str: lowercase__ : str = tempfile.mkdtemp() def _UpperCAmelCase ( self ) -> Dict: shutil.rmtree(self.output_dir ) def _UpperCAmelCase ( self , a=0 , a=0 , a=6_4 , a=6_4 , a=None , a=False , **a ) -> int: # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. lowercase__ : str = RegressionDataset(length=a ) lowercase__ : Any = RegressionDataset(length=a ) lowercase__ : Optional[Any] = RegressionModelConfig(a=a , b=a ) lowercase__ : Union[str, Any] = RegressionPreTrainedModel(a ) lowercase__ : Tuple = TrainingArguments(self.output_dir , disable_tqdm=a , report_to=[] , **a ) return Trainer( a , a , train_dataset=a , eval_dataset=a , callbacks=a , ) def _UpperCAmelCase ( self , a , a ) -> Union[str, Any]: self.assertEqual(len(a ) , len(a ) ) # Order doesn't matter lowercase__ : Optional[int] = sorted(a , key=lambda a : cb.__name__ if isinstance(a , a ) else cb.__class__.__name__ ) lowercase__ : Tuple = sorted(a , key=lambda a : cb.__name__ if isinstance(a , a ) else cb.__class__.__name__ ) for cba, cba in zip(a , a ): if isinstance(a , a ) and isinstance(a , a ): self.assertEqual(a , a ) elif isinstance(a , a ) and not isinstance(a , a ): self.assertEqual(a , cba.__class__ ) elif not isinstance(a , a ) and isinstance(a , a ): self.assertEqual(cba.__class__ , a ) else: self.assertEqual(a , a ) def _UpperCAmelCase ( self , a ) -> Optional[Any]: lowercase__ : Dict = ['on_init_end', 'on_train_begin'] lowercase__ : List[Any] = 0 lowercase__ : Optional[int] = len(trainer.get_eval_dataloader() ) lowercase__ : Tuple = ['on_prediction_step'] * len(trainer.get_eval_dataloader() ) + ['on_log', 'on_evaluate'] for _ in range(trainer.state.num_train_epochs ): expected_events.append('on_epoch_begin' ) for _ in range(a ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append('on_log' ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append('on_save' ) expected_events.append('on_epoch_end' ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : int = self.get_trainer() lowercase__ : str = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) # Callbacks passed at init are added to the default callbacks lowercase__ : str = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback lowercase__ : List[Any] = self.get_trainer(disable_tqdm=a ) lowercase__ : Optional[Any] = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) def _UpperCAmelCase ( self ) -> Any: lowercase__ : int = DEFAULT_CALLBACKS.copy() + [ProgressCallback] lowercase__ : List[str] = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(a ) expected_callbacks.remove(a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) lowercase__ : Optional[Any] = self.get_trainer() lowercase__ : List[Any] = trainer.pop_callback(a ) self.assertEqual(cb.__class__ , a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) trainer.add_callback(a ) expected_callbacks.insert(0 , a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) # We can also add, pop, or remove by instance lowercase__ : int = self.get_trainer() lowercase__ : List[str] = trainer.callback_handler.callbacks[0] trainer.remove_callback(a ) expected_callbacks.remove(a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) lowercase__ : Tuple = self.get_trainer() lowercase__ : Dict = trainer.callback_handler.callbacks[0] lowercase__ : Union[str, Any] = trainer.pop_callback(a ) self.assertEqual(a , a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) trainer.add_callback(a ) expected_callbacks.insert(0 , a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) def _UpperCAmelCase ( self ) -> Tuple: import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action='ignore' , category=a ) lowercase__ : Optional[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() lowercase__ : Any = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) # Independent log/save/eval lowercase__ : List[str] = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() lowercase__ : int = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) lowercase__ : Union[str, Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() lowercase__ : Union[str, Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) lowercase__ : List[str] = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy='steps' ) trainer.train() lowercase__ : Optional[int] = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) lowercase__ : int = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy='epoch' ) trainer.train() lowercase__ : str = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) # A bit of everything lowercase__ : Any = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=1_0 , eval_steps=5 , evaluation_strategy='steps' , ) trainer.train() lowercase__ : Any = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) # warning should be emitted for duplicated callbacks with patch('transformers.trainer_callback.logger.warning' ) as warn_mock: lowercase__ : str = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(a ) in warn_mock.call_args[0][0]
645
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCamelCase : Optional[int] ={ "configuration_swinv2": ["SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Swinv2Config"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : List[Any] =[ "SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST", "Swinv2ForImageClassification", "Swinv2ForMaskedImageModeling", "Swinv2Model", "Swinv2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys _UpperCamelCase : Union[str, Any] =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
710
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _UpperCamelCase : str = { "configuration_gpt_neo": ["GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoConfig", "GPTNeoOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Tuple = [ "GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoForCausalLM", "GPTNeoForQuestionAnswering", "GPTNeoForSequenceClassification", "GPTNeoForTokenClassification", "GPTNeoModel", "GPTNeoPreTrainedModel", "load_tf_weights_in_gpt_neo", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Dict = [ "FlaxGPTNeoForCausalLM", "FlaxGPTNeoModel", "FlaxGPTNeoPreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys _UpperCamelCase : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
645
0
"""simple docstring""" def a_ ( _lowerCAmelCase : int = 1000 ): '''simple docstring''' lowercase__ : int = 3 lowercase__ : Any = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(f'''{solution() = }''')
711
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class UpperCAmelCase_ ( unittest.TestCase): def _UpperCAmelCase ( self , a ) -> str: for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss'] ): lowercase__ : str = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(a ) def _UpperCAmelCase ( self ) -> int: lowercase__ : Dict = 'sshleifer/tiny-gpt2' lowercase__ : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=a , multi_process=a , ) lowercase__ : str = TensorFlowBenchmark(a ) lowercase__ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> int: lowercase__ : List[str] = 'sgugger/tiny-distilbert-classification' lowercase__ : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , only_pretrain_model=a , ) lowercase__ : Optional[Any] = TensorFlowBenchmark(a ) lowercase__ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : Optional[int] = 'sshleifer/tiny-gpt2' lowercase__ : Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , ) lowercase__ : Optional[Any] = TensorFlowBenchmark(a ) lowercase__ : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : Any = 'sshleifer/tiny-gpt2' lowercase__ : List[Any] = AutoConfig.from_pretrained(a ) lowercase__ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=a , multi_process=a , ) lowercase__ : Tuple = TensorFlowBenchmark(a , [config] ) lowercase__ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> int: lowercase__ : Optional[Any] = 'sshleifer/tiny-gpt2' lowercase__ : List[str] = AutoConfig.from_pretrained(a ) lowercase__ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , ) lowercase__ : List[str] = TensorFlowBenchmark(a , [config] ) lowercase__ : Any = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Optional[Any] = 'sshleifer/tiny-gpt2' lowercase__ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , ) lowercase__ : Optional[Any] = TensorFlowBenchmark(a ) lowercase__ : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _UpperCAmelCase ( self ) -> str: lowercase__ : Optional[Any] = 'sshleifer/tiny-gpt2' lowercase__ : Optional[int] = AutoConfig.from_pretrained(a ) lowercase__ : str = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , ) lowercase__ : str = TensorFlowBenchmark(a , [config] ) lowercase__ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : List[str] = 'patrickvonplaten/t5-tiny-random' lowercase__ : Any = AutoConfig.from_pretrained(a ) lowercase__ : List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , ) lowercase__ : int = TensorFlowBenchmark(a , configs=[config] ) lowercase__ : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU' ) ) == 0 , 'Cannot do xla on CPU.' ) def _UpperCAmelCase ( self ) -> Any: lowercase__ : Any = 'sshleifer/tiny-gpt2' lowercase__ : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , use_xla=a , multi_process=a , ) lowercase__ : Any = TensorFlowBenchmark(a ) lowercase__ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Any = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ : List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=a , save_to_csv=a , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(a , 'inf_time.csv' ) , inference_memory_csv_file=os.path.join(a , 'inf_mem.csv' ) , env_info_csv_file=os.path.join(a , 'env.csv' ) , multi_process=a , ) lowercase__ : Union[str, Any] = TensorFlowBenchmark(a ) benchmark.run() self.assertTrue(Path(os.path.join(a , 'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(a , 'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(a , 'env.csv' ) ).exists() ) def _UpperCAmelCase ( self ) -> Dict: lowercase__ : Tuple = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(a ): self.assertTrue(hasattr(a , 'sequential' ) ) self.assertTrue(hasattr(a , 'cumulative' ) ) self.assertTrue(hasattr(a , 'current' ) ) self.assertTrue(hasattr(a , 'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=a , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(a , 'log.txt' ) , log_print=a , trace_memory_line_by_line=a , eager_mode=a , multi_process=a , ) lowercase__ : Optional[int] = TensorFlowBenchmark(a ) lowercase__ : Optional[Any] = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(a , 'log.txt' ) ).exists() )
645
0
"""simple docstring""" import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def a_ ( _lowerCAmelCase : Optional[int] ): '''simple docstring''' return (data["data"], data["target"]) def a_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict ): '''simple docstring''' lowercase__ : int = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(__lowerCAmelCase , __lowerCAmelCase ) # Predict target for test data lowercase__ : List[str] = xgb.predict(__lowerCAmelCase ) lowercase__ : List[Any] = predictions.reshape(len(__lowerCAmelCase ) , 1 ) return predictions def a_ ( ): '''simple docstring''' lowercase__ : str = fetch_california_housing() lowercase__ , lowercase__ : int = data_handling(__lowerCAmelCase ) lowercase__ , lowercase__ , lowercase__ , lowercase__ : Dict = train_test_split( __lowerCAmelCase , __lowerCAmelCase , test_size=0.2_5 , random_state=1 ) lowercase__ : Dict = xgboost(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Error printing print(f"""Mean Absolute Error : {mean_absolute_error(__lowerCAmelCase , __lowerCAmelCase )}""" ) print(f"""Mean Square Error : {mean_squared_error(__lowerCAmelCase , __lowerCAmelCase )}""" ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
712
"""simple docstring""" import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class UpperCAmelCase_ ( _a): def __init__( self , a , a=1_3 , a=7 , a=True , a=True , a=False , a=True , a=9_9 , a=3_2 , a=5 , a=4 , a=3_7 , a="gelu" , a=0.1 , a=0.1 , a=5_1_2 , a=1_6 , a=2 , a=0.02 , a=3 , a=4 , a=None , ) -> Any: lowercase__ : Tuple = parent lowercase__ : List[Any] = batch_size lowercase__ : List[Any] = seq_length lowercase__ : List[Any] = is_training lowercase__ : Optional[Any] = use_input_mask lowercase__ : Optional[int] = use_token_type_ids lowercase__ : int = use_labels lowercase__ : Tuple = vocab_size lowercase__ : int = hidden_size lowercase__ : Any = num_hidden_layers lowercase__ : List[str] = num_attention_heads lowercase__ : Optional[Any] = intermediate_size lowercase__ : Optional[Any] = hidden_act lowercase__ : List[str] = hidden_dropout_prob lowercase__ : List[Any] = attention_probs_dropout_prob lowercase__ : List[Any] = max_position_embeddings lowercase__ : List[str] = type_vocab_size lowercase__ : Tuple = type_sequence_label_size lowercase__ : List[Any] = initializer_range lowercase__ : str = num_labels lowercase__ : Tuple = num_choices lowercase__ : str = scope def _UpperCAmelCase ( self ) -> Any: lowercase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ : str = None if self.use_input_mask: lowercase__ : Any = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ : Dict = None lowercase__ : Optional[Any] = None lowercase__ : int = None if self.use_labels: lowercase__ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__ : Dict = ids_tensor([self.batch_size] , self.num_choices ) lowercase__ : List[Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCAmelCase ( self ) -> Optional[int]: return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> Dict: lowercase__ : Tuple = DistilBertModel(config=a ) model.to(a ) model.eval() lowercase__ : Any = model(a , a ) lowercase__ : str = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> Dict: lowercase__ : Optional[int] = DistilBertForMaskedLM(config=a ) model.to(a ) model.eval() lowercase__ : Union[str, Any] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> int: lowercase__ : Tuple = DistilBertForQuestionAnswering(config=a ) model.to(a ) model.eval() lowercase__ : Tuple = model( a , attention_mask=a , start_positions=a , end_positions=a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> List[str]: lowercase__ : int = self.num_labels lowercase__ : Dict = DistilBertForSequenceClassification(a ) model.to(a ) model.eval() lowercase__ : Optional[Any] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> Any: lowercase__ : Any = self.num_labels lowercase__ : List[str] = DistilBertForTokenClassification(config=a ) model.to(a ) model.eval() lowercase__ : Any = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> Tuple: lowercase__ : List[Any] = self.num_choices lowercase__ : Any = DistilBertForMultipleChoice(config=a ) model.to(a ) model.eval() lowercase__ : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ : Optional[int] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ : int = model( a , attention_mask=a , labels=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _UpperCAmelCase ( self ) -> str: lowercase__ : Union[str, Any] = self.prepare_config_and_inputs() ((lowercase__) , (lowercase__) , (lowercase__) , (lowercase__) , (lowercase__) , (lowercase__)) : List[str] = config_and_inputs lowercase__ : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _a , _a , unittest.TestCase): lowerCamelCase__ : List[str] = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) lowerCamelCase__ : str = ( { "feature-extraction": DistilBertModel, "fill-mask": DistilBertForMaskedLM, "question-answering": DistilBertForQuestionAnswering, "text-classification": DistilBertForSequenceClassification, "token-classification": DistilBertForTokenClassification, "zero-shot": DistilBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ : Optional[int] = True lowerCamelCase__ : Any = True lowerCamelCase__ : List[Any] = True lowerCamelCase__ : Optional[Any] = True def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : str = DistilBertModelTester(self ) lowercase__ : int = ConfigTester(self , config_class=a , dim=3_7 ) def _UpperCAmelCase ( self ) -> Dict: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*a ) def _UpperCAmelCase ( self ) -> Any: lowercase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*a ) def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*a ) def _UpperCAmelCase ( self ) -> int: lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*a ) def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*a ) def _UpperCAmelCase ( self ) -> str: lowercase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*a ) @slow def _UpperCAmelCase ( self ) -> str: for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : str = DistilBertModel.from_pretrained(a ) self.assertIsNotNone(a ) @slow @require_torch_gpu def _UpperCAmelCase ( self ) -> Any: lowercase__ , lowercase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return lowercase__ : Optional[int] = True lowercase__ : Union[str, Any] = model_class(config=a ) lowercase__ : int = self._prepare_for_class(a , a ) lowercase__ : Tuple = torch.jit.trace( a , (inputs_dict['input_ids'].to('cpu' ), inputs_dict['attention_mask'].to('cpu' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a , os.path.join(a , 'traced_model.pt' ) ) lowercase__ : Optional[int] = torch.jit.load(os.path.join(a , 'traced_model.pt' ) , map_location=a ) loaded(inputs_dict['input_ids'].to(a ) , inputs_dict['attention_mask'].to(a ) ) @require_torch class UpperCAmelCase_ ( unittest.TestCase): @slow def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : int = DistilBertModel.from_pretrained('distilbert-base-uncased' ) lowercase__ : Union[str, Any] = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) lowercase__ : Optional[Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowercase__ : Optional[Any] = model(a , attention_mask=a )[0] lowercase__ : Tuple = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , a ) lowercase__ : List[Any] = torch.tensor( [[[-0.1_639, 0.3_299, 0.1_648], [-0.1_746, 0.3_289, 0.1_710], [-0.1_884, 0.3_357, 0.1_810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a , atol=1e-4 ) )
645
0
"""simple docstring""" from __future__ import annotations from collections.abc import Callable _UpperCamelCase : Union[str, Any] = list[list[float | int]] def a_ ( _lowerCAmelCase : Matrix , _lowerCAmelCase : Matrix ): '''simple docstring''' lowercase__ : int = len(a_ ) lowercase__ : Matrix = [[0 for _ in range(size + 1 )] for _ in range(a_ )] lowercase__ : int lowercase__ : int lowercase__ : int lowercase__ : int lowercase__ : int lowercase__ : float for row in range(a_ ): for col in range(a_ ): lowercase__ : Any = matrix[row][col] lowercase__ : Optional[Any] = vector[row][0] lowercase__ : int = 0 lowercase__ : int = 0 while row < size and col < size: # pivoting lowercase__ : int = max((abs(augmented[rowa][col] ), rowa) for rowa in range(a_ , a_ ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: lowercase__ : str = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , a_ ): lowercase__ : Tuple = augmented[rowa][col] / augmented[row][col] lowercase__ : Union[str, Any] = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , a_ ): for row in range(a_ ): lowercase__ : List[Any] = augmented[row][col] / augmented[col][col] for cola in range(a_ , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(a_ ) ] def a_ ( _lowerCAmelCase : list[int] ): '''simple docstring''' lowercase__ : int = len(a_ ) lowercase__ : Matrix = [[0 for _ in range(a_ )] for _ in range(a_ )] lowercase__ : Matrix = [[0] for _ in range(a_ )] lowercase__ : Matrix lowercase__ : int lowercase__ : int lowercase__ : int for x_val, y_val in enumerate(a_ ): for col in range(a_ ): lowercase__ : str = (x_val + 1) ** (size - col - 1) lowercase__ : Dict = y_val lowercase__ : Union[str, Any] = solve(a_ , a_ ) def interpolated_func(_lowerCAmelCase : int ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(a_ ) ) return interpolated_func def a_ ( _lowerCAmelCase : int ): '''simple docstring''' return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def a_ ( _lowerCAmelCase : Callable[[int], int] = question_function , _lowerCAmelCase : int = 10 ): '''simple docstring''' lowercase__ : list[int] = [func(a_ ) for x_val in range(1 , order + 1 )] lowercase__ : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] lowercase__ : int = 0 lowercase__ : Callable[[int], int] lowercase__ : int for poly in polynomials: lowercase__ : Tuple = 1 while func(a_ ) == poly(a_ ): x_val += 1 ret += poly(a_ ) return ret if __name__ == "__main__": print(f'''{solution() = }''')
713
"""simple docstring""" from __future__ import annotations def a_ ( _lowerCAmelCase : float , _lowerCAmelCase : float , _lowerCAmelCase : float , ): '''simple docstring''' if (stress, tangential_force, area).count(0 ) != 1: raise ValueError('You cannot supply more or less than 2 values' ) elif stress < 0: raise ValueError('Stress cannot be negative' ) elif tangential_force < 0: raise ValueError('Tangential Force cannot be negative' ) elif area < 0: raise ValueError('Area cannot be negative' ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
645
0
"""simple docstring""" from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class UpperCAmelCase_ : pass
714
"""simple docstring""" import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase_ : def __init__( self , a , a=1_3 , a=[3_0, 3_0] , a=2 , a=3 , a=True , a=True , a=3_2 , a=5 , a=4 , a=3_7 , a="gelu" , a=0.1 , a=0.1 , a=1_0 , a=0.02 , a=3 , a=None , a=8 , a=1_0 , ) -> Any: lowercase__ : List[str] = parent lowercase__ : Optional[Any] = batch_size lowercase__ : Optional[int] = image_size lowercase__ : List[Any] = patch_size lowercase__ : Optional[Any] = num_channels lowercase__ : str = is_training lowercase__ : Optional[Any] = use_labels lowercase__ : Optional[Any] = hidden_size lowercase__ : Dict = num_hidden_layers lowercase__ : Optional[Any] = num_attention_heads lowercase__ : Dict = intermediate_size lowercase__ : List[Any] = hidden_act lowercase__ : List[Any] = hidden_dropout_prob lowercase__ : Any = attention_probs_dropout_prob lowercase__ : Any = type_sequence_label_size lowercase__ : Dict = initializer_range lowercase__ : Union[str, Any] = num_labels lowercase__ : Tuple = scope lowercase__ : Tuple = n_targets lowercase__ : Optional[int] = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens lowercase__ : Optional[Any] = (image_size[1] // patch_size) * (image_size[0] // patch_size) lowercase__ : Tuple = num_patches + 1 + self.num_detection_tokens def _UpperCAmelCase ( self ) -> Any: lowercase__ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) lowercase__ : Tuple = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) lowercase__ : int = [] for i in range(self.batch_size ): lowercase__ : Optional[Any] = {} lowercase__ : Any = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=a ) lowercase__ : List[str] = torch.rand(self.n_targets , 4 , device=a ) labels.append(a ) lowercase__ : Tuple = self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self ) -> List[Any]: return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def _UpperCAmelCase ( self , a , a , a ) -> int: lowercase__ : List[str] = YolosModel(config=a ) model.to(a ) model.eval() lowercase__ : List[Any] = model(a ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def _UpperCAmelCase ( self , a , a , a ) -> Union[str, Any]: lowercase__ : str = YolosForObjectDetection(a ) model.to(a ) model.eval() lowercase__ : Dict = model(pixel_values=a ) lowercase__ : Tuple = model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) lowercase__ : str = model(pixel_values=a , labels=a ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : int = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Any = config_and_inputs lowercase__ : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _a , _a , unittest.TestCase): lowerCamelCase__ : Optional[int] = (YolosModel, YolosForObjectDetection) if is_torch_available() else () lowerCamelCase__ : List[str] = ( {"feature-extraction": YolosModel, "object-detection": YolosForObjectDetection} if is_torch_available() else {} ) lowerCamelCase__ : List[Any] = False lowerCamelCase__ : Dict = False lowerCamelCase__ : Tuple = False lowerCamelCase__ : Union[str, Any] = False def _UpperCAmelCase ( self , a , a , a=False ) -> Dict: lowercase__ : List[str] = super()._prepare_for_class(a , a , return_labels=a ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": lowercase__ : Optional[Any] = [] for i in range(self.model_tester.batch_size ): lowercase__ : Dict = {} lowercase__ : Dict = torch.ones( size=(self.model_tester.n_targets,) , device=a , dtype=torch.long ) lowercase__ : Optional[Any] = torch.ones( self.model_tester.n_targets , 4 , device=a , dtype=torch.float ) labels.append(a ) lowercase__ : Union[str, Any] = labels return inputs_dict def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : Dict = YolosModelTester(self ) lowercase__ : Optional[int] = ConfigTester(self , config_class=a , has_text_modality=a , hidden_size=3_7 ) def _UpperCAmelCase ( self ) -> str: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Optional[Any]: # YOLOS does not use inputs_embeds pass def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[str] = model_class(a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase__ : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a , nn.Linear ) ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : int = model_class(a ) lowercase__ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Tuple = [*signature.parameters.keys()] lowercase__ : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , a ) def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _UpperCAmelCase ( self ) -> Dict: lowercase__ , lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Dict = True # in YOLOS, the seq_len is different lowercase__ : Tuple = self.model_tester.expected_seq_len for model_class in self.all_model_classes: lowercase__ : Optional[int] = True lowercase__ : str = False lowercase__ : str = True lowercase__ : List[str] = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : Any = model(**self._prepare_for_class(a , a ) ) lowercase__ : str = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase__ : Optional[int] = True lowercase__ : List[Any] = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : Union[str, Any] = model(**self._prepare_for_class(a , a ) ) lowercase__ : List[str] = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowercase__ : Dict = len(a ) # Check attention is always last and order is fine lowercase__ : Any = True lowercase__ : int = True lowercase__ : int = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : Any = model(**self._prepare_for_class(a , a ) ) lowercase__ : Optional[Any] = 1 self.assertEqual(out_len + added_hidden_states , len(a ) ) lowercase__ : Tuple = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def _UpperCAmelCase ( self ) -> List[str]: def check_hidden_states_output(a , a , a ): lowercase__ : str = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : int = model(**self._prepare_for_class(a , a ) ) lowercase__ : int = outputs.hidden_states lowercase__ : Any = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(a ) , a ) # YOLOS has a different seq_length lowercase__ : Optional[int] = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowercase__ , lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Any = True check_hidden_states_output(a , a , a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : List[Any] = True check_hidden_states_output(a , a , a ) def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*a ) @slow def _UpperCAmelCase ( self ) -> Union[str, Any]: for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : int = YolosModel.from_pretrained(a ) self.assertIsNotNone(a ) def a_ ( ): '''simple docstring''' lowercase__ : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase): @cached_property def _UpperCAmelCase ( self ) -> Union[str, Any]: return AutoImageProcessor.from_pretrained('hustvl/yolos-small' ) if is_vision_available() else None @slow def _UpperCAmelCase ( self ) -> int: lowercase__ : Dict = YolosForObjectDetection.from_pretrained('hustvl/yolos-small' ).to(a ) lowercase__ : Tuple = self.default_image_processor lowercase__ : Optional[int] = prepare_img() lowercase__ : int = image_processor(images=a , return_tensors='pt' ).to(a ) # forward pass with torch.no_grad(): lowercase__ : int = model(inputs.pixel_values ) # verify outputs lowercase__ : Tuple = torch.Size((1, 1_0_0, 9_2) ) self.assertEqual(outputs.logits.shape , a ) lowercase__ : Any = torch.tensor( [[-24.0_248, -10.3_024, -14.8_290], [-42.0_392, -16.8_200, -27.4_334], [-27.2_743, -11.8_154, -18.7_148]] , device=a , ) lowercase__ : List[str] = torch.tensor( [[0.2_559, 0.5_455, 0.4_706], [0.2_989, 0.7_279, 0.1_875], [0.7_732, 0.4_017, 0.4_462]] , device=a ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , a , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , a , atol=1e-4 ) ) # verify postprocessing lowercase__ : Optional[Any] = image_processor.post_process_object_detection( a , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] lowercase__ : str = torch.tensor([0.9_994, 0.9_790, 0.9_964, 0.9_972, 0.9_861] ).to(a ) lowercase__ : Any = [7_5, 7_5, 1_7, 6_3, 1_7] lowercase__ : Optional[int] = torch.tensor([335.0_609, 79.3_848, 375.4_216, 187.2_495] ).to(a ) self.assertEqual(len(results['scores'] ) , 5 ) self.assertTrue(torch.allclose(results['scores'] , a , atol=1e-4 ) ) self.assertSequenceEqual(results['labels'].tolist() , a ) self.assertTrue(torch.allclose(results['boxes'][0, :] , a ) )
645
0
"""simple docstring""" import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html _UpperCamelCase : Dict = "platform" import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def a_ ( _lowerCAmelCase : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : str=None , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : Any=None , ): '''simple docstring''' if attention_mask is None: lowercase__ : Tuple = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: lowercase__ : int = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: lowercase__ : Any = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowercase__ : List[str] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowercase__ : List[str] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class UpperCAmelCase_ : def __init__( self , a , a=1_3 , a=7 , a=True , a=False , a=9_9 , a=1_6 , a=2 , a=4 , a=4 , a="gelu" , a=0.1 , a=0.1 , a=3_2 , a=2 , a=1 , a=0 , a=0.02 , ) -> Union[str, Any]: lowercase__ : Tuple = parent lowercase__ : int = batch_size lowercase__ : Dict = seq_length lowercase__ : int = is_training lowercase__ : Dict = use_labels lowercase__ : Union[str, Any] = vocab_size lowercase__ : int = hidden_size lowercase__ : Union[str, Any] = num_hidden_layers lowercase__ : Dict = num_attention_heads lowercase__ : int = intermediate_size lowercase__ : Optional[int] = hidden_act lowercase__ : List[Any] = hidden_dropout_prob lowercase__ : Union[str, Any] = attention_probs_dropout_prob lowercase__ : Optional[Any] = max_position_embeddings lowercase__ : Tuple = eos_token_id lowercase__ : Tuple = pad_token_id lowercase__ : int = bos_token_id lowercase__ : Optional[int] = initializer_range def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : Tuple = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) lowercase__ : Union[str, Any] = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) lowercase__ : Any = shift_tokens_right(__UpperCamelCase , 1 , 2 ) lowercase__ : Optional[Any] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=__UpperCamelCase , ) lowercase__ : Dict = prepare_blenderbot_inputs_dict(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return config, inputs_dict def _UpperCAmelCase ( self ) -> List[str]: lowercase__ , lowercase__ : Union[str, Any] = self.prepare_config_and_inputs() return config, inputs_dict def _UpperCAmelCase ( self , a , a , a ) -> int: lowercase__ : List[Any] = 2_0 lowercase__ : Tuple = model_class_name(__UpperCamelCase ) lowercase__ : str = model.encode(inputs_dict['input_ids'] ) lowercase__ , lowercase__ : List[Any] = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) lowercase__ : Tuple = model.init_cache(decoder_input_ids.shape[0] , __UpperCamelCase , __UpperCamelCase ) lowercase__ : List[str] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' ) lowercase__ : int = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowercase__ : List[str] = model.decode( decoder_input_ids[:, :-1] , __UpperCamelCase , decoder_attention_mask=__UpperCamelCase , past_key_values=__UpperCamelCase , decoder_position_ids=__UpperCamelCase , ) lowercase__ : Optional[Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) lowercase__ : Union[str, Any] = model.decode( decoder_input_ids[:, -1:] , __UpperCamelCase , decoder_attention_mask=__UpperCamelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=__UpperCamelCase , ) lowercase__ : List[Any] = model.decode(__UpperCamelCase , __UpperCamelCase ) lowercase__ : Any = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) def _UpperCAmelCase ( self , a , a , a ) -> int: lowercase__ : List[Any] = 2_0 lowercase__ : Any = model_class_name(__UpperCamelCase ) lowercase__ : int = model.encode(inputs_dict['input_ids'] ) lowercase__ , lowercase__ : Optional[int] = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) lowercase__ : int = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) lowercase__ : Optional[Any] = model.init_cache(decoder_input_ids.shape[0] , __UpperCamelCase , __UpperCamelCase ) lowercase__ : Optional[int] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowercase__ : Union[str, Any] = model.decode( decoder_input_ids[:, :-1] , __UpperCamelCase , decoder_attention_mask=__UpperCamelCase , past_key_values=__UpperCamelCase , decoder_position_ids=__UpperCamelCase , ) lowercase__ : int = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) lowercase__ : List[Any] = model.decode( decoder_input_ids[:, -1:] , __UpperCamelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=__UpperCamelCase , decoder_position_ids=__UpperCamelCase , ) lowercase__ : Optional[int] = model.decode(__UpperCamelCase , __UpperCamelCase , decoder_attention_mask=__UpperCamelCase ) lowercase__ : Dict = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) @require_flax class UpperCAmelCase_ ( unittest.TestCase): lowerCamelCase__ : Optional[int] = 9_9 def _UpperCAmelCase ( self ) -> Any: lowercase__ : Tuple = np.array( [ [7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2], [5, 9_7, 1_7, 3_9, 9_4, 4_0, 2], [7_6, 8_3, 9_4, 2_5, 7_0, 7_8, 2], [8_7, 5_9, 4_1, 3_5, 4_8, 6_6, 2], [5_5, 1_3, 1_6, 5_8, 5, 2, 1], # note padding [6_4, 2_7, 3_1, 5_1, 1_2, 7_5, 2], [5_2, 6_4, 8_6, 1_7, 8_3, 3_9, 2], [4_8, 6_1, 9, 2_4, 7_1, 8_2, 2], [2_6, 1, 6_0, 4_8, 2_2, 1_3, 2], [2_1, 5, 6_2, 2_8, 1_4, 7_6, 2], [4_5, 9_8, 3_7, 8_6, 5_9, 4_8, 2], [7_0, 7_0, 5_0, 9, 2_8, 0, 2], ] , dtype=np.intaa , ) lowercase__ : Optional[int] = input_ids.shape[0] lowercase__ : Any = BlenderbotConfig( vocab_size=self.vocab_size , d_model=2_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=3_2 , decoder_ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ , lowercase__ , lowercase__ : str = self._get_config_and_data() lowercase__ : Optional[Any] = FlaxBlenderbotForConditionalGeneration(__UpperCamelCase ) lowercase__ : Any = lm_model(input_ids=__UpperCamelCase ) lowercase__ : Union[str, Any] = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['logits'].shape , __UpperCamelCase ) def _UpperCAmelCase ( self ) -> Any: lowercase__ : Dict = BlenderbotConfig( vocab_size=self.vocab_size , d_model=1_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=4_8 , ) lowercase__ : List[Any] = FlaxBlenderbotForConditionalGeneration(__UpperCamelCase ) lowercase__ : Dict = np.array([[7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 2, 1]] , dtype=np.intaa ) lowercase__ : str = np.array([[8_2, 7_1, 8_2, 1_8, 2], [5_8, 6_8, 2, 1, 1]] , dtype=np.intaa ) lowercase__ : int = lm_model(input_ids=__UpperCamelCase , decoder_input_ids=__UpperCamelCase ) lowercase__ : Optional[Any] = (*summary.shape, config.vocab_size) self.assertEqual(outputs['logits'].shape , __UpperCamelCase ) def _UpperCAmelCase ( self ) -> str: lowercase__ : Optional[int] = np.array([[7_1, 8_2, 1_8, 3_3, 2, 1, 1], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2]] , dtype=np.intaa ) lowercase__ : Dict = shift_tokens_right(__UpperCamelCase , 1 , 2 ) lowercase__ : Dict = np.equal(__UpperCamelCase , 1 ).astype(np.floataa ).sum() lowercase__ : List[Any] = np.equal(__UpperCamelCase , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(__UpperCamelCase , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class UpperCAmelCase_ ( _a , unittest.TestCase , _a): lowerCamelCase__ : Any = True lowerCamelCase__ : Any = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) lowerCamelCase__ : Optional[int] = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def _UpperCAmelCase ( self ) -> str: lowercase__ : int = FlaxBlenderbotModelTester(self ) def _UpperCAmelCase ( self ) -> int: lowercase__ , lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def _UpperCAmelCase ( self ) -> List[str]: lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowercase__ : Optional[int] = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) lowercase__ : List[Any] = model_class(__UpperCamelCase ) @jax.jit def encode_jitted(a , a=None , **a ): return model.encode(input_ids=__UpperCamelCase , attention_mask=__UpperCamelCase ) with self.subTest('JIT Enabled' ): lowercase__ : Optional[int] = encode_jitted(**__UpperCamelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): lowercase__ : str = encode_jitted(**__UpperCamelCase ).to_tuple() self.assertEqual(len(__UpperCamelCase ) , len(__UpperCamelCase ) ) for jitted_output, output in zip(__UpperCamelCase , __UpperCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowercase__ : Optional[Any] = model_class(__UpperCamelCase ) lowercase__ : Any = model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] ) lowercase__ : Optional[Any] = { 'decoder_input_ids': inputs_dict['decoder_input_ids'], 'decoder_attention_mask': inputs_dict['decoder_attention_mask'], 'encoder_outputs': encoder_outputs, } @jax.jit def decode_jitted(a , a , a ): return model.decode( decoder_input_ids=__UpperCamelCase , decoder_attention_mask=__UpperCamelCase , encoder_outputs=__UpperCamelCase , ) with self.subTest('JIT Enabled' ): lowercase__ : Optional[int] = decode_jitted(**__UpperCamelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): lowercase__ : Union[str, Any] = decode_jitted(**__UpperCamelCase ).to_tuple() self.assertEqual(len(__UpperCamelCase ) , len(__UpperCamelCase ) ) for jitted_output, output in zip(__UpperCamelCase , __UpperCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _UpperCAmelCase ( self ) -> Optional[Any]: for model_class_name in self.all_model_classes: lowercase__ : Optional[Any] = model_class_name.from_pretrained('facebook/blenderbot-400M-distill' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids lowercase__ : Tuple = np.ones((1, 1) ) * model.config.eos_token_id lowercase__ : int = model(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) @unittest.skipUnless(jax_device != 'cpu' , '3B test too slow on CPU.' ) @slow def _UpperCAmelCase ( self ) -> int: lowercase__ : Tuple = {'num_beams': 1, 'early_stopping': True, 'min_length': 1_5, 'max_length': 2_5} lowercase__ : List[Any] = {'skip_special_tokens': True, 'clean_up_tokenization_spaces': True} lowercase__ : int = FlaxBlenderbotForConditionalGeneration.from_pretrained('facebook/blenderbot-3B' , from_pt=__UpperCamelCase ) lowercase__ : Any = BlenderbotTokenizer.from_pretrained('facebook/blenderbot-3B' ) lowercase__ : str = ['Sam'] lowercase__ : int = tokenizer(__UpperCamelCase , return_tensors='jax' ) lowercase__ : Tuple = model.generate(**__UpperCamelCase , **__UpperCamelCase ) lowercase__ : Any = 'Sam is a great name. It means \"sun\" in Gaelic.' lowercase__ : Union[str, Any] = tokenizer.batch_decode(__UpperCamelCase , **__UpperCamelCase ) assert generated_txt[0].strip() == tgt_text
715
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch _UpperCamelCase : int = logging.get_logger(__name__) @dataclass class UpperCAmelCase_ : def __init__( self , a=False , a=False , a=6.0 , a=None , a=False , a=False , a=None , a="fp4" , a=False , **a , ) -> Tuple: lowercase__ : str = load_in_abit lowercase__ : str = load_in_abit lowercase__ : List[str] = llm_inta_threshold lowercase__ : Dict = llm_inta_skip_modules lowercase__ : Tuple = llm_inta_enable_fpaa_cpu_offload lowercase__ : Any = llm_inta_has_fpaa_weight lowercase__ : Any = bnb_abit_quant_type lowercase__ : Dict = bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: lowercase__ : Dict = torch.floataa elif isinstance(a , a ): lowercase__ : Any = getattr(a , a ) elif isinstance(a , torch.dtype ): lowercase__ : Any = bnb_abit_compute_dtype else: raise ValueError('bnb_4bit_compute_dtype must be a string or a torch.dtype' ) self.post_init() def _UpperCAmelCase ( self ) -> str: if not isinstance(self.llm_inta_threshold , a ): raise ValueError('llm_int8_threshold must be a float' ) if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , a ): raise ValueError('llm_int8_skip_modules must be a list of strings' ) if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , a ): raise ValueError('llm_int8_enable_fp32_cpu_offload must be a boolean' ) if not isinstance(self.llm_inta_has_fpaa_weight , a ): raise ValueError('llm_int8_has_fp16_weight must be a boolean' ) if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype ): raise ValueError('bnb_4bit_compute_dtype must be torch.dtype' ) if not isinstance(self.bnb_abit_quant_type , a ): raise ValueError('bnb_4bit_quant_type must be a string' ) if not isinstance(self.bnb_abit_use_double_quant , a ): raise ValueError('bnb_4bit_use_double_quant must be a boolean' ) if self.load_in_abit and not version.parse(importlib.metadata.version('bitsandbytes' ) ) >= version.parse( '0.39.0' ): raise ValueError( '4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version' ) def _UpperCAmelCase ( self ) -> Tuple: return self.load_in_abit or self.load_in_abit def _UpperCAmelCase ( self ) -> List[str]: if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def _UpperCAmelCase ( cls , a , a , **a ) -> Optional[Any]: lowercase__ : List[Any] = cls(**a ) lowercase__ : Union[str, Any] = [] for key, value in kwargs.items(): if hasattr(a , a ): setattr(a , a , a ) to_remove.append(a ) for key in to_remove: kwargs.pop(a , a ) if return_unused_kwargs: return config, kwargs else: return config def _UpperCAmelCase ( self , a ) -> Dict: with open(a , 'w' , encoding='utf-8' ) as writer: lowercase__ : Any = self.to_dict() lowercase__ : str = json.dumps(a , indent=2 , sort_keys=a ) + '\n' writer.write(a ) def _UpperCAmelCase ( self ) -> Dict[str, Any]: lowercase__ : Optional[Any] = copy.deepcopy(self.__dict__ ) lowercase__ : Any = str(output['bnb_4bit_compute_dtype'] ).split('.' )[1] return output def __repr__( self ) -> Dict: return f"""{self.__class__.__name__} {self.to_json_string()}""" def _UpperCAmelCase ( self , a = True ) -> str: if use_diff is True: lowercase__ : List[Any] = self.to_diff_dict() else: lowercase__ : List[str] = self.to_dict() return json.dumps(a , indent=2 , sort_keys=a ) + "\n" def _UpperCAmelCase ( self ) -> Dict[str, Any]: lowercase__ : Tuple = self.to_dict() # get the default config dict lowercase__ : Optional[Any] = BitsAndBytesConfig().to_dict() lowercase__ : int = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: lowercase__ : Optional[int] = value return serializable_config_dict
645
0
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. _UpperCamelCase : int = {"LayoutLMv2Config", "LayoutLMv3Config"} @is_pipeline_test class UpperCAmelCase_ ( unittest.TestCase): lowerCamelCase__ : str = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING lowerCamelCase__ : List[str] = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: lowerCamelCase__ : List[Any] = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: lowerCamelCase__ : Any = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def _UpperCAmelCase ( self , a , a , a ) -> List[Any]: lowercase__ : Any = ZeroShotClassificationPipeline( model=a , tokenizer=a , candidate_labels=['polics', 'health'] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def _UpperCAmelCase ( self , a , a ) -> Union[str, Any]: lowercase__ : List[str] = classifier('Who are you voting for in 2020?' , candidate_labels='politics' ) self.assertEqual(a , {'sequence': ANY(a ), 'labels': [ANY(a )], 'scores': [ANY(a )]} ) # No kwarg lowercase__ : int = classifier('Who are you voting for in 2020?' , ['politics'] ) self.assertEqual(a , {'sequence': ANY(a ), 'labels': [ANY(a )], 'scores': [ANY(a )]} ) lowercase__ : str = classifier('Who are you voting for in 2020?' , candidate_labels=['politics'] ) self.assertEqual(a , {'sequence': ANY(a ), 'labels': [ANY(a )], 'scores': [ANY(a )]} ) lowercase__ : Tuple = classifier('Who are you voting for in 2020?' , candidate_labels='politics, public health' ) self.assertEqual( a , {'sequence': ANY(a ), 'labels': [ANY(a ), ANY(a )], 'scores': [ANY(a ), ANY(a )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ) , 1.0 ) lowercase__ : Tuple = classifier('Who are you voting for in 2020?' , candidate_labels=['politics', 'public health'] ) self.assertEqual( a , {'sequence': ANY(a ), 'labels': [ANY(a ), ANY(a )], 'scores': [ANY(a ), ANY(a )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ) , 1.0 ) lowercase__ : List[Any] = classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template='This text is about {}' ) self.assertEqual(a , {'sequence': ANY(a ), 'labels': [ANY(a )], 'scores': [ANY(a )]} ) # https://github.com/huggingface/transformers/issues/13846 lowercase__ : str = classifier(['I am happy'] , ['positive', 'negative'] ) self.assertEqual( a , [ {'sequence': ANY(a ), 'labels': [ANY(a ), ANY(a )], 'scores': [ANY(a ), ANY(a )]} for i in range(1 ) ] , ) lowercase__ : Any = classifier(['I am happy', 'I am sad'] , ['positive', 'negative'] ) self.assertEqual( a , [ {'sequence': ANY(a ), 'labels': [ANY(a ), ANY(a )], 'scores': [ANY(a ), ANY(a )]} for i in range(2 ) ] , ) with self.assertRaises(a ): classifier('' , candidate_labels='politics' ) with self.assertRaises(a ): classifier(a , candidate_labels='politics' ) with self.assertRaises(a ): classifier('Who are you voting for in 2020?' , candidate_labels='' ) with self.assertRaises(a ): classifier('Who are you voting for in 2020?' , candidate_labels=a ) with self.assertRaises(a ): classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template='Not formatting template' , ) with self.assertRaises(a ): classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template=a , ) self.run_entailment_id(a ) def _UpperCAmelCase ( self , a ) -> Tuple: lowercase__ : int = zero_shot_classifier.model.config lowercase__ : Tuple = config.labelaid lowercase__ : Tuple = zero_shot_classifier.entailment_id lowercase__ : List[Any] = {'LABEL_0': 0, 'LABEL_1': 1, 'LABEL_2': 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) lowercase__ : Any = {'entailment': 0, 'neutral': 1, 'contradiction': 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) lowercase__ : Dict = {'ENTAIL': 0, 'NON-ENTAIL': 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) lowercase__ : List[Any] = {'ENTAIL': 2, 'NEUTRAL': 1, 'CONTR': 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) lowercase__ : str = original_labelaid self.assertEqual(a , zero_shot_classifier.entailment_id ) @require_torch def _UpperCAmelCase ( self ) -> str: lowercase__ : Dict = pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='pt' , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( 'Who are you voting for in 2020?' * 1_0_0 , candidate_labels=['politics', 'public health', 'science'] ) @require_torch def _UpperCAmelCase ( self ) -> str: lowercase__ : Tuple = pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='pt' , ) lowercase__ : Tuple = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(a ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['science', 'public health', 'politics'], 'scores': [0.333, 0.333, 0.333], } , ) @require_tf def _UpperCAmelCase ( self ) -> Dict: lowercase__ : Optional[Any] = pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='tf' , ) lowercase__ : Optional[int] = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(a ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['science', 'public health', 'politics'], 'scores': [0.333, 0.333, 0.333], } , ) @slow @require_torch def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Dict = pipeline('zero-shot-classification' , model='roberta-large-mnli' , framework='pt' ) lowercase__ : Union[str, Any] = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(a ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['politics', 'public health', 'science'], 'scores': [0.976, 0.015, 0.009], } , ) lowercase__ : str = zero_shot_classifier( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks' ' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder' ' through an attention mechanism. We propose a new simple network architecture, the Transformer, based' ' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two' ' machine translation tasks show these models to be superior in quality while being more parallelizable' ' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014' ' English-to-German translation task, improving over the existing best results, including ensembles by' ' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new' ' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small' ' fraction of the training costs of the best models from the literature. We show that the Transformer' ' generalizes well to other tasks by applying it successfully to English constituency parsing both with' ' large and limited training data.' , candidate_labels=['machine learning', 'statistics', 'translation', 'vision'] , multi_label=a , ) self.assertEqual( nested_simplify(a ) , { 'sequence': ( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural' ' networks in an encoder-decoder configuration. The best performing models also connect the' ' encoder and decoder through an attention mechanism. We propose a new simple network' ' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence' ' and convolutions entirely. Experiments on two machine translation tasks show these models to be' ' superior in quality while being more parallelizable and requiring significantly less time to' ' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,' ' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014' ' English-to-French translation task, our model establishes a new single-model state-of-the-art' ' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training' ' costs of the best models from the literature. We show that the Transformer generalizes well to' ' other tasks by applying it successfully to English constituency parsing both with large and' ' limited training data.' ), 'labels': ['translation', 'machine learning', 'vision', 'statistics'], 'scores': [0.817, 0.713, 0.018, 0.018], } , ) @slow @require_tf def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : List[str] = pipeline('zero-shot-classification' , model='roberta-large-mnli' , framework='tf' ) lowercase__ : Optional[int] = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(a ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['politics', 'public health', 'science'], 'scores': [0.976, 0.015, 0.009], } , ) lowercase__ : Dict = zero_shot_classifier( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks' ' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder' ' through an attention mechanism. We propose a new simple network architecture, the Transformer, based' ' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two' ' machine translation tasks show these models to be superior in quality while being more parallelizable' ' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014' ' English-to-German translation task, improving over the existing best results, including ensembles by' ' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new' ' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small' ' fraction of the training costs of the best models from the literature. We show that the Transformer' ' generalizes well to other tasks by applying it successfully to English constituency parsing both with' ' large and limited training data.' , candidate_labels=['machine learning', 'statistics', 'translation', 'vision'] , multi_label=a , ) self.assertEqual( nested_simplify(a ) , { 'sequence': ( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural' ' networks in an encoder-decoder configuration. The best performing models also connect the' ' encoder and decoder through an attention mechanism. We propose a new simple network' ' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence' ' and convolutions entirely. Experiments on two machine translation tasks show these models to be' ' superior in quality while being more parallelizable and requiring significantly less time to' ' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,' ' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014' ' English-to-French translation task, our model establishes a new single-model state-of-the-art' ' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training' ' costs of the best models from the literature. We show that the Transformer generalizes well to' ' other tasks by applying it successfully to English constituency parsing both with large and' ' limited training data.' ), 'labels': ['translation', 'machine learning', 'vision', 'statistics'], 'scores': [0.817, 0.713, 0.018, 0.018], } , )
716
"""simple docstring""" import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler _UpperCamelCase : int = 16 _UpperCamelCase : Union[str, Any] = 32 def a_ ( _lowerCAmelCase : Tuple ): '''simple docstring''' return int(x / 2**20 ) class UpperCAmelCase_ : def __enter__( self ) -> Union[str, Any]: gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero lowercase__ : List[str] = torch.cuda.memory_allocated() return self def __exit__( self , *a ) -> Any: gc.collect() torch.cuda.empty_cache() lowercase__ : Optional[Any] = torch.cuda.memory_allocated() lowercase__ : Union[str, Any] = torch.cuda.max_memory_allocated() lowercase__ : List[Any] = bamb(self.end - self.begin ) lowercase__ : List[Any] = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def a_ ( _lowerCAmelCase : Accelerator , _lowerCAmelCase : int = 16 , _lowerCAmelCase : str = "bert-base-cased" , _lowerCAmelCase : int = 320 , _lowerCAmelCase : int = 160 , ): '''simple docstring''' lowercase__ : List[Any] = AutoTokenizer.from_pretrained(_lowerCAmelCase ) lowercase__ : Union[str, Any] = load_dataset( 'glue' , 'mrpc' , split={'train': f"""train[:{n_train}]""", 'validation': f"""validation[:{n_val}]"""} ) def tokenize_function(_lowerCAmelCase : int ): # max_length=None => use the model max length (it's actually the default) lowercase__ : List[str] = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowercase__ : Union[str, Any] = datasets.map( _lowerCAmelCase , batched=_lowerCAmelCase , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=_lowerCAmelCase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ : Union[str, Any] = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(_lowerCAmelCase : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_lowerCAmelCase , padding='max_length' , max_length=128 , return_tensors='pt' ) return tokenizer.pad(_lowerCAmelCase , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. lowercase__ : Dict = DataLoader( tokenized_datasets['train'] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase ) lowercase__ : Dict = DataLoader( tokenized_datasets['validation'] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase ) return train_dataloader, eval_dataloader def a_ ( _lowerCAmelCase : Any , _lowerCAmelCase : List[str] ): '''simple docstring''' lowercase__ : List[Any] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ : Optional[int] = config['lr'] lowercase__ : Optional[Any] = int(config['num_epochs'] ) lowercase__ : Optional[Any] = int(config['seed'] ) lowercase__ : int = int(config['batch_size'] ) lowercase__ : Union[str, Any] = args.model_name_or_path set_seed(_lowerCAmelCase ) lowercase__ , lowercase__ : Tuple = get_dataloaders(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , args.n_train , args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ : List[Any] = AutoModelForSequenceClassification.from_pretrained(_lowerCAmelCase , return_dict=_lowerCAmelCase ) # Instantiate optimizer lowercase__ : List[Any] = ( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowercase__ : Optional[Any] = optimizer_cls(params=model.parameters() , lr=_lowerCAmelCase ) if accelerator.state.deepspeed_plugin is not None: lowercase__ : Optional[Any] = accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: lowercase__ : List[Any] = 1 lowercase__ : List[Any] = (len(_lowerCAmelCase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowercase__ : Optional[int] = get_linear_schedule_with_warmup( optimizer=_lowerCAmelCase , num_warmup_steps=0 , num_training_steps=_lowerCAmelCase , ) else: lowercase__ : Tuple = DummyScheduler(_lowerCAmelCase , total_num_steps=_lowerCAmelCase , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Dict = accelerator.prepare( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # We need to keep track of how many total steps we have iterated over lowercase__ : Optional[int] = 0 # We also need to keep track of the stating epoch so files are named properly lowercase__ : Tuple = 0 # Now we train the model lowercase__ : Optional[Any] = {} for epoch in range(_lowerCAmelCase , _lowerCAmelCase ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(_lowerCAmelCase ): lowercase__ : List[Any] = model(**_lowerCAmelCase ) lowercase__ : Dict = outputs.loss lowercase__ : int = loss / gradient_accumulation_steps accelerator.backward(_lowerCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print('Memory before entering the train : {}'.format(bamb(tracemalloc.begin ) ) ) accelerator.print('Memory consumed at the end of the train (end-begin): {}'.format(tracemalloc.used ) ) accelerator.print('Peak Memory consumed during the train (max-begin): {}'.format(tracemalloc.peaked ) ) accelerator.print( 'Total Peak Memory consumed during the train (max): {}'.format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) lowercase__ : int = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[f"""epoch-{epoch}"""] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , 'peak_memory_utilization.json' ) , 'w' ) as f: json.dump(_lowerCAmelCase , _lowerCAmelCase ) def a_ ( ): '''simple docstring''' lowercase__ : int = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path' , type=_lowerCAmelCase , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=_lowerCAmelCase , ) parser.add_argument( '--output_dir' , type=_lowerCAmelCase , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--peak_memory_upper_bound' , type=_lowerCAmelCase , default=_lowerCAmelCase , help='The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.' , ) parser.add_argument( '--n_train' , type=_lowerCAmelCase , default=320 , help='Number of training examples to use.' , ) parser.add_argument( '--n_val' , type=_lowerCAmelCase , default=160 , help='Number of validation examples to use.' , ) parser.add_argument( '--num_epochs' , type=_lowerCAmelCase , default=1 , help='Number of train epochs.' , ) lowercase__ : Any = parser.parse_args() lowercase__ : Optional[Any] = {'lr': 2E-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16} training_function(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": main()
645
0
"""simple docstring""" print((lambda quine: quine % quine)("print((lambda quine: quine %% quine)(%r))"))
717
"""simple docstring""" def a_ ( _lowerCAmelCase : str ): '''simple docstring''' lowercase__ : Any = [0] * len(_lowerCAmelCase ) for i in range(1 , len(_lowerCAmelCase ) ): # use last results for better performance - dynamic programming lowercase__ : List[str] = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: lowercase__ : Dict = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 lowercase__ : Union[str, Any] = j return prefix_result def a_ ( _lowerCAmelCase : str ): '''simple docstring''' return max(prefix_function(_lowerCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod()
645
0
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _UpperCamelCase : List[str] = logging.get_logger(__name__) _UpperCamelCase : str = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "ctc_proj", "mask_emb": "masked_spec_embed", } _UpperCamelCase : List[str] = [ "ctc_proj", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def a_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Tuple , _lowerCAmelCase : Dict ): '''simple docstring''' for attribute in key.split('.' ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models lowercase__ : int = '''lm_head''' lowercase__ : List[str] = getattr(_lowerCAmelCase , _lowerCAmelCase ) if weight_type is not None: lowercase__ : Tuple = getattr(_lowerCAmelCase , _lowerCAmelCase ).shape else: lowercase__ : Any = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowercase__ : Optional[Any] = value elif weight_type == "weight_g": lowercase__ : Tuple = value elif weight_type == "weight_v": lowercase__ : Optional[Any] = value elif weight_type == "bias": lowercase__ : str = value else: lowercase__ : Any = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def a_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : int ): '''simple docstring''' lowercase__ : Dict = [] lowercase__ : Optional[int] = fairseq_model.state_dict() lowercase__ : int = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): lowercase__ : Optional[int] = False if "conv_layers" in name: load_conv_layer( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , hf_model.config.feat_extract_norm == 'group' , ) lowercase__ : str = True else: for key, mapped_key in MAPPING.items(): lowercase__ : Any = '''unispeech.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: lowercase__ : Dict = True if "*" in mapped_key: lowercase__ : Tuple = name.split(_lowerCAmelCase )[0].split('.' )[-2] lowercase__ : int = mapped_key.replace('*' , _lowerCAmelCase ) if "weight_g" in name: lowercase__ : Optional[Any] = '''weight_g''' elif "weight_v" in name: lowercase__ : List[str] = '''weight_v''' elif "bias" in name: lowercase__ : Union[str, Any] = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj lowercase__ : Optional[Any] = '''weight''' else: lowercase__ : Optional[int] = None set_recursively(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) continue if not is_used: unused_weights.append(_lowerCAmelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def a_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[str] ): '''simple docstring''' lowercase__ : Optional[int] = full_name.split('conv_layers.' )[-1] lowercase__ : Optional[int] = name.split('.' ) lowercase__ : List[Any] = int(items[0] ) lowercase__ : Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowercase__ : List[str] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowercase__ : Tuple = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) lowercase__ : Optional[int] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) lowercase__ : Optional[int] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_lowerCAmelCase ) @torch.no_grad() def a_ ( _lowerCAmelCase : str , _lowerCAmelCase : Any , _lowerCAmelCase : str=None , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : List[Any]=True ): '''simple docstring''' if config_path is not None: lowercase__ : List[str] = UniSpeechConfig.from_pretrained(_lowerCAmelCase ) else: lowercase__ : Optional[int] = UniSpeechConfig() if is_finetuned: if dict_path: lowercase__ : str = Dictionary.load_from_json(_lowerCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowercase__ : Optional[int] = target_dict.pad_index lowercase__ : str = target_dict.bos_index lowercase__ : List[Any] = target_dict.eos_index lowercase__ : int = len(target_dict.symbols ) lowercase__ : str = os.path.join(_lowerCAmelCase , 'vocab.json' ) if not os.path.isdir(_lowerCAmelCase ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(_lowerCAmelCase ) ) return os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) lowercase__ : List[Any] = target_dict.indices # fairseq has the <pad> and <s> switched lowercase__ : str = 42 lowercase__ : List[str] = 43 with open(_lowerCAmelCase , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(_lowerCAmelCase , _lowerCAmelCase ) lowercase__ : Dict = WavaVecaPhonemeCTCTokenizer( _lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=_lowerCAmelCase , ) lowercase__ : int = True if config.feat_extract_norm == '''layer''' else False lowercase__ : Union[str, Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , ) lowercase__ : int = WavaVecaProcessor(feature_extractor=_lowerCAmelCase , tokenizer=_lowerCAmelCase ) processor.save_pretrained(_lowerCAmelCase ) lowercase__ : Dict = UniSpeechForCTC(_lowerCAmelCase ) else: lowercase__ : Dict = UniSpeechForPreTraining(_lowerCAmelCase ) if is_finetuned: lowercase__ : Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] ), 'w2v_path': checkpoint_path} ) else: lowercase__ : Tuple = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) lowercase__ : Optional[int] = model[0].eval() recursively_load_weights(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) hf_unispeech.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": _UpperCamelCase : Any = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _UpperCamelCase : int = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
718
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class UpperCAmelCase_ ( unittest.TestCase): def __init__( self , a , a=7 , a=3 , a=1_8 , a=3_0 , a=4_0_0 , a=True , a=None , a=True , a=None , a=True , ) -> List[str]: lowercase__ : Tuple = size if size is not None else {'shortest_edge': 2_0} lowercase__ : Union[str, Any] = crop_size if crop_size is not None else {'height': 1_8, 'width': 1_8} lowercase__ : Optional[int] = parent lowercase__ : Optional[int] = batch_size lowercase__ : str = num_channels lowercase__ : Any = image_size lowercase__ : Optional[Any] = min_resolution lowercase__ : int = max_resolution lowercase__ : List[Any] = do_resize lowercase__ : List[str] = size lowercase__ : str = do_center_crop lowercase__ : List[Any] = crop_size lowercase__ : Union[str, Any] = do_flip_channel_order def _UpperCAmelCase ( self ) -> int: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class UpperCAmelCase_ ( _a , unittest.TestCase): lowerCamelCase__ : Optional[Any] = MobileViTImageProcessor if is_vision_available() else None def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : Tuple = MobileViTImageProcessingTester(self ) @property def _UpperCAmelCase ( self ) -> int: return self.image_processor_tester.prepare_image_processor_dict() def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a , 'do_resize' ) ) self.assertTrue(hasattr(a , 'size' ) ) self.assertTrue(hasattr(a , 'do_center_crop' ) ) self.assertTrue(hasattr(a , 'center_crop' ) ) self.assertTrue(hasattr(a , 'do_flip_channel_order' ) ) def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 2_0} ) self.assertEqual(image_processor.crop_size , {'height': 1_8, 'width': 1_8} ) lowercase__ : str = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {'shortest_edge': 4_2} ) self.assertEqual(image_processor.crop_size , {'height': 8_4, 'width': 8_4} ) def _UpperCAmelCase ( self ) -> Tuple: pass def _UpperCAmelCase ( self ) -> str: # Initialize image_processing lowercase__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a ) for image in image_inputs: self.assertIsInstance(a , Image.Image ) # Test not batched input lowercase__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowercase__ : List[Any] = image_processing(a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def _UpperCAmelCase ( self ) -> Tuple: # Initialize image_processing lowercase__ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , numpify=a ) for image in image_inputs: self.assertIsInstance(a , np.ndarray ) # Test not batched input lowercase__ : List[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowercase__ : Any = image_processing(a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def _UpperCAmelCase ( self ) -> Dict: # Initialize image_processing lowercase__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , torchify=a ) for image in image_inputs: self.assertIsInstance(a , torch.Tensor ) # Test not batched input lowercase__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowercase__ : Tuple = image_processing(a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
645
0
"""simple docstring""" import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase : Union[str, Any] = logging.get_logger() @dataclass class UpperCAmelCase_ : lowerCamelCase__ : List[str] = 4_2 lowerCamelCase__ : Any = field(default_factory=UpperCamelCase_) lowerCamelCase__ : Optional[int] = field(default_factory=UpperCamelCase_) def _UpperCAmelCase ( self , a , a , a ) -> List[Any]: lowercase__ : Tuple = len(list(m.modules() ) ) == 1 or isinstance(a , nn.Convad ) or isinstance(a , nn.BatchNormad ) if has_not_submodules: self.traced.append(a ) def __call__( self , a ) -> List[Any]: for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(a ) [x.remove() for x in self.handles] return self @property def _UpperCAmelCase ( self ) -> Union[str, Any]: # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda a : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class UpperCAmelCase_ : lowerCamelCase__ : str = 4_2 lowerCamelCase__ : List[Any] = 4_2 lowerCamelCase__ : int = 1 lowerCamelCase__ : List[str] = field(default_factory=UpperCamelCase_) lowerCamelCase__ : List[str] = field(default_factory=UpperCamelCase_) lowerCamelCase__ : Optional[Any] = True def __call__( self , a ) -> Dict: lowercase__ : List[str] = Tracker(self.dest )(a ).parametrized lowercase__ : Any = Tracker(self.src )(a ).parametrized lowercase__ : Any = list(filter(lambda a : type(a ) not in self.src_skip , a ) ) lowercase__ : Tuple = list(filter(lambda a : type(a ) not in self.dest_skip , a ) ) if len(a ) != len(a ) and self.raise_if_mismatch: raise Exception( f"""Numbers of operations are different. Source module has {len(a )} operations while""" f""" destination module has {len(a )}.""" ) for dest_m, src_m in zip(a , a ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f"""Transfered from={src_m} to={dest_m}""" ) class UpperCAmelCase_ ( nn.Module): def __init__( self , a ) -> List[Any]: super().__init__() lowercase__ : List[Tuple[str, nn.Module]] = [] # - get the stem feature_blocks.append(('conv1', model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith('block' ), f"""Unexpected layer name {k}""" lowercase__ : int = len(a ) + 1 feature_blocks.append((f"""res{block_index}""", v) ) lowercase__ : Any = nn.ModuleDict(a ) def _UpperCAmelCase ( self , a ) -> Any: return get_trunk_forward_outputs( a , out_feat_keys=a , feature_blocks=self._feature_blocks , ) class UpperCAmelCase_ ( UpperCamelCase_): def _UpperCAmelCase ( self , a ) -> str: lowercase__ : List[str] = x.split('-' ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self , a ) -> Callable[[], Tuple[nn.Module, Dict]]: # default to timm! if x not in self: lowercase__ : List[Any] = self.convert_name_to_timm(a ) lowercase__ : Optional[Any] = partial(lambda: (timm.create_model(a , pretrained=a ).eval(), None) ) else: lowercase__ : int = super().__getitem__(a ) return val class UpperCAmelCase_ ( UpperCamelCase_): def __getitem__( self , a ) -> Callable[[], nn.Module]: if "seer" in x and "in1k" not in x: lowercase__ : int = RegNetModel else: lowercase__ : Optional[Any] = RegNetForImageClassification return val def a_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : List[Tuple[str, str]] ): '''simple docstring''' for from_key, to_key in keys: lowercase__ : Dict = from_state_dict[from_key].clone() print(f"""Copied key={from_key} to={to_key}""" ) return to_state_dict def a_ ( _lowerCAmelCase : str , _lowerCAmelCase : Callable[[], nn.Module] , _lowerCAmelCase : Callable[[], nn.Module] , _lowerCAmelCase : RegNetConfig , _lowerCAmelCase : Path , _lowerCAmelCase : bool = True , ): '''simple docstring''' print(f"""Converting {name}...""" ) with torch.no_grad(): lowercase__ : Union[str, Any] = from_model_func() lowercase__ : Any = our_model_func(snake_case_ ).eval() lowercase__ : Optional[Any] = ModuleTransfer(src=snake_case_ , dest=snake_case_ , raise_if_mismatch=snake_case_ ) lowercase__ : List[str] = torch.randn((1, 3, 224, 224) ) module_transfer(snake_case_ ) if from_state_dict is not None: lowercase__ : int = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: lowercase__ : List[str] = [('''0.clf.0.weight''', '''classifier.1.weight'''), ('''0.clf.0.bias''', '''classifier.1.bias''')] lowercase__ : Union[str, Any] = manually_copy_vissl_head(snake_case_ , our_model.state_dict() , snake_case_ ) our_model.load_state_dict(snake_case_ ) lowercase__ : Tuple = our_model(snake_case_ , output_hidden_states=snake_case_ ) lowercase__ : List[str] = ( our_outputs.logits if isinstance(snake_case_ , snake_case_ ) else our_outputs.last_hidden_state ) lowercase__ : str = from_model(snake_case_ ) lowercase__ : List[str] = from_output[-1] if type(snake_case_ ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: lowercase__ : Tuple = our_outputs.hidden_states[-1] assert torch.allclose(snake_case_ , snake_case_ ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message='Add model' , use_temp_dir=snake_case_ , ) lowercase__ : List[str] = 224 if '''seer''' not in name else 384 # we can use the convnext one lowercase__ : Union[str, Any] = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' , size=snake_case_ ) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message='Add image processor' , use_temp_dir=snake_case_ , ) print(f"""Pushed {name}""" ) def a_ ( _lowerCAmelCase : Path , _lowerCAmelCase : str = None , _lowerCAmelCase : bool = True ): '''simple docstring''' lowercase__ : List[str] = '''imagenet-1k-id2label.json''' lowercase__ : int = 1000 lowercase__ : List[Any] = (1, num_labels) lowercase__ : Optional[int] = '''huggingface/label-files''' lowercase__ : Optional[Any] = num_labels lowercase__ : Union[str, Any] = json.load(open(cached_download(hf_hub_url(snake_case_ , snake_case_ , repo_type='dataset' ) ) , 'r' ) ) lowercase__ : Optional[Any] = {int(snake_case_ ): v for k, v in idalabel.items()} lowercase__ : int = idalabel lowercase__ : int = {v: k for k, v in idalabel.items()} lowercase__ : List[Any] = partial(snake_case_ , num_labels=snake_case_ , idalabel=snake_case_ , labelaid=snake_case_ ) lowercase__ : Tuple = { '''regnet-x-002''': ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 , layer_type='x' ), '''regnet-x-004''': ImageNetPreTrainedConfig( depths=[1, 2, 7, 12] , hidden_sizes=[32, 64, 160, 384] , groups_width=16 , layer_type='x' ), '''regnet-x-006''': ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[48, 96, 240, 528] , groups_width=24 , layer_type='x' ), '''regnet-x-008''': ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[64, 128, 288, 672] , groups_width=16 , layer_type='x' ), '''regnet-x-016''': ImageNetPreTrainedConfig( depths=[2, 4, 10, 2] , hidden_sizes=[72, 168, 408, 912] , groups_width=24 , layer_type='x' ), '''regnet-x-032''': ImageNetPreTrainedConfig( depths=[2, 6, 15, 2] , hidden_sizes=[96, 192, 432, 1008] , groups_width=48 , layer_type='x' ), '''regnet-x-040''': ImageNetPreTrainedConfig( depths=[2, 5, 14, 2] , hidden_sizes=[80, 240, 560, 1360] , groups_width=40 , layer_type='x' ), '''regnet-x-064''': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 392, 784, 1624] , groups_width=56 , layer_type='x' ), '''regnet-x-080''': ImageNetPreTrainedConfig( depths=[2, 5, 15, 1] , hidden_sizes=[80, 240, 720, 1920] , groups_width=120 , layer_type='x' ), '''regnet-x-120''': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 , layer_type='x' ), '''regnet-x-160''': ImageNetPreTrainedConfig( depths=[2, 6, 13, 1] , hidden_sizes=[256, 512, 896, 2048] , groups_width=128 , layer_type='x' ), '''regnet-x-320''': ImageNetPreTrainedConfig( depths=[2, 7, 13, 1] , hidden_sizes=[336, 672, 1344, 2520] , groups_width=168 , layer_type='x' ), # y variant '''regnet-y-002''': ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 ), '''regnet-y-004''': ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[48, 104, 208, 440] , groups_width=8 ), '''regnet-y-006''': ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[48, 112, 256, 608] , groups_width=16 ), '''regnet-y-008''': ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[64, 128, 320, 768] , groups_width=16 ), '''regnet-y-016''': ImageNetPreTrainedConfig( depths=[2, 6, 17, 2] , hidden_sizes=[48, 120, 336, 888] , groups_width=24 ), '''regnet-y-032''': ImageNetPreTrainedConfig( depths=[2, 5, 13, 1] , hidden_sizes=[72, 216, 576, 1512] , groups_width=24 ), '''regnet-y-040''': ImageNetPreTrainedConfig( depths=[2, 6, 12, 2] , hidden_sizes=[128, 192, 512, 1088] , groups_width=64 ), '''regnet-y-064''': ImageNetPreTrainedConfig( depths=[2, 7, 14, 2] , hidden_sizes=[144, 288, 576, 1296] , groups_width=72 ), '''regnet-y-080''': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 448, 896, 2016] , groups_width=56 ), '''regnet-y-120''': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 ), '''regnet-y-160''': ImageNetPreTrainedConfig( depths=[2, 4, 11, 1] , hidden_sizes=[224, 448, 1232, 3024] , groups_width=112 ), '''regnet-y-320''': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 '''regnet-y-320-seer''': RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), '''regnet-y-640-seer''': RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ), '''regnet-y-1280-seer''': RegNetConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ), '''regnet-y-2560-seer''': RegNetConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ), '''regnet-y-10b-seer''': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 1_1110, 2_8280] , groups_width=1010 ), # finetuned on imagenet '''regnet-y-320-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), '''regnet-y-640-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ), '''regnet-y-1280-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ), '''regnet-y-2560-seer-in1k''': ImageNetPreTrainedConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ), '''regnet-y-10b-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 1_1110, 2_8280] , groups_width=1010 ), } lowercase__ : List[str] = NameToOurModelFuncMap() lowercase__ : Tuple = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(_lowerCAmelCase : str , _lowerCAmelCase : Callable[[], nn.Module] ) -> Tuple[nn.Module, Dict]: lowercase__ : List[str] = torch.hub.load_state_dict_from_url(snake_case_ , model_dir=str(snake_case_ ) , map_location='cpu' ) lowercase__ : Optional[int] = model_func() # check if we have a head, if yes add it lowercase__ : Optional[int] = files['''classy_state_dict''']['''base_model''']['''model'''] lowercase__ : Dict = model_state_dict['''trunk'''] model.load_state_dict(snake_case_ ) return model.eval(), model_state_dict["heads"] # pretrained lowercase__ : Optional[Any] = partial( snake_case_ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) lowercase__ : Dict = partial( snake_case_ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) lowercase__ : Tuple = partial( snake_case_ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) lowercase__ : Any = partial( snake_case_ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=620.83 , w_m=2.5_2 ) ) ) , ) # IN1K finetuned lowercase__ : Tuple = partial( snake_case_ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) lowercase__ : Optional[Any] = partial( snake_case_ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) lowercase__ : Any = partial( snake_case_ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) lowercase__ : int = partial( snake_case_ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=620.83 , w_m=2.5_2 ) ) ) , ) if model_name: convert_weight_and_push( snake_case_ , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , snake_case_ , snake_case_ , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( snake_case_ , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , snake_case_ , snake_case_ , snake_case_ , ) return config, expected_shape if __name__ == "__main__": _UpperCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help=( "The name of the model you wish to convert, it must be one of the supported regnet* architecture," " currently: regnetx-*, regnety-*. If `None`, all of them will the converted." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=Path, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=True, type=bool, required=False, help="If True, push model and image processor to the hub.", ) _UpperCamelCase : Optional[int] = parser.parse_args() _UpperCamelCase : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
719
"""simple docstring""" import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class UpperCAmelCase_ ( unittest.TestCase): def __init__( self , a , a=1_3 , a=7 , a=True , a=True , a=True , a=True , a=9_9 , a=3_2 , a=5 , a=4 , a=3_7 , a="gelu" , a=0.1 , a=0.1 , a=5_1_2 , a=1_6 , a=2 , a=0.02 , a=4 , ) -> Dict: lowercase__ : Optional[Any] = parent lowercase__ : Dict = batch_size lowercase__ : List[Any] = seq_length lowercase__ : int = is_training lowercase__ : str = use_attention_mask lowercase__ : Dict = use_token_type_ids lowercase__ : Optional[int] = use_labels lowercase__ : Tuple = vocab_size lowercase__ : List[str] = hidden_size lowercase__ : Union[str, Any] = num_hidden_layers lowercase__ : int = num_attention_heads lowercase__ : Dict = intermediate_size lowercase__ : List[str] = hidden_act lowercase__ : Dict = hidden_dropout_prob lowercase__ : Tuple = attention_probs_dropout_prob lowercase__ : List[str] = max_position_embeddings lowercase__ : int = type_vocab_size lowercase__ : List[str] = type_sequence_label_size lowercase__ : Union[str, Any] = initializer_range lowercase__ : Optional[int] = num_choices def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ : str = None if self.use_attention_mask: lowercase__ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ : List[str] = None if self.use_token_type_ids: lowercase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__ : Any = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _UpperCAmelCase ( self ) -> Any: lowercase__ : Optional[int] = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ : Tuple = config_and_inputs lowercase__ : Union[str, Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class UpperCAmelCase_ ( _a , unittest.TestCase): lowerCamelCase__ : Tuple = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : Union[str, Any] = FlaxAlbertModelTester(self ) @slow def _UpperCAmelCase ( self ) -> str: for model_class_name in self.all_model_classes: lowercase__ : str = model_class_name.from_pretrained('albert-base-v2' ) lowercase__ : Tuple = model(np.ones((1, 1) ) ) self.assertIsNotNone(a ) @require_flax class UpperCAmelCase_ ( unittest.TestCase): @slow def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : str = FlaxAlbertModel.from_pretrained('albert-base-v2' ) lowercase__ : Optional[int] = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) lowercase__ : Optional[Any] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) lowercase__ : Any = model(a , attention_mask=a )[0] lowercase__ : Tuple = (1, 1_1, 7_6_8) self.assertEqual(output.shape , a ) lowercase__ : Optional[Any] = np.array( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , a , atol=1e-4 ) )
645
0
"""simple docstring""" import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) _UpperCamelCase : Optional[Any] = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation="relu") ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation="relu")) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=1_28, activation="relu")) classifier.add(layers.Dense(units=1, activation="sigmoid")) # Compiling the CNN classifier.compile( optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') _UpperCamelCase : Optional[int] = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 2_55, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) _UpperCamelCase : Union[str, Any] = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 2_55) _UpperCamelCase : List[Any] = train_datagen.flow_from_directory( "dataset/training_set", target_size=(64, 64), batch_size=32, class_mode="binary" ) _UpperCamelCase : str = test_datagen.flow_from_directory( "dataset/test_set", target_size=(64, 64), batch_size=32, class_mode="binary" ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save("cnn.h5") # Part 3 - Making new predictions _UpperCamelCase : Dict = tf.keras.preprocessing.image.load_img( "dataset/single_prediction/image.png", target_size=(64, 64) ) _UpperCamelCase : Tuple = tf.keras.preprocessing.image.img_to_array(test_image) _UpperCamelCase : Any = np.expand_dims(test_image, axis=0) _UpperCamelCase : Any = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: _UpperCamelCase : Tuple = """Normal""" if result[0][0] == 1: _UpperCamelCase : int = """Abnormality detected"""
720
"""simple docstring""" from collections.abc import Sequence def a_ ( _lowerCAmelCase : Sequence[float] , _lowerCAmelCase : float ): '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(_lowerCAmelCase ) ) def a_ ( _lowerCAmelCase : Sequence[float] , _lowerCAmelCase : float ): '''simple docstring''' lowercase__ : int = 0.0 for coeff in reversed(_lowerCAmelCase ): lowercase__ : List[Any] = result * x + coeff return result if __name__ == "__main__": _UpperCamelCase : int = (0.0, 0.0, 5.0, 9.3, 7.0) _UpperCamelCase : Dict = 1_0.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
645
0
"""simple docstring""" import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase : Tuple = logging.get_logger(__name__) def a_ ( _lowerCAmelCase : Optional[int] ): '''simple docstring''' lowercase__ : List[str] = MobileNetVaConfig(layer_norm_eps=0.0_0_1 ) if "_quant" in model_name: raise ValueError('Quantized models are not supported.' ) lowercase__ : Union[str, Any] = re.match(R'^mobilenet_v1_([^_]*)_([^_]*)$' , lowerCamelCase__ ) if matches: lowercase__ : Union[str, Any] = float(matches[1] ) lowercase__ : Tuple = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". lowercase__ : Tuple = 1001 lowercase__ : Union[str, Any] = 'imagenet-1k-id2label.json' lowercase__ : List[str] = 'huggingface/label-files' lowercase__ : Any = json.load(open(hf_hub_download(lowerCamelCase__ , lowerCamelCase__ , repo_type='dataset' ) , 'r' ) ) lowercase__ : Optional[Any] = {int(lowerCamelCase__ ) + 1: v for k, v in idalabel.items()} lowercase__ : int = 'background' lowercase__ : str = idalabel lowercase__ : Any = {v: k for k, v in idalabel.items()} return config def a_ ( ): '''simple docstring''' lowercase__ : Tuple = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowercase__ : Optional[int] = Image.open(requests.get(lowerCamelCase__ , stream=lowerCamelCase__ ).raw ) return im @torch.no_grad() def a_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Dict=False ): '''simple docstring''' lowercase__ : int = get_mobilenet_va_config(lowerCamelCase__ ) # Load 🤗 model lowercase__ : Union[str, Any] = MobileNetVaForImageClassification(lowerCamelCase__ ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor lowercase__ : Union[str, Any] = MobileNetVaImageProcessor( crop_size={'width': config.image_size, 'height': config.image_size} , size={'shortest_edge': config.image_size + 32} , ) lowercase__ : Any = image_processor(images=prepare_img() , return_tensors='pt' ) lowercase__ : int = model(**lowerCamelCase__ ) lowercase__ : List[Any] = outputs.logits assert logits.shape == (1, 1001) if model_name == "mobilenet_v1_1.0_224": lowercase__ : Any = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] ) elif model_name == "mobilenet_v1_0.75_192": lowercase__ : Any = torch.tensor([-3.9_4_4_0, -2.3_1_4_1, -0.3_3_3_3] ) else: lowercase__ : Any = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , lowerCamelCase__ , atol=1E-4 ) Path(lowerCamelCase__ ).mkdir(exist_ok=lowerCamelCase__ ) print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCamelCase__ ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowerCamelCase__ ) if push_to_hub: print('Pushing to the hub...' ) lowercase__ : Union[str, Any] = 'google/' + model_name image_processor.push_to_hub(lowerCamelCase__ ) model.push_to_hub(lowerCamelCase__ ) if __name__ == "__main__": _UpperCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="mobilenet_v1_1.0_224", type=str, help="Name of the MobileNetV1 model you\'d like to convert. Should in the form \'mobilenet_v1_<depth>_<size>\'.", ) parser.add_argument( "--checkpoint_path", required=True, type=str, help="Path to the original TensorFlow checkpoint (.ckpt file)." ) parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) _UpperCamelCase : Optional[int] = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
721
"""simple docstring""" import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path _UpperCamelCase : Any = [ {"dataset": "wikipedia", "config_name": "20220301.de"}, {"dataset": "wikipedia", "config_name": "20220301.en"}, {"dataset": "wikipedia", "config_name": "20220301.fr"}, {"dataset": "wikipedia", "config_name": "20220301.frr"}, {"dataset": "wikipedia", "config_name": "20220301.it"}, {"dataset": "wikipedia", "config_name": "20220301.simple"}, {"dataset": "snli", "config_name": "plain_text"}, {"dataset": "eli5", "config_name": "LFQA_reddit"}, {"dataset": "wiki40b", "config_name": "en"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.compressed"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.no_index"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.multiset.no_index"}, {"dataset": "natural_questions", "config_name": "default"}, ] def a_ ( _lowerCAmelCase : Optional[Any]=True ): '''simple docstring''' if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=_a)) class UpperCAmelCase_ ( _a): lowerCamelCase__ : str = None lowerCamelCase__ : Optional[Any] = None def _UpperCAmelCase ( self , a , a ) -> List[Any]: with TemporaryDirectory() as tmp_dir: lowercase__ : List[str] = dataset_module_factory(a , cache_dir=a ) lowercase__ : List[Any] = import_main_class(dataset_module.module_path , dataset=a ) lowercase__ : DatasetBuilder = builder_cls( cache_dir=a , config_name=a , hash=dataset_module.hash , ) lowercase__ : Union[str, Any] = '/'.join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=a ).replace(os.sep , '/' ), config.DATASET_INFO_FILENAME, ] ) lowercase__ : Union[str, Any] = cached_path(a , cache_dir=a ) self.assertTrue(os.path.exists(a ) ) @pytest.mark.integration def a_ ( _lowerCAmelCase : str ): '''simple docstring''' lowercase__ : Union[str, Any] = tmp_path_factory.mktemp('test_hf_gcp' ) / 'test_wikipedia_simple' lowercase__ : int = dataset_module_factory('wikipedia' , cache_dir=_lowerCAmelCase ) lowercase__ : Optional[int] = import_main_class(dataset_module.module_path ) lowercase__ : DatasetBuilder = builder_cls( cache_dir=_lowerCAmelCase , config_name='20220301.frr' , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam lowercase__ : Optional[int] = None builder_instance.download_and_prepare() lowercase__ : Optional[int] = builder_instance.as_dataset() assert ds @pytest.mark.integration def a_ ( _lowerCAmelCase : Optional[Any] ): '''simple docstring''' lowercase__ : Optional[int] = dataset_module_factory('wikipedia' , cache_dir=_lowerCAmelCase ) lowercase__ : List[str] = import_main_class(dataset_module.module_path , dataset=_lowerCAmelCase ) lowercase__ : DatasetBuilder = builder_cls( cache_dir=_lowerCAmelCase , config_name='20220301.frr' , hash=dataset_module.hash , ) lowercase__ : Union[str, Any] = builder_instance.as_streaming_dataset() assert ds assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert "train" in ds assert isinstance(ds['train'] , _lowerCAmelCase ) assert next(iter(ds['train'] ) )
645
0
"""simple docstring""" import math def a_ ( _lowerCAmelCase : int ): '''simple docstring''' lowercase__ : Tuple = [True] * n lowercase__ : Optional[Any] = False lowercase__ : Dict = False lowercase__ : Dict = True for i in range(3 , int(n**0.5 + 1 ) , 2 ): lowercase__ : int = i * 2 while index < n: lowercase__ : Any = False lowercase__ : List[str] = index + i lowercase__ : Optional[Any] = [2] for i in range(3 , _lowerCAmelCase , 2 ): if is_prime[i]: primes.append(_lowerCAmelCase ) return primes def a_ ( _lowerCAmelCase : int = 9999_6666_3333 ): '''simple docstring''' lowercase__ : Any = math.floor(math.sqrt(_lowerCAmelCase ) ) + 100 lowercase__ : Dict = prime_sieve(_lowerCAmelCase ) lowercase__ : str = 0 lowercase__ : Tuple = 0 lowercase__ : Any = primes[prime_index] while (last_prime**2) <= limit: lowercase__ : Optional[Any] = primes[prime_index + 1] lowercase__ : str = last_prime**2 lowercase__ : Dict = next_prime**2 # Get numbers divisible by lps(current) lowercase__ : List[str] = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) lowercase__ : List[Any] = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps lowercase__ : Union[str, Any] = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair lowercase__ : str = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
700
"""simple docstring""" import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def a_ ( _lowerCAmelCase : dict ): '''simple docstring''' return (data["data"], data["target"]) def a_ ( _lowerCAmelCase : np.ndarray , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : np.ndarray ): '''simple docstring''' lowercase__ : Any = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(_lowerCAmelCase , _lowerCAmelCase ) # Predict target for test data lowercase__ : str = xgb.predict(_lowerCAmelCase ) lowercase__ : Union[str, Any] = predictions.reshape(len(_lowerCAmelCase ) , 1 ) return predictions def a_ ( ): '''simple docstring''' lowercase__ : Optional[Any] = fetch_california_housing() lowercase__ , lowercase__ : str = data_handling(_lowerCAmelCase ) lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = train_test_split( _lowerCAmelCase , _lowerCAmelCase , test_size=0.2_5 , random_state=1 ) lowercase__ : Any = xgboost(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Error printing print(f"""Mean Absolute Error : {mean_absolute_error(_lowerCAmelCase , _lowerCAmelCase )}""" ) print(f"""Mean Square Error : {mean_squared_error(_lowerCAmelCase , _lowerCAmelCase )}""" ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
645
0
"""simple docstring""" from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=_a) class UpperCAmelCase_ ( _a): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization lowerCamelCase__ : str = field(default="summarization" , metadata={"include_in_asdict_even_if_is_default": True}) lowerCamelCase__ : ClassVar[Features] = Features({"text": Value("string")}) lowerCamelCase__ : ClassVar[Features] = Features({"summary": Value("string")}) lowerCamelCase__ : str = "text" lowerCamelCase__ : str = "summary" @property def _UpperCAmelCase ( self ) -> Dict[str, str]: return {self.text_column: "text", self.summary_column: "summary"}
701
"""simple docstring""" import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class UpperCAmelCase_ : def __init__( self , a , a=1_3 , a=1_0 , a=3 , a=2 , a=2 , a=2 , a=True , a=True , a=3_2 , a=5 , a=4 , a=3_7 , a="gelu" , a=0.1 , a=0.1 , a=1_0 , a=0.02 , a=0.9 , a=None , ) -> Optional[Any]: lowercase__ : str = parent lowercase__ : int = batch_size lowercase__ : Union[str, Any] = image_size lowercase__ : Optional[Any] = num_channels lowercase__ : Dict = patch_size lowercase__ : Tuple = tubelet_size lowercase__ : Optional[int] = num_frames lowercase__ : Optional[int] = is_training lowercase__ : int = use_labels lowercase__ : Optional[int] = hidden_size lowercase__ : Union[str, Any] = num_hidden_layers lowercase__ : Optional[int] = num_attention_heads lowercase__ : Any = intermediate_size lowercase__ : str = hidden_act lowercase__ : List[Any] = hidden_dropout_prob lowercase__ : str = attention_probs_dropout_prob lowercase__ : Union[str, Any] = type_sequence_label_size lowercase__ : List[Any] = initializer_range lowercase__ : str = mask_ratio lowercase__ : Optional[Any] = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame lowercase__ : Optional[Any] = (image_size // patch_size) ** 2 lowercase__ : str = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos lowercase__ : str = int(mask_ratio * self.seq_length ) def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : int = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) lowercase__ : int = None if self.use_labels: lowercase__ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ : Dict = self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self ) -> Tuple: return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a , initializer_range=self.initializer_range , ) def _UpperCAmelCase ( self , a , a , a ) -> Optional[int]: lowercase__ : Dict = VideoMAEModel(config=a ) model.to(a ) model.eval() lowercase__ : Tuple = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self , a , a , a ) -> Union[str, Any]: lowercase__ : str = VideoMAEForPreTraining(a ) model.to(a ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowercase__ : Any = torch.ones((self.num_masks,) ) lowercase__ : str = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) lowercase__ : Optional[int] = mask.expand(self.batch_size , -1 ).bool() lowercase__ : str = model(a , a ) # model only returns predictions for masked patches lowercase__ : str = mask.sum().item() lowercase__ : int = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def _UpperCAmelCase ( self ) -> str: lowercase__ : Dict = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = config_and_inputs lowercase__ : List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _a , _a , unittest.TestCase): lowerCamelCase__ : Tuple = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) lowerCamelCase__ : Optional[int] = ( {"feature-extraction": VideoMAEModel, "video-classification": VideoMAEForVideoClassification} if is_torch_available() else {} ) lowerCamelCase__ : Any = False lowerCamelCase__ : Any = False lowerCamelCase__ : Union[str, Any] = False lowerCamelCase__ : str = False def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Optional[Any] = VideoMAEModelTester(self ) lowercase__ : Optional[Any] = ConfigTester(self , config_class=a , has_text_modality=a , hidden_size=3_7 ) def _UpperCAmelCase ( self , a , a , a=False ) -> Optional[int]: lowercase__ : Union[str, Any] = copy.deepcopy(a ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowercase__ : Optional[Any] = torch.ones((self.model_tester.num_masks,) ) lowercase__ : Any = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) lowercase__ : Any = mask.expand(self.model_tester.batch_size , -1 ).bool() lowercase__ : Union[str, Any] = bool_masked_pos.to(a ) if return_labels: if model_class in [ *get_values(a ), ]: lowercase__ : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a ) return inputs_dict def _UpperCAmelCase ( self ) -> Tuple: self.config_tester.run_common_tests() @unittest.skip(reason='VideoMAE does not use inputs_embeds' ) def _UpperCAmelCase ( self ) -> Dict: pass def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : int = model_class(a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase__ : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a , nn.Linear ) ) def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[str] = model_class(a ) lowercase__ : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Optional[Any] = [*signature.parameters.keys()] lowercase__ : int = ['pixel_values'] self.assertListEqual(arg_names[:1] , a ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*a ) @slow def _UpperCAmelCase ( self ) -> str: for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : List[Any] = VideoMAEModel.from_pretrained(a ) self.assertIsNotNone(a ) def _UpperCAmelCase ( self ) -> Optional[Any]: if not self.has_attentions: pass else: lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : str = True for model_class in self.all_model_classes: lowercase__ : Union[str, Any] = self.model_tester.seq_length - self.model_tester.num_masks lowercase__ : Any = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) lowercase__ : Optional[Any] = True lowercase__ : int = False lowercase__ : Any = True lowercase__ : List[str] = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : Optional[int] = model(**self._prepare_for_class(a , a ) ) lowercase__ : Dict = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase__ : str = True lowercase__ : List[str] = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : List[Any] = model(**self._prepare_for_class(a , a ) ) lowercase__ : Optional[Any] = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowercase__ : List[str] = len(a ) # Check attention is always last and order is fine lowercase__ : Optional[int] = True lowercase__ : List[str] = True lowercase__ : int = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : List[str] = model(**self._prepare_for_class(a , a ) ) self.assertEqual(out_len + 1 , len(a ) ) lowercase__ : int = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def _UpperCAmelCase ( self ) -> Optional[int]: def check_hidden_states_output(a , a , a ): lowercase__ : Optional[int] = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : Optional[Any] = model(**self._prepare_for_class(a , a ) ) lowercase__ : Optional[int] = outputs.hidden_states lowercase__ : List[Any] = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(a ) , a ) lowercase__ : Optional[Any] = self.model_tester.seq_length - self.model_tester.num_masks lowercase__ : Union[str, Any] = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowercase__ , lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Tuple = True check_hidden_states_output(a , a , a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : Union[str, Any] = True check_hidden_states_output(a , a , a ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _UpperCAmelCase ( self ) -> List[Any]: pass def a_ ( ): '''simple docstring''' lowercase__ : int = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename='eating_spaghetti.npy' , repo_type='dataset' ) lowercase__ : str = np.load(_lowerCAmelCase ) return list(_lowerCAmelCase ) @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase): @cached_property def _UpperCAmelCase ( self ) -> Optional[Any]: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def _UpperCAmelCase ( self ) -> int: lowercase__ : Dict = VideoMAEForVideoClassification.from_pretrained('MCG-NJU/videomae-base-finetuned-kinetics' ).to( a ) lowercase__ : str = self.default_image_processor lowercase__ : List[str] = prepare_video() lowercase__ : int = image_processor(a , return_tensors='pt' ).to(a ) # forward pass with torch.no_grad(): lowercase__ : Union[str, Any] = model(**a ) # verify the logits lowercase__ : str = torch.Size((1, 4_0_0) ) self.assertEqual(outputs.logits.shape , a ) lowercase__ : List[Any] = torch.tensor([0.3_669, -0.0_688, -0.2_421] ).to(a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a , atol=1e-4 ) ) @slow def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Optional[int] = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short' ).to(a ) lowercase__ : Optional[Any] = self.default_image_processor lowercase__ : List[str] = prepare_video() lowercase__ : str = image_processor(a , return_tensors='pt' ).to(a ) # add boolean mask, indicating which patches to mask lowercase__ : Union[str, Any] = hf_hub_download(repo_id='hf-internal-testing/bool-masked-pos' , filename='bool_masked_pos.pt' ) lowercase__ : str = torch.load(a ) # forward pass with torch.no_grad(): lowercase__ : List[Any] = model(**a ) # verify the logits lowercase__ : Dict = torch.Size([1, 1_4_0_8, 1_5_3_6] ) lowercase__ : List[str] = torch.tensor( [[0.7_994, 0.9_612, 0.8_508], [0.7_401, 0.8_958, 0.8_302], [0.5_862, 0.7_468, 0.7_325]] , device=a ) self.assertEqual(outputs.logits.shape , a ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , a , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) lowercase__ : List[Any] = torch.tensor([0.5_142] , device=a ) self.assertTrue(torch.allclose(outputs.loss , a , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) lowercase__ : Tuple = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short' , norm_pix_loss=a ).to( a ) with torch.no_grad(): lowercase__ : Any = model(**a ) lowercase__ : List[Any] = torch.tensor(torch.tensor([0.6_469] ) , device=a ) self.assertTrue(torch.allclose(outputs.loss , a , atol=1e-4 ) )
645
0
"""simple docstring""" from __future__ import annotations import typing from collections.abc import Iterable import numpy as np _UpperCamelCase : Any = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 _UpperCamelCase : str = typing.Union[np.floataa, int, float] # noqa: UP007 def a_ ( _lowerCAmelCase : Vector , _lowerCAmelCase : Vector ): '''simple docstring''' return np.sqrt(np.sum((np.asarray(_lowerCAmelCase ) - np.asarray(_lowerCAmelCase )) ** 2 ) ) def a_ ( _lowerCAmelCase : Vector , _lowerCAmelCase : Vector ): '''simple docstring''' return sum((va - va) ** 2 for va, va in zip(_lowerCAmelCase , _lowerCAmelCase ) ) ** (1 / 2) if __name__ == "__main__": def a_ ( ): '''simple docstring''' from timeit import timeit print('Without Numpy' ) print( timeit( 'euclidean_distance_no_np([1, 2, 3], [4, 5, 6])' , number=1_0000 , globals=globals() , ) ) print('With Numpy' ) print( timeit( 'euclidean_distance([1, 2, 3], [4, 5, 6])' , number=1_0000 , globals=globals() , ) ) benchmark()
702
"""simple docstring""" import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() _UpperCamelCase : Dict = logging.get_logger(__name__) _UpperCamelCase : List[Any] = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "encoder.layer_norm_for_extract": "layer_norm_for_extract", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "label_embs_concat": "label_embeddings_concat", "mask_emb": "masked_spec_embed", "spk_proj": "speaker_proj", } _UpperCamelCase : List[str] = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "label_embeddings_concat", "speaker_proj", "layer_norm_for_extract", ] def a_ ( _lowerCAmelCase : Any , _lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple ): '''simple docstring''' for attribute in key.split('.' ): lowercase__ : Dict = getattr(_lowerCAmelCase , _lowerCAmelCase ) if weight_type is not None: lowercase__ : Optional[int] = getattr(_lowerCAmelCase , _lowerCAmelCase ).shape else: lowercase__ : Optional[int] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowercase__ : Optional[Any] = value elif weight_type == "weight_g": lowercase__ : Dict = value elif weight_type == "weight_v": lowercase__ : List[str] = value elif weight_type == "bias": lowercase__ : Optional[Any] = value else: lowercase__ : List[str] = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def a_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] ): '''simple docstring''' lowercase__ : Tuple = [] lowercase__ : List[str] = fairseq_model.state_dict() lowercase__ : Union[str, Any] = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): lowercase__ : Optional[int] = False if "conv_layers" in name: load_conv_layer( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , hf_model.config.feat_extract_norm == 'group' , ) lowercase__ : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): lowercase__ : List[Any] = 'unispeech_sat.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('.' )[:-1] ) != key): # special case since naming is very similar continue lowercase__ : int = True if "*" in mapped_key: lowercase__ : Optional[int] = name.split(_lowerCAmelCase )[0].split('.' )[-2] lowercase__ : List[str] = mapped_key.replace('*' , _lowerCAmelCase ) if "weight_g" in name: lowercase__ : List[Any] = 'weight_g' elif "weight_v" in name: lowercase__ : int = 'weight_v' elif "bias" in name: lowercase__ : Dict = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj lowercase__ : Union[str, Any] = 'weight' else: lowercase__ : int = None set_recursively(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) continue if not is_used: unused_weights.append(_lowerCAmelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def a_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : Dict ): '''simple docstring''' lowercase__ : int = full_name.split('conv_layers.' )[-1] lowercase__ : int = name.split('.' ) lowercase__ : int = int(items[0] ) lowercase__ : Dict = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowercase__ : Union[str, Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowercase__ : Optional[int] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) lowercase__ : List[Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) lowercase__ : int = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_lowerCAmelCase ) @torch.no_grad() def a_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : str=None , _lowerCAmelCase : Tuple=True ): '''simple docstring''' if config_path is not None: lowercase__ : Any = UniSpeechSatConfig.from_pretrained(_lowerCAmelCase ) else: lowercase__ : Any = UniSpeechSatConfig() lowercase__ : Union[str, Any] = '' if is_finetuned: lowercase__ : Optional[Any] = UniSpeechSatForCTC(_lowerCAmelCase ) else: lowercase__ : List[Any] = UniSpeechSatForPreTraining(_lowerCAmelCase ) lowercase__ , lowercase__ , lowercase__ : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) lowercase__ : Union[str, Any] = model[0].eval() recursively_load_weights(_lowerCAmelCase , _lowerCAmelCase ) hf_wavavec.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": _UpperCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _UpperCamelCase : str = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
645
0
"""simple docstring""" def a_ ( _lowerCAmelCase , _lowerCAmelCase ): '''simple docstring''' lowercase__ : Any = len(_lowerCAmelCase ) lowercase__ : List[str] = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): lowercase__ : str = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): lowercase__ : Dict = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: lowercase__ : Optional[Any] = subset[i - 1][j] if arr[i - 1] <= j: lowercase__ : str = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
703
"""simple docstring""" import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class UpperCAmelCase_ : def __init__( self , a , a=1_3 , a=3_2 , a=2 , a=3 , a=1_6 , a=[1, 2, 1] , a=[2, 2, 4] , a=2 , a=2.0 , a=True , a=0.0 , a=0.0 , a=0.1 , a="gelu" , a=False , a=True , a=0.02 , a=1e-5 , a=True , a=None , a=True , a=1_0 , a=8 , a=["stage1", "stage2", "stage3"] , a=[1, 2, 3] , ) -> int: lowercase__ : int = parent lowercase__ : Union[str, Any] = batch_size lowercase__ : Dict = image_size lowercase__ : str = patch_size lowercase__ : Optional[Any] = num_channels lowercase__ : List[str] = embed_dim lowercase__ : Any = depths lowercase__ : Dict = num_heads lowercase__ : List[str] = window_size lowercase__ : int = mlp_ratio lowercase__ : Tuple = qkv_bias lowercase__ : Union[str, Any] = hidden_dropout_prob lowercase__ : str = attention_probs_dropout_prob lowercase__ : Tuple = drop_path_rate lowercase__ : List[str] = hidden_act lowercase__ : Optional[Any] = use_absolute_embeddings lowercase__ : Optional[Any] = patch_norm lowercase__ : Any = layer_norm_eps lowercase__ : List[Any] = initializer_range lowercase__ : List[str] = is_training lowercase__ : int = scope lowercase__ : Optional[int] = use_labels lowercase__ : List[Any] = type_sequence_label_size lowercase__ : List[str] = encoder_stride lowercase__ : Optional[Any] = out_features lowercase__ : Dict = out_indices def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : Optional[Any] = None if self.use_labels: lowercase__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ : Tuple = self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self ) -> Union[str, Any]: return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def _UpperCAmelCase ( self , a , a , a ) -> Dict: lowercase__ : Tuple = MaskFormerSwinModel(config=a ) model.to(a ) model.eval() lowercase__ : str = model(a ) lowercase__ : str = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowercase__ : Dict = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def _UpperCAmelCase ( self , a , a , a ) -> Optional[int]: lowercase__ : List[Any] = MaskFormerSwinBackbone(config=a ) model.to(a ) model.eval() lowercase__ : int = model(a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [1_3, 1_6, 1_6, 1_6] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [1_6, 3_2, 6_4] ) # verify ValueError with self.parent.assertRaises(a ): lowercase__ : Dict = ['stem'] lowercase__ : List[str] = MaskFormerSwinBackbone(config=a ) def _UpperCAmelCase ( self ) -> str: lowercase__ : int = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Tuple = config_and_inputs lowercase__ : Union[str, Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _a , _a , unittest.TestCase): lowerCamelCase__ : Optional[int] = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) lowerCamelCase__ : List[str] = {"feature-extraction": MaskFormerSwinModel} if is_torch_available() else {} lowerCamelCase__ : str = False lowerCamelCase__ : Dict = False lowerCamelCase__ : Any = False lowerCamelCase__ : Dict = False lowerCamelCase__ : int = False def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : str = MaskFormerSwinModelTester(self ) lowercase__ : Tuple = ConfigTester(self , config_class=a , embed_dim=3_7 ) @require_torch_multi_gpu @unittest.skip( reason=( '`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with' ' `nn.DataParallel`' ) ) def _UpperCAmelCase ( self ) -> Optional[int]: pass def _UpperCAmelCase ( self ) -> Tuple: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _UpperCAmelCase ( self ) -> str: return def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*a ) @unittest.skip('Swin does not use inputs_embeds' ) def _UpperCAmelCase ( self ) -> Tuple: pass @unittest.skip('Swin does not support feedforward chunking' ) def _UpperCAmelCase ( self ) -> Tuple: pass def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[str] = model_class(a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase__ : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a , nn.Linear ) ) def _UpperCAmelCase ( self ) -> str: lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Any = model_class(a ) lowercase__ : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Optional[Any] = [*signature.parameters.keys()] lowercase__ : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , a ) @unittest.skip(reason='MaskFormerSwin is only used as backbone and doesn\'t support output_attentions' ) def _UpperCAmelCase ( self ) -> List[Any]: pass @unittest.skip(reason='MaskFormerSwin is only used as an internal backbone' ) def _UpperCAmelCase ( self ) -> int: pass def _UpperCAmelCase ( self , a , a , a , a ) -> Tuple: lowercase__ : Dict = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : str = model(**self._prepare_for_class(a , a ) ) lowercase__ : List[Any] = outputs.hidden_states lowercase__ : str = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(a ) , a ) # Swin has a different seq_length lowercase__ : Dict = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase__ : Tuple = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ , lowercase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : List[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: lowercase__ : List[str] = True self.check_hidden_states_output(a , a , a , a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : List[str] = True self.check_hidden_states_output(a , a , a , a ) def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Union[str, Any] = 3 lowercase__ : str = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowercase__ : Tuple = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase__ : Optional[int] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowercase__ : List[str] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: lowercase__ : List[str] = True self.check_hidden_states_output(a , a , a , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : int = True self.check_hidden_states_output(a , a , a , (padded_height, padded_width) ) @unittest.skip(reason='MaskFormerSwin doesn\'t have pretrained checkpoints' ) def _UpperCAmelCase ( self ) -> Optional[int]: pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def _UpperCAmelCase ( self ) -> Any: pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def _UpperCAmelCase ( self ) -> Any: pass def _UpperCAmelCase ( self ) -> Any: lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(a ): lowercase__ : Union[str, Any] = 0 return t def check_equivalence(a , a , a , a={} ): with torch.no_grad(): lowercase__ : Optional[Any] = model(**a , return_dict=a , **a ) lowercase__ : Optional[int] = model(**a , return_dict=a , **a ).to_tuple() def recursive_check(a , a ): if isinstance(a , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(a , a ): recursive_check(a , a ) elif isinstance(a , a ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(a , a ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(a ) , set_nan_tensor_to_zero(a ) , atol=1e-5 ) , msg=( 'Tuple and dict output are not equal. Difference:' f""" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:""" f""" {torch.isnan(a ).any()} and `inf`: {torch.isinf(a )}. Dict has""" f""" `nan`: {torch.isnan(a ).any()} and `inf`: {torch.isinf(a )}.""" ) , ) recursive_check(a , a ) for model_class in self.all_model_classes: lowercase__ : Any = model_class(a ) model.to(a ) model.eval() lowercase__ : Tuple = self._prepare_for_class(a , a ) lowercase__ : Optional[Any] = self._prepare_for_class(a , a ) check_equivalence(a , a , a ) lowercase__ : Any = self._prepare_for_class(a , a , return_labels=a ) lowercase__ : List[Any] = self._prepare_for_class(a , a , return_labels=a ) check_equivalence(a , a , a ) lowercase__ : Any = self._prepare_for_class(a , a ) lowercase__ : int = self._prepare_for_class(a , a ) check_equivalence(a , a , a , {'output_hidden_states': True} ) lowercase__ : Dict = self._prepare_for_class(a , a , return_labels=a ) lowercase__ : Optional[int] = self._prepare_for_class(a , a , return_labels=a ) check_equivalence(a , a , a , {'output_hidden_states': True} ) @require_torch class UpperCAmelCase_ ( unittest.TestCase , _a): lowerCamelCase__ : Dict = (MaskFormerSwinBackbone,) if is_torch_available() else () lowerCamelCase__ : Optional[int] = MaskFormerSwinConfig def _UpperCAmelCase ( self ) -> Dict: lowercase__ : Optional[int] = MaskFormerSwinModelTester(self ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : int = inputs_dict['pixel_values'].shape[0] for backbone_class in self.all_model_classes: lowercase__ : Optional[Any] = backbone_class(a ) backbone.to(a ) backbone.eval() lowercase__ : Union[str, Any] = backbone(**a ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , a ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True lowercase__ : List[str] = backbone(**a , output_hidden_states=a ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) lowercase__ , lowercase__ , lowercase__ : int = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: lowercase__ : List[Any] = backbone(**a , output_attentions=a ) self.assertIsNotNone(outputs.attentions )
645
0
"""simple docstring""" def a_ ( _lowerCAmelCase : int ): '''simple docstring''' if bit_count < 0: raise ValueError('The given input must be positive' ) # get the generated string sequence lowercase__ : Any = gray_code_sequence_string(_lowerCAmelCase ) # # convert them to integers for i in range(len(_lowerCAmelCase ) ): lowercase__ : List[Any] = int(sequence[i] , 2 ) return sequence def a_ ( _lowerCAmelCase : int ): '''simple docstring''' if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] lowercase__ : List[str] = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits lowercase__ : List[str] = gray_code_sequence_string(bit_count - 1 ) lowercase__ : Optional[int] = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): lowercase__ : int = '0' + smaller_sequence[i] sequence.append(_lowerCAmelCase ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): lowercase__ : List[str] = '1' + smaller_sequence[i] sequence.append(_lowerCAmelCase ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
704
"""simple docstring""" import math def a_ ( _lowerCAmelCase : int = 100 ): '''simple docstring''' lowercase__ : Union[str, Any] = sum(i * i for i in range(1 , n + 1 ) ) lowercase__ : str = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f'''{solution() = }''')
645
0
"""simple docstring""" from sklearn.metrics import fa_score import datasets _UpperCamelCase : int = "\nThe F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:\nF1 = 2 * (precision * recall) / (precision + recall)\n" _UpperCamelCase : Tuple = "\nArgs:\n predictions (`list` of `int`): Predicted labels.\n references (`list` of `int`): Ground truth labels.\n labels (`list` of `int`): The set of labels to include when `average` is not set to `'binary'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.\n pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.\n average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n\n - 'binary': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.\n - 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives.\n - 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - 'weighted': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.\n - 'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n sample_weight (`list` of `float`): Sample weights Defaults to None.\n\nReturns:\n f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.\n\nExamples:\n\n Example 1-A simple binary example\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])\n >>> print(results)\n {'f1': 0.5}\n\n Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)\n >>> print(round(results['f1'], 2))\n 0.67\n\n Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])\n >>> print(round(results['f1'], 2))\n 0.35\n\n Example 4-A multiclass example, with different values for the `average` input.\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"macro\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"micro\")\n >>> print(round(results['f1'], 2))\n 0.33\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"weighted\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'f1': array([0.8, 0. , 0. ])}\n" _UpperCamelCase : Optional[int] = "\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class UpperCAmelCase_ ( datasets.Metric): def _UpperCAmelCase ( self ) -> str: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('int32' ) ), 'references': datasets.Sequence(datasets.Value('int32' ) ), } if self.config_name == 'multilabel' else { 'predictions': datasets.Value('int32' ), 'references': datasets.Value('int32' ), } ) , reference_urls=['https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'] , ) def _UpperCAmelCase ( self , a , a , a=None , a=1 , a="binary" , a=None ) -> Dict: lowercase__ : Any = fa_score( a , a , labels=a , pos_label=a , average=a , sample_weight=a ) return {"f1": float(a ) if score.size == 1 else score}
705
"""simple docstring""" import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class UpperCAmelCase_ ( unittest.TestCase): def _UpperCAmelCase ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() def _UpperCAmelCase ( self ) -> Tuple: lowercase__ , lowercase__ : str = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-canny' , from_pt=a , dtype=jnp.bfloataa ) lowercase__ , lowercase__ : List[str] = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , controlnet=a , from_pt=a , dtype=jnp.bfloataa ) lowercase__ : List[Any] = controlnet_params lowercase__ : int = 'bird' lowercase__ : List[Any] = jax.device_count() lowercase__ : Dict = pipe.prepare_text_inputs([prompts] * num_samples ) lowercase__ : Union[str, Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png' ) lowercase__ : Optional[int] = pipe.prepare_image_inputs([canny_image] * num_samples ) lowercase__ : List[Any] = jax.random.PRNGKey(0 ) lowercase__ : Tuple = jax.random.split(a , jax.device_count() ) lowercase__ : str = replicate(a ) lowercase__ : List[str] = shard(a ) lowercase__ : Dict = shard(a ) lowercase__ : List[Any] = pipe( prompt_ids=a , image=a , params=a , prng_seed=a , num_inference_steps=5_0 , jit=a , ).images assert images.shape == (jax.device_count(), 1, 7_6_8, 5_1_2, 3) lowercase__ : Any = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowercase__ : Tuple = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] lowercase__ : int = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowercase__ : Optional[Any] = jnp.array( [0.167_969, 0.116_699, 0.081_543, 0.154_297, 0.132_812, 0.108_887, 0.169_922, 0.169_922, 0.205_078] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def _UpperCAmelCase ( self ) -> List[str]: lowercase__ , lowercase__ : int = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-openpose' , from_pt=a , dtype=jnp.bfloataa ) lowercase__ , lowercase__ : Optional[Any] = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , controlnet=a , from_pt=a , dtype=jnp.bfloataa ) lowercase__ : Optional[Any] = controlnet_params lowercase__ : List[Any] = 'Chef in the kitchen' lowercase__ : List[str] = jax.device_count() lowercase__ : Dict = pipe.prepare_text_inputs([prompts] * num_samples ) lowercase__ : Optional[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png' ) lowercase__ : Optional[int] = pipe.prepare_image_inputs([pose_image] * num_samples ) lowercase__ : List[str] = jax.random.PRNGKey(0 ) lowercase__ : str = jax.random.split(a , jax.device_count() ) lowercase__ : Optional[Any] = replicate(a ) lowercase__ : Optional[Any] = shard(a ) lowercase__ : List[Any] = shard(a ) lowercase__ : List[Any] = pipe( prompt_ids=a , image=a , params=a , prng_seed=a , num_inference_steps=5_0 , jit=a , ).images assert images.shape == (jax.device_count(), 1, 7_6_8, 5_1_2, 3) lowercase__ : Union[str, Any] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowercase__ : List[str] = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] lowercase__ : Optional[int] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowercase__ : str = jnp.array( [[0.271_484, 0.261_719, 0.275_391, 0.277_344, 0.279_297, 0.291_016, 0.294_922, 0.302_734, 0.302_734]] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
645
0
"""simple docstring""" import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def a_ ( ): '''simple docstring''' lowercase__ : Union[str, Any] = 'https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png' lowercase__ : str = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ).convert('RGB' ) return image def a_ ( _lowerCAmelCase : Optional[Any] ): '''simple docstring''' lowercase__ : Any = [] # fmt: off # vision encoder rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') ) rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') ) rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') ) rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') ) rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') ) rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f"""visual_encoder.blocks.{i}.norm1.weight""", f"""vision_model.encoder.layers.{i}.layer_norm1.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.norm1.bias""", f"""vision_model.encoder.layers.{i}.layer_norm1.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.norm2.weight""", f"""vision_model.encoder.layers.{i}.layer_norm2.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.norm2.bias""", f"""vision_model.encoder.layers.{i}.layer_norm2.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.attn.qkv.weight""", f"""vision_model.encoder.layers.{i}.self_attn.qkv.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.attn.proj.weight""", f"""vision_model.encoder.layers.{i}.self_attn.projection.weight""",) ) rename_keys.append((f"""visual_encoder.blocks.{i}.attn.proj.bias""", f"""vision_model.encoder.layers.{i}.self_attn.projection.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc1.weight""", f"""vision_model.encoder.layers.{i}.mlp.fc1.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc1.bias""", f"""vision_model.encoder.layers.{i}.mlp.fc1.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc2.weight""", f"""vision_model.encoder.layers.{i}.mlp.fc2.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc2.bias""", f"""vision_model.encoder.layers.{i}.mlp.fc2.bias""") ) # QFormer rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.layernorm.weight') ) rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.layernorm.bias') ) # fmt: on return rename_keys def a_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[Any] ): '''simple docstring''' lowercase__ : Optional[int] = dct.pop(_lowerCAmelCase ) lowercase__ : Optional[int] = val def a_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict ): '''simple docstring''' for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases lowercase__ : Dict = state_dict.pop(f"""visual_encoder.blocks.{i}.attn.q_bias""" ) lowercase__ : Optional[int] = state_dict.pop(f"""visual_encoder.blocks.{i}.attn.v_bias""" ) # next, set bias in the state dict lowercase__ : List[Any] = torch.cat((q_bias, torch.zeros_like(_lowerCAmelCase , requires_grad=_lowerCAmelCase ), v_bias) ) lowercase__ : Optional[int] = qkv_bias def a_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[Any] ): '''simple docstring''' lowercase__ : Optional[int] = 364 if 'coco' in model_name else 224 lowercase__ : str = BlipaVisionConfig(image_size=_lowerCAmelCase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: lowercase__ : Union[str, Any] = OPTConfig.from_pretrained('facebook/opt-2.7b' , eos_token_id=_lowerCAmelCase ).to_dict() elif "opt-6.7b" in model_name: lowercase__ : Dict = OPTConfig.from_pretrained('facebook/opt-6.7b' , eos_token_id=_lowerCAmelCase ).to_dict() elif "t5-xl" in model_name: lowercase__ : Any = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: lowercase__ : List[Any] = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() lowercase__ : List[str] = BlipaConfig(vision_config=_lowerCAmelCase , text_config=_lowerCAmelCase ) return config, image_size @torch.no_grad() def a_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : List[Any]=False ): '''simple docstring''' lowercase__ : int = ( AutoTokenizer.from_pretrained('facebook/opt-2.7b' ) if 'opt' in model_name else AutoTokenizer.from_pretrained('google/flan-t5-xl' ) ) lowercase__ : Any = tokenizer('\n' , add_special_tokens=_lowerCAmelCase ).input_ids[0] lowercase__ : Tuple = get_blipa_config(_lowerCAmelCase , eos_token_id=_lowerCAmelCase ) lowercase__ : Optional[int] = BlipaForConditionalGeneration(_lowerCAmelCase ).eval() lowercase__ : List[Any] = { 'blip2-opt-2.7b': ('blip2_opt', 'pretrain_opt2.7b'), 'blip2-opt-6.7b': ('blip2_opt', 'pretrain_opt6.7b'), 'blip2-opt-2.7b-coco': ('blip2_opt', 'caption_coco_opt2.7b'), 'blip2-opt-6.7b-coco': ('blip2_opt', 'caption_coco_opt6.7b'), 'blip2-flan-t5-xl': ('blip2_t5', 'pretrain_flant5xl'), 'blip2-flan-t5-xl-coco': ('blip2_t5', 'caption_coco_flant5xl'), 'blip2-flan-t5-xxl': ('blip2_t5', 'pretrain_flant5xxl'), } lowercase__ : int = model_name_to_original[model_name] # load original model print('Loading original model...' ) lowercase__ : List[str] = 'cuda' if torch.cuda.is_available() else 'cpu' lowercase__ : Dict = load_model_and_preprocess( name=_lowerCAmelCase , model_type=_lowerCAmelCase , is_eval=_lowerCAmelCase , device=_lowerCAmelCase ) original_model.eval() print('Done!' ) # update state dict keys lowercase__ : Optional[int] = original_model.state_dict() lowercase__ : int = create_rename_keys(_lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): lowercase__ : List[str] = state_dict.pop(_lowerCAmelCase ) if key.startswith('Qformer.bert' ): lowercase__ : Any = key.replace('Qformer.bert' , 'qformer' ) if "attention.self" in key: lowercase__ : str = key.replace('self' , 'attention' ) if "opt_proj" in key: lowercase__ : List[str] = key.replace('opt_proj' , 'language_projection' ) if "t5_proj" in key: lowercase__ : str = key.replace('t5_proj' , 'language_projection' ) if key.startswith('opt' ): lowercase__ : Dict = key.replace('opt' , 'language' ) if key.startswith('t5' ): lowercase__ : Any = key.replace('t5' , 'language' ) lowercase__ : Optional[int] = val # read in qv biases read_in_q_v_bias(_lowerCAmelCase , _lowerCAmelCase ) lowercase__ : List[Any] = hf_model.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) assert len(_lowerCAmelCase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] lowercase__ : str = load_demo_image() lowercase__ : List[Any] = vis_processors['eval'](_lowerCAmelCase ).unsqueeze(0 ).to(_lowerCAmelCase ) lowercase__ : List[str] = tokenizer(['\n'] , return_tensors='pt' ).input_ids.to(_lowerCAmelCase ) # create processor lowercase__ : Any = BlipImageProcessor( size={'height': image_size, 'width': image_size} , image_mean=_lowerCAmelCase , image_std=_lowerCAmelCase ) lowercase__ : Any = BlipaProcessor(image_processor=_lowerCAmelCase , tokenizer=_lowerCAmelCase ) lowercase__ : Any = processor(images=_lowerCAmelCase , return_tensors='pt' ).pixel_values.to(_lowerCAmelCase ) # make sure processor creates exact same pixel values assert torch.allclose(_lowerCAmelCase , _lowerCAmelCase ) original_model.to(_lowerCAmelCase ) hf_model.to(_lowerCAmelCase ) with torch.no_grad(): if "opt" in model_name: lowercase__ : List[str] = original_model({'image': original_pixel_values, 'text_input': ['']} ).logits lowercase__ : str = hf_model(_lowerCAmelCase , _lowerCAmelCase ).logits else: lowercase__ : Dict = original_model( {'image': original_pixel_values, 'text_input': ['\n'], 'text_output': ['\n']} ).logits lowercase__ : Any = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -100 ) lowercase__ : Optional[int] = hf_model(_lowerCAmelCase , _lowerCAmelCase , labels=_lowerCAmelCase ).logits assert original_logits.shape == logits.shape print('First values of original logits:' , original_logits[0, :3, :3] ) print('First values of HF logits:' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": lowercase__ : List[str] = torch.tensor( [[-41.5850, -4.4_4_4_0, -8.9_9_2_2], [-47.4322, -5.9_1_4_3, -1.7_3_4_0]] , device=_lowerCAmelCase ) assert torch.allclose(logits[0, :3, :3] , _lowerCAmelCase , atol=1E-4 ) elif model_name == "blip2-flan-t5-xl-coco": lowercase__ : Optional[int] = torch.tensor( [[-57.0109, -9.8_9_6_7, -12.6280], [-68.6578, -12.7191, -10.5065]] , device=_lowerCAmelCase ) else: # cast to same type lowercase__ : Optional[Any] = logits.dtype assert torch.allclose(original_logits.to(_lowerCAmelCase ) , _lowerCAmelCase , atol=1E-2 ) print('Looks ok!' ) print('Generating a caption...' ) lowercase__ : int = '' lowercase__ : Dict = tokenizer(_lowerCAmelCase , return_tensors='pt' ).input_ids.to(_lowerCAmelCase ) lowercase__ : int = original_model.generate({'image': original_pixel_values} ) lowercase__ : Optional[int] = hf_model.generate( _lowerCAmelCase , _lowerCAmelCase , do_sample=_lowerCAmelCase , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('Original generation:' , _lowerCAmelCase ) lowercase__ : Optional[Any] = input_ids.shape[1] lowercase__ : Tuple = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=_lowerCAmelCase ) lowercase__ : Union[str, Any] = [text.strip() for text in output_text] print('HF generation:' , _lowerCAmelCase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(_lowerCAmelCase ) hf_model.save_pretrained(_lowerCAmelCase ) if push_to_hub: processor.push_to_hub(f"""nielsr/{model_name}""" ) hf_model.push_to_hub(f"""nielsr/{model_name}""" ) if __name__ == "__main__": _UpperCamelCase : Dict = argparse.ArgumentParser() _UpperCamelCase : Any = [ "blip2-opt-2.7b", "blip2-opt-6.7b", "blip2-opt-2.7b-coco", "blip2-opt-6.7b-coco", "blip2-flan-t5-xl", "blip2-flan-t5-xl-coco", "blip2-flan-t5-xxl", ] parser.add_argument( "--model_name", default="blip2-opt-2.7b", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) _UpperCamelCase : Tuple = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
706
"""simple docstring""" from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
645
0
"""simple docstring""" _UpperCamelCase : int = { "meter": "m", "kilometer": "km", "megametre": "Mm", "gigametre": "Gm", "terametre": "Tm", "petametre": "Pm", "exametre": "Em", "zettametre": "Zm", "yottametre": "Ym", } # Exponent of the factor(meter) _UpperCamelCase : Optional[Any] = { "m": 0, "km": 3, "Mm": 6, "Gm": 9, "Tm": 12, "Pm": 15, "Em": 18, "Zm": 21, "Ym": 24, } def a_ ( _lowerCAmelCase : float , _lowerCAmelCase : str , _lowerCAmelCase : str ): '''simple docstring''' lowercase__ : Dict = from_type.lower().strip('s' ) lowercase__ : str = to_type.lower().strip('s' ) lowercase__ : Tuple = UNIT_SYMBOL.get(_lowerCAmelCase , _lowerCAmelCase ) lowercase__ : Optional[Any] = UNIT_SYMBOL.get(_lowerCAmelCase , _lowerCAmelCase ) if from_sanitized not in METRIC_CONVERSION: lowercase__ : Optional[Any] = ( f"""Invalid 'from_type' value: {from_type!r}.\n""" f"""Conversion abbreviations are: {", ".join(_lowerCAmelCase )}""" ) raise ValueError(_lowerCAmelCase ) if to_sanitized not in METRIC_CONVERSION: lowercase__ : List[str] = ( f"""Invalid 'to_type' value: {to_type!r}.\n""" f"""Conversion abbreviations are: {", ".join(_lowerCAmelCase )}""" ) raise ValueError(_lowerCAmelCase ) lowercase__ : Optional[Any] = METRIC_CONVERSION[from_sanitized] lowercase__ : str = METRIC_CONVERSION[to_sanitized] lowercase__ : Union[str, Any] = 1 if from_exponent > to_exponent: lowercase__ : int = from_exponent - to_exponent else: lowercase__ : Dict = -(to_exponent - from_exponent) return value * pow(10 , _lowerCAmelCase ) if __name__ == "__main__": from doctest import testmod testmod()
707
"""simple docstring""" import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase): @slow def _UpperCAmelCase ( self ) -> str: lowercase__ : Optional[Any] = AutoImageProcessor.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' ) lowercase__ : Union[str, Any] = AutoModelForImageClassification.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' ) model.to(a ) from datasets import load_dataset lowercase__ : str = load_dataset('nielsr/rvlcdip-demo' ) lowercase__ : Tuple = dataset['train'][0]['image'].convert('RGB' ) lowercase__ : int = image_processor(a , return_tensors='pt' ).to(a ) # forward pass with torch.no_grad(): lowercase__ : List[str] = model(**a ) lowercase__ : List[Any] = outputs.logits lowercase__ : Union[str, Any] = torch.Size((1, 1_6) ) self.assertEqual(logits.shape , a ) lowercase__ : Tuple = torch.tensor( [-0.4_158, -0.4_092, -0.4_347] , device=a , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , a , atol=1e-4 ) )
645
0
"""simple docstring""" from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def a_ ( ): lowercase__ : List[str] = ArgumentParser('Transformers CLI tool' , usage='transformers-cli <command> [<args>]' ) lowercase__ : int = parser.add_subparsers(help='transformers-cli command helpers' ) # Register commands ConvertCommand.register_subcommand(_lowerCAmelCase ) DownloadCommand.register_subcommand(_lowerCAmelCase ) EnvironmentCommand.register_subcommand(_lowerCAmelCase ) RunCommand.register_subcommand(_lowerCAmelCase ) ServeCommand.register_subcommand(_lowerCAmelCase ) UserCommands.register_subcommand(_lowerCAmelCase ) AddNewModelCommand.register_subcommand(_lowerCAmelCase ) AddNewModelLikeCommand.register_subcommand(_lowerCAmelCase ) LfsCommands.register_subcommand(_lowerCAmelCase ) PTtoTFCommand.register_subcommand(_lowerCAmelCase ) # Let's go lowercase__ : List[Any] = parser.parse_args() if not hasattr(_lowerCAmelCase , 'func' ): parser.print_help() exit(1 ) # Run lowercase__ : str = args.func(_lowerCAmelCase ) service.run() if __name__ == "__main__": main()
708
"""simple docstring""" import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class UpperCAmelCase_ : @staticmethod def _UpperCAmelCase ( *a , **a ) -> int: pass def a_ ( _lowerCAmelCase : Image ): '''simple docstring''' lowercase__ : List[str] = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class UpperCAmelCase_ ( unittest.TestCase): lowerCamelCase__ : Union[str, Any] = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def _UpperCAmelCase ( self , a , a , a ) -> Dict: lowercase__ : Union[str, Any] = DepthEstimationPipeline(model=a , image_processor=a ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def _UpperCAmelCase ( self , a , a ) -> Optional[int]: lowercase__ : Tuple = depth_estimator('./tests/fixtures/tests_samples/COCO/000000039769.png' ) self.assertEqual({'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )} , a ) import datasets lowercase__ : Tuple = datasets.load_dataset('hf-internal-testing/fixtures_image_utils' , 'image' , split='test' ) lowercase__ : List[Any] = depth_estimator( [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] ) self.assertEqual( [ {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, ] , a , ) @require_tf @unittest.skip('Depth estimation is not implemented in TF' ) def _UpperCAmelCase ( self ) -> Optional[int]: pass @slow @require_torch def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Tuple = 'Intel/dpt-large' lowercase__ : Optional[int] = pipeline('depth-estimation' , model=a ) lowercase__ : List[Any] = depth_estimator('http://images.cocodataset.org/val2017/000000039769.jpg' ) lowercase__ : Optional[Any] = hashimage(outputs['depth'] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['predicted_depth'].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs['predicted_depth'].min().item() ) , 2.662 ) @require_torch def _UpperCAmelCase ( self ) -> Optional[int]: # This is highly irregular to have no small tests. self.skipTest('There is not hf-internal-testing tiny model for either GLPN nor DPT' )
645
0
"""simple docstring""" from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record _UpperCamelCase : Any = "\\n@article{wang2019superglue,\n title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},\n author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},\n journal={arXiv preprint arXiv:1905.00537},\n year={2019}\n}\n" _UpperCamelCase : Any = "\\nSuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after\nGLUE with a new set of more difficult language understanding tasks, improved\nresources, and a new public leaderboard.\n" _UpperCamelCase : Any = "\nCompute SuperGLUE evaluation metric associated to each SuperGLUE dataset.\nArgs:\n predictions: list of predictions to score. Depending on the SuperGlUE subset:\n - for 'record': list of question-answer dictionaries with the following keys:\n - 'idx': index of the question as specified by the dataset\n - 'prediction_text': the predicted answer text\n - for 'multirc': list of question-answer dictionaries with the following keys:\n - 'idx': index of the question-answer pair as specified by the dataset\n - 'prediction': the predicted answer label\n - otherwise: list of predicted labels\n references: list of reference labels. Depending on the SuperGLUE subset:\n - for 'record': list of question-answers dictionaries with the following keys:\n - 'idx': index of the question as specified by the dataset\n - 'answers': list of possible answers\n - otherwise: list of reference labels\nReturns: depending on the SuperGLUE subset:\n - for 'record':\n - 'exact_match': Exact match between answer and gold answer\n - 'f1': F1 score\n - for 'multirc':\n - 'exact_match': Exact match between answer and gold answer\n - 'f1_m': Per-question macro-F1 score\n - 'f1_a': Average F1 score over all answers\n - for 'axb':\n 'matthews_correlation': Matthew Correlation\n - for 'cb':\n - 'accuracy': Accuracy\n - 'f1': F1 score\n - for all others:\n - 'accuracy': Accuracy\nExamples:\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'copa') # any of [\"copa\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"boolq\", \"axg\"]\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'cb')\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0, 'f1': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'record')\n >>> predictions = [{'idx': {'passage': 0, 'query': 0}, 'prediction_text': 'answer'}]\n >>> references = [{'idx': {'passage': 0, 'query': 0}, 'answers': ['answer', 'another_answer']}]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 1.0, 'f1': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'multirc')\n >>> predictions = [{'idx': {'answer': 0, 'paragraph': 0, 'question': 0}, 'prediction': 0}, {'idx': {'answer': 1, 'paragraph': 2, 'question': 3}, 'prediction': 1}]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 1.0, 'f1_m': 1.0, 'f1_a': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'axb')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'matthews_correlation': 1.0}\n" def a_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[Any] ) -> str: '''simple docstring''' return float((preds == labels).mean() ) def a_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : str , _lowerCAmelCase : Union[str, Any]="binary" ) -> Tuple: '''simple docstring''' lowercase__ : Any = simple_accuracy(_lowerCAmelCase , _lowerCAmelCase ) lowercase__ : str = float(fa_score(y_true=_lowerCAmelCase , y_pred=_lowerCAmelCase , average=_lowerCAmelCase ) ) return { "accuracy": acc, "f1": fa, } def a_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict ) -> Union[str, Any]: '''simple docstring''' lowercase__ : List[Any] = {} for id_pred, label in zip(_lowerCAmelCase , _lowerCAmelCase ): lowercase__ : str = f"""{id_pred["idx"]["paragraph"]}-{id_pred["idx"]["question"]}""" lowercase__ : Optional[Any] = id_pred['prediction'] if question_id in question_map: question_map[question_id].append((pred, label) ) else: lowercase__ : Optional[Any] = [(pred, label)] lowercase__ : List[Any] = [], [] for question, preds_labels in question_map.items(): lowercase__ : Dict = zip(*_lowerCAmelCase ) lowercase__ : Optional[Any] = fa_score(y_true=_lowerCAmelCase , y_pred=_lowerCAmelCase , average='macro' ) fas.append(_lowerCAmelCase ) lowercase__ : Any = int(sum(pred == label for pred, label in preds_labels ) == len(_lowerCAmelCase ) ) ems.append(_lowerCAmelCase ) lowercase__ : Union[str, Any] = float(sum(_lowerCAmelCase ) / len(_lowerCAmelCase ) ) lowercase__ : Dict = sum(_lowerCAmelCase ) / len(_lowerCAmelCase ) lowercase__ : Tuple = float(fa_score(y_true=_lowerCAmelCase , y_pred=[id_pred['prediction'] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class UpperCAmelCase_ ( datasets.Metric): def _UpperCAmelCase ( self ) -> Union[str, Any]: if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( 'You should supply a configuration name selected in ' '["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format='numpy' if not self.config_name == 'record' and not self.config_name == 'multirc' else None , ) def _UpperCAmelCase ( self ) -> Dict: if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value('int64' ), "query": datasets.Value('int64' ), }, "prediction_text": datasets.Value('string' ), }, "references": { "idx": { "passage": datasets.Value('int64' ), "query": datasets.Value('int64' ), }, "answers": datasets.Sequence(datasets.Value('string' ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value('int64' ), "paragraph": datasets.Value('int64' ), "question": datasets.Value('int64' ), }, "prediction": datasets.Value('int64' ), }, "references": datasets.Value('int64' ), } else: return { "predictions": datasets.Value('int64' ), "references": datasets.Value('int64' ), } def _UpperCAmelCase ( self , a , a ) -> Union[str, Any]: if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(a , a )} elif self.config_name == "cb": return acc_and_fa(a , a , fa_avg='macro' ) elif self.config_name == "record": lowercase__ : str = [ { 'qas': [ {'id': ref['idx']['query'], 'answers': [{'text': ans} for ans in ref['answers']]} for ref in references ] } ] lowercase__ : str = {pred['idx']['query']: pred['prediction_text'] for pred in predictions} return evaluate_record(a , a )[0] elif self.config_name == "multirc": return evaluate_multirc(a , a ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(a , a )} else: raise KeyError( 'You should supply a configuration name selected in ' '["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]' )
709
"""simple docstring""" import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class UpperCAmelCase_ ( _a): def __init__( self ) -> Any: lowercase__ : Tuple = [] def _UpperCAmelCase ( self , a , a , a , **a ) -> Any: self.events.append('on_init_end' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Optional[int]: self.events.append('on_train_begin' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> List[str]: self.events.append('on_train_end' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> int: self.events.append('on_epoch_begin' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Optional[Any]: self.events.append('on_epoch_end' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> int: self.events.append('on_step_begin' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> str: self.events.append('on_step_end' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> int: self.events.append('on_evaluate' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Tuple: self.events.append('on_predict' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Union[str, Any]: self.events.append('on_save' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> List[str]: self.events.append('on_log' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Any: self.events.append('on_prediction_step' ) @require_torch class UpperCAmelCase_ ( unittest.TestCase): def _UpperCAmelCase ( self ) -> str: lowercase__ : str = tempfile.mkdtemp() def _UpperCAmelCase ( self ) -> Dict: shutil.rmtree(self.output_dir ) def _UpperCAmelCase ( self , a=0 , a=0 , a=6_4 , a=6_4 , a=None , a=False , **a ) -> int: # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. lowercase__ : str = RegressionDataset(length=a ) lowercase__ : Any = RegressionDataset(length=a ) lowercase__ : Optional[Any] = RegressionModelConfig(a=a , b=a ) lowercase__ : Union[str, Any] = RegressionPreTrainedModel(a ) lowercase__ : Tuple = TrainingArguments(self.output_dir , disable_tqdm=a , report_to=[] , **a ) return Trainer( a , a , train_dataset=a , eval_dataset=a , callbacks=a , ) def _UpperCAmelCase ( self , a , a ) -> Union[str, Any]: self.assertEqual(len(a ) , len(a ) ) # Order doesn't matter lowercase__ : Optional[int] = sorted(a , key=lambda a : cb.__name__ if isinstance(a , a ) else cb.__class__.__name__ ) lowercase__ : Tuple = sorted(a , key=lambda a : cb.__name__ if isinstance(a , a ) else cb.__class__.__name__ ) for cba, cba in zip(a , a ): if isinstance(a , a ) and isinstance(a , a ): self.assertEqual(a , a ) elif isinstance(a , a ) and not isinstance(a , a ): self.assertEqual(a , cba.__class__ ) elif not isinstance(a , a ) and isinstance(a , a ): self.assertEqual(cba.__class__ , a ) else: self.assertEqual(a , a ) def _UpperCAmelCase ( self , a ) -> Optional[Any]: lowercase__ : Dict = ['on_init_end', 'on_train_begin'] lowercase__ : List[Any] = 0 lowercase__ : Optional[int] = len(trainer.get_eval_dataloader() ) lowercase__ : Tuple = ['on_prediction_step'] * len(trainer.get_eval_dataloader() ) + ['on_log', 'on_evaluate'] for _ in range(trainer.state.num_train_epochs ): expected_events.append('on_epoch_begin' ) for _ in range(a ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append('on_log' ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append('on_save' ) expected_events.append('on_epoch_end' ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : int = self.get_trainer() lowercase__ : str = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) # Callbacks passed at init are added to the default callbacks lowercase__ : str = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback lowercase__ : List[Any] = self.get_trainer(disable_tqdm=a ) lowercase__ : Optional[Any] = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) def _UpperCAmelCase ( self ) -> Any: lowercase__ : int = DEFAULT_CALLBACKS.copy() + [ProgressCallback] lowercase__ : List[str] = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(a ) expected_callbacks.remove(a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) lowercase__ : Optional[Any] = self.get_trainer() lowercase__ : List[Any] = trainer.pop_callback(a ) self.assertEqual(cb.__class__ , a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) trainer.add_callback(a ) expected_callbacks.insert(0 , a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) # We can also add, pop, or remove by instance lowercase__ : int = self.get_trainer() lowercase__ : List[str] = trainer.callback_handler.callbacks[0] trainer.remove_callback(a ) expected_callbacks.remove(a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) lowercase__ : Tuple = self.get_trainer() lowercase__ : Dict = trainer.callback_handler.callbacks[0] lowercase__ : Union[str, Any] = trainer.pop_callback(a ) self.assertEqual(a , a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) trainer.add_callback(a ) expected_callbacks.insert(0 , a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) def _UpperCAmelCase ( self ) -> Tuple: import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action='ignore' , category=a ) lowercase__ : Optional[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() lowercase__ : Any = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) # Independent log/save/eval lowercase__ : List[str] = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() lowercase__ : int = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) lowercase__ : Union[str, Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() lowercase__ : Union[str, Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) lowercase__ : List[str] = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy='steps' ) trainer.train() lowercase__ : Optional[int] = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) lowercase__ : int = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy='epoch' ) trainer.train() lowercase__ : str = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) # A bit of everything lowercase__ : Any = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=1_0 , eval_steps=5 , evaluation_strategy='steps' , ) trainer.train() lowercase__ : Any = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) # warning should be emitted for duplicated callbacks with patch('transformers.trainer_callback.logger.warning' ) as warn_mock: lowercase__ : str = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(a ) in warn_mock.call_args[0][0]
645
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class UpperCAmelCase_ : def __init__( self , a , a=1_3 , a=7 , a=True , a=True , a=True , a=True , a=9_9 , a=3_2 , a=2 , a=4 , a=3_7 , a="gelu" , a=0.1 , a=0.1 , a=5_1_2 , a=1_6 , a=2 , a=0.02 , a=3 , a=4 , a=None , ) -> List[str]: lowercase__ : Optional[Any] = parent lowercase__ : List[Any] = 1_3 lowercase__ : Union[str, Any] = 7 lowercase__ : List[str] = True lowercase__ : Dict = True lowercase__ : Tuple = True lowercase__ : str = True lowercase__ : Dict = 9_9 lowercase__ : Any = 3_2 lowercase__ : Dict = 2 lowercase__ : int = 4 lowercase__ : Optional[Any] = 3_7 lowercase__ : Any = 'gelu' lowercase__ : Optional[int] = 0.1 lowercase__ : Optional[int] = 0.1 lowercase__ : Dict = 5_1_2 lowercase__ : Union[str, Any] = 1_6 lowercase__ : Tuple = 2 lowercase__ : Dict = 0.02 lowercase__ : Any = 3 lowercase__ : Optional[int] = 4 lowercase__ : str = None def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ : Union[str, Any] = None if self.use_input_mask: lowercase__ : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ : Tuple = None if self.use_token_type_ids: lowercase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__ : int = None lowercase__ : Any = None lowercase__ : Tuple = None if self.use_labels: lowercase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__ : List[str] = ids_tensor([self.batch_size] , self.num_choices ) lowercase__ : Union[str, Any] = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=a , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCAmelCase ( self , a , a , a , a , a , a , a ) -> Optional[int]: lowercase__ : str = TFRoFormerModel(config=a ) lowercase__ : Union[str, Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ : Union[str, Any] = [input_ids, input_mask] lowercase__ : Optional[int] = model(a ) lowercase__ : Tuple = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self , a , a , a , a , a , a , a ) -> Optional[Any]: lowercase__ : Optional[Any] = True lowercase__ : Any = TFRoFormerForCausalLM(config=a ) lowercase__ : Dict = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowercase__ : Optional[int] = model(a )['logits'] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def _UpperCAmelCase ( self , a , a , a , a , a , a , a ) -> List[str]: lowercase__ : Tuple = TFRoFormerForMaskedLM(config=a ) lowercase__ : Optional[Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowercase__ : Any = model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self , a , a , a , a , a , a , a ) -> int: lowercase__ : Optional[Any] = self.num_labels lowercase__ : Dict = TFRoFormerForSequenceClassification(config=a ) lowercase__ : str = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowercase__ : int = model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCAmelCase ( self , a , a , a , a , a , a , a ) -> str: lowercase__ : Optional[int] = self.num_choices lowercase__ : Tuple = TFRoFormerForMultipleChoice(config=a ) lowercase__ : str = tf.tile(tf.expand_dims(a , 1 ) , (1, self.num_choices, 1) ) lowercase__ : Optional[Any] = tf.tile(tf.expand_dims(a , 1 ) , (1, self.num_choices, 1) ) lowercase__ : Tuple = tf.tile(tf.expand_dims(a , 1 ) , (1, self.num_choices, 1) ) lowercase__ : Union[str, Any] = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } lowercase__ : Union[str, Any] = model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _UpperCAmelCase ( self , a , a , a , a , a , a , a ) -> List[str]: lowercase__ : Any = self.num_labels lowercase__ : Dict = TFRoFormerForTokenClassification(config=a ) lowercase__ : Tuple = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowercase__ : int = model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCAmelCase ( self , a , a , a , a , a , a , a ) -> Dict: lowercase__ : Optional[int] = TFRoFormerForQuestionAnswering(config=a ) lowercase__ : List[Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowercase__ : Dict = model(a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : Tuple = self.prepare_config_and_inputs() ( lowercase__ ) : List[Any] = config_and_inputs lowercase__ : Optional[int] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase_ ( _a , _a , unittest.TestCase): lowerCamelCase__ : List[Any] = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) lowerCamelCase__ : List[str] = ( { "feature-extraction": TFRoFormerModel, "fill-mask": TFRoFormerForMaskedLM, "question-answering": TFRoFormerForQuestionAnswering, "text-classification": TFRoFormerForSequenceClassification, "text-generation": TFRoFormerForCausalLM, "token-classification": TFRoFormerForTokenClassification, "zero-shot": TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) lowerCamelCase__ : Union[str, Any] = False lowerCamelCase__ : Any = False def _UpperCAmelCase ( self , a , a , a , a , a ) -> Union[str, Any]: if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : Optional[int] = TFRoFormerModelTester(self ) lowercase__ : List[Any] = ConfigTester(self , config_class=a , hidden_size=3_7 ) def _UpperCAmelCase ( self ) -> Dict: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> str: lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _UpperCAmelCase ( self ) -> str: lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*a ) def _UpperCAmelCase ( self ) -> int: lowercase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*a ) def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*a ) def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*a ) def _UpperCAmelCase ( self ) -> Dict: lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a ) @slow def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : List[str] = TFRoFormerModel.from_pretrained('junnyu/roformer_chinese_base' ) self.assertIsNotNone(a ) @require_tf class UpperCAmelCase_ ( unittest.TestCase): @slow def _UpperCAmelCase ( self ) -> Any: lowercase__ : List[Any] = TFRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' ) lowercase__ : List[str] = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase__ : Optional[int] = model(a )[0] # TODO Replace vocab size lowercase__ : Any = 5_0_0_0_0 lowercase__ : List[Any] = [1, 6, vocab_size] self.assertEqual(output.shape , a ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. lowercase__ : Optional[Any] = tf.constant( [ [ [-0.12_053_341, -1.0_264_901, 0.29_221_946], [-1.5_133_783, 0.197_433, 0.15_190_607], [-5.0_135_403, -3.900_256, -0.84_038_764], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , a , atol=1e-4 ) @require_tf class UpperCAmelCase_ ( unittest.TestCase): lowerCamelCase__ : List[str] = 1E-4 def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Union[str, Any] = tf.constant([[4, 1_0]] ) lowercase__ : int = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) lowercase__ : List[str] = emba(input_ids.shape ) lowercase__ : Optional[Any] = tf.constant( [[0.0_000, 0.0_000, 0.0_000, 1.0_000, 1.0_000, 1.0_000], [0.8_415, 0.0_464, 0.0_022, 0.5_403, 0.9_989, 1.0_000]] ) tf.debugging.assert_near(a , a , atol=self.tolerance ) def _UpperCAmelCase ( self ) -> Any: lowercase__ : Optional[Any] = tf.constant( [ [0.0_000, 0.0_000, 0.0_000, 0.0_000, 0.0_000], [0.8_415, 0.8_219, 0.8_020, 0.7_819, 0.7_617], [0.9_093, 0.9_364, 0.9_581, 0.9_749, 0.9_870], ] ) lowercase__ : Dict = TFRoFormerSinusoidalPositionalEmbedding(num_positions=5_1_2 , embedding_dim=5_1_2 ) emba([2, 1_6, 5_1_2] ) lowercase__ : Any = emba.weight[:3, :5] tf.debugging.assert_near(a , a , atol=self.tolerance ) @require_tf class UpperCAmelCase_ ( unittest.TestCase): lowerCamelCase__ : Union[str, Any] = 1E-4 def _UpperCAmelCase ( self ) -> Any: # 2,12,16,64 lowercase__ : List[Any] = tf.reshape(tf.range(2 * 1_2 * 1_6 * 6_4 , dtype=tf.floataa ) , shape=(2, 1_2, 1_6, 6_4) ) / 1_0_0 lowercase__ : int = -tf.reshape(tf.range(2 * 1_2 * 1_6 * 6_4 , dtype=tf.floataa ) , shape=(2, 1_2, 1_6, 6_4) ) / 1_0_0 lowercase__ : List[Any] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=3_2 , embedding_dim=6_4 ) lowercase__ : str = embed_positions([2, 1_6, 7_6_8] )[None, None, :, :] lowercase__ : List[str] = TFRoFormerSelfAttention.apply_rotary_position_embeddings( a , a , a ) lowercase__ : List[Any] = tf.constant( [ [0.0_000, 0.0_100, 0.0_200, 0.0_300, 0.0_400, 0.0_500, 0.0_600, 0.0_700], [-0.2_012, 0.8_897, 0.0_263, 0.9_401, 0.2_074, 0.9_463, 0.3_481, 0.9_343], [-1.7_057, 0.6_271, -1.2_145, 1.3_897, -0.6_303, 1.7_647, -0.1_173, 1.8_985], [-2.1_731, -1.6_397, -2.7_358, 0.2_854, -2.1_840, 1.7_183, -1.3_018, 2.4_871], [0.2_717, -3.6_173, -2.9_206, -2.1_988, -3.6_638, 0.3_858, -2.9_155, 2.2_980], [3.9_859, -2.1_580, -0.7_984, -4.4_904, -4.1_181, -2.0_252, -4.4_782, 1.1_253], ] ) lowercase__ : List[Any] = tf.constant( [ [0.0_000, -0.0_100, -0.0_200, -0.0_300, -0.0_400, -0.0_500, -0.0_600, -0.0_700], [0.2_012, -0.8_897, -0.0_263, -0.9_401, -0.2_074, -0.9_463, -0.3_481, -0.9_343], [1.7_057, -0.6_271, 1.2_145, -1.3_897, 0.6_303, -1.7_647, 0.1_173, -1.8_985], [2.1_731, 1.6_397, 2.7_358, -0.2_854, 2.1_840, -1.7_183, 1.3_018, -2.4_871], [-0.2_717, 3.6_173, 2.9_206, 2.1_988, 3.6_638, -0.3_858, 2.9_155, -2.2_980], [-3.9_859, 2.1_580, 0.7_984, 4.4_904, 4.1_181, 2.0_252, 4.4_782, -1.1_253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , a , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , a , atol=self.tolerance )
710
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _UpperCamelCase : str = { "configuration_gpt_neo": ["GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoConfig", "GPTNeoOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Tuple = [ "GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoForCausalLM", "GPTNeoForQuestionAnswering", "GPTNeoForSequenceClassification", "GPTNeoForTokenClassification", "GPTNeoModel", "GPTNeoPreTrainedModel", "load_tf_weights_in_gpt_neo", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Dict = [ "FlaxGPTNeoForCausalLM", "FlaxGPTNeoModel", "FlaxGPTNeoPreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys _UpperCamelCase : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
645
0
"""simple docstring""" from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf _UpperCamelCase : Dict = logging.get_logger(__name__) @dataclass class UpperCAmelCase_ ( _a): lowerCamelCase__ : Tuple = [ "no_inference", "no_cuda", "no_tpu", "no_speed", "no_memory", "no_env_print", "no_multi_process", ] def __init__( self , **a ) -> Tuple: for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: lowercase__ : Dict = deprecated_arg[3:] lowercase__ : Tuple = not kwargs.pop(a ) logger.warning( f"""{deprecated_arg} is depreciated. Please use --no-{positive_arg} or""" f""" {positive_arg}={kwargs[positive_arg]}""" ) lowercase__ : Optional[int] = kwargs.pop('tpu_name' , self.tpu_name ) lowercase__ : List[Any] = kwargs.pop('device_idx' , self.device_idx ) lowercase__ : Optional[int] = kwargs.pop('eager_mode' , self.eager_mode ) lowercase__ : Any = kwargs.pop('use_xla' , self.use_xla ) super().__init__(**a ) lowerCamelCase__ : str = field( default=_a , metadata={"help": "Name of TPU"} , ) lowerCamelCase__ : int = field( default=0 , metadata={"help": "CPU / GPU device index. Defaults to 0."} , ) lowerCamelCase__ : bool = field(default=_a , metadata={"help": "Benchmark models in eager model."}) lowerCamelCase__ : bool = field( default=_a , metadata={ "help": "Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`." } , ) @cached_property def _UpperCAmelCase ( self ) -> Tuple["tf.distribute.cluster_resolver.TPUClusterResolver"]: requires_backends(self , ['tf'] ) lowercase__ : Any = None if self.tpu: try: if self.tpu_name: lowercase__ : List[str] = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: lowercase__ : List[str] = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: lowercase__ : List[str] = None return tpu @cached_property def _UpperCAmelCase ( self ) -> Tuple["tf.distribute.Strategy", "tf.distribute.cluster_resolver.TPUClusterResolver"]: requires_backends(self , ['tf'] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) lowercase__ : List[Any] = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , 'GPU' ) lowercase__ : int = tf.distribute.OneDeviceStrategy(device=f"""/gpu:{self.device_idx}""" ) else: tf.config.set_visible_devices([] , 'GPU' ) # disable GPU lowercase__ : str = tf.distribute.OneDeviceStrategy(device=f"""/cpu:{self.device_idx}""" ) return strategy @property def _UpperCAmelCase ( self ) -> bool: requires_backends(self , ['tf'] ) return self._setup_tpu is not None @property def _UpperCAmelCase ( self ) -> "tf.distribute.Strategy": requires_backends(self , ['tf'] ) return self._setup_strategy @property def _UpperCAmelCase ( self ) -> Union[str, Any]: requires_backends(self , ['tf'] ) return tf.config.list_physical_devices('GPU' ) @property def _UpperCAmelCase ( self ) -> int: requires_backends(self , ['tf'] ) if self.cuda: return len(self.gpu_list ) return 0 @property def _UpperCAmelCase ( self ) -> bool: return self.n_gpu > 0
711
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class UpperCAmelCase_ ( unittest.TestCase): def _UpperCAmelCase ( self , a ) -> str: for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss'] ): lowercase__ : str = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(a ) def _UpperCAmelCase ( self ) -> int: lowercase__ : Dict = 'sshleifer/tiny-gpt2' lowercase__ : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=a , multi_process=a , ) lowercase__ : str = TensorFlowBenchmark(a ) lowercase__ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> int: lowercase__ : List[str] = 'sgugger/tiny-distilbert-classification' lowercase__ : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , only_pretrain_model=a , ) lowercase__ : Optional[Any] = TensorFlowBenchmark(a ) lowercase__ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : Optional[int] = 'sshleifer/tiny-gpt2' lowercase__ : Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , ) lowercase__ : Optional[Any] = TensorFlowBenchmark(a ) lowercase__ : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : Any = 'sshleifer/tiny-gpt2' lowercase__ : List[Any] = AutoConfig.from_pretrained(a ) lowercase__ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=a , multi_process=a , ) lowercase__ : Tuple = TensorFlowBenchmark(a , [config] ) lowercase__ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> int: lowercase__ : Optional[Any] = 'sshleifer/tiny-gpt2' lowercase__ : List[str] = AutoConfig.from_pretrained(a ) lowercase__ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , ) lowercase__ : List[str] = TensorFlowBenchmark(a , [config] ) lowercase__ : Any = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Optional[Any] = 'sshleifer/tiny-gpt2' lowercase__ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , ) lowercase__ : Optional[Any] = TensorFlowBenchmark(a ) lowercase__ : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _UpperCAmelCase ( self ) -> str: lowercase__ : Optional[Any] = 'sshleifer/tiny-gpt2' lowercase__ : Optional[int] = AutoConfig.from_pretrained(a ) lowercase__ : str = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , ) lowercase__ : str = TensorFlowBenchmark(a , [config] ) lowercase__ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : List[str] = 'patrickvonplaten/t5-tiny-random' lowercase__ : Any = AutoConfig.from_pretrained(a ) lowercase__ : List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , ) lowercase__ : int = TensorFlowBenchmark(a , configs=[config] ) lowercase__ : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU' ) ) == 0 , 'Cannot do xla on CPU.' ) def _UpperCAmelCase ( self ) -> Any: lowercase__ : Any = 'sshleifer/tiny-gpt2' lowercase__ : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , use_xla=a , multi_process=a , ) lowercase__ : Any = TensorFlowBenchmark(a ) lowercase__ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Any = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ : List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=a , save_to_csv=a , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(a , 'inf_time.csv' ) , inference_memory_csv_file=os.path.join(a , 'inf_mem.csv' ) , env_info_csv_file=os.path.join(a , 'env.csv' ) , multi_process=a , ) lowercase__ : Union[str, Any] = TensorFlowBenchmark(a ) benchmark.run() self.assertTrue(Path(os.path.join(a , 'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(a , 'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(a , 'env.csv' ) ).exists() ) def _UpperCAmelCase ( self ) -> Dict: lowercase__ : Tuple = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(a ): self.assertTrue(hasattr(a , 'sequential' ) ) self.assertTrue(hasattr(a , 'cumulative' ) ) self.assertTrue(hasattr(a , 'current' ) ) self.assertTrue(hasattr(a , 'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=a , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(a , 'log.txt' ) , log_print=a , trace_memory_line_by_line=a , eager_mode=a , multi_process=a , ) lowercase__ : Optional[int] = TensorFlowBenchmark(a ) lowercase__ : Optional[Any] = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(a , 'log.txt' ) ).exists() )
645
0
"""simple docstring""" import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration _UpperCamelCase : int = { "tiny.en": "https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt", "tiny": "https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt", "base.en": "https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt", "base": "https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt", "small.en": "https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt", "small": "https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt", "medium.en": "https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt", "medium": "https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt", "large": "https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt", "large-v2": "https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt", } def a_ ( _lowerCAmelCase : Union[str, Any] ): '''simple docstring''' lowercase__ : Any = ['layers', 'blocks'] for k in ignore_keys: state_dict.pop(_lowerCAmelCase , _lowerCAmelCase ) _UpperCamelCase : Union[str, Any] = { "blocks": "layers", "mlp.0": "fc1", "mlp.2": "fc2", "mlp_ln": "final_layer_norm", ".attn.query": ".self_attn.q_proj", ".attn.key": ".self_attn.k_proj", ".attn.value": ".self_attn.v_proj", ".attn_ln": ".self_attn_layer_norm", ".attn.out": ".self_attn.out_proj", ".cross_attn.query": ".encoder_attn.q_proj", ".cross_attn.key": ".encoder_attn.k_proj", ".cross_attn.value": ".encoder_attn.v_proj", ".cross_attn_ln": ".encoder_attn_layer_norm", ".cross_attn.out": ".encoder_attn.out_proj", "decoder.ln.": "decoder.layer_norm.", "encoder.ln.": "encoder.layer_norm.", "token_embedding": "embed_tokens", "encoder.positional_embedding": "encoder.embed_positions.weight", "decoder.positional_embedding": "decoder.embed_positions.weight", "ln_post": "layer_norm", } def a_ ( _lowerCAmelCase : int ): '''simple docstring''' lowercase__ : Union[str, Any] = list(s_dict.keys() ) for key in keys: lowercase__ : Dict = key for k, v in WHISPER_MAPPING.items(): if k in key: lowercase__ : Any = new_key.replace(_lowerCAmelCase , _lowerCAmelCase ) print(f"""{key} -> {new_key}""" ) lowercase__ : int = s_dict.pop(_lowerCAmelCase ) return s_dict def a_ ( _lowerCAmelCase : List[str] ): '''simple docstring''' lowercase__ : Optional[Any] = emb.weight.shape lowercase__ : Dict = nn.Linear(_lowerCAmelCase , _lowerCAmelCase , bias=_lowerCAmelCase ) lowercase__ : List[str] = emb.weight.data return lin_layer def a_ ( _lowerCAmelCase : str , _lowerCAmelCase : str ): '''simple docstring''' os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) lowercase__ : Any = os.path.basename(_lowerCAmelCase ) lowercase__ : Optional[int] = url.split('/' )[-2] lowercase__ : Union[str, Any] = os.path.join(_lowerCAmelCase , _lowerCAmelCase ) if os.path.exists(_lowerCAmelCase ) and not os.path.isfile(_lowerCAmelCase ): raise RuntimeError(f"""{download_target} exists and is not a regular file""" ) if os.path.isfile(_lowerCAmelCase ): lowercase__ : Optional[Any] = open(_lowerCAmelCase , 'rb' ).read() if hashlib.shaaaa(_lowerCAmelCase ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(f"""{download_target} exists, but the SHA256 checksum does not match; re-downloading the file""" ) with urllib.request.urlopen(_lowerCAmelCase ) as source, open(_lowerCAmelCase , 'wb' ) as output: with tqdm( total=int(source.info().get('Content-Length' ) ) , ncols=80 , unit='iB' , unit_scale=_lowerCAmelCase , unit_divisor=1024 ) as loop: while True: lowercase__ : List[str] = source.read(8192 ) if not buffer: break output.write(_lowerCAmelCase ) loop.update(len(_lowerCAmelCase ) ) lowercase__ : Union[str, Any] = open(_lowerCAmelCase , 'rb' ).read() if hashlib.shaaaa(_lowerCAmelCase ).hexdigest() != expected_shaaaa: raise RuntimeError( 'Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.' ) return model_bytes def a_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] ): '''simple docstring''' if ".pt" not in checkpoint_path: lowercase__ : Dict = _download(_MODELS[checkpoint_path] ) else: lowercase__ : str = torch.load(_lowerCAmelCase , map_location='cpu' ) lowercase__ : List[str] = original_checkpoint['dims'] lowercase__ : Dict = original_checkpoint['model_state_dict'] lowercase__ : Optional[Any] = state_dict['decoder.token_embedding.weight'] remove_ignore_keys_(_lowerCAmelCase ) rename_keys(_lowerCAmelCase ) lowercase__ : List[str] = True lowercase__ : List[Any] = state_dict['decoder.layers.0.fc1.weight'].shape[0] lowercase__ : str = WhisperConfig( vocab_size=dimensions['n_vocab'] , encoder_ffn_dim=_lowerCAmelCase , decoder_ffn_dim=_lowerCAmelCase , num_mel_bins=dimensions['n_mels'] , d_model=dimensions['n_audio_state'] , max_target_positions=dimensions['n_text_ctx'] , encoder_layers=dimensions['n_audio_layer'] , encoder_attention_heads=dimensions['n_audio_head'] , decoder_layers=dimensions['n_text_layer'] , decoder_attention_heads=dimensions['n_text_state'] , max_source_positions=dimensions['n_audio_ctx'] , ) lowercase__ : Optional[Any] = WhisperForConditionalGeneration(_lowerCAmelCase ) lowercase__ : List[Any] = model.model.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0 and not set(_lowerCAmelCase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( 'Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,' f""" but all the following weights are missing {missing}""" ) if tie_embeds: lowercase__ : Union[str, Any] = make_linear_from_emb(model.model.decoder.embed_tokens ) else: lowercase__ : List[str] = proj_out_weights model.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": _UpperCamelCase : int = argparse.ArgumentParser() # # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Patht to the downloaded checkpoints") parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") _UpperCamelCase : List[Any] = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
712
"""simple docstring""" import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class UpperCAmelCase_ ( _a): def __init__( self , a , a=1_3 , a=7 , a=True , a=True , a=False , a=True , a=9_9 , a=3_2 , a=5 , a=4 , a=3_7 , a="gelu" , a=0.1 , a=0.1 , a=5_1_2 , a=1_6 , a=2 , a=0.02 , a=3 , a=4 , a=None , ) -> Any: lowercase__ : Tuple = parent lowercase__ : List[Any] = batch_size lowercase__ : List[Any] = seq_length lowercase__ : List[Any] = is_training lowercase__ : Optional[Any] = use_input_mask lowercase__ : Optional[int] = use_token_type_ids lowercase__ : int = use_labels lowercase__ : Tuple = vocab_size lowercase__ : int = hidden_size lowercase__ : Any = num_hidden_layers lowercase__ : List[str] = num_attention_heads lowercase__ : Optional[Any] = intermediate_size lowercase__ : Optional[Any] = hidden_act lowercase__ : List[str] = hidden_dropout_prob lowercase__ : List[Any] = attention_probs_dropout_prob lowercase__ : List[Any] = max_position_embeddings lowercase__ : List[str] = type_vocab_size lowercase__ : Tuple = type_sequence_label_size lowercase__ : List[Any] = initializer_range lowercase__ : str = num_labels lowercase__ : Tuple = num_choices lowercase__ : str = scope def _UpperCAmelCase ( self ) -> Any: lowercase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ : str = None if self.use_input_mask: lowercase__ : Any = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ : Dict = None lowercase__ : Optional[Any] = None lowercase__ : int = None if self.use_labels: lowercase__ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__ : Dict = ids_tensor([self.batch_size] , self.num_choices ) lowercase__ : List[Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCAmelCase ( self ) -> Optional[int]: return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> Dict: lowercase__ : Tuple = DistilBertModel(config=a ) model.to(a ) model.eval() lowercase__ : Any = model(a , a ) lowercase__ : str = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> Dict: lowercase__ : Optional[int] = DistilBertForMaskedLM(config=a ) model.to(a ) model.eval() lowercase__ : Union[str, Any] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> int: lowercase__ : Tuple = DistilBertForQuestionAnswering(config=a ) model.to(a ) model.eval() lowercase__ : Tuple = model( a , attention_mask=a , start_positions=a , end_positions=a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> List[str]: lowercase__ : int = self.num_labels lowercase__ : Dict = DistilBertForSequenceClassification(a ) model.to(a ) model.eval() lowercase__ : Optional[Any] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> Any: lowercase__ : Any = self.num_labels lowercase__ : List[str] = DistilBertForTokenClassification(config=a ) model.to(a ) model.eval() lowercase__ : Any = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> Tuple: lowercase__ : List[Any] = self.num_choices lowercase__ : Any = DistilBertForMultipleChoice(config=a ) model.to(a ) model.eval() lowercase__ : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ : Optional[int] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ : int = model( a , attention_mask=a , labels=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _UpperCAmelCase ( self ) -> str: lowercase__ : Union[str, Any] = self.prepare_config_and_inputs() ((lowercase__) , (lowercase__) , (lowercase__) , (lowercase__) , (lowercase__) , (lowercase__)) : List[str] = config_and_inputs lowercase__ : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _a , _a , unittest.TestCase): lowerCamelCase__ : List[str] = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) lowerCamelCase__ : str = ( { "feature-extraction": DistilBertModel, "fill-mask": DistilBertForMaskedLM, "question-answering": DistilBertForQuestionAnswering, "text-classification": DistilBertForSequenceClassification, "token-classification": DistilBertForTokenClassification, "zero-shot": DistilBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ : Optional[int] = True lowerCamelCase__ : Any = True lowerCamelCase__ : List[Any] = True lowerCamelCase__ : Optional[Any] = True def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : str = DistilBertModelTester(self ) lowercase__ : int = ConfigTester(self , config_class=a , dim=3_7 ) def _UpperCAmelCase ( self ) -> Dict: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*a ) def _UpperCAmelCase ( self ) -> Any: lowercase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*a ) def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*a ) def _UpperCAmelCase ( self ) -> int: lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*a ) def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*a ) def _UpperCAmelCase ( self ) -> str: lowercase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*a ) @slow def _UpperCAmelCase ( self ) -> str: for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : str = DistilBertModel.from_pretrained(a ) self.assertIsNotNone(a ) @slow @require_torch_gpu def _UpperCAmelCase ( self ) -> Any: lowercase__ , lowercase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return lowercase__ : Optional[int] = True lowercase__ : Union[str, Any] = model_class(config=a ) lowercase__ : int = self._prepare_for_class(a , a ) lowercase__ : Tuple = torch.jit.trace( a , (inputs_dict['input_ids'].to('cpu' ), inputs_dict['attention_mask'].to('cpu' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a , os.path.join(a , 'traced_model.pt' ) ) lowercase__ : Optional[int] = torch.jit.load(os.path.join(a , 'traced_model.pt' ) , map_location=a ) loaded(inputs_dict['input_ids'].to(a ) , inputs_dict['attention_mask'].to(a ) ) @require_torch class UpperCAmelCase_ ( unittest.TestCase): @slow def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : int = DistilBertModel.from_pretrained('distilbert-base-uncased' ) lowercase__ : Union[str, Any] = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) lowercase__ : Optional[Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowercase__ : Optional[Any] = model(a , attention_mask=a )[0] lowercase__ : Tuple = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , a ) lowercase__ : List[Any] = torch.tensor( [[[-0.1_639, 0.3_299, 0.1_648], [-0.1_746, 0.3_289, 0.1_710], [-0.1_884, 0.3_357, 0.1_810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a , atol=1e-4 ) )
645
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCamelCase : Tuple = { "configuration_xmod": [ "XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP", "XmodConfig", "XmodOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Optional[Any] = [ "XMOD_PRETRAINED_MODEL_ARCHIVE_LIST", "XmodForCausalLM", "XmodForMaskedLM", "XmodForMultipleChoice", "XmodForQuestionAnswering", "XmodForSequenceClassification", "XmodForTokenClassification", "XmodModel", "XmodPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys _UpperCamelCase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
713
"""simple docstring""" from __future__ import annotations def a_ ( _lowerCAmelCase : float , _lowerCAmelCase : float , _lowerCAmelCase : float , ): '''simple docstring''' if (stress, tangential_force, area).count(0 ) != 1: raise ValueError('You cannot supply more or less than 2 values' ) elif stress < 0: raise ValueError('Stress cannot be negative' ) elif tangential_force < 0: raise ValueError('Tangential Force cannot be negative' ) elif area < 0: raise ValueError('Area cannot be negative' ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
645
0
"""simple docstring""" def a_ ( ): '''simple docstring''' lowercase__ : Dict = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] lowercase__ : Optional[Any] = 6 lowercase__ : Optional[int] = 1 lowercase__ : Optional[Any] = 1901 lowercase__ : str = 0 while year < 2001: day += 7 if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 lowercase__ : Tuple = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 lowercase__ : List[Any] = day - 29 else: if day > days_per_month[month - 1]: month += 1 lowercase__ : Optional[Any] = day - days_per_month[month - 2] if month > 12: year += 1 lowercase__ : str = 1 if year < 2001 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
714
"""simple docstring""" import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase_ : def __init__( self , a , a=1_3 , a=[3_0, 3_0] , a=2 , a=3 , a=True , a=True , a=3_2 , a=5 , a=4 , a=3_7 , a="gelu" , a=0.1 , a=0.1 , a=1_0 , a=0.02 , a=3 , a=None , a=8 , a=1_0 , ) -> Any: lowercase__ : List[str] = parent lowercase__ : Optional[Any] = batch_size lowercase__ : Optional[int] = image_size lowercase__ : List[Any] = patch_size lowercase__ : Optional[Any] = num_channels lowercase__ : str = is_training lowercase__ : Optional[Any] = use_labels lowercase__ : Optional[Any] = hidden_size lowercase__ : Dict = num_hidden_layers lowercase__ : Optional[Any] = num_attention_heads lowercase__ : Dict = intermediate_size lowercase__ : List[Any] = hidden_act lowercase__ : List[Any] = hidden_dropout_prob lowercase__ : Any = attention_probs_dropout_prob lowercase__ : Any = type_sequence_label_size lowercase__ : Dict = initializer_range lowercase__ : Union[str, Any] = num_labels lowercase__ : Tuple = scope lowercase__ : Tuple = n_targets lowercase__ : Optional[int] = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens lowercase__ : Optional[Any] = (image_size[1] // patch_size) * (image_size[0] // patch_size) lowercase__ : Tuple = num_patches + 1 + self.num_detection_tokens def _UpperCAmelCase ( self ) -> Any: lowercase__ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) lowercase__ : Tuple = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) lowercase__ : int = [] for i in range(self.batch_size ): lowercase__ : Optional[Any] = {} lowercase__ : Any = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=a ) lowercase__ : List[str] = torch.rand(self.n_targets , 4 , device=a ) labels.append(a ) lowercase__ : Tuple = self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self ) -> List[Any]: return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def _UpperCAmelCase ( self , a , a , a ) -> int: lowercase__ : List[str] = YolosModel(config=a ) model.to(a ) model.eval() lowercase__ : List[Any] = model(a ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def _UpperCAmelCase ( self , a , a , a ) -> Union[str, Any]: lowercase__ : str = YolosForObjectDetection(a ) model.to(a ) model.eval() lowercase__ : Dict = model(pixel_values=a ) lowercase__ : Tuple = model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) lowercase__ : str = model(pixel_values=a , labels=a ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : int = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Any = config_and_inputs lowercase__ : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _a , _a , unittest.TestCase): lowerCamelCase__ : Optional[int] = (YolosModel, YolosForObjectDetection) if is_torch_available() else () lowerCamelCase__ : List[str] = ( {"feature-extraction": YolosModel, "object-detection": YolosForObjectDetection} if is_torch_available() else {} ) lowerCamelCase__ : List[Any] = False lowerCamelCase__ : Dict = False lowerCamelCase__ : Tuple = False lowerCamelCase__ : Union[str, Any] = False def _UpperCAmelCase ( self , a , a , a=False ) -> Dict: lowercase__ : List[str] = super()._prepare_for_class(a , a , return_labels=a ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": lowercase__ : Optional[Any] = [] for i in range(self.model_tester.batch_size ): lowercase__ : Dict = {} lowercase__ : Dict = torch.ones( size=(self.model_tester.n_targets,) , device=a , dtype=torch.long ) lowercase__ : Optional[Any] = torch.ones( self.model_tester.n_targets , 4 , device=a , dtype=torch.float ) labels.append(a ) lowercase__ : Union[str, Any] = labels return inputs_dict def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : Dict = YolosModelTester(self ) lowercase__ : Optional[int] = ConfigTester(self , config_class=a , has_text_modality=a , hidden_size=3_7 ) def _UpperCAmelCase ( self ) -> str: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Optional[Any]: # YOLOS does not use inputs_embeds pass def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[str] = model_class(a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase__ : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a , nn.Linear ) ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : int = model_class(a ) lowercase__ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Tuple = [*signature.parameters.keys()] lowercase__ : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , a ) def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _UpperCAmelCase ( self ) -> Dict: lowercase__ , lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Dict = True # in YOLOS, the seq_len is different lowercase__ : Tuple = self.model_tester.expected_seq_len for model_class in self.all_model_classes: lowercase__ : Optional[int] = True lowercase__ : str = False lowercase__ : str = True lowercase__ : List[str] = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : Any = model(**self._prepare_for_class(a , a ) ) lowercase__ : str = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase__ : Optional[int] = True lowercase__ : List[Any] = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : Union[str, Any] = model(**self._prepare_for_class(a , a ) ) lowercase__ : List[str] = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowercase__ : Dict = len(a ) # Check attention is always last and order is fine lowercase__ : Any = True lowercase__ : int = True lowercase__ : int = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : Any = model(**self._prepare_for_class(a , a ) ) lowercase__ : Optional[Any] = 1 self.assertEqual(out_len + added_hidden_states , len(a ) ) lowercase__ : Tuple = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def _UpperCAmelCase ( self ) -> List[str]: def check_hidden_states_output(a , a , a ): lowercase__ : str = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : int = model(**self._prepare_for_class(a , a ) ) lowercase__ : int = outputs.hidden_states lowercase__ : Any = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(a ) , a ) # YOLOS has a different seq_length lowercase__ : Optional[int] = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowercase__ , lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Any = True check_hidden_states_output(a , a , a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : List[Any] = True check_hidden_states_output(a , a , a ) def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*a ) @slow def _UpperCAmelCase ( self ) -> Union[str, Any]: for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : int = YolosModel.from_pretrained(a ) self.assertIsNotNone(a ) def a_ ( ): '''simple docstring''' lowercase__ : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase): @cached_property def _UpperCAmelCase ( self ) -> Union[str, Any]: return AutoImageProcessor.from_pretrained('hustvl/yolos-small' ) if is_vision_available() else None @slow def _UpperCAmelCase ( self ) -> int: lowercase__ : Dict = YolosForObjectDetection.from_pretrained('hustvl/yolos-small' ).to(a ) lowercase__ : Tuple = self.default_image_processor lowercase__ : Optional[int] = prepare_img() lowercase__ : int = image_processor(images=a , return_tensors='pt' ).to(a ) # forward pass with torch.no_grad(): lowercase__ : int = model(inputs.pixel_values ) # verify outputs lowercase__ : Tuple = torch.Size((1, 1_0_0, 9_2) ) self.assertEqual(outputs.logits.shape , a ) lowercase__ : Any = torch.tensor( [[-24.0_248, -10.3_024, -14.8_290], [-42.0_392, -16.8_200, -27.4_334], [-27.2_743, -11.8_154, -18.7_148]] , device=a , ) lowercase__ : List[str] = torch.tensor( [[0.2_559, 0.5_455, 0.4_706], [0.2_989, 0.7_279, 0.1_875], [0.7_732, 0.4_017, 0.4_462]] , device=a ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , a , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , a , atol=1e-4 ) ) # verify postprocessing lowercase__ : Optional[Any] = image_processor.post_process_object_detection( a , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] lowercase__ : str = torch.tensor([0.9_994, 0.9_790, 0.9_964, 0.9_972, 0.9_861] ).to(a ) lowercase__ : Any = [7_5, 7_5, 1_7, 6_3, 1_7] lowercase__ : Optional[int] = torch.tensor([335.0_609, 79.3_848, 375.4_216, 187.2_495] ).to(a ) self.assertEqual(len(results['scores'] ) , 5 ) self.assertTrue(torch.allclose(results['scores'] , a , atol=1e-4 ) ) self.assertSequenceEqual(results['labels'].tolist() , a ) self.assertTrue(torch.allclose(results['boxes'][0, :] , a ) )
645
0
"""simple docstring""" import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class UpperCAmelCase_ ( _a): def __init__( self , a , a , a=1_0_2_4 , a=1_0_2_4 , a=3.6 ) -> Any: lowercase__ : List[Any] = tokenizer lowercase__ : Dict = tokenizer.bos_token_id lowercase__ : Optional[Any] = dataset lowercase__ : str = seq_length lowercase__ : int = seq_length * chars_per_token * num_of_sequences def __iter__( self ) -> List[str]: lowercase__ : List[Any] = iter(self.dataset ) lowercase__ : Tuple = True while more_examples: lowercase__ : Optional[Any] = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(a )['content'] ) buffer_len += len(buffer[-1] ) except StopIteration: lowercase__ : List[Any] = False break lowercase__ : Optional[int] = tokenizer(a , truncation=a )['input_ids'] lowercase__ : Any = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(a ) , self.seq_length ): lowercase__ : Optional[int] = all_token_ids[i : i + self.seq_length] if len(a ) == self.seq_length: yield torch.tensor(a ) def a_ ( _lowerCAmelCase : Optional[Any] ): '''simple docstring''' lowercase__ : int = {'streaming': True} lowercase__ : List[str] = load_dataset(args.dataset_name , split='train' , **_lowerCAmelCase ) lowercase__ : Any = ConstantLengthDataset(_lowerCAmelCase , _lowerCAmelCase , seq_length=args.seq_length ) lowercase__ : Union[str, Any] = DataLoader(_lowerCAmelCase , batch_size=args.batch_size ) return eval_dataloader def a_ ( _lowerCAmelCase : Union[str, Any] ): '''simple docstring''' model.eval() lowercase__ : List[Any] = [] for step, batch in enumerate(_lowerCAmelCase ): with torch.no_grad(): lowercase__ : Any = model(_lowerCAmelCase , labels=_lowerCAmelCase ) lowercase__ : List[str] = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(_lowerCAmelCase ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break lowercase__ : int = torch.mean(torch.cat(_lowerCAmelCase ) ) try: lowercase__ : Optional[Any] = torch.exp(_lowerCAmelCase ) except OverflowError: lowercase__ : Tuple = float('inf' ) return loss.item(), perplexity.item() # Setup Accelerator _UpperCamelCase : Optional[int] = Accelerator() # Parse configuration _UpperCamelCase : int = HfArgumentParser(EvaluationArguments) _UpperCamelCase : Dict = parser.parse_args() set_seed(args.seed) # Logging _UpperCamelCase : List[str] = logging.getLogger(__name__) logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) # Load model and tokenizer _UpperCamelCase : Dict = AutoModelForCausalLM.from_pretrained(args.model_ckpt) _UpperCamelCase : Tuple = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader _UpperCamelCase : Union[str, Any] = create_dataloader(args) # Prepare everything with our `accelerator`. _UpperCamelCase : int = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info("Evaluating and saving model after training") _UpperCamelCase : Optional[int] = evaluate(args) logger.info(f'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
715
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch _UpperCamelCase : int = logging.get_logger(__name__) @dataclass class UpperCAmelCase_ : def __init__( self , a=False , a=False , a=6.0 , a=None , a=False , a=False , a=None , a="fp4" , a=False , **a , ) -> Tuple: lowercase__ : str = load_in_abit lowercase__ : str = load_in_abit lowercase__ : List[str] = llm_inta_threshold lowercase__ : Dict = llm_inta_skip_modules lowercase__ : Tuple = llm_inta_enable_fpaa_cpu_offload lowercase__ : Any = llm_inta_has_fpaa_weight lowercase__ : Any = bnb_abit_quant_type lowercase__ : Dict = bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: lowercase__ : Dict = torch.floataa elif isinstance(a , a ): lowercase__ : Any = getattr(a , a ) elif isinstance(a , torch.dtype ): lowercase__ : Any = bnb_abit_compute_dtype else: raise ValueError('bnb_4bit_compute_dtype must be a string or a torch.dtype' ) self.post_init() def _UpperCAmelCase ( self ) -> str: if not isinstance(self.llm_inta_threshold , a ): raise ValueError('llm_int8_threshold must be a float' ) if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , a ): raise ValueError('llm_int8_skip_modules must be a list of strings' ) if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , a ): raise ValueError('llm_int8_enable_fp32_cpu_offload must be a boolean' ) if not isinstance(self.llm_inta_has_fpaa_weight , a ): raise ValueError('llm_int8_has_fp16_weight must be a boolean' ) if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype ): raise ValueError('bnb_4bit_compute_dtype must be torch.dtype' ) if not isinstance(self.bnb_abit_quant_type , a ): raise ValueError('bnb_4bit_quant_type must be a string' ) if not isinstance(self.bnb_abit_use_double_quant , a ): raise ValueError('bnb_4bit_use_double_quant must be a boolean' ) if self.load_in_abit and not version.parse(importlib.metadata.version('bitsandbytes' ) ) >= version.parse( '0.39.0' ): raise ValueError( '4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version' ) def _UpperCAmelCase ( self ) -> Tuple: return self.load_in_abit or self.load_in_abit def _UpperCAmelCase ( self ) -> List[str]: if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def _UpperCAmelCase ( cls , a , a , **a ) -> Optional[Any]: lowercase__ : List[Any] = cls(**a ) lowercase__ : Union[str, Any] = [] for key, value in kwargs.items(): if hasattr(a , a ): setattr(a , a , a ) to_remove.append(a ) for key in to_remove: kwargs.pop(a , a ) if return_unused_kwargs: return config, kwargs else: return config def _UpperCAmelCase ( self , a ) -> Dict: with open(a , 'w' , encoding='utf-8' ) as writer: lowercase__ : Any = self.to_dict() lowercase__ : str = json.dumps(a , indent=2 , sort_keys=a ) + '\n' writer.write(a ) def _UpperCAmelCase ( self ) -> Dict[str, Any]: lowercase__ : Optional[Any] = copy.deepcopy(self.__dict__ ) lowercase__ : Any = str(output['bnb_4bit_compute_dtype'] ).split('.' )[1] return output def __repr__( self ) -> Dict: return f"""{self.__class__.__name__} {self.to_json_string()}""" def _UpperCAmelCase ( self , a = True ) -> str: if use_diff is True: lowercase__ : List[Any] = self.to_diff_dict() else: lowercase__ : List[str] = self.to_dict() return json.dumps(a , indent=2 , sort_keys=a ) + "\n" def _UpperCAmelCase ( self ) -> Dict[str, Any]: lowercase__ : Tuple = self.to_dict() # get the default config dict lowercase__ : Optional[Any] = BitsAndBytesConfig().to_dict() lowercase__ : int = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: lowercase__ : Optional[int] = value return serializable_config_dict
645
0
"""simple docstring""" import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() _UpperCamelCase : Dict = logging.get_logger(__name__) _UpperCamelCase : List[Any] = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "encoder.layer_norm_for_extract": "layer_norm_for_extract", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "label_embs_concat": "label_embeddings_concat", "mask_emb": "masked_spec_embed", "spk_proj": "speaker_proj", } _UpperCamelCase : List[str] = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "label_embeddings_concat", "speaker_proj", "layer_norm_for_extract", ] def a_ ( _lowerCAmelCase : Any , _lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple ): '''simple docstring''' for attribute in key.split('.' ): lowercase__ : Dict = getattr(_lowerCAmelCase , _lowerCAmelCase ) if weight_type is not None: lowercase__ : Optional[int] = getattr(_lowerCAmelCase , _lowerCAmelCase ).shape else: lowercase__ : Optional[int] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowercase__ : Optional[Any] = value elif weight_type == "weight_g": lowercase__ : Dict = value elif weight_type == "weight_v": lowercase__ : List[str] = value elif weight_type == "bias": lowercase__ : Optional[Any] = value else: lowercase__ : List[str] = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def a_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] ): '''simple docstring''' lowercase__ : Tuple = [] lowercase__ : List[str] = fairseq_model.state_dict() lowercase__ : Union[str, Any] = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): lowercase__ : Optional[int] = False if "conv_layers" in name: load_conv_layer( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , hf_model.config.feat_extract_norm == 'group' , ) lowercase__ : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): lowercase__ : List[Any] = 'unispeech_sat.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('.' )[:-1] ) != key): # special case since naming is very similar continue lowercase__ : int = True if "*" in mapped_key: lowercase__ : Optional[int] = name.split(_lowerCAmelCase )[0].split('.' )[-2] lowercase__ : List[str] = mapped_key.replace('*' , _lowerCAmelCase ) if "weight_g" in name: lowercase__ : List[Any] = 'weight_g' elif "weight_v" in name: lowercase__ : int = 'weight_v' elif "bias" in name: lowercase__ : Dict = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj lowercase__ : Union[str, Any] = 'weight' else: lowercase__ : int = None set_recursively(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) continue if not is_used: unused_weights.append(_lowerCAmelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def a_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : Dict ): '''simple docstring''' lowercase__ : int = full_name.split('conv_layers.' )[-1] lowercase__ : int = name.split('.' ) lowercase__ : int = int(items[0] ) lowercase__ : Dict = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowercase__ : Union[str, Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowercase__ : Optional[int] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) lowercase__ : List[Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) lowercase__ : int = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_lowerCAmelCase ) @torch.no_grad() def a_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : str=None , _lowerCAmelCase : Tuple=True ): '''simple docstring''' if config_path is not None: lowercase__ : Any = UniSpeechSatConfig.from_pretrained(_lowerCAmelCase ) else: lowercase__ : Any = UniSpeechSatConfig() lowercase__ : Union[str, Any] = '' if is_finetuned: lowercase__ : Optional[Any] = UniSpeechSatForCTC(_lowerCAmelCase ) else: lowercase__ : List[Any] = UniSpeechSatForPreTraining(_lowerCAmelCase ) lowercase__ : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) lowercase__ : Union[str, Any] = model[0].eval() recursively_load_weights(_lowerCAmelCase , _lowerCAmelCase ) hf_wavavec.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": _UpperCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _UpperCamelCase : str = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
716
"""simple docstring""" import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler _UpperCamelCase : int = 16 _UpperCamelCase : Union[str, Any] = 32 def a_ ( _lowerCAmelCase : Tuple ): '''simple docstring''' return int(x / 2**20 ) class UpperCAmelCase_ : def __enter__( self ) -> Union[str, Any]: gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero lowercase__ : List[str] = torch.cuda.memory_allocated() return self def __exit__( self , *a ) -> Any: gc.collect() torch.cuda.empty_cache() lowercase__ : Optional[Any] = torch.cuda.memory_allocated() lowercase__ : Union[str, Any] = torch.cuda.max_memory_allocated() lowercase__ : List[Any] = bamb(self.end - self.begin ) lowercase__ : List[Any] = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def a_ ( _lowerCAmelCase : Accelerator , _lowerCAmelCase : int = 16 , _lowerCAmelCase : str = "bert-base-cased" , _lowerCAmelCase : int = 320 , _lowerCAmelCase : int = 160 , ): '''simple docstring''' lowercase__ : List[Any] = AutoTokenizer.from_pretrained(_lowerCAmelCase ) lowercase__ : Union[str, Any] = load_dataset( 'glue' , 'mrpc' , split={'train': f"""train[:{n_train}]""", 'validation': f"""validation[:{n_val}]"""} ) def tokenize_function(_lowerCAmelCase : int ): # max_length=None => use the model max length (it's actually the default) lowercase__ : List[str] = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowercase__ : Union[str, Any] = datasets.map( _lowerCAmelCase , batched=_lowerCAmelCase , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=_lowerCAmelCase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ : Union[str, Any] = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(_lowerCAmelCase : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_lowerCAmelCase , padding='max_length' , max_length=128 , return_tensors='pt' ) return tokenizer.pad(_lowerCAmelCase , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. lowercase__ : Dict = DataLoader( tokenized_datasets['train'] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase ) lowercase__ : Dict = DataLoader( tokenized_datasets['validation'] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase ) return train_dataloader, eval_dataloader def a_ ( _lowerCAmelCase : Any , _lowerCAmelCase : List[str] ): '''simple docstring''' lowercase__ : List[Any] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ : Optional[int] = config['lr'] lowercase__ : Optional[Any] = int(config['num_epochs'] ) lowercase__ : Optional[Any] = int(config['seed'] ) lowercase__ : int = int(config['batch_size'] ) lowercase__ : Union[str, Any] = args.model_name_or_path set_seed(_lowerCAmelCase ) lowercase__ , lowercase__ : Tuple = get_dataloaders(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , args.n_train , args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ : List[Any] = AutoModelForSequenceClassification.from_pretrained(_lowerCAmelCase , return_dict=_lowerCAmelCase ) # Instantiate optimizer lowercase__ : List[Any] = ( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowercase__ : Optional[Any] = optimizer_cls(params=model.parameters() , lr=_lowerCAmelCase ) if accelerator.state.deepspeed_plugin is not None: lowercase__ : Optional[Any] = accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: lowercase__ : List[Any] = 1 lowercase__ : List[Any] = (len(_lowerCAmelCase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowercase__ : Optional[int] = get_linear_schedule_with_warmup( optimizer=_lowerCAmelCase , num_warmup_steps=0 , num_training_steps=_lowerCAmelCase , ) else: lowercase__ : Tuple = DummyScheduler(_lowerCAmelCase , total_num_steps=_lowerCAmelCase , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Dict = accelerator.prepare( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # We need to keep track of how many total steps we have iterated over lowercase__ : Optional[int] = 0 # We also need to keep track of the stating epoch so files are named properly lowercase__ : Tuple = 0 # Now we train the model lowercase__ : Optional[Any] = {} for epoch in range(_lowerCAmelCase , _lowerCAmelCase ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(_lowerCAmelCase ): lowercase__ : List[Any] = model(**_lowerCAmelCase ) lowercase__ : Dict = outputs.loss lowercase__ : int = loss / gradient_accumulation_steps accelerator.backward(_lowerCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print('Memory before entering the train : {}'.format(bamb(tracemalloc.begin ) ) ) accelerator.print('Memory consumed at the end of the train (end-begin): {}'.format(tracemalloc.used ) ) accelerator.print('Peak Memory consumed during the train (max-begin): {}'.format(tracemalloc.peaked ) ) accelerator.print( 'Total Peak Memory consumed during the train (max): {}'.format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) lowercase__ : int = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[f"""epoch-{epoch}"""] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , 'peak_memory_utilization.json' ) , 'w' ) as f: json.dump(_lowerCAmelCase , _lowerCAmelCase ) def a_ ( ): '''simple docstring''' lowercase__ : int = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path' , type=_lowerCAmelCase , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=_lowerCAmelCase , ) parser.add_argument( '--output_dir' , type=_lowerCAmelCase , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--peak_memory_upper_bound' , type=_lowerCAmelCase , default=_lowerCAmelCase , help='The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.' , ) parser.add_argument( '--n_train' , type=_lowerCAmelCase , default=320 , help='Number of training examples to use.' , ) parser.add_argument( '--n_val' , type=_lowerCAmelCase , default=160 , help='Number of validation examples to use.' , ) parser.add_argument( '--num_epochs' , type=_lowerCAmelCase , default=1 , help='Number of train epochs.' , ) lowercase__ : Any = parser.parse_args() lowercase__ : Optional[Any] = {'lr': 2E-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16} training_function(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": main()
645
0
"""simple docstring""" from datetime import datetime import matplotlib.pyplot as plt import torch def a_ ( _lowerCAmelCase : Union[str, Any] ): '''simple docstring''' for param in module.parameters(): lowercase__ : List[str] = False def a_ ( ): '''simple docstring''' lowercase__ : Dict = 'cuda' if torch.cuda.is_available() else 'cpu' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): lowercase__ : List[str] = 'mps' if device == "mps": print( 'WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch' ' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues' ' with generations.' ) return device def a_ ( _lowerCAmelCase : List[str] ): '''simple docstring''' lowercase__ : Dict = plt.imshow(_lowerCAmelCase ) fig.axes.get_xaxis().set_visible(_lowerCAmelCase ) fig.axes.get_yaxis().set_visible(_lowerCAmelCase ) plt.show() def a_ ( ): '''simple docstring''' lowercase__ : List[Any] = datetime.now() lowercase__ : List[Any] = current_time.strftime('%H:%M:%S' ) return timestamp
717
"""simple docstring""" def a_ ( _lowerCAmelCase : str ): '''simple docstring''' lowercase__ : Any = [0] * len(_lowerCAmelCase ) for i in range(1 , len(_lowerCAmelCase ) ): # use last results for better performance - dynamic programming lowercase__ : List[str] = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: lowercase__ : Dict = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 lowercase__ : Union[str, Any] = j return prefix_result def a_ ( _lowerCAmelCase : str ): '''simple docstring''' return max(prefix_function(_lowerCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod()
645
0
"""simple docstring""" import os import unittest from tempfile import TemporaryDirectory import torch import torch.nn as nn from accelerate.utils import ( OffloadedWeightsLoader, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, ) class UpperCAmelCase_ ( nn.Module): def __init__( self ) -> Dict: super().__init__() lowercase__ : Optional[Any] = nn.Linear(3 , 4 ) lowercase__ : Optional[int] = nn.BatchNormad(4 ) lowercase__ : List[str] = nn.Linear(4 , 5 ) def _UpperCAmelCase ( self , a ) -> Dict: return self.lineara(self.batchnorm(self.lineara(a ) ) ) class UpperCAmelCase_ ( unittest.TestCase): def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Tuple = ModelForTest() with TemporaryDirectory() as tmp_dir: offload_state_dict(a , model.state_dict() ) lowercase__ : Optional[int] = os.path.join(a , 'index.json' ) self.assertTrue(os.path.isfile(a ) ) # TODO: add tests on what is inside the index for key in ["linear1.weight", "linear1.bias", "linear2.weight", "linear2.bias"]: lowercase__ : Any = os.path.join(a , f"""{key}.dat""" ) self.assertTrue(os.path.isfile(a ) ) # TODO: add tests on the fact weights are properly loaded def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : List[str] = [torch.floataa, torch.floataa, torch.bfloataa] for dtype in dtypes: lowercase__ : Optional[Any] = torch.randn(2 , 3 , dtype=a ) with TemporaryDirectory() as tmp_dir: lowercase__ : Any = offload_weight(a , 'weight' , a , {} ) lowercase__ : Any = os.path.join(a , 'weight.dat' ) self.assertTrue(os.path.isfile(a ) ) self.assertDictEqual(a , {'weight': {'shape': [2, 3], 'dtype': str(a ).split('.' )[1]}} ) lowercase__ : Optional[int] = load_offloaded_weight(a , index['weight'] ) self.assertTrue(torch.equal(a , a ) ) def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Union[str, Any] = ModelForTest() lowercase__ : List[Any] = model.state_dict() lowercase__ : List[str] = {k: v for k, v in state_dict.items() if 'linear2' not in k} lowercase__ : str = {k: v for k, v in state_dict.items() if 'linear2' in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(a , a ) lowercase__ : Tuple = OffloadedWeightsLoader(state_dict=a , save_folder=a ) # Every key is there with the right value self.assertEqual(sorted(a ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(a , weight_map[key] ) ) lowercase__ : Optional[Any] = {k: v for k, v in state_dict.items() if 'weight' in k} lowercase__ : str = {k: v for k, v in state_dict.items() if 'weight' not in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(a , a ) lowercase__ : List[Any] = OffloadedWeightsLoader(state_dict=a , save_folder=a ) # Every key is there with the right value self.assertEqual(sorted(a ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(a , weight_map[key] ) ) with TemporaryDirectory() as tmp_dir: offload_state_dict(a , a ) # Duplicates are removed lowercase__ : Union[str, Any] = OffloadedWeightsLoader(state_dict=a , save_folder=a ) # Every key is there with the right value self.assertEqual(sorted(a ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(a , weight_map[key] ) ) def _UpperCAmelCase ( self ) -> Dict: lowercase__ : Optional[int] = {'a.1': 0, 'a.10': 1, 'a.2': 2} lowercase__ : List[str] = extract_submodules_state_dict(a , ['a.1', 'a.2'] ) self.assertDictEqual(a , {'a.1': 0, 'a.2': 2} ) lowercase__ : int = {'a.1.a': 0, 'a.10.a': 1, 'a.2.a': 2} lowercase__ : Tuple = extract_submodules_state_dict(a , ['a.1', 'a.2'] ) self.assertDictEqual(a , {'a.1.a': 0, 'a.2.a': 2} )
718
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class UpperCAmelCase_ ( unittest.TestCase): def __init__( self , a , a=7 , a=3 , a=1_8 , a=3_0 , a=4_0_0 , a=True , a=None , a=True , a=None , a=True , ) -> List[str]: lowercase__ : Tuple = size if size is not None else {'shortest_edge': 2_0} lowercase__ : Union[str, Any] = crop_size if crop_size is not None else {'height': 1_8, 'width': 1_8} lowercase__ : Optional[int] = parent lowercase__ : Optional[int] = batch_size lowercase__ : str = num_channels lowercase__ : Any = image_size lowercase__ : Optional[Any] = min_resolution lowercase__ : int = max_resolution lowercase__ : List[Any] = do_resize lowercase__ : List[str] = size lowercase__ : str = do_center_crop lowercase__ : List[Any] = crop_size lowercase__ : Union[str, Any] = do_flip_channel_order def _UpperCAmelCase ( self ) -> int: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class UpperCAmelCase_ ( _a , unittest.TestCase): lowerCamelCase__ : Optional[Any] = MobileViTImageProcessor if is_vision_available() else None def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : Tuple = MobileViTImageProcessingTester(self ) @property def _UpperCAmelCase ( self ) -> int: return self.image_processor_tester.prepare_image_processor_dict() def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a , 'do_resize' ) ) self.assertTrue(hasattr(a , 'size' ) ) self.assertTrue(hasattr(a , 'do_center_crop' ) ) self.assertTrue(hasattr(a , 'center_crop' ) ) self.assertTrue(hasattr(a , 'do_flip_channel_order' ) ) def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 2_0} ) self.assertEqual(image_processor.crop_size , {'height': 1_8, 'width': 1_8} ) lowercase__ : str = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {'shortest_edge': 4_2} ) self.assertEqual(image_processor.crop_size , {'height': 8_4, 'width': 8_4} ) def _UpperCAmelCase ( self ) -> Tuple: pass def _UpperCAmelCase ( self ) -> str: # Initialize image_processing lowercase__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a ) for image in image_inputs: self.assertIsInstance(a , Image.Image ) # Test not batched input lowercase__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowercase__ : List[Any] = image_processing(a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def _UpperCAmelCase ( self ) -> Tuple: # Initialize image_processing lowercase__ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , numpify=a ) for image in image_inputs: self.assertIsInstance(a , np.ndarray ) # Test not batched input lowercase__ : List[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowercase__ : Any = image_processing(a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def _UpperCAmelCase ( self ) -> Dict: # Initialize image_processing lowercase__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , torchify=a ) for image in image_inputs: self.assertIsInstance(a , torch.Tensor ) # Test not batched input lowercase__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowercase__ : Tuple = image_processing(a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
645
0
"""simple docstring""" def a_ ( _lowerCAmelCase : int ): '''simple docstring''' if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): lowercase__ : Any = f"""Input value of [number={number}] must be an integer""" raise TypeError(_lowerCAmelCase ) if number < 1: lowercase__ : List[Any] = f"""Input value of [number={number}] must be > 0""" raise ValueError(_lowerCAmelCase ) lowercase__ : List[Any] = 1 for i in range(1 , _lowerCAmelCase ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
719
"""simple docstring""" import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class UpperCAmelCase_ ( unittest.TestCase): def __init__( self , a , a=1_3 , a=7 , a=True , a=True , a=True , a=True , a=9_9 , a=3_2 , a=5 , a=4 , a=3_7 , a="gelu" , a=0.1 , a=0.1 , a=5_1_2 , a=1_6 , a=2 , a=0.02 , a=4 , ) -> Dict: lowercase__ : Optional[Any] = parent lowercase__ : Dict = batch_size lowercase__ : List[Any] = seq_length lowercase__ : int = is_training lowercase__ : str = use_attention_mask lowercase__ : Dict = use_token_type_ids lowercase__ : Optional[int] = use_labels lowercase__ : Tuple = vocab_size lowercase__ : List[str] = hidden_size lowercase__ : Union[str, Any] = num_hidden_layers lowercase__ : int = num_attention_heads lowercase__ : Dict = intermediate_size lowercase__ : List[str] = hidden_act lowercase__ : Dict = hidden_dropout_prob lowercase__ : Tuple = attention_probs_dropout_prob lowercase__ : List[str] = max_position_embeddings lowercase__ : int = type_vocab_size lowercase__ : List[str] = type_sequence_label_size lowercase__ : Union[str, Any] = initializer_range lowercase__ : Optional[int] = num_choices def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ : str = None if self.use_attention_mask: lowercase__ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ : List[str] = None if self.use_token_type_ids: lowercase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__ : Any = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _UpperCAmelCase ( self ) -> Any: lowercase__ : Optional[int] = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ : Tuple = config_and_inputs lowercase__ : Union[str, Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class UpperCAmelCase_ ( _a , unittest.TestCase): lowerCamelCase__ : Tuple = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : Union[str, Any] = FlaxAlbertModelTester(self ) @slow def _UpperCAmelCase ( self ) -> str: for model_class_name in self.all_model_classes: lowercase__ : str = model_class_name.from_pretrained('albert-base-v2' ) lowercase__ : Tuple = model(np.ones((1, 1) ) ) self.assertIsNotNone(a ) @require_flax class UpperCAmelCase_ ( unittest.TestCase): @slow def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : str = FlaxAlbertModel.from_pretrained('albert-base-v2' ) lowercase__ : Optional[int] = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) lowercase__ : Optional[Any] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) lowercase__ : Any = model(a , attention_mask=a )[0] lowercase__ : Tuple = (1, 1_1, 7_6_8) self.assertEqual(output.shape , a ) lowercase__ : Optional[Any] = np.array( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , a , atol=1e-4 ) )
645
0
"""simple docstring""" def a_ ( _lowerCAmelCase : list ): '''simple docstring''' if len(_lowerCAmelCase ) <= 1: return lst lowercase__ : Dict = 1 while i < len(_lowerCAmelCase ): if lst[i - 1] <= lst[i]: i += 1 else: lowercase__ : Optional[int] = lst[i], lst[i - 1] i -= 1 if i == 0: lowercase__ : int = 1 return lst if __name__ == "__main__": _UpperCamelCase : Union[str, Any] = input("Enter numbers separated by a comma:\n").strip() _UpperCamelCase : List[str] = [int(item) for item in user_input.split(",")] print(gnome_sort(unsorted))
720
"""simple docstring""" from collections.abc import Sequence def a_ ( _lowerCAmelCase : Sequence[float] , _lowerCAmelCase : float ): '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(_lowerCAmelCase ) ) def a_ ( _lowerCAmelCase : Sequence[float] , _lowerCAmelCase : float ): '''simple docstring''' lowercase__ : int = 0.0 for coeff in reversed(_lowerCAmelCase ): lowercase__ : List[Any] = result * x + coeff return result if __name__ == "__main__": _UpperCamelCase : int = (0.0, 0.0, 5.0, 9.3, 7.0) _UpperCamelCase : Dict = 1_0.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
645
0
"""simple docstring""" from __future__ import annotations def a_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int ): '''simple docstring''' lowercase__ : list[list[int]] = [] lowercase__ : list[int] = [] lowercase__ : Tuple = 0 lowercase__ : int = sum(_lowerCAmelCase ) create_state_space_tree(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return result def a_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : list[int] , _lowerCAmelCase : list[list[int]] , _lowerCAmelCase : int , ): '''simple docstring''' if sum(_lowerCAmelCase ) > max_sum or (remaining_nums_sum + sum(_lowerCAmelCase )) < max_sum: return if sum(_lowerCAmelCase ) == max_sum: result.append(_lowerCAmelCase ) return for index in range(_lowerCAmelCase , len(_lowerCAmelCase ) ): create_state_space_tree( _lowerCAmelCase , _lowerCAmelCase , index + 1 , [*path, nums[index]] , _lowerCAmelCase , remaining_nums_sum - nums[index] , ) _UpperCamelCase : Any = [3, 34, 4, 12, 5, 2] _UpperCamelCase : List[str] = 9 _UpperCamelCase : Dict = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
721
"""simple docstring""" import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path _UpperCamelCase : Any = [ {"dataset": "wikipedia", "config_name": "20220301.de"}, {"dataset": "wikipedia", "config_name": "20220301.en"}, {"dataset": "wikipedia", "config_name": "20220301.fr"}, {"dataset": "wikipedia", "config_name": "20220301.frr"}, {"dataset": "wikipedia", "config_name": "20220301.it"}, {"dataset": "wikipedia", "config_name": "20220301.simple"}, {"dataset": "snli", "config_name": "plain_text"}, {"dataset": "eli5", "config_name": "LFQA_reddit"}, {"dataset": "wiki40b", "config_name": "en"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.compressed"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.no_index"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.multiset.no_index"}, {"dataset": "natural_questions", "config_name": "default"}, ] def a_ ( _lowerCAmelCase : Optional[Any]=True ): '''simple docstring''' if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=_a)) class UpperCAmelCase_ ( _a): lowerCamelCase__ : str = None lowerCamelCase__ : Optional[Any] = None def _UpperCAmelCase ( self , a , a ) -> List[Any]: with TemporaryDirectory() as tmp_dir: lowercase__ : List[str] = dataset_module_factory(a , cache_dir=a ) lowercase__ : List[Any] = import_main_class(dataset_module.module_path , dataset=a ) lowercase__ : DatasetBuilder = builder_cls( cache_dir=a , config_name=a , hash=dataset_module.hash , ) lowercase__ : Union[str, Any] = '/'.join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=a ).replace(os.sep , '/' ), config.DATASET_INFO_FILENAME, ] ) lowercase__ : Union[str, Any] = cached_path(a , cache_dir=a ) self.assertTrue(os.path.exists(a ) ) @pytest.mark.integration def a_ ( _lowerCAmelCase : str ): '''simple docstring''' lowercase__ : Union[str, Any] = tmp_path_factory.mktemp('test_hf_gcp' ) / 'test_wikipedia_simple' lowercase__ : int = dataset_module_factory('wikipedia' , cache_dir=_lowerCAmelCase ) lowercase__ : Optional[int] = import_main_class(dataset_module.module_path ) lowercase__ : DatasetBuilder = builder_cls( cache_dir=_lowerCAmelCase , config_name='20220301.frr' , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam lowercase__ : Optional[int] = None builder_instance.download_and_prepare() lowercase__ : Optional[int] = builder_instance.as_dataset() assert ds @pytest.mark.integration def a_ ( _lowerCAmelCase : Optional[Any] ): '''simple docstring''' lowercase__ : Optional[int] = dataset_module_factory('wikipedia' , cache_dir=_lowerCAmelCase ) lowercase__ : List[str] = import_main_class(dataset_module.module_path , dataset=_lowerCAmelCase ) lowercase__ : DatasetBuilder = builder_cls( cache_dir=_lowerCAmelCase , config_name='20220301.frr' , hash=dataset_module.hash , ) lowercase__ : Union[str, Any] = builder_instance.as_streaming_dataset() assert ds assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert "train" in ds assert isinstance(ds['train'] , _lowerCAmelCase ) assert next(iter(ds['train'] ) )
645
0
"""simple docstring""" import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) _UpperCamelCase : str = logging.getLogger(__name__) def a_ ( _lowerCAmelCase : str ): '''simple docstring''' lowercase__ : Any = git.Repo(search_parent_directories=_lowerCAmelCase ) lowercase__ : Any = { 'repo_id': str(_lowerCAmelCase ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), } with open(os.path.join(_lowerCAmelCase , 'git_log.json' ) , 'w' ) as f: json.dump(_lowerCAmelCase , _lowerCAmelCase , indent=4 ) def a_ ( _lowerCAmelCase : List[Any] ): '''simple docstring''' if params.n_gpu <= 0: lowercase__ : Dict = 0 lowercase__ : List[Any] = -1 lowercase__ : List[str] = True lowercase__ : Union[str, Any] = False return assert torch.cuda.is_available() logger.info('Initializing GPUs' ) if params.n_gpu > 1: assert params.local_rank != -1 lowercase__ : Optional[int] = int(os.environ['WORLD_SIZE'] ) lowercase__ : Union[str, Any] = int(os.environ['N_GPU_NODE'] ) lowercase__ : List[Any] = int(os.environ['RANK'] ) # number of nodes / node ID lowercase__ : int = params.world_size // params.n_gpu_per_node lowercase__ : List[Any] = params.global_rank // params.n_gpu_per_node lowercase__ : List[str] = True assert params.n_nodes == int(os.environ['N_NODES'] ) assert params.node_id == int(os.environ['NODE_RANK'] ) # local job (single GPU) else: assert params.local_rank == -1 lowercase__ : List[str] = 1 lowercase__ : Tuple = 0 lowercase__ : int = 0 lowercase__ : List[Any] = 0 lowercase__ : int = 1 lowercase__ : List[Any] = 1 lowercase__ : Tuple = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode lowercase__ : Tuple = params.node_id == 0 and params.local_rank == 0 lowercase__ : Optional[int] = params.n_nodes > 1 # summary lowercase__ : Union[str, Any] = f"""--- Global rank: {params.global_rank} - """ logger.info(PREFIX + 'Number of nodes: %i' % params.n_nodes ) logger.info(PREFIX + 'Node ID : %i' % params.node_id ) logger.info(PREFIX + 'Local rank : %i' % params.local_rank ) logger.info(PREFIX + 'World size : %i' % params.world_size ) logger.info(PREFIX + 'GPUs per node : %i' % params.n_gpu_per_node ) logger.info(PREFIX + 'Master : %s' % str(params.is_master ) ) logger.info(PREFIX + 'Multi-node : %s' % str(params.multi_node ) ) logger.info(PREFIX + 'Multi-GPU : %s' % str(params.multi_gpu ) ) logger.info(PREFIX + 'Hostname : %s' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('Initializing PyTorch distributed' ) torch.distributed.init_process_group( init_method='env://' , backend='nccl' , ) def a_ ( _lowerCAmelCase : List[Any] ): '''simple docstring''' np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
700
"""simple docstring""" import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def a_ ( _lowerCAmelCase : dict ): '''simple docstring''' return (data["data"], data["target"]) def a_ ( _lowerCAmelCase : np.ndarray , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : np.ndarray ): '''simple docstring''' lowercase__ : Any = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(_lowerCAmelCase , _lowerCAmelCase ) # Predict target for test data lowercase__ : str = xgb.predict(_lowerCAmelCase ) lowercase__ : Union[str, Any] = predictions.reshape(len(_lowerCAmelCase ) , 1 ) return predictions def a_ ( ): '''simple docstring''' lowercase__ : Optional[Any] = fetch_california_housing() lowercase__ , lowercase__ : str = data_handling(_lowerCAmelCase ) lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = train_test_split( _lowerCAmelCase , _lowerCAmelCase , test_size=0.2_5 , random_state=1 ) lowercase__ : Any = xgboost(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Error printing print(f"""Mean Absolute Error : {mean_absolute_error(_lowerCAmelCase , _lowerCAmelCase )}""" ) print(f"""Mean Square Error : {mean_squared_error(_lowerCAmelCase , _lowerCAmelCase )}""" ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
645
0
"""simple docstring""" import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path _UpperCamelCase : Any = [ {"dataset": "wikipedia", "config_name": "20220301.de"}, {"dataset": "wikipedia", "config_name": "20220301.en"}, {"dataset": "wikipedia", "config_name": "20220301.fr"}, {"dataset": "wikipedia", "config_name": "20220301.frr"}, {"dataset": "wikipedia", "config_name": "20220301.it"}, {"dataset": "wikipedia", "config_name": "20220301.simple"}, {"dataset": "snli", "config_name": "plain_text"}, {"dataset": "eli5", "config_name": "LFQA_reddit"}, {"dataset": "wiki40b", "config_name": "en"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.compressed"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.no_index"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.multiset.no_index"}, {"dataset": "natural_questions", "config_name": "default"}, ] def a_ ( _lowerCAmelCase : Optional[Any]=True ): '''simple docstring''' if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=_a)) class UpperCAmelCase_ ( _a): lowerCamelCase__ : str = None lowerCamelCase__ : Optional[Any] = None def _UpperCAmelCase ( self , a , a ) -> List[Any]: with TemporaryDirectory() as tmp_dir: lowercase__ : List[str] = dataset_module_factory(a , cache_dir=a ) lowercase__ : List[Any] = import_main_class(dataset_module.module_path , dataset=a ) lowercase__ : DatasetBuilder = builder_cls( cache_dir=a , config_name=a , hash=dataset_module.hash , ) lowercase__ : Union[str, Any] = '/'.join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=a ).replace(os.sep , '/' ), config.DATASET_INFO_FILENAME, ] ) lowercase__ : Union[str, Any] = cached_path(a , cache_dir=a ) self.assertTrue(os.path.exists(a ) ) @pytest.mark.integration def a_ ( _lowerCAmelCase : str ): '''simple docstring''' lowercase__ : Union[str, Any] = tmp_path_factory.mktemp('test_hf_gcp' ) / 'test_wikipedia_simple' lowercase__ : int = dataset_module_factory('wikipedia' , cache_dir=_lowerCAmelCase ) lowercase__ : Optional[int] = import_main_class(dataset_module.module_path ) lowercase__ : DatasetBuilder = builder_cls( cache_dir=_lowerCAmelCase , config_name='20220301.frr' , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam lowercase__ : Optional[int] = None builder_instance.download_and_prepare() lowercase__ : Optional[int] = builder_instance.as_dataset() assert ds @pytest.mark.integration def a_ ( _lowerCAmelCase : Optional[Any] ): '''simple docstring''' lowercase__ : Optional[int] = dataset_module_factory('wikipedia' , cache_dir=_lowerCAmelCase ) lowercase__ : List[str] = import_main_class(dataset_module.module_path , dataset=_lowerCAmelCase ) lowercase__ : DatasetBuilder = builder_cls( cache_dir=_lowerCAmelCase , config_name='20220301.frr' , hash=dataset_module.hash , ) lowercase__ : Union[str, Any] = builder_instance.as_streaming_dataset() assert ds assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert "train" in ds assert isinstance(ds['train'] , _lowerCAmelCase ) assert next(iter(ds['train'] ) )
701
"""simple docstring""" import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class UpperCAmelCase_ : def __init__( self , a , a=1_3 , a=1_0 , a=3 , a=2 , a=2 , a=2 , a=True , a=True , a=3_2 , a=5 , a=4 , a=3_7 , a="gelu" , a=0.1 , a=0.1 , a=1_0 , a=0.02 , a=0.9 , a=None , ) -> Optional[Any]: lowercase__ : str = parent lowercase__ : int = batch_size lowercase__ : Union[str, Any] = image_size lowercase__ : Optional[Any] = num_channels lowercase__ : Dict = patch_size lowercase__ : Tuple = tubelet_size lowercase__ : Optional[int] = num_frames lowercase__ : Optional[int] = is_training lowercase__ : int = use_labels lowercase__ : Optional[int] = hidden_size lowercase__ : Union[str, Any] = num_hidden_layers lowercase__ : Optional[int] = num_attention_heads lowercase__ : Any = intermediate_size lowercase__ : str = hidden_act lowercase__ : List[Any] = hidden_dropout_prob lowercase__ : str = attention_probs_dropout_prob lowercase__ : Union[str, Any] = type_sequence_label_size lowercase__ : List[Any] = initializer_range lowercase__ : str = mask_ratio lowercase__ : Optional[Any] = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame lowercase__ : Optional[Any] = (image_size // patch_size) ** 2 lowercase__ : str = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos lowercase__ : str = int(mask_ratio * self.seq_length ) def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : int = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) lowercase__ : int = None if self.use_labels: lowercase__ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ : Dict = self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self ) -> Tuple: return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a , initializer_range=self.initializer_range , ) def _UpperCAmelCase ( self , a , a , a ) -> Optional[int]: lowercase__ : Dict = VideoMAEModel(config=a ) model.to(a ) model.eval() lowercase__ : Tuple = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self , a , a , a ) -> Union[str, Any]: lowercase__ : str = VideoMAEForPreTraining(a ) model.to(a ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowercase__ : Any = torch.ones((self.num_masks,) ) lowercase__ : str = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) lowercase__ : Optional[int] = mask.expand(self.batch_size , -1 ).bool() lowercase__ : str = model(a , a ) # model only returns predictions for masked patches lowercase__ : str = mask.sum().item() lowercase__ : int = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def _UpperCAmelCase ( self ) -> str: lowercase__ : Dict = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = config_and_inputs lowercase__ : List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _a , _a , unittest.TestCase): lowerCamelCase__ : Tuple = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) lowerCamelCase__ : Optional[int] = ( {"feature-extraction": VideoMAEModel, "video-classification": VideoMAEForVideoClassification} if is_torch_available() else {} ) lowerCamelCase__ : Any = False lowerCamelCase__ : Any = False lowerCamelCase__ : Union[str, Any] = False lowerCamelCase__ : str = False def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Optional[Any] = VideoMAEModelTester(self ) lowercase__ : Optional[Any] = ConfigTester(self , config_class=a , has_text_modality=a , hidden_size=3_7 ) def _UpperCAmelCase ( self , a , a , a=False ) -> Optional[int]: lowercase__ : Union[str, Any] = copy.deepcopy(a ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowercase__ : Optional[Any] = torch.ones((self.model_tester.num_masks,) ) lowercase__ : Any = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) lowercase__ : Any = mask.expand(self.model_tester.batch_size , -1 ).bool() lowercase__ : Union[str, Any] = bool_masked_pos.to(a ) if return_labels: if model_class in [ *get_values(a ), ]: lowercase__ : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a ) return inputs_dict def _UpperCAmelCase ( self ) -> Tuple: self.config_tester.run_common_tests() @unittest.skip(reason='VideoMAE does not use inputs_embeds' ) def _UpperCAmelCase ( self ) -> Dict: pass def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : int = model_class(a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase__ : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a , nn.Linear ) ) def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[str] = model_class(a ) lowercase__ : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Optional[Any] = [*signature.parameters.keys()] lowercase__ : int = ['pixel_values'] self.assertListEqual(arg_names[:1] , a ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*a ) @slow def _UpperCAmelCase ( self ) -> str: for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : List[Any] = VideoMAEModel.from_pretrained(a ) self.assertIsNotNone(a ) def _UpperCAmelCase ( self ) -> Optional[Any]: if not self.has_attentions: pass else: lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : str = True for model_class in self.all_model_classes: lowercase__ : Union[str, Any] = self.model_tester.seq_length - self.model_tester.num_masks lowercase__ : Any = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) lowercase__ : Optional[Any] = True lowercase__ : int = False lowercase__ : Any = True lowercase__ : List[str] = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : Optional[int] = model(**self._prepare_for_class(a , a ) ) lowercase__ : Dict = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase__ : str = True lowercase__ : List[str] = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : List[Any] = model(**self._prepare_for_class(a , a ) ) lowercase__ : Optional[Any] = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowercase__ : List[str] = len(a ) # Check attention is always last and order is fine lowercase__ : Optional[int] = True lowercase__ : List[str] = True lowercase__ : int = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : List[str] = model(**self._prepare_for_class(a , a ) ) self.assertEqual(out_len + 1 , len(a ) ) lowercase__ : int = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def _UpperCAmelCase ( self ) -> Optional[int]: def check_hidden_states_output(a , a , a ): lowercase__ : Optional[int] = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : Optional[Any] = model(**self._prepare_for_class(a , a ) ) lowercase__ : Optional[int] = outputs.hidden_states lowercase__ : List[Any] = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(a ) , a ) lowercase__ : Optional[Any] = self.model_tester.seq_length - self.model_tester.num_masks lowercase__ : Union[str, Any] = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowercase__ , lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Tuple = True check_hidden_states_output(a , a , a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : Union[str, Any] = True check_hidden_states_output(a , a , a ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _UpperCAmelCase ( self ) -> List[Any]: pass def a_ ( ): '''simple docstring''' lowercase__ : int = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename='eating_spaghetti.npy' , repo_type='dataset' ) lowercase__ : str = np.load(_lowerCAmelCase ) return list(_lowerCAmelCase ) @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase): @cached_property def _UpperCAmelCase ( self ) -> Optional[Any]: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def _UpperCAmelCase ( self ) -> int: lowercase__ : Dict = VideoMAEForVideoClassification.from_pretrained('MCG-NJU/videomae-base-finetuned-kinetics' ).to( a ) lowercase__ : str = self.default_image_processor lowercase__ : List[str] = prepare_video() lowercase__ : int = image_processor(a , return_tensors='pt' ).to(a ) # forward pass with torch.no_grad(): lowercase__ : Union[str, Any] = model(**a ) # verify the logits lowercase__ : str = torch.Size((1, 4_0_0) ) self.assertEqual(outputs.logits.shape , a ) lowercase__ : List[Any] = torch.tensor([0.3_669, -0.0_688, -0.2_421] ).to(a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a , atol=1e-4 ) ) @slow def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Optional[int] = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short' ).to(a ) lowercase__ : Optional[Any] = self.default_image_processor lowercase__ : List[str] = prepare_video() lowercase__ : str = image_processor(a , return_tensors='pt' ).to(a ) # add boolean mask, indicating which patches to mask lowercase__ : Union[str, Any] = hf_hub_download(repo_id='hf-internal-testing/bool-masked-pos' , filename='bool_masked_pos.pt' ) lowercase__ : str = torch.load(a ) # forward pass with torch.no_grad(): lowercase__ : List[Any] = model(**a ) # verify the logits lowercase__ : Dict = torch.Size([1, 1_4_0_8, 1_5_3_6] ) lowercase__ : List[str] = torch.tensor( [[0.7_994, 0.9_612, 0.8_508], [0.7_401, 0.8_958, 0.8_302], [0.5_862, 0.7_468, 0.7_325]] , device=a ) self.assertEqual(outputs.logits.shape , a ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , a , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) lowercase__ : List[Any] = torch.tensor([0.5_142] , device=a ) self.assertTrue(torch.allclose(outputs.loss , a , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) lowercase__ : Tuple = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short' , norm_pix_loss=a ).to( a ) with torch.no_grad(): lowercase__ : Any = model(**a ) lowercase__ : List[Any] = torch.tensor(torch.tensor([0.6_469] ) , device=a ) self.assertTrue(torch.allclose(outputs.loss , a , atol=1e-4 ) )
645
0
"""simple docstring""" import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def a_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[str] ): '''simple docstring''' if isinstance(_lowerCAmelCase , torch.Tensor ): return image elif isinstance(_lowerCAmelCase , PIL.Image.Image ): lowercase__ : Union[str, Any] = [image] if isinstance(image[0] , PIL.Image.Image ): lowercase__ : int = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] lowercase__ : str = np.concatenate(_lowerCAmelCase , axis=0 ) lowercase__ : Union[str, Any] = np.array(_lowerCAmelCase ).astype(np.floataa ) / 255.0 lowercase__ : Union[str, Any] = image.transpose(0 , 3 , 1 , 2 ) lowercase__ : Optional[int] = 2.0 * image - 1.0 lowercase__ : Union[str, Any] = torch.from_numpy(_lowerCAmelCase ) elif isinstance(image[0] , torch.Tensor ): lowercase__ : Optional[int] = torch.cat(_lowerCAmelCase , dim=0 ) return image def a_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : Tuple=0.9_9_9_5 ): '''simple docstring''' if not isinstance(_lowerCAmelCase , np.ndarray ): lowercase__ : Optional[int] = True lowercase__ : str = va.device lowercase__ : Tuple = va.cpu().numpy() lowercase__ : Any = va.cpu().numpy() lowercase__ : Dict = np.sum(va * va / (np.linalg.norm(_lowerCAmelCase ) * np.linalg.norm(_lowerCAmelCase )) ) if np.abs(_lowerCAmelCase ) > DOT_THRESHOLD: lowercase__ : Optional[int] = (1 - t) * va + t * va else: lowercase__ : Dict = np.arccos(_lowerCAmelCase ) lowercase__ : Optional[Any] = np.sin(_lowerCAmelCase ) lowercase__ : Union[str, Any] = theta_a * t lowercase__ : List[Any] = np.sin(_lowerCAmelCase ) lowercase__ : str = np.sin(theta_a - theta_t ) / sin_theta_a lowercase__ : Any = sin_theta_t / sin_theta_a lowercase__ : Optional[Any] = sa * va + sa * va if inputs_are_torch: lowercase__ : List[str] = torch.from_numpy(_lowerCAmelCase ).to(_lowerCAmelCase ) return va def a_ ( _lowerCAmelCase : int , _lowerCAmelCase : Tuple ): '''simple docstring''' lowercase__ : Any = F.normalize(_lowerCAmelCase , dim=-1 ) lowercase__ : Dict = F.normalize(_lowerCAmelCase , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def a_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any] ): '''simple docstring''' for param in model.parameters(): lowercase__ : Optional[int] = value class UpperCAmelCase_ ( _a): def __init__( self , a , a , a , a , a , a , a , a=None , a=None , a=None , ) -> Any: super().__init__() self.register_modules( vae=a , text_encoder=a , clip_model=a , tokenizer=a , unet=a , scheduler=a , feature_extractor=a , coca_model=a , coca_tokenizer=a , coca_transform=a , ) lowercase__ : Tuple = ( feature_extractor.size if isinstance(feature_extractor.size , a ) else feature_extractor.size['shortest_edge'] ) lowercase__ : Optional[int] = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , a ) set_requires_grad(self.clip_model , a ) def _UpperCAmelCase ( self , a = "auto" ) -> List[Any]: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowercase__ : List[Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(a ) def _UpperCAmelCase ( self ) -> Dict: self.enable_attention_slicing(a ) def _UpperCAmelCase ( self ) -> Any: set_requires_grad(self.vae , a ) def _UpperCAmelCase ( self ) -> Optional[Any]: set_requires_grad(self.vae , a ) def _UpperCAmelCase ( self ) -> int: set_requires_grad(self.unet , a ) def _UpperCAmelCase ( self ) -> Any: set_requires_grad(self.unet , a ) def _UpperCAmelCase ( self , a , a , a ) -> int: # get the original timestep using init_timestep lowercase__ : int = min(int(num_inference_steps * strength ) , a ) lowercase__ : Optional[Any] = max(num_inference_steps - init_timestep , 0 ) lowercase__ : List[Any] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _UpperCAmelCase ( self , a , a , a , a , a , a=None ) -> Tuple: if not isinstance(a , torch.Tensor ): raise ValueError(f"""`image` has to be of type `torch.Tensor` but is {type(a )}""" ) lowercase__ : str = image.to(device=a , dtype=a ) if isinstance(a , a ): lowercase__ : Optional[Any] = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(a ) ] lowercase__ : Tuple = torch.cat(a , dim=0 ) else: lowercase__ : Any = self.vae.encode(a ).latent_dist.sample(a ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor lowercase__ : int = 0.18_215 * init_latents lowercase__ : int = init_latents.repeat_interleave(a , dim=0 ) lowercase__ : Dict = randn_tensor(init_latents.shape , generator=a , device=a , dtype=a ) # get latents lowercase__ : int = self.scheduler.add_noise(a , a , a ) lowercase__ : List[Any] = init_latents return latents def _UpperCAmelCase ( self , a ) -> List[str]: lowercase__ : List[Any] = self.coca_transform(a ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): lowercase__ : Any = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) lowercase__ : Optional[int] = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split('<end_of_text>' )[0].replace('<start_of_text>' , '' ).rstrip(' .,' ) def _UpperCAmelCase ( self , a , a ) -> List[Any]: lowercase__ : int = self.feature_extractor.preprocess(a ) lowercase__ : Optional[Any] = torch.from_numpy(clip_image_input['pixel_values'][0] ).unsqueeze(0 ).to(self.device ).half() lowercase__ : List[str] = self.clip_model.get_image_features(a ) lowercase__ : Tuple = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=a ) lowercase__ : Optional[Any] = image_embeddings_clip.repeat_interleave(a , dim=0 ) return image_embeddings_clip @torch.enable_grad() def _UpperCAmelCase ( self , a , a , a , a , a , a , a , ) -> str: lowercase__ : Tuple = latents.detach().requires_grad_() lowercase__ : Dict = self.scheduler.scale_model_input(a , a ) # predict the noise residual lowercase__ : int = self.unet(a , a , encoder_hidden_states=a ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): lowercase__ : int = self.scheduler.alphas_cumprod[timestep] lowercase__ : Tuple = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowercase__ : Any = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 lowercase__ : List[str] = torch.sqrt(a ) lowercase__ : Any = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , a ): lowercase__ : Dict = self.scheduler.sigmas[index] lowercase__ : List[str] = latents - sigma * noise_pred else: raise ValueError(f"""scheduler type {type(self.scheduler )} not supported""" ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor lowercase__ : str = 1 / 0.18_215 * sample lowercase__ : int = self.vae.decode(a ).sample lowercase__ : int = (image / 2 + 0.5).clamp(0 , 1 ) lowercase__ : Dict = transforms.Resize(self.feature_extractor_size )(a ) lowercase__ : Optional[int] = self.normalize(a ).to(latents.dtype ) lowercase__ : str = self.clip_model.get_image_features(a ) lowercase__ : Tuple = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=a ) lowercase__ : Dict = spherical_dist_loss(a , a ).mean() * clip_guidance_scale lowercase__ : Tuple = -torch.autograd.grad(a , a )[0] if isinstance(self.scheduler , a ): lowercase__ : int = latents.detach() + grads * (sigma**2) lowercase__ : Optional[Any] = noise_pred_original else: lowercase__ : List[Any] = noise_pred_original - torch.sqrt(a ) * grads return noise_pred, latents @torch.no_grad() def __call__( self , a , a , a = None , a = None , a = 5_1_2 , a = 5_1_2 , a = 0.6 , a = 5_0 , a = 7.5 , a = 1 , a = 0.0 , a = 1_0_0 , a = None , a = "pil" , a = True , a = 0.8 , a = 0.1 , a = 0.1 , ) -> Dict: if isinstance(a , a ) and len(a ) != batch_size: raise ValueError(f"""You have passed {batch_size} batch_size, but only {len(a )} generators.""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if isinstance(a , torch.Generator ) and batch_size > 1: lowercase__ : Optional[int] = [generator] + [None] * (batch_size - 1) lowercase__ : Tuple = [ ('model', self.coca_model is None), ('tokenizer', self.coca_tokenizer is None), ('transform', self.coca_transform is None), ] lowercase__ : Optional[Any] = [x[0] for x in coca_is_none if x[1]] lowercase__ : Dict = ', '.join(a ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(a ): raise ValueError( f"""Content prompt is None and CoCa [{coca_is_none_str}] is None.""" f"""Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) lowercase__ : int = self.get_image_description(a ) if style_prompt is None: if len(a ): raise ValueError( f"""Style prompt is None and CoCa [{coca_is_none_str}] is None.""" f""" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) lowercase__ : List[str] = self.get_image_description(a ) # get prompt text embeddings for content and style lowercase__ : Any = self.tokenizer( a , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=a , return_tensors='pt' , ) lowercase__ : Optional[Any] = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] lowercase__ : Tuple = self.tokenizer( a , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=a , return_tensors='pt' , ) lowercase__ : Union[str, Any] = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] lowercase__ : Union[str, Any] = slerp(a , a , a ) # duplicate text embeddings for each generation per prompt lowercase__ : Any = text_embeddings.repeat_interleave(a , dim=0 ) # set timesteps lowercase__ : List[str] = 'offset' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) lowercase__ : Optional[Any] = {} if accepts_offset: lowercase__ : Dict = 1 self.scheduler.set_timesteps(a , **a ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) lowercase__ : Optional[int] = self.get_timesteps(a , a , self.device ) lowercase__ : List[Any] = timesteps[:1].repeat(a ) # Preprocess image lowercase__ : Tuple = preprocess(a , a , a ) lowercase__ : int = self.prepare_latents( a , a , a , text_embeddings.dtype , self.device , a ) lowercase__ : List[Any] = preprocess(a , a , a ) lowercase__ : Union[str, Any] = self.prepare_latents( a , a , a , text_embeddings.dtype , self.device , a ) lowercase__ : str = slerp(a , a , a ) if clip_guidance_scale > 0: lowercase__ : List[str] = self.get_clip_image_embeddings(a , a ) lowercase__ : Any = self.get_clip_image_embeddings(a , a ) lowercase__ : Dict = slerp( a , a , a ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowercase__ : Tuple = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowercase__ : Optional[int] = content_text_input.input_ids.shape[-1] lowercase__ : Optional[Any] = self.tokenizer([''] , padding='max_length' , max_length=a , return_tensors='pt' ) lowercase__ : Optional[int] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt lowercase__ : Optional[int] = uncond_embeddings.repeat_interleave(a , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase__ : Tuple = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowercase__ : Tuple = (batch_size, self.unet.config.in_channels, height // 8, width // 8) lowercase__ : str = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps lowercase__ : Tuple = torch.randn(a , generator=a , device='cpu' , dtype=a ).to( self.device ) else: lowercase__ : Any = torch.randn(a , generator=a , device=self.device , dtype=a ) else: if latents.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) lowercase__ : Tuple = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowercase__ : Union[str, Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowercase__ : Any = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowercase__ : Optional[int] = {} if accepts_eta: lowercase__ : str = eta # check if the scheduler accepts generator lowercase__ : List[Any] = 'generator' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: lowercase__ : str = generator with self.progress_bar(total=a ): for i, t in enumerate(a ): # expand the latents if we are doing classifier free guidance lowercase__ : List[Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase__ : Dict = self.scheduler.scale_model_input(a , a ) # predict the noise residual lowercase__ : List[Any] = self.unet(a , a , encoder_hidden_states=a ).sample # perform classifier free guidance if do_classifier_free_guidance: lowercase__ : List[str] = noise_pred.chunk(2 ) lowercase__ : Optional[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: lowercase__ : int = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) lowercase__ : int = self.cond_fn( a , a , a , a , a , a , a , ) # compute the previous noisy sample x_t -> x_t-1 lowercase__ : Optional[Any] = self.scheduler.step(a , a , a , **a ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor lowercase__ : int = 1 / 0.18_215 * latents lowercase__ : List[Any] = self.vae.decode(a ).sample lowercase__ : Dict = (image / 2 + 0.5).clamp(0 , 1 ) lowercase__ : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowercase__ : Tuple = self.numpy_to_pil(a ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=a , nsfw_content_detected=a )
702
"""simple docstring""" import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() _UpperCamelCase : Dict = logging.get_logger(__name__) _UpperCamelCase : List[Any] = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "encoder.layer_norm_for_extract": "layer_norm_for_extract", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "label_embs_concat": "label_embeddings_concat", "mask_emb": "masked_spec_embed", "spk_proj": "speaker_proj", } _UpperCamelCase : List[str] = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "label_embeddings_concat", "speaker_proj", "layer_norm_for_extract", ] def a_ ( _lowerCAmelCase : Any , _lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple ): '''simple docstring''' for attribute in key.split('.' ): lowercase__ : Dict = getattr(_lowerCAmelCase , _lowerCAmelCase ) if weight_type is not None: lowercase__ : Optional[int] = getattr(_lowerCAmelCase , _lowerCAmelCase ).shape else: lowercase__ : Optional[int] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowercase__ : Optional[Any] = value elif weight_type == "weight_g": lowercase__ : Dict = value elif weight_type == "weight_v": lowercase__ : List[str] = value elif weight_type == "bias": lowercase__ : Optional[Any] = value else: lowercase__ : List[str] = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def a_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] ): '''simple docstring''' lowercase__ : Tuple = [] lowercase__ : List[str] = fairseq_model.state_dict() lowercase__ : Union[str, Any] = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): lowercase__ : Optional[int] = False if "conv_layers" in name: load_conv_layer( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , hf_model.config.feat_extract_norm == 'group' , ) lowercase__ : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): lowercase__ : List[Any] = 'unispeech_sat.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('.' )[:-1] ) != key): # special case since naming is very similar continue lowercase__ : int = True if "*" in mapped_key: lowercase__ : Optional[int] = name.split(_lowerCAmelCase )[0].split('.' )[-2] lowercase__ : List[str] = mapped_key.replace('*' , _lowerCAmelCase ) if "weight_g" in name: lowercase__ : List[Any] = 'weight_g' elif "weight_v" in name: lowercase__ : int = 'weight_v' elif "bias" in name: lowercase__ : Dict = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj lowercase__ : Union[str, Any] = 'weight' else: lowercase__ : int = None set_recursively(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) continue if not is_used: unused_weights.append(_lowerCAmelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def a_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : Dict ): '''simple docstring''' lowercase__ : int = full_name.split('conv_layers.' )[-1] lowercase__ : int = name.split('.' ) lowercase__ : int = int(items[0] ) lowercase__ : Dict = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowercase__ : Union[str, Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowercase__ : Optional[int] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) lowercase__ : List[Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) lowercase__ : int = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_lowerCAmelCase ) @torch.no_grad() def a_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : str=None , _lowerCAmelCase : Tuple=True ): '''simple docstring''' if config_path is not None: lowercase__ : Any = UniSpeechSatConfig.from_pretrained(_lowerCAmelCase ) else: lowercase__ : Any = UniSpeechSatConfig() lowercase__ : Union[str, Any] = '' if is_finetuned: lowercase__ : Optional[Any] = UniSpeechSatForCTC(_lowerCAmelCase ) else: lowercase__ : List[Any] = UniSpeechSatForPreTraining(_lowerCAmelCase ) lowercase__ , lowercase__ , lowercase__ : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) lowercase__ : Union[str, Any] = model[0].eval() recursively_load_weights(_lowerCAmelCase , _lowerCAmelCase ) hf_wavavec.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": _UpperCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _UpperCamelCase : str = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
645
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor _UpperCamelCase : Optional[int] = logging.get_logger(__name__) class UpperCAmelCase_ ( _a): def __init__( self , *a , **a ) -> None: warnings.warn( 'The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use FlavaImageProcessor instead.' , a , ) super().__init__(*a , **a )
703
"""simple docstring""" import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class UpperCAmelCase_ : def __init__( self , a , a=1_3 , a=3_2 , a=2 , a=3 , a=1_6 , a=[1, 2, 1] , a=[2, 2, 4] , a=2 , a=2.0 , a=True , a=0.0 , a=0.0 , a=0.1 , a="gelu" , a=False , a=True , a=0.02 , a=1e-5 , a=True , a=None , a=True , a=1_0 , a=8 , a=["stage1", "stage2", "stage3"] , a=[1, 2, 3] , ) -> int: lowercase__ : int = parent lowercase__ : Union[str, Any] = batch_size lowercase__ : Dict = image_size lowercase__ : str = patch_size lowercase__ : Optional[Any] = num_channels lowercase__ : List[str] = embed_dim lowercase__ : Any = depths lowercase__ : Dict = num_heads lowercase__ : List[str] = window_size lowercase__ : int = mlp_ratio lowercase__ : Tuple = qkv_bias lowercase__ : Union[str, Any] = hidden_dropout_prob lowercase__ : str = attention_probs_dropout_prob lowercase__ : Tuple = drop_path_rate lowercase__ : List[str] = hidden_act lowercase__ : Optional[Any] = use_absolute_embeddings lowercase__ : Optional[Any] = patch_norm lowercase__ : Any = layer_norm_eps lowercase__ : List[Any] = initializer_range lowercase__ : List[str] = is_training lowercase__ : int = scope lowercase__ : Optional[int] = use_labels lowercase__ : List[Any] = type_sequence_label_size lowercase__ : List[str] = encoder_stride lowercase__ : Optional[Any] = out_features lowercase__ : Dict = out_indices def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : Optional[Any] = None if self.use_labels: lowercase__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ : Tuple = self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self ) -> Union[str, Any]: return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def _UpperCAmelCase ( self , a , a , a ) -> Dict: lowercase__ : Tuple = MaskFormerSwinModel(config=a ) model.to(a ) model.eval() lowercase__ : str = model(a ) lowercase__ : str = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowercase__ : Dict = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def _UpperCAmelCase ( self , a , a , a ) -> Optional[int]: lowercase__ : List[Any] = MaskFormerSwinBackbone(config=a ) model.to(a ) model.eval() lowercase__ : int = model(a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [1_3, 1_6, 1_6, 1_6] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [1_6, 3_2, 6_4] ) # verify ValueError with self.parent.assertRaises(a ): lowercase__ : Dict = ['stem'] lowercase__ : List[str] = MaskFormerSwinBackbone(config=a ) def _UpperCAmelCase ( self ) -> str: lowercase__ : int = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Tuple = config_and_inputs lowercase__ : Union[str, Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _a , _a , unittest.TestCase): lowerCamelCase__ : Optional[int] = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) lowerCamelCase__ : List[str] = {"feature-extraction": MaskFormerSwinModel} if is_torch_available() else {} lowerCamelCase__ : str = False lowerCamelCase__ : Dict = False lowerCamelCase__ : Any = False lowerCamelCase__ : Dict = False lowerCamelCase__ : int = False def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : str = MaskFormerSwinModelTester(self ) lowercase__ : Tuple = ConfigTester(self , config_class=a , embed_dim=3_7 ) @require_torch_multi_gpu @unittest.skip( reason=( '`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with' ' `nn.DataParallel`' ) ) def _UpperCAmelCase ( self ) -> Optional[int]: pass def _UpperCAmelCase ( self ) -> Tuple: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _UpperCAmelCase ( self ) -> str: return def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*a ) @unittest.skip('Swin does not use inputs_embeds' ) def _UpperCAmelCase ( self ) -> Tuple: pass @unittest.skip('Swin does not support feedforward chunking' ) def _UpperCAmelCase ( self ) -> Tuple: pass def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[str] = model_class(a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase__ : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a , nn.Linear ) ) def _UpperCAmelCase ( self ) -> str: lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Any = model_class(a ) lowercase__ : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Optional[Any] = [*signature.parameters.keys()] lowercase__ : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , a ) @unittest.skip(reason='MaskFormerSwin is only used as backbone and doesn\'t support output_attentions' ) def _UpperCAmelCase ( self ) -> List[Any]: pass @unittest.skip(reason='MaskFormerSwin is only used as an internal backbone' ) def _UpperCAmelCase ( self ) -> int: pass def _UpperCAmelCase ( self , a , a , a , a ) -> Tuple: lowercase__ : Dict = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : str = model(**self._prepare_for_class(a , a ) ) lowercase__ : List[Any] = outputs.hidden_states lowercase__ : str = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(a ) , a ) # Swin has a different seq_length lowercase__ : Dict = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase__ : Tuple = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ , lowercase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : List[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: lowercase__ : List[str] = True self.check_hidden_states_output(a , a , a , a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : List[str] = True self.check_hidden_states_output(a , a , a , a ) def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Union[str, Any] = 3 lowercase__ : str = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowercase__ : Tuple = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase__ : Optional[int] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowercase__ : List[str] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: lowercase__ : List[str] = True self.check_hidden_states_output(a , a , a , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : int = True self.check_hidden_states_output(a , a , a , (padded_height, padded_width) ) @unittest.skip(reason='MaskFormerSwin doesn\'t have pretrained checkpoints' ) def _UpperCAmelCase ( self ) -> Optional[int]: pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def _UpperCAmelCase ( self ) -> Any: pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def _UpperCAmelCase ( self ) -> Any: pass def _UpperCAmelCase ( self ) -> Any: lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(a ): lowercase__ : Union[str, Any] = 0 return t def check_equivalence(a , a , a , a={} ): with torch.no_grad(): lowercase__ : Optional[Any] = model(**a , return_dict=a , **a ) lowercase__ : Optional[int] = model(**a , return_dict=a , **a ).to_tuple() def recursive_check(a , a ): if isinstance(a , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(a , a ): recursive_check(a , a ) elif isinstance(a , a ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(a , a ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(a ) , set_nan_tensor_to_zero(a ) , atol=1e-5 ) , msg=( 'Tuple and dict output are not equal. Difference:' f""" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:""" f""" {torch.isnan(a ).any()} and `inf`: {torch.isinf(a )}. Dict has""" f""" `nan`: {torch.isnan(a ).any()} and `inf`: {torch.isinf(a )}.""" ) , ) recursive_check(a , a ) for model_class in self.all_model_classes: lowercase__ : Any = model_class(a ) model.to(a ) model.eval() lowercase__ : Tuple = self._prepare_for_class(a , a ) lowercase__ : Optional[Any] = self._prepare_for_class(a , a ) check_equivalence(a , a , a ) lowercase__ : Any = self._prepare_for_class(a , a , return_labels=a ) lowercase__ : List[Any] = self._prepare_for_class(a , a , return_labels=a ) check_equivalence(a , a , a ) lowercase__ : Any = self._prepare_for_class(a , a ) lowercase__ : int = self._prepare_for_class(a , a ) check_equivalence(a , a , a , {'output_hidden_states': True} ) lowercase__ : Dict = self._prepare_for_class(a , a , return_labels=a ) lowercase__ : Optional[int] = self._prepare_for_class(a , a , return_labels=a ) check_equivalence(a , a , a , {'output_hidden_states': True} ) @require_torch class UpperCAmelCase_ ( unittest.TestCase , _a): lowerCamelCase__ : Dict = (MaskFormerSwinBackbone,) if is_torch_available() else () lowerCamelCase__ : Optional[int] = MaskFormerSwinConfig def _UpperCAmelCase ( self ) -> Dict: lowercase__ : Optional[int] = MaskFormerSwinModelTester(self ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : int = inputs_dict['pixel_values'].shape[0] for backbone_class in self.all_model_classes: lowercase__ : Optional[Any] = backbone_class(a ) backbone.to(a ) backbone.eval() lowercase__ : Union[str, Any] = backbone(**a ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , a ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True lowercase__ : List[str] = backbone(**a , output_hidden_states=a ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) lowercase__ , lowercase__ , lowercase__ : int = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: lowercase__ : List[Any] = backbone(**a , output_attentions=a ) self.assertIsNotNone(outputs.attentions )
645
0
"""simple docstring""" from __future__ import annotations def a_ ( _lowerCAmelCase : list[float] ): '''simple docstring''' lowercase__ : str = 0.0_0 lowercase__ : int = 0 for resistor in resistors: if resistor <= 0: lowercase__ : Optional[Any] = f"""Resistor at index {index} has a negative or zero value!""" raise ValueError(_lowerCAmelCase ) first_sum += 1 / float(_lowerCAmelCase ) index += 1 return 1 / first_sum def a_ ( _lowerCAmelCase : list[float] ): '''simple docstring''' lowercase__ : str = 0.0_0 lowercase__ : Any = 0 for resistor in resistors: sum_r += resistor if resistor < 0: lowercase__ : int = f"""Resistor at index {index} has a negative value!""" raise ValueError(_lowerCAmelCase ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
704
"""simple docstring""" import math def a_ ( _lowerCAmelCase : int = 100 ): '''simple docstring''' lowercase__ : Union[str, Any] = sum(i * i for i in range(1 , n + 1 ) ) lowercase__ : str = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f'''{solution() = }''')
645
0
"""simple docstring""" from __future__ import annotations import bisect def a_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int , _lowerCAmelCase : int = 0 , _lowerCAmelCase : int = -1 ): '''simple docstring''' if hi < 0: lowercase__ : Union[str, Any] = len(_lowerCAmelCase ) while lo < hi: lowercase__ : Dict = lo + (hi - lo) // 2 if sorted_collection[mid] < item: lowercase__ : str = mid + 1 else: lowercase__ : List[str] = mid return lo def a_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int , _lowerCAmelCase : int = 0 , _lowerCAmelCase : int = -1 ): '''simple docstring''' if hi < 0: lowercase__ : str = len(_lowerCAmelCase ) while lo < hi: lowercase__ : Union[str, Any] = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: lowercase__ : List[str] = mid + 1 else: lowercase__ : Optional[int] = mid return lo def a_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int , _lowerCAmelCase : int = 0 , _lowerCAmelCase : int = -1 ): '''simple docstring''' sorted_collection.insert(bisect_left(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) def a_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int , _lowerCAmelCase : int = 0 , _lowerCAmelCase : int = -1 ): '''simple docstring''' sorted_collection.insert(bisect_right(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) def a_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int ): '''simple docstring''' lowercase__ : List[Any] = 0 lowercase__ : Optional[Any] = len(_lowerCAmelCase ) - 1 while left <= right: lowercase__ : Optional[int] = left + (right - left) // 2 lowercase__ : str = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: lowercase__ : Union[str, Any] = midpoint - 1 else: lowercase__ : Dict = midpoint + 1 return None def a_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int ): '''simple docstring''' lowercase__ : Dict = bisect.bisect_left(_lowerCAmelCase , _lowerCAmelCase ) if index != len(_lowerCAmelCase ) and sorted_collection[index] == item: return index return None def a_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ): '''simple docstring''' if right < left: return None lowercase__ : List[Any] = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , midpoint - 1 ) else: return binary_search_by_recursion(_lowerCAmelCase , _lowerCAmelCase , midpoint + 1 , _lowerCAmelCase ) if __name__ == "__main__": _UpperCamelCase : List[str] = input("Enter numbers separated by comma:\n").strip() _UpperCamelCase : List[str] = sorted(int(item) for item in user_input.split(",")) _UpperCamelCase : str = int(input("Enter a single number to be found in the list:\n")) _UpperCamelCase : Union[str, Any] = binary_search(collection, target) if result is None: print(f'''{target} was not found in {collection}.''') else: print(f'''{target} was found at position {result} in {collection}.''')
705
"""simple docstring""" import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class UpperCAmelCase_ ( unittest.TestCase): def _UpperCAmelCase ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() def _UpperCAmelCase ( self ) -> Tuple: lowercase__ , lowercase__ : str = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-canny' , from_pt=a , dtype=jnp.bfloataa ) lowercase__ , lowercase__ : List[str] = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , controlnet=a , from_pt=a , dtype=jnp.bfloataa ) lowercase__ : List[Any] = controlnet_params lowercase__ : int = 'bird' lowercase__ : List[Any] = jax.device_count() lowercase__ : Dict = pipe.prepare_text_inputs([prompts] * num_samples ) lowercase__ : Union[str, Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png' ) lowercase__ : Optional[int] = pipe.prepare_image_inputs([canny_image] * num_samples ) lowercase__ : List[Any] = jax.random.PRNGKey(0 ) lowercase__ : Tuple = jax.random.split(a , jax.device_count() ) lowercase__ : str = replicate(a ) lowercase__ : List[str] = shard(a ) lowercase__ : Dict = shard(a ) lowercase__ : List[Any] = pipe( prompt_ids=a , image=a , params=a , prng_seed=a , num_inference_steps=5_0 , jit=a , ).images assert images.shape == (jax.device_count(), 1, 7_6_8, 5_1_2, 3) lowercase__ : Any = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowercase__ : Tuple = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] lowercase__ : int = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowercase__ : Optional[Any] = jnp.array( [0.167_969, 0.116_699, 0.081_543, 0.154_297, 0.132_812, 0.108_887, 0.169_922, 0.169_922, 0.205_078] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def _UpperCAmelCase ( self ) -> List[str]: lowercase__ , lowercase__ : int = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-openpose' , from_pt=a , dtype=jnp.bfloataa ) lowercase__ , lowercase__ : Optional[Any] = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , controlnet=a , from_pt=a , dtype=jnp.bfloataa ) lowercase__ : Optional[Any] = controlnet_params lowercase__ : List[Any] = 'Chef in the kitchen' lowercase__ : List[str] = jax.device_count() lowercase__ : Dict = pipe.prepare_text_inputs([prompts] * num_samples ) lowercase__ : Optional[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png' ) lowercase__ : Optional[int] = pipe.prepare_image_inputs([pose_image] * num_samples ) lowercase__ : List[str] = jax.random.PRNGKey(0 ) lowercase__ : str = jax.random.split(a , jax.device_count() ) lowercase__ : Optional[Any] = replicate(a ) lowercase__ : Optional[Any] = shard(a ) lowercase__ : List[Any] = shard(a ) lowercase__ : List[Any] = pipe( prompt_ids=a , image=a , params=a , prng_seed=a , num_inference_steps=5_0 , jit=a , ).images assert images.shape == (jax.device_count(), 1, 7_6_8, 5_1_2, 3) lowercase__ : Union[str, Any] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowercase__ : List[str] = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] lowercase__ : Optional[int] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowercase__ : str = jnp.array( [[0.271_484, 0.261_719, 0.275_391, 0.277_344, 0.279_297, 0.291_016, 0.294_922, 0.302_734, 0.302_734]] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
645
0
"""simple docstring""" from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge _UpperCamelCase : Optional[int] = [ "Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of the" " final seconds on board Flight 9525. The Germanwings co-pilot says he had a \"previous episode of severe" " depression\" German airline confirms it knew of Andreas Lubitz's depression years before he took control.", "The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal" " accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC's" " founding Rome Statute in January. Israel and the United States opposed the Palestinians' efforts to join the" " body.", "Amnesty International releases its annual report on the death penalty. The report catalogs the use of" " state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the" " world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital" " punishment.", ] _UpperCamelCase : Optional[int] = [ "Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports ." " Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz" " had informed his Lufthansa training school of an episode of severe depression, airline says .", "Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June ." " Israel and the United States opposed the move, which could open the door to war crimes investigations against" " Israelis .", "Amnesty's annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to" " death . Organization claims that governments around the world are using the threat of terrorism to advance" " executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death" " sentences up by 28% .", ] def a_ ( ): '''simple docstring''' lowercase__ : int = calculate_rouge(_lowerCAmelCase , _lowerCAmelCase , bootstrap_aggregation=_lowerCAmelCase , rouge_keys=['rouge2', 'rougeL'] ) assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) lowercase__ : Optional[Any] = calculate_rouge(_lowerCAmelCase , _lowerCAmelCase , bootstrap_aggregation=_lowerCAmelCase , rouge_keys=['rouge2'] ) assert ( pd.DataFrame(no_aggregation['rouge2'] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra['rouge2'] ).fmeasure.mean() ) def a_ ( ): '''simple docstring''' lowercase__ : Optional[Any] = 'rougeLsum' lowercase__ : int = calculate_rouge(_lowerCAmelCase , _lowerCAmelCase , newline_sep=_lowerCAmelCase , rouge_keys=[k] )[k] lowercase__ : Tuple = calculate_rouge(_lowerCAmelCase , _lowerCAmelCase , newline_sep=_lowerCAmelCase , rouge_keys=[k] )[k] assert score > score_no_sep def a_ ( ): '''simple docstring''' lowercase__ : int = ['rouge1', 'rouge2', 'rougeL'] lowercase__ : str = calculate_rouge(_lowerCAmelCase , _lowerCAmelCase , newline_sep=_lowerCAmelCase , rouge_keys=_lowerCAmelCase ) lowercase__ : Optional[Any] = calculate_rouge(_lowerCAmelCase , _lowerCAmelCase , newline_sep=_lowerCAmelCase , rouge_keys=_lowerCAmelCase ) assert score_sep == score_no_sep def a_ ( ): '''simple docstring''' lowercase__ : List[str] = [ 'Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.', 'Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .', ] lowercase__ : Optional[int] = [ 'Margot Frank, died in 1945, a month earlier than previously thought.', 'Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of' ' the final seconds on board Flight 9525.', ] assert calculate_rouge(_lowerCAmelCase , _lowerCAmelCase , newline_sep=_lowerCAmelCase ) == calculate_rouge(_lowerCAmelCase , _lowerCAmelCase , newline_sep=_lowerCAmelCase ) def a_ ( ): '''simple docstring''' lowercase__ : Tuple = [ '" "a person who has such a video needs to immediately give it to the investigators," prosecutor says .<n> "it is a very disturbing scene," editor-in-chief of bild online tells "erin burnett: outfront" ' ] lowercase__ : Optional[Any] = [ ' Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports . Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .' ] lowercase__ : Tuple = calculate_rouge(_lowerCAmelCase , _lowerCAmelCase , rouge_keys=['rougeLsum'] , newline_sep=_lowerCAmelCase )['rougeLsum'] lowercase__ : List[str] = calculate_rouge(_lowerCAmelCase , _lowerCAmelCase , rouge_keys=['rougeLsum'] )['rougeLsum'] assert new_score > prev_score def a_ ( ): '''simple docstring''' lowercase__ : str = Path('examples/seq2seq/test_data/wmt_en_ro' ) lowercase__ : Any = calculate_rouge_path(data_dir.joinpath('test.source' ) , data_dir.joinpath('test.target' ) ) assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) lowercase__ : Tuple = calculate_rouge_path( data_dir.joinpath('test.source' ) , data_dir.joinpath('test.target' ) , bootstrap_aggregation=_lowerCAmelCase ) assert isinstance(_lowerCAmelCase , _lowerCAmelCase )
706
"""simple docstring""" from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
645
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase : int = logging.get_logger(__name__) _UpperCamelCase : Union[str, Any] = { "google/vivit-b-16x2-kinetics400": ( "https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json" ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class UpperCAmelCase_ ( _a): lowerCamelCase__ : Any = "vivit" def __init__( self , a=2_2_4 , a=3_2 , a=[2, 1_6, 1_6] , a=3 , a=7_6_8 , a=1_2 , a=1_2 , a=3_0_7_2 , a="gelu_fast" , a=0.0 , a=0.0 , a=0.02 , a=1e-06 , a=True , **a , ) -> List[Any]: lowercase__ : int = hidden_size lowercase__ : Optional[Any] = num_hidden_layers lowercase__ : int = num_attention_heads lowercase__ : List[Any] = intermediate_size lowercase__ : List[Any] = hidden_act lowercase__ : int = hidden_dropout_prob lowercase__ : Tuple = attention_probs_dropout_prob lowercase__ : int = initializer_range lowercase__ : Optional[int] = layer_norm_eps lowercase__ : Any = image_size lowercase__ : List[Any] = num_frames lowercase__ : Optional[int] = tubelet_size lowercase__ : int = num_channels lowercase__ : Optional[int] = qkv_bias super().__init__(**a )
707
"""simple docstring""" import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase): @slow def _UpperCAmelCase ( self ) -> str: lowercase__ : Optional[Any] = AutoImageProcessor.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' ) lowercase__ : Union[str, Any] = AutoModelForImageClassification.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' ) model.to(a ) from datasets import load_dataset lowercase__ : str = load_dataset('nielsr/rvlcdip-demo' ) lowercase__ : Tuple = dataset['train'][0]['image'].convert('RGB' ) lowercase__ : int = image_processor(a , return_tensors='pt' ).to(a ) # forward pass with torch.no_grad(): lowercase__ : List[str] = model(**a ) lowercase__ : List[Any] = outputs.logits lowercase__ : Union[str, Any] = torch.Size((1, 1_6) ) self.assertEqual(logits.shape , a ) lowercase__ : Tuple = torch.tensor( [-0.4_158, -0.4_092, -0.4_347] , device=a , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , a , atol=1e-4 ) )
645
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _UpperCamelCase : str = logging.get_logger(__name__) _UpperCamelCase : List[Any] = "▁" _UpperCamelCase : List[str] = {"vocab_file": "sentencepiece.bpe.model"} _UpperCamelCase : int = { "vocab_file": { "xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large-finetuned-conll02-dutch": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll02-spanish": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-english": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-german": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model" ), } } _UpperCamelCase : List[str] = { "xlm-roberta-base": 5_12, "xlm-roberta-large": 5_12, "xlm-roberta-large-finetuned-conll02-dutch": 5_12, "xlm-roberta-large-finetuned-conll02-spanish": 5_12, "xlm-roberta-large-finetuned-conll03-english": 5_12, "xlm-roberta-large-finetuned-conll03-german": 5_12, } class UpperCAmelCase_ ( _a): lowerCamelCase__ : Tuple = VOCAB_FILES_NAMES lowerCamelCase__ : List[str] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ : Any = ["input_ids", "attention_mask"] def __init__( self , a , a="<s>" , a="</s>" , a="</s>" , a="<s>" , a="<unk>" , a="<pad>" , a="<mask>" , a = None , **a , ) -> None: # Mask token behave like a normal word, i.e. include the space before it lowercase__ : Optional[int] = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else mask_token lowercase__ : Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=a , eos_token=a , unk_token=a , sep_token=a , cls_token=a , pad_token=a , mask_token=a , sp_model_kwargs=self.sp_model_kwargs , **a , ) lowercase__ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(a ) ) lowercase__ : int = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token lowercase__ : int = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowercase__ : Optional[int] = 1 lowercase__ : List[str] = len(self.sp_model ) + self.fairseq_offset lowercase__ : Any = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> List[Any]: lowercase__ : List[str] = self.__dict__.copy() lowercase__ : int = None lowercase__ : List[str] = self.sp_model.serialized_model_proto() return state def __setstate__( self , a ) -> List[Any]: lowercase__ : List[Any] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowercase__ : Tuple = {} lowercase__ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _UpperCAmelCase ( self , a , a = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase__ : Optional[int] = [self.cls_token_id] lowercase__ : str = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _UpperCAmelCase ( self , a , a = None , a = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a , token_ids_a=a , already_has_special_tokens=a ) if token_ids_a is None: return [1] + ([0] * len(a )) + [1] return [1] + ([0] * len(a )) + [1, 1] + ([0] * len(a )) + [1] def _UpperCAmelCase ( self , a , a = None ) -> List[int]: lowercase__ : List[Any] = [self.sep_token_id] lowercase__ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _UpperCAmelCase ( self ) -> Optional[int]: return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def _UpperCAmelCase ( self ) -> Any: lowercase__ : List[str] = {self.convert_ids_to_tokens(a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _UpperCAmelCase ( self , a ) -> List[str]: return self.sp_model.encode(a , out_type=a ) def _UpperCAmelCase ( self , a ) -> Dict: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowercase__ : Union[str, Any] = self.sp_model.PieceToId(a ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _UpperCAmelCase ( self , a ) -> int: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _UpperCAmelCase ( self , a ) -> str: lowercase__ : List[Any] = ''.join(a ).replace(a , ' ' ).strip() return out_string def _UpperCAmelCase ( self , a , a = None ) -> Tuple[str]: if not os.path.isdir(a ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ : Optional[Any] = os.path.join( a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a ) elif not os.path.isfile(self.vocab_file ): with open(a , 'wb' ) as fi: lowercase__ : Any = self.sp_model.serialized_model_proto() fi.write(a ) return (out_vocab_file,)
708
"""simple docstring""" import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class UpperCAmelCase_ : @staticmethod def _UpperCAmelCase ( *a , **a ) -> int: pass def a_ ( _lowerCAmelCase : Image ): '''simple docstring''' lowercase__ : List[str] = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class UpperCAmelCase_ ( unittest.TestCase): lowerCamelCase__ : Union[str, Any] = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def _UpperCAmelCase ( self , a , a , a ) -> Dict: lowercase__ : Union[str, Any] = DepthEstimationPipeline(model=a , image_processor=a ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def _UpperCAmelCase ( self , a , a ) -> Optional[int]: lowercase__ : Tuple = depth_estimator('./tests/fixtures/tests_samples/COCO/000000039769.png' ) self.assertEqual({'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )} , a ) import datasets lowercase__ : Tuple = datasets.load_dataset('hf-internal-testing/fixtures_image_utils' , 'image' , split='test' ) lowercase__ : List[Any] = depth_estimator( [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] ) self.assertEqual( [ {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, ] , a , ) @require_tf @unittest.skip('Depth estimation is not implemented in TF' ) def _UpperCAmelCase ( self ) -> Optional[int]: pass @slow @require_torch def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Tuple = 'Intel/dpt-large' lowercase__ : Optional[int] = pipeline('depth-estimation' , model=a ) lowercase__ : List[Any] = depth_estimator('http://images.cocodataset.org/val2017/000000039769.jpg' ) lowercase__ : Optional[Any] = hashimage(outputs['depth'] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['predicted_depth'].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs['predicted_depth'].min().item() ) , 2.662 ) @require_torch def _UpperCAmelCase ( self ) -> Optional[int]: # This is highly irregular to have no small tests. self.skipTest('There is not hf-internal-testing tiny model for either GLPN nor DPT' )
645
0
"""simple docstring""" import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class UpperCAmelCase_ ( unittest.TestCase): def _UpperCAmelCase ( self ) -> int: lowercase__ : str = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) lowercase__ : Union[str, Any] = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(a ) lowercase__ : List[Any] = -1 lowercase__ : Any = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(a ) lowercase__ : int = model.generate(a , max_new_tokens=1_0 , do_sample=a ) lowercase__ : List[str] = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: lowercase__ : Optional[int] = TextStreamer(a ) model.generate(a , max_new_tokens=1_0 , do_sample=a , streamer=a ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowercase__ : List[str] = cs.out[:-1] self.assertEqual(a , a ) def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : Dict = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) lowercase__ : Any = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(a ) lowercase__ : List[str] = -1 lowercase__ : Dict = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(a ) lowercase__ : int = model.generate(a , max_new_tokens=1_0 , do_sample=a ) lowercase__ : List[str] = tokenizer.decode(greedy_ids[0] ) lowercase__ : List[str] = TextIteratorStreamer(a ) lowercase__ : List[Any] = {'input_ids': input_ids, 'max_new_tokens': 1_0, 'do_sample': False, 'streamer': streamer} lowercase__ : Any = Thread(target=model.generate , kwargs=a ) thread.start() lowercase__ : Any = '' for new_text in streamer: streamer_text += new_text self.assertEqual(a , a ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : int = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) lowercase__ : Tuple = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(a ) lowercase__ : Dict = -1 lowercase__ : str = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(a ) lowercase__ : Any = model.generate(a , max_new_tokens=1_0 , do_sample=a ) lowercase__ : Dict = greedy_ids[:, input_ids.shape[1] :] lowercase__ : Union[str, Any] = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: lowercase__ : Dict = TextStreamer(a , skip_prompt=a ) model.generate(a , max_new_tokens=1_0 , do_sample=a , streamer=a ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowercase__ : List[str] = cs.out[:-1] self.assertEqual(a , a ) def _UpperCAmelCase ( self ) -> Optional[Any]: # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them lowercase__ : Optional[Any] = AutoTokenizer.from_pretrained('distilgpt2' ) lowercase__ : List[Any] = AutoModelForCausalLM.from_pretrained('distilgpt2' ).to(a ) lowercase__ : Optional[Any] = -1 lowercase__ : List[Any] = torch.ones((1, 5) , device=a ).long() * model.config.bos_token_id with CaptureStdout() as cs: lowercase__ : str = TextStreamer(a , skip_special_tokens=a ) model.generate(a , max_new_tokens=1 , do_sample=a , streamer=a ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token lowercase__ : Optional[int] = cs.out[:-1] # Remove the final "\n" lowercase__ : Optional[Any] = tokenizer(a , return_tensors='pt' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ : List[str] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) lowercase__ : Optional[int] = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(a ) lowercase__ : List[str] = -1 lowercase__ : Optional[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(a ) lowercase__ : List[Any] = TextIteratorStreamer(a , timeout=0.001 ) lowercase__ : Dict = {'input_ids': input_ids, 'max_new_tokens': 1_0, 'do_sample': False, 'streamer': streamer} lowercase__ : Tuple = Thread(target=model.generate , kwargs=a ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(a ): lowercase__ : str = '' for new_text in streamer: streamer_text += new_text
709
"""simple docstring""" import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class UpperCAmelCase_ ( _a): def __init__( self ) -> Any: lowercase__ : Tuple = [] def _UpperCAmelCase ( self , a , a , a , **a ) -> Any: self.events.append('on_init_end' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Optional[int]: self.events.append('on_train_begin' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> List[str]: self.events.append('on_train_end' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> int: self.events.append('on_epoch_begin' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Optional[Any]: self.events.append('on_epoch_end' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> int: self.events.append('on_step_begin' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> str: self.events.append('on_step_end' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> int: self.events.append('on_evaluate' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Tuple: self.events.append('on_predict' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Union[str, Any]: self.events.append('on_save' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> List[str]: self.events.append('on_log' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Any: self.events.append('on_prediction_step' ) @require_torch class UpperCAmelCase_ ( unittest.TestCase): def _UpperCAmelCase ( self ) -> str: lowercase__ : str = tempfile.mkdtemp() def _UpperCAmelCase ( self ) -> Dict: shutil.rmtree(self.output_dir ) def _UpperCAmelCase ( self , a=0 , a=0 , a=6_4 , a=6_4 , a=None , a=False , **a ) -> int: # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. lowercase__ : str = RegressionDataset(length=a ) lowercase__ : Any = RegressionDataset(length=a ) lowercase__ : Optional[Any] = RegressionModelConfig(a=a , b=a ) lowercase__ : Union[str, Any] = RegressionPreTrainedModel(a ) lowercase__ : Tuple = TrainingArguments(self.output_dir , disable_tqdm=a , report_to=[] , **a ) return Trainer( a , a , train_dataset=a , eval_dataset=a , callbacks=a , ) def _UpperCAmelCase ( self , a , a ) -> Union[str, Any]: self.assertEqual(len(a ) , len(a ) ) # Order doesn't matter lowercase__ : Optional[int] = sorted(a , key=lambda a : cb.__name__ if isinstance(a , a ) else cb.__class__.__name__ ) lowercase__ : Tuple = sorted(a , key=lambda a : cb.__name__ if isinstance(a , a ) else cb.__class__.__name__ ) for cba, cba in zip(a , a ): if isinstance(a , a ) and isinstance(a , a ): self.assertEqual(a , a ) elif isinstance(a , a ) and not isinstance(a , a ): self.assertEqual(a , cba.__class__ ) elif not isinstance(a , a ) and isinstance(a , a ): self.assertEqual(cba.__class__ , a ) else: self.assertEqual(a , a ) def _UpperCAmelCase ( self , a ) -> Optional[Any]: lowercase__ : Dict = ['on_init_end', 'on_train_begin'] lowercase__ : List[Any] = 0 lowercase__ : Optional[int] = len(trainer.get_eval_dataloader() ) lowercase__ : Tuple = ['on_prediction_step'] * len(trainer.get_eval_dataloader() ) + ['on_log', 'on_evaluate'] for _ in range(trainer.state.num_train_epochs ): expected_events.append('on_epoch_begin' ) for _ in range(a ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append('on_log' ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append('on_save' ) expected_events.append('on_epoch_end' ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : int = self.get_trainer() lowercase__ : str = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) # Callbacks passed at init are added to the default callbacks lowercase__ : str = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback lowercase__ : List[Any] = self.get_trainer(disable_tqdm=a ) lowercase__ : Optional[Any] = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) def _UpperCAmelCase ( self ) -> Any: lowercase__ : int = DEFAULT_CALLBACKS.copy() + [ProgressCallback] lowercase__ : List[str] = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(a ) expected_callbacks.remove(a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) lowercase__ : Optional[Any] = self.get_trainer() lowercase__ : List[Any] = trainer.pop_callback(a ) self.assertEqual(cb.__class__ , a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) trainer.add_callback(a ) expected_callbacks.insert(0 , a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) # We can also add, pop, or remove by instance lowercase__ : int = self.get_trainer() lowercase__ : List[str] = trainer.callback_handler.callbacks[0] trainer.remove_callback(a ) expected_callbacks.remove(a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) lowercase__ : Tuple = self.get_trainer() lowercase__ : Dict = trainer.callback_handler.callbacks[0] lowercase__ : Union[str, Any] = trainer.pop_callback(a ) self.assertEqual(a , a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) trainer.add_callback(a ) expected_callbacks.insert(0 , a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) def _UpperCAmelCase ( self ) -> Tuple: import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action='ignore' , category=a ) lowercase__ : Optional[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() lowercase__ : Any = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) # Independent log/save/eval lowercase__ : List[str] = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() lowercase__ : int = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) lowercase__ : Union[str, Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() lowercase__ : Union[str, Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) lowercase__ : List[str] = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy='steps' ) trainer.train() lowercase__ : Optional[int] = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) lowercase__ : int = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy='epoch' ) trainer.train() lowercase__ : str = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) # A bit of everything lowercase__ : Any = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=1_0 , eval_steps=5 , evaluation_strategy='steps' , ) trainer.train() lowercase__ : Any = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) # warning should be emitted for duplicated callbacks with patch('transformers.trainer_callback.logger.warning' ) as warn_mock: lowercase__ : str = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(a ) in warn_mock.call_args[0][0]
645
0
"""simple docstring""" from dataclasses import dataclass, field from typing import Optional from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser @dataclass class UpperCAmelCase_ : lowerCamelCase__ : str = field( metadata={"help": "The output directory where the model will be written."} , ) lowerCamelCase__ : str = field( metadata={ "help": ( "The encoder model checkpoint for weights initialization." "Don't set if you want to train an encoder model from scratch." ) } , ) lowerCamelCase__ : str = field( metadata={ "help": ( "The decoder model checkpoint for weights initialization." "Don't set if you want to train a decoder model from scratch." ) } , ) lowerCamelCase__ : Optional[str] = field( default=_a , metadata={"help": "Pretrained encoder config name or path if not the same as encoder_model_name"}) lowerCamelCase__ : Optional[str] = field( default=_a , metadata={"help": "Pretrained decoder config name or path if not the same as decoder_model_name"}) def a_ ( ): '''simple docstring''' lowercase__ : Optional[Any] = HfArgumentParser((ModelArguments,) ) (lowercase__ ) : List[str] = parser.parse_args_into_dataclasses() # Load pretrained model and tokenizer # Use explicit specified encoder config if model_args.encoder_config_name: lowercase__ : Dict = AutoConfig.from_pretrained(model_args.encoder_config_name ) # Use pretrained encoder model's config else: lowercase__ : Any = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path ) # Use explicit specified decoder config if model_args.decoder_config_name: lowercase__ : str = AutoConfig.from_pretrained(model_args.decoder_config_name ) # Use pretrained decoder model's config else: lowercase__ : Tuple = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path ) # necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed lowercase__ : Optional[int] = True lowercase__ : Optional[int] = True lowercase__ : Tuple = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path , decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path , encoder_config=_lowerCAmelCase , decoder_config=_lowerCAmelCase , ) # GPT2 only has bos/eos tokens but not decoder_start/pad tokens lowercase__ : Optional[int] = decoder_config.decoder_start_token_id lowercase__ : str = decoder_config.pad_token_id if decoder_start_token_id is None: lowercase__ : Dict = decoder_config.bos_token_id if pad_token_id is None: lowercase__ : Tuple = decoder_config.eos_token_id # This is necessary to make Flax's generate() work lowercase__ : int = decoder_config.eos_token_id lowercase__ : List[str] = decoder_start_token_id lowercase__ : Any = pad_token_id lowercase__ : List[str] = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path ) lowercase__ : Tuple = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path ) lowercase__ : Optional[int] = tokenizer.convert_ids_to_tokens(model.config.pad_token_id ) model.save_pretrained(model_args.output_dir ) image_processor.save_pretrained(model_args.output_dir ) tokenizer.save_pretrained(model_args.output_dir ) if __name__ == "__main__": main()
710
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _UpperCamelCase : str = { "configuration_gpt_neo": ["GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoConfig", "GPTNeoOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Tuple = [ "GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoForCausalLM", "GPTNeoForQuestionAnswering", "GPTNeoForSequenceClassification", "GPTNeoForTokenClassification", "GPTNeoModel", "GPTNeoPreTrainedModel", "load_tf_weights_in_gpt_neo", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Dict = [ "FlaxGPTNeoForCausalLM", "FlaxGPTNeoModel", "FlaxGPTNeoPreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys _UpperCamelCase : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
645
0
"""simple docstring""" def a_ ( _lowerCAmelCase : int ): '''simple docstring''' lowercase__ : Any = 1 for i in range(1 , num + 1 ): fact *= i return fact def a_ ( _lowerCAmelCase : int ): '''simple docstring''' lowercase__ : int = 0 while number > 0: lowercase__ : List[str] = number % 10 sum_of_digits += last_digit lowercase__ : Any = number // 10 # Removing the last_digit from the given number return sum_of_digits def a_ ( _lowerCAmelCase : int = 100 ): '''simple docstring''' lowercase__ : List[str] = factorial(_lowerCAmelCase ) lowercase__ : Tuple = split_and_add(_lowerCAmelCase ) return result if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
711
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class UpperCAmelCase_ ( unittest.TestCase): def _UpperCAmelCase ( self , a ) -> str: for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss'] ): lowercase__ : str = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(a ) def _UpperCAmelCase ( self ) -> int: lowercase__ : Dict = 'sshleifer/tiny-gpt2' lowercase__ : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=a , multi_process=a , ) lowercase__ : str = TensorFlowBenchmark(a ) lowercase__ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> int: lowercase__ : List[str] = 'sgugger/tiny-distilbert-classification' lowercase__ : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , only_pretrain_model=a , ) lowercase__ : Optional[Any] = TensorFlowBenchmark(a ) lowercase__ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : Optional[int] = 'sshleifer/tiny-gpt2' lowercase__ : Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , ) lowercase__ : Optional[Any] = TensorFlowBenchmark(a ) lowercase__ : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : Any = 'sshleifer/tiny-gpt2' lowercase__ : List[Any] = AutoConfig.from_pretrained(a ) lowercase__ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=a , multi_process=a , ) lowercase__ : Tuple = TensorFlowBenchmark(a , [config] ) lowercase__ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> int: lowercase__ : Optional[Any] = 'sshleifer/tiny-gpt2' lowercase__ : List[str] = AutoConfig.from_pretrained(a ) lowercase__ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , ) lowercase__ : List[str] = TensorFlowBenchmark(a , [config] ) lowercase__ : Any = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Optional[Any] = 'sshleifer/tiny-gpt2' lowercase__ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , ) lowercase__ : Optional[Any] = TensorFlowBenchmark(a ) lowercase__ : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _UpperCAmelCase ( self ) -> str: lowercase__ : Optional[Any] = 'sshleifer/tiny-gpt2' lowercase__ : Optional[int] = AutoConfig.from_pretrained(a ) lowercase__ : str = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , ) lowercase__ : str = TensorFlowBenchmark(a , [config] ) lowercase__ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : List[str] = 'patrickvonplaten/t5-tiny-random' lowercase__ : Any = AutoConfig.from_pretrained(a ) lowercase__ : List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , ) lowercase__ : int = TensorFlowBenchmark(a , configs=[config] ) lowercase__ : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU' ) ) == 0 , 'Cannot do xla on CPU.' ) def _UpperCAmelCase ( self ) -> Any: lowercase__ : Any = 'sshleifer/tiny-gpt2' lowercase__ : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , use_xla=a , multi_process=a , ) lowercase__ : Any = TensorFlowBenchmark(a ) lowercase__ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Any = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ : List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=a , save_to_csv=a , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(a , 'inf_time.csv' ) , inference_memory_csv_file=os.path.join(a , 'inf_mem.csv' ) , env_info_csv_file=os.path.join(a , 'env.csv' ) , multi_process=a , ) lowercase__ : Union[str, Any] = TensorFlowBenchmark(a ) benchmark.run() self.assertTrue(Path(os.path.join(a , 'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(a , 'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(a , 'env.csv' ) ).exists() ) def _UpperCAmelCase ( self ) -> Dict: lowercase__ : Tuple = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(a ): self.assertTrue(hasattr(a , 'sequential' ) ) self.assertTrue(hasattr(a , 'cumulative' ) ) self.assertTrue(hasattr(a , 'current' ) ) self.assertTrue(hasattr(a , 'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=a , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(a , 'log.txt' ) , log_print=a , trace_memory_line_by_line=a , eager_mode=a , multi_process=a , ) lowercase__ : Optional[int] = TensorFlowBenchmark(a ) lowercase__ : Optional[Any] = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(a , 'log.txt' ) ).exists() )
645
0
"""simple docstring""" from __future__ import annotations class UpperCAmelCase_ : def __init__( self , a , a ) -> Union[str, Any]: lowercase__ : Any = text, pattern lowercase__ : List[str] = len(a ), len(a ) def _UpperCAmelCase ( self , a ) -> int: for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def _UpperCAmelCase ( self , a ) -> int: for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def _UpperCAmelCase ( self ) -> list[int]: # searches pattern in text and returns index positions lowercase__ : Union[str, Any] = [] for i in range(self.textLen - self.patLen + 1 ): lowercase__ : Optional[int] = self.mismatch_in_text(a ) if mismatch_index == -1: positions.append(a ) else: lowercase__ : List[str] = self.match_in_pattern(self.text[mismatch_index] ) lowercase__ : List[Any] = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions _UpperCamelCase : int = "ABAABA" _UpperCamelCase : Optional[int] = "AB" _UpperCamelCase : List[str] = BoyerMooreSearch(text, pattern) _UpperCamelCase : Dict = bms.bad_character_heuristic() if len(positions) == 0: print("No match found") else: print("Pattern found in following positions: ") print(positions)
712
"""simple docstring""" import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class UpperCAmelCase_ ( _a): def __init__( self , a , a=1_3 , a=7 , a=True , a=True , a=False , a=True , a=9_9 , a=3_2 , a=5 , a=4 , a=3_7 , a="gelu" , a=0.1 , a=0.1 , a=5_1_2 , a=1_6 , a=2 , a=0.02 , a=3 , a=4 , a=None , ) -> Any: lowercase__ : Tuple = parent lowercase__ : List[Any] = batch_size lowercase__ : List[Any] = seq_length lowercase__ : List[Any] = is_training lowercase__ : Optional[Any] = use_input_mask lowercase__ : Optional[int] = use_token_type_ids lowercase__ : int = use_labels lowercase__ : Tuple = vocab_size lowercase__ : int = hidden_size lowercase__ : Any = num_hidden_layers lowercase__ : List[str] = num_attention_heads lowercase__ : Optional[Any] = intermediate_size lowercase__ : Optional[Any] = hidden_act lowercase__ : List[str] = hidden_dropout_prob lowercase__ : List[Any] = attention_probs_dropout_prob lowercase__ : List[Any] = max_position_embeddings lowercase__ : List[str] = type_vocab_size lowercase__ : Tuple = type_sequence_label_size lowercase__ : List[Any] = initializer_range lowercase__ : str = num_labels lowercase__ : Tuple = num_choices lowercase__ : str = scope def _UpperCAmelCase ( self ) -> Any: lowercase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ : str = None if self.use_input_mask: lowercase__ : Any = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ : Dict = None lowercase__ : Optional[Any] = None lowercase__ : int = None if self.use_labels: lowercase__ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__ : Dict = ids_tensor([self.batch_size] , self.num_choices ) lowercase__ : List[Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCAmelCase ( self ) -> Optional[int]: return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> Dict: lowercase__ : Tuple = DistilBertModel(config=a ) model.to(a ) model.eval() lowercase__ : Any = model(a , a ) lowercase__ : str = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> Dict: lowercase__ : Optional[int] = DistilBertForMaskedLM(config=a ) model.to(a ) model.eval() lowercase__ : Union[str, Any] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> int: lowercase__ : Tuple = DistilBertForQuestionAnswering(config=a ) model.to(a ) model.eval() lowercase__ : Tuple = model( a , attention_mask=a , start_positions=a , end_positions=a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> List[str]: lowercase__ : int = self.num_labels lowercase__ : Dict = DistilBertForSequenceClassification(a ) model.to(a ) model.eval() lowercase__ : Optional[Any] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> Any: lowercase__ : Any = self.num_labels lowercase__ : List[str] = DistilBertForTokenClassification(config=a ) model.to(a ) model.eval() lowercase__ : Any = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> Tuple: lowercase__ : List[Any] = self.num_choices lowercase__ : Any = DistilBertForMultipleChoice(config=a ) model.to(a ) model.eval() lowercase__ : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ : Optional[int] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ : int = model( a , attention_mask=a , labels=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _UpperCAmelCase ( self ) -> str: lowercase__ : Union[str, Any] = self.prepare_config_and_inputs() ((lowercase__) , (lowercase__) , (lowercase__) , (lowercase__) , (lowercase__) , (lowercase__)) : List[str] = config_and_inputs lowercase__ : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _a , _a , unittest.TestCase): lowerCamelCase__ : List[str] = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) lowerCamelCase__ : str = ( { "feature-extraction": DistilBertModel, "fill-mask": DistilBertForMaskedLM, "question-answering": DistilBertForQuestionAnswering, "text-classification": DistilBertForSequenceClassification, "token-classification": DistilBertForTokenClassification, "zero-shot": DistilBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ : Optional[int] = True lowerCamelCase__ : Any = True lowerCamelCase__ : List[Any] = True lowerCamelCase__ : Optional[Any] = True def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : str = DistilBertModelTester(self ) lowercase__ : int = ConfigTester(self , config_class=a , dim=3_7 ) def _UpperCAmelCase ( self ) -> Dict: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*a ) def _UpperCAmelCase ( self ) -> Any: lowercase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*a ) def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*a ) def _UpperCAmelCase ( self ) -> int: lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*a ) def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*a ) def _UpperCAmelCase ( self ) -> str: lowercase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*a ) @slow def _UpperCAmelCase ( self ) -> str: for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : str = DistilBertModel.from_pretrained(a ) self.assertIsNotNone(a ) @slow @require_torch_gpu def _UpperCAmelCase ( self ) -> Any: lowercase__ , lowercase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return lowercase__ : Optional[int] = True lowercase__ : Union[str, Any] = model_class(config=a ) lowercase__ : int = self._prepare_for_class(a , a ) lowercase__ : Tuple = torch.jit.trace( a , (inputs_dict['input_ids'].to('cpu' ), inputs_dict['attention_mask'].to('cpu' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a , os.path.join(a , 'traced_model.pt' ) ) lowercase__ : Optional[int] = torch.jit.load(os.path.join(a , 'traced_model.pt' ) , map_location=a ) loaded(inputs_dict['input_ids'].to(a ) , inputs_dict['attention_mask'].to(a ) ) @require_torch class UpperCAmelCase_ ( unittest.TestCase): @slow def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : int = DistilBertModel.from_pretrained('distilbert-base-uncased' ) lowercase__ : Union[str, Any] = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) lowercase__ : Optional[Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowercase__ : Optional[Any] = model(a , attention_mask=a )[0] lowercase__ : Tuple = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , a ) lowercase__ : List[Any] = torch.tensor( [[[-0.1_639, 0.3_299, 0.1_648], [-0.1_746, 0.3_289, 0.1_710], [-0.1_884, 0.3_357, 0.1_810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a , atol=1e-4 ) )
645
0
"""simple docstring""" import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class UpperCAmelCase_ : @staticmethod def _UpperCAmelCase ( *a , **a ) -> int: pass def a_ ( _lowerCAmelCase : Image ): '''simple docstring''' lowercase__ : List[str] = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class UpperCAmelCase_ ( unittest.TestCase): lowerCamelCase__ : Union[str, Any] = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def _UpperCAmelCase ( self , a , a , a ) -> Dict: lowercase__ : Union[str, Any] = DepthEstimationPipeline(model=a , image_processor=a ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def _UpperCAmelCase ( self , a , a ) -> Optional[int]: lowercase__ : Tuple = depth_estimator('./tests/fixtures/tests_samples/COCO/000000039769.png' ) self.assertEqual({'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )} , a ) import datasets lowercase__ : Tuple = datasets.load_dataset('hf-internal-testing/fixtures_image_utils' , 'image' , split='test' ) lowercase__ : List[Any] = depth_estimator( [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] ) self.assertEqual( [ {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, ] , a , ) @require_tf @unittest.skip('Depth estimation is not implemented in TF' ) def _UpperCAmelCase ( self ) -> Optional[int]: pass @slow @require_torch def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Tuple = 'Intel/dpt-large' lowercase__ : Optional[int] = pipeline('depth-estimation' , model=a ) lowercase__ : List[Any] = depth_estimator('http://images.cocodataset.org/val2017/000000039769.jpg' ) lowercase__ : Optional[Any] = hashimage(outputs['depth'] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['predicted_depth'].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs['predicted_depth'].min().item() ) , 2.662 ) @require_torch def _UpperCAmelCase ( self ) -> Optional[int]: # This is highly irregular to have no small tests. self.skipTest('There is not hf-internal-testing tiny model for either GLPN nor DPT' )
713
"""simple docstring""" from __future__ import annotations def a_ ( _lowerCAmelCase : float , _lowerCAmelCase : float , _lowerCAmelCase : float , ): '''simple docstring''' if (stress, tangential_force, area).count(0 ) != 1: raise ValueError('You cannot supply more or less than 2 values' ) elif stress < 0: raise ValueError('Stress cannot be negative' ) elif tangential_force < 0: raise ValueError('Tangential Force cannot be negative' ) elif area < 0: raise ValueError('Area cannot be negative' ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
645
0
"""simple docstring""" import itertools import string from collections.abc import Generator, Iterable def a_ ( _lowerCAmelCase : Iterable[str] , _lowerCAmelCase : int ): '''simple docstring''' lowercase__ : Any = iter(_lowerCAmelCase ) while True: lowercase__ : List[str] = tuple(itertools.islice(_lowerCAmelCase , _lowerCAmelCase ) ) if not chunk: return yield chunk def a_ ( _lowerCAmelCase : str ): '''simple docstring''' lowercase__ : Tuple = ''.join([c.upper() for c in dirty if c in string.ascii_letters] ) lowercase__ : Tuple = '' if len(_lowerCAmelCase ) < 2: return dirty for i in range(len(_lowerCAmelCase ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(_lowerCAmelCase ) & 1: clean += "X" return clean def a_ ( _lowerCAmelCase : str ): '''simple docstring''' lowercase__ : Any = 'ABCDEFGHIKLMNOPQRSTUVWXYZ' # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler lowercase__ : Optional[Any] = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(_lowerCAmelCase ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(_lowerCAmelCase ) return table def a_ ( _lowerCAmelCase : str , _lowerCAmelCase : str ): '''simple docstring''' lowercase__ : int = generate_table(_lowerCAmelCase ) lowercase__ : List[Any] = prepare_input(_lowerCAmelCase ) lowercase__ : Union[str, Any] = '' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(_lowerCAmelCase , 2 ): lowercase__ : Any = divmod(table.index(_lowerCAmelCase ) , 5 ) lowercase__ : Optional[int] = divmod(table.index(_lowerCAmelCase ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def a_ ( _lowerCAmelCase : str , _lowerCAmelCase : str ): '''simple docstring''' lowercase__ : Optional[int] = generate_table(_lowerCAmelCase ) lowercase__ : Optional[int] = '' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(_lowerCAmelCase , 2 ): lowercase__ : str = divmod(table.index(_lowerCAmelCase ) , 5 ) lowercase__ : List[str] = divmod(table.index(_lowerCAmelCase ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
714
"""simple docstring""" import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase_ : def __init__( self , a , a=1_3 , a=[3_0, 3_0] , a=2 , a=3 , a=True , a=True , a=3_2 , a=5 , a=4 , a=3_7 , a="gelu" , a=0.1 , a=0.1 , a=1_0 , a=0.02 , a=3 , a=None , a=8 , a=1_0 , ) -> Any: lowercase__ : List[str] = parent lowercase__ : Optional[Any] = batch_size lowercase__ : Optional[int] = image_size lowercase__ : List[Any] = patch_size lowercase__ : Optional[Any] = num_channels lowercase__ : str = is_training lowercase__ : Optional[Any] = use_labels lowercase__ : Optional[Any] = hidden_size lowercase__ : Dict = num_hidden_layers lowercase__ : Optional[Any] = num_attention_heads lowercase__ : Dict = intermediate_size lowercase__ : List[Any] = hidden_act lowercase__ : List[Any] = hidden_dropout_prob lowercase__ : Any = attention_probs_dropout_prob lowercase__ : Any = type_sequence_label_size lowercase__ : Dict = initializer_range lowercase__ : Union[str, Any] = num_labels lowercase__ : Tuple = scope lowercase__ : Tuple = n_targets lowercase__ : Optional[int] = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens lowercase__ : Optional[Any] = (image_size[1] // patch_size) * (image_size[0] // patch_size) lowercase__ : Tuple = num_patches + 1 + self.num_detection_tokens def _UpperCAmelCase ( self ) -> Any: lowercase__ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) lowercase__ : Tuple = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) lowercase__ : int = [] for i in range(self.batch_size ): lowercase__ : Optional[Any] = {} lowercase__ : Any = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=a ) lowercase__ : List[str] = torch.rand(self.n_targets , 4 , device=a ) labels.append(a ) lowercase__ : Tuple = self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self ) -> List[Any]: return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def _UpperCAmelCase ( self , a , a , a ) -> int: lowercase__ : List[str] = YolosModel(config=a ) model.to(a ) model.eval() lowercase__ : List[Any] = model(a ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def _UpperCAmelCase ( self , a , a , a ) -> Union[str, Any]: lowercase__ : str = YolosForObjectDetection(a ) model.to(a ) model.eval() lowercase__ : Dict = model(pixel_values=a ) lowercase__ : Tuple = model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) lowercase__ : str = model(pixel_values=a , labels=a ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : int = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Any = config_and_inputs lowercase__ : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _a , _a , unittest.TestCase): lowerCamelCase__ : Optional[int] = (YolosModel, YolosForObjectDetection) if is_torch_available() else () lowerCamelCase__ : List[str] = ( {"feature-extraction": YolosModel, "object-detection": YolosForObjectDetection} if is_torch_available() else {} ) lowerCamelCase__ : List[Any] = False lowerCamelCase__ : Dict = False lowerCamelCase__ : Tuple = False lowerCamelCase__ : Union[str, Any] = False def _UpperCAmelCase ( self , a , a , a=False ) -> Dict: lowercase__ : List[str] = super()._prepare_for_class(a , a , return_labels=a ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": lowercase__ : Optional[Any] = [] for i in range(self.model_tester.batch_size ): lowercase__ : Dict = {} lowercase__ : Dict = torch.ones( size=(self.model_tester.n_targets,) , device=a , dtype=torch.long ) lowercase__ : Optional[Any] = torch.ones( self.model_tester.n_targets , 4 , device=a , dtype=torch.float ) labels.append(a ) lowercase__ : Union[str, Any] = labels return inputs_dict def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : Dict = YolosModelTester(self ) lowercase__ : Optional[int] = ConfigTester(self , config_class=a , has_text_modality=a , hidden_size=3_7 ) def _UpperCAmelCase ( self ) -> str: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Optional[Any]: # YOLOS does not use inputs_embeds pass def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[str] = model_class(a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase__ : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a , nn.Linear ) ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : int = model_class(a ) lowercase__ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Tuple = [*signature.parameters.keys()] lowercase__ : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , a ) def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _UpperCAmelCase ( self ) -> Dict: lowercase__ , lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Dict = True # in YOLOS, the seq_len is different lowercase__ : Tuple = self.model_tester.expected_seq_len for model_class in self.all_model_classes: lowercase__ : Optional[int] = True lowercase__ : str = False lowercase__ : str = True lowercase__ : List[str] = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : Any = model(**self._prepare_for_class(a , a ) ) lowercase__ : str = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase__ : Optional[int] = True lowercase__ : List[Any] = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : Union[str, Any] = model(**self._prepare_for_class(a , a ) ) lowercase__ : List[str] = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowercase__ : Dict = len(a ) # Check attention is always last and order is fine lowercase__ : Any = True lowercase__ : int = True lowercase__ : int = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : Any = model(**self._prepare_for_class(a , a ) ) lowercase__ : Optional[Any] = 1 self.assertEqual(out_len + added_hidden_states , len(a ) ) lowercase__ : Tuple = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def _UpperCAmelCase ( self ) -> List[str]: def check_hidden_states_output(a , a , a ): lowercase__ : str = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : int = model(**self._prepare_for_class(a , a ) ) lowercase__ : int = outputs.hidden_states lowercase__ : Any = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(a ) , a ) # YOLOS has a different seq_length lowercase__ : Optional[int] = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowercase__ , lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Any = True check_hidden_states_output(a , a , a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : List[Any] = True check_hidden_states_output(a , a , a ) def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*a ) @slow def _UpperCAmelCase ( self ) -> Union[str, Any]: for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : int = YolosModel.from_pretrained(a ) self.assertIsNotNone(a ) def a_ ( ): '''simple docstring''' lowercase__ : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase): @cached_property def _UpperCAmelCase ( self ) -> Union[str, Any]: return AutoImageProcessor.from_pretrained('hustvl/yolos-small' ) if is_vision_available() else None @slow def _UpperCAmelCase ( self ) -> int: lowercase__ : Dict = YolosForObjectDetection.from_pretrained('hustvl/yolos-small' ).to(a ) lowercase__ : Tuple = self.default_image_processor lowercase__ : Optional[int] = prepare_img() lowercase__ : int = image_processor(images=a , return_tensors='pt' ).to(a ) # forward pass with torch.no_grad(): lowercase__ : int = model(inputs.pixel_values ) # verify outputs lowercase__ : Tuple = torch.Size((1, 1_0_0, 9_2) ) self.assertEqual(outputs.logits.shape , a ) lowercase__ : Any = torch.tensor( [[-24.0_248, -10.3_024, -14.8_290], [-42.0_392, -16.8_200, -27.4_334], [-27.2_743, -11.8_154, -18.7_148]] , device=a , ) lowercase__ : List[str] = torch.tensor( [[0.2_559, 0.5_455, 0.4_706], [0.2_989, 0.7_279, 0.1_875], [0.7_732, 0.4_017, 0.4_462]] , device=a ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , a , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , a , atol=1e-4 ) ) # verify postprocessing lowercase__ : Optional[Any] = image_processor.post_process_object_detection( a , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] lowercase__ : str = torch.tensor([0.9_994, 0.9_790, 0.9_964, 0.9_972, 0.9_861] ).to(a ) lowercase__ : Any = [7_5, 7_5, 1_7, 6_3, 1_7] lowercase__ : Optional[int] = torch.tensor([335.0_609, 79.3_848, 375.4_216, 187.2_495] ).to(a ) self.assertEqual(len(results['scores'] ) , 5 ) self.assertTrue(torch.allclose(results['scores'] , a , atol=1e-4 ) ) self.assertSequenceEqual(results['labels'].tolist() , a ) self.assertTrue(torch.allclose(results['boxes'][0, :] , a ) )
645
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _UpperCamelCase : Dict = { "configuration_swiftformer": [ "SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "SwiftFormerConfig", "SwiftFormerOnnxConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : List[Any] = [ "SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "SwiftFormerForImageClassification", "SwiftFormerModel", "SwiftFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys _UpperCamelCase : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
715
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch _UpperCamelCase : int = logging.get_logger(__name__) @dataclass class UpperCAmelCase_ : def __init__( self , a=False , a=False , a=6.0 , a=None , a=False , a=False , a=None , a="fp4" , a=False , **a , ) -> Tuple: lowercase__ : str = load_in_abit lowercase__ : str = load_in_abit lowercase__ : List[str] = llm_inta_threshold lowercase__ : Dict = llm_inta_skip_modules lowercase__ : Tuple = llm_inta_enable_fpaa_cpu_offload lowercase__ : Any = llm_inta_has_fpaa_weight lowercase__ : Any = bnb_abit_quant_type lowercase__ : Dict = bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: lowercase__ : Dict = torch.floataa elif isinstance(a , a ): lowercase__ : Any = getattr(a , a ) elif isinstance(a , torch.dtype ): lowercase__ : Any = bnb_abit_compute_dtype else: raise ValueError('bnb_4bit_compute_dtype must be a string or a torch.dtype' ) self.post_init() def _UpperCAmelCase ( self ) -> str: if not isinstance(self.llm_inta_threshold , a ): raise ValueError('llm_int8_threshold must be a float' ) if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , a ): raise ValueError('llm_int8_skip_modules must be a list of strings' ) if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , a ): raise ValueError('llm_int8_enable_fp32_cpu_offload must be a boolean' ) if not isinstance(self.llm_inta_has_fpaa_weight , a ): raise ValueError('llm_int8_has_fp16_weight must be a boolean' ) if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype ): raise ValueError('bnb_4bit_compute_dtype must be torch.dtype' ) if not isinstance(self.bnb_abit_quant_type , a ): raise ValueError('bnb_4bit_quant_type must be a string' ) if not isinstance(self.bnb_abit_use_double_quant , a ): raise ValueError('bnb_4bit_use_double_quant must be a boolean' ) if self.load_in_abit and not version.parse(importlib.metadata.version('bitsandbytes' ) ) >= version.parse( '0.39.0' ): raise ValueError( '4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version' ) def _UpperCAmelCase ( self ) -> Tuple: return self.load_in_abit or self.load_in_abit def _UpperCAmelCase ( self ) -> List[str]: if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def _UpperCAmelCase ( cls , a , a , **a ) -> Optional[Any]: lowercase__ : List[Any] = cls(**a ) lowercase__ : Union[str, Any] = [] for key, value in kwargs.items(): if hasattr(a , a ): setattr(a , a , a ) to_remove.append(a ) for key in to_remove: kwargs.pop(a , a ) if return_unused_kwargs: return config, kwargs else: return config def _UpperCAmelCase ( self , a ) -> Dict: with open(a , 'w' , encoding='utf-8' ) as writer: lowercase__ : Any = self.to_dict() lowercase__ : str = json.dumps(a , indent=2 , sort_keys=a ) + '\n' writer.write(a ) def _UpperCAmelCase ( self ) -> Dict[str, Any]: lowercase__ : Optional[Any] = copy.deepcopy(self.__dict__ ) lowercase__ : Any = str(output['bnb_4bit_compute_dtype'] ).split('.' )[1] return output def __repr__( self ) -> Dict: return f"""{self.__class__.__name__} {self.to_json_string()}""" def _UpperCAmelCase ( self , a = True ) -> str: if use_diff is True: lowercase__ : List[Any] = self.to_diff_dict() else: lowercase__ : List[str] = self.to_dict() return json.dumps(a , indent=2 , sort_keys=a ) + "\n" def _UpperCAmelCase ( self ) -> Dict[str, Any]: lowercase__ : Tuple = self.to_dict() # get the default config dict lowercase__ : Optional[Any] = BitsAndBytesConfig().to_dict() lowercase__ : int = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: lowercase__ : Optional[int] = value return serializable_config_dict
645
0
"""simple docstring""" from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class UpperCAmelCase_ ( _a): lowerCamelCase__ : torch.FloatTensor class UpperCAmelCase_ ( nn.Module): def __init__( self , a=3 , a=3 , a=("DownEncoderBlock2D",) , a=(6_4,) , a=2 , a=3_2 , a="silu" , a=True , ) -> str: super().__init__() lowercase__ : Tuple = layers_per_block lowercase__ : Union[str, Any] = torch.nn.Convad( a , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) lowercase__ : int = None lowercase__ : str = nn.ModuleList([] ) # down lowercase__ : int = block_out_channels[0] for i, down_block_type in enumerate(a ): lowercase__ : List[Any] = output_channel lowercase__ : Optional[int] = block_out_channels[i] lowercase__ : Union[str, Any] = i == len(a ) - 1 lowercase__ : Tuple = get_down_block( a , num_layers=self.layers_per_block , in_channels=a , out_channels=a , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=a , resnet_groups=a , attention_head_dim=a , temb_channels=a , ) self.down_blocks.append(a ) # mid lowercase__ : int = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=a , output_scale_factor=1 , resnet_time_scale_shift='default' , attention_head_dim=block_out_channels[-1] , resnet_groups=a , temb_channels=a , ) # out lowercase__ : Dict = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=a , eps=1e-6 ) lowercase__ : Union[str, Any] = nn.SiLU() lowercase__ : Dict = 2 * out_channels if double_z else out_channels lowercase__ : List[Any] = nn.Convad(block_out_channels[-1] , a , 3 , padding=1 ) lowercase__ : Dict = False def _UpperCAmelCase ( self , a ) -> Optional[int]: lowercase__ : Dict = x lowercase__ : Optional[Any] = self.conv_in(a ) if self.training and self.gradient_checkpointing: def create_custom_forward(a ): def custom_forward(*a ): return module(*a ) return custom_forward # down if is_torch_version('>=' , '1.11.0' ): for down_block in self.down_blocks: lowercase__ : int = torch.utils.checkpoint.checkpoint( create_custom_forward(a ) , a , use_reentrant=a ) # middle lowercase__ : int = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , a , use_reentrant=a ) else: for down_block in self.down_blocks: lowercase__ : Optional[int] = torch.utils.checkpoint.checkpoint(create_custom_forward(a ) , a ) # middle lowercase__ : Union[str, Any] = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , a ) else: # down for down_block in self.down_blocks: lowercase__ : int = down_block(a ) # middle lowercase__ : Optional[int] = self.mid_block(a ) # post-process lowercase__ : List[Any] = self.conv_norm_out(a ) lowercase__ : Dict = self.conv_act(a ) lowercase__ : Optional[Any] = self.conv_out(a ) return sample class UpperCAmelCase_ ( nn.Module): def __init__( self , a=3 , a=3 , a=("UpDecoderBlock2D",) , a=(6_4,) , a=2 , a=3_2 , a="silu" , a="group" , ) -> Dict: super().__init__() lowercase__ : List[Any] = layers_per_block lowercase__ : Optional[int] = nn.Convad( a , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) lowercase__ : Tuple = None lowercase__ : Dict = nn.ModuleList([] ) lowercase__ : int = in_channels if norm_type == 'spatial' else None # mid lowercase__ : List[Any] = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=a , output_scale_factor=1 , resnet_time_scale_shift='default' if norm_type == 'group' else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=a , temb_channels=a , ) # up lowercase__ : Optional[Any] = list(reversed(a ) ) lowercase__ : Dict = reversed_block_out_channels[0] for i, up_block_type in enumerate(a ): lowercase__ : str = output_channel lowercase__ : str = reversed_block_out_channels[i] lowercase__ : Tuple = i == len(a ) - 1 lowercase__ : List[Any] = get_up_block( a , num_layers=self.layers_per_block + 1 , in_channels=a , out_channels=a , prev_output_channel=a , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=a , resnet_groups=a , attention_head_dim=a , temb_channels=a , resnet_time_scale_shift=a , ) self.up_blocks.append(a ) lowercase__ : Optional[Any] = output_channel # out if norm_type == "spatial": lowercase__ : Optional[Any] = SpatialNorm(block_out_channels[0] , a ) else: lowercase__ : Union[str, Any] = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=a , eps=1e-6 ) lowercase__ : Union[str, Any] = nn.SiLU() lowercase__ : Any = nn.Convad(block_out_channels[0] , a , 3 , padding=1 ) lowercase__ : str = False def _UpperCAmelCase ( self , a , a=None ) -> Dict: lowercase__ : List[str] = z lowercase__ : List[Any] = self.conv_in(a ) lowercase__ : Dict = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(a ): def custom_forward(*a ): return module(*a ) return custom_forward if is_torch_version('>=' , '1.11.0' ): # middle lowercase__ : List[Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , a , a , use_reentrant=a ) lowercase__ : List[Any] = sample.to(a ) # up for up_block in self.up_blocks: lowercase__ : Dict = torch.utils.checkpoint.checkpoint( create_custom_forward(a ) , a , a , use_reentrant=a ) else: # middle lowercase__ : str = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , a , a ) lowercase__ : Optional[Any] = sample.to(a ) # up for up_block in self.up_blocks: lowercase__ : Any = torch.utils.checkpoint.checkpoint(create_custom_forward(a ) , a , a ) else: # middle lowercase__ : Any = self.mid_block(a , a ) lowercase__ : List[Any] = sample.to(a ) # up for up_block in self.up_blocks: lowercase__ : Any = up_block(a , a ) # post-process if latent_embeds is None: lowercase__ : int = self.conv_norm_out(a ) else: lowercase__ : Union[str, Any] = self.conv_norm_out(a , a ) lowercase__ : Union[str, Any] = self.conv_act(a ) lowercase__ : Optional[int] = self.conv_out(a ) return sample class UpperCAmelCase_ ( nn.Module): def __init__( self , a , a , a , a=None , a="random" , a=False , a=True ) -> Optional[Any]: super().__init__() lowercase__ : int = n_e lowercase__ : str = vq_embed_dim lowercase__ : Tuple = beta lowercase__ : List[Any] = legacy lowercase__ : Tuple = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) lowercase__ : Optional[int] = remap if self.remap is not None: self.register_buffer('used' , torch.tensor(np.load(self.remap ) ) ) lowercase__ : Optional[int] = self.used.shape[0] lowercase__ : List[Any] = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": lowercase__ : Any = self.re_embed lowercase__ : List[Any] = self.re_embed + 1 print( f"""Remapping {self.n_e} indices to {self.re_embed} indices. """ f"""Using {self.unknown_index} for unknown indices.""" ) else: lowercase__ : str = n_e lowercase__ : str = sane_index_shape def _UpperCAmelCase ( self , a ) -> List[Any]: lowercase__ : Dict = inds.shape assert len(a ) > 1 lowercase__ : List[Any] = inds.reshape(ishape[0] , -1 ) lowercase__ : Tuple = self.used.to(a ) lowercase__ : str = (inds[:, :, None] == used[None, None, ...]).long() lowercase__ : Dict = match.argmax(-1 ) lowercase__ : int = match.sum(2 ) < 1 if self.unknown_index == "random": lowercase__ : List[Any] = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: lowercase__ : Optional[Any] = self.unknown_index return new.reshape(a ) def _UpperCAmelCase ( self , a ) -> Tuple: lowercase__ : List[str] = inds.shape assert len(a ) > 1 lowercase__ : int = inds.reshape(ishape[0] , -1 ) lowercase__ : str = self.used.to(a ) if self.re_embed > self.used.shape[0]: # extra token lowercase__ : Dict = 0 # simply set to zero lowercase__ : Any = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , a ) return back.reshape(a ) def _UpperCAmelCase ( self , a ) -> List[str]: # reshape z -> (batch, height, width, channel) and flatten lowercase__ : str = z.permute(0 , 2 , 3 , 1 ).contiguous() lowercase__ : List[str] = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z lowercase__ : str = torch.argmin(torch.cdist(a , self.embedding.weight ) , dim=1 ) lowercase__ : str = self.embedding(a ).view(z.shape ) lowercase__ : Union[str, Any] = None lowercase__ : Tuple = None # compute loss for embedding if not self.legacy: lowercase__ : int = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: lowercase__ : str = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients lowercase__ : List[str] = z + (z_q - z).detach() # reshape back to match original input shape lowercase__ : List[str] = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: lowercase__ : Optional[int] = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis lowercase__ : Optional[int] = self.remap_to_used(a ) lowercase__ : Union[str, Any] = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: lowercase__ : Any = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def _UpperCAmelCase ( self , a , a ) -> Any: # shape specifying (batch, height, width, channel) if self.remap is not None: lowercase__ : Optional[int] = indices.reshape(shape[0] , -1 ) # add batch axis lowercase__ : Any = self.unmap_to_all(a ) lowercase__ : Dict = indices.reshape(-1 ) # flatten again # get quantized latent vectors lowercase__ : Optional[Any] = self.embedding(a ) if shape is not None: lowercase__ : Dict = z_q.view(a ) # reshape back to match original input shape lowercase__ : Union[str, Any] = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class UpperCAmelCase_ ( _a): def __init__( self , a , a=False ) -> Any: lowercase__ : Optional[Any] = parameters lowercase__ : List[str] = torch.chunk(a , 2 , dim=1 ) lowercase__ : Any = torch.clamp(self.logvar , -30.0 , 20.0 ) lowercase__ : Dict = deterministic lowercase__ : List[str] = torch.exp(0.5 * self.logvar ) lowercase__ : Optional[int] = torch.exp(self.logvar ) if self.deterministic: lowercase__ : int = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def _UpperCAmelCase ( self , a = None ) -> torch.FloatTensor: # make sure sample is on the same device as the parameters and has same dtype lowercase__ : List[str] = randn_tensor( self.mean.shape , generator=a , device=self.parameters.device , dtype=self.parameters.dtype ) lowercase__ : Dict = self.mean + self.std * sample return x def _UpperCAmelCase ( self , a=None ) -> Union[str, Any]: if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def _UpperCAmelCase ( self , a , a=[1, 2, 3] ) -> str: if self.deterministic: return torch.Tensor([0.0] ) lowercase__ : Optional[Any] = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=a ) def _UpperCAmelCase ( self ) -> int: return self.mean
716
"""simple docstring""" import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler _UpperCamelCase : int = 16 _UpperCamelCase : Union[str, Any] = 32 def a_ ( _lowerCAmelCase : Tuple ): '''simple docstring''' return int(x / 2**20 ) class UpperCAmelCase_ : def __enter__( self ) -> Union[str, Any]: gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero lowercase__ : List[str] = torch.cuda.memory_allocated() return self def __exit__( self , *a ) -> Any: gc.collect() torch.cuda.empty_cache() lowercase__ : Optional[Any] = torch.cuda.memory_allocated() lowercase__ : Union[str, Any] = torch.cuda.max_memory_allocated() lowercase__ : List[Any] = bamb(self.end - self.begin ) lowercase__ : List[Any] = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def a_ ( _lowerCAmelCase : Accelerator , _lowerCAmelCase : int = 16 , _lowerCAmelCase : str = "bert-base-cased" , _lowerCAmelCase : int = 320 , _lowerCAmelCase : int = 160 , ): '''simple docstring''' lowercase__ : List[Any] = AutoTokenizer.from_pretrained(_lowerCAmelCase ) lowercase__ : Union[str, Any] = load_dataset( 'glue' , 'mrpc' , split={'train': f"""train[:{n_train}]""", 'validation': f"""validation[:{n_val}]"""} ) def tokenize_function(_lowerCAmelCase : int ): # max_length=None => use the model max length (it's actually the default) lowercase__ : List[str] = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowercase__ : Union[str, Any] = datasets.map( _lowerCAmelCase , batched=_lowerCAmelCase , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=_lowerCAmelCase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ : Union[str, Any] = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(_lowerCAmelCase : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_lowerCAmelCase , padding='max_length' , max_length=128 , return_tensors='pt' ) return tokenizer.pad(_lowerCAmelCase , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. lowercase__ : Dict = DataLoader( tokenized_datasets['train'] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase ) lowercase__ : Dict = DataLoader( tokenized_datasets['validation'] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase ) return train_dataloader, eval_dataloader def a_ ( _lowerCAmelCase : Any , _lowerCAmelCase : List[str] ): '''simple docstring''' lowercase__ : List[Any] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ : Optional[int] = config['lr'] lowercase__ : Optional[Any] = int(config['num_epochs'] ) lowercase__ : Optional[Any] = int(config['seed'] ) lowercase__ : int = int(config['batch_size'] ) lowercase__ : Union[str, Any] = args.model_name_or_path set_seed(_lowerCAmelCase ) lowercase__ , lowercase__ : Tuple = get_dataloaders(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , args.n_train , args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ : List[Any] = AutoModelForSequenceClassification.from_pretrained(_lowerCAmelCase , return_dict=_lowerCAmelCase ) # Instantiate optimizer lowercase__ : List[Any] = ( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowercase__ : Optional[Any] = optimizer_cls(params=model.parameters() , lr=_lowerCAmelCase ) if accelerator.state.deepspeed_plugin is not None: lowercase__ : Optional[Any] = accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: lowercase__ : List[Any] = 1 lowercase__ : List[Any] = (len(_lowerCAmelCase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowercase__ : Optional[int] = get_linear_schedule_with_warmup( optimizer=_lowerCAmelCase , num_warmup_steps=0 , num_training_steps=_lowerCAmelCase , ) else: lowercase__ : Tuple = DummyScheduler(_lowerCAmelCase , total_num_steps=_lowerCAmelCase , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Dict = accelerator.prepare( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # We need to keep track of how many total steps we have iterated over lowercase__ : Optional[int] = 0 # We also need to keep track of the stating epoch so files are named properly lowercase__ : Tuple = 0 # Now we train the model lowercase__ : Optional[Any] = {} for epoch in range(_lowerCAmelCase , _lowerCAmelCase ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(_lowerCAmelCase ): lowercase__ : List[Any] = model(**_lowerCAmelCase ) lowercase__ : Dict = outputs.loss lowercase__ : int = loss / gradient_accumulation_steps accelerator.backward(_lowerCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print('Memory before entering the train : {}'.format(bamb(tracemalloc.begin ) ) ) accelerator.print('Memory consumed at the end of the train (end-begin): {}'.format(tracemalloc.used ) ) accelerator.print('Peak Memory consumed during the train (max-begin): {}'.format(tracemalloc.peaked ) ) accelerator.print( 'Total Peak Memory consumed during the train (max): {}'.format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) lowercase__ : int = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[f"""epoch-{epoch}"""] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , 'peak_memory_utilization.json' ) , 'w' ) as f: json.dump(_lowerCAmelCase , _lowerCAmelCase ) def a_ ( ): '''simple docstring''' lowercase__ : int = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path' , type=_lowerCAmelCase , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=_lowerCAmelCase , ) parser.add_argument( '--output_dir' , type=_lowerCAmelCase , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--peak_memory_upper_bound' , type=_lowerCAmelCase , default=_lowerCAmelCase , help='The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.' , ) parser.add_argument( '--n_train' , type=_lowerCAmelCase , default=320 , help='Number of training examples to use.' , ) parser.add_argument( '--n_val' , type=_lowerCAmelCase , default=160 , help='Number of validation examples to use.' , ) parser.add_argument( '--num_epochs' , type=_lowerCAmelCase , default=1 , help='Number of train epochs.' , ) lowercase__ : Any = parser.parse_args() lowercase__ : Optional[Any] = {'lr': 2E-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16} training_function(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": main()
645
0
"""simple docstring""" import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class UpperCAmelCase_ ( _a): def __init__( self , a , a=1_3 , a=7 , a=True , a=True , a=False , a=True , a=9_9 , a=3_2 , a=5 , a=4 , a=3_7 , a="gelu" , a=0.1 , a=0.1 , a=5_1_2 , a=1_6 , a=2 , a=0.02 , a=3 , a=4 , a=None , ) -> Any: lowercase__ : Tuple = parent lowercase__ : List[Any] = batch_size lowercase__ : List[Any] = seq_length lowercase__ : List[Any] = is_training lowercase__ : Optional[Any] = use_input_mask lowercase__ : Optional[int] = use_token_type_ids lowercase__ : int = use_labels lowercase__ : Tuple = vocab_size lowercase__ : int = hidden_size lowercase__ : Any = num_hidden_layers lowercase__ : List[str] = num_attention_heads lowercase__ : Optional[Any] = intermediate_size lowercase__ : Optional[Any] = hidden_act lowercase__ : List[str] = hidden_dropout_prob lowercase__ : List[Any] = attention_probs_dropout_prob lowercase__ : List[Any] = max_position_embeddings lowercase__ : List[str] = type_vocab_size lowercase__ : Tuple = type_sequence_label_size lowercase__ : List[Any] = initializer_range lowercase__ : str = num_labels lowercase__ : Tuple = num_choices lowercase__ : str = scope def _UpperCAmelCase ( self ) -> Any: lowercase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ : str = None if self.use_input_mask: lowercase__ : Any = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ : Dict = None lowercase__ : Optional[Any] = None lowercase__ : int = None if self.use_labels: lowercase__ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__ : Dict = ids_tensor([self.batch_size] , self.num_choices ) lowercase__ : List[Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCAmelCase ( self ) -> Optional[int]: return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> Dict: lowercase__ : Tuple = DistilBertModel(config=a ) model.to(a ) model.eval() lowercase__ : Any = model(a , a ) lowercase__ : str = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> Dict: lowercase__ : Optional[int] = DistilBertForMaskedLM(config=a ) model.to(a ) model.eval() lowercase__ : Union[str, Any] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> int: lowercase__ : Tuple = DistilBertForQuestionAnswering(config=a ) model.to(a ) model.eval() lowercase__ : Tuple = model( a , attention_mask=a , start_positions=a , end_positions=a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> List[str]: lowercase__ : int = self.num_labels lowercase__ : Dict = DistilBertForSequenceClassification(a ) model.to(a ) model.eval() lowercase__ : Optional[Any] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> Any: lowercase__ : Any = self.num_labels lowercase__ : List[str] = DistilBertForTokenClassification(config=a ) model.to(a ) model.eval() lowercase__ : Any = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> Tuple: lowercase__ : List[Any] = self.num_choices lowercase__ : Any = DistilBertForMultipleChoice(config=a ) model.to(a ) model.eval() lowercase__ : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ : Optional[int] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ : int = model( a , attention_mask=a , labels=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _UpperCAmelCase ( self ) -> str: lowercase__ : Union[str, Any] = self.prepare_config_and_inputs() (lowercase__) : List[str] = config_and_inputs lowercase__ : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _a , _a , unittest.TestCase): lowerCamelCase__ : List[str] = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) lowerCamelCase__ : str = ( { "feature-extraction": DistilBertModel, "fill-mask": DistilBertForMaskedLM, "question-answering": DistilBertForQuestionAnswering, "text-classification": DistilBertForSequenceClassification, "token-classification": DistilBertForTokenClassification, "zero-shot": DistilBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ : Optional[int] = True lowerCamelCase__ : Any = True lowerCamelCase__ : List[Any] = True lowerCamelCase__ : Optional[Any] = True def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : str = DistilBertModelTester(self ) lowercase__ : int = ConfigTester(self , config_class=a , dim=3_7 ) def _UpperCAmelCase ( self ) -> Dict: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*a ) def _UpperCAmelCase ( self ) -> Any: lowercase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*a ) def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*a ) def _UpperCAmelCase ( self ) -> int: lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*a ) def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*a ) def _UpperCAmelCase ( self ) -> str: lowercase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*a ) @slow def _UpperCAmelCase ( self ) -> str: for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : str = DistilBertModel.from_pretrained(a ) self.assertIsNotNone(a ) @slow @require_torch_gpu def _UpperCAmelCase ( self ) -> Any: lowercase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return lowercase__ : Optional[int] = True lowercase__ : Union[str, Any] = model_class(config=a ) lowercase__ : int = self._prepare_for_class(a , a ) lowercase__ : Tuple = torch.jit.trace( a , (inputs_dict['input_ids'].to('cpu' ), inputs_dict['attention_mask'].to('cpu' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a , os.path.join(a , 'traced_model.pt' ) ) lowercase__ : Optional[int] = torch.jit.load(os.path.join(a , 'traced_model.pt' ) , map_location=a ) loaded(inputs_dict['input_ids'].to(a ) , inputs_dict['attention_mask'].to(a ) ) @require_torch class UpperCAmelCase_ ( unittest.TestCase): @slow def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : int = DistilBertModel.from_pretrained('distilbert-base-uncased' ) lowercase__ : Union[str, Any] = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) lowercase__ : Optional[Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowercase__ : Optional[Any] = model(a , attention_mask=a )[0] lowercase__ : Tuple = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , a ) lowercase__ : List[Any] = torch.tensor( [[[-0.1_639, 0.3_299, 0.1_648], [-0.1_746, 0.3_289, 0.1_710], [-0.1_884, 0.3_357, 0.1_810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a , atol=1e-4 ) )
717
"""simple docstring""" def a_ ( _lowerCAmelCase : str ): '''simple docstring''' lowercase__ : Any = [0] * len(_lowerCAmelCase ) for i in range(1 , len(_lowerCAmelCase ) ): # use last results for better performance - dynamic programming lowercase__ : List[str] = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: lowercase__ : Dict = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 lowercase__ : Union[str, Any] = j return prefix_result def a_ ( _lowerCAmelCase : str ): '''simple docstring''' return max(prefix_function(_lowerCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod()
645
0
"""simple docstring""" import os from pathlib import Path def a_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : List[str] ): '''simple docstring''' lowercase__ : Optional[Any] = { 'en': 'Machine learning is great, isn\'t it?', 'ru': 'Машинное обучение - это здорово, не так ли?', 'de': 'Maschinelles Lernen ist großartig, nicht wahr?', } # BLUE scores as follows: # "pair": [fairseq, transformers] lowercase__ : Optional[int] = { 'wmt16-en-de-dist-12-1': [28.3, 27.52], 'wmt16-en-de-dist-6-1': [27.4, 27.11], 'wmt16-en-de-12-1': [26.9, 25.75], } lowercase__ : Optional[Any] = f"""{src_lang}-{tgt_lang}""" lowercase__ : List[Any] = f""" --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt16 - allenai license: apache-2.0 datasets: - wmt16 metrics: - bleu --- # FSMT ## Model description This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}. For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369). All 3 models are available: * [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1) * [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1) * [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = \"allenai/{model_name}\" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = \"{texts[src_lang]}\" input_ids = tokenizer.encode(input, return_tensors=\"pt\") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias ## Training data Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369). ## Eval results Here are the BLEU scores: model | fairseq | transformers -------|---------|---------- {model_name} | {scores[model_name][0]} | {scores[model_name][1]} The score is slightly below the score reported in the paper, as the researchers don't use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs. The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=5 mkdir -p $DATA_DIR sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` ## Data Sources - [training, etc.](http://www.statmt.org/wmt16/) - [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372) ### BibTeX entry and citation info ``` @misc{{kasai2020deep, title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}}, author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}}, year={{2020}}, eprint={{2006.10369}}, archivePrefix={{arXiv}}, primaryClass={{cs.CL}} }} ``` """ model_card_dir.mkdir(parents=_lowerCAmelCase , exist_ok=_lowerCAmelCase ) lowercase__ : Dict = os.path.join(_lowerCAmelCase , 'README.md' ) print(f"""Generating {path}""" ) with open(_lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(_lowerCAmelCase ) # make sure we are under the root of the project _UpperCamelCase : List[str] = Path(__file__).resolve().parent.parent.parent _UpperCamelCase : Union[str, Any] = repo_dir / "model_cards" for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: _UpperCamelCase : Dict = model_cards_dir / "allenai" / model_name write_model_card(model_card_dir, src_lang="en", tgt_lang="de", model_name=model_name)
718
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class UpperCAmelCase_ ( unittest.TestCase): def __init__( self , a , a=7 , a=3 , a=1_8 , a=3_0 , a=4_0_0 , a=True , a=None , a=True , a=None , a=True , ) -> List[str]: lowercase__ : Tuple = size if size is not None else {'shortest_edge': 2_0} lowercase__ : Union[str, Any] = crop_size if crop_size is not None else {'height': 1_8, 'width': 1_8} lowercase__ : Optional[int] = parent lowercase__ : Optional[int] = batch_size lowercase__ : str = num_channels lowercase__ : Any = image_size lowercase__ : Optional[Any] = min_resolution lowercase__ : int = max_resolution lowercase__ : List[Any] = do_resize lowercase__ : List[str] = size lowercase__ : str = do_center_crop lowercase__ : List[Any] = crop_size lowercase__ : Union[str, Any] = do_flip_channel_order def _UpperCAmelCase ( self ) -> int: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class UpperCAmelCase_ ( _a , unittest.TestCase): lowerCamelCase__ : Optional[Any] = MobileViTImageProcessor if is_vision_available() else None def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : Tuple = MobileViTImageProcessingTester(self ) @property def _UpperCAmelCase ( self ) -> int: return self.image_processor_tester.prepare_image_processor_dict() def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a , 'do_resize' ) ) self.assertTrue(hasattr(a , 'size' ) ) self.assertTrue(hasattr(a , 'do_center_crop' ) ) self.assertTrue(hasattr(a , 'center_crop' ) ) self.assertTrue(hasattr(a , 'do_flip_channel_order' ) ) def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 2_0} ) self.assertEqual(image_processor.crop_size , {'height': 1_8, 'width': 1_8} ) lowercase__ : str = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {'shortest_edge': 4_2} ) self.assertEqual(image_processor.crop_size , {'height': 8_4, 'width': 8_4} ) def _UpperCAmelCase ( self ) -> Tuple: pass def _UpperCAmelCase ( self ) -> str: # Initialize image_processing lowercase__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a ) for image in image_inputs: self.assertIsInstance(a , Image.Image ) # Test not batched input lowercase__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowercase__ : List[Any] = image_processing(a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def _UpperCAmelCase ( self ) -> Tuple: # Initialize image_processing lowercase__ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , numpify=a ) for image in image_inputs: self.assertIsInstance(a , np.ndarray ) # Test not batched input lowercase__ : List[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowercase__ : Any = image_processing(a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def _UpperCAmelCase ( self ) -> Dict: # Initialize image_processing lowercase__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , torchify=a ) for image in image_inputs: self.assertIsInstance(a , torch.Tensor ) # Test not batched input lowercase__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowercase__ : Tuple = image_processing(a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
645
0
"""simple docstring""" import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def a_ ( ): '''simple docstring''' print('Making key files...' ) make_key_files('rsa' , 1024 ) print('Key files generation successful.' ) def a_ ( _lowerCAmelCase : int ): '''simple docstring''' print('Generating prime p...' ) lowercase__ : Any = rabinMiller.generate_large_prime(_lowerCAmelCase ) print('Generating prime q...' ) lowercase__ : str = rabinMiller.generate_large_prime(_lowerCAmelCase ) lowercase__ : Any = p * q print('Generating e that is relatively prime to (p - 1) * (q - 1)...' ) while True: lowercase__ : Dict = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) ) if cryptoMath.gcd(_lowerCAmelCase , (p - 1) * (q - 1) ) == 1: break print('Calculating d that is mod inverse of e...' ) lowercase__ : Tuple = cryptoMath.find_mod_inverse(_lowerCAmelCase , (p - 1) * (q - 1) ) lowercase__ : Any = (n, e) lowercase__ : List[str] = (n, d) return (public_key, private_key) def a_ ( _lowerCAmelCase : str , _lowerCAmelCase : int ): '''simple docstring''' if os.path.exists(f"""{name}_pubkey.txt""" ) or os.path.exists(f"""{name}_privkey.txt""" ): print('\nWARNING:' ) print( f"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" 'Use a different name or delete these files and re-run this program.' ) sys.exit() lowercase__ : str = generate_key(_lowerCAmelCase ) print(f"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(f"""{name}_pubkey.txt""" , 'w' ) as out_file: out_file.write(f"""{key_size},{public_key[0]},{public_key[1]}""" ) print(f"""Writing private key to file {name}_privkey.txt...""" ) with open(f"""{name}_privkey.txt""" , 'w' ) as out_file: out_file.write(f"""{key_size},{private_key[0]},{private_key[1]}""" ) if __name__ == "__main__": main()
719
"""simple docstring""" import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class UpperCAmelCase_ ( unittest.TestCase): def __init__( self , a , a=1_3 , a=7 , a=True , a=True , a=True , a=True , a=9_9 , a=3_2 , a=5 , a=4 , a=3_7 , a="gelu" , a=0.1 , a=0.1 , a=5_1_2 , a=1_6 , a=2 , a=0.02 , a=4 , ) -> Dict: lowercase__ : Optional[Any] = parent lowercase__ : Dict = batch_size lowercase__ : List[Any] = seq_length lowercase__ : int = is_training lowercase__ : str = use_attention_mask lowercase__ : Dict = use_token_type_ids lowercase__ : Optional[int] = use_labels lowercase__ : Tuple = vocab_size lowercase__ : List[str] = hidden_size lowercase__ : Union[str, Any] = num_hidden_layers lowercase__ : int = num_attention_heads lowercase__ : Dict = intermediate_size lowercase__ : List[str] = hidden_act lowercase__ : Dict = hidden_dropout_prob lowercase__ : Tuple = attention_probs_dropout_prob lowercase__ : List[str] = max_position_embeddings lowercase__ : int = type_vocab_size lowercase__ : List[str] = type_sequence_label_size lowercase__ : Union[str, Any] = initializer_range lowercase__ : Optional[int] = num_choices def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ : str = None if self.use_attention_mask: lowercase__ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ : List[str] = None if self.use_token_type_ids: lowercase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__ : Any = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _UpperCAmelCase ( self ) -> Any: lowercase__ : Optional[int] = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ : Tuple = config_and_inputs lowercase__ : Union[str, Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class UpperCAmelCase_ ( _a , unittest.TestCase): lowerCamelCase__ : Tuple = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : Union[str, Any] = FlaxAlbertModelTester(self ) @slow def _UpperCAmelCase ( self ) -> str: for model_class_name in self.all_model_classes: lowercase__ : str = model_class_name.from_pretrained('albert-base-v2' ) lowercase__ : Tuple = model(np.ones((1, 1) ) ) self.assertIsNotNone(a ) @require_flax class UpperCAmelCase_ ( unittest.TestCase): @slow def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : str = FlaxAlbertModel.from_pretrained('albert-base-v2' ) lowercase__ : Optional[int] = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) lowercase__ : Optional[Any] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) lowercase__ : Any = model(a , attention_mask=a )[0] lowercase__ : Tuple = (1, 1_1, 7_6_8) self.assertEqual(output.shape , a ) lowercase__ : Optional[Any] = np.array( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , a , atol=1e-4 ) )
645
0
"""simple docstring""" import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel, VQModel from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCAmelCase_ ( _a): def __init__( self , a , a , a ) -> Union[str, Any]: super().__init__() self.register_modules(vqvae=a , unet=a , scheduler=a ) @torch.no_grad() def __call__( self , a = 1 , a = None , a = 0.0 , a = 5_0 , a = "pil" , a = True , **a , ) -> Union[Tuple, ImagePipelineOutput]: lowercase__ : List[Any] = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=a , ) lowercase__ : int = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowercase__ : Optional[int] = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(a ) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature lowercase__ : str = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowercase__ : Any = {} if accepts_eta: lowercase__ : str = eta for t in self.progress_bar(self.scheduler.timesteps ): lowercase__ : str = self.scheduler.scale_model_input(a , a ) # predict the noise residual lowercase__ : str = self.unet(a , a ).sample # compute the previous noisy sample x_t -> x_t-1 lowercase__ : Optional[int] = self.scheduler.step(a , a , a , **a ).prev_sample # decode the image latents with the VAE lowercase__ : Optional[int] = self.vqvae.decode(a ).sample lowercase__ : List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) lowercase__ : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowercase__ : Tuple = self.numpy_to_pil(a ) if not return_dict: return (image,) return ImagePipelineOutput(images=a )
720
"""simple docstring""" from collections.abc import Sequence def a_ ( _lowerCAmelCase : Sequence[float] , _lowerCAmelCase : float ): '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(_lowerCAmelCase ) ) def a_ ( _lowerCAmelCase : Sequence[float] , _lowerCAmelCase : float ): '''simple docstring''' lowercase__ : int = 0.0 for coeff in reversed(_lowerCAmelCase ): lowercase__ : List[Any] = result * x + coeff return result if __name__ == "__main__": _UpperCamelCase : int = (0.0, 0.0, 5.0, 9.3, 7.0) _UpperCamelCase : Dict = 1_0.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
645
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) _UpperCamelCase : int = { "configuration_perceiver": ["PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP", "PerceiverConfig", "PerceiverOnnxConfig"], "tokenization_perceiver": ["PerceiverTokenizer"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Any = ["PerceiverFeatureExtractor"] _UpperCamelCase : str = ["PerceiverImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Optional[int] = [ "PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST", "PerceiverForImageClassificationConvProcessing", "PerceiverForImageClassificationFourier", "PerceiverForImageClassificationLearned", "PerceiverForMaskedLM", "PerceiverForMultimodalAutoencoding", "PerceiverForOpticalFlow", "PerceiverForSequenceClassification", "PerceiverLayer", "PerceiverModel", "PerceiverPreTrainedModel", ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys _UpperCamelCase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
721
"""simple docstring""" import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path _UpperCamelCase : Any = [ {"dataset": "wikipedia", "config_name": "20220301.de"}, {"dataset": "wikipedia", "config_name": "20220301.en"}, {"dataset": "wikipedia", "config_name": "20220301.fr"}, {"dataset": "wikipedia", "config_name": "20220301.frr"}, {"dataset": "wikipedia", "config_name": "20220301.it"}, {"dataset": "wikipedia", "config_name": "20220301.simple"}, {"dataset": "snli", "config_name": "plain_text"}, {"dataset": "eli5", "config_name": "LFQA_reddit"}, {"dataset": "wiki40b", "config_name": "en"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.compressed"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.no_index"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.multiset.no_index"}, {"dataset": "natural_questions", "config_name": "default"}, ] def a_ ( _lowerCAmelCase : Optional[Any]=True ): '''simple docstring''' if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=_a)) class UpperCAmelCase_ ( _a): lowerCamelCase__ : str = None lowerCamelCase__ : Optional[Any] = None def _UpperCAmelCase ( self , a , a ) -> List[Any]: with TemporaryDirectory() as tmp_dir: lowercase__ : List[str] = dataset_module_factory(a , cache_dir=a ) lowercase__ : List[Any] = import_main_class(dataset_module.module_path , dataset=a ) lowercase__ : DatasetBuilder = builder_cls( cache_dir=a , config_name=a , hash=dataset_module.hash , ) lowercase__ : Union[str, Any] = '/'.join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=a ).replace(os.sep , '/' ), config.DATASET_INFO_FILENAME, ] ) lowercase__ : Union[str, Any] = cached_path(a , cache_dir=a ) self.assertTrue(os.path.exists(a ) ) @pytest.mark.integration def a_ ( _lowerCAmelCase : str ): '''simple docstring''' lowercase__ : Union[str, Any] = tmp_path_factory.mktemp('test_hf_gcp' ) / 'test_wikipedia_simple' lowercase__ : int = dataset_module_factory('wikipedia' , cache_dir=_lowerCAmelCase ) lowercase__ : Optional[int] = import_main_class(dataset_module.module_path ) lowercase__ : DatasetBuilder = builder_cls( cache_dir=_lowerCAmelCase , config_name='20220301.frr' , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam lowercase__ : Optional[int] = None builder_instance.download_and_prepare() lowercase__ : Optional[int] = builder_instance.as_dataset() assert ds @pytest.mark.integration def a_ ( _lowerCAmelCase : Optional[Any] ): '''simple docstring''' lowercase__ : Optional[int] = dataset_module_factory('wikipedia' , cache_dir=_lowerCAmelCase ) lowercase__ : List[str] = import_main_class(dataset_module.module_path , dataset=_lowerCAmelCase ) lowercase__ : DatasetBuilder = builder_cls( cache_dir=_lowerCAmelCase , config_name='20220301.frr' , hash=dataset_module.hash , ) lowercase__ : Union[str, Any] = builder_instance.as_streaming_dataset() assert ds assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert "train" in ds assert isinstance(ds['train'] , _lowerCAmelCase ) assert next(iter(ds['train'] ) )
645
0
"""simple docstring""" import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class UpperCAmelCase_ ( unittest.TestCase): def __init__( self , a ) -> List[Any]: lowercase__ : List[Any] = parent def _UpperCAmelCase ( self ) -> str: return {} def a_ ( ): '''simple docstring''' lowercase__ : List[str] = '<HTML>\n\n <HEAD>\n <TITLE>sample document</TITLE>\n </HEAD>\n\n <BODY BGCOLOR="FFFFFF">\n <HR>\n <a href="http://google.com">Goog</a>\n <H1>This is one header</H1>\n <H2>This is a another Header</H2>\n <P>Travel from\n <P>\n <B>SFO to JFK</B>\n <BR>\n <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B>\n <HR>\n <div style="color:#0000FF">\n <h3>Traveler <b> name </b> is\n <p> John Doe </p>\n </div>' lowercase__ : Optional[Any] = '\n <!DOCTYPE html>\n <html>\n <body>\n\n <h1>My First Heading</h1>\n <p>My first paragraph.</p>\n\n </body>\n </html>\n ' return [html_string_a, html_string_a] @require_bsa class UpperCAmelCase_ ( _a , unittest.TestCase): lowerCamelCase__ : Dict = MarkupLMFeatureExtractor if is_bsa_available() else None def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ : Union[str, Any] = MarkupLMFeatureExtractionTester(self ) @property def _UpperCAmelCase ( self ) -> Union[str, Any]: return self.feature_extract_tester.prepare_feat_extract_dict() def _UpperCAmelCase ( self ) -> Optional[int]: # Initialize feature_extractor lowercase__ : List[Any] = self.feature_extraction_class() # Test not batched input lowercase__ : Tuple = get_html_strings()[0] lowercase__ : Any = feature_extractor(a ) # fmt: off lowercase__ : Dict = [['sample document', 'Goog', 'This is one header', 'This is a another Header', 'Travel from', 'SFO to JFK', 'on May 2, 2015 at 2:00 pm. For details go to confirm.com', 'Traveler', 'name', 'is', 'John Doe']] lowercase__ : str = [['/html/head/title', '/html/body/a', '/html/body/h1', '/html/body/h2', '/html/body/p', '/html/body/p/p/b[1]', '/html/body/p/p/b[2]/i', '/html/body/p/p/div/h3', '/html/body/p/p/div/h3/b', '/html/body/p/p/div/h3', '/html/body/p/p/div/h3/p']] # fmt: on self.assertEqual(encoding.nodes , a ) self.assertEqual(encoding.xpaths , a ) # Test batched lowercase__ : List[Any] = get_html_strings() lowercase__ : List[Any] = feature_extractor(a ) # fmt: off lowercase__ : Union[str, Any] = expected_nodes + [['My First Heading', 'My first paragraph.']] lowercase__ : Dict = expected_xpaths + [['/html/body/h1', '/html/body/p']] self.assertEqual(len(encoding.nodes ) , 2 ) self.assertEqual(len(encoding.xpaths ) , 2 ) self.assertEqual(encoding.nodes , a ) self.assertEqual(encoding.xpaths , a )
700
"""simple docstring""" import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def a_ ( _lowerCAmelCase : dict ): '''simple docstring''' return (data["data"], data["target"]) def a_ ( _lowerCAmelCase : np.ndarray , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : np.ndarray ): '''simple docstring''' lowercase__ : Any = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(_lowerCAmelCase , _lowerCAmelCase ) # Predict target for test data lowercase__ : str = xgb.predict(_lowerCAmelCase ) lowercase__ : Union[str, Any] = predictions.reshape(len(_lowerCAmelCase ) , 1 ) return predictions def a_ ( ): '''simple docstring''' lowercase__ : Optional[Any] = fetch_california_housing() lowercase__ , lowercase__ : str = data_handling(_lowerCAmelCase ) lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = train_test_split( _lowerCAmelCase , _lowerCAmelCase , test_size=0.2_5 , random_state=1 ) lowercase__ : Any = xgboost(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Error printing print(f"""Mean Absolute Error : {mean_absolute_error(_lowerCAmelCase , _lowerCAmelCase )}""" ) print(f"""Mean Square Error : {mean_squared_error(_lowerCAmelCase , _lowerCAmelCase )}""" ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
645
0
"""simple docstring""" import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class UpperCAmelCase_ ( unittest.TestCase): def __init__( self , a , a=1_3 , a=7 , a=True , a=True , a=True , a=True , a=9_9 , a=3_2 , a=5 , a=4 , a=3_7 , a="gelu" , a=0.1 , a=0.1 , a=5_1_2 , a=1_6 , a=2 , a=0.02 , a=4 , ) -> Dict: lowercase__ : Optional[Any] = parent lowercase__ : Dict = batch_size lowercase__ : List[Any] = seq_length lowercase__ : int = is_training lowercase__ : str = use_attention_mask lowercase__ : Dict = use_token_type_ids lowercase__ : Optional[int] = use_labels lowercase__ : Tuple = vocab_size lowercase__ : List[str] = hidden_size lowercase__ : Union[str, Any] = num_hidden_layers lowercase__ : int = num_attention_heads lowercase__ : Dict = intermediate_size lowercase__ : List[str] = hidden_act lowercase__ : Dict = hidden_dropout_prob lowercase__ : Tuple = attention_probs_dropout_prob lowercase__ : List[str] = max_position_embeddings lowercase__ : int = type_vocab_size lowercase__ : List[str] = type_sequence_label_size lowercase__ : Union[str, Any] = initializer_range lowercase__ : Optional[int] = num_choices def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ : str = None if self.use_attention_mask: lowercase__ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ : List[str] = None if self.use_token_type_ids: lowercase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__ : Any = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _UpperCAmelCase ( self ) -> Any: lowercase__ : Optional[int] = self.prepare_config_and_inputs() lowercase__ : Tuple = config_and_inputs lowercase__ : Union[str, Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class UpperCAmelCase_ ( _a , unittest.TestCase): lowerCamelCase__ : Tuple = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : Union[str, Any] = FlaxAlbertModelTester(self ) @slow def _UpperCAmelCase ( self ) -> str: for model_class_name in self.all_model_classes: lowercase__ : str = model_class_name.from_pretrained('albert-base-v2' ) lowercase__ : Tuple = model(np.ones((1, 1) ) ) self.assertIsNotNone(a ) @require_flax class UpperCAmelCase_ ( unittest.TestCase): @slow def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : str = FlaxAlbertModel.from_pretrained('albert-base-v2' ) lowercase__ : Optional[int] = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) lowercase__ : Optional[Any] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) lowercase__ : Any = model(a , attention_mask=a )[0] lowercase__ : Tuple = (1, 1_1, 7_6_8) self.assertEqual(output.shape , a ) lowercase__ : Optional[Any] = np.array( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , a , atol=1e-4 ) )
701
"""simple docstring""" import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class UpperCAmelCase_ : def __init__( self , a , a=1_3 , a=1_0 , a=3 , a=2 , a=2 , a=2 , a=True , a=True , a=3_2 , a=5 , a=4 , a=3_7 , a="gelu" , a=0.1 , a=0.1 , a=1_0 , a=0.02 , a=0.9 , a=None , ) -> Optional[Any]: lowercase__ : str = parent lowercase__ : int = batch_size lowercase__ : Union[str, Any] = image_size lowercase__ : Optional[Any] = num_channels lowercase__ : Dict = patch_size lowercase__ : Tuple = tubelet_size lowercase__ : Optional[int] = num_frames lowercase__ : Optional[int] = is_training lowercase__ : int = use_labels lowercase__ : Optional[int] = hidden_size lowercase__ : Union[str, Any] = num_hidden_layers lowercase__ : Optional[int] = num_attention_heads lowercase__ : Any = intermediate_size lowercase__ : str = hidden_act lowercase__ : List[Any] = hidden_dropout_prob lowercase__ : str = attention_probs_dropout_prob lowercase__ : Union[str, Any] = type_sequence_label_size lowercase__ : List[Any] = initializer_range lowercase__ : str = mask_ratio lowercase__ : Optional[Any] = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame lowercase__ : Optional[Any] = (image_size // patch_size) ** 2 lowercase__ : str = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos lowercase__ : str = int(mask_ratio * self.seq_length ) def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : int = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) lowercase__ : int = None if self.use_labels: lowercase__ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ : Dict = self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self ) -> Tuple: return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a , initializer_range=self.initializer_range , ) def _UpperCAmelCase ( self , a , a , a ) -> Optional[int]: lowercase__ : Dict = VideoMAEModel(config=a ) model.to(a ) model.eval() lowercase__ : Tuple = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self , a , a , a ) -> Union[str, Any]: lowercase__ : str = VideoMAEForPreTraining(a ) model.to(a ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowercase__ : Any = torch.ones((self.num_masks,) ) lowercase__ : str = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) lowercase__ : Optional[int] = mask.expand(self.batch_size , -1 ).bool() lowercase__ : str = model(a , a ) # model only returns predictions for masked patches lowercase__ : str = mask.sum().item() lowercase__ : int = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def _UpperCAmelCase ( self ) -> str: lowercase__ : Dict = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = config_and_inputs lowercase__ : List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _a , _a , unittest.TestCase): lowerCamelCase__ : Tuple = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) lowerCamelCase__ : Optional[int] = ( {"feature-extraction": VideoMAEModel, "video-classification": VideoMAEForVideoClassification} if is_torch_available() else {} ) lowerCamelCase__ : Any = False lowerCamelCase__ : Any = False lowerCamelCase__ : Union[str, Any] = False lowerCamelCase__ : str = False def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Optional[Any] = VideoMAEModelTester(self ) lowercase__ : Optional[Any] = ConfigTester(self , config_class=a , has_text_modality=a , hidden_size=3_7 ) def _UpperCAmelCase ( self , a , a , a=False ) -> Optional[int]: lowercase__ : Union[str, Any] = copy.deepcopy(a ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowercase__ : Optional[Any] = torch.ones((self.model_tester.num_masks,) ) lowercase__ : Any = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) lowercase__ : Any = mask.expand(self.model_tester.batch_size , -1 ).bool() lowercase__ : Union[str, Any] = bool_masked_pos.to(a ) if return_labels: if model_class in [ *get_values(a ), ]: lowercase__ : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a ) return inputs_dict def _UpperCAmelCase ( self ) -> Tuple: self.config_tester.run_common_tests() @unittest.skip(reason='VideoMAE does not use inputs_embeds' ) def _UpperCAmelCase ( self ) -> Dict: pass def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : int = model_class(a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase__ : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a , nn.Linear ) ) def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[str] = model_class(a ) lowercase__ : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Optional[Any] = [*signature.parameters.keys()] lowercase__ : int = ['pixel_values'] self.assertListEqual(arg_names[:1] , a ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*a ) @slow def _UpperCAmelCase ( self ) -> str: for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : List[Any] = VideoMAEModel.from_pretrained(a ) self.assertIsNotNone(a ) def _UpperCAmelCase ( self ) -> Optional[Any]: if not self.has_attentions: pass else: lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : str = True for model_class in self.all_model_classes: lowercase__ : Union[str, Any] = self.model_tester.seq_length - self.model_tester.num_masks lowercase__ : Any = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) lowercase__ : Optional[Any] = True lowercase__ : int = False lowercase__ : Any = True lowercase__ : List[str] = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : Optional[int] = model(**self._prepare_for_class(a , a ) ) lowercase__ : Dict = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase__ : str = True lowercase__ : List[str] = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : List[Any] = model(**self._prepare_for_class(a , a ) ) lowercase__ : Optional[Any] = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowercase__ : List[str] = len(a ) # Check attention is always last and order is fine lowercase__ : Optional[int] = True lowercase__ : List[str] = True lowercase__ : int = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : List[str] = model(**self._prepare_for_class(a , a ) ) self.assertEqual(out_len + 1 , len(a ) ) lowercase__ : int = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def _UpperCAmelCase ( self ) -> Optional[int]: def check_hidden_states_output(a , a , a ): lowercase__ : Optional[int] = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : Optional[Any] = model(**self._prepare_for_class(a , a ) ) lowercase__ : Optional[int] = outputs.hidden_states lowercase__ : List[Any] = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(a ) , a ) lowercase__ : Optional[Any] = self.model_tester.seq_length - self.model_tester.num_masks lowercase__ : Union[str, Any] = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowercase__ , lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Tuple = True check_hidden_states_output(a , a , a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : Union[str, Any] = True check_hidden_states_output(a , a , a ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _UpperCAmelCase ( self ) -> List[Any]: pass def a_ ( ): '''simple docstring''' lowercase__ : int = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename='eating_spaghetti.npy' , repo_type='dataset' ) lowercase__ : str = np.load(_lowerCAmelCase ) return list(_lowerCAmelCase ) @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase): @cached_property def _UpperCAmelCase ( self ) -> Optional[Any]: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def _UpperCAmelCase ( self ) -> int: lowercase__ : Dict = VideoMAEForVideoClassification.from_pretrained('MCG-NJU/videomae-base-finetuned-kinetics' ).to( a ) lowercase__ : str = self.default_image_processor lowercase__ : List[str] = prepare_video() lowercase__ : int = image_processor(a , return_tensors='pt' ).to(a ) # forward pass with torch.no_grad(): lowercase__ : Union[str, Any] = model(**a ) # verify the logits lowercase__ : str = torch.Size((1, 4_0_0) ) self.assertEqual(outputs.logits.shape , a ) lowercase__ : List[Any] = torch.tensor([0.3_669, -0.0_688, -0.2_421] ).to(a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a , atol=1e-4 ) ) @slow def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Optional[int] = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short' ).to(a ) lowercase__ : Optional[Any] = self.default_image_processor lowercase__ : List[str] = prepare_video() lowercase__ : str = image_processor(a , return_tensors='pt' ).to(a ) # add boolean mask, indicating which patches to mask lowercase__ : Union[str, Any] = hf_hub_download(repo_id='hf-internal-testing/bool-masked-pos' , filename='bool_masked_pos.pt' ) lowercase__ : str = torch.load(a ) # forward pass with torch.no_grad(): lowercase__ : List[Any] = model(**a ) # verify the logits lowercase__ : Dict = torch.Size([1, 1_4_0_8, 1_5_3_6] ) lowercase__ : List[str] = torch.tensor( [[0.7_994, 0.9_612, 0.8_508], [0.7_401, 0.8_958, 0.8_302], [0.5_862, 0.7_468, 0.7_325]] , device=a ) self.assertEqual(outputs.logits.shape , a ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , a , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) lowercase__ : List[Any] = torch.tensor([0.5_142] , device=a ) self.assertTrue(torch.allclose(outputs.loss , a , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) lowercase__ : Tuple = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short' , norm_pix_loss=a ).to( a ) with torch.no_grad(): lowercase__ : Any = model(**a ) lowercase__ : List[Any] = torch.tensor(torch.tensor([0.6_469] ) , device=a ) self.assertTrue(torch.allclose(outputs.loss , a , atol=1e-4 ) )
645
0
"""simple docstring""" import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def a_ ( _lowerCAmelCase : List[Any] ): '''simple docstring''' lowercase__ : List[str] = SwinConfig() lowercase__ : Optional[Any] = swin_name.split('_' ) lowercase__ : int = name_split[1] lowercase__ : Tuple = int(name_split[4] ) lowercase__ : Optional[int] = int(name_split[3][-1] ) if model_size == "tiny": lowercase__ : Tuple = 96 lowercase__ : List[Any] = (2, 2, 6, 2) lowercase__ : Tuple = (3, 6, 12, 24) elif model_size == "small": lowercase__ : Optional[Any] = 96 lowercase__ : List[Any] = (2, 2, 18, 2) lowercase__ : Union[str, Any] = (3, 6, 12, 24) elif model_size == "base": lowercase__ : int = 128 lowercase__ : Any = (2, 2, 18, 2) lowercase__ : Any = (4, 8, 16, 32) else: lowercase__ : List[str] = 192 lowercase__ : str = (2, 2, 18, 2) lowercase__ : Any = (6, 12, 24, 48) if "in22k" in swin_name: lowercase__ : Optional[Any] = 2_1841 else: lowercase__ : str = 1000 lowercase__ : int = 'huggingface/label-files' lowercase__ : Optional[Any] = 'imagenet-1k-id2label.json' lowercase__ : List[Any] = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type='dataset' ) , 'r' ) ) lowercase__ : str = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} lowercase__ : str = idalabel lowercase__ : str = {v: k for k, v in idalabel.items()} lowercase__ : Tuple = img_size lowercase__ : Tuple = num_classes lowercase__ : str = embed_dim lowercase__ : List[Any] = depths lowercase__ : Dict = num_heads lowercase__ : Any = window_size return config def a_ ( _lowerCAmelCase : List[str] ): '''simple docstring''' if "patch_embed.proj" in name: lowercase__ : Optional[Any] = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: lowercase__ : Optional[int] = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: lowercase__ : Any = 'encoder.' + name if "attn.proj" in name: lowercase__ : str = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: lowercase__ : int = name.replace('attn' , 'attention.self' ) if "norm1" in name: lowercase__ : List[Any] = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: lowercase__ : Tuple = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: lowercase__ : Optional[Any] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: lowercase__ : List[str] = name.replace('mlp.fc2' , 'output.dense' ) if name == "norm.weight": lowercase__ : Tuple = 'layernorm.weight' if name == "norm.bias": lowercase__ : Optional[int] = 'layernorm.bias' if "head" in name: lowercase__ : Union[str, Any] = name.replace('head' , 'classifier' ) else: lowercase__ : Dict = 'swin.' + name return name def a_ ( _lowerCAmelCase : str , _lowerCAmelCase : Union[str, Any] ): '''simple docstring''' for key in orig_state_dict.copy().keys(): lowercase__ : Union[str, Any] = orig_state_dict.pop(_lowerCAmelCase ) if "mask" in key: continue elif "qkv" in key: lowercase__ : List[str] = key.split('.' ) lowercase__ : List[str] = int(key_split[1] ) lowercase__ : List[Any] = int(key_split[3] ) lowercase__ : List[str] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowercase__ : str = val[:dim, :] lowercase__ : Optional[int] = val[ dim : dim * 2, : ] lowercase__ : Tuple = val[-dim:, :] else: lowercase__ : List[str] = val[ :dim ] lowercase__ : Tuple = val[ dim : dim * 2 ] lowercase__ : Union[str, Any] = val[ -dim: ] else: lowercase__ : Union[str, Any] = val return orig_state_dict def a_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] ): '''simple docstring''' lowercase__ : Union[str, Any] = timm.create_model(_lowerCAmelCase , pretrained=_lowerCAmelCase ) timm_model.eval() lowercase__ : Optional[Any] = get_swin_config(_lowerCAmelCase ) lowercase__ : Any = SwinForImageClassification(_lowerCAmelCase ) model.eval() lowercase__ : Dict = convert_state_dict(timm_model.state_dict() , _lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) lowercase__ : Any = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowercase__ : int = AutoImageProcessor.from_pretrained('microsoft/{}'.format(swin_name.replace('_' , '-' ) ) ) lowercase__ : List[str] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) lowercase__ : List[str] = image_processor(images=_lowerCAmelCase , return_tensors='pt' ) lowercase__ : Tuple = timm_model(inputs['pixel_values'] ) lowercase__ : Optional[Any] = model(**_lowerCAmelCase ).logits assert torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) print(f"""Saving model {swin_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCAmelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": _UpperCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--swin_name", default="swin_tiny_patch4_window7_224", type=str, help="Name of the Swin timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) _UpperCamelCase : Any = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
702
"""simple docstring""" import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() _UpperCamelCase : Dict = logging.get_logger(__name__) _UpperCamelCase : List[Any] = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "encoder.layer_norm_for_extract": "layer_norm_for_extract", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "label_embs_concat": "label_embeddings_concat", "mask_emb": "masked_spec_embed", "spk_proj": "speaker_proj", } _UpperCamelCase : List[str] = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "label_embeddings_concat", "speaker_proj", "layer_norm_for_extract", ] def a_ ( _lowerCAmelCase : Any , _lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple ): '''simple docstring''' for attribute in key.split('.' ): lowercase__ : Dict = getattr(_lowerCAmelCase , _lowerCAmelCase ) if weight_type is not None: lowercase__ : Optional[int] = getattr(_lowerCAmelCase , _lowerCAmelCase ).shape else: lowercase__ : Optional[int] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowercase__ : Optional[Any] = value elif weight_type == "weight_g": lowercase__ : Dict = value elif weight_type == "weight_v": lowercase__ : List[str] = value elif weight_type == "bias": lowercase__ : Optional[Any] = value else: lowercase__ : List[str] = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def a_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] ): '''simple docstring''' lowercase__ : Tuple = [] lowercase__ : List[str] = fairseq_model.state_dict() lowercase__ : Union[str, Any] = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): lowercase__ : Optional[int] = False if "conv_layers" in name: load_conv_layer( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , hf_model.config.feat_extract_norm == 'group' , ) lowercase__ : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): lowercase__ : List[Any] = 'unispeech_sat.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('.' )[:-1] ) != key): # special case since naming is very similar continue lowercase__ : int = True if "*" in mapped_key: lowercase__ : Optional[int] = name.split(_lowerCAmelCase )[0].split('.' )[-2] lowercase__ : List[str] = mapped_key.replace('*' , _lowerCAmelCase ) if "weight_g" in name: lowercase__ : List[Any] = 'weight_g' elif "weight_v" in name: lowercase__ : int = 'weight_v' elif "bias" in name: lowercase__ : Dict = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj lowercase__ : Union[str, Any] = 'weight' else: lowercase__ : int = None set_recursively(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) continue if not is_used: unused_weights.append(_lowerCAmelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def a_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : Dict ): '''simple docstring''' lowercase__ : int = full_name.split('conv_layers.' )[-1] lowercase__ : int = name.split('.' ) lowercase__ : int = int(items[0] ) lowercase__ : Dict = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowercase__ : Union[str, Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowercase__ : Optional[int] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) lowercase__ : List[Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) lowercase__ : int = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_lowerCAmelCase ) @torch.no_grad() def a_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : str=None , _lowerCAmelCase : Tuple=True ): '''simple docstring''' if config_path is not None: lowercase__ : Any = UniSpeechSatConfig.from_pretrained(_lowerCAmelCase ) else: lowercase__ : Any = UniSpeechSatConfig() lowercase__ : Union[str, Any] = '' if is_finetuned: lowercase__ : Optional[Any] = UniSpeechSatForCTC(_lowerCAmelCase ) else: lowercase__ : List[Any] = UniSpeechSatForPreTraining(_lowerCAmelCase ) lowercase__ , lowercase__ , lowercase__ : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) lowercase__ : Union[str, Any] = model[0].eval() recursively_load_weights(_lowerCAmelCase , _lowerCAmelCase ) hf_wavavec.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": _UpperCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _UpperCamelCase : str = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
645
0
"""simple docstring""" _UpperCamelCase : int = range(2, 20 + 1) _UpperCamelCase : Union[str, Any] = [10**k for k in range(ks[-1] + 1)] _UpperCamelCase : dict[int, dict[int, list[list[int]]]] = {} def a_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): '''simple docstring''' lowercase__ : int = sum(a_i[j] for j in range(_lowerCAmelCase , len(_lowerCAmelCase ) ) ) lowercase__ : str = sum(a_i[j] * base[j] for j in range(min(len(_lowerCAmelCase ) , _lowerCAmelCase ) ) ) lowercase__ : Optional[Any] = 0, 0 lowercase__ : List[Any] = n - i lowercase__ : str = memo.get(_lowerCAmelCase ) if sub_memo is not None: lowercase__ : List[Any] = sub_memo.get(_lowerCAmelCase ) if jumps is not None and len(_lowerCAmelCase ) > 0: # find and make the largest jump without going over lowercase__ : List[Any] = -1 for _k in range(len(_lowerCAmelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: lowercase__ : Optional[Any] = _k break if max_jump >= 0: lowercase__ : str = jumps[max_jump] # since the difference between jumps is cached, add c lowercase__ : List[Any] = diff + c for j in range(min(_lowerCAmelCase , len(_lowerCAmelCase ) ) ): lowercase__ : List[str] = divmod(_lowerCAmelCase , 10 ) if new_c > 0: add(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: lowercase__ : Optional[Any] = [] else: lowercase__ : Optional[int] = {c: []} lowercase__ : str = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps lowercase__ : Any = next_term(_lowerCAmelCase , k - 1 , i + dn , _lowerCAmelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead lowercase__ : List[Any] = compute(_lowerCAmelCase , _lowerCAmelCase , i + dn , _lowerCAmelCase ) diff += _diff dn += terms_jumped lowercase__ : str = sub_memo[c] # keep jumps sorted by # of terms skipped lowercase__ : int = 0 while j < len(_lowerCAmelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(_lowerCAmelCase , (diff, dn, k) ) return (diff, dn) def a_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): '''simple docstring''' if i >= n: return 0, i if k > len(_lowerCAmelCase ): a_i.extend([0 for _ in range(k - len(_lowerCAmelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) lowercase__ : Optional[Any] = i lowercase__ : Any = 0, 0, 0 for j in range(len(_lowerCAmelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 lowercase__ : str = ds_c + ds_b diff += addend lowercase__ : str = 0 for j in range(_lowerCAmelCase ): lowercase__ : List[Any] = a_i[j] + addend lowercase__ : Optional[int] = divmod(_lowerCAmelCase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return diff, i - start_i def a_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): '''simple docstring''' for j in range(_lowerCAmelCase , len(_lowerCAmelCase ) ): lowercase__ : Union[str, Any] = digits[j] + addend if s >= 10: lowercase__ : Union[str, Any] = divmod(_lowerCAmelCase , 10 ) lowercase__ : List[Any] = addend // 10 + quotient else: lowercase__ : Optional[Any] = s lowercase__ : Tuple = addend // 10 if addend == 0: break while addend > 0: lowercase__ : Dict = divmod(_lowerCAmelCase , 10 ) digits.append(_lowerCAmelCase ) def a_ ( _lowerCAmelCase = 10**15 ): '''simple docstring''' lowercase__ : List[Any] = [1] lowercase__ : str = 1 lowercase__ : Optional[int] = 0 while True: lowercase__ : str = next_term(_lowerCAmelCase , 20 , i + dn , _lowerCAmelCase ) dn += terms_jumped if dn == n - i: break lowercase__ : str = 0 for j in range(len(_lowerCAmelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f'''{solution() = }''')
703
"""simple docstring""" import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class UpperCAmelCase_ : def __init__( self , a , a=1_3 , a=3_2 , a=2 , a=3 , a=1_6 , a=[1, 2, 1] , a=[2, 2, 4] , a=2 , a=2.0 , a=True , a=0.0 , a=0.0 , a=0.1 , a="gelu" , a=False , a=True , a=0.02 , a=1e-5 , a=True , a=None , a=True , a=1_0 , a=8 , a=["stage1", "stage2", "stage3"] , a=[1, 2, 3] , ) -> int: lowercase__ : int = parent lowercase__ : Union[str, Any] = batch_size lowercase__ : Dict = image_size lowercase__ : str = patch_size lowercase__ : Optional[Any] = num_channels lowercase__ : List[str] = embed_dim lowercase__ : Any = depths lowercase__ : Dict = num_heads lowercase__ : List[str] = window_size lowercase__ : int = mlp_ratio lowercase__ : Tuple = qkv_bias lowercase__ : Union[str, Any] = hidden_dropout_prob lowercase__ : str = attention_probs_dropout_prob lowercase__ : Tuple = drop_path_rate lowercase__ : List[str] = hidden_act lowercase__ : Optional[Any] = use_absolute_embeddings lowercase__ : Optional[Any] = patch_norm lowercase__ : Any = layer_norm_eps lowercase__ : List[Any] = initializer_range lowercase__ : List[str] = is_training lowercase__ : int = scope lowercase__ : Optional[int] = use_labels lowercase__ : List[Any] = type_sequence_label_size lowercase__ : List[str] = encoder_stride lowercase__ : Optional[Any] = out_features lowercase__ : Dict = out_indices def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : Optional[Any] = None if self.use_labels: lowercase__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ : Tuple = self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self ) -> Union[str, Any]: return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def _UpperCAmelCase ( self , a , a , a ) -> Dict: lowercase__ : Tuple = MaskFormerSwinModel(config=a ) model.to(a ) model.eval() lowercase__ : str = model(a ) lowercase__ : str = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowercase__ : Dict = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def _UpperCAmelCase ( self , a , a , a ) -> Optional[int]: lowercase__ : List[Any] = MaskFormerSwinBackbone(config=a ) model.to(a ) model.eval() lowercase__ : int = model(a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [1_3, 1_6, 1_6, 1_6] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [1_6, 3_2, 6_4] ) # verify ValueError with self.parent.assertRaises(a ): lowercase__ : Dict = ['stem'] lowercase__ : List[str] = MaskFormerSwinBackbone(config=a ) def _UpperCAmelCase ( self ) -> str: lowercase__ : int = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Tuple = config_and_inputs lowercase__ : Union[str, Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _a , _a , unittest.TestCase): lowerCamelCase__ : Optional[int] = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) lowerCamelCase__ : List[str] = {"feature-extraction": MaskFormerSwinModel} if is_torch_available() else {} lowerCamelCase__ : str = False lowerCamelCase__ : Dict = False lowerCamelCase__ : Any = False lowerCamelCase__ : Dict = False lowerCamelCase__ : int = False def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : str = MaskFormerSwinModelTester(self ) lowercase__ : Tuple = ConfigTester(self , config_class=a , embed_dim=3_7 ) @require_torch_multi_gpu @unittest.skip( reason=( '`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with' ' `nn.DataParallel`' ) ) def _UpperCAmelCase ( self ) -> Optional[int]: pass def _UpperCAmelCase ( self ) -> Tuple: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _UpperCAmelCase ( self ) -> str: return def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*a ) @unittest.skip('Swin does not use inputs_embeds' ) def _UpperCAmelCase ( self ) -> Tuple: pass @unittest.skip('Swin does not support feedforward chunking' ) def _UpperCAmelCase ( self ) -> Tuple: pass def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[str] = model_class(a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase__ : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a , nn.Linear ) ) def _UpperCAmelCase ( self ) -> str: lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Any = model_class(a ) lowercase__ : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Optional[Any] = [*signature.parameters.keys()] lowercase__ : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , a ) @unittest.skip(reason='MaskFormerSwin is only used as backbone and doesn\'t support output_attentions' ) def _UpperCAmelCase ( self ) -> List[Any]: pass @unittest.skip(reason='MaskFormerSwin is only used as an internal backbone' ) def _UpperCAmelCase ( self ) -> int: pass def _UpperCAmelCase ( self , a , a , a , a ) -> Tuple: lowercase__ : Dict = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : str = model(**self._prepare_for_class(a , a ) ) lowercase__ : List[Any] = outputs.hidden_states lowercase__ : str = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(a ) , a ) # Swin has a different seq_length lowercase__ : Dict = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase__ : Tuple = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ , lowercase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : List[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: lowercase__ : List[str] = True self.check_hidden_states_output(a , a , a , a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : List[str] = True self.check_hidden_states_output(a , a , a , a ) def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Union[str, Any] = 3 lowercase__ : str = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowercase__ : Tuple = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase__ : Optional[int] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowercase__ : List[str] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: lowercase__ : List[str] = True self.check_hidden_states_output(a , a , a , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : int = True self.check_hidden_states_output(a , a , a , (padded_height, padded_width) ) @unittest.skip(reason='MaskFormerSwin doesn\'t have pretrained checkpoints' ) def _UpperCAmelCase ( self ) -> Optional[int]: pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def _UpperCAmelCase ( self ) -> Any: pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def _UpperCAmelCase ( self ) -> Any: pass def _UpperCAmelCase ( self ) -> Any: lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(a ): lowercase__ : Union[str, Any] = 0 return t def check_equivalence(a , a , a , a={} ): with torch.no_grad(): lowercase__ : Optional[Any] = model(**a , return_dict=a , **a ) lowercase__ : Optional[int] = model(**a , return_dict=a , **a ).to_tuple() def recursive_check(a , a ): if isinstance(a , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(a , a ): recursive_check(a , a ) elif isinstance(a , a ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(a , a ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(a ) , set_nan_tensor_to_zero(a ) , atol=1e-5 ) , msg=( 'Tuple and dict output are not equal. Difference:' f""" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:""" f""" {torch.isnan(a ).any()} and `inf`: {torch.isinf(a )}. Dict has""" f""" `nan`: {torch.isnan(a ).any()} and `inf`: {torch.isinf(a )}.""" ) , ) recursive_check(a , a ) for model_class in self.all_model_classes: lowercase__ : Any = model_class(a ) model.to(a ) model.eval() lowercase__ : Tuple = self._prepare_for_class(a , a ) lowercase__ : Optional[Any] = self._prepare_for_class(a , a ) check_equivalence(a , a , a ) lowercase__ : Any = self._prepare_for_class(a , a , return_labels=a ) lowercase__ : List[Any] = self._prepare_for_class(a , a , return_labels=a ) check_equivalence(a , a , a ) lowercase__ : Any = self._prepare_for_class(a , a ) lowercase__ : int = self._prepare_for_class(a , a ) check_equivalence(a , a , a , {'output_hidden_states': True} ) lowercase__ : Dict = self._prepare_for_class(a , a , return_labels=a ) lowercase__ : Optional[int] = self._prepare_for_class(a , a , return_labels=a ) check_equivalence(a , a , a , {'output_hidden_states': True} ) @require_torch class UpperCAmelCase_ ( unittest.TestCase , _a): lowerCamelCase__ : Dict = (MaskFormerSwinBackbone,) if is_torch_available() else () lowerCamelCase__ : Optional[int] = MaskFormerSwinConfig def _UpperCAmelCase ( self ) -> Dict: lowercase__ : Optional[int] = MaskFormerSwinModelTester(self ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : int = inputs_dict['pixel_values'].shape[0] for backbone_class in self.all_model_classes: lowercase__ : Optional[Any] = backbone_class(a ) backbone.to(a ) backbone.eval() lowercase__ : Union[str, Any] = backbone(**a ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , a ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True lowercase__ : List[str] = backbone(**a , output_hidden_states=a ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) lowercase__ , lowercase__ , lowercase__ : int = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: lowercase__ : List[Any] = backbone(**a , output_attentions=a ) self.assertIsNotNone(outputs.attentions )
645
0
"""simple docstring""" from functools import reduce _UpperCamelCase : Tuple = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def a_ ( _lowerCAmelCase : str = N ): '''simple docstring''' return max( # mypy cannot properly interpret reduce int(reduce(lambda _lowerCAmelCase , _lowerCAmelCase : str(int(_lowerCAmelCase ) * int(_lowerCAmelCase ) ) , n[i : i + 13] ) ) for i in range(len(_lowerCAmelCase ) - 12 ) ) if __name__ == "__main__": print(f'''{solution() = }''')
704
"""simple docstring""" import math def a_ ( _lowerCAmelCase : int = 100 ): '''simple docstring''' lowercase__ : Union[str, Any] = sum(i * i for i in range(1 , n + 1 ) ) lowercase__ : str = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f'''{solution() = }''')
645
0
"""simple docstring""" from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar _UpperCamelCase : Optional[Any] = TypeVar("T") class UpperCAmelCase_ ( Generic[T]): def __init__( self , a = True ) -> None: lowercase__ : dict[T, list[T]] = {} # dictionary of lists lowercase__ : str = directed def _UpperCAmelCase ( self , a , a ) -> GraphAdjacencyList[T]: if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(a ) self.adj_list[destination_vertex].append(a ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(a ) lowercase__ : int = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(a ) lowercase__ : Any = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: lowercase__ : Optional[Any] = [destination_vertex] lowercase__ : List[str] = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(a ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(a ) lowercase__ : Union[str, Any] = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: lowercase__ : Dict = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: lowercase__ : Tuple = [destination_vertex] lowercase__ : int = [] return self def __repr__( self ) -> str: return pformat(self.adj_list )
705
"""simple docstring""" import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class UpperCAmelCase_ ( unittest.TestCase): def _UpperCAmelCase ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() def _UpperCAmelCase ( self ) -> Tuple: lowercase__ , lowercase__ : str = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-canny' , from_pt=a , dtype=jnp.bfloataa ) lowercase__ , lowercase__ : List[str] = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , controlnet=a , from_pt=a , dtype=jnp.bfloataa ) lowercase__ : List[Any] = controlnet_params lowercase__ : int = 'bird' lowercase__ : List[Any] = jax.device_count() lowercase__ : Dict = pipe.prepare_text_inputs([prompts] * num_samples ) lowercase__ : Union[str, Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png' ) lowercase__ : Optional[int] = pipe.prepare_image_inputs([canny_image] * num_samples ) lowercase__ : List[Any] = jax.random.PRNGKey(0 ) lowercase__ : Tuple = jax.random.split(a , jax.device_count() ) lowercase__ : str = replicate(a ) lowercase__ : List[str] = shard(a ) lowercase__ : Dict = shard(a ) lowercase__ : List[Any] = pipe( prompt_ids=a , image=a , params=a , prng_seed=a , num_inference_steps=5_0 , jit=a , ).images assert images.shape == (jax.device_count(), 1, 7_6_8, 5_1_2, 3) lowercase__ : Any = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowercase__ : Tuple = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] lowercase__ : int = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowercase__ : Optional[Any] = jnp.array( [0.167_969, 0.116_699, 0.081_543, 0.154_297, 0.132_812, 0.108_887, 0.169_922, 0.169_922, 0.205_078] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def _UpperCAmelCase ( self ) -> List[str]: lowercase__ , lowercase__ : int = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-openpose' , from_pt=a , dtype=jnp.bfloataa ) lowercase__ , lowercase__ : Optional[Any] = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , controlnet=a , from_pt=a , dtype=jnp.bfloataa ) lowercase__ : Optional[Any] = controlnet_params lowercase__ : List[Any] = 'Chef in the kitchen' lowercase__ : List[str] = jax.device_count() lowercase__ : Dict = pipe.prepare_text_inputs([prompts] * num_samples ) lowercase__ : Optional[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png' ) lowercase__ : Optional[int] = pipe.prepare_image_inputs([pose_image] * num_samples ) lowercase__ : List[str] = jax.random.PRNGKey(0 ) lowercase__ : str = jax.random.split(a , jax.device_count() ) lowercase__ : Optional[Any] = replicate(a ) lowercase__ : Optional[Any] = shard(a ) lowercase__ : List[Any] = shard(a ) lowercase__ : List[Any] = pipe( prompt_ids=a , image=a , params=a , prng_seed=a , num_inference_steps=5_0 , jit=a , ).images assert images.shape == (jax.device_count(), 1, 7_6_8, 5_1_2, 3) lowercase__ : Union[str, Any] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowercase__ : List[str] = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] lowercase__ : Optional[int] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowercase__ : str = jnp.array( [[0.271_484, 0.261_719, 0.275_391, 0.277_344, 0.279_297, 0.291_016, 0.294_922, 0.302_734, 0.302_734]] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
645
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCamelCase : Any = logging.get_logger(__name__) _UpperCamelCase : Union[str, Any] = { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/config.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/config.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/config.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/config.json", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json", "roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json", } class UpperCAmelCase_ ( _a): lowerCamelCase__ : int = "roberta" def __init__( self , a=5_0_2_6_5 , a=7_6_8 , a=1_2 , a=1_2 , a=3_0_7_2 , a="gelu" , a=0.1 , a=0.1 , a=5_1_2 , a=2 , a=0.02 , a=1e-12 , a=1 , a=0 , a=2 , a="absolute" , a=True , a=None , **a , ) -> Optional[Any]: super().__init__(pad_token_id=a , bos_token_id=a , eos_token_id=a , **a ) lowercase__ : str = vocab_size lowercase__ : str = hidden_size lowercase__ : str = num_hidden_layers lowercase__ : Any = num_attention_heads lowercase__ : Dict = hidden_act lowercase__ : List[str] = intermediate_size lowercase__ : List[Any] = hidden_dropout_prob lowercase__ : Any = attention_probs_dropout_prob lowercase__ : Optional[Any] = max_position_embeddings lowercase__ : Tuple = type_vocab_size lowercase__ : List[Any] = initializer_range lowercase__ : Any = layer_norm_eps lowercase__ : Optional[int] = position_embedding_type lowercase__ : Union[str, Any] = use_cache lowercase__ : List[Any] = classifier_dropout class UpperCAmelCase_ ( _a): @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": lowercase__ : Optional[int] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowercase__ : Any = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
706
"""simple docstring""" from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
645
0
"""simple docstring""" from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig _UpperCamelCase : Tuple = logging.get_logger(__name__) _UpperCamelCase : Any = "T5Config" class UpperCAmelCase_ ( _a): lowerCamelCase__ : Optional[Any] = "mt5" lowerCamelCase__ : Tuple = MTaConfig class UpperCAmelCase_ ( _a): lowerCamelCase__ : List[str] = "mt5" lowerCamelCase__ : str = MTaConfig class UpperCAmelCase_ ( _a): lowerCamelCase__ : int = "mt5" lowerCamelCase__ : List[Any] = MTaConfig
707
"""simple docstring""" import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase): @slow def _UpperCAmelCase ( self ) -> str: lowercase__ : Optional[Any] = AutoImageProcessor.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' ) lowercase__ : Union[str, Any] = AutoModelForImageClassification.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' ) model.to(a ) from datasets import load_dataset lowercase__ : str = load_dataset('nielsr/rvlcdip-demo' ) lowercase__ : Tuple = dataset['train'][0]['image'].convert('RGB' ) lowercase__ : int = image_processor(a , return_tensors='pt' ).to(a ) # forward pass with torch.no_grad(): lowercase__ : List[str] = model(**a ) lowercase__ : List[Any] = outputs.logits lowercase__ : Union[str, Any] = torch.Size((1, 1_6) ) self.assertEqual(logits.shape , a ) lowercase__ : Tuple = torch.tensor( [-0.4_158, -0.4_092, -0.4_347] , device=a , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , a , atol=1e-4 ) )
645
0
"""simple docstring""" import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class UpperCAmelCase_ ( _a , unittest.TestCase): lowerCamelCase__ : List[Any] = "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline" def _UpperCAmelCase ( self , a=0 ) -> Optional[Any]: lowercase__ : Optional[int] = floats_tensor((1, 3, 1_2_8, 1_2_8) , rng=random.Random(a ) ) lowercase__ : List[Any] = np.random.RandomState(a ) lowercase__ : int = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'strength': 0.75, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : Tuple = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=a ) lowercase__ : int = self.get_dummy_inputs() lowercase__ : Optional[Any] = pipe(**a ).images lowercase__ : int = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 1_2_8, 1_2_8, 3) lowercase__ : Union[str, Any] = np.array([0.69_643, 0.58_484, 0.50_314, 0.58_760, 0.55_368, 0.59_643, 0.51_529, 0.41_217, 0.49_087] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : Union[str, Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) lowercase__ : Optional[Any] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=a ) pipe.set_progress_bar_config(disable=a ) lowercase__ : List[Any] = self.get_dummy_inputs() lowercase__ : str = pipe(**a ).images lowercase__ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) lowercase__ : Union[str, Any] = np.array([0.61_737, 0.54_642, 0.53_183, 0.54_465, 0.52_742, 0.60_525, 0.49_969, 0.40_655, 0.48_154] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _UpperCAmelCase ( self ) -> str: lowercase__ : int = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) lowercase__ : int = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a ) # warmup pass to apply optimizations lowercase__ : str = pipe(**self.get_dummy_inputs() ) lowercase__ : Optional[int] = self.get_dummy_inputs() lowercase__ : int = pipe(**a ).images lowercase__ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) lowercase__ : str = np.array([0.52_761, 0.59_977, 0.49_033, 0.49_619, 0.54_282, 0.50_311, 0.47_600, 0.40_918, 0.45_203] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : Union[str, Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) lowercase__ : Optional[int] = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a ) lowercase__ : List[str] = self.get_dummy_inputs() lowercase__ : Tuple = pipe(**a ).images lowercase__ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) lowercase__ : List[Any] = np.array([0.52_911, 0.60_004, 0.49_229, 0.49_805, 0.54_502, 0.50_680, 0.47_777, 0.41_028, 0.45_304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Optional[int] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) lowercase__ : Optional[Any] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a ) lowercase__ : str = self.get_dummy_inputs() lowercase__ : int = pipe(**a ).images lowercase__ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) lowercase__ : Optional[int] = np.array([0.52_911, 0.60_004, 0.49_229, 0.49_805, 0.54_502, 0.50_680, 0.47_777, 0.41_028, 0.45_304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _UpperCAmelCase ( self ) -> Dict: lowercase__ : Tuple = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) lowercase__ : Optional[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a ) lowercase__ : Optional[Any] = self.get_dummy_inputs() lowercase__ : Tuple = pipe(**a ).images lowercase__ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) lowercase__ : List[Any] = np.array([0.65_331, 0.58_277, 0.48_204, 0.56_059, 0.53_665, 0.56_235, 0.50_969, 0.40_009, 0.46_552] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase): @property def _UpperCAmelCase ( self ) -> int: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _UpperCAmelCase ( self ) -> Any: lowercase__ : Tuple = ort.SessionOptions() lowercase__ : List[Any] = False return options def _UpperCAmelCase ( self ) -> str: lowercase__ : Optional[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) lowercase__ : Optional[int] = init_image.resize((7_6_8, 5_1_2) ) # using the PNDM scheduler by default lowercase__ : List[str] = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='onnx' , safety_checker=a , feature_extractor=a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a ) lowercase__ : int = 'A fantasy landscape, trending on artstation' lowercase__ : int = np.random.RandomState(0 ) lowercase__ : str = pipe( prompt=a , image=a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=1_0 , generator=a , output_type='np' , ) lowercase__ : List[str] = output.images lowercase__ : List[Any] = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 7_6_8, 3) lowercase__ : Optional[Any] = np.array([0.4_909, 0.5_059, 0.5_372, 0.4_623, 0.4_876, 0.5_049, 0.4_820, 0.4_956, 0.5_019] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : Dict = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) lowercase__ : Optional[int] = init_image.resize((7_6_8, 5_1_2) ) lowercase__ : Optional[Any] = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5' , subfolder='scheduler' , revision='onnx' ) lowercase__ : Optional[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , revision='onnx' , scheduler=a , safety_checker=a , feature_extractor=a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a ) lowercase__ : str = 'A fantasy landscape, trending on artstation' lowercase__ : Any = np.random.RandomState(0 ) lowercase__ : Optional[int] = pipe( prompt=a , image=a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=2_0 , generator=a , output_type='np' , ) lowercase__ : str = output.images lowercase__ : Tuple = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 7_6_8, 3) lowercase__ : List[str] = np.array([0.8_043, 0.926, 0.9_581, 0.8_119, 0.8_954, 0.913, 0.7_209, 0.7_463, 0.7_431] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
708
"""simple docstring""" import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class UpperCAmelCase_ : @staticmethod def _UpperCAmelCase ( *a , **a ) -> int: pass def a_ ( _lowerCAmelCase : Image ): '''simple docstring''' lowercase__ : List[str] = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class UpperCAmelCase_ ( unittest.TestCase): lowerCamelCase__ : Union[str, Any] = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def _UpperCAmelCase ( self , a , a , a ) -> Dict: lowercase__ : Union[str, Any] = DepthEstimationPipeline(model=a , image_processor=a ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def _UpperCAmelCase ( self , a , a ) -> Optional[int]: lowercase__ : Tuple = depth_estimator('./tests/fixtures/tests_samples/COCO/000000039769.png' ) self.assertEqual({'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )} , a ) import datasets lowercase__ : Tuple = datasets.load_dataset('hf-internal-testing/fixtures_image_utils' , 'image' , split='test' ) lowercase__ : List[Any] = depth_estimator( [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] ) self.assertEqual( [ {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, ] , a , ) @require_tf @unittest.skip('Depth estimation is not implemented in TF' ) def _UpperCAmelCase ( self ) -> Optional[int]: pass @slow @require_torch def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Tuple = 'Intel/dpt-large' lowercase__ : Optional[int] = pipeline('depth-estimation' , model=a ) lowercase__ : List[Any] = depth_estimator('http://images.cocodataset.org/val2017/000000039769.jpg' ) lowercase__ : Optional[Any] = hashimage(outputs['depth'] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['predicted_depth'].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs['predicted_depth'].min().item() ) , 2.662 ) @require_torch def _UpperCAmelCase ( self ) -> Optional[int]: # This is highly irregular to have no small tests. self.skipTest('There is not hf-internal-testing tiny model for either GLPN nor DPT' )
645
0
"""simple docstring""" from math import isqrt, loga def a_ ( _lowerCAmelCase : int ) -> int: '''simple docstring''' lowercase__ : Optional[Any] = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , _lowerCAmelCase , _lowerCAmelCase ): lowercase__ : Optional[int] = False return [i for i in range(2 , _lowerCAmelCase ) if is_prime[i]] def a_ ( _lowerCAmelCase : int = 80_0800 , _lowerCAmelCase : int = 80_0800 ) -> Tuple: '''simple docstring''' lowercase__ : Optional[Any] = degree * loga(_lowerCAmelCase ) lowercase__ : Tuple = int(_lowerCAmelCase ) lowercase__ : Dict = calculate_prime_numbers(_lowerCAmelCase ) lowercase__ : Dict = 0 lowercase__ : int = 0 lowercase__ : Tuple = len(_lowerCAmelCase ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(f'''{solution() = }''')
709
"""simple docstring""" import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class UpperCAmelCase_ ( _a): def __init__( self ) -> Any: lowercase__ : Tuple = [] def _UpperCAmelCase ( self , a , a , a , **a ) -> Any: self.events.append('on_init_end' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Optional[int]: self.events.append('on_train_begin' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> List[str]: self.events.append('on_train_end' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> int: self.events.append('on_epoch_begin' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Optional[Any]: self.events.append('on_epoch_end' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> int: self.events.append('on_step_begin' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> str: self.events.append('on_step_end' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> int: self.events.append('on_evaluate' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Tuple: self.events.append('on_predict' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Union[str, Any]: self.events.append('on_save' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> List[str]: self.events.append('on_log' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Any: self.events.append('on_prediction_step' ) @require_torch class UpperCAmelCase_ ( unittest.TestCase): def _UpperCAmelCase ( self ) -> str: lowercase__ : str = tempfile.mkdtemp() def _UpperCAmelCase ( self ) -> Dict: shutil.rmtree(self.output_dir ) def _UpperCAmelCase ( self , a=0 , a=0 , a=6_4 , a=6_4 , a=None , a=False , **a ) -> int: # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. lowercase__ : str = RegressionDataset(length=a ) lowercase__ : Any = RegressionDataset(length=a ) lowercase__ : Optional[Any] = RegressionModelConfig(a=a , b=a ) lowercase__ : Union[str, Any] = RegressionPreTrainedModel(a ) lowercase__ : Tuple = TrainingArguments(self.output_dir , disable_tqdm=a , report_to=[] , **a ) return Trainer( a , a , train_dataset=a , eval_dataset=a , callbacks=a , ) def _UpperCAmelCase ( self , a , a ) -> Union[str, Any]: self.assertEqual(len(a ) , len(a ) ) # Order doesn't matter lowercase__ : Optional[int] = sorted(a , key=lambda a : cb.__name__ if isinstance(a , a ) else cb.__class__.__name__ ) lowercase__ : Tuple = sorted(a , key=lambda a : cb.__name__ if isinstance(a , a ) else cb.__class__.__name__ ) for cba, cba in zip(a , a ): if isinstance(a , a ) and isinstance(a , a ): self.assertEqual(a , a ) elif isinstance(a , a ) and not isinstance(a , a ): self.assertEqual(a , cba.__class__ ) elif not isinstance(a , a ) and isinstance(a , a ): self.assertEqual(cba.__class__ , a ) else: self.assertEqual(a , a ) def _UpperCAmelCase ( self , a ) -> Optional[Any]: lowercase__ : Dict = ['on_init_end', 'on_train_begin'] lowercase__ : List[Any] = 0 lowercase__ : Optional[int] = len(trainer.get_eval_dataloader() ) lowercase__ : Tuple = ['on_prediction_step'] * len(trainer.get_eval_dataloader() ) + ['on_log', 'on_evaluate'] for _ in range(trainer.state.num_train_epochs ): expected_events.append('on_epoch_begin' ) for _ in range(a ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append('on_log' ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append('on_save' ) expected_events.append('on_epoch_end' ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : int = self.get_trainer() lowercase__ : str = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) # Callbacks passed at init are added to the default callbacks lowercase__ : str = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback lowercase__ : List[Any] = self.get_trainer(disable_tqdm=a ) lowercase__ : Optional[Any] = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) def _UpperCAmelCase ( self ) -> Any: lowercase__ : int = DEFAULT_CALLBACKS.copy() + [ProgressCallback] lowercase__ : List[str] = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(a ) expected_callbacks.remove(a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) lowercase__ : Optional[Any] = self.get_trainer() lowercase__ : List[Any] = trainer.pop_callback(a ) self.assertEqual(cb.__class__ , a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) trainer.add_callback(a ) expected_callbacks.insert(0 , a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) # We can also add, pop, or remove by instance lowercase__ : int = self.get_trainer() lowercase__ : List[str] = trainer.callback_handler.callbacks[0] trainer.remove_callback(a ) expected_callbacks.remove(a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) lowercase__ : Tuple = self.get_trainer() lowercase__ : Dict = trainer.callback_handler.callbacks[0] lowercase__ : Union[str, Any] = trainer.pop_callback(a ) self.assertEqual(a , a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) trainer.add_callback(a ) expected_callbacks.insert(0 , a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) def _UpperCAmelCase ( self ) -> Tuple: import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action='ignore' , category=a ) lowercase__ : Optional[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() lowercase__ : Any = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) # Independent log/save/eval lowercase__ : List[str] = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() lowercase__ : int = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) lowercase__ : Union[str, Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() lowercase__ : Union[str, Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) lowercase__ : List[str] = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy='steps' ) trainer.train() lowercase__ : Optional[int] = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) lowercase__ : int = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy='epoch' ) trainer.train() lowercase__ : str = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) # A bit of everything lowercase__ : Any = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=1_0 , eval_steps=5 , evaluation_strategy='steps' , ) trainer.train() lowercase__ : Any = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) # warning should be emitted for duplicated callbacks with patch('transformers.trainer_callback.logger.warning' ) as warn_mock: lowercase__ : str = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(a ) in warn_mock.call_args[0][0]
645
0
"""simple docstring""" from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable _UpperCamelCase : Optional[Any] ={"configuration_dpt": ["DPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DPTConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : str =["DPTFeatureExtractor"] _UpperCamelCase : Union[str, Any] =["DPTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Union[str, Any] =[ "DPT_PRETRAINED_MODEL_ARCHIVE_LIST", "DPTForDepthEstimation", "DPTForSemanticSegmentation", "DPTModel", "DPTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys _UpperCamelCase : Tuple =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
710
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _UpperCamelCase : str = { "configuration_gpt_neo": ["GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoConfig", "GPTNeoOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Tuple = [ "GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoForCausalLM", "GPTNeoForQuestionAnswering", "GPTNeoForSequenceClassification", "GPTNeoForTokenClassification", "GPTNeoModel", "GPTNeoPreTrainedModel", "load_tf_weights_in_gpt_neo", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Dict = [ "FlaxGPTNeoForCausalLM", "FlaxGPTNeoModel", "FlaxGPTNeoPreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys _UpperCamelCase : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
645
0
"""simple docstring""" class UpperCAmelCase_ : def __init__( self , a = "" , a = False ) -> None: # Mapping from the first character of the prefix of the node lowercase__ : dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word lowercase__ : Tuple = is_leaf lowercase__ : List[Any] = prefix def _UpperCAmelCase ( self , a ) -> tuple[str, str, str]: lowercase__ : Union[str, Any] = 0 for q, w in zip(self.prefix , a ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def _UpperCAmelCase ( self , a ) -> None: for word in words: self.insert(a ) def _UpperCAmelCase ( self , a ) -> None: # Case 1: If the word is the prefix of the node # Solution: We set the current node as leaf if self.prefix == word: lowercase__ : Any = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: lowercase__ : Tuple = RadixNode(prefix=a , is_leaf=a ) else: lowercase__ : List[str] = self.nodes[word[0]] lowercase__ : Optional[int] = incoming_node.match( a ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(a ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: lowercase__ : Optional[int] = remaining_prefix lowercase__ : List[Any] = self.nodes[matching_string[0]] lowercase__ : List[str] = RadixNode(a , a ) lowercase__ : Tuple = aux_node if remaining_word == "": lowercase__ : Optional[Any] = True else: self.nodes[matching_string[0]].insert(a ) def _UpperCAmelCase ( self , a ) -> bool: lowercase__ : Union[str, Any] = self.nodes.get(word[0] , a ) if not incoming_node: return False else: lowercase__ : Dict = incoming_node.match( a ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(a ) def _UpperCAmelCase ( self , a ) -> bool: lowercase__ : str = self.nodes.get(word[0] , a ) if not incoming_node: return False else: lowercase__ : Optional[int] = incoming_node.match( a ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(a ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: lowercase__ : Optional[Any] = list(self.nodes.values() )[0] lowercase__ : int = merging_node.is_leaf self.prefix += merging_node.prefix lowercase__ : Optional[int] = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: lowercase__ : Any = False # If there is 1 edge, we merge it with its child else: lowercase__ : Any = list(incoming_node.nodes.values() )[0] lowercase__ : Tuple = merging_node.is_leaf incoming_node.prefix += merging_node.prefix lowercase__ : Dict = merging_node.nodes return True def _UpperCAmelCase ( self , a = 0 ) -> None: if self.prefix != "": print('-' * height , self.prefix , ' (leaf)' if self.is_leaf else '' ) for value in self.nodes.values(): value.print_tree(height + 1 ) def a_ ( ): '''simple docstring''' lowercase__ : Optional[Any] = 'banana bananas bandana band apple all beast'.split() lowercase__ : Optional[int] = RadixNode() root.insert_many(_lowerCAmelCase ) assert all(root.find(_lowerCAmelCase ) for word in words ) assert not root.find('bandanas' ) assert not root.find('apps' ) root.delete('all' ) assert not root.find('all' ) root.delete('banana' ) assert not root.find('banana' ) assert root.find('bananas' ) return True def a_ ( ): '''simple docstring''' assert test_trie() def a_ ( ): '''simple docstring''' lowercase__ : Any = RadixNode() lowercase__ : Union[str, Any] = 'banana bananas bandanas bandana band apple all beast'.split() root.insert_many(_lowerCAmelCase ) print('Words:' , _lowerCAmelCase ) print('Tree:' ) root.print_tree() if __name__ == "__main__": main()
711
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class UpperCAmelCase_ ( unittest.TestCase): def _UpperCAmelCase ( self , a ) -> str: for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss'] ): lowercase__ : str = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(a ) def _UpperCAmelCase ( self ) -> int: lowercase__ : Dict = 'sshleifer/tiny-gpt2' lowercase__ : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=a , multi_process=a , ) lowercase__ : str = TensorFlowBenchmark(a ) lowercase__ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> int: lowercase__ : List[str] = 'sgugger/tiny-distilbert-classification' lowercase__ : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , only_pretrain_model=a , ) lowercase__ : Optional[Any] = TensorFlowBenchmark(a ) lowercase__ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : Optional[int] = 'sshleifer/tiny-gpt2' lowercase__ : Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , ) lowercase__ : Optional[Any] = TensorFlowBenchmark(a ) lowercase__ : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : Any = 'sshleifer/tiny-gpt2' lowercase__ : List[Any] = AutoConfig.from_pretrained(a ) lowercase__ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=a , multi_process=a , ) lowercase__ : Tuple = TensorFlowBenchmark(a , [config] ) lowercase__ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> int: lowercase__ : Optional[Any] = 'sshleifer/tiny-gpt2' lowercase__ : List[str] = AutoConfig.from_pretrained(a ) lowercase__ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , ) lowercase__ : List[str] = TensorFlowBenchmark(a , [config] ) lowercase__ : Any = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Optional[Any] = 'sshleifer/tiny-gpt2' lowercase__ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , ) lowercase__ : Optional[Any] = TensorFlowBenchmark(a ) lowercase__ : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _UpperCAmelCase ( self ) -> str: lowercase__ : Optional[Any] = 'sshleifer/tiny-gpt2' lowercase__ : Optional[int] = AutoConfig.from_pretrained(a ) lowercase__ : str = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , ) lowercase__ : str = TensorFlowBenchmark(a , [config] ) lowercase__ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : List[str] = 'patrickvonplaten/t5-tiny-random' lowercase__ : Any = AutoConfig.from_pretrained(a ) lowercase__ : List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , ) lowercase__ : int = TensorFlowBenchmark(a , configs=[config] ) lowercase__ : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU' ) ) == 0 , 'Cannot do xla on CPU.' ) def _UpperCAmelCase ( self ) -> Any: lowercase__ : Any = 'sshleifer/tiny-gpt2' lowercase__ : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , use_xla=a , multi_process=a , ) lowercase__ : Any = TensorFlowBenchmark(a ) lowercase__ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Any = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ : List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=a , save_to_csv=a , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(a , 'inf_time.csv' ) , inference_memory_csv_file=os.path.join(a , 'inf_mem.csv' ) , env_info_csv_file=os.path.join(a , 'env.csv' ) , multi_process=a , ) lowercase__ : Union[str, Any] = TensorFlowBenchmark(a ) benchmark.run() self.assertTrue(Path(os.path.join(a , 'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(a , 'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(a , 'env.csv' ) ).exists() ) def _UpperCAmelCase ( self ) -> Dict: lowercase__ : Tuple = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(a ): self.assertTrue(hasattr(a , 'sequential' ) ) self.assertTrue(hasattr(a , 'cumulative' ) ) self.assertTrue(hasattr(a , 'current' ) ) self.assertTrue(hasattr(a , 'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=a , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(a , 'log.txt' ) , log_print=a , trace_memory_line_by_line=a , eager_mode=a , multi_process=a , ) lowercase__ : Optional[int] = TensorFlowBenchmark(a ) lowercase__ : Optional[Any] = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(a , 'log.txt' ) ).exists() )
645
0
"""simple docstring""" def a_ ( _lowerCAmelCase : int ): '''simple docstring''' if a < 0: raise ValueError('Input value must be a positive integer' ) elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError('Input value must be a \'int\' type' ) return bin(_lowerCAmelCase ).count('1' ) if __name__ == "__main__": import doctest doctest.testmod()
712
"""simple docstring""" import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class UpperCAmelCase_ ( _a): def __init__( self , a , a=1_3 , a=7 , a=True , a=True , a=False , a=True , a=9_9 , a=3_2 , a=5 , a=4 , a=3_7 , a="gelu" , a=0.1 , a=0.1 , a=5_1_2 , a=1_6 , a=2 , a=0.02 , a=3 , a=4 , a=None , ) -> Any: lowercase__ : Tuple = parent lowercase__ : List[Any] = batch_size lowercase__ : List[Any] = seq_length lowercase__ : List[Any] = is_training lowercase__ : Optional[Any] = use_input_mask lowercase__ : Optional[int] = use_token_type_ids lowercase__ : int = use_labels lowercase__ : Tuple = vocab_size lowercase__ : int = hidden_size lowercase__ : Any = num_hidden_layers lowercase__ : List[str] = num_attention_heads lowercase__ : Optional[Any] = intermediate_size lowercase__ : Optional[Any] = hidden_act lowercase__ : List[str] = hidden_dropout_prob lowercase__ : List[Any] = attention_probs_dropout_prob lowercase__ : List[Any] = max_position_embeddings lowercase__ : List[str] = type_vocab_size lowercase__ : Tuple = type_sequence_label_size lowercase__ : List[Any] = initializer_range lowercase__ : str = num_labels lowercase__ : Tuple = num_choices lowercase__ : str = scope def _UpperCAmelCase ( self ) -> Any: lowercase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ : str = None if self.use_input_mask: lowercase__ : Any = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ : Dict = None lowercase__ : Optional[Any] = None lowercase__ : int = None if self.use_labels: lowercase__ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__ : Dict = ids_tensor([self.batch_size] , self.num_choices ) lowercase__ : List[Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCAmelCase ( self ) -> Optional[int]: return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> Dict: lowercase__ : Tuple = DistilBertModel(config=a ) model.to(a ) model.eval() lowercase__ : Any = model(a , a ) lowercase__ : str = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> Dict: lowercase__ : Optional[int] = DistilBertForMaskedLM(config=a ) model.to(a ) model.eval() lowercase__ : Union[str, Any] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> int: lowercase__ : Tuple = DistilBertForQuestionAnswering(config=a ) model.to(a ) model.eval() lowercase__ : Tuple = model( a , attention_mask=a , start_positions=a , end_positions=a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> List[str]: lowercase__ : int = self.num_labels lowercase__ : Dict = DistilBertForSequenceClassification(a ) model.to(a ) model.eval() lowercase__ : Optional[Any] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> Any: lowercase__ : Any = self.num_labels lowercase__ : List[str] = DistilBertForTokenClassification(config=a ) model.to(a ) model.eval() lowercase__ : Any = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> Tuple: lowercase__ : List[Any] = self.num_choices lowercase__ : Any = DistilBertForMultipleChoice(config=a ) model.to(a ) model.eval() lowercase__ : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ : Optional[int] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ : int = model( a , attention_mask=a , labels=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _UpperCAmelCase ( self ) -> str: lowercase__ : Union[str, Any] = self.prepare_config_and_inputs() ((lowercase__) , (lowercase__) , (lowercase__) , (lowercase__) , (lowercase__) , (lowercase__)) : List[str] = config_and_inputs lowercase__ : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _a , _a , unittest.TestCase): lowerCamelCase__ : List[str] = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) lowerCamelCase__ : str = ( { "feature-extraction": DistilBertModel, "fill-mask": DistilBertForMaskedLM, "question-answering": DistilBertForQuestionAnswering, "text-classification": DistilBertForSequenceClassification, "token-classification": DistilBertForTokenClassification, "zero-shot": DistilBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ : Optional[int] = True lowerCamelCase__ : Any = True lowerCamelCase__ : List[Any] = True lowerCamelCase__ : Optional[Any] = True def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : str = DistilBertModelTester(self ) lowercase__ : int = ConfigTester(self , config_class=a , dim=3_7 ) def _UpperCAmelCase ( self ) -> Dict: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*a ) def _UpperCAmelCase ( self ) -> Any: lowercase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*a ) def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*a ) def _UpperCAmelCase ( self ) -> int: lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*a ) def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*a ) def _UpperCAmelCase ( self ) -> str: lowercase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*a ) @slow def _UpperCAmelCase ( self ) -> str: for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : str = DistilBertModel.from_pretrained(a ) self.assertIsNotNone(a ) @slow @require_torch_gpu def _UpperCAmelCase ( self ) -> Any: lowercase__ , lowercase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return lowercase__ : Optional[int] = True lowercase__ : Union[str, Any] = model_class(config=a ) lowercase__ : int = self._prepare_for_class(a , a ) lowercase__ : Tuple = torch.jit.trace( a , (inputs_dict['input_ids'].to('cpu' ), inputs_dict['attention_mask'].to('cpu' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a , os.path.join(a , 'traced_model.pt' ) ) lowercase__ : Optional[int] = torch.jit.load(os.path.join(a , 'traced_model.pt' ) , map_location=a ) loaded(inputs_dict['input_ids'].to(a ) , inputs_dict['attention_mask'].to(a ) ) @require_torch class UpperCAmelCase_ ( unittest.TestCase): @slow def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : int = DistilBertModel.from_pretrained('distilbert-base-uncased' ) lowercase__ : Union[str, Any] = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) lowercase__ : Optional[Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowercase__ : Optional[Any] = model(a , attention_mask=a )[0] lowercase__ : Tuple = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , a ) lowercase__ : List[Any] = torch.tensor( [[[-0.1_639, 0.3_299, 0.1_648], [-0.1_746, 0.3_289, 0.1_710], [-0.1_884, 0.3_357, 0.1_810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a , atol=1e-4 ) )
645
0
"""simple docstring""" from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class UpperCAmelCase_ ( _a): def __init__( self , a , a = None , a = None , a = True , a = None , a = False , a = None , a = True , a = "arrow" , **a , ) -> Optional[Any]: super().__init__( split=a , features=a , cache_dir=a , keep_in_memory=a , streaming=a , **a , ) lowercase__ : Tuple = load_from_cache_file lowercase__ : Optional[Any] = file_format lowercase__ : List[Any] = Spark( df=a , features=a , cache_dir=a , working_dir=a , **a , ) def _UpperCAmelCase ( self ) -> Any: if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) lowercase__ : List[Any] = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=a , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
713
"""simple docstring""" from __future__ import annotations def a_ ( _lowerCAmelCase : float , _lowerCAmelCase : float , _lowerCAmelCase : float , ): '''simple docstring''' if (stress, tangential_force, area).count(0 ) != 1: raise ValueError('You cannot supply more or less than 2 values' ) elif stress < 0: raise ValueError('Stress cannot be negative' ) elif tangential_force < 0: raise ValueError('Tangential Force cannot be negative' ) elif area < 0: raise ValueError('Area cannot be negative' ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
645
0
"""simple docstring""" def a_ ( _lowerCAmelCase : int = 10**9 ): '''simple docstring''' lowercase__ : Union[str, Any] = 1 lowercase__ : Union[str, Any] = 2 lowercase__ : Tuple = 0 lowercase__ : Union[str, Any] = 0 lowercase__ : List[Any] = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value lowercase__ : Tuple = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f'''{solution() = }''')
714
"""simple docstring""" import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase_ : def __init__( self , a , a=1_3 , a=[3_0, 3_0] , a=2 , a=3 , a=True , a=True , a=3_2 , a=5 , a=4 , a=3_7 , a="gelu" , a=0.1 , a=0.1 , a=1_0 , a=0.02 , a=3 , a=None , a=8 , a=1_0 , ) -> Any: lowercase__ : List[str] = parent lowercase__ : Optional[Any] = batch_size lowercase__ : Optional[int] = image_size lowercase__ : List[Any] = patch_size lowercase__ : Optional[Any] = num_channels lowercase__ : str = is_training lowercase__ : Optional[Any] = use_labels lowercase__ : Optional[Any] = hidden_size lowercase__ : Dict = num_hidden_layers lowercase__ : Optional[Any] = num_attention_heads lowercase__ : Dict = intermediate_size lowercase__ : List[Any] = hidden_act lowercase__ : List[Any] = hidden_dropout_prob lowercase__ : Any = attention_probs_dropout_prob lowercase__ : Any = type_sequence_label_size lowercase__ : Dict = initializer_range lowercase__ : Union[str, Any] = num_labels lowercase__ : Tuple = scope lowercase__ : Tuple = n_targets lowercase__ : Optional[int] = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens lowercase__ : Optional[Any] = (image_size[1] // patch_size) * (image_size[0] // patch_size) lowercase__ : Tuple = num_patches + 1 + self.num_detection_tokens def _UpperCAmelCase ( self ) -> Any: lowercase__ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) lowercase__ : Tuple = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) lowercase__ : int = [] for i in range(self.batch_size ): lowercase__ : Optional[Any] = {} lowercase__ : Any = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=a ) lowercase__ : List[str] = torch.rand(self.n_targets , 4 , device=a ) labels.append(a ) lowercase__ : Tuple = self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self ) -> List[Any]: return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def _UpperCAmelCase ( self , a , a , a ) -> int: lowercase__ : List[str] = YolosModel(config=a ) model.to(a ) model.eval() lowercase__ : List[Any] = model(a ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def _UpperCAmelCase ( self , a , a , a ) -> Union[str, Any]: lowercase__ : str = YolosForObjectDetection(a ) model.to(a ) model.eval() lowercase__ : Dict = model(pixel_values=a ) lowercase__ : Tuple = model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) lowercase__ : str = model(pixel_values=a , labels=a ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : int = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Any = config_and_inputs lowercase__ : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _a , _a , unittest.TestCase): lowerCamelCase__ : Optional[int] = (YolosModel, YolosForObjectDetection) if is_torch_available() else () lowerCamelCase__ : List[str] = ( {"feature-extraction": YolosModel, "object-detection": YolosForObjectDetection} if is_torch_available() else {} ) lowerCamelCase__ : List[Any] = False lowerCamelCase__ : Dict = False lowerCamelCase__ : Tuple = False lowerCamelCase__ : Union[str, Any] = False def _UpperCAmelCase ( self , a , a , a=False ) -> Dict: lowercase__ : List[str] = super()._prepare_for_class(a , a , return_labels=a ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": lowercase__ : Optional[Any] = [] for i in range(self.model_tester.batch_size ): lowercase__ : Dict = {} lowercase__ : Dict = torch.ones( size=(self.model_tester.n_targets,) , device=a , dtype=torch.long ) lowercase__ : Optional[Any] = torch.ones( self.model_tester.n_targets , 4 , device=a , dtype=torch.float ) labels.append(a ) lowercase__ : Union[str, Any] = labels return inputs_dict def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : Dict = YolosModelTester(self ) lowercase__ : Optional[int] = ConfigTester(self , config_class=a , has_text_modality=a , hidden_size=3_7 ) def _UpperCAmelCase ( self ) -> str: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Optional[Any]: # YOLOS does not use inputs_embeds pass def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[str] = model_class(a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase__ : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a , nn.Linear ) ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : int = model_class(a ) lowercase__ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Tuple = [*signature.parameters.keys()] lowercase__ : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , a ) def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _UpperCAmelCase ( self ) -> Dict: lowercase__ , lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Dict = True # in YOLOS, the seq_len is different lowercase__ : Tuple = self.model_tester.expected_seq_len for model_class in self.all_model_classes: lowercase__ : Optional[int] = True lowercase__ : str = False lowercase__ : str = True lowercase__ : List[str] = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : Any = model(**self._prepare_for_class(a , a ) ) lowercase__ : str = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase__ : Optional[int] = True lowercase__ : List[Any] = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : Union[str, Any] = model(**self._prepare_for_class(a , a ) ) lowercase__ : List[str] = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowercase__ : Dict = len(a ) # Check attention is always last and order is fine lowercase__ : Any = True lowercase__ : int = True lowercase__ : int = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : Any = model(**self._prepare_for_class(a , a ) ) lowercase__ : Optional[Any] = 1 self.assertEqual(out_len + added_hidden_states , len(a ) ) lowercase__ : Tuple = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def _UpperCAmelCase ( self ) -> List[str]: def check_hidden_states_output(a , a , a ): lowercase__ : str = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : int = model(**self._prepare_for_class(a , a ) ) lowercase__ : int = outputs.hidden_states lowercase__ : Any = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(a ) , a ) # YOLOS has a different seq_length lowercase__ : Optional[int] = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowercase__ , lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Any = True check_hidden_states_output(a , a , a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : List[Any] = True check_hidden_states_output(a , a , a ) def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*a ) @slow def _UpperCAmelCase ( self ) -> Union[str, Any]: for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : int = YolosModel.from_pretrained(a ) self.assertIsNotNone(a ) def a_ ( ): '''simple docstring''' lowercase__ : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase): @cached_property def _UpperCAmelCase ( self ) -> Union[str, Any]: return AutoImageProcessor.from_pretrained('hustvl/yolos-small' ) if is_vision_available() else None @slow def _UpperCAmelCase ( self ) -> int: lowercase__ : Dict = YolosForObjectDetection.from_pretrained('hustvl/yolos-small' ).to(a ) lowercase__ : Tuple = self.default_image_processor lowercase__ : Optional[int] = prepare_img() lowercase__ : int = image_processor(images=a , return_tensors='pt' ).to(a ) # forward pass with torch.no_grad(): lowercase__ : int = model(inputs.pixel_values ) # verify outputs lowercase__ : Tuple = torch.Size((1, 1_0_0, 9_2) ) self.assertEqual(outputs.logits.shape , a ) lowercase__ : Any = torch.tensor( [[-24.0_248, -10.3_024, -14.8_290], [-42.0_392, -16.8_200, -27.4_334], [-27.2_743, -11.8_154, -18.7_148]] , device=a , ) lowercase__ : List[str] = torch.tensor( [[0.2_559, 0.5_455, 0.4_706], [0.2_989, 0.7_279, 0.1_875], [0.7_732, 0.4_017, 0.4_462]] , device=a ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , a , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , a , atol=1e-4 ) ) # verify postprocessing lowercase__ : Optional[Any] = image_processor.post_process_object_detection( a , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] lowercase__ : str = torch.tensor([0.9_994, 0.9_790, 0.9_964, 0.9_972, 0.9_861] ).to(a ) lowercase__ : Any = [7_5, 7_5, 1_7, 6_3, 1_7] lowercase__ : Optional[int] = torch.tensor([335.0_609, 79.3_848, 375.4_216, 187.2_495] ).to(a ) self.assertEqual(len(results['scores'] ) , 5 ) self.assertTrue(torch.allclose(results['scores'] , a , atol=1e-4 ) ) self.assertSequenceEqual(results['labels'].tolist() , a ) self.assertTrue(torch.allclose(results['boxes'][0, :] , a ) )
645
0
"""simple docstring""" import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class UpperCAmelCase_ : lowerCamelCase__ : List[Any] = None def _UpperCAmelCase ( self ) -> int: lowercase__ : Any = self.feature_extraction_class(**self.feat_extract_dict ) lowercase__ : Union[str, Any] = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , a ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase__ : Any = os.path.join(a , 'feat_extract.json' ) feat_extract_first.to_json_file(a ) lowercase__ : List[str] = self.feature_extraction_class.from_json_file(a ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def _UpperCAmelCase ( self ) -> int: lowercase__ : Dict = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase__ : List[str] = feat_extract_first.save_pretrained(a )[0] check_json_file_has_correct_format(a ) lowercase__ : Tuple = self.feature_extraction_class.from_pretrained(a ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def _UpperCAmelCase ( self ) -> Any: lowercase__ : Union[str, Any] = self.feature_extraction_class() self.assertIsNotNone(a )
715
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch _UpperCamelCase : int = logging.get_logger(__name__) @dataclass class UpperCAmelCase_ : def __init__( self , a=False , a=False , a=6.0 , a=None , a=False , a=False , a=None , a="fp4" , a=False , **a , ) -> Tuple: lowercase__ : str = load_in_abit lowercase__ : str = load_in_abit lowercase__ : List[str] = llm_inta_threshold lowercase__ : Dict = llm_inta_skip_modules lowercase__ : Tuple = llm_inta_enable_fpaa_cpu_offload lowercase__ : Any = llm_inta_has_fpaa_weight lowercase__ : Any = bnb_abit_quant_type lowercase__ : Dict = bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: lowercase__ : Dict = torch.floataa elif isinstance(a , a ): lowercase__ : Any = getattr(a , a ) elif isinstance(a , torch.dtype ): lowercase__ : Any = bnb_abit_compute_dtype else: raise ValueError('bnb_4bit_compute_dtype must be a string or a torch.dtype' ) self.post_init() def _UpperCAmelCase ( self ) -> str: if not isinstance(self.llm_inta_threshold , a ): raise ValueError('llm_int8_threshold must be a float' ) if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , a ): raise ValueError('llm_int8_skip_modules must be a list of strings' ) if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , a ): raise ValueError('llm_int8_enable_fp32_cpu_offload must be a boolean' ) if not isinstance(self.llm_inta_has_fpaa_weight , a ): raise ValueError('llm_int8_has_fp16_weight must be a boolean' ) if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype ): raise ValueError('bnb_4bit_compute_dtype must be torch.dtype' ) if not isinstance(self.bnb_abit_quant_type , a ): raise ValueError('bnb_4bit_quant_type must be a string' ) if not isinstance(self.bnb_abit_use_double_quant , a ): raise ValueError('bnb_4bit_use_double_quant must be a boolean' ) if self.load_in_abit and not version.parse(importlib.metadata.version('bitsandbytes' ) ) >= version.parse( '0.39.0' ): raise ValueError( '4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version' ) def _UpperCAmelCase ( self ) -> Tuple: return self.load_in_abit or self.load_in_abit def _UpperCAmelCase ( self ) -> List[str]: if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def _UpperCAmelCase ( cls , a , a , **a ) -> Optional[Any]: lowercase__ : List[Any] = cls(**a ) lowercase__ : Union[str, Any] = [] for key, value in kwargs.items(): if hasattr(a , a ): setattr(a , a , a ) to_remove.append(a ) for key in to_remove: kwargs.pop(a , a ) if return_unused_kwargs: return config, kwargs else: return config def _UpperCAmelCase ( self , a ) -> Dict: with open(a , 'w' , encoding='utf-8' ) as writer: lowercase__ : Any = self.to_dict() lowercase__ : str = json.dumps(a , indent=2 , sort_keys=a ) + '\n' writer.write(a ) def _UpperCAmelCase ( self ) -> Dict[str, Any]: lowercase__ : Optional[Any] = copy.deepcopy(self.__dict__ ) lowercase__ : Any = str(output['bnb_4bit_compute_dtype'] ).split('.' )[1] return output def __repr__( self ) -> Dict: return f"""{self.__class__.__name__} {self.to_json_string()}""" def _UpperCAmelCase ( self , a = True ) -> str: if use_diff is True: lowercase__ : List[Any] = self.to_diff_dict() else: lowercase__ : List[str] = self.to_dict() return json.dumps(a , indent=2 , sort_keys=a ) + "\n" def _UpperCAmelCase ( self ) -> Dict[str, Any]: lowercase__ : Tuple = self.to_dict() # get the default config dict lowercase__ : Optional[Any] = BitsAndBytesConfig().to_dict() lowercase__ : int = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: lowercase__ : Optional[int] = value return serializable_config_dict
645
0
"""simple docstring""" from random import randint, random def a_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = False , _lowerCAmelCase : int = 5 , ): '''simple docstring''' lowercase__ : Dict = [[-1] * number_of_cells] # Create a highway without any car lowercase__ : int = 0 lowercase__ : Any = max(_lowerCAmelCase , 0 ) while i < number_of_cells: lowercase__ : Optional[int] = ( randint(0 , _lowerCAmelCase ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def a_ ( _lowerCAmelCase : list , _lowerCAmelCase : int ): '''simple docstring''' lowercase__ : Optional[Any] = 0 lowercase__ : Tuple = highway_now[car_index + 1 :] for cell in range(len(_lowerCAmelCase ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(_lowerCAmelCase , -1 ) def a_ ( _lowerCAmelCase : list , _lowerCAmelCase : float , _lowerCAmelCase : int ): '''simple docstring''' lowercase__ : Optional[int] = len(_lowerCAmelCase ) # Beforce calculations, the highway is empty lowercase__ : Optional[Any] = [-1] * number_of_cells for car_index in range(_lowerCAmelCase ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed lowercase__ : Tuple = min(highway_now[car_index] + 1 , _lowerCAmelCase ) # Number of empty cell before the next car lowercase__ : Union[str, Any] = get_distance(_lowerCAmelCase , _lowerCAmelCase ) - 1 # We can't have the car causing an accident lowercase__ : Optional[int] = min(next_highway[car_index] , _lowerCAmelCase ) if random() < probability: # Randomly, a driver will slow down lowercase__ : List[str] = max(next_highway[car_index] - 1 , 0 ) return next_highway def a_ ( _lowerCAmelCase : list , _lowerCAmelCase : int , _lowerCAmelCase : float , _lowerCAmelCase : int ): '''simple docstring''' lowercase__ : Optional[int] = len(highway[0] ) for i in range(_lowerCAmelCase ): lowercase__ : Optional[int] = update(highway[i] , _lowerCAmelCase , _lowerCAmelCase ) lowercase__ : Optional[int] = [-1] * number_of_cells for car_index in range(_lowerCAmelCase ): lowercase__ : Optional[int] = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) lowercase__ : List[Any] = (car_index + speed) % number_of_cells # Commit the change of position lowercase__ : List[str] = speed highway.append(_lowerCAmelCase ) return highway if __name__ == "__main__": import doctest doctest.testmod()
716
"""simple docstring""" import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler _UpperCamelCase : int = 16 _UpperCamelCase : Union[str, Any] = 32 def a_ ( _lowerCAmelCase : Tuple ): '''simple docstring''' return int(x / 2**20 ) class UpperCAmelCase_ : def __enter__( self ) -> Union[str, Any]: gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero lowercase__ : List[str] = torch.cuda.memory_allocated() return self def __exit__( self , *a ) -> Any: gc.collect() torch.cuda.empty_cache() lowercase__ : Optional[Any] = torch.cuda.memory_allocated() lowercase__ : Union[str, Any] = torch.cuda.max_memory_allocated() lowercase__ : List[Any] = bamb(self.end - self.begin ) lowercase__ : List[Any] = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def a_ ( _lowerCAmelCase : Accelerator , _lowerCAmelCase : int = 16 , _lowerCAmelCase : str = "bert-base-cased" , _lowerCAmelCase : int = 320 , _lowerCAmelCase : int = 160 , ): '''simple docstring''' lowercase__ : List[Any] = AutoTokenizer.from_pretrained(_lowerCAmelCase ) lowercase__ : Union[str, Any] = load_dataset( 'glue' , 'mrpc' , split={'train': f"""train[:{n_train}]""", 'validation': f"""validation[:{n_val}]"""} ) def tokenize_function(_lowerCAmelCase : int ): # max_length=None => use the model max length (it's actually the default) lowercase__ : List[str] = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowercase__ : Union[str, Any] = datasets.map( _lowerCAmelCase , batched=_lowerCAmelCase , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=_lowerCAmelCase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ : Union[str, Any] = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(_lowerCAmelCase : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_lowerCAmelCase , padding='max_length' , max_length=128 , return_tensors='pt' ) return tokenizer.pad(_lowerCAmelCase , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. lowercase__ : Dict = DataLoader( tokenized_datasets['train'] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase ) lowercase__ : Dict = DataLoader( tokenized_datasets['validation'] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase ) return train_dataloader, eval_dataloader def a_ ( _lowerCAmelCase : Any , _lowerCAmelCase : List[str] ): '''simple docstring''' lowercase__ : List[Any] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ : Optional[int] = config['lr'] lowercase__ : Optional[Any] = int(config['num_epochs'] ) lowercase__ : Optional[Any] = int(config['seed'] ) lowercase__ : int = int(config['batch_size'] ) lowercase__ : Union[str, Any] = args.model_name_or_path set_seed(_lowerCAmelCase ) lowercase__ , lowercase__ : Tuple = get_dataloaders(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , args.n_train , args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ : List[Any] = AutoModelForSequenceClassification.from_pretrained(_lowerCAmelCase , return_dict=_lowerCAmelCase ) # Instantiate optimizer lowercase__ : List[Any] = ( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowercase__ : Optional[Any] = optimizer_cls(params=model.parameters() , lr=_lowerCAmelCase ) if accelerator.state.deepspeed_plugin is not None: lowercase__ : Optional[Any] = accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: lowercase__ : List[Any] = 1 lowercase__ : List[Any] = (len(_lowerCAmelCase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowercase__ : Optional[int] = get_linear_schedule_with_warmup( optimizer=_lowerCAmelCase , num_warmup_steps=0 , num_training_steps=_lowerCAmelCase , ) else: lowercase__ : Tuple = DummyScheduler(_lowerCAmelCase , total_num_steps=_lowerCAmelCase , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Dict = accelerator.prepare( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # We need to keep track of how many total steps we have iterated over lowercase__ : Optional[int] = 0 # We also need to keep track of the stating epoch so files are named properly lowercase__ : Tuple = 0 # Now we train the model lowercase__ : Optional[Any] = {} for epoch in range(_lowerCAmelCase , _lowerCAmelCase ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(_lowerCAmelCase ): lowercase__ : List[Any] = model(**_lowerCAmelCase ) lowercase__ : Dict = outputs.loss lowercase__ : int = loss / gradient_accumulation_steps accelerator.backward(_lowerCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print('Memory before entering the train : {}'.format(bamb(tracemalloc.begin ) ) ) accelerator.print('Memory consumed at the end of the train (end-begin): {}'.format(tracemalloc.used ) ) accelerator.print('Peak Memory consumed during the train (max-begin): {}'.format(tracemalloc.peaked ) ) accelerator.print( 'Total Peak Memory consumed during the train (max): {}'.format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) lowercase__ : int = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[f"""epoch-{epoch}"""] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , 'peak_memory_utilization.json' ) , 'w' ) as f: json.dump(_lowerCAmelCase , _lowerCAmelCase ) def a_ ( ): '''simple docstring''' lowercase__ : int = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path' , type=_lowerCAmelCase , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=_lowerCAmelCase , ) parser.add_argument( '--output_dir' , type=_lowerCAmelCase , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--peak_memory_upper_bound' , type=_lowerCAmelCase , default=_lowerCAmelCase , help='The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.' , ) parser.add_argument( '--n_train' , type=_lowerCAmelCase , default=320 , help='Number of training examples to use.' , ) parser.add_argument( '--n_val' , type=_lowerCAmelCase , default=160 , help='Number of validation examples to use.' , ) parser.add_argument( '--num_epochs' , type=_lowerCAmelCase , default=1 , help='Number of train epochs.' , ) lowercase__ : Any = parser.parse_args() lowercase__ : Optional[Any] = {'lr': 2E-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16} training_function(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": main()
645
0
"""simple docstring""" from collections.abc import Sequence def a_ ( _lowerCAmelCase : Sequence[float] , _lowerCAmelCase : float ): '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(_lowerCAmelCase ) ) def a_ ( _lowerCAmelCase : Sequence[float] , _lowerCAmelCase : float ): '''simple docstring''' lowercase__ : int = 0.0 for coeff in reversed(_lowerCAmelCase ): lowercase__ : List[Any] = result * x + coeff return result if __name__ == "__main__": _UpperCamelCase : int = (0.0, 0.0, 5.0, 9.3, 7.0) _UpperCamelCase : Dict = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
717
"""simple docstring""" def a_ ( _lowerCAmelCase : str ): '''simple docstring''' lowercase__ : Any = [0] * len(_lowerCAmelCase ) for i in range(1 , len(_lowerCAmelCase ) ): # use last results for better performance - dynamic programming lowercase__ : List[str] = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: lowercase__ : Dict = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 lowercase__ : Union[str, Any] = j return prefix_result def a_ ( _lowerCAmelCase : str ): '''simple docstring''' return max(prefix_function(_lowerCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod()
645
0
"""simple docstring""" import os def a_ ( ): '''simple docstring''' with open(os.path.dirname(_lowerCAmelCase ) + '/p022_names.txt' ) as file: lowercase__ : Union[str, Any] = str(file.readlines()[0] ) lowercase__ : Tuple = names.replace('"' , '' ).split(',' ) names.sort() lowercase__ : Tuple = 0 lowercase__ : Optional[Any] = 0 for i, name in enumerate(_lowerCAmelCase ): for letter in name: name_score += ord(_lowerCAmelCase ) - 64 total_score += (i + 1) * name_score lowercase__ : Tuple = 0 return total_score if __name__ == "__main__": print(solution())
718
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class UpperCAmelCase_ ( unittest.TestCase): def __init__( self , a , a=7 , a=3 , a=1_8 , a=3_0 , a=4_0_0 , a=True , a=None , a=True , a=None , a=True , ) -> List[str]: lowercase__ : Tuple = size if size is not None else {'shortest_edge': 2_0} lowercase__ : Union[str, Any] = crop_size if crop_size is not None else {'height': 1_8, 'width': 1_8} lowercase__ : Optional[int] = parent lowercase__ : Optional[int] = batch_size lowercase__ : str = num_channels lowercase__ : Any = image_size lowercase__ : Optional[Any] = min_resolution lowercase__ : int = max_resolution lowercase__ : List[Any] = do_resize lowercase__ : List[str] = size lowercase__ : str = do_center_crop lowercase__ : List[Any] = crop_size lowercase__ : Union[str, Any] = do_flip_channel_order def _UpperCAmelCase ( self ) -> int: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class UpperCAmelCase_ ( _a , unittest.TestCase): lowerCamelCase__ : Optional[Any] = MobileViTImageProcessor if is_vision_available() else None def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : Tuple = MobileViTImageProcessingTester(self ) @property def _UpperCAmelCase ( self ) -> int: return self.image_processor_tester.prepare_image_processor_dict() def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a , 'do_resize' ) ) self.assertTrue(hasattr(a , 'size' ) ) self.assertTrue(hasattr(a , 'do_center_crop' ) ) self.assertTrue(hasattr(a , 'center_crop' ) ) self.assertTrue(hasattr(a , 'do_flip_channel_order' ) ) def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 2_0} ) self.assertEqual(image_processor.crop_size , {'height': 1_8, 'width': 1_8} ) lowercase__ : str = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {'shortest_edge': 4_2} ) self.assertEqual(image_processor.crop_size , {'height': 8_4, 'width': 8_4} ) def _UpperCAmelCase ( self ) -> Tuple: pass def _UpperCAmelCase ( self ) -> str: # Initialize image_processing lowercase__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a ) for image in image_inputs: self.assertIsInstance(a , Image.Image ) # Test not batched input lowercase__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowercase__ : List[Any] = image_processing(a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def _UpperCAmelCase ( self ) -> Tuple: # Initialize image_processing lowercase__ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , numpify=a ) for image in image_inputs: self.assertIsInstance(a , np.ndarray ) # Test not batched input lowercase__ : List[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowercase__ : Any = image_processing(a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def _UpperCAmelCase ( self ) -> Dict: # Initialize image_processing lowercase__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , torchify=a ) for image in image_inputs: self.assertIsInstance(a , torch.Tensor ) # Test not batched input lowercase__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowercase__ : Tuple = image_processing(a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
645
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) _UpperCamelCase : Tuple = { "google/canine-s": "https://huggingface.co/google/canine-s/resolve/main/config.json", # See all CANINE models at https://huggingface.co/models?filter=canine } class UpperCAmelCase_ ( _a): lowerCamelCase__ : Optional[int] = "canine" def __init__( self , a=7_6_8 , a=1_2 , a=1_2 , a=3_0_7_2 , a="gelu" , a=0.1 , a=0.1 , a=1_6_3_8_4 , a=1_6 , a=0.02 , a=1e-12 , a=0 , a=0XE_000 , a=0XE_001 , a=4 , a=4 , a=8 , a=1_6_3_8_4 , a=1_2_8 , **a , ) -> Optional[int]: super().__init__(pad_token_id=a , bos_token_id=a , eos_token_id=a , **a ) lowercase__ : str = max_position_embeddings lowercase__ : Optional[int] = hidden_size lowercase__ : Any = num_hidden_layers lowercase__ : Dict = num_attention_heads lowercase__ : Any = intermediate_size lowercase__ : Any = hidden_act lowercase__ : Optional[int] = hidden_dropout_prob lowercase__ : Optional[Any] = attention_probs_dropout_prob lowercase__ : Dict = initializer_range lowercase__ : List[str] = type_vocab_size lowercase__ : Union[str, Any] = layer_norm_eps # Character config: lowercase__ : Any = downsampling_rate lowercase__ : List[str] = upsampling_kernel_size lowercase__ : Optional[int] = num_hash_functions lowercase__ : Optional[Any] = num_hash_buckets lowercase__ : Optional[int] = local_transformer_stride
719
"""simple docstring""" import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class UpperCAmelCase_ ( unittest.TestCase): def __init__( self , a , a=1_3 , a=7 , a=True , a=True , a=True , a=True , a=9_9 , a=3_2 , a=5 , a=4 , a=3_7 , a="gelu" , a=0.1 , a=0.1 , a=5_1_2 , a=1_6 , a=2 , a=0.02 , a=4 , ) -> Dict: lowercase__ : Optional[Any] = parent lowercase__ : Dict = batch_size lowercase__ : List[Any] = seq_length lowercase__ : int = is_training lowercase__ : str = use_attention_mask lowercase__ : Dict = use_token_type_ids lowercase__ : Optional[int] = use_labels lowercase__ : Tuple = vocab_size lowercase__ : List[str] = hidden_size lowercase__ : Union[str, Any] = num_hidden_layers lowercase__ : int = num_attention_heads lowercase__ : Dict = intermediate_size lowercase__ : List[str] = hidden_act lowercase__ : Dict = hidden_dropout_prob lowercase__ : Tuple = attention_probs_dropout_prob lowercase__ : List[str] = max_position_embeddings lowercase__ : int = type_vocab_size lowercase__ : List[str] = type_sequence_label_size lowercase__ : Union[str, Any] = initializer_range lowercase__ : Optional[int] = num_choices def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ : str = None if self.use_attention_mask: lowercase__ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ : List[str] = None if self.use_token_type_ids: lowercase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__ : Any = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _UpperCAmelCase ( self ) -> Any: lowercase__ : Optional[int] = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ : Tuple = config_and_inputs lowercase__ : Union[str, Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class UpperCAmelCase_ ( _a , unittest.TestCase): lowerCamelCase__ : Tuple = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : Union[str, Any] = FlaxAlbertModelTester(self ) @slow def _UpperCAmelCase ( self ) -> str: for model_class_name in self.all_model_classes: lowercase__ : str = model_class_name.from_pretrained('albert-base-v2' ) lowercase__ : Tuple = model(np.ones((1, 1) ) ) self.assertIsNotNone(a ) @require_flax class UpperCAmelCase_ ( unittest.TestCase): @slow def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : str = FlaxAlbertModel.from_pretrained('albert-base-v2' ) lowercase__ : Optional[int] = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) lowercase__ : Optional[Any] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) lowercase__ : Any = model(a , attention_mask=a )[0] lowercase__ : Tuple = (1, 1_1, 7_6_8) self.assertEqual(output.shape , a ) lowercase__ : Optional[Any] = np.array( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , a , atol=1e-4 ) )
645
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _UpperCamelCase : Optional[Any] = { "configuration_longt5": ["LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP", "LongT5Config", "LongT5OnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Optional[int] = [ "LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST", "LongT5EncoderModel", "LongT5ForConditionalGeneration", "LongT5Model", "LongT5PreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : List[Any] = [ "FlaxLongT5ForConditionalGeneration", "FlaxLongT5Model", "FlaxLongT5PreTrainedModel", ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys _UpperCamelCase : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
720
"""simple docstring""" from collections.abc import Sequence def a_ ( _lowerCAmelCase : Sequence[float] , _lowerCAmelCase : float ): '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(_lowerCAmelCase ) ) def a_ ( _lowerCAmelCase : Sequence[float] , _lowerCAmelCase : float ): '''simple docstring''' lowercase__ : int = 0.0 for coeff in reversed(_lowerCAmelCase ): lowercase__ : List[Any] = result * x + coeff return result if __name__ == "__main__": _UpperCamelCase : int = (0.0, 0.0, 5.0, 9.3, 7.0) _UpperCamelCase : Dict = 1_0.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
645
0
"""simple docstring""" from math import isqrt def a_ ( _lowerCAmelCase : int ): '''simple docstring''' return all(number % divisor != 0 for divisor in range(2 , isqrt(_lowerCAmelCase ) + 1 ) ) def a_ ( _lowerCAmelCase : int = 10**6 ): '''simple docstring''' lowercase__ : List[Any] = 0 lowercase__ : Any = 1 lowercase__ : Union[str, Any] = 7 while prime_candidate < max_prime: primes_count += is_prime(_lowerCAmelCase ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(f'''{solution() = }''')
721
"""simple docstring""" import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path _UpperCamelCase : Any = [ {"dataset": "wikipedia", "config_name": "20220301.de"}, {"dataset": "wikipedia", "config_name": "20220301.en"}, {"dataset": "wikipedia", "config_name": "20220301.fr"}, {"dataset": "wikipedia", "config_name": "20220301.frr"}, {"dataset": "wikipedia", "config_name": "20220301.it"}, {"dataset": "wikipedia", "config_name": "20220301.simple"}, {"dataset": "snli", "config_name": "plain_text"}, {"dataset": "eli5", "config_name": "LFQA_reddit"}, {"dataset": "wiki40b", "config_name": "en"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.compressed"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.no_index"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.multiset.no_index"}, {"dataset": "natural_questions", "config_name": "default"}, ] def a_ ( _lowerCAmelCase : Optional[Any]=True ): '''simple docstring''' if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=_a)) class UpperCAmelCase_ ( _a): lowerCamelCase__ : str = None lowerCamelCase__ : Optional[Any] = None def _UpperCAmelCase ( self , a , a ) -> List[Any]: with TemporaryDirectory() as tmp_dir: lowercase__ : List[str] = dataset_module_factory(a , cache_dir=a ) lowercase__ : List[Any] = import_main_class(dataset_module.module_path , dataset=a ) lowercase__ : DatasetBuilder = builder_cls( cache_dir=a , config_name=a , hash=dataset_module.hash , ) lowercase__ : Union[str, Any] = '/'.join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=a ).replace(os.sep , '/' ), config.DATASET_INFO_FILENAME, ] ) lowercase__ : Union[str, Any] = cached_path(a , cache_dir=a ) self.assertTrue(os.path.exists(a ) ) @pytest.mark.integration def a_ ( _lowerCAmelCase : str ): '''simple docstring''' lowercase__ : Union[str, Any] = tmp_path_factory.mktemp('test_hf_gcp' ) / 'test_wikipedia_simple' lowercase__ : int = dataset_module_factory('wikipedia' , cache_dir=_lowerCAmelCase ) lowercase__ : Optional[int] = import_main_class(dataset_module.module_path ) lowercase__ : DatasetBuilder = builder_cls( cache_dir=_lowerCAmelCase , config_name='20220301.frr' , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam lowercase__ : Optional[int] = None builder_instance.download_and_prepare() lowercase__ : Optional[int] = builder_instance.as_dataset() assert ds @pytest.mark.integration def a_ ( _lowerCAmelCase : Optional[Any] ): '''simple docstring''' lowercase__ : Optional[int] = dataset_module_factory('wikipedia' , cache_dir=_lowerCAmelCase ) lowercase__ : List[str] = import_main_class(dataset_module.module_path , dataset=_lowerCAmelCase ) lowercase__ : DatasetBuilder = builder_cls( cache_dir=_lowerCAmelCase , config_name='20220301.frr' , hash=dataset_module.hash , ) lowercase__ : Union[str, Any] = builder_instance.as_streaming_dataset() assert ds assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert "train" in ds assert isinstance(ds['train'] , _lowerCAmelCase ) assert next(iter(ds['train'] ) )
645
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase : int = logging.get_logger(__name__) _UpperCamelCase : Dict = { "s-JoL/Open-Llama-V1": "https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json", } class UpperCAmelCase_ ( _a): lowerCamelCase__ : Optional[int] = "open-llama" def __init__( self , a=1_0_0_0_0_0 , a=4_0_9_6 , a=1_1_0_0_8 , a=3_2 , a=3_2 , a="silu" , a=2_0_4_8 , a=0.02 , a=1e-6 , a=True , a=0 , a=1 , a=2 , a=False , a=True , a=0.1 , a=0.1 , a=True , a=True , a=None , **a , ) -> Optional[Any]: lowercase__ : List[Any] = vocab_size lowercase__ : Union[str, Any] = max_position_embeddings lowercase__ : List[str] = hidden_size lowercase__ : Union[str, Any] = intermediate_size lowercase__ : Dict = num_hidden_layers lowercase__ : Dict = num_attention_heads lowercase__ : str = hidden_act lowercase__ : Union[str, Any] = initializer_range lowercase__ : Any = rms_norm_eps lowercase__ : List[Any] = use_cache lowercase__ : Any = kwargs.pop( 'use_memorry_efficient_attention' , a ) lowercase__ : Dict = hidden_dropout_prob lowercase__ : List[str] = attention_dropout_prob lowercase__ : Tuple = use_stable_embedding lowercase__ : Optional[Any] = shared_input_output_embedding lowercase__ : Optional[Any] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=a , bos_token_id=a , eos_token_id=a , tie_word_embeddings=a , **a , ) def _UpperCAmelCase ( self ) -> str: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , a ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' f"""got {self.rope_scaling}""" ) lowercase__ : Dict = self.rope_scaling.get('type' , a ) lowercase__ : Union[str, Any] = self.rope_scaling.get('factor' , a ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(a , a ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
700
"""simple docstring""" import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def a_ ( _lowerCAmelCase : dict ): '''simple docstring''' return (data["data"], data["target"]) def a_ ( _lowerCAmelCase : np.ndarray , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : np.ndarray ): '''simple docstring''' lowercase__ : Any = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(_lowerCAmelCase , _lowerCAmelCase ) # Predict target for test data lowercase__ : str = xgb.predict(_lowerCAmelCase ) lowercase__ : Union[str, Any] = predictions.reshape(len(_lowerCAmelCase ) , 1 ) return predictions def a_ ( ): '''simple docstring''' lowercase__ : Optional[Any] = fetch_california_housing() lowercase__ , lowercase__ : str = data_handling(_lowerCAmelCase ) lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = train_test_split( _lowerCAmelCase , _lowerCAmelCase , test_size=0.2_5 , random_state=1 ) lowercase__ : Any = xgboost(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Error printing print(f"""Mean Absolute Error : {mean_absolute_error(_lowerCAmelCase , _lowerCAmelCase )}""" ) print(f"""Mean Square Error : {mean_squared_error(_lowerCAmelCase , _lowerCAmelCase )}""" ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
645
0
"""simple docstring""" import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def a_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any] ): '''simple docstring''' lowercase__ : str = TaConfig.from_json_file(_lowerCAmelCase ) print(f"""Building PyTorch model from configuration: {config}""" ) lowercase__ : str = TaForConditionalGeneration(_lowerCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_ta(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": _UpperCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _UpperCamelCase : Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
701
"""simple docstring""" import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class UpperCAmelCase_ : def __init__( self , a , a=1_3 , a=1_0 , a=3 , a=2 , a=2 , a=2 , a=True , a=True , a=3_2 , a=5 , a=4 , a=3_7 , a="gelu" , a=0.1 , a=0.1 , a=1_0 , a=0.02 , a=0.9 , a=None , ) -> Optional[Any]: lowercase__ : str = parent lowercase__ : int = batch_size lowercase__ : Union[str, Any] = image_size lowercase__ : Optional[Any] = num_channels lowercase__ : Dict = patch_size lowercase__ : Tuple = tubelet_size lowercase__ : Optional[int] = num_frames lowercase__ : Optional[int] = is_training lowercase__ : int = use_labels lowercase__ : Optional[int] = hidden_size lowercase__ : Union[str, Any] = num_hidden_layers lowercase__ : Optional[int] = num_attention_heads lowercase__ : Any = intermediate_size lowercase__ : str = hidden_act lowercase__ : List[Any] = hidden_dropout_prob lowercase__ : str = attention_probs_dropout_prob lowercase__ : Union[str, Any] = type_sequence_label_size lowercase__ : List[Any] = initializer_range lowercase__ : str = mask_ratio lowercase__ : Optional[Any] = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame lowercase__ : Optional[Any] = (image_size // patch_size) ** 2 lowercase__ : str = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos lowercase__ : str = int(mask_ratio * self.seq_length ) def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : int = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) lowercase__ : int = None if self.use_labels: lowercase__ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ : Dict = self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self ) -> Tuple: return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a , initializer_range=self.initializer_range , ) def _UpperCAmelCase ( self , a , a , a ) -> Optional[int]: lowercase__ : Dict = VideoMAEModel(config=a ) model.to(a ) model.eval() lowercase__ : Tuple = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self , a , a , a ) -> Union[str, Any]: lowercase__ : str = VideoMAEForPreTraining(a ) model.to(a ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowercase__ : Any = torch.ones((self.num_masks,) ) lowercase__ : str = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) lowercase__ : Optional[int] = mask.expand(self.batch_size , -1 ).bool() lowercase__ : str = model(a , a ) # model only returns predictions for masked patches lowercase__ : str = mask.sum().item() lowercase__ : int = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def _UpperCAmelCase ( self ) -> str: lowercase__ : Dict = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = config_and_inputs lowercase__ : List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _a , _a , unittest.TestCase): lowerCamelCase__ : Tuple = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) lowerCamelCase__ : Optional[int] = ( {"feature-extraction": VideoMAEModel, "video-classification": VideoMAEForVideoClassification} if is_torch_available() else {} ) lowerCamelCase__ : Any = False lowerCamelCase__ : Any = False lowerCamelCase__ : Union[str, Any] = False lowerCamelCase__ : str = False def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Optional[Any] = VideoMAEModelTester(self ) lowercase__ : Optional[Any] = ConfigTester(self , config_class=a , has_text_modality=a , hidden_size=3_7 ) def _UpperCAmelCase ( self , a , a , a=False ) -> Optional[int]: lowercase__ : Union[str, Any] = copy.deepcopy(a ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowercase__ : Optional[Any] = torch.ones((self.model_tester.num_masks,) ) lowercase__ : Any = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) lowercase__ : Any = mask.expand(self.model_tester.batch_size , -1 ).bool() lowercase__ : Union[str, Any] = bool_masked_pos.to(a ) if return_labels: if model_class in [ *get_values(a ), ]: lowercase__ : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a ) return inputs_dict def _UpperCAmelCase ( self ) -> Tuple: self.config_tester.run_common_tests() @unittest.skip(reason='VideoMAE does not use inputs_embeds' ) def _UpperCAmelCase ( self ) -> Dict: pass def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : int = model_class(a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase__ : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a , nn.Linear ) ) def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[str] = model_class(a ) lowercase__ : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Optional[Any] = [*signature.parameters.keys()] lowercase__ : int = ['pixel_values'] self.assertListEqual(arg_names[:1] , a ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*a ) @slow def _UpperCAmelCase ( self ) -> str: for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : List[Any] = VideoMAEModel.from_pretrained(a ) self.assertIsNotNone(a ) def _UpperCAmelCase ( self ) -> Optional[Any]: if not self.has_attentions: pass else: lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : str = True for model_class in self.all_model_classes: lowercase__ : Union[str, Any] = self.model_tester.seq_length - self.model_tester.num_masks lowercase__ : Any = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) lowercase__ : Optional[Any] = True lowercase__ : int = False lowercase__ : Any = True lowercase__ : List[str] = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : Optional[int] = model(**self._prepare_for_class(a , a ) ) lowercase__ : Dict = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase__ : str = True lowercase__ : List[str] = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : List[Any] = model(**self._prepare_for_class(a , a ) ) lowercase__ : Optional[Any] = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowercase__ : List[str] = len(a ) # Check attention is always last and order is fine lowercase__ : Optional[int] = True lowercase__ : List[str] = True lowercase__ : int = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : List[str] = model(**self._prepare_for_class(a , a ) ) self.assertEqual(out_len + 1 , len(a ) ) lowercase__ : int = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def _UpperCAmelCase ( self ) -> Optional[int]: def check_hidden_states_output(a , a , a ): lowercase__ : Optional[int] = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : Optional[Any] = model(**self._prepare_for_class(a , a ) ) lowercase__ : Optional[int] = outputs.hidden_states lowercase__ : List[Any] = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(a ) , a ) lowercase__ : Optional[Any] = self.model_tester.seq_length - self.model_tester.num_masks lowercase__ : Union[str, Any] = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowercase__ , lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Tuple = True check_hidden_states_output(a , a , a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : Union[str, Any] = True check_hidden_states_output(a , a , a ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _UpperCAmelCase ( self ) -> List[Any]: pass def a_ ( ): '''simple docstring''' lowercase__ : int = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename='eating_spaghetti.npy' , repo_type='dataset' ) lowercase__ : str = np.load(_lowerCAmelCase ) return list(_lowerCAmelCase ) @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase): @cached_property def _UpperCAmelCase ( self ) -> Optional[Any]: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def _UpperCAmelCase ( self ) -> int: lowercase__ : Dict = VideoMAEForVideoClassification.from_pretrained('MCG-NJU/videomae-base-finetuned-kinetics' ).to( a ) lowercase__ : str = self.default_image_processor lowercase__ : List[str] = prepare_video() lowercase__ : int = image_processor(a , return_tensors='pt' ).to(a ) # forward pass with torch.no_grad(): lowercase__ : Union[str, Any] = model(**a ) # verify the logits lowercase__ : str = torch.Size((1, 4_0_0) ) self.assertEqual(outputs.logits.shape , a ) lowercase__ : List[Any] = torch.tensor([0.3_669, -0.0_688, -0.2_421] ).to(a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a , atol=1e-4 ) ) @slow def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Optional[int] = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short' ).to(a ) lowercase__ : Optional[Any] = self.default_image_processor lowercase__ : List[str] = prepare_video() lowercase__ : str = image_processor(a , return_tensors='pt' ).to(a ) # add boolean mask, indicating which patches to mask lowercase__ : Union[str, Any] = hf_hub_download(repo_id='hf-internal-testing/bool-masked-pos' , filename='bool_masked_pos.pt' ) lowercase__ : str = torch.load(a ) # forward pass with torch.no_grad(): lowercase__ : List[Any] = model(**a ) # verify the logits lowercase__ : Dict = torch.Size([1, 1_4_0_8, 1_5_3_6] ) lowercase__ : List[str] = torch.tensor( [[0.7_994, 0.9_612, 0.8_508], [0.7_401, 0.8_958, 0.8_302], [0.5_862, 0.7_468, 0.7_325]] , device=a ) self.assertEqual(outputs.logits.shape , a ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , a , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) lowercase__ : List[Any] = torch.tensor([0.5_142] , device=a ) self.assertTrue(torch.allclose(outputs.loss , a , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) lowercase__ : Tuple = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short' , norm_pix_loss=a ).to( a ) with torch.no_grad(): lowercase__ : Any = model(**a ) lowercase__ : List[Any] = torch.tensor(torch.tensor([0.6_469] ) , device=a ) self.assertTrue(torch.allclose(outputs.loss , a , atol=1e-4 ) )
645
0
"""simple docstring""" import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class UpperCAmelCase_ : def __init__( self , a , a=1_3 , a=7 , a=False , a=True , a=False , a=False , a=1_9 , a=3_2 , a=5 , a=4 , a=3_7 , a="gelu" , a=0.1 , a=0.1 , a=5_1_2 , a=1_6 , a=2 , a=0.02 , a=3 , a=4 , a=None , ) -> Union[str, Any]: lowercase__ : Optional[Any] = parent lowercase__ : Optional[Any] = batch_size lowercase__ : str = seq_length lowercase__ : Optional[Any] = is_training lowercase__ : int = use_input_mask lowercase__ : List[str] = use_token_type_ids lowercase__ : List[Any] = use_labels lowercase__ : Any = vocab_size lowercase__ : Optional[int] = hidden_size lowercase__ : Tuple = num_hidden_layers lowercase__ : Tuple = num_attention_heads lowercase__ : str = intermediate_size lowercase__ : Union[str, Any] = hidden_act lowercase__ : Optional[Any] = hidden_dropout_prob lowercase__ : Any = attention_probs_dropout_prob lowercase__ : Any = max_position_embeddings lowercase__ : str = type_vocab_size lowercase__ : Union[str, Any] = type_sequence_label_size lowercase__ : Dict = initializer_range lowercase__ : Tuple = num_labels lowercase__ : Any = num_choices lowercase__ : List[Any] = scope def _UpperCAmelCase ( self ) -> Dict: lowercase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ : Optional[Any] = None if self.use_input_mask: lowercase__ : Dict = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ : Optional[int] = None lowercase__ : Any = None lowercase__ : Optional[int] = None if self.use_labels: lowercase__ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__ : List[str] = ids_tensor([self.batch_size] , self.num_choices ) lowercase__ : Union[str, Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : Tuple = EsmConfig( vocab_size=3_3 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=a , esmfold_config={'trunk': {'num_blocks': 2}, 'fp16_esm': False} , ) return config def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> str: lowercase__ : List[str] = EsmForProteinFolding(config=a ).float() model.to(a ) model.eval() lowercase__ : Dict = model(a , attention_mask=a ) lowercase__ : List[str] = model(a ) lowercase__ : str = model(a ) self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 1_4, 3) ) self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2) ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : Optional[Any] = self.prepare_config_and_inputs() ( lowercase__ ) : Optional[int] = config_and_inputs lowercase__ : Any = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _a , _a , unittest.TestCase): lowerCamelCase__ : Any = False lowerCamelCase__ : List[Any] = (EsmForProteinFolding,) if is_torch_available() else () lowerCamelCase__ : List[str] = () lowerCamelCase__ : Optional[int] = {} if is_torch_available() else {} lowerCamelCase__ : Optional[Any] = False def _UpperCAmelCase ( self ) -> Dict: lowercase__ : Optional[Any] = EsmFoldModelTester(self ) lowercase__ : Optional[int] = ConfigTester(self , config_class=a , hidden_size=3_7 ) def _UpperCAmelCase ( self ) -> Tuple: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> str: lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) @unittest.skip('Does not support attention outputs' ) def _UpperCAmelCase ( self ) -> Tuple: pass @unittest.skip def _UpperCAmelCase ( self ) -> Optional[int]: pass @unittest.skip('Esm does not support embedding resizing' ) def _UpperCAmelCase ( self ) -> Optional[Any]: pass @unittest.skip('Esm does not support embedding resizing' ) def _UpperCAmelCase ( self ) -> int: pass @unittest.skip('ESMFold does not support passing input embeds!' ) def _UpperCAmelCase ( self ) -> List[Any]: pass @unittest.skip('ESMFold does not support head pruning.' ) def _UpperCAmelCase ( self ) -> List[str]: pass @unittest.skip('ESMFold does not support head pruning.' ) def _UpperCAmelCase ( self ) -> Dict: pass @unittest.skip('ESMFold does not support head pruning.' ) def _UpperCAmelCase ( self ) -> Any: pass @unittest.skip('ESMFold does not support head pruning.' ) def _UpperCAmelCase ( self ) -> Optional[Any]: pass @unittest.skip('ESMFold does not support head pruning.' ) def _UpperCAmelCase ( self ) -> List[str]: pass @unittest.skip('ESMFold does not output hidden states in the normal way.' ) def _UpperCAmelCase ( self ) -> Dict: pass @unittest.skip('ESMfold does not output hidden states in the normal way.' ) def _UpperCAmelCase ( self ) -> str: pass @unittest.skip('ESMFold only has one output format.' ) def _UpperCAmelCase ( self ) -> int: pass @unittest.skip('This test doesn\'t work for ESMFold and doesn\'t test core functionality' ) def _UpperCAmelCase ( self ) -> Optional[Any]: pass @unittest.skip('ESMFold does not support input chunking.' ) def _UpperCAmelCase ( self ) -> List[Any]: pass @unittest.skip('ESMFold doesn\'t respect you and it certainly doesn\'t respect your initialization arguments.' ) def _UpperCAmelCase ( self ) -> str: pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def _UpperCAmelCase ( self ) -> Optional[int]: pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def _UpperCAmelCase ( self ) -> Optional[int]: pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def _UpperCAmelCase ( self ) -> Any: pass @unittest.skip('ESMFold doesn\'t support data parallel.' ) def _UpperCAmelCase ( self ) -> Dict: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _UpperCAmelCase ( self ) -> List[str]: pass @require_torch class UpperCAmelCase_ ( _a): @slow def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : Optional[Any] = EsmForProteinFolding.from_pretrained('facebook/esmfold_v1' ).float() model.eval() lowercase__ : str = torch.tensor([[0, 6, 4, 1_3, 5, 4, 1_6, 1_2, 1_1, 7, 2]] ) lowercase__ : Union[str, Any] = model(a )['positions'] lowercase__ : Any = torch.tensor([2.5_828, 0.7_993, -10.9_334] , dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , a , atol=1e-4 ) )
702
"""simple docstring""" import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() _UpperCamelCase : Dict = logging.get_logger(__name__) _UpperCamelCase : List[Any] = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "encoder.layer_norm_for_extract": "layer_norm_for_extract", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "label_embs_concat": "label_embeddings_concat", "mask_emb": "masked_spec_embed", "spk_proj": "speaker_proj", } _UpperCamelCase : List[str] = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "label_embeddings_concat", "speaker_proj", "layer_norm_for_extract", ] def a_ ( _lowerCAmelCase : Any , _lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple ): '''simple docstring''' for attribute in key.split('.' ): lowercase__ : Dict = getattr(_lowerCAmelCase , _lowerCAmelCase ) if weight_type is not None: lowercase__ : Optional[int] = getattr(_lowerCAmelCase , _lowerCAmelCase ).shape else: lowercase__ : Optional[int] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowercase__ : Optional[Any] = value elif weight_type == "weight_g": lowercase__ : Dict = value elif weight_type == "weight_v": lowercase__ : List[str] = value elif weight_type == "bias": lowercase__ : Optional[Any] = value else: lowercase__ : List[str] = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def a_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] ): '''simple docstring''' lowercase__ : Tuple = [] lowercase__ : List[str] = fairseq_model.state_dict() lowercase__ : Union[str, Any] = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): lowercase__ : Optional[int] = False if "conv_layers" in name: load_conv_layer( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , hf_model.config.feat_extract_norm == 'group' , ) lowercase__ : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): lowercase__ : List[Any] = 'unispeech_sat.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('.' )[:-1] ) != key): # special case since naming is very similar continue lowercase__ : int = True if "*" in mapped_key: lowercase__ : Optional[int] = name.split(_lowerCAmelCase )[0].split('.' )[-2] lowercase__ : List[str] = mapped_key.replace('*' , _lowerCAmelCase ) if "weight_g" in name: lowercase__ : List[Any] = 'weight_g' elif "weight_v" in name: lowercase__ : int = 'weight_v' elif "bias" in name: lowercase__ : Dict = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj lowercase__ : Union[str, Any] = 'weight' else: lowercase__ : int = None set_recursively(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) continue if not is_used: unused_weights.append(_lowerCAmelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def a_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : Dict ): '''simple docstring''' lowercase__ : int = full_name.split('conv_layers.' )[-1] lowercase__ : int = name.split('.' ) lowercase__ : int = int(items[0] ) lowercase__ : Dict = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowercase__ : Union[str, Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowercase__ : Optional[int] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) lowercase__ : List[Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) lowercase__ : int = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_lowerCAmelCase ) @torch.no_grad() def a_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : str=None , _lowerCAmelCase : Tuple=True ): '''simple docstring''' if config_path is not None: lowercase__ : Any = UniSpeechSatConfig.from_pretrained(_lowerCAmelCase ) else: lowercase__ : Any = UniSpeechSatConfig() lowercase__ : Union[str, Any] = '' if is_finetuned: lowercase__ : Optional[Any] = UniSpeechSatForCTC(_lowerCAmelCase ) else: lowercase__ : List[Any] = UniSpeechSatForPreTraining(_lowerCAmelCase ) lowercase__ , lowercase__ , lowercase__ : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) lowercase__ : Union[str, Any] = model[0].eval() recursively_load_weights(_lowerCAmelCase , _lowerCAmelCase ) hf_wavavec.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": _UpperCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _UpperCamelCase : str = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
645
0
"""simple docstring""" import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase_ : def __init__( self , a , a=1_3 , a=7 , a=True , a=True , a=True , a=True , a=9_9 , a=2_4 , a=2 , a=6 , a=3_7 , a="gelu" , a=0.1 , a=0.1 , a=5_1_2 , a=1_6 , a=2 , a=0.02 , a=3 , a=None , a=1_0_0_0 , ) -> Dict: lowercase__ : Optional[int] = parent lowercase__ : List[str] = batch_size lowercase__ : Optional[int] = seq_length lowercase__ : List[str] = is_training lowercase__ : Optional[int] = use_input_mask lowercase__ : List[Any] = use_token_type_ids lowercase__ : Any = use_labels lowercase__ : Union[str, Any] = vocab_size lowercase__ : List[str] = hidden_size lowercase__ : Tuple = num_hidden_layers lowercase__ : Dict = num_attention_heads lowercase__ : List[str] = intermediate_size lowercase__ : Dict = hidden_act lowercase__ : Dict = hidden_dropout_prob lowercase__ : Optional[Any] = attention_probs_dropout_prob lowercase__ : int = max_position_embeddings lowercase__ : int = type_vocab_size lowercase__ : Tuple = type_sequence_label_size lowercase__ : List[str] = initializer_range lowercase__ : Dict = num_labels lowercase__ : Any = scope lowercase__ : Dict = range_bbox def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ : str = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowercase__ : List[Any] = bbox[i, j, 3] lowercase__ : str = bbox[i, j, 1] lowercase__ : Union[str, Any] = t if bbox[i, j, 2] < bbox[i, j, 0]: lowercase__ : Optional[int] = bbox[i, j, 2] lowercase__ : Dict = bbox[i, j, 0] lowercase__ : Tuple = t lowercase__ : str = None if self.use_input_mask: lowercase__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) lowercase__ : int = None if self.use_token_type_ids: lowercase__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__ : Optional[int] = None lowercase__ : Tuple = None if self.use_labels: lowercase__ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__ : str = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def _UpperCAmelCase ( self ) -> Optional[Any]: return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def _UpperCAmelCase ( self , a , a , a , a , a , a , a , ) -> Dict: lowercase__ : Union[str, Any] = LiltModel(config=a ) model.to(a ) model.eval() lowercase__ : Optional[Any] = model(a , bbox=a , attention_mask=a , token_type_ids=a ) lowercase__ : Optional[int] = model(a , bbox=a , token_type_ids=a ) lowercase__ : List[str] = model(a , bbox=a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _UpperCAmelCase ( self , a , a , a , a , a , a , a , ) -> Tuple: lowercase__ : Union[str, Any] = self.num_labels lowercase__ : List[str] = LiltForTokenClassification(config=a ) model.to(a ) model.eval() lowercase__ : int = model( a , bbox=a , attention_mask=a , token_type_ids=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCAmelCase ( self , a , a , a , a , a , a , a , ) -> Optional[int]: lowercase__ : List[str] = LiltForQuestionAnswering(config=a ) model.to(a ) model.eval() lowercase__ : int = model( a , bbox=a , attention_mask=a , token_type_ids=a , start_positions=a , end_positions=a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : int = self.prepare_config_and_inputs() ( lowercase__ ) : Union[str, Any] = config_and_inputs lowercase__ : Dict = { 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class UpperCAmelCase_ ( _a , _a , _a , unittest.TestCase): lowerCamelCase__ : Tuple = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) lowerCamelCase__ : str = ( { "feature-extraction": LiltModel, "question-answering": LiltForQuestionAnswering, "text-classification": LiltForSequenceClassification, "token-classification": LiltForTokenClassification, "zero-shot": LiltForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ : List[Any] = False lowerCamelCase__ : Dict = False def _UpperCAmelCase ( self , a , a , a , a , a ) -> str: return True def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : List[str] = LiltModelTester(self ) lowercase__ : Optional[int] = ConfigTester(self , config_class=a , hidden_size=3_7 ) def _UpperCAmelCase ( self ) -> int: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase__ : List[str] = type self.model_tester.create_and_check_model(*a ) def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a ) def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a ) @slow def _UpperCAmelCase ( self ) -> Optional[int]: for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : str = LiltModel.from_pretrained(a ) self.assertIsNotNone(a ) @require_torch @slow class UpperCAmelCase_ ( unittest.TestCase): def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Union[str, Any] = LiltModel.from_pretrained('SCUT-DLVCLab/lilt-roberta-en-base' ).to(a ) lowercase__ : Any = torch.tensor([[1, 2]] , device=a ) lowercase__ : Union[str, Any] = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=a ) # forward pass with torch.no_grad(): lowercase__ : Tuple = model(input_ids=a , bbox=a ) lowercase__ : str = torch.Size([1, 2, 7_6_8] ) lowercase__ : str = torch.tensor( [[-0.0_653, 0.0_950, -0.0_061], [-0.0_545, 0.0_926, -0.0_324]] , device=a , ) self.assertTrue(outputs.last_hidden_state.shape , a ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , a , atol=1e-3 ) )
703
"""simple docstring""" import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class UpperCAmelCase_ : def __init__( self , a , a=1_3 , a=3_2 , a=2 , a=3 , a=1_6 , a=[1, 2, 1] , a=[2, 2, 4] , a=2 , a=2.0 , a=True , a=0.0 , a=0.0 , a=0.1 , a="gelu" , a=False , a=True , a=0.02 , a=1e-5 , a=True , a=None , a=True , a=1_0 , a=8 , a=["stage1", "stage2", "stage3"] , a=[1, 2, 3] , ) -> int: lowercase__ : int = parent lowercase__ : Union[str, Any] = batch_size lowercase__ : Dict = image_size lowercase__ : str = patch_size lowercase__ : Optional[Any] = num_channels lowercase__ : List[str] = embed_dim lowercase__ : Any = depths lowercase__ : Dict = num_heads lowercase__ : List[str] = window_size lowercase__ : int = mlp_ratio lowercase__ : Tuple = qkv_bias lowercase__ : Union[str, Any] = hidden_dropout_prob lowercase__ : str = attention_probs_dropout_prob lowercase__ : Tuple = drop_path_rate lowercase__ : List[str] = hidden_act lowercase__ : Optional[Any] = use_absolute_embeddings lowercase__ : Optional[Any] = patch_norm lowercase__ : Any = layer_norm_eps lowercase__ : List[Any] = initializer_range lowercase__ : List[str] = is_training lowercase__ : int = scope lowercase__ : Optional[int] = use_labels lowercase__ : List[Any] = type_sequence_label_size lowercase__ : List[str] = encoder_stride lowercase__ : Optional[Any] = out_features lowercase__ : Dict = out_indices def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : Optional[Any] = None if self.use_labels: lowercase__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ : Tuple = self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self ) -> Union[str, Any]: return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def _UpperCAmelCase ( self , a , a , a ) -> Dict: lowercase__ : Tuple = MaskFormerSwinModel(config=a ) model.to(a ) model.eval() lowercase__ : str = model(a ) lowercase__ : str = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowercase__ : Dict = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def _UpperCAmelCase ( self , a , a , a ) -> Optional[int]: lowercase__ : List[Any] = MaskFormerSwinBackbone(config=a ) model.to(a ) model.eval() lowercase__ : int = model(a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [1_3, 1_6, 1_6, 1_6] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [1_6, 3_2, 6_4] ) # verify ValueError with self.parent.assertRaises(a ): lowercase__ : Dict = ['stem'] lowercase__ : List[str] = MaskFormerSwinBackbone(config=a ) def _UpperCAmelCase ( self ) -> str: lowercase__ : int = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Tuple = config_and_inputs lowercase__ : Union[str, Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _a , _a , unittest.TestCase): lowerCamelCase__ : Optional[int] = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) lowerCamelCase__ : List[str] = {"feature-extraction": MaskFormerSwinModel} if is_torch_available() else {} lowerCamelCase__ : str = False lowerCamelCase__ : Dict = False lowerCamelCase__ : Any = False lowerCamelCase__ : Dict = False lowerCamelCase__ : int = False def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : str = MaskFormerSwinModelTester(self ) lowercase__ : Tuple = ConfigTester(self , config_class=a , embed_dim=3_7 ) @require_torch_multi_gpu @unittest.skip( reason=( '`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with' ' `nn.DataParallel`' ) ) def _UpperCAmelCase ( self ) -> Optional[int]: pass def _UpperCAmelCase ( self ) -> Tuple: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _UpperCAmelCase ( self ) -> str: return def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*a ) @unittest.skip('Swin does not use inputs_embeds' ) def _UpperCAmelCase ( self ) -> Tuple: pass @unittest.skip('Swin does not support feedforward chunking' ) def _UpperCAmelCase ( self ) -> Tuple: pass def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[str] = model_class(a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase__ : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a , nn.Linear ) ) def _UpperCAmelCase ( self ) -> str: lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Any = model_class(a ) lowercase__ : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Optional[Any] = [*signature.parameters.keys()] lowercase__ : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , a ) @unittest.skip(reason='MaskFormerSwin is only used as backbone and doesn\'t support output_attentions' ) def _UpperCAmelCase ( self ) -> List[Any]: pass @unittest.skip(reason='MaskFormerSwin is only used as an internal backbone' ) def _UpperCAmelCase ( self ) -> int: pass def _UpperCAmelCase ( self , a , a , a , a ) -> Tuple: lowercase__ : Dict = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : str = model(**self._prepare_for_class(a , a ) ) lowercase__ : List[Any] = outputs.hidden_states lowercase__ : str = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(a ) , a ) # Swin has a different seq_length lowercase__ : Dict = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase__ : Tuple = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ , lowercase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : List[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: lowercase__ : List[str] = True self.check_hidden_states_output(a , a , a , a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : List[str] = True self.check_hidden_states_output(a , a , a , a ) def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Union[str, Any] = 3 lowercase__ : str = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowercase__ : Tuple = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase__ : Optional[int] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowercase__ : List[str] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: lowercase__ : List[str] = True self.check_hidden_states_output(a , a , a , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : int = True self.check_hidden_states_output(a , a , a , (padded_height, padded_width) ) @unittest.skip(reason='MaskFormerSwin doesn\'t have pretrained checkpoints' ) def _UpperCAmelCase ( self ) -> Optional[int]: pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def _UpperCAmelCase ( self ) -> Any: pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def _UpperCAmelCase ( self ) -> Any: pass def _UpperCAmelCase ( self ) -> Any: lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(a ): lowercase__ : Union[str, Any] = 0 return t def check_equivalence(a , a , a , a={} ): with torch.no_grad(): lowercase__ : Optional[Any] = model(**a , return_dict=a , **a ) lowercase__ : Optional[int] = model(**a , return_dict=a , **a ).to_tuple() def recursive_check(a , a ): if isinstance(a , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(a , a ): recursive_check(a , a ) elif isinstance(a , a ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(a , a ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(a ) , set_nan_tensor_to_zero(a ) , atol=1e-5 ) , msg=( 'Tuple and dict output are not equal. Difference:' f""" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:""" f""" {torch.isnan(a ).any()} and `inf`: {torch.isinf(a )}. Dict has""" f""" `nan`: {torch.isnan(a ).any()} and `inf`: {torch.isinf(a )}.""" ) , ) recursive_check(a , a ) for model_class in self.all_model_classes: lowercase__ : Any = model_class(a ) model.to(a ) model.eval() lowercase__ : Tuple = self._prepare_for_class(a , a ) lowercase__ : Optional[Any] = self._prepare_for_class(a , a ) check_equivalence(a , a , a ) lowercase__ : Any = self._prepare_for_class(a , a , return_labels=a ) lowercase__ : List[Any] = self._prepare_for_class(a , a , return_labels=a ) check_equivalence(a , a , a ) lowercase__ : Any = self._prepare_for_class(a , a ) lowercase__ : int = self._prepare_for_class(a , a ) check_equivalence(a , a , a , {'output_hidden_states': True} ) lowercase__ : Dict = self._prepare_for_class(a , a , return_labels=a ) lowercase__ : Optional[int] = self._prepare_for_class(a , a , return_labels=a ) check_equivalence(a , a , a , {'output_hidden_states': True} ) @require_torch class UpperCAmelCase_ ( unittest.TestCase , _a): lowerCamelCase__ : Dict = (MaskFormerSwinBackbone,) if is_torch_available() else () lowerCamelCase__ : Optional[int] = MaskFormerSwinConfig def _UpperCAmelCase ( self ) -> Dict: lowercase__ : Optional[int] = MaskFormerSwinModelTester(self ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : int = inputs_dict['pixel_values'].shape[0] for backbone_class in self.all_model_classes: lowercase__ : Optional[Any] = backbone_class(a ) backbone.to(a ) backbone.eval() lowercase__ : Union[str, Any] = backbone(**a ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , a ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True lowercase__ : List[str] = backbone(**a , output_hidden_states=a ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) lowercase__ , lowercase__ , lowercase__ : int = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: lowercase__ : List[Any] = backbone(**a , output_attentions=a ) self.assertIsNotNone(outputs.attentions )
645
0
"""simple docstring""" from __future__ import annotations from random import choice def a_ ( _lowerCAmelCase : List[Any] ): '''simple docstring''' return choice(_lowerCAmelCase ) def a_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int ): '''simple docstring''' lowercase__ : Optional[Any] = random_pivot(_lowerCAmelCase ) # partition based on pivot # linear time lowercase__ : Optional[int] = [e for e in lst if e < pivot] lowercase__ : str = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(_lowerCAmelCase ) == k - 1: return pivot # pivot is in elements bigger than k elif len(_lowerCAmelCase ) < k - 1: return kth_number(_lowerCAmelCase , k - len(_lowerCAmelCase ) - 1 ) # pivot is in elements smaller than k else: return kth_number(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
704
"""simple docstring""" import math def a_ ( _lowerCAmelCase : int = 100 ): '''simple docstring''' lowercase__ : Union[str, Any] = sum(i * i for i in range(1 , n + 1 ) ) lowercase__ : str = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f'''{solution() = }''')
645
0
"""simple docstring""" from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def a_ ( _lowerCAmelCase : Namespace ): '''simple docstring''' return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) _UpperCamelCase : List[Any] = "\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n" class UpperCAmelCase_ ( _a): @staticmethod def _UpperCAmelCase ( a ) -> Tuple: lowercase__ : Dict = parser.add_parser( 'convert' , help='CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.' , ) train_parser.add_argument('--model_type' , type=a , required=a , help='Model\'s type.' ) train_parser.add_argument( '--tf_checkpoint' , type=a , required=a , help='TensorFlow checkpoint path or folder.' ) train_parser.add_argument( '--pytorch_dump_output' , type=a , required=a , help='Path to the PyTorch saved model output.' ) train_parser.add_argument('--config' , type=a , default='' , help='Configuration file path or folder.' ) train_parser.add_argument( '--finetuning_task_name' , type=a , default=a , help='Optional fine-tuning task name if the TF model was a finetuned model.' , ) train_parser.set_defaults(func=a ) def __init__( self , a , a , a , a , a , *a , ) -> Union[str, Any]: lowercase__ : List[str] = logging.get_logger('transformers-cli/converting' ) self._logger.info(f"""Loading model {model_type}""" ) lowercase__ : int = model_type lowercase__ : Dict = tf_checkpoint lowercase__ : Union[str, Any] = pytorch_dump_output lowercase__ : int = config lowercase__ : str = finetuning_task_name def _UpperCAmelCase ( self ) -> Dict: if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(a ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(a ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(a ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(a ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(a ) if "ckpt" in self._tf_checkpoint.lower(): lowercase__ : Optional[int] = self._tf_checkpoint lowercase__ : int = '' else: lowercase__ : Optional[int] = self._tf_checkpoint lowercase__ : List[str] = '' convert_transfo_xl_checkpoint_to_pytorch( a , self._config , self._pytorch_dump_output , a ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(a ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(a ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( '--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]' )
705
"""simple docstring""" import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class UpperCAmelCase_ ( unittest.TestCase): def _UpperCAmelCase ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() def _UpperCAmelCase ( self ) -> Tuple: lowercase__ , lowercase__ : str = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-canny' , from_pt=a , dtype=jnp.bfloataa ) lowercase__ , lowercase__ : List[str] = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , controlnet=a , from_pt=a , dtype=jnp.bfloataa ) lowercase__ : List[Any] = controlnet_params lowercase__ : int = 'bird' lowercase__ : List[Any] = jax.device_count() lowercase__ : Dict = pipe.prepare_text_inputs([prompts] * num_samples ) lowercase__ : Union[str, Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png' ) lowercase__ : Optional[int] = pipe.prepare_image_inputs([canny_image] * num_samples ) lowercase__ : List[Any] = jax.random.PRNGKey(0 ) lowercase__ : Tuple = jax.random.split(a , jax.device_count() ) lowercase__ : str = replicate(a ) lowercase__ : List[str] = shard(a ) lowercase__ : Dict = shard(a ) lowercase__ : List[Any] = pipe( prompt_ids=a , image=a , params=a , prng_seed=a , num_inference_steps=5_0 , jit=a , ).images assert images.shape == (jax.device_count(), 1, 7_6_8, 5_1_2, 3) lowercase__ : Any = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowercase__ : Tuple = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] lowercase__ : int = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowercase__ : Optional[Any] = jnp.array( [0.167_969, 0.116_699, 0.081_543, 0.154_297, 0.132_812, 0.108_887, 0.169_922, 0.169_922, 0.205_078] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def _UpperCAmelCase ( self ) -> List[str]: lowercase__ , lowercase__ : int = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-openpose' , from_pt=a , dtype=jnp.bfloataa ) lowercase__ , lowercase__ : Optional[Any] = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , controlnet=a , from_pt=a , dtype=jnp.bfloataa ) lowercase__ : Optional[Any] = controlnet_params lowercase__ : List[Any] = 'Chef in the kitchen' lowercase__ : List[str] = jax.device_count() lowercase__ : Dict = pipe.prepare_text_inputs([prompts] * num_samples ) lowercase__ : Optional[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png' ) lowercase__ : Optional[int] = pipe.prepare_image_inputs([pose_image] * num_samples ) lowercase__ : List[str] = jax.random.PRNGKey(0 ) lowercase__ : str = jax.random.split(a , jax.device_count() ) lowercase__ : Optional[Any] = replicate(a ) lowercase__ : Optional[Any] = shard(a ) lowercase__ : List[Any] = shard(a ) lowercase__ : List[Any] = pipe( prompt_ids=a , image=a , params=a , prng_seed=a , num_inference_steps=5_0 , jit=a , ).images assert images.shape == (jax.device_count(), 1, 7_6_8, 5_1_2, 3) lowercase__ : Union[str, Any] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowercase__ : List[str] = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] lowercase__ : Optional[int] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowercase__ : str = jnp.array( [[0.271_484, 0.261_719, 0.275_391, 0.277_344, 0.279_297, 0.291_016, 0.294_922, 0.302_734, 0.302_734]] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
645
0
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _UpperCamelCase : int = { "configuration_cpmant": ["CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP", "CpmAntConfig"], "tokenization_cpmant": ["CpmAntTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : str = [ "CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST", "CpmAntForCausalLM", "CpmAntModel", "CpmAntPreTrainedModel", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys _UpperCamelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
706
"""simple docstring""" from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
645
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class UpperCAmelCase_ ( unittest.TestCase): def _UpperCAmelCase ( self ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : Optional[int] = 1 lowercase__ : List[str] = 3 lowercase__ : List[Any] = (3_2, 3_2) lowercase__ : int = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(a ) return image @property def _UpperCAmelCase ( self ) -> List[Any]: torch.manual_seed(0 ) lowercase__ : List[Any] = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=3_2 , ) return model @property def _UpperCAmelCase ( self ) -> List[Any]: torch.manual_seed(0 ) lowercase__ : Dict = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def _UpperCAmelCase ( self ) -> Tuple: torch.manual_seed(0 ) lowercase__ : Dict = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_6 , ) return RobertaSeriesModelWithTransformation(a ) @property def _UpperCAmelCase ( self ) -> Any: def extract(*a , **a ): class UpperCAmelCase_ : def __init__( self ) -> Optional[Any]: lowercase__ : Optional[Any] = torch.ones([0] ) def _UpperCAmelCase ( self , a ) -> str: self.pixel_values.to(a ) return self return Out() return extract def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ : int = 'cpu' # ensure determinism for the device-dependent torch.Generator lowercase__ : str = self.dummy_cond_unet lowercase__ : Any = PNDMScheduler(skip_prk_steps=a ) lowercase__ : str = self.dummy_vae lowercase__ : Union[str, Any] = self.dummy_text_encoder lowercase__ : Optional[int] = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' ) lowercase__ : Any = 7_7 lowercase__ : List[Any] = self.dummy_image.to(a ) lowercase__ : Dict = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk lowercase__ : Optional[int] = AltDiffusionImgaImgPipeline( unet=a , scheduler=a , vae=a , text_encoder=a , tokenizer=a , safety_checker=a , feature_extractor=self.dummy_extractor , ) lowercase__ : Union[str, Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=a ) lowercase__ : Tuple = alt_pipe.to(a ) alt_pipe.set_progress_bar_config(disable=a ) lowercase__ : Tuple = 'A painting of a squirrel eating a burger' lowercase__ : str = torch.Generator(device=a ).manual_seed(0 ) lowercase__ : List[Any] = alt_pipe( [prompt] , generator=a , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , image=a , ) lowercase__ : int = output.images lowercase__ : List[Any] = torch.Generator(device=a ).manual_seed(0 ) lowercase__ : Dict = alt_pipe( [prompt] , generator=a , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , image=a , return_dict=a , )[0] lowercase__ : Dict = image[0, -3:, -3:, -1] lowercase__ : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) lowercase__ : List[str] = np.array([0.4_427, 0.3_731, 0.4_249, 0.4_941, 0.4_546, 0.4_148, 0.4_193, 0.4_666, 0.4_499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3 @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Optional[int] = self.dummy_cond_unet lowercase__ : Optional[Any] = PNDMScheduler(skip_prk_steps=a ) lowercase__ : Dict = self.dummy_vae lowercase__ : List[Any] = self.dummy_text_encoder lowercase__ : Optional[int] = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' ) lowercase__ : int = 7_7 lowercase__ : str = self.dummy_image.to(a ) # put models in fp16 lowercase__ : int = unet.half() lowercase__ : List[str] = vae.half() lowercase__ : Dict = bert.half() # make sure here that pndm scheduler skips prk lowercase__ : List[Any] = AltDiffusionImgaImgPipeline( unet=a , scheduler=a , vae=a , text_encoder=a , tokenizer=a , safety_checker=a , feature_extractor=self.dummy_extractor , ) lowercase__ : int = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=a ) lowercase__ : Union[str, Any] = alt_pipe.to(a ) alt_pipe.set_progress_bar_config(disable=a ) lowercase__ : Optional[Any] = 'A painting of a squirrel eating a burger' lowercase__ : Optional[int] = torch.manual_seed(0 ) lowercase__ : List[str] = alt_pipe( [prompt] , generator=a , num_inference_steps=2 , output_type='np' , image=a , ).images assert image.shape == (1, 3_2, 3_2, 3) @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : Dict = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) # resize to resolution that is divisible by 8 but not 16 or 32 lowercase__ : Optional[Any] = init_image.resize((7_6_0, 5_0_4) ) lowercase__ : Tuple = 'BAAI/AltDiffusion' lowercase__ : Tuple = AltDiffusionImgaImgPipeline.from_pretrained( a , safety_checker=a , ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) pipe.enable_attention_slicing() lowercase__ : str = 'A fantasy landscape, trending on artstation' lowercase__ : Dict = torch.manual_seed(0 ) lowercase__ : List[str] = pipe( prompt=a , image=a , strength=0.75 , guidance_scale=7.5 , generator=a , output_type='np' , ) lowercase__ : Optional[Any] = output.images[0] lowercase__ : Optional[Any] = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert image.shape == (5_0_4, 7_6_0, 3) lowercase__ : int = np.array([0.9_358, 0.9_397, 0.9_599, 0.9_901, 1.0_000, 1.0_000, 0.9_882, 1.0_000, 1.0_000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase): def _UpperCAmelCase ( self ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : Tuple = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) lowercase__ : Tuple = init_image.resize((7_6_8, 5_1_2) ) lowercase__ : int = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy' ) lowercase__ : Union[str, Any] = 'BAAI/AltDiffusion' lowercase__ : Union[str, Any] = AltDiffusionImgaImgPipeline.from_pretrained( a , safety_checker=a , ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) pipe.enable_attention_slicing() lowercase__ : Optional[Any] = 'A fantasy landscape, trending on artstation' lowercase__ : Union[str, Any] = torch.manual_seed(0 ) lowercase__ : Union[str, Any] = pipe( prompt=a , image=a , strength=0.75 , guidance_scale=7.5 , generator=a , output_type='np' , ) lowercase__ : Union[str, Any] = output.images[0] assert image.shape == (5_1_2, 7_6_8, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1e-2
707
"""simple docstring""" import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase): @slow def _UpperCAmelCase ( self ) -> str: lowercase__ : Optional[Any] = AutoImageProcessor.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' ) lowercase__ : Union[str, Any] = AutoModelForImageClassification.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' ) model.to(a ) from datasets import load_dataset lowercase__ : str = load_dataset('nielsr/rvlcdip-demo' ) lowercase__ : Tuple = dataset['train'][0]['image'].convert('RGB' ) lowercase__ : int = image_processor(a , return_tensors='pt' ).to(a ) # forward pass with torch.no_grad(): lowercase__ : List[str] = model(**a ) lowercase__ : List[Any] = outputs.logits lowercase__ : Union[str, Any] = torch.Size((1, 1_6) ) self.assertEqual(logits.shape , a ) lowercase__ : Tuple = torch.tensor( [-0.4_158, -0.4_092, -0.4_347] , device=a , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , a , atol=1e-4 ) )
645
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase : str = logging.get_logger(__name__) _UpperCamelCase : List[Any] = { "caidas/swin2sr-classicalsr-x2-64": ( "https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json" ), } class UpperCAmelCase_ ( _a): lowerCamelCase__ : Dict = "swin2sr" lowerCamelCase__ : Any = { "hidden_size": "embed_dim", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , a=6_4 , a=1 , a=3 , a=1_8_0 , a=[6, 6, 6, 6, 6, 6] , a=[6, 6, 6, 6, 6, 6] , a=8 , a=2.0 , a=True , a=0.0 , a=0.0 , a=0.1 , a="gelu" , a=False , a=0.02 , a=1e-5 , a=2 , a=1.0 , a="1conv" , a="pixelshuffle" , **a , ) -> Optional[Any]: super().__init__(**a ) lowercase__ : str = image_size lowercase__ : Tuple = patch_size lowercase__ : List[Any] = num_channels lowercase__ : Tuple = embed_dim lowercase__ : int = depths lowercase__ : int = len(a ) lowercase__ : Dict = num_heads lowercase__ : List[str] = window_size lowercase__ : Dict = mlp_ratio lowercase__ : List[Any] = qkv_bias lowercase__ : Dict = hidden_dropout_prob lowercase__ : str = attention_probs_dropout_prob lowercase__ : Optional[int] = drop_path_rate lowercase__ : int = hidden_act lowercase__ : Any = use_absolute_embeddings lowercase__ : Optional[Any] = layer_norm_eps lowercase__ : str = initializer_range lowercase__ : List[Any] = upscale lowercase__ : List[Any] = img_range lowercase__ : str = resi_connection lowercase__ : Any = upsampler
708
"""simple docstring""" import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class UpperCAmelCase_ : @staticmethod def _UpperCAmelCase ( *a , **a ) -> int: pass def a_ ( _lowerCAmelCase : Image ): '''simple docstring''' lowercase__ : List[str] = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class UpperCAmelCase_ ( unittest.TestCase): lowerCamelCase__ : Union[str, Any] = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def _UpperCAmelCase ( self , a , a , a ) -> Dict: lowercase__ : Union[str, Any] = DepthEstimationPipeline(model=a , image_processor=a ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def _UpperCAmelCase ( self , a , a ) -> Optional[int]: lowercase__ : Tuple = depth_estimator('./tests/fixtures/tests_samples/COCO/000000039769.png' ) self.assertEqual({'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )} , a ) import datasets lowercase__ : Tuple = datasets.load_dataset('hf-internal-testing/fixtures_image_utils' , 'image' , split='test' ) lowercase__ : List[Any] = depth_estimator( [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] ) self.assertEqual( [ {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, ] , a , ) @require_tf @unittest.skip('Depth estimation is not implemented in TF' ) def _UpperCAmelCase ( self ) -> Optional[int]: pass @slow @require_torch def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Tuple = 'Intel/dpt-large' lowercase__ : Optional[int] = pipeline('depth-estimation' , model=a ) lowercase__ : List[Any] = depth_estimator('http://images.cocodataset.org/val2017/000000039769.jpg' ) lowercase__ : Optional[Any] = hashimage(outputs['depth'] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['predicted_depth'].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs['predicted_depth'].min().item() ) , 2.662 ) @require_torch def _UpperCAmelCase ( self ) -> Optional[int]: # This is highly irregular to have no small tests. self.skipTest('There is not hf-internal-testing tiny model for either GLPN nor DPT' )
645
0
"""simple docstring""" from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
709
"""simple docstring""" import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class UpperCAmelCase_ ( _a): def __init__( self ) -> Any: lowercase__ : Tuple = [] def _UpperCAmelCase ( self , a , a , a , **a ) -> Any: self.events.append('on_init_end' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Optional[int]: self.events.append('on_train_begin' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> List[str]: self.events.append('on_train_end' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> int: self.events.append('on_epoch_begin' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Optional[Any]: self.events.append('on_epoch_end' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> int: self.events.append('on_step_begin' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> str: self.events.append('on_step_end' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> int: self.events.append('on_evaluate' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Tuple: self.events.append('on_predict' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Union[str, Any]: self.events.append('on_save' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> List[str]: self.events.append('on_log' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Any: self.events.append('on_prediction_step' ) @require_torch class UpperCAmelCase_ ( unittest.TestCase): def _UpperCAmelCase ( self ) -> str: lowercase__ : str = tempfile.mkdtemp() def _UpperCAmelCase ( self ) -> Dict: shutil.rmtree(self.output_dir ) def _UpperCAmelCase ( self , a=0 , a=0 , a=6_4 , a=6_4 , a=None , a=False , **a ) -> int: # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. lowercase__ : str = RegressionDataset(length=a ) lowercase__ : Any = RegressionDataset(length=a ) lowercase__ : Optional[Any] = RegressionModelConfig(a=a , b=a ) lowercase__ : Union[str, Any] = RegressionPreTrainedModel(a ) lowercase__ : Tuple = TrainingArguments(self.output_dir , disable_tqdm=a , report_to=[] , **a ) return Trainer( a , a , train_dataset=a , eval_dataset=a , callbacks=a , ) def _UpperCAmelCase ( self , a , a ) -> Union[str, Any]: self.assertEqual(len(a ) , len(a ) ) # Order doesn't matter lowercase__ : Optional[int] = sorted(a , key=lambda a : cb.__name__ if isinstance(a , a ) else cb.__class__.__name__ ) lowercase__ : Tuple = sorted(a , key=lambda a : cb.__name__ if isinstance(a , a ) else cb.__class__.__name__ ) for cba, cba in zip(a , a ): if isinstance(a , a ) and isinstance(a , a ): self.assertEqual(a , a ) elif isinstance(a , a ) and not isinstance(a , a ): self.assertEqual(a , cba.__class__ ) elif not isinstance(a , a ) and isinstance(a , a ): self.assertEqual(cba.__class__ , a ) else: self.assertEqual(a , a ) def _UpperCAmelCase ( self , a ) -> Optional[Any]: lowercase__ : Dict = ['on_init_end', 'on_train_begin'] lowercase__ : List[Any] = 0 lowercase__ : Optional[int] = len(trainer.get_eval_dataloader() ) lowercase__ : Tuple = ['on_prediction_step'] * len(trainer.get_eval_dataloader() ) + ['on_log', 'on_evaluate'] for _ in range(trainer.state.num_train_epochs ): expected_events.append('on_epoch_begin' ) for _ in range(a ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append('on_log' ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append('on_save' ) expected_events.append('on_epoch_end' ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : int = self.get_trainer() lowercase__ : str = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) # Callbacks passed at init are added to the default callbacks lowercase__ : str = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback lowercase__ : List[Any] = self.get_trainer(disable_tqdm=a ) lowercase__ : Optional[Any] = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) def _UpperCAmelCase ( self ) -> Any: lowercase__ : int = DEFAULT_CALLBACKS.copy() + [ProgressCallback] lowercase__ : List[str] = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(a ) expected_callbacks.remove(a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) lowercase__ : Optional[Any] = self.get_trainer() lowercase__ : List[Any] = trainer.pop_callback(a ) self.assertEqual(cb.__class__ , a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) trainer.add_callback(a ) expected_callbacks.insert(0 , a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) # We can also add, pop, or remove by instance lowercase__ : int = self.get_trainer() lowercase__ : List[str] = trainer.callback_handler.callbacks[0] trainer.remove_callback(a ) expected_callbacks.remove(a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) lowercase__ : Tuple = self.get_trainer() lowercase__ : Dict = trainer.callback_handler.callbacks[0] lowercase__ : Union[str, Any] = trainer.pop_callback(a ) self.assertEqual(a , a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) trainer.add_callback(a ) expected_callbacks.insert(0 , a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) def _UpperCAmelCase ( self ) -> Tuple: import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action='ignore' , category=a ) lowercase__ : Optional[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() lowercase__ : Any = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) # Independent log/save/eval lowercase__ : List[str] = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() lowercase__ : int = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) lowercase__ : Union[str, Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() lowercase__ : Union[str, Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) lowercase__ : List[str] = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy='steps' ) trainer.train() lowercase__ : Optional[int] = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) lowercase__ : int = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy='epoch' ) trainer.train() lowercase__ : str = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) # A bit of everything lowercase__ : Any = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=1_0 , eval_steps=5 , evaluation_strategy='steps' , ) trainer.train() lowercase__ : Any = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) # warning should be emitted for duplicated callbacks with patch('transformers.trainer_callback.logger.warning' ) as warn_mock: lowercase__ : str = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(a ) in warn_mock.call_args[0][0]
645
0
"""simple docstring""" from sklearn.metrics import matthews_corrcoef import datasets _UpperCamelCase : Tuple ="\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n" _UpperCamelCase : List[Any] ="\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results['matthews_correlation'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results['matthews_correlation'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results['matthews_correlation'], 2))\n -0.25\n" _UpperCamelCase : int ="\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class UpperCAmelCase_ ( datasets.Metric): def _UpperCAmelCase ( self ) -> Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int32' ), 'references': datasets.Value('int32' ), } ) , reference_urls=[ 'https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html' ] , ) def _UpperCAmelCase ( self , a , a , a=None ) -> str: return { "matthews_correlation": float(matthews_corrcoef(a , a , sample_weight=a ) ), }
710
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _UpperCamelCase : str = { "configuration_gpt_neo": ["GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoConfig", "GPTNeoOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Tuple = [ "GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoForCausalLM", "GPTNeoForQuestionAnswering", "GPTNeoForSequenceClassification", "GPTNeoForTokenClassification", "GPTNeoModel", "GPTNeoPreTrainedModel", "load_tf_weights_in_gpt_neo", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Dict = [ "FlaxGPTNeoForCausalLM", "FlaxGPTNeoModel", "FlaxGPTNeoPreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys _UpperCamelCase : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
645
0
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING _UpperCamelCase : Any = logging.get_logger(__name__) class UpperCAmelCase_ ( _a): lowerCamelCase__ : List[Any] = "upernet" def __init__( self , a=None , a=5_1_2 , a=0.02 , a=[1, 2, 3, 6] , a=True , a=0.4 , a=3_8_4 , a=2_5_6 , a=1 , a=False , a=2_5_5 , **a , ) -> List[Any]: super().__init__(**a ) if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) lowercase__ : Tuple = CONFIG_MAPPING['resnet'](out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) elif isinstance(a , a ): lowercase__ : Any = backbone_config.get('model_type' ) lowercase__ : Any = CONFIG_MAPPING[backbone_model_type] lowercase__ : str = config_class.from_dict(a ) lowercase__ : Optional[Any] = backbone_config lowercase__ : Any = hidden_size lowercase__ : Dict = initializer_range lowercase__ : Tuple = pool_scales lowercase__ : List[Any] = use_auxiliary_head lowercase__ : Any = auxiliary_loss_weight lowercase__ : List[Any] = auxiliary_in_channels lowercase__ : Any = auxiliary_channels lowercase__ : str = auxiliary_num_convs lowercase__ : Tuple = auxiliary_concat_input lowercase__ : List[Any] = loss_ignore_index def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Any = copy.deepcopy(self.__dict__ ) lowercase__ : Union[str, Any] = self.backbone_config.to_dict() lowercase__ : Optional[Any] = self.__class__.model_type return output
711
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class UpperCAmelCase_ ( unittest.TestCase): def _UpperCAmelCase ( self , a ) -> str: for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss'] ): lowercase__ : str = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(a ) def _UpperCAmelCase ( self ) -> int: lowercase__ : Dict = 'sshleifer/tiny-gpt2' lowercase__ : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=a , multi_process=a , ) lowercase__ : str = TensorFlowBenchmark(a ) lowercase__ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> int: lowercase__ : List[str] = 'sgugger/tiny-distilbert-classification' lowercase__ : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , only_pretrain_model=a , ) lowercase__ : Optional[Any] = TensorFlowBenchmark(a ) lowercase__ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : Optional[int] = 'sshleifer/tiny-gpt2' lowercase__ : Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , ) lowercase__ : Optional[Any] = TensorFlowBenchmark(a ) lowercase__ : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : Any = 'sshleifer/tiny-gpt2' lowercase__ : List[Any] = AutoConfig.from_pretrained(a ) lowercase__ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=a , multi_process=a , ) lowercase__ : Tuple = TensorFlowBenchmark(a , [config] ) lowercase__ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> int: lowercase__ : Optional[Any] = 'sshleifer/tiny-gpt2' lowercase__ : List[str] = AutoConfig.from_pretrained(a ) lowercase__ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , ) lowercase__ : List[str] = TensorFlowBenchmark(a , [config] ) lowercase__ : Any = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Optional[Any] = 'sshleifer/tiny-gpt2' lowercase__ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , ) lowercase__ : Optional[Any] = TensorFlowBenchmark(a ) lowercase__ : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _UpperCAmelCase ( self ) -> str: lowercase__ : Optional[Any] = 'sshleifer/tiny-gpt2' lowercase__ : Optional[int] = AutoConfig.from_pretrained(a ) lowercase__ : str = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , ) lowercase__ : str = TensorFlowBenchmark(a , [config] ) lowercase__ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : List[str] = 'patrickvonplaten/t5-tiny-random' lowercase__ : Any = AutoConfig.from_pretrained(a ) lowercase__ : List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , ) lowercase__ : int = TensorFlowBenchmark(a , configs=[config] ) lowercase__ : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU' ) ) == 0 , 'Cannot do xla on CPU.' ) def _UpperCAmelCase ( self ) -> Any: lowercase__ : Any = 'sshleifer/tiny-gpt2' lowercase__ : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , use_xla=a , multi_process=a , ) lowercase__ : Any = TensorFlowBenchmark(a ) lowercase__ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Any = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ : List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=a , save_to_csv=a , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(a , 'inf_time.csv' ) , inference_memory_csv_file=os.path.join(a , 'inf_mem.csv' ) , env_info_csv_file=os.path.join(a , 'env.csv' ) , multi_process=a , ) lowercase__ : Union[str, Any] = TensorFlowBenchmark(a ) benchmark.run() self.assertTrue(Path(os.path.join(a , 'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(a , 'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(a , 'env.csv' ) ).exists() ) def _UpperCAmelCase ( self ) -> Dict: lowercase__ : Tuple = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(a ): self.assertTrue(hasattr(a , 'sequential' ) ) self.assertTrue(hasattr(a , 'cumulative' ) ) self.assertTrue(hasattr(a , 'current' ) ) self.assertTrue(hasattr(a , 'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=a , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(a , 'log.txt' ) , log_print=a , trace_memory_line_by_line=a , eager_mode=a , multi_process=a , ) lowercase__ : Optional[int] = TensorFlowBenchmark(a ) lowercase__ : Optional[Any] = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(a , 'log.txt' ) ).exists() )
645
0
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _UpperCamelCase : int = { "configuration_efficientnet": [ "EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "EfficientNetConfig", "EfficientNetOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Dict = ["EfficientNetImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : int = [ "EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST", "EfficientNetForImageClassification", "EfficientNetModel", "EfficientNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys _UpperCamelCase : str = _LazyModule(__name__, globals()["__file__"], _import_structure)
712
"""simple docstring""" import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class UpperCAmelCase_ ( _a): def __init__( self , a , a=1_3 , a=7 , a=True , a=True , a=False , a=True , a=9_9 , a=3_2 , a=5 , a=4 , a=3_7 , a="gelu" , a=0.1 , a=0.1 , a=5_1_2 , a=1_6 , a=2 , a=0.02 , a=3 , a=4 , a=None , ) -> Any: lowercase__ : Tuple = parent lowercase__ : List[Any] = batch_size lowercase__ : List[Any] = seq_length lowercase__ : List[Any] = is_training lowercase__ : Optional[Any] = use_input_mask lowercase__ : Optional[int] = use_token_type_ids lowercase__ : int = use_labels lowercase__ : Tuple = vocab_size lowercase__ : int = hidden_size lowercase__ : Any = num_hidden_layers lowercase__ : List[str] = num_attention_heads lowercase__ : Optional[Any] = intermediate_size lowercase__ : Optional[Any] = hidden_act lowercase__ : List[str] = hidden_dropout_prob lowercase__ : List[Any] = attention_probs_dropout_prob lowercase__ : List[Any] = max_position_embeddings lowercase__ : List[str] = type_vocab_size lowercase__ : Tuple = type_sequence_label_size lowercase__ : List[Any] = initializer_range lowercase__ : str = num_labels lowercase__ : Tuple = num_choices lowercase__ : str = scope def _UpperCAmelCase ( self ) -> Any: lowercase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ : str = None if self.use_input_mask: lowercase__ : Any = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ : Dict = None lowercase__ : Optional[Any] = None lowercase__ : int = None if self.use_labels: lowercase__ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__ : Dict = ids_tensor([self.batch_size] , self.num_choices ) lowercase__ : List[Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCAmelCase ( self ) -> Optional[int]: return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> Dict: lowercase__ : Tuple = DistilBertModel(config=a ) model.to(a ) model.eval() lowercase__ : Any = model(a , a ) lowercase__ : str = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> Dict: lowercase__ : Optional[int] = DistilBertForMaskedLM(config=a ) model.to(a ) model.eval() lowercase__ : Union[str, Any] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> int: lowercase__ : Tuple = DistilBertForQuestionAnswering(config=a ) model.to(a ) model.eval() lowercase__ : Tuple = model( a , attention_mask=a , start_positions=a , end_positions=a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> List[str]: lowercase__ : int = self.num_labels lowercase__ : Dict = DistilBertForSequenceClassification(a ) model.to(a ) model.eval() lowercase__ : Optional[Any] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> Any: lowercase__ : Any = self.num_labels lowercase__ : List[str] = DistilBertForTokenClassification(config=a ) model.to(a ) model.eval() lowercase__ : Any = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> Tuple: lowercase__ : List[Any] = self.num_choices lowercase__ : Any = DistilBertForMultipleChoice(config=a ) model.to(a ) model.eval() lowercase__ : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ : Optional[int] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ : int = model( a , attention_mask=a , labels=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _UpperCAmelCase ( self ) -> str: lowercase__ : Union[str, Any] = self.prepare_config_and_inputs() ((lowercase__) , (lowercase__) , (lowercase__) , (lowercase__) , (lowercase__) , (lowercase__)) : List[str] = config_and_inputs lowercase__ : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _a , _a , unittest.TestCase): lowerCamelCase__ : List[str] = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) lowerCamelCase__ : str = ( { "feature-extraction": DistilBertModel, "fill-mask": DistilBertForMaskedLM, "question-answering": DistilBertForQuestionAnswering, "text-classification": DistilBertForSequenceClassification, "token-classification": DistilBertForTokenClassification, "zero-shot": DistilBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ : Optional[int] = True lowerCamelCase__ : Any = True lowerCamelCase__ : List[Any] = True lowerCamelCase__ : Optional[Any] = True def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : str = DistilBertModelTester(self ) lowercase__ : int = ConfigTester(self , config_class=a , dim=3_7 ) def _UpperCAmelCase ( self ) -> Dict: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*a ) def _UpperCAmelCase ( self ) -> Any: lowercase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*a ) def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*a ) def _UpperCAmelCase ( self ) -> int: lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*a ) def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*a ) def _UpperCAmelCase ( self ) -> str: lowercase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*a ) @slow def _UpperCAmelCase ( self ) -> str: for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : str = DistilBertModel.from_pretrained(a ) self.assertIsNotNone(a ) @slow @require_torch_gpu def _UpperCAmelCase ( self ) -> Any: lowercase__ , lowercase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return lowercase__ : Optional[int] = True lowercase__ : Union[str, Any] = model_class(config=a ) lowercase__ : int = self._prepare_for_class(a , a ) lowercase__ : Tuple = torch.jit.trace( a , (inputs_dict['input_ids'].to('cpu' ), inputs_dict['attention_mask'].to('cpu' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a , os.path.join(a , 'traced_model.pt' ) ) lowercase__ : Optional[int] = torch.jit.load(os.path.join(a , 'traced_model.pt' ) , map_location=a ) loaded(inputs_dict['input_ids'].to(a ) , inputs_dict['attention_mask'].to(a ) ) @require_torch class UpperCAmelCase_ ( unittest.TestCase): @slow def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : int = DistilBertModel.from_pretrained('distilbert-base-uncased' ) lowercase__ : Union[str, Any] = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) lowercase__ : Optional[Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowercase__ : Optional[Any] = model(a , attention_mask=a )[0] lowercase__ : Tuple = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , a ) lowercase__ : List[Any] = torch.tensor( [[[-0.1_639, 0.3_299, 0.1_648], [-0.1_746, 0.3_289, 0.1_710], [-0.1_884, 0.3_357, 0.1_810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a , atol=1e-4 ) )
645
0
"""simple docstring""" import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class UpperCAmelCase_ ( unittest.TestCase): def __init__( self , a , a=2 , a=5_6 , a=True , a=True , a=True , a=True , a=9_9 , a=3_2 , a=2 , a=2 , a=7 , a="gelu_new" , a=0.1 , a=0.1 , a=5_1_2 , a=1_6 , a=2 , a=0.02 , a=4 , a="block_sparse" , a=True , a=False , a=2 , a=3 , ) -> int: lowercase__ : Tuple = parent lowercase__ : Tuple = batch_size lowercase__ : List[Any] = seq_length lowercase__ : Optional[Any] = is_training lowercase__ : str = use_attention_mask lowercase__ : Union[str, Any] = use_token_type_ids lowercase__ : Dict = use_labels lowercase__ : List[Any] = vocab_size lowercase__ : List[str] = hidden_size lowercase__ : Dict = num_hidden_layers lowercase__ : List[str] = num_attention_heads lowercase__ : Optional[Any] = intermediate_size lowercase__ : List[str] = hidden_act lowercase__ : List[Any] = hidden_dropout_prob lowercase__ : str = attention_probs_dropout_prob lowercase__ : Tuple = max_position_embeddings lowercase__ : List[Any] = type_vocab_size lowercase__ : Tuple = type_sequence_label_size lowercase__ : Dict = initializer_range lowercase__ : Optional[int] = num_choices lowercase__ : List[Any] = rescale_embeddings lowercase__ : Any = attention_type lowercase__ : Optional[int] = use_bias lowercase__ : Optional[Any] = block_size lowercase__ : Any = num_random_blocks def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ : List[str] = None if self.use_attention_mask: lowercase__ : Dict = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ : Union[str, Any] = None if self.use_token_type_ids: lowercase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__ : List[Any] = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def _UpperCAmelCase ( self ) -> int: lowercase__ : Dict = self.prepare_config_and_inputs() lowercase__ : Dict = config_and_inputs lowercase__ : Optional[Any] = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask, } return config, inputs_dict @require_flax class UpperCAmelCase_ ( _a , unittest.TestCase): lowerCamelCase__ : Any = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) lowerCamelCase__ : Union[str, Any] = False lowerCamelCase__ : Dict = False def _UpperCAmelCase ( self ) -> str: lowercase__ : Dict = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def _UpperCAmelCase ( self ) -> List[str]: super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def _UpperCAmelCase ( self ) -> Optional[int]: super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def _UpperCAmelCase ( self ) -> List[Any]: super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def _UpperCAmelCase ( self ) -> str: super().test_hidden_states_output() @slow def _UpperCAmelCase ( self ) -> List[str]: for model_class_name in self.all_model_classes: lowercase__ : int = model_class_name.from_pretrained('google/bigbird-roberta-base' ) self.assertIsNotNone(a ) def _UpperCAmelCase ( self ) -> Any: if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def _UpperCAmelCase ( self ) -> str: lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowercase__ : Optional[int] = self._prepare_for_class(a , a ) lowercase__ : List[str] = model_class(a ) @jax.jit def model_jitted(a , a=None , **a ): return model(input_ids=a , attention_mask=a , **a ) with self.subTest('JIT Enabled' ): lowercase__ : Optional[Any] = model_jitted(**a ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): lowercase__ : List[str] = model_jitted(**a ).to_tuple() self.assertEqual(len(a ) , len(a ) ) for jitted_output, output in zip(a , a ): self.assertEqual(jitted_output.shape , output.shape ) def _UpperCAmelCase ( self , a , a , a , a=1e-5 , a="outputs" , a=None ) -> Optional[Any]: # `bigbird_block_sparse_attention` in `FlaxBigBird` returns `attention_probs = None`, while in PyTorch version, # an effort was done to return `attention_probs` (yet to be verified). if name.startswith('outputs.attentions' ): return else: super().check_pt_flax_outputs(a , a , a , a , a , a )
713
"""simple docstring""" from __future__ import annotations def a_ ( _lowerCAmelCase : float , _lowerCAmelCase : float , _lowerCAmelCase : float , ): '''simple docstring''' if (stress, tangential_force, area).count(0 ) != 1: raise ValueError('You cannot supply more or less than 2 values' ) elif stress < 0: raise ValueError('Stress cannot be negative' ) elif tangential_force < 0: raise ValueError('Tangential Force cannot be negative' ) elif area < 0: raise ValueError('Area cannot be negative' ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
645
0
"""simple docstring""" from __future__ import annotations class UpperCAmelCase_ : def __init__( self , a ) -> Dict: lowercase__ : Optional[Any] = TypeError( 'Matrices must be formed from a list of zero or more lists containing at ' 'least one and the same number of values, each of which must be of type ' 'int or float.' ) if len(a ) != 0: lowercase__ : Optional[int] = len(rows[0] ) if cols == 0: raise error for row in rows: if len(a ) != cols: raise error for value in row: if not isinstance(a , (int, float) ): raise error lowercase__ : Tuple = rows else: lowercase__ : int = [] def _UpperCAmelCase ( self ) -> list[list[int]]: return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )] @property def _UpperCAmelCase ( self ) -> int: return len(self.rows ) @property def _UpperCAmelCase ( self ) -> int: return len(self.rows[0] ) @property def _UpperCAmelCase ( self ) -> tuple[int, int]: return (self.num_rows, self.num_columns) @property def _UpperCAmelCase ( self ) -> bool: return self.order[0] == self.order[1] def _UpperCAmelCase ( self ) -> Matrix: lowercase__ : Any = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows )] for row_num in range(self.num_rows ) ] return Matrix(a ) def _UpperCAmelCase ( self ) -> int: if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0] ) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns ) ) def _UpperCAmelCase ( self ) -> bool: return bool(self.determinant() ) def _UpperCAmelCase ( self , a , a ) -> int: lowercase__ : Optional[Any] = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns ) if other_column != column ] for other_row in range(self.num_rows ) if other_row != row ] return Matrix(a ).determinant() def _UpperCAmelCase ( self , a , a ) -> int: if (row + column) % 2 == 0: return self.get_minor(a , a ) return -1 * self.get_minor(a , a ) def _UpperCAmelCase ( self ) -> Matrix: return Matrix( [ [self.get_minor(a , a ) for column in range(self.num_columns )] for row in range(self.num_rows ) ] ) def _UpperCAmelCase ( self ) -> Matrix: return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns ) ] for row in range(self.minors().num_rows ) ] ) def _UpperCAmelCase ( self ) -> Matrix: lowercase__ : Optional[int] = [ [self.cofactors().rows[column][row] for column in range(self.num_columns )] for row in range(self.num_rows ) ] return Matrix(a ) def _UpperCAmelCase ( self ) -> Matrix: lowercase__ : List[Any] = self.determinant() if not determinant: raise TypeError('Only matrices with a non-zero determinant have an inverse' ) return self.adjugate() * (1 / determinant) def __repr__( self ) -> str: return str(self.rows ) def __str__( self ) -> str: if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0] ) ) + "]]" return ( "[" + "\n ".join( [ '[' + '. '.join([str(a ) for value in row] ) + '.]' for row in self.rows ] ) + "]" ) def _UpperCAmelCase ( self , a , a = None ) -> None: lowercase__ : str = TypeError('Row must be a list containing all ints and/or floats' ) if not isinstance(a , a ): raise type_error for value in row: if not isinstance(a , (int, float) ): raise type_error if len(a ) != self.num_columns: raise ValueError( 'Row must be equal in length to the other rows in the matrix' ) if position is None: self.rows.append(a ) else: lowercase__ : int = self.rows[0:position] + [row] + self.rows[position:] def _UpperCAmelCase ( self , a , a = None ) -> None: lowercase__ : Union[str, Any] = TypeError( 'Column must be a list containing all ints and/or floats' ) if not isinstance(a , a ): raise type_error for value in column: if not isinstance(a , (int, float) ): raise type_error if len(a ) != self.num_rows: raise ValueError( 'Column must be equal in length to the other columns in the matrix' ) if position is None: lowercase__ : Dict = [self.rows[i] + [column[i]] for i in range(self.num_rows )] else: lowercase__ : str = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows ) ] def __eq__( self , a ) -> bool: if not isinstance(a , a ): return NotImplemented return self.rows == other.rows def __ne__( self , a ) -> bool: return not self == other def __neg__( self ) -> Matrix: return self * -1 def __add__( self , a ) -> Matrix: if self.order != other.order: raise ValueError('Addition requires matrices of the same order' ) return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __sub__( self , a ) -> Matrix: if self.order != other.order: raise ValueError('Subtraction requires matrices of the same order' ) return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __mul__( self , a ) -> Matrix: if isinstance(a , (int, float) ): return Matrix( [[int(element * other ) for element in row] for row in self.rows] ) elif isinstance(a , a ): if self.num_columns != other.num_rows: raise ValueError( 'The number of columns in the first matrix must ' 'be equal to the number of rows in the second' ) return Matrix( [ [Matrix.dot_product(a , a ) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( 'A Matrix can only be multiplied by an int, float, or another matrix' ) def __pow__( self , a ) -> Matrix: if not isinstance(a , a ): raise TypeError('A Matrix can only be raised to the power of an int' ) if not self.is_square: raise ValueError('Only square matrices can be raised to a power' ) if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( 'Only invertable matrices can be raised to a negative power' ) lowercase__ : Tuple = self for _ in range(other - 1 ): result *= self return result @classmethod def _UpperCAmelCase ( cls , a , a ) -> int: return sum(row[i] * column[i] for i in range(len(a ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
714
"""simple docstring""" import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase_ : def __init__( self , a , a=1_3 , a=[3_0, 3_0] , a=2 , a=3 , a=True , a=True , a=3_2 , a=5 , a=4 , a=3_7 , a="gelu" , a=0.1 , a=0.1 , a=1_0 , a=0.02 , a=3 , a=None , a=8 , a=1_0 , ) -> Any: lowercase__ : List[str] = parent lowercase__ : Optional[Any] = batch_size lowercase__ : Optional[int] = image_size lowercase__ : List[Any] = patch_size lowercase__ : Optional[Any] = num_channels lowercase__ : str = is_training lowercase__ : Optional[Any] = use_labels lowercase__ : Optional[Any] = hidden_size lowercase__ : Dict = num_hidden_layers lowercase__ : Optional[Any] = num_attention_heads lowercase__ : Dict = intermediate_size lowercase__ : List[Any] = hidden_act lowercase__ : List[Any] = hidden_dropout_prob lowercase__ : Any = attention_probs_dropout_prob lowercase__ : Any = type_sequence_label_size lowercase__ : Dict = initializer_range lowercase__ : Union[str, Any] = num_labels lowercase__ : Tuple = scope lowercase__ : Tuple = n_targets lowercase__ : Optional[int] = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens lowercase__ : Optional[Any] = (image_size[1] // patch_size) * (image_size[0] // patch_size) lowercase__ : Tuple = num_patches + 1 + self.num_detection_tokens def _UpperCAmelCase ( self ) -> Any: lowercase__ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) lowercase__ : Tuple = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) lowercase__ : int = [] for i in range(self.batch_size ): lowercase__ : Optional[Any] = {} lowercase__ : Any = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=a ) lowercase__ : List[str] = torch.rand(self.n_targets , 4 , device=a ) labels.append(a ) lowercase__ : Tuple = self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self ) -> List[Any]: return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def _UpperCAmelCase ( self , a , a , a ) -> int: lowercase__ : List[str] = YolosModel(config=a ) model.to(a ) model.eval() lowercase__ : List[Any] = model(a ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def _UpperCAmelCase ( self , a , a , a ) -> Union[str, Any]: lowercase__ : str = YolosForObjectDetection(a ) model.to(a ) model.eval() lowercase__ : Dict = model(pixel_values=a ) lowercase__ : Tuple = model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) lowercase__ : str = model(pixel_values=a , labels=a ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : int = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Any = config_and_inputs lowercase__ : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _a , _a , unittest.TestCase): lowerCamelCase__ : Optional[int] = (YolosModel, YolosForObjectDetection) if is_torch_available() else () lowerCamelCase__ : List[str] = ( {"feature-extraction": YolosModel, "object-detection": YolosForObjectDetection} if is_torch_available() else {} ) lowerCamelCase__ : List[Any] = False lowerCamelCase__ : Dict = False lowerCamelCase__ : Tuple = False lowerCamelCase__ : Union[str, Any] = False def _UpperCAmelCase ( self , a , a , a=False ) -> Dict: lowercase__ : List[str] = super()._prepare_for_class(a , a , return_labels=a ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": lowercase__ : Optional[Any] = [] for i in range(self.model_tester.batch_size ): lowercase__ : Dict = {} lowercase__ : Dict = torch.ones( size=(self.model_tester.n_targets,) , device=a , dtype=torch.long ) lowercase__ : Optional[Any] = torch.ones( self.model_tester.n_targets , 4 , device=a , dtype=torch.float ) labels.append(a ) lowercase__ : Union[str, Any] = labels return inputs_dict def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : Dict = YolosModelTester(self ) lowercase__ : Optional[int] = ConfigTester(self , config_class=a , has_text_modality=a , hidden_size=3_7 ) def _UpperCAmelCase ( self ) -> str: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Optional[Any]: # YOLOS does not use inputs_embeds pass def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[str] = model_class(a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase__ : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a , nn.Linear ) ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : int = model_class(a ) lowercase__ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Tuple = [*signature.parameters.keys()] lowercase__ : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , a ) def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _UpperCAmelCase ( self ) -> Dict: lowercase__ , lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Dict = True # in YOLOS, the seq_len is different lowercase__ : Tuple = self.model_tester.expected_seq_len for model_class in self.all_model_classes: lowercase__ : Optional[int] = True lowercase__ : str = False lowercase__ : str = True lowercase__ : List[str] = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : Any = model(**self._prepare_for_class(a , a ) ) lowercase__ : str = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase__ : Optional[int] = True lowercase__ : List[Any] = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : Union[str, Any] = model(**self._prepare_for_class(a , a ) ) lowercase__ : List[str] = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowercase__ : Dict = len(a ) # Check attention is always last and order is fine lowercase__ : Any = True lowercase__ : int = True lowercase__ : int = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : Any = model(**self._prepare_for_class(a , a ) ) lowercase__ : Optional[Any] = 1 self.assertEqual(out_len + added_hidden_states , len(a ) ) lowercase__ : Tuple = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def _UpperCAmelCase ( self ) -> List[str]: def check_hidden_states_output(a , a , a ): lowercase__ : str = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : int = model(**self._prepare_for_class(a , a ) ) lowercase__ : int = outputs.hidden_states lowercase__ : Any = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(a ) , a ) # YOLOS has a different seq_length lowercase__ : Optional[int] = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowercase__ , lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Any = True check_hidden_states_output(a , a , a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : List[Any] = True check_hidden_states_output(a , a , a ) def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*a ) @slow def _UpperCAmelCase ( self ) -> Union[str, Any]: for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : int = YolosModel.from_pretrained(a ) self.assertIsNotNone(a ) def a_ ( ): '''simple docstring''' lowercase__ : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase): @cached_property def _UpperCAmelCase ( self ) -> Union[str, Any]: return AutoImageProcessor.from_pretrained('hustvl/yolos-small' ) if is_vision_available() else None @slow def _UpperCAmelCase ( self ) -> int: lowercase__ : Dict = YolosForObjectDetection.from_pretrained('hustvl/yolos-small' ).to(a ) lowercase__ : Tuple = self.default_image_processor lowercase__ : Optional[int] = prepare_img() lowercase__ : int = image_processor(images=a , return_tensors='pt' ).to(a ) # forward pass with torch.no_grad(): lowercase__ : int = model(inputs.pixel_values ) # verify outputs lowercase__ : Tuple = torch.Size((1, 1_0_0, 9_2) ) self.assertEqual(outputs.logits.shape , a ) lowercase__ : Any = torch.tensor( [[-24.0_248, -10.3_024, -14.8_290], [-42.0_392, -16.8_200, -27.4_334], [-27.2_743, -11.8_154, -18.7_148]] , device=a , ) lowercase__ : List[str] = torch.tensor( [[0.2_559, 0.5_455, 0.4_706], [0.2_989, 0.7_279, 0.1_875], [0.7_732, 0.4_017, 0.4_462]] , device=a ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , a , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , a , atol=1e-4 ) ) # verify postprocessing lowercase__ : Optional[Any] = image_processor.post_process_object_detection( a , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] lowercase__ : str = torch.tensor([0.9_994, 0.9_790, 0.9_964, 0.9_972, 0.9_861] ).to(a ) lowercase__ : Any = [7_5, 7_5, 1_7, 6_3, 1_7] lowercase__ : Optional[int] = torch.tensor([335.0_609, 79.3_848, 375.4_216, 187.2_495] ).to(a ) self.assertEqual(len(results['scores'] ) , 5 ) self.assertTrue(torch.allclose(results['scores'] , a , atol=1e-4 ) ) self.assertSequenceEqual(results['labels'].tolist() , a ) self.assertTrue(torch.allclose(results['boxes'][0, :] , a ) )
645
0
"""simple docstring""" import functools from typing import Any def a_ ( _lowerCAmelCase : str , _lowerCAmelCase : list[str] ): '''simple docstring''' if not isinstance(_lowerCAmelCase , _lowerCAmelCase ) or len(_lowerCAmelCase ) == 0: raise ValueError('the string should be not empty string' ) if not isinstance(_lowerCAmelCase , _lowerCAmelCase ) or not all( isinstance(_lowerCAmelCase , _lowerCAmelCase ) and len(_lowerCAmelCase ) > 0 for item in words ): raise ValueError('the words should be a list of non-empty strings' ) # Build trie lowercase__ : dict[str, Any] = {} lowercase__ : str = 'WORD_KEEPER' for word in words: lowercase__ : int = trie for c in word: if c not in trie_node: lowercase__ : Optional[Any] = {} lowercase__ : Tuple = trie_node[c] lowercase__ : Optional[int] = True lowercase__ : Union[str, Any] = len(_lowerCAmelCase ) # Dynamic programming method @functools.cache def is_breakable(_lowerCAmelCase : int ) -> bool: if index == len_string: return True lowercase__ : Union[str, Any] = trie for i in range(_lowerCAmelCase , _lowerCAmelCase ): lowercase__ : Any = trie_node.get(string[i] , _lowerCAmelCase ) if trie_node is None: return False if trie_node.get(_lowerCAmelCase , _lowerCAmelCase ) and is_breakable(i + 1 ): return True return False return is_breakable(0 ) if __name__ == "__main__": import doctest doctest.testmod()
715
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch _UpperCamelCase : int = logging.get_logger(__name__) @dataclass class UpperCAmelCase_ : def __init__( self , a=False , a=False , a=6.0 , a=None , a=False , a=False , a=None , a="fp4" , a=False , **a , ) -> Tuple: lowercase__ : str = load_in_abit lowercase__ : str = load_in_abit lowercase__ : List[str] = llm_inta_threshold lowercase__ : Dict = llm_inta_skip_modules lowercase__ : Tuple = llm_inta_enable_fpaa_cpu_offload lowercase__ : Any = llm_inta_has_fpaa_weight lowercase__ : Any = bnb_abit_quant_type lowercase__ : Dict = bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: lowercase__ : Dict = torch.floataa elif isinstance(a , a ): lowercase__ : Any = getattr(a , a ) elif isinstance(a , torch.dtype ): lowercase__ : Any = bnb_abit_compute_dtype else: raise ValueError('bnb_4bit_compute_dtype must be a string or a torch.dtype' ) self.post_init() def _UpperCAmelCase ( self ) -> str: if not isinstance(self.llm_inta_threshold , a ): raise ValueError('llm_int8_threshold must be a float' ) if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , a ): raise ValueError('llm_int8_skip_modules must be a list of strings' ) if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , a ): raise ValueError('llm_int8_enable_fp32_cpu_offload must be a boolean' ) if not isinstance(self.llm_inta_has_fpaa_weight , a ): raise ValueError('llm_int8_has_fp16_weight must be a boolean' ) if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype ): raise ValueError('bnb_4bit_compute_dtype must be torch.dtype' ) if not isinstance(self.bnb_abit_quant_type , a ): raise ValueError('bnb_4bit_quant_type must be a string' ) if not isinstance(self.bnb_abit_use_double_quant , a ): raise ValueError('bnb_4bit_use_double_quant must be a boolean' ) if self.load_in_abit and not version.parse(importlib.metadata.version('bitsandbytes' ) ) >= version.parse( '0.39.0' ): raise ValueError( '4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version' ) def _UpperCAmelCase ( self ) -> Tuple: return self.load_in_abit or self.load_in_abit def _UpperCAmelCase ( self ) -> List[str]: if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def _UpperCAmelCase ( cls , a , a , **a ) -> Optional[Any]: lowercase__ : List[Any] = cls(**a ) lowercase__ : Union[str, Any] = [] for key, value in kwargs.items(): if hasattr(a , a ): setattr(a , a , a ) to_remove.append(a ) for key in to_remove: kwargs.pop(a , a ) if return_unused_kwargs: return config, kwargs else: return config def _UpperCAmelCase ( self , a ) -> Dict: with open(a , 'w' , encoding='utf-8' ) as writer: lowercase__ : Any = self.to_dict() lowercase__ : str = json.dumps(a , indent=2 , sort_keys=a ) + '\n' writer.write(a ) def _UpperCAmelCase ( self ) -> Dict[str, Any]: lowercase__ : Optional[Any] = copy.deepcopy(self.__dict__ ) lowercase__ : Any = str(output['bnb_4bit_compute_dtype'] ).split('.' )[1] return output def __repr__( self ) -> Dict: return f"""{self.__class__.__name__} {self.to_json_string()}""" def _UpperCAmelCase ( self , a = True ) -> str: if use_diff is True: lowercase__ : List[Any] = self.to_diff_dict() else: lowercase__ : List[str] = self.to_dict() return json.dumps(a , indent=2 , sort_keys=a ) + "\n" def _UpperCAmelCase ( self ) -> Dict[str, Any]: lowercase__ : Tuple = self.to_dict() # get the default config dict lowercase__ : Optional[Any] = BitsAndBytesConfig().to_dict() lowercase__ : int = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: lowercase__ : Optional[int] = value return serializable_config_dict
645
0