code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" from __future__ import annotations class UpperCAmelCase_ : def __init__( self , a , a ) -> Union[str, Any]: lowercase__ , lowercase__ : Any = text, pattern lowercase__ , lowercase__ : List[str] = len(a ), len(a ) def _UpperCAmelCase ( self , a ) -> int: for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def _UpperCAmelCase ( self , a ) -> int: for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def _UpperCAmelCase ( self ) -> list[int]: # searches pattern in text and returns index positions lowercase__ : Union[str, Any] = [] for i in range(self.textLen - self.patLen + 1 ): lowercase__ : Optional[int] = self.mismatch_in_text(a ) if mismatch_index == -1: positions.append(a ) else: lowercase__ : List[str] = self.match_in_pattern(self.text[mismatch_index] ) lowercase__ : List[Any] = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions _UpperCamelCase : int = "ABAABA" _UpperCamelCase : Optional[int] = "AB" _UpperCamelCase : List[str] = BoyerMooreSearch(text, pattern) _UpperCamelCase : Dict = bms.bad_character_heuristic() if len(positions) == 0: print("No match found") else: print("Pattern found in following positions: ") print(positions)
645
"""simple docstring""" import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() _UpperCamelCase : Dict = logging.get_logger(__name__) _UpperCamelCase : List[Any] = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "encoder.layer_norm_for_extract": "layer_norm_for_extract", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "label_embs_concat": "label_embeddings_concat", "mask_emb": "masked_spec_embed", "spk_proj": "speaker_proj", } _UpperCamelCase : List[str] = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "label_embeddings_concat", "speaker_proj", "layer_norm_for_extract", ] def a_ ( _lowerCAmelCase : Any , _lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple ): '''simple docstring''' for attribute in key.split('.' ): lowercase__ : Dict = getattr(_lowerCAmelCase , _lowerCAmelCase ) if weight_type is not None: lowercase__ : Optional[int] = getattr(_lowerCAmelCase , _lowerCAmelCase ).shape else: lowercase__ : Optional[int] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowercase__ : Optional[Any] = value elif weight_type == "weight_g": lowercase__ : Dict = value elif weight_type == "weight_v": lowercase__ : List[str] = value elif weight_type == "bias": lowercase__ : Optional[Any] = value else: lowercase__ : List[str] = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def a_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] ): '''simple docstring''' lowercase__ : Tuple = [] lowercase__ : List[str] = fairseq_model.state_dict() lowercase__ : Union[str, Any] = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): lowercase__ : Optional[int] = False if "conv_layers" in name: load_conv_layer( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , hf_model.config.feat_extract_norm == 'group' , ) lowercase__ : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): lowercase__ : List[Any] = 'unispeech_sat.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('.' )[:-1] ) != key): # special case since naming is very similar continue lowercase__ : int = True if "*" in mapped_key: lowercase__ : Optional[int] = name.split(_lowerCAmelCase )[0].split('.' )[-2] lowercase__ : List[str] = mapped_key.replace('*' , _lowerCAmelCase ) if "weight_g" in name: lowercase__ : List[Any] = 'weight_g' elif "weight_v" in name: lowercase__ : int = 'weight_v' elif "bias" in name: lowercase__ : Dict = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj lowercase__ : Union[str, Any] = 'weight' else: lowercase__ : int = None set_recursively(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) continue if not is_used: unused_weights.append(_lowerCAmelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def a_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : Dict ): '''simple docstring''' lowercase__ : int = full_name.split('conv_layers.' )[-1] lowercase__ : int = name.split('.' ) lowercase__ : int = int(items[0] ) lowercase__ : Dict = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowercase__ : Union[str, Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowercase__ : Optional[int] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) lowercase__ : List[Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) lowercase__ : int = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_lowerCAmelCase ) @torch.no_grad() def a_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : str=None , _lowerCAmelCase : Tuple=True ): '''simple docstring''' if config_path is not None: lowercase__ : Any = UniSpeechSatConfig.from_pretrained(_lowerCAmelCase ) else: lowercase__ : Any = UniSpeechSatConfig() lowercase__ : Union[str, Any] = '' if is_finetuned: lowercase__ : Optional[Any] = UniSpeechSatForCTC(_lowerCAmelCase ) else: lowercase__ : List[Any] = UniSpeechSatForPreTraining(_lowerCAmelCase ) lowercase__ , lowercase__ , lowercase__ : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) lowercase__ : Union[str, Any] = model[0].eval() recursively_load_weights(_lowerCAmelCase , _lowerCAmelCase ) hf_wavavec.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": _UpperCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _UpperCamelCase : str = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
645
1
"""simple docstring""" def a_ ( _lowerCAmelCase : int = 400_0000 ): '''simple docstring''' lowercase__ : Optional[Any] = [0, 1] lowercase__ : Dict = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 lowercase__ : Tuple = 0 for j in range(len(_lowerCAmelCase ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(f'''{solution() = }''')
645
"""simple docstring""" import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class UpperCAmelCase_ : def __init__( self , a , a=1_3 , a=3_2 , a=2 , a=3 , a=1_6 , a=[1, 2, 1] , a=[2, 2, 4] , a=2 , a=2.0 , a=True , a=0.0 , a=0.0 , a=0.1 , a="gelu" , a=False , a=True , a=0.02 , a=1e-5 , a=True , a=None , a=True , a=1_0 , a=8 , a=["stage1", "stage2", "stage3"] , a=[1, 2, 3] , ) -> int: lowercase__ : int = parent lowercase__ : Union[str, Any] = batch_size lowercase__ : Dict = image_size lowercase__ : str = patch_size lowercase__ : Optional[Any] = num_channels lowercase__ : List[str] = embed_dim lowercase__ : Any = depths lowercase__ : Dict = num_heads lowercase__ : List[str] = window_size lowercase__ : int = mlp_ratio lowercase__ : Tuple = qkv_bias lowercase__ : Union[str, Any] = hidden_dropout_prob lowercase__ : str = attention_probs_dropout_prob lowercase__ : Tuple = drop_path_rate lowercase__ : List[str] = hidden_act lowercase__ : Optional[Any] = use_absolute_embeddings lowercase__ : Optional[Any] = patch_norm lowercase__ : Any = layer_norm_eps lowercase__ : List[Any] = initializer_range lowercase__ : List[str] = is_training lowercase__ : int = scope lowercase__ : Optional[int] = use_labels lowercase__ : List[Any] = type_sequence_label_size lowercase__ : List[str] = encoder_stride lowercase__ : Optional[Any] = out_features lowercase__ : Dict = out_indices def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : Optional[Any] = None if self.use_labels: lowercase__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ : Tuple = self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self ) -> Union[str, Any]: return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def _UpperCAmelCase ( self , a , a , a ) -> Dict: lowercase__ : Tuple = MaskFormerSwinModel(config=a ) model.to(a ) model.eval() lowercase__ : str = model(a ) lowercase__ : str = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowercase__ : Dict = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def _UpperCAmelCase ( self , a , a , a ) -> Optional[int]: lowercase__ : List[Any] = MaskFormerSwinBackbone(config=a ) model.to(a ) model.eval() lowercase__ : int = model(a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [1_3, 1_6, 1_6, 1_6] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [1_6, 3_2, 6_4] ) # verify ValueError with self.parent.assertRaises(a ): lowercase__ : Dict = ['stem'] lowercase__ : List[str] = MaskFormerSwinBackbone(config=a ) def _UpperCAmelCase ( self ) -> str: lowercase__ : int = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Tuple = config_and_inputs lowercase__ : Union[str, Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _a , _a , unittest.TestCase): lowerCamelCase__ : Optional[int] = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) lowerCamelCase__ : List[str] = {"feature-extraction": MaskFormerSwinModel} if is_torch_available() else {} lowerCamelCase__ : str = False lowerCamelCase__ : Dict = False lowerCamelCase__ : Any = False lowerCamelCase__ : Dict = False lowerCamelCase__ : int = False def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : str = MaskFormerSwinModelTester(self ) lowercase__ : Tuple = ConfigTester(self , config_class=a , embed_dim=3_7 ) @require_torch_multi_gpu @unittest.skip( reason=( '`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with' ' `nn.DataParallel`' ) ) def _UpperCAmelCase ( self ) -> Optional[int]: pass def _UpperCAmelCase ( self ) -> Tuple: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _UpperCAmelCase ( self ) -> str: return def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*a ) @unittest.skip('Swin does not use inputs_embeds' ) def _UpperCAmelCase ( self ) -> Tuple: pass @unittest.skip('Swin does not support feedforward chunking' ) def _UpperCAmelCase ( self ) -> Tuple: pass def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[str] = model_class(a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase__ : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a , nn.Linear ) ) def _UpperCAmelCase ( self ) -> str: lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Any = model_class(a ) lowercase__ : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Optional[Any] = [*signature.parameters.keys()] lowercase__ : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , a ) @unittest.skip(reason='MaskFormerSwin is only used as backbone and doesn\'t support output_attentions' ) def _UpperCAmelCase ( self ) -> List[Any]: pass @unittest.skip(reason='MaskFormerSwin is only used as an internal backbone' ) def _UpperCAmelCase ( self ) -> int: pass def _UpperCAmelCase ( self , a , a , a , a ) -> Tuple: lowercase__ : Dict = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : str = model(**self._prepare_for_class(a , a ) ) lowercase__ : List[Any] = outputs.hidden_states lowercase__ : str = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(a ) , a ) # Swin has a different seq_length lowercase__ : Dict = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase__ : Tuple = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ , lowercase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : List[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: lowercase__ : List[str] = True self.check_hidden_states_output(a , a , a , a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : List[str] = True self.check_hidden_states_output(a , a , a , a ) def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Union[str, Any] = 3 lowercase__ : str = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowercase__ : Tuple = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase__ : Optional[int] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowercase__ : List[str] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: lowercase__ : List[str] = True self.check_hidden_states_output(a , a , a , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : int = True self.check_hidden_states_output(a , a , a , (padded_height, padded_width) ) @unittest.skip(reason='MaskFormerSwin doesn\'t have pretrained checkpoints' ) def _UpperCAmelCase ( self ) -> Optional[int]: pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def _UpperCAmelCase ( self ) -> Any: pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def _UpperCAmelCase ( self ) -> Any: pass def _UpperCAmelCase ( self ) -> Any: lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(a ): lowercase__ : Union[str, Any] = 0 return t def check_equivalence(a , a , a , a={} ): with torch.no_grad(): lowercase__ : Optional[Any] = model(**a , return_dict=a , **a ) lowercase__ : Optional[int] = model(**a , return_dict=a , **a ).to_tuple() def recursive_check(a , a ): if isinstance(a , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(a , a ): recursive_check(a , a ) elif isinstance(a , a ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(a , a ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(a ) , set_nan_tensor_to_zero(a ) , atol=1e-5 ) , msg=( 'Tuple and dict output are not equal. Difference:' f""" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:""" f""" {torch.isnan(a ).any()} and `inf`: {torch.isinf(a )}. Dict has""" f""" `nan`: {torch.isnan(a ).any()} and `inf`: {torch.isinf(a )}.""" ) , ) recursive_check(a , a ) for model_class in self.all_model_classes: lowercase__ : Any = model_class(a ) model.to(a ) model.eval() lowercase__ : Tuple = self._prepare_for_class(a , a ) lowercase__ : Optional[Any] = self._prepare_for_class(a , a ) check_equivalence(a , a , a ) lowercase__ : Any = self._prepare_for_class(a , a , return_labels=a ) lowercase__ : List[Any] = self._prepare_for_class(a , a , return_labels=a ) check_equivalence(a , a , a ) lowercase__ : Any = self._prepare_for_class(a , a ) lowercase__ : int = self._prepare_for_class(a , a ) check_equivalence(a , a , a , {'output_hidden_states': True} ) lowercase__ : Dict = self._prepare_for_class(a , a , return_labels=a ) lowercase__ : Optional[int] = self._prepare_for_class(a , a , return_labels=a ) check_equivalence(a , a , a , {'output_hidden_states': True} ) @require_torch class UpperCAmelCase_ ( unittest.TestCase , _a): lowerCamelCase__ : Dict = (MaskFormerSwinBackbone,) if is_torch_available() else () lowerCamelCase__ : Optional[int] = MaskFormerSwinConfig def _UpperCAmelCase ( self ) -> Dict: lowercase__ : Optional[int] = MaskFormerSwinModelTester(self ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : int = inputs_dict['pixel_values'].shape[0] for backbone_class in self.all_model_classes: lowercase__ : Optional[Any] = backbone_class(a ) backbone.to(a ) backbone.eval() lowercase__ : Union[str, Any] = backbone(**a ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , a ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True lowercase__ : List[str] = backbone(**a , output_hidden_states=a ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) lowercase__ , lowercase__ , lowercase__ : int = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: lowercase__ : List[Any] = backbone(**a , output_attentions=a ) self.assertIsNotNone(outputs.attentions )
645
1
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class UpperCAmelCase_ ( unittest.TestCase): def __init__( self , a , a=7 , a=3 , a=1_8 , a=3_0 , a=4_0_0 , a=True , a=None , a=True , a=None , a=True , ) -> List[str]: lowercase__ : Tuple = size if size is not None else {'shortest_edge': 2_0} lowercase__ : Union[str, Any] = crop_size if crop_size is not None else {'height': 1_8, 'width': 1_8} lowercase__ : Optional[int] = parent lowercase__ : Optional[int] = batch_size lowercase__ : str = num_channels lowercase__ : Any = image_size lowercase__ : Optional[Any] = min_resolution lowercase__ : int = max_resolution lowercase__ : List[Any] = do_resize lowercase__ : List[str] = size lowercase__ : str = do_center_crop lowercase__ : List[Any] = crop_size lowercase__ : Union[str, Any] = do_flip_channel_order def _UpperCAmelCase ( self ) -> int: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class UpperCAmelCase_ ( _a , unittest.TestCase): lowerCamelCase__ : Optional[Any] = MobileViTImageProcessor if is_vision_available() else None def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : Tuple = MobileViTImageProcessingTester(self ) @property def _UpperCAmelCase ( self ) -> int: return self.image_processor_tester.prepare_image_processor_dict() def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a , 'do_resize' ) ) self.assertTrue(hasattr(a , 'size' ) ) self.assertTrue(hasattr(a , 'do_center_crop' ) ) self.assertTrue(hasattr(a , 'center_crop' ) ) self.assertTrue(hasattr(a , 'do_flip_channel_order' ) ) def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 2_0} ) self.assertEqual(image_processor.crop_size , {'height': 1_8, 'width': 1_8} ) lowercase__ : str = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {'shortest_edge': 4_2} ) self.assertEqual(image_processor.crop_size , {'height': 8_4, 'width': 8_4} ) def _UpperCAmelCase ( self ) -> Tuple: pass def _UpperCAmelCase ( self ) -> str: # Initialize image_processing lowercase__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a ) for image in image_inputs: self.assertIsInstance(a , Image.Image ) # Test not batched input lowercase__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowercase__ : List[Any] = image_processing(a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def _UpperCAmelCase ( self ) -> Tuple: # Initialize image_processing lowercase__ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , numpify=a ) for image in image_inputs: self.assertIsInstance(a , np.ndarray ) # Test not batched input lowercase__ : List[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowercase__ : Any = image_processing(a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def _UpperCAmelCase ( self ) -> Dict: # Initialize image_processing lowercase__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , torchify=a ) for image in image_inputs: self.assertIsInstance(a , torch.Tensor ) # Test not batched input lowercase__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowercase__ : Tuple = image_processing(a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
645
"""simple docstring""" import math def a_ ( _lowerCAmelCase : int = 100 ): '''simple docstring''' lowercase__ : Union[str, Any] = sum(i * i for i in range(1 , n + 1 ) ) lowercase__ : str = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f'''{solution() = }''')
645
1
"""simple docstring""" from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal _UpperCamelCase : str = logging.get_logger(__name__) _UpperCamelCase : Optional[int] = TypeVar("DatasetType", Dataset, IterableDataset) def a_ ( _lowerCAmelCase : List[DatasetType] , _lowerCAmelCase : Optional[List[float]] = None , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : Optional[DatasetInfo] = None , _lowerCAmelCase : Optional[NamedSplit] = None , _lowerCAmelCase : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ): '''simple docstring''' from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('Unable to interleave an empty list of datasets.' ) for i, dataset in enumerate(_lowerCAmelCase ): if not isinstance(_lowerCAmelCase , (Dataset, IterableDataset) ): if isinstance(_lowerCAmelCase , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ 'is an empty dataset dictionary.' ) raise ValueError( f"""Dataset at position {i} has at least one split: {list(_lowerCAmelCase )}\n""" f"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(_lowerCAmelCase ) )}']""" ) raise ValueError( f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_lowerCAmelCase ).__name__}.""" ) if i == 0: lowercase__ , lowercase__ : Union[str, Any] = ( (Dataset, IterableDataset) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else (IterableDataset, Dataset) ) elif not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise ValueError( f"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(f"""{stopping_strategy} is not supported. Please enter a valid stopping_strategy.""" ) if dataset_type is Dataset: return _interleave_map_style_datasets( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , info=_lowerCAmelCase , split=_lowerCAmelCase , stopping_strategy=_lowerCAmelCase ) else: return _interleave_iterable_datasets( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , info=_lowerCAmelCase , split=_lowerCAmelCase , stopping_strategy=_lowerCAmelCase ) def a_ ( _lowerCAmelCase : List[DatasetType] , _lowerCAmelCase : Optional[DatasetInfo] = None , _lowerCAmelCase : Optional[NamedSplit] = None , _lowerCAmelCase : int = 0 , ): '''simple docstring''' if not dsets: raise ValueError('Unable to concatenate an empty list of datasets.' ) for i, dataset in enumerate(_lowerCAmelCase ): if not isinstance(_lowerCAmelCase , (Dataset, IterableDataset) ): if isinstance(_lowerCAmelCase , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ 'is an empty dataset dictionary.' ) raise ValueError( f"""Dataset at position {i} has at least one split: {list(_lowerCAmelCase )}\n""" f"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(_lowerCAmelCase ) )}']""" ) raise ValueError( f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_lowerCAmelCase ).__name__}.""" ) if i == 0: lowercase__ , lowercase__ : Dict = ( (Dataset, IterableDataset) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else (IterableDataset, Dataset) ) elif not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise ValueError( f"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if dataset_type is Dataset: return _concatenate_map_style_datasets(_lowerCAmelCase , info=_lowerCAmelCase , split=_lowerCAmelCase , axis=_lowerCAmelCase ) else: return _concatenate_iterable_datasets(_lowerCAmelCase , info=_lowerCAmelCase , split=_lowerCAmelCase , axis=_lowerCAmelCase )
645
"""simple docstring""" import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class UpperCAmelCase_ ( unittest.TestCase): def _UpperCAmelCase ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() def _UpperCAmelCase ( self ) -> Tuple: lowercase__ , lowercase__ : str = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-canny' , from_pt=a , dtype=jnp.bfloataa ) lowercase__ , lowercase__ : List[str] = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , controlnet=a , from_pt=a , dtype=jnp.bfloataa ) lowercase__ : List[Any] = controlnet_params lowercase__ : int = 'bird' lowercase__ : List[Any] = jax.device_count() lowercase__ : Dict = pipe.prepare_text_inputs([prompts] * num_samples ) lowercase__ : Union[str, Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png' ) lowercase__ : Optional[int] = pipe.prepare_image_inputs([canny_image] * num_samples ) lowercase__ : List[Any] = jax.random.PRNGKey(0 ) lowercase__ : Tuple = jax.random.split(a , jax.device_count() ) lowercase__ : str = replicate(a ) lowercase__ : List[str] = shard(a ) lowercase__ : Dict = shard(a ) lowercase__ : List[Any] = pipe( prompt_ids=a , image=a , params=a , prng_seed=a , num_inference_steps=5_0 , jit=a , ).images assert images.shape == (jax.device_count(), 1, 7_6_8, 5_1_2, 3) lowercase__ : Any = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowercase__ : Tuple = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] lowercase__ : int = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowercase__ : Optional[Any] = jnp.array( [0.167_969, 0.116_699, 0.081_543, 0.154_297, 0.132_812, 0.108_887, 0.169_922, 0.169_922, 0.205_078] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def _UpperCAmelCase ( self ) -> List[str]: lowercase__ , lowercase__ : int = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-openpose' , from_pt=a , dtype=jnp.bfloataa ) lowercase__ , lowercase__ : Optional[Any] = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , controlnet=a , from_pt=a , dtype=jnp.bfloataa ) lowercase__ : Optional[Any] = controlnet_params lowercase__ : List[Any] = 'Chef in the kitchen' lowercase__ : List[str] = jax.device_count() lowercase__ : Dict = pipe.prepare_text_inputs([prompts] * num_samples ) lowercase__ : Optional[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png' ) lowercase__ : Optional[int] = pipe.prepare_image_inputs([pose_image] * num_samples ) lowercase__ : List[str] = jax.random.PRNGKey(0 ) lowercase__ : str = jax.random.split(a , jax.device_count() ) lowercase__ : Optional[Any] = replicate(a ) lowercase__ : Optional[Any] = shard(a ) lowercase__ : List[Any] = shard(a ) lowercase__ : List[Any] = pipe( prompt_ids=a , image=a , params=a , prng_seed=a , num_inference_steps=5_0 , jit=a , ).images assert images.shape == (jax.device_count(), 1, 7_6_8, 5_1_2, 3) lowercase__ : Union[str, Any] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowercase__ : List[str] = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] lowercase__ : Optional[int] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowercase__ : str = jnp.array( [[0.271_484, 0.261_719, 0.275_391, 0.277_344, 0.279_297, 0.291_016, 0.294_922, 0.302_734, 0.302_734]] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
645
1
"""simple docstring""" from __future__ import annotations class UpperCAmelCase_ : def __init__( self , a ) -> Dict: lowercase__ : Optional[Any] = TypeError( 'Matrices must be formed from a list of zero or more lists containing at ' 'least one and the same number of values, each of which must be of type ' 'int or float.' ) if len(a ) != 0: lowercase__ : Optional[int] = len(rows[0] ) if cols == 0: raise error for row in rows: if len(a ) != cols: raise error for value in row: if not isinstance(a , (int, float) ): raise error lowercase__ : Tuple = rows else: lowercase__ : int = [] def _UpperCAmelCase ( self ) -> list[list[int]]: return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )] @property def _UpperCAmelCase ( self ) -> int: return len(self.rows ) @property def _UpperCAmelCase ( self ) -> int: return len(self.rows[0] ) @property def _UpperCAmelCase ( self ) -> tuple[int, int]: return (self.num_rows, self.num_columns) @property def _UpperCAmelCase ( self ) -> bool: return self.order[0] == self.order[1] def _UpperCAmelCase ( self ) -> Matrix: lowercase__ : Any = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows )] for row_num in range(self.num_rows ) ] return Matrix(a ) def _UpperCAmelCase ( self ) -> int: if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0] ) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns ) ) def _UpperCAmelCase ( self ) -> bool: return bool(self.determinant() ) def _UpperCAmelCase ( self , a , a ) -> int: lowercase__ : Optional[Any] = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns ) if other_column != column ] for other_row in range(self.num_rows ) if other_row != row ] return Matrix(a ).determinant() def _UpperCAmelCase ( self , a , a ) -> int: if (row + column) % 2 == 0: return self.get_minor(a , a ) return -1 * self.get_minor(a , a ) def _UpperCAmelCase ( self ) -> Matrix: return Matrix( [ [self.get_minor(a , a ) for column in range(self.num_columns )] for row in range(self.num_rows ) ] ) def _UpperCAmelCase ( self ) -> Matrix: return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns ) ] for row in range(self.minors().num_rows ) ] ) def _UpperCAmelCase ( self ) -> Matrix: lowercase__ : Optional[int] = [ [self.cofactors().rows[column][row] for column in range(self.num_columns )] for row in range(self.num_rows ) ] return Matrix(a ) def _UpperCAmelCase ( self ) -> Matrix: lowercase__ : List[Any] = self.determinant() if not determinant: raise TypeError('Only matrices with a non-zero determinant have an inverse' ) return self.adjugate() * (1 / determinant) def __repr__( self ) -> str: return str(self.rows ) def __str__( self ) -> str: if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0] ) ) + "]]" return ( "[" + "\n ".join( [ '[' + '. '.join([str(a ) for value in row] ) + '.]' for row in self.rows ] ) + "]" ) def _UpperCAmelCase ( self , a , a = None ) -> None: lowercase__ : str = TypeError('Row must be a list containing all ints and/or floats' ) if not isinstance(a , a ): raise type_error for value in row: if not isinstance(a , (int, float) ): raise type_error if len(a ) != self.num_columns: raise ValueError( 'Row must be equal in length to the other rows in the matrix' ) if position is None: self.rows.append(a ) else: lowercase__ : int = self.rows[0:position] + [row] + self.rows[position:] def _UpperCAmelCase ( self , a , a = None ) -> None: lowercase__ : Union[str, Any] = TypeError( 'Column must be a list containing all ints and/or floats' ) if not isinstance(a , a ): raise type_error for value in column: if not isinstance(a , (int, float) ): raise type_error if len(a ) != self.num_rows: raise ValueError( 'Column must be equal in length to the other columns in the matrix' ) if position is None: lowercase__ : Dict = [self.rows[i] + [column[i]] for i in range(self.num_rows )] else: lowercase__ : str = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows ) ] def __eq__( self , a ) -> bool: if not isinstance(a , a ): return NotImplemented return self.rows == other.rows def __ne__( self , a ) -> bool: return not self == other def __neg__( self ) -> Matrix: return self * -1 def __add__( self , a ) -> Matrix: if self.order != other.order: raise ValueError('Addition requires matrices of the same order' ) return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __sub__( self , a ) -> Matrix: if self.order != other.order: raise ValueError('Subtraction requires matrices of the same order' ) return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __mul__( self , a ) -> Matrix: if isinstance(a , (int, float) ): return Matrix( [[int(element * other ) for element in row] for row in self.rows] ) elif isinstance(a , a ): if self.num_columns != other.num_rows: raise ValueError( 'The number of columns in the first matrix must ' 'be equal to the number of rows in the second' ) return Matrix( [ [Matrix.dot_product(a , a ) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( 'A Matrix can only be multiplied by an int, float, or another matrix' ) def __pow__( self , a ) -> Matrix: if not isinstance(a , a ): raise TypeError('A Matrix can only be raised to the power of an int' ) if not self.is_square: raise ValueError('Only square matrices can be raised to a power' ) if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( 'Only invertable matrices can be raised to a negative power' ) lowercase__ : Tuple = self for _ in range(other - 1 ): result *= self return result @classmethod def _UpperCAmelCase ( cls , a , a ) -> int: return sum(row[i] * column[i] for i in range(len(a ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
645
"""simple docstring""" from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
645
1
"""simple docstring""" import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='session' ) def a_ ( ): '''simple docstring''' lowercase__ : Optional[int] = 10 lowercase__ : Union[str, Any] = datasets.Features( { 'tokens': datasets.Sequence(datasets.Value('string' ) ), 'labels': datasets.Sequence(datasets.ClassLabel(names=['negative', 'positive'] ) ), 'answers': datasets.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), 'id': datasets.Value('int64' ), } ) lowercase__ : str = datasets.Dataset.from_dict( { 'tokens': [['foo'] * 5] * n, 'labels': [[1] * 5] * n, 'answers': [{'answer_start': [97], 'text': ['1976']}] * 10, 'id': list(range(_lowerCAmelCase ) ), } , features=_lowerCAmelCase , ) return dataset @pytest.fixture(scope='session' ) def a_ ( _lowerCAmelCase : str , _lowerCAmelCase : Union[str, Any] ): '''simple docstring''' lowercase__ : Any = str(tmp_path_factory.mktemp('data' ) / 'file.arrow' ) dataset.map(cache_file_name=_lowerCAmelCase ) return filename # FILE_CONTENT + files _UpperCamelCase : List[str] = "\\n Text data.\n Second line of data." @pytest.fixture(scope='session' ) def a_ ( _lowerCAmelCase : Dict ): '''simple docstring''' lowercase__ : str = tmp_path_factory.mktemp('data' ) / 'file.txt' lowercase__ : str = FILE_CONTENT with open(_lowerCAmelCase , 'w' ) as f: f.write(_lowerCAmelCase ) return filename @pytest.fixture(scope='session' ) def a_ ( _lowerCAmelCase : Optional[int] ): '''simple docstring''' import bza lowercase__ : Optional[Any] = tmp_path_factory.mktemp('data' ) / 'file.txt.bz2' lowercase__ : int = bytes(_lowerCAmelCase , 'utf-8' ) with bza.open(_lowerCAmelCase , 'wb' ) as f: f.write(_lowerCAmelCase ) return path @pytest.fixture(scope='session' ) def a_ ( _lowerCAmelCase : Union[str, Any] ): '''simple docstring''' import gzip lowercase__ : Any = str(tmp_path_factory.mktemp('data' ) / 'file.txt.gz' ) lowercase__ : int = bytes(_lowerCAmelCase , 'utf-8' ) with gzip.open(_lowerCAmelCase , 'wb' ) as f: f.write(_lowerCAmelCase ) return path @pytest.fixture(scope='session' ) def a_ ( _lowerCAmelCase : Optional[Any] ): '''simple docstring''' if datasets.config.LZ4_AVAILABLE: import lza.frame lowercase__ : str = tmp_path_factory.mktemp('data' ) / 'file.txt.lz4' lowercase__ : Union[str, Any] = bytes(_lowerCAmelCase , 'utf-8' ) with lza.frame.open(_lowerCAmelCase , 'wb' ) as f: f.write(_lowerCAmelCase ) return path @pytest.fixture(scope='session' ) def a_ ( _lowerCAmelCase : str , _lowerCAmelCase : int ): '''simple docstring''' if datasets.config.PY7ZR_AVAILABLE: import pyazr lowercase__ : str = tmp_path_factory.mktemp('data' ) / 'file.txt.7z' with pyazr.SevenZipFile(_lowerCAmelCase , 'w' ) as archive: archive.write(_lowerCAmelCase , arcname=os.path.basename(_lowerCAmelCase ) ) return path @pytest.fixture(scope='session' ) def a_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[str] ): '''simple docstring''' import tarfile lowercase__ : Optional[Any] = tmp_path_factory.mktemp('data' ) / 'file.txt.tar' with tarfile.TarFile(_lowerCAmelCase , 'w' ) as f: f.add(_lowerCAmelCase , arcname=os.path.basename(_lowerCAmelCase ) ) return path @pytest.fixture(scope='session' ) def a_ ( _lowerCAmelCase : Any ): '''simple docstring''' import lzma lowercase__ : List[str] = tmp_path_factory.mktemp('data' ) / 'file.txt.xz' lowercase__ : str = bytes(_lowerCAmelCase , 'utf-8' ) with lzma.open(_lowerCAmelCase , 'wb' ) as f: f.write(_lowerCAmelCase ) return path @pytest.fixture(scope='session' ) def a_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] ): '''simple docstring''' import zipfile lowercase__ : Any = tmp_path_factory.mktemp('data' ) / 'file.txt.zip' with zipfile.ZipFile(_lowerCAmelCase , 'w' ) as f: f.write(_lowerCAmelCase , arcname=os.path.basename(_lowerCAmelCase ) ) return path @pytest.fixture(scope='session' ) def a_ ( _lowerCAmelCase : Union[str, Any] ): '''simple docstring''' if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd lowercase__ : int = tmp_path_factory.mktemp('data' ) / 'file.txt.zst' lowercase__ : Union[str, Any] = bytes(_lowerCAmelCase , 'utf-8' ) with zstd.open(_lowerCAmelCase , 'wb' ) as f: f.write(_lowerCAmelCase ) return path @pytest.fixture(scope='session' ) def a_ ( _lowerCAmelCase : Dict ): '''simple docstring''' lowercase__ : str = tmp_path_factory.mktemp('data' ) / 'file.xml' lowercase__ : int = textwrap.dedent( '\\n <?xml version="1.0" encoding="UTF-8" ?>\n <tmx version="1.4">\n <header segtype="sentence" srclang="ca" />\n <body>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang="en"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang="en"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang="en"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang="en"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang="en"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>' ) with open(_lowerCAmelCase , 'w' ) as f: f.write(_lowerCAmelCase ) return filename _UpperCamelCase : Tuple = [ {"col_1": "0", "col_2": 0, "col_3": 0.0}, {"col_1": "1", "col_2": 1, "col_3": 1.0}, {"col_1": "2", "col_2": 2, "col_3": 2.0}, {"col_1": "3", "col_2": 3, "col_3": 3.0}, ] _UpperCamelCase : List[str] = [ {"col_1": "4", "col_2": 4, "col_3": 4.0}, {"col_1": "5", "col_2": 5, "col_3": 5.0}, ] _UpperCamelCase : int = { "col_1": ["0", "1", "2", "3"], "col_2": [0, 1, 2, 3], "col_3": [0.0, 1.0, 2.0, 3.0], } _UpperCamelCase : List[str] = [ {"col_3": 0.0, "col_1": "0", "col_2": 0}, {"col_3": 1.0, "col_1": "1", "col_2": 1}, ] _UpperCamelCase : Tuple = [ {"col_1": "s0", "col_2": 0, "col_3": 0.0}, {"col_1": "s1", "col_2": 1, "col_3": 1.0}, {"col_1": "s2", "col_2": 2, "col_3": 2.0}, {"col_1": "s3", "col_2": 3, "col_3": 3.0}, ] @pytest.fixture(scope='session' ) def a_ ( ): '''simple docstring''' return DATA_DICT_OF_LISTS @pytest.fixture(scope='session' ) def a_ ( _lowerCAmelCase : List[str] ): '''simple docstring''' lowercase__ : Dict = datasets.Dataset.from_dict(_lowerCAmelCase ) lowercase__ : Union[str, Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.arrow' ) dataset.map(cache_file_name=_lowerCAmelCase ) return path @pytest.fixture(scope='session' ) def a_ ( _lowerCAmelCase : Any ): '''simple docstring''' lowercase__ : Optional[Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.sqlite' ) with contextlib.closing(sqlitea.connect(_lowerCAmelCase ) ) as con: lowercase__ : Union[str, Any] = con.cursor() cur.execute('CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)' ) for item in DATA: cur.execute('INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)' , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope='session' ) def a_ ( _lowerCAmelCase : Optional[int] ): '''simple docstring''' lowercase__ : str = str(tmp_path_factory.mktemp('data' ) / 'dataset.csv' ) with open(_lowerCAmelCase , 'w' , newline='' ) as f: lowercase__ : List[Any] = csv.DictWriter(_lowerCAmelCase , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(_lowerCAmelCase ) return path @pytest.fixture(scope='session' ) def a_ ( _lowerCAmelCase : Union[str, Any] ): '''simple docstring''' lowercase__ : Optional[int] = str(tmp_path_factory.mktemp('data' ) / 'dataset2.csv' ) with open(_lowerCAmelCase , 'w' , newline='' ) as f: lowercase__ : List[str] = csv.DictWriter(_lowerCAmelCase , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(_lowerCAmelCase ) return path @pytest.fixture(scope='session' ) def a_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int] ): '''simple docstring''' import bza lowercase__ : Union[str, Any] = tmp_path_factory.mktemp('data' ) / 'dataset.csv.bz2' with open(_lowerCAmelCase , 'rb' ) as f: lowercase__ : Tuple = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(_lowerCAmelCase , 'wb' ) as f: f.write(_lowerCAmelCase ) return path @pytest.fixture(scope='session' ) def a_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Dict ): '''simple docstring''' lowercase__ : List[str] = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(_lowerCAmelCase , 'w' ) as f: f.write(_lowerCAmelCase , arcname=os.path.basename(_lowerCAmelCase ) ) f.write(_lowerCAmelCase , arcname=os.path.basename(_lowerCAmelCase ) ) return path @pytest.fixture(scope='session' ) def a_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] ): '''simple docstring''' lowercase__ : Union[str, Any] = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(_lowerCAmelCase , 'w' ) as f: f.write(_lowerCAmelCase , arcname=os.path.basename(csv_path.replace('.csv' , '.CSV' ) ) ) f.write(_lowerCAmelCase , arcname=os.path.basename(csva_path.replace('.csv' , '.CSV' ) ) ) return path @pytest.fixture(scope='session' ) def a_ ( _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : int ): '''simple docstring''' lowercase__ : str = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.csv.zip' with zipfile.ZipFile(_lowerCAmelCase , 'w' ) as f: f.write(_lowerCAmelCase , arcname=os.path.join('main_dir' , os.path.basename(_lowerCAmelCase ) ) ) f.write(_lowerCAmelCase , arcname=os.path.join('main_dir' , os.path.basename(_lowerCAmelCase ) ) ) return path @pytest.fixture(scope='session' ) def a_ ( _lowerCAmelCase : str ): '''simple docstring''' lowercase__ : Optional[Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.parquet' ) lowercase__ : List[str] = pa.schema( { 'col_1': pa.string(), 'col_2': pa.intaa(), 'col_3': pa.floataa(), } ) with open(_lowerCAmelCase , 'wb' ) as f: lowercase__ : Optional[int] = pq.ParquetWriter(_lowerCAmelCase , schema=_lowerCAmelCase ) lowercase__ : int = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(_lowerCAmelCase ) )] for k in DATA[0]} , schema=_lowerCAmelCase ) writer.write_table(_lowerCAmelCase ) writer.close() return path @pytest.fixture(scope='session' ) def a_ ( _lowerCAmelCase : Optional[Any] ): '''simple docstring''' lowercase__ : int = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) lowercase__ : List[str] = {'data': DATA} with open(_lowerCAmelCase , 'w' ) as f: json.dump(_lowerCAmelCase , _lowerCAmelCase ) return path @pytest.fixture(scope='session' ) def a_ ( _lowerCAmelCase : Dict ): '''simple docstring''' lowercase__ : List[Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) lowercase__ : List[str] = {'data': DATA_DICT_OF_LISTS} with open(_lowerCAmelCase , 'w' ) as f: json.dump(_lowerCAmelCase , _lowerCAmelCase ) return path @pytest.fixture(scope='session' ) def a_ ( _lowerCAmelCase : int ): '''simple docstring''' lowercase__ : List[Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl' ) with open(_lowerCAmelCase , 'w' ) as f: for item in DATA: f.write(json.dumps(_lowerCAmelCase ) + '\n' ) return path @pytest.fixture(scope='session' ) def a_ ( _lowerCAmelCase : List[Any] ): '''simple docstring''' lowercase__ : str = str(tmp_path_factory.mktemp('data' ) / 'dataset2.jsonl' ) with open(_lowerCAmelCase , 'w' ) as f: for item in DATA: f.write(json.dumps(_lowerCAmelCase ) + '\n' ) return path @pytest.fixture(scope='session' ) def a_ ( _lowerCAmelCase : Any ): '''simple docstring''' lowercase__ : Optional[int] = str(tmp_path_factory.mktemp('data' ) / 'dataset_312.jsonl' ) with open(_lowerCAmelCase , 'w' ) as f: for item in DATA_312: f.write(json.dumps(_lowerCAmelCase ) + '\n' ) return path @pytest.fixture(scope='session' ) def a_ ( _lowerCAmelCase : Tuple ): '''simple docstring''' lowercase__ : Union[str, Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset-str.jsonl' ) with open(_lowerCAmelCase , 'w' ) as f: for item in DATA_STR: f.write(json.dumps(_lowerCAmelCase ) + '\n' ) return path @pytest.fixture(scope='session' ) def a_ ( _lowerCAmelCase : str , _lowerCAmelCase : Dict ): '''simple docstring''' import gzip lowercase__ : Any = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt.gz' ) with open(_lowerCAmelCase , 'rb' ) as orig_file: with gzip.open(_lowerCAmelCase , 'wb' ) as zipped_file: zipped_file.writelines(_lowerCAmelCase ) return path @pytest.fixture(scope='session' ) def a_ ( _lowerCAmelCase : int , _lowerCAmelCase : Tuple ): '''simple docstring''' import gzip lowercase__ : Tuple = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.gz' ) with open(_lowerCAmelCase , 'rb' ) as orig_file: with gzip.open(_lowerCAmelCase , 'wb' ) as zipped_file: zipped_file.writelines(_lowerCAmelCase ) return path @pytest.fixture(scope='session' ) def a_ ( _lowerCAmelCase : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int] ): '''simple docstring''' lowercase__ : int = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.zip' with zipfile.ZipFile(_lowerCAmelCase , 'w' ) as f: f.write(_lowerCAmelCase , arcname=os.path.basename(_lowerCAmelCase ) ) f.write(_lowerCAmelCase , arcname=os.path.basename(_lowerCAmelCase ) ) return path @pytest.fixture(scope='session' ) def a_ ( _lowerCAmelCase : str , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[Any] ): '''simple docstring''' lowercase__ : List[Any] = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.zip' with zipfile.ZipFile(_lowerCAmelCase , 'w' ) as f: f.write(_lowerCAmelCase , arcname=os.path.join('nested' , os.path.basename(_lowerCAmelCase ) ) ) return path @pytest.fixture(scope='session' ) def a_ ( _lowerCAmelCase : str , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int] ): '''simple docstring''' lowercase__ : Optional[Any] = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.jsonl.zip' with zipfile.ZipFile(_lowerCAmelCase , 'w' ) as f: f.write(_lowerCAmelCase , arcname=os.path.join('main_dir' , os.path.basename(_lowerCAmelCase ) ) ) f.write(_lowerCAmelCase , arcname=os.path.join('main_dir' , os.path.basename(_lowerCAmelCase ) ) ) return path @pytest.fixture(scope='session' ) def a_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[Any] ): '''simple docstring''' lowercase__ : Union[str, Any] = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.tar' with tarfile.TarFile(_lowerCAmelCase , 'w' ) as f: f.add(_lowerCAmelCase , arcname=os.path.basename(_lowerCAmelCase ) ) f.add(_lowerCAmelCase , arcname=os.path.basename(_lowerCAmelCase ) ) return path @pytest.fixture(scope='session' ) def a_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : int , _lowerCAmelCase : List[Any] ): '''simple docstring''' lowercase__ : List[str] = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.tar' with tarfile.TarFile(_lowerCAmelCase , 'w' ) as f: f.add(_lowerCAmelCase , arcname=os.path.join('nested' , os.path.basename(_lowerCAmelCase ) ) ) return path @pytest.fixture(scope='session' ) def a_ ( _lowerCAmelCase : Optional[int] ): '''simple docstring''' lowercase__ : Dict = ['0', '1', '2', '3'] lowercase__ : Union[str, Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt' ) with open(_lowerCAmelCase , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def a_ ( _lowerCAmelCase : int ): '''simple docstring''' lowercase__ : Optional[Any] = ['0', '1', '2', '3'] lowercase__ : Optional[int] = str(tmp_path_factory.mktemp('data' ) / 'dataset2.txt' ) with open(_lowerCAmelCase , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def a_ ( _lowerCAmelCase : Dict ): '''simple docstring''' lowercase__ : int = ['0', '1', '2', '3'] lowercase__ : Union[str, Any] = tmp_path_factory.mktemp('data' ) / 'dataset.abc' with open(_lowerCAmelCase , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def a_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : int ): '''simple docstring''' lowercase__ : Optional[Any] = tmp_path_factory.mktemp('data' ) / 'dataset.text.zip' with zipfile.ZipFile(_lowerCAmelCase , 'w' ) as f: f.write(_lowerCAmelCase , arcname=os.path.basename(_lowerCAmelCase ) ) f.write(_lowerCAmelCase , arcname=os.path.basename(_lowerCAmelCase ) ) return path @pytest.fixture(scope='session' ) def a_ ( _lowerCAmelCase : str , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : str ): '''simple docstring''' lowercase__ : Any = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.text.zip' with zipfile.ZipFile(_lowerCAmelCase , 'w' ) as f: f.write(_lowerCAmelCase , arcname=os.path.join('main_dir' , os.path.basename(_lowerCAmelCase ) ) ) f.write(_lowerCAmelCase , arcname=os.path.join('main_dir' , os.path.basename(_lowerCAmelCase ) ) ) return path @pytest.fixture(scope='session' ) def a_ ( _lowerCAmelCase : str , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int] ): '''simple docstring''' lowercase__ : Union[str, Any] = tmp_path_factory.mktemp('data' ) / 'dataset.ext.zip' with zipfile.ZipFile(_lowerCAmelCase , 'w' ) as f: f.write(_lowerCAmelCase , arcname=os.path.basename('unsupported.ext' ) ) f.write(_lowerCAmelCase , arcname=os.path.basename('unsupported_2.ext' ) ) return path @pytest.fixture(scope='session' ) def a_ ( _lowerCAmelCase : List[str] ): '''simple docstring''' lowercase__ : Optional[int] = '\n'.join(['First', 'Second\u2029with Unicode new line', 'Third'] ) lowercase__ : List[str] = str(tmp_path_factory.mktemp('data' ) / 'dataset_with_unicode_new_lines.txt' ) with open(_lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(_lowerCAmelCase ) return path @pytest.fixture(scope='session' ) def a_ ( ): '''simple docstring''' return os.path.join('tests' , 'features' , 'data' , 'test_image_rgb.jpg' ) @pytest.fixture(scope='session' ) def a_ ( ): '''simple docstring''' return os.path.join('tests' , 'features' , 'data' , 'test_audio_44100.wav' ) @pytest.fixture(scope='session' ) def a_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any] ): '''simple docstring''' lowercase__ : List[Any] = tmp_path_factory.mktemp('data' ) / 'dataset.img.zip' with zipfile.ZipFile(_lowerCAmelCase , 'w' ) as f: f.write(_lowerCAmelCase , arcname=os.path.basename(_lowerCAmelCase ) ) f.write(_lowerCAmelCase , arcname=os.path.basename(_lowerCAmelCase ).replace('.jpg' , '2.jpg' ) ) return path @pytest.fixture(scope='session' ) def a_ ( _lowerCAmelCase : str ): '''simple docstring''' lowercase__ : Any = tmp_path_factory.mktemp('data_dir' ) (data_dir / "subdir").mkdir() with open(data_dir / 'subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 10 ) with open(data_dir / 'subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) # hidden file with open(data_dir / 'subdir' / '.test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '.subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 10 ) with open(data_dir / '.subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) return data_dir
645
"""simple docstring""" import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase): @slow def _UpperCAmelCase ( self ) -> str: lowercase__ : Optional[Any] = AutoImageProcessor.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' ) lowercase__ : Union[str, Any] = AutoModelForImageClassification.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' ) model.to(a ) from datasets import load_dataset lowercase__ : str = load_dataset('nielsr/rvlcdip-demo' ) lowercase__ : Tuple = dataset['train'][0]['image'].convert('RGB' ) lowercase__ : int = image_processor(a , return_tensors='pt' ).to(a ) # forward pass with torch.no_grad(): lowercase__ : List[str] = model(**a ) lowercase__ : List[Any] = outputs.logits lowercase__ : Union[str, Any] = torch.Size((1, 1_6) ) self.assertEqual(logits.shape , a ) lowercase__ : Tuple = torch.tensor( [-0.4_158, -0.4_092, -0.4_347] , device=a , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , a , atol=1e-4 ) )
645
1
"""simple docstring""" # This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests _UpperCamelCase : Union[str, Any] = open # noqa: we just need to have a builtin inside this module to test it properly
645
"""simple docstring""" import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class UpperCAmelCase_ : @staticmethod def _UpperCAmelCase ( *a , **a ) -> int: pass def a_ ( _lowerCAmelCase : Image ): '''simple docstring''' lowercase__ : List[str] = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class UpperCAmelCase_ ( unittest.TestCase): lowerCamelCase__ : Union[str, Any] = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def _UpperCAmelCase ( self , a , a , a ) -> Dict: lowercase__ : Union[str, Any] = DepthEstimationPipeline(model=a , image_processor=a ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def _UpperCAmelCase ( self , a , a ) -> Optional[int]: lowercase__ : Tuple = depth_estimator('./tests/fixtures/tests_samples/COCO/000000039769.png' ) self.assertEqual({'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )} , a ) import datasets lowercase__ : Tuple = datasets.load_dataset('hf-internal-testing/fixtures_image_utils' , 'image' , split='test' ) lowercase__ : List[Any] = depth_estimator( [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] ) self.assertEqual( [ {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, ] , a , ) @require_tf @unittest.skip('Depth estimation is not implemented in TF' ) def _UpperCAmelCase ( self ) -> Optional[int]: pass @slow @require_torch def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Tuple = 'Intel/dpt-large' lowercase__ : Optional[int] = pipeline('depth-estimation' , model=a ) lowercase__ : List[Any] = depth_estimator('http://images.cocodataset.org/val2017/000000039769.jpg' ) lowercase__ : Optional[Any] = hashimage(outputs['depth'] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['predicted_depth'].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs['predicted_depth'].min().item() ) , 2.662 ) @require_torch def _UpperCAmelCase ( self ) -> Optional[int]: # This is highly irregular to have no small tests. self.skipTest('There is not hf-internal-testing tiny model for either GLPN nor DPT' )
645
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCAmelCase_ ( _a , unittest.TestCase): lowerCamelCase__ : str = KandinskyImgaImgPipeline lowerCamelCase__ : List[str] = ["prompt", "image_embeds", "negative_image_embeds", "image"] lowerCamelCase__ : Optional[int] = [ "prompt", "negative_prompt", "image_embeds", "negative_image_embeds", "image", ] lowerCamelCase__ : Union[str, Any] = [ "generator", "height", "width", "strength", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] lowerCamelCase__ : Optional[int] = False @property def _UpperCAmelCase ( self ) -> List[str]: return 3_2 @property def _UpperCAmelCase ( self ) -> List[Any]: return 3_2 @property def _UpperCAmelCase ( self ) -> Optional[int]: return self.time_input_dim @property def _UpperCAmelCase ( self ) -> Union[str, Any]: return self.time_input_dim * 4 @property def _UpperCAmelCase ( self ) -> int: return 1_0_0 @property def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : int = XLMRobertaTokenizerFast.from_pretrained('YiYiXu/tiny-random-mclip-base' ) return tokenizer @property def _UpperCAmelCase ( self ) -> Optional[int]: torch.manual_seed(0 ) lowercase__ : Optional[Any] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_0_0_5 , ) lowercase__ : Tuple = MultilingualCLIP(a ) lowercase__ : List[str] = text_encoder.eval() return text_encoder @property def _UpperCAmelCase ( self ) -> Optional[Any]: torch.manual_seed(0 ) lowercase__ : List[str] = { 'in_channels': 4, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'text_image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'text_image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } lowercase__ : Any = UNetaDConditionModel(**a ) return model @property def _UpperCAmelCase ( self ) -> Optional[Any]: return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _UpperCAmelCase ( self ) -> Union[str, Any]: torch.manual_seed(0 ) lowercase__ : Any = VQModel(**self.dummy_movq_kwargs ) return model def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : List[Any] = self.dummy_text_encoder lowercase__ : int = self.dummy_tokenizer lowercase__ : Tuple = self.dummy_unet lowercase__ : Tuple = self.dummy_movq lowercase__ : Union[str, Any] = { 'num_train_timesteps': 1_0_0_0, 'beta_schedule': 'linear', 'beta_start': 0.00_085, 'beta_end': 0.012, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } lowercase__ : Dict = DDIMScheduler(**a ) lowercase__ : int = { 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def _UpperCAmelCase ( self , a , a=0 ) -> Tuple: lowercase__ : Any = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(a ) ).to(a ) lowercase__ : List[str] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(a ) # create init_image lowercase__ : str = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(a ) ).to(a ) lowercase__ : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase__ : List[Any] = Image.fromarray(np.uinta(a ) ).convert('RGB' ).resize((2_5_6, 2_5_6) ) if str(a ).startswith('mps' ): lowercase__ : Tuple = torch.manual_seed(a ) else: lowercase__ : Tuple = torch.Generator(device=a ).manual_seed(a ) lowercase__ : str = { 'prompt': 'horse', 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 6_4, 'width': 6_4, 'num_inference_steps': 1_0, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Any = 'cpu' lowercase__ : List[str] = self.get_dummy_components() lowercase__ : List[str] = self.pipeline_class(**a ) lowercase__ : Dict = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowercase__ : Optional[int] = pipe(**self.get_dummy_inputs(a ) ) lowercase__ : Tuple = output.images lowercase__ : Union[str, Any] = pipe( **self.get_dummy_inputs(a ) , return_dict=a , )[0] lowercase__ : Dict = image[0, -3:, -3:, -1] lowercase__ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) lowercase__ : Tuple = np.array( [0.61_474_943, 0.6_073_539, 0.43_308_544, 0.5_928_269, 0.47_493_595, 0.46_755_973, 0.4_613_838, 0.45_368_797, 0.50_119_233] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase): def _UpperCAmelCase ( self ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase ( self ) -> int: lowercase__ : Optional[int] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/kandinsky_img2img_frog.npy' ) lowercase__ : Tuple = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) lowercase__ : str = 'A red cartoon frog, 4k' lowercase__ : Dict = KandinskyPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-prior' , torch_dtype=torch.floataa ) pipe_prior.to(a ) lowercase__ : int = KandinskyImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1' , torch_dtype=torch.floataa ) lowercase__ : Union[str, Any] = pipeline.to(a ) pipeline.set_progress_bar_config(disable=a ) lowercase__ : str = torch.Generator(device='cpu' ).manual_seed(0 ) lowercase__ , lowercase__ : str = pipe_prior( a , generator=a , num_inference_steps=5 , negative_prompt='' , ).to_tuple() lowercase__ : Optional[Any] = pipeline( a , image=a , image_embeds=a , negative_image_embeds=a , generator=a , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , strength=0.2 , output_type='np' , ) lowercase__ : Union[str, Any] = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(a , a )
645
"""simple docstring""" import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class UpperCAmelCase_ ( _a): def __init__( self ) -> Any: lowercase__ : Tuple = [] def _UpperCAmelCase ( self , a , a , a , **a ) -> Any: self.events.append('on_init_end' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Optional[int]: self.events.append('on_train_begin' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> List[str]: self.events.append('on_train_end' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> int: self.events.append('on_epoch_begin' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Optional[Any]: self.events.append('on_epoch_end' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> int: self.events.append('on_step_begin' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> str: self.events.append('on_step_end' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> int: self.events.append('on_evaluate' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Tuple: self.events.append('on_predict' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Union[str, Any]: self.events.append('on_save' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> List[str]: self.events.append('on_log' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Any: self.events.append('on_prediction_step' ) @require_torch class UpperCAmelCase_ ( unittest.TestCase): def _UpperCAmelCase ( self ) -> str: lowercase__ : str = tempfile.mkdtemp() def _UpperCAmelCase ( self ) -> Dict: shutil.rmtree(self.output_dir ) def _UpperCAmelCase ( self , a=0 , a=0 , a=6_4 , a=6_4 , a=None , a=False , **a ) -> int: # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. lowercase__ : str = RegressionDataset(length=a ) lowercase__ : Any = RegressionDataset(length=a ) lowercase__ : Optional[Any] = RegressionModelConfig(a=a , b=a ) lowercase__ : Union[str, Any] = RegressionPreTrainedModel(a ) lowercase__ : Tuple = TrainingArguments(self.output_dir , disable_tqdm=a , report_to=[] , **a ) return Trainer( a , a , train_dataset=a , eval_dataset=a , callbacks=a , ) def _UpperCAmelCase ( self , a , a ) -> Union[str, Any]: self.assertEqual(len(a ) , len(a ) ) # Order doesn't matter lowercase__ : Optional[int] = sorted(a , key=lambda a : cb.__name__ if isinstance(a , a ) else cb.__class__.__name__ ) lowercase__ : Tuple = sorted(a , key=lambda a : cb.__name__ if isinstance(a , a ) else cb.__class__.__name__ ) for cba, cba in zip(a , a ): if isinstance(a , a ) and isinstance(a , a ): self.assertEqual(a , a ) elif isinstance(a , a ) and not isinstance(a , a ): self.assertEqual(a , cba.__class__ ) elif not isinstance(a , a ) and isinstance(a , a ): self.assertEqual(cba.__class__ , a ) else: self.assertEqual(a , a ) def _UpperCAmelCase ( self , a ) -> Optional[Any]: lowercase__ : Dict = ['on_init_end', 'on_train_begin'] lowercase__ : List[Any] = 0 lowercase__ : Optional[int] = len(trainer.get_eval_dataloader() ) lowercase__ : Tuple = ['on_prediction_step'] * len(trainer.get_eval_dataloader() ) + ['on_log', 'on_evaluate'] for _ in range(trainer.state.num_train_epochs ): expected_events.append('on_epoch_begin' ) for _ in range(a ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append('on_log' ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append('on_save' ) expected_events.append('on_epoch_end' ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : int = self.get_trainer() lowercase__ : str = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) # Callbacks passed at init are added to the default callbacks lowercase__ : str = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback lowercase__ : List[Any] = self.get_trainer(disable_tqdm=a ) lowercase__ : Optional[Any] = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) def _UpperCAmelCase ( self ) -> Any: lowercase__ : int = DEFAULT_CALLBACKS.copy() + [ProgressCallback] lowercase__ : List[str] = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(a ) expected_callbacks.remove(a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) lowercase__ : Optional[Any] = self.get_trainer() lowercase__ : List[Any] = trainer.pop_callback(a ) self.assertEqual(cb.__class__ , a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) trainer.add_callback(a ) expected_callbacks.insert(0 , a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) # We can also add, pop, or remove by instance lowercase__ : int = self.get_trainer() lowercase__ : List[str] = trainer.callback_handler.callbacks[0] trainer.remove_callback(a ) expected_callbacks.remove(a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) lowercase__ : Tuple = self.get_trainer() lowercase__ : Dict = trainer.callback_handler.callbacks[0] lowercase__ : Union[str, Any] = trainer.pop_callback(a ) self.assertEqual(a , a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) trainer.add_callback(a ) expected_callbacks.insert(0 , a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) def _UpperCAmelCase ( self ) -> Tuple: import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action='ignore' , category=a ) lowercase__ : Optional[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() lowercase__ : Any = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) # Independent log/save/eval lowercase__ : List[str] = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() lowercase__ : int = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) lowercase__ : Union[str, Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() lowercase__ : Union[str, Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) lowercase__ : List[str] = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy='steps' ) trainer.train() lowercase__ : Optional[int] = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) lowercase__ : int = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy='epoch' ) trainer.train() lowercase__ : str = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) # A bit of everything lowercase__ : Any = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=1_0 , eval_steps=5 , evaluation_strategy='steps' , ) trainer.train() lowercase__ : Any = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) # warning should be emitted for duplicated callbacks with patch('transformers.trainer_callback.logger.warning' ) as warn_mock: lowercase__ : str = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(a ) in warn_mock.call_args[0][0]
645
1
"""simple docstring""" from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable _UpperCamelCase : Optional[Any] = {"configuration_dpt": ["DPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DPTConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : str = ["DPTFeatureExtractor"] _UpperCamelCase : Union[str, Any] = ["DPTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Union[str, Any] = [ "DPT_PRETRAINED_MODEL_ARCHIVE_LIST", "DPTForDepthEstimation", "DPTForSemanticSegmentation", "DPTModel", "DPTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys _UpperCamelCase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
645
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _UpperCamelCase : str = { "configuration_gpt_neo": ["GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoConfig", "GPTNeoOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Tuple = [ "GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoForCausalLM", "GPTNeoForQuestionAnswering", "GPTNeoForSequenceClassification", "GPTNeoForTokenClassification", "GPTNeoModel", "GPTNeoPreTrainedModel", "load_tf_weights_in_gpt_neo", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Dict = [ "FlaxGPTNeoForCausalLM", "FlaxGPTNeoModel", "FlaxGPTNeoPreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys _UpperCamelCase : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
645
1
"""simple docstring""" from __future__ import annotations from typing import Any def a_ ( _lowerCAmelCase : list[Any] ): '''simple docstring''' create_state_space_tree(_lowerCAmelCase , [] , 0 ) def a_ ( _lowerCAmelCase : list[Any] , _lowerCAmelCase : list[Any] , _lowerCAmelCase : int ): '''simple docstring''' if index == len(_lowerCAmelCase ): print(_lowerCAmelCase ) return create_state_space_tree(_lowerCAmelCase , _lowerCAmelCase , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(_lowerCAmelCase , _lowerCAmelCase , index + 1 ) current_subsequence.pop() if __name__ == "__main__": _UpperCamelCase : list[Any] = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(["A", "B", "C"]) generate_all_subsequences(seq)
645
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class UpperCAmelCase_ ( unittest.TestCase): def _UpperCAmelCase ( self , a ) -> str: for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss'] ): lowercase__ : str = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(a ) def _UpperCAmelCase ( self ) -> int: lowercase__ : Dict = 'sshleifer/tiny-gpt2' lowercase__ : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=a , multi_process=a , ) lowercase__ : str = TensorFlowBenchmark(a ) lowercase__ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> int: lowercase__ : List[str] = 'sgugger/tiny-distilbert-classification' lowercase__ : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , only_pretrain_model=a , ) lowercase__ : Optional[Any] = TensorFlowBenchmark(a ) lowercase__ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : Optional[int] = 'sshleifer/tiny-gpt2' lowercase__ : Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , ) lowercase__ : Optional[Any] = TensorFlowBenchmark(a ) lowercase__ : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : Any = 'sshleifer/tiny-gpt2' lowercase__ : List[Any] = AutoConfig.from_pretrained(a ) lowercase__ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=a , multi_process=a , ) lowercase__ : Tuple = TensorFlowBenchmark(a , [config] ) lowercase__ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> int: lowercase__ : Optional[Any] = 'sshleifer/tiny-gpt2' lowercase__ : List[str] = AutoConfig.from_pretrained(a ) lowercase__ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , ) lowercase__ : List[str] = TensorFlowBenchmark(a , [config] ) lowercase__ : Any = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Optional[Any] = 'sshleifer/tiny-gpt2' lowercase__ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , ) lowercase__ : Optional[Any] = TensorFlowBenchmark(a ) lowercase__ : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _UpperCAmelCase ( self ) -> str: lowercase__ : Optional[Any] = 'sshleifer/tiny-gpt2' lowercase__ : Optional[int] = AutoConfig.from_pretrained(a ) lowercase__ : str = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , ) lowercase__ : str = TensorFlowBenchmark(a , [config] ) lowercase__ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : List[str] = 'patrickvonplaten/t5-tiny-random' lowercase__ : Any = AutoConfig.from_pretrained(a ) lowercase__ : List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , ) lowercase__ : int = TensorFlowBenchmark(a , configs=[config] ) lowercase__ : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU' ) ) == 0 , 'Cannot do xla on CPU.' ) def _UpperCAmelCase ( self ) -> Any: lowercase__ : Any = 'sshleifer/tiny-gpt2' lowercase__ : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , use_xla=a , multi_process=a , ) lowercase__ : Any = TensorFlowBenchmark(a ) lowercase__ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Any = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ : List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=a , save_to_csv=a , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(a , 'inf_time.csv' ) , inference_memory_csv_file=os.path.join(a , 'inf_mem.csv' ) , env_info_csv_file=os.path.join(a , 'env.csv' ) , multi_process=a , ) lowercase__ : Union[str, Any] = TensorFlowBenchmark(a ) benchmark.run() self.assertTrue(Path(os.path.join(a , 'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(a , 'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(a , 'env.csv' ) ).exists() ) def _UpperCAmelCase ( self ) -> Dict: lowercase__ : Tuple = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(a ): self.assertTrue(hasattr(a , 'sequential' ) ) self.assertTrue(hasattr(a , 'cumulative' ) ) self.assertTrue(hasattr(a , 'current' ) ) self.assertTrue(hasattr(a , 'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=a , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(a , 'log.txt' ) , log_print=a , trace_memory_line_by_line=a , eager_mode=a , multi_process=a , ) lowercase__ : Optional[int] = TensorFlowBenchmark(a ) lowercase__ : Optional[Any] = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(a , 'log.txt' ) ).exists() )
645
1
"""simple docstring""" from random import randint, random def a_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = False , _lowerCAmelCase : int = 5 , ): '''simple docstring''' lowercase__ : Dict = [[-1] * number_of_cells] # Create a highway without any car lowercase__ : int = 0 lowercase__ : Any = max(_lowerCAmelCase , 0 ) while i < number_of_cells: lowercase__ : Optional[int] = ( randint(0 , _lowerCAmelCase ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def a_ ( _lowerCAmelCase : list , _lowerCAmelCase : int ): '''simple docstring''' lowercase__ : Optional[Any] = 0 lowercase__ : Tuple = highway_now[car_index + 1 :] for cell in range(len(_lowerCAmelCase ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(_lowerCAmelCase , -1 ) def a_ ( _lowerCAmelCase : list , _lowerCAmelCase : float , _lowerCAmelCase : int ): '''simple docstring''' lowercase__ : Optional[int] = len(_lowerCAmelCase ) # Beforce calculations, the highway is empty lowercase__ : Optional[Any] = [-1] * number_of_cells for car_index in range(_lowerCAmelCase ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed lowercase__ : Tuple = min(highway_now[car_index] + 1 , _lowerCAmelCase ) # Number of empty cell before the next car lowercase__ : Union[str, Any] = get_distance(_lowerCAmelCase , _lowerCAmelCase ) - 1 # We can't have the car causing an accident lowercase__ : Optional[int] = min(next_highway[car_index] , _lowerCAmelCase ) if random() < probability: # Randomly, a driver will slow down lowercase__ : List[str] = max(next_highway[car_index] - 1 , 0 ) return next_highway def a_ ( _lowerCAmelCase : list , _lowerCAmelCase : int , _lowerCAmelCase : float , _lowerCAmelCase : int ): '''simple docstring''' lowercase__ : Optional[int] = len(highway[0] ) for i in range(_lowerCAmelCase ): lowercase__ : Optional[int] = update(highway[i] , _lowerCAmelCase , _lowerCAmelCase ) lowercase__ : Optional[int] = [-1] * number_of_cells for car_index in range(_lowerCAmelCase ): lowercase__ : Optional[int] = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) lowercase__ : List[Any] = (car_index + speed) % number_of_cells # Commit the change of position lowercase__ : List[str] = speed highway.append(_lowerCAmelCase ) return highway if __name__ == "__main__": import doctest doctest.testmod()
645
"""simple docstring""" import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class UpperCAmelCase_ ( _a): def __init__( self , a , a=1_3 , a=7 , a=True , a=True , a=False , a=True , a=9_9 , a=3_2 , a=5 , a=4 , a=3_7 , a="gelu" , a=0.1 , a=0.1 , a=5_1_2 , a=1_6 , a=2 , a=0.02 , a=3 , a=4 , a=None , ) -> Any: lowercase__ : Tuple = parent lowercase__ : List[Any] = batch_size lowercase__ : List[Any] = seq_length lowercase__ : List[Any] = is_training lowercase__ : Optional[Any] = use_input_mask lowercase__ : Optional[int] = use_token_type_ids lowercase__ : int = use_labels lowercase__ : Tuple = vocab_size lowercase__ : int = hidden_size lowercase__ : Any = num_hidden_layers lowercase__ : List[str] = num_attention_heads lowercase__ : Optional[Any] = intermediate_size lowercase__ : Optional[Any] = hidden_act lowercase__ : List[str] = hidden_dropout_prob lowercase__ : List[Any] = attention_probs_dropout_prob lowercase__ : List[Any] = max_position_embeddings lowercase__ : List[str] = type_vocab_size lowercase__ : Tuple = type_sequence_label_size lowercase__ : List[Any] = initializer_range lowercase__ : str = num_labels lowercase__ : Tuple = num_choices lowercase__ : str = scope def _UpperCAmelCase ( self ) -> Any: lowercase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ : str = None if self.use_input_mask: lowercase__ : Any = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ : Dict = None lowercase__ : Optional[Any] = None lowercase__ : int = None if self.use_labels: lowercase__ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__ : Dict = ids_tensor([self.batch_size] , self.num_choices ) lowercase__ : List[Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCAmelCase ( self ) -> Optional[int]: return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> Dict: lowercase__ : Tuple = DistilBertModel(config=a ) model.to(a ) model.eval() lowercase__ : Any = model(a , a ) lowercase__ : str = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> Dict: lowercase__ : Optional[int] = DistilBertForMaskedLM(config=a ) model.to(a ) model.eval() lowercase__ : Union[str, Any] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> int: lowercase__ : Tuple = DistilBertForQuestionAnswering(config=a ) model.to(a ) model.eval() lowercase__ : Tuple = model( a , attention_mask=a , start_positions=a , end_positions=a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> List[str]: lowercase__ : int = self.num_labels lowercase__ : Dict = DistilBertForSequenceClassification(a ) model.to(a ) model.eval() lowercase__ : Optional[Any] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> Any: lowercase__ : Any = self.num_labels lowercase__ : List[str] = DistilBertForTokenClassification(config=a ) model.to(a ) model.eval() lowercase__ : Any = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> Tuple: lowercase__ : List[Any] = self.num_choices lowercase__ : Any = DistilBertForMultipleChoice(config=a ) model.to(a ) model.eval() lowercase__ : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ : Optional[int] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ : int = model( a , attention_mask=a , labels=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _UpperCAmelCase ( self ) -> str: lowercase__ : Union[str, Any] = self.prepare_config_and_inputs() ((lowercase__) , (lowercase__) , (lowercase__) , (lowercase__) , (lowercase__) , (lowercase__)) : List[str] = config_and_inputs lowercase__ : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _a , _a , unittest.TestCase): lowerCamelCase__ : List[str] = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) lowerCamelCase__ : str = ( { "feature-extraction": DistilBertModel, "fill-mask": DistilBertForMaskedLM, "question-answering": DistilBertForQuestionAnswering, "text-classification": DistilBertForSequenceClassification, "token-classification": DistilBertForTokenClassification, "zero-shot": DistilBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ : Optional[int] = True lowerCamelCase__ : Any = True lowerCamelCase__ : List[Any] = True lowerCamelCase__ : Optional[Any] = True def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : str = DistilBertModelTester(self ) lowercase__ : int = ConfigTester(self , config_class=a , dim=3_7 ) def _UpperCAmelCase ( self ) -> Dict: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*a ) def _UpperCAmelCase ( self ) -> Any: lowercase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*a ) def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*a ) def _UpperCAmelCase ( self ) -> int: lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*a ) def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*a ) def _UpperCAmelCase ( self ) -> str: lowercase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*a ) @slow def _UpperCAmelCase ( self ) -> str: for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : str = DistilBertModel.from_pretrained(a ) self.assertIsNotNone(a ) @slow @require_torch_gpu def _UpperCAmelCase ( self ) -> Any: lowercase__ , lowercase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return lowercase__ : Optional[int] = True lowercase__ : Union[str, Any] = model_class(config=a ) lowercase__ : int = self._prepare_for_class(a , a ) lowercase__ : Tuple = torch.jit.trace( a , (inputs_dict['input_ids'].to('cpu' ), inputs_dict['attention_mask'].to('cpu' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a , os.path.join(a , 'traced_model.pt' ) ) lowercase__ : Optional[int] = torch.jit.load(os.path.join(a , 'traced_model.pt' ) , map_location=a ) loaded(inputs_dict['input_ids'].to(a ) , inputs_dict['attention_mask'].to(a ) ) @require_torch class UpperCAmelCase_ ( unittest.TestCase): @slow def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : int = DistilBertModel.from_pretrained('distilbert-base-uncased' ) lowercase__ : Union[str, Any] = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) lowercase__ : Optional[Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowercase__ : Optional[Any] = model(a , attention_mask=a )[0] lowercase__ : Tuple = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , a ) lowercase__ : List[Any] = torch.tensor( [[[-0.1_639, 0.3_299, 0.1_648], [-0.1_746, 0.3_289, 0.1_710], [-0.1_884, 0.3_357, 0.1_810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a , atol=1e-4 ) )
645
1
"""simple docstring""" import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py _UpperCamelCase : List[Any] = "src/transformers" _UpperCamelCase : List[str] = "docs/source/en" _UpperCamelCase : List[Any] = "." def a_ ( _lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : List[Any] ): '''simple docstring''' with open(_lowerCAmelCase , 'r' , encoding='utf-8' , newline='\n' ) as f: lowercase__ : List[Any] = f.readlines() # Find the start prompt. lowercase__ : Dict = 0 while not lines[start_index].startswith(_lowerCAmelCase ): start_index += 1 start_index += 1 lowercase__ : Any = start_index while not lines[end_index].startswith(_lowerCAmelCase ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | _UpperCamelCase : List[str] = "Model|Encoder|Decoder|ForConditionalGeneration" # Regexes that match TF/Flax/PT model names. _UpperCamelCase : str = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") _UpperCamelCase : Tuple = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. _UpperCamelCase : Union[str, Any] = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # This is to make sure the transformers module imported is the one in the repo. _UpperCamelCase : Union[str, Any] = direct_transformers_import(TRANSFORMERS_PATH) def a_ ( _lowerCAmelCase : Optional[Any] ): '''simple docstring''' lowercase__ : Optional[int] = re.finditer('.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)' , _lowerCAmelCase ) return [m.group(0 ) for m in matches] def a_ ( _lowerCAmelCase : int , _lowerCAmelCase : str ): '''simple docstring''' lowercase__ : Dict = 2 if text == '✅' or text == '❌' else len(_lowerCAmelCase ) lowercase__ : Optional[Any] = (width - text_length) // 2 lowercase__ : int = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def a_ ( ): '''simple docstring''' lowercase__ : Tuple = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES lowercase__ : Union[str, Any] = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } lowercase__ : int = {name: config.replace('Config' , '' ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. lowercase__ : List[str] = collections.defaultdict(_lowerCAmelCase ) lowercase__ : Optional[Any] = collections.defaultdict(_lowerCAmelCase ) lowercase__ : Dict = collections.defaultdict(_lowerCAmelCase ) lowercase__ : Optional[Any] = collections.defaultdict(_lowerCAmelCase ) lowercase__ : Optional[Any] = collections.defaultdict(_lowerCAmelCase ) # Let's lookup through all transformers object (once). for attr_name in dir(_lowerCAmelCase ): lowercase__ : List[Any] = None if attr_name.endswith('Tokenizer' ): lowercase__ : List[Any] = slow_tokenizers lowercase__ : Any = attr_name[:-9] elif attr_name.endswith('TokenizerFast' ): lowercase__ : Any = fast_tokenizers lowercase__ : Tuple = attr_name[:-13] elif _re_tf_models.match(_lowerCAmelCase ) is not None: lowercase__ : Optional[int] = tf_models lowercase__ : str = _re_tf_models.match(_lowerCAmelCase ).groups()[0] elif _re_flax_models.match(_lowerCAmelCase ) is not None: lowercase__ : Union[str, Any] = flax_models lowercase__ : Any = _re_flax_models.match(_lowerCAmelCase ).groups()[0] elif _re_pt_models.match(_lowerCAmelCase ) is not None: lowercase__ : Union[str, Any] = pt_models lowercase__ : Dict = _re_pt_models.match(_lowerCAmelCase ).groups()[0] if lookup_dict is not None: while len(_lowerCAmelCase ) > 0: if attr_name in model_name_to_prefix.values(): lowercase__ : Union[str, Any] = True break # Try again after removing the last word in the name lowercase__ : str = ''.join(camel_case_split(_lowerCAmelCase )[:-1] ) # Let's build that table! lowercase__ : str = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) lowercase__ : str = ['Model', 'Tokenizer slow', 'Tokenizer fast', 'PyTorch support', 'TensorFlow support', 'Flax Support'] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). lowercase__ : Dict = [len(_lowerCAmelCase ) + 2 for c in columns] lowercase__ : List[str] = max([len(_lowerCAmelCase ) for name in model_names] ) + 2 # Build the table per se lowercase__ : Optional[int] = '|' + '|'.join([_center_text(_lowerCAmelCase , _lowerCAmelCase ) for c, w in zip(_lowerCAmelCase , _lowerCAmelCase )] ) + '|\n' # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([':' + '-' * (w - 2) + ':' for w in widths] ) + "|\n" lowercase__ : Tuple = {True: '✅', False: '❌'} for name in model_names: lowercase__ : Tuple = model_name_to_prefix[name] lowercase__ : Optional[int] = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(_lowerCAmelCase , _lowerCAmelCase ) for l, w in zip(_lowerCAmelCase , _lowerCAmelCase )] ) + "|\n" return table def a_ ( _lowerCAmelCase : Dict=False ): '''simple docstring''' lowercase__ , lowercase__ , lowercase__ , lowercase__ : Optional[int] = _find_text_in_file( filename=os.path.join(_lowerCAmelCase , 'index.md' ) , start_prompt='<!--This table is updated automatically from the auto modules' , end_prompt='<!-- End table-->' , ) lowercase__ : List[str] = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(_lowerCAmelCase , 'index.md' ) , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( 'The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.' ) if __name__ == "__main__": _UpperCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") _UpperCamelCase : str = parser.parse_args() check_model_table(args.fix_and_overwrite)
645
"""simple docstring""" from __future__ import annotations def a_ ( _lowerCAmelCase : float , _lowerCAmelCase : float , _lowerCAmelCase : float , ): '''simple docstring''' if (stress, tangential_force, area).count(0 ) != 1: raise ValueError('You cannot supply more or less than 2 values' ) elif stress < 0: raise ValueError('Stress cannot be negative' ) elif tangential_force < 0: raise ValueError('Tangential Force cannot be negative' ) elif area < 0: raise ValueError('Area cannot be negative' ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
645
1
"""simple docstring""" from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer _UpperCamelCase : Optional[int] = logging.get_logger(__name__) _UpperCamelCase : List[str] = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } _UpperCamelCase : int = { "vocab_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json" }, "merges_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt" }, "tokenizer_config_file": { "facebook/blenderbot_small-90M": ( "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json" ) }, } _UpperCamelCase : List[str] = { "facebook/blenderbot_small-90M": 5_12, } class UpperCAmelCase_ ( _a): lowerCamelCase__ : Any = VOCAB_FILES_NAMES lowerCamelCase__ : Any = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ : List[Any] = BlenderbotSmallTokenizer def __init__( self , a=None , a=None , a="<|endoftext|>" , a="<|endoftext|>" , a="<|endoftext|>" , a=False , a=True , **a , ) -> str: super().__init__( ByteLevelBPETokenizer( vocab=a , merges=a , add_prefix_space=a , trim_offsets=a , ) , bos_token=a , eos_token=a , unk_token=a , **a , ) lowercase__ : Any = add_prefix_space def _UpperCAmelCase ( self , a , a=None ) -> Optional[int]: lowercase__ : List[str] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _UpperCAmelCase ( self , a , a = None ) -> List[int]: lowercase__ : List[Any] = [self.sep_token_id] lowercase__ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
645
"""simple docstring""" import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase_ : def __init__( self , a , a=1_3 , a=[3_0, 3_0] , a=2 , a=3 , a=True , a=True , a=3_2 , a=5 , a=4 , a=3_7 , a="gelu" , a=0.1 , a=0.1 , a=1_0 , a=0.02 , a=3 , a=None , a=8 , a=1_0 , ) -> Any: lowercase__ : List[str] = parent lowercase__ : Optional[Any] = batch_size lowercase__ : Optional[int] = image_size lowercase__ : List[Any] = patch_size lowercase__ : Optional[Any] = num_channels lowercase__ : str = is_training lowercase__ : Optional[Any] = use_labels lowercase__ : Optional[Any] = hidden_size lowercase__ : Dict = num_hidden_layers lowercase__ : Optional[Any] = num_attention_heads lowercase__ : Dict = intermediate_size lowercase__ : List[Any] = hidden_act lowercase__ : List[Any] = hidden_dropout_prob lowercase__ : Any = attention_probs_dropout_prob lowercase__ : Any = type_sequence_label_size lowercase__ : Dict = initializer_range lowercase__ : Union[str, Any] = num_labels lowercase__ : Tuple = scope lowercase__ : Tuple = n_targets lowercase__ : Optional[int] = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens lowercase__ : Optional[Any] = (image_size[1] // patch_size) * (image_size[0] // patch_size) lowercase__ : Tuple = num_patches + 1 + self.num_detection_tokens def _UpperCAmelCase ( self ) -> Any: lowercase__ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) lowercase__ : Tuple = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) lowercase__ : int = [] for i in range(self.batch_size ): lowercase__ : Optional[Any] = {} lowercase__ : Any = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=a ) lowercase__ : List[str] = torch.rand(self.n_targets , 4 , device=a ) labels.append(a ) lowercase__ : Tuple = self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self ) -> List[Any]: return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def _UpperCAmelCase ( self , a , a , a ) -> int: lowercase__ : List[str] = YolosModel(config=a ) model.to(a ) model.eval() lowercase__ : List[Any] = model(a ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def _UpperCAmelCase ( self , a , a , a ) -> Union[str, Any]: lowercase__ : str = YolosForObjectDetection(a ) model.to(a ) model.eval() lowercase__ : Dict = model(pixel_values=a ) lowercase__ : Tuple = model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) lowercase__ : str = model(pixel_values=a , labels=a ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : int = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Any = config_and_inputs lowercase__ : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _a , _a , unittest.TestCase): lowerCamelCase__ : Optional[int] = (YolosModel, YolosForObjectDetection) if is_torch_available() else () lowerCamelCase__ : List[str] = ( {"feature-extraction": YolosModel, "object-detection": YolosForObjectDetection} if is_torch_available() else {} ) lowerCamelCase__ : List[Any] = False lowerCamelCase__ : Dict = False lowerCamelCase__ : Tuple = False lowerCamelCase__ : Union[str, Any] = False def _UpperCAmelCase ( self , a , a , a=False ) -> Dict: lowercase__ : List[str] = super()._prepare_for_class(a , a , return_labels=a ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": lowercase__ : Optional[Any] = [] for i in range(self.model_tester.batch_size ): lowercase__ : Dict = {} lowercase__ : Dict = torch.ones( size=(self.model_tester.n_targets,) , device=a , dtype=torch.long ) lowercase__ : Optional[Any] = torch.ones( self.model_tester.n_targets , 4 , device=a , dtype=torch.float ) labels.append(a ) lowercase__ : Union[str, Any] = labels return inputs_dict def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : Dict = YolosModelTester(self ) lowercase__ : Optional[int] = ConfigTester(self , config_class=a , has_text_modality=a , hidden_size=3_7 ) def _UpperCAmelCase ( self ) -> str: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Optional[Any]: # YOLOS does not use inputs_embeds pass def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[str] = model_class(a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase__ : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a , nn.Linear ) ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : int = model_class(a ) lowercase__ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Tuple = [*signature.parameters.keys()] lowercase__ : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , a ) def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _UpperCAmelCase ( self ) -> Dict: lowercase__ , lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Dict = True # in YOLOS, the seq_len is different lowercase__ : Tuple = self.model_tester.expected_seq_len for model_class in self.all_model_classes: lowercase__ : Optional[int] = True lowercase__ : str = False lowercase__ : str = True lowercase__ : List[str] = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : Any = model(**self._prepare_for_class(a , a ) ) lowercase__ : str = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase__ : Optional[int] = True lowercase__ : List[Any] = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : Union[str, Any] = model(**self._prepare_for_class(a , a ) ) lowercase__ : List[str] = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowercase__ : Dict = len(a ) # Check attention is always last and order is fine lowercase__ : Any = True lowercase__ : int = True lowercase__ : int = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : Any = model(**self._prepare_for_class(a , a ) ) lowercase__ : Optional[Any] = 1 self.assertEqual(out_len + added_hidden_states , len(a ) ) lowercase__ : Tuple = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def _UpperCAmelCase ( self ) -> List[str]: def check_hidden_states_output(a , a , a ): lowercase__ : str = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : int = model(**self._prepare_for_class(a , a ) ) lowercase__ : int = outputs.hidden_states lowercase__ : Any = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(a ) , a ) # YOLOS has a different seq_length lowercase__ : Optional[int] = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowercase__ , lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Any = True check_hidden_states_output(a , a , a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : List[Any] = True check_hidden_states_output(a , a , a ) def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*a ) @slow def _UpperCAmelCase ( self ) -> Union[str, Any]: for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : int = YolosModel.from_pretrained(a ) self.assertIsNotNone(a ) def a_ ( ): '''simple docstring''' lowercase__ : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase): @cached_property def _UpperCAmelCase ( self ) -> Union[str, Any]: return AutoImageProcessor.from_pretrained('hustvl/yolos-small' ) if is_vision_available() else None @slow def _UpperCAmelCase ( self ) -> int: lowercase__ : Dict = YolosForObjectDetection.from_pretrained('hustvl/yolos-small' ).to(a ) lowercase__ : Tuple = self.default_image_processor lowercase__ : Optional[int] = prepare_img() lowercase__ : int = image_processor(images=a , return_tensors='pt' ).to(a ) # forward pass with torch.no_grad(): lowercase__ : int = model(inputs.pixel_values ) # verify outputs lowercase__ : Tuple = torch.Size((1, 1_0_0, 9_2) ) self.assertEqual(outputs.logits.shape , a ) lowercase__ : Any = torch.tensor( [[-24.0_248, -10.3_024, -14.8_290], [-42.0_392, -16.8_200, -27.4_334], [-27.2_743, -11.8_154, -18.7_148]] , device=a , ) lowercase__ : List[str] = torch.tensor( [[0.2_559, 0.5_455, 0.4_706], [0.2_989, 0.7_279, 0.1_875], [0.7_732, 0.4_017, 0.4_462]] , device=a ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , a , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , a , atol=1e-4 ) ) # verify postprocessing lowercase__ : Optional[Any] = image_processor.post_process_object_detection( a , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] lowercase__ : str = torch.tensor([0.9_994, 0.9_790, 0.9_964, 0.9_972, 0.9_861] ).to(a ) lowercase__ : Any = [7_5, 7_5, 1_7, 6_3, 1_7] lowercase__ : Optional[int] = torch.tensor([335.0_609, 79.3_848, 375.4_216, 187.2_495] ).to(a ) self.assertEqual(len(results['scores'] ) , 5 ) self.assertTrue(torch.allclose(results['scores'] , a , atol=1e-4 ) ) self.assertSequenceEqual(results['labels'].tolist() , a ) self.assertTrue(torch.allclose(results['boxes'][0, :] , a ) )
645
1
"""simple docstring""" import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def a_ ( ): '''simple docstring''' print('Making key files...' ) make_key_files('rsa' , 1024 ) print('Key files generation successful.' ) def a_ ( _lowerCAmelCase : int ): '''simple docstring''' print('Generating prime p...' ) lowercase__ : Any = rabinMiller.generate_large_prime(_lowerCAmelCase ) print('Generating prime q...' ) lowercase__ : str = rabinMiller.generate_large_prime(_lowerCAmelCase ) lowercase__ : Any = p * q print('Generating e that is relatively prime to (p - 1) * (q - 1)...' ) while True: lowercase__ : Dict = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) ) if cryptoMath.gcd(_lowerCAmelCase , (p - 1) * (q - 1) ) == 1: break print('Calculating d that is mod inverse of e...' ) lowercase__ : Tuple = cryptoMath.find_mod_inverse(_lowerCAmelCase , (p - 1) * (q - 1) ) lowercase__ : Any = (n, e) lowercase__ : List[str] = (n, d) return (public_key, private_key) def a_ ( _lowerCAmelCase : str , _lowerCAmelCase : int ): '''simple docstring''' if os.path.exists(f"""{name}_pubkey.txt""" ) or os.path.exists(f"""{name}_privkey.txt""" ): print('\nWARNING:' ) print( f"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" 'Use a different name or delete these files and re-run this program.' ) sys.exit() lowercase__ , lowercase__ : str = generate_key(_lowerCAmelCase ) print(f"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(f"""{name}_pubkey.txt""" , 'w' ) as out_file: out_file.write(f"""{key_size},{public_key[0]},{public_key[1]}""" ) print(f"""Writing private key to file {name}_privkey.txt...""" ) with open(f"""{name}_privkey.txt""" , 'w' ) as out_file: out_file.write(f"""{key_size},{private_key[0]},{private_key[1]}""" ) if __name__ == "__main__": main()
645
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch _UpperCamelCase : int = logging.get_logger(__name__) @dataclass class UpperCAmelCase_ : def __init__( self , a=False , a=False , a=6.0 , a=None , a=False , a=False , a=None , a="fp4" , a=False , **a , ) -> Tuple: lowercase__ : str = load_in_abit lowercase__ : str = load_in_abit lowercase__ : List[str] = llm_inta_threshold lowercase__ : Dict = llm_inta_skip_modules lowercase__ : Tuple = llm_inta_enable_fpaa_cpu_offload lowercase__ : Any = llm_inta_has_fpaa_weight lowercase__ : Any = bnb_abit_quant_type lowercase__ : Dict = bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: lowercase__ : Dict = torch.floataa elif isinstance(a , a ): lowercase__ : Any = getattr(a , a ) elif isinstance(a , torch.dtype ): lowercase__ : Any = bnb_abit_compute_dtype else: raise ValueError('bnb_4bit_compute_dtype must be a string or a torch.dtype' ) self.post_init() def _UpperCAmelCase ( self ) -> str: if not isinstance(self.llm_inta_threshold , a ): raise ValueError('llm_int8_threshold must be a float' ) if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , a ): raise ValueError('llm_int8_skip_modules must be a list of strings' ) if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , a ): raise ValueError('llm_int8_enable_fp32_cpu_offload must be a boolean' ) if not isinstance(self.llm_inta_has_fpaa_weight , a ): raise ValueError('llm_int8_has_fp16_weight must be a boolean' ) if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype ): raise ValueError('bnb_4bit_compute_dtype must be torch.dtype' ) if not isinstance(self.bnb_abit_quant_type , a ): raise ValueError('bnb_4bit_quant_type must be a string' ) if not isinstance(self.bnb_abit_use_double_quant , a ): raise ValueError('bnb_4bit_use_double_quant must be a boolean' ) if self.load_in_abit and not version.parse(importlib.metadata.version('bitsandbytes' ) ) >= version.parse( '0.39.0' ): raise ValueError( '4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version' ) def _UpperCAmelCase ( self ) -> Tuple: return self.load_in_abit or self.load_in_abit def _UpperCAmelCase ( self ) -> List[str]: if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def _UpperCAmelCase ( cls , a , a , **a ) -> Optional[Any]: lowercase__ : List[Any] = cls(**a ) lowercase__ : Union[str, Any] = [] for key, value in kwargs.items(): if hasattr(a , a ): setattr(a , a , a ) to_remove.append(a ) for key in to_remove: kwargs.pop(a , a ) if return_unused_kwargs: return config, kwargs else: return config def _UpperCAmelCase ( self , a ) -> Dict: with open(a , 'w' , encoding='utf-8' ) as writer: lowercase__ : Any = self.to_dict() lowercase__ : str = json.dumps(a , indent=2 , sort_keys=a ) + '\n' writer.write(a ) def _UpperCAmelCase ( self ) -> Dict[str, Any]: lowercase__ : Optional[Any] = copy.deepcopy(self.__dict__ ) lowercase__ : Any = str(output['bnb_4bit_compute_dtype'] ).split('.' )[1] return output def __repr__( self ) -> Dict: return f"""{self.__class__.__name__} {self.to_json_string()}""" def _UpperCAmelCase ( self , a = True ) -> str: if use_diff is True: lowercase__ : List[Any] = self.to_diff_dict() else: lowercase__ : List[str] = self.to_dict() return json.dumps(a , indent=2 , sort_keys=a ) + "\n" def _UpperCAmelCase ( self ) -> Dict[str, Any]: lowercase__ : Tuple = self.to_dict() # get the default config dict lowercase__ : Optional[Any] = BitsAndBytesConfig().to_dict() lowercase__ : int = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: lowercase__ : Optional[int] = value return serializable_config_dict
645
1
"""simple docstring""" from __future__ import annotations from typing import Generic, TypeVar _UpperCamelCase : Any = TypeVar("T") class UpperCAmelCase_ ( Generic[T]): def __init__( self , a ) -> None: lowercase__ : List[Any] = data lowercase__ : Optional[Any] = self lowercase__ : Optional[Any] = 0 class UpperCAmelCase_ ( Generic[T]): def __init__( self ) -> None: # map from node name to the node object lowercase__ : dict[T, DisjointSetTreeNode[T]] = {} def _UpperCAmelCase ( self , a ) -> None: # create a new set with x as its member lowercase__ : str = DisjointSetTreeNode(a ) def _UpperCAmelCase ( self , a ) -> DisjointSetTreeNode[T]: # find the set x belongs to (with path-compression) lowercase__ : Optional[Any] = self.map[data] if elem_ref != elem_ref.parent: lowercase__ : Union[str, Any] = self.find_set(elem_ref.parent.data ) return elem_ref.parent def _UpperCAmelCase ( self , a , a ) -> None: # helper function for union operation if nodea.rank > nodea.rank: lowercase__ : Optional[int] = nodea else: lowercase__ : Optional[Any] = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def _UpperCAmelCase ( self , a , a ) -> None: # merge 2 disjoint sets self.link(self.find_set(a ) , self.find_set(a ) ) class UpperCAmelCase_ ( Generic[T]): def __init__( self ) -> None: # connections: map from the node to the neighbouring nodes (with weights) lowercase__ : dict[T, dict[T, int]] = {} def _UpperCAmelCase ( self , a ) -> None: # add a node ONLY if its not present in the graph if node not in self.connections: lowercase__ : int = {} def _UpperCAmelCase ( self , a , a , a ) -> None: # add an edge with the given weight self.add_node(a ) self.add_node(a ) lowercase__ : Any = weight lowercase__ : Union[str, Any] = weight def _UpperCAmelCase ( self ) -> GraphUndirectedWeighted[T]: lowercase__ : List[str] = [] lowercase__ : Dict = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda a : x[2] ) # creating the disjoint set lowercase__ : str = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(a ) # MST generation lowercase__ : int = 0 lowercase__ : Tuple = 0 lowercase__ : Any = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: lowercase__ , lowercase__ , lowercase__ : Tuple = edges[index] index += 1 lowercase__ : int = disjoint_set.find_set(a ) lowercase__ : Any = disjoint_set.find_set(a ) if parent_u != parent_v: num_edges += 1 graph.add_edge(a , a , a ) disjoint_set.union(a , a ) return graph
645
"""simple docstring""" import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler _UpperCamelCase : int = 16 _UpperCamelCase : Union[str, Any] = 32 def a_ ( _lowerCAmelCase : Tuple ): '''simple docstring''' return int(x / 2**20 ) class UpperCAmelCase_ : def __enter__( self ) -> Union[str, Any]: gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero lowercase__ : List[str] = torch.cuda.memory_allocated() return self def __exit__( self , *a ) -> Any: gc.collect() torch.cuda.empty_cache() lowercase__ : Optional[Any] = torch.cuda.memory_allocated() lowercase__ : Union[str, Any] = torch.cuda.max_memory_allocated() lowercase__ : List[Any] = bamb(self.end - self.begin ) lowercase__ : List[Any] = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def a_ ( _lowerCAmelCase : Accelerator , _lowerCAmelCase : int = 16 , _lowerCAmelCase : str = "bert-base-cased" , _lowerCAmelCase : int = 320 , _lowerCAmelCase : int = 160 , ): '''simple docstring''' lowercase__ : List[Any] = AutoTokenizer.from_pretrained(_lowerCAmelCase ) lowercase__ : Union[str, Any] = load_dataset( 'glue' , 'mrpc' , split={'train': f"""train[:{n_train}]""", 'validation': f"""validation[:{n_val}]"""} ) def tokenize_function(_lowerCAmelCase : int ): # max_length=None => use the model max length (it's actually the default) lowercase__ : List[str] = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowercase__ : Union[str, Any] = datasets.map( _lowerCAmelCase , batched=_lowerCAmelCase , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=_lowerCAmelCase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ : Union[str, Any] = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(_lowerCAmelCase : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_lowerCAmelCase , padding='max_length' , max_length=128 , return_tensors='pt' ) return tokenizer.pad(_lowerCAmelCase , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. lowercase__ : Dict = DataLoader( tokenized_datasets['train'] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase ) lowercase__ : Dict = DataLoader( tokenized_datasets['validation'] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase ) return train_dataloader, eval_dataloader def a_ ( _lowerCAmelCase : Any , _lowerCAmelCase : List[str] ): '''simple docstring''' lowercase__ : List[Any] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ : Optional[int] = config['lr'] lowercase__ : Optional[Any] = int(config['num_epochs'] ) lowercase__ : Optional[Any] = int(config['seed'] ) lowercase__ : int = int(config['batch_size'] ) lowercase__ : Union[str, Any] = args.model_name_or_path set_seed(_lowerCAmelCase ) lowercase__ , lowercase__ : Tuple = get_dataloaders(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , args.n_train , args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ : List[Any] = AutoModelForSequenceClassification.from_pretrained(_lowerCAmelCase , return_dict=_lowerCAmelCase ) # Instantiate optimizer lowercase__ : List[Any] = ( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowercase__ : Optional[Any] = optimizer_cls(params=model.parameters() , lr=_lowerCAmelCase ) if accelerator.state.deepspeed_plugin is not None: lowercase__ : Optional[Any] = accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: lowercase__ : List[Any] = 1 lowercase__ : List[Any] = (len(_lowerCAmelCase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowercase__ : Optional[int] = get_linear_schedule_with_warmup( optimizer=_lowerCAmelCase , num_warmup_steps=0 , num_training_steps=_lowerCAmelCase , ) else: lowercase__ : Tuple = DummyScheduler(_lowerCAmelCase , total_num_steps=_lowerCAmelCase , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Dict = accelerator.prepare( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # We need to keep track of how many total steps we have iterated over lowercase__ : Optional[int] = 0 # We also need to keep track of the stating epoch so files are named properly lowercase__ : Tuple = 0 # Now we train the model lowercase__ : Optional[Any] = {} for epoch in range(_lowerCAmelCase , _lowerCAmelCase ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(_lowerCAmelCase ): lowercase__ : List[Any] = model(**_lowerCAmelCase ) lowercase__ : Dict = outputs.loss lowercase__ : int = loss / gradient_accumulation_steps accelerator.backward(_lowerCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print('Memory before entering the train : {}'.format(bamb(tracemalloc.begin ) ) ) accelerator.print('Memory consumed at the end of the train (end-begin): {}'.format(tracemalloc.used ) ) accelerator.print('Peak Memory consumed during the train (max-begin): {}'.format(tracemalloc.peaked ) ) accelerator.print( 'Total Peak Memory consumed during the train (max): {}'.format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) lowercase__ : int = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[f"""epoch-{epoch}"""] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , 'peak_memory_utilization.json' ) , 'w' ) as f: json.dump(_lowerCAmelCase , _lowerCAmelCase ) def a_ ( ): '''simple docstring''' lowercase__ : int = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path' , type=_lowerCAmelCase , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=_lowerCAmelCase , ) parser.add_argument( '--output_dir' , type=_lowerCAmelCase , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--peak_memory_upper_bound' , type=_lowerCAmelCase , default=_lowerCAmelCase , help='The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.' , ) parser.add_argument( '--n_train' , type=_lowerCAmelCase , default=320 , help='Number of training examples to use.' , ) parser.add_argument( '--n_val' , type=_lowerCAmelCase , default=160 , help='Number of validation examples to use.' , ) parser.add_argument( '--num_epochs' , type=_lowerCAmelCase , default=1 , help='Number of train epochs.' , ) lowercase__ : Any = parser.parse_args() lowercase__ : Optional[Any] = {'lr': 2E-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16} training_function(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": main()
645
1
"""simple docstring""" import math def a_ ( _lowerCAmelCase : int = 100 ): '''simple docstring''' lowercase__ : Union[str, Any] = sum(i * i for i in range(1 , n + 1 ) ) lowercase__ : str = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f'''{solution() = }''')
645
"""simple docstring""" def a_ ( _lowerCAmelCase : str ): '''simple docstring''' lowercase__ : Any = [0] * len(_lowerCAmelCase ) for i in range(1 , len(_lowerCAmelCase ) ): # use last results for better performance - dynamic programming lowercase__ : List[str] = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: lowercase__ : Dict = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 lowercase__ : Union[str, Any] = j return prefix_result def a_ ( _lowerCAmelCase : str ): '''simple docstring''' return max(prefix_function(_lowerCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod()
645
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase : int = logging.get_logger(__name__) _UpperCamelCase : Union[str, Any] = { "google/vivit-b-16x2-kinetics400": ( "https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json" ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class UpperCAmelCase_ ( _a): lowerCamelCase__ : Any = "vivit" def __init__( self , a=2_2_4 , a=3_2 , a=[2, 1_6, 1_6] , a=3 , a=7_6_8 , a=1_2 , a=1_2 , a=3_0_7_2 , a="gelu_fast" , a=0.0 , a=0.0 , a=0.02 , a=1e-06 , a=True , **a , ) -> List[Any]: lowercase__ : int = hidden_size lowercase__ : Optional[Any] = num_hidden_layers lowercase__ : int = num_attention_heads lowercase__ : List[Any] = intermediate_size lowercase__ : List[Any] = hidden_act lowercase__ : int = hidden_dropout_prob lowercase__ : Tuple = attention_probs_dropout_prob lowercase__ : int = initializer_range lowercase__ : Optional[int] = layer_norm_eps lowercase__ : Any = image_size lowercase__ : List[Any] = num_frames lowercase__ : Optional[int] = tubelet_size lowercase__ : int = num_channels lowercase__ : Optional[int] = qkv_bias super().__init__(**a )
645
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class UpperCAmelCase_ ( unittest.TestCase): def __init__( self , a , a=7 , a=3 , a=1_8 , a=3_0 , a=4_0_0 , a=True , a=None , a=True , a=None , a=True , ) -> List[str]: lowercase__ : Tuple = size if size is not None else {'shortest_edge': 2_0} lowercase__ : Union[str, Any] = crop_size if crop_size is not None else {'height': 1_8, 'width': 1_8} lowercase__ : Optional[int] = parent lowercase__ : Optional[int] = batch_size lowercase__ : str = num_channels lowercase__ : Any = image_size lowercase__ : Optional[Any] = min_resolution lowercase__ : int = max_resolution lowercase__ : List[Any] = do_resize lowercase__ : List[str] = size lowercase__ : str = do_center_crop lowercase__ : List[Any] = crop_size lowercase__ : Union[str, Any] = do_flip_channel_order def _UpperCAmelCase ( self ) -> int: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class UpperCAmelCase_ ( _a , unittest.TestCase): lowerCamelCase__ : Optional[Any] = MobileViTImageProcessor if is_vision_available() else None def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : Tuple = MobileViTImageProcessingTester(self ) @property def _UpperCAmelCase ( self ) -> int: return self.image_processor_tester.prepare_image_processor_dict() def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a , 'do_resize' ) ) self.assertTrue(hasattr(a , 'size' ) ) self.assertTrue(hasattr(a , 'do_center_crop' ) ) self.assertTrue(hasattr(a , 'center_crop' ) ) self.assertTrue(hasattr(a , 'do_flip_channel_order' ) ) def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 2_0} ) self.assertEqual(image_processor.crop_size , {'height': 1_8, 'width': 1_8} ) lowercase__ : str = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {'shortest_edge': 4_2} ) self.assertEqual(image_processor.crop_size , {'height': 8_4, 'width': 8_4} ) def _UpperCAmelCase ( self ) -> Tuple: pass def _UpperCAmelCase ( self ) -> str: # Initialize image_processing lowercase__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a ) for image in image_inputs: self.assertIsInstance(a , Image.Image ) # Test not batched input lowercase__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowercase__ : List[Any] = image_processing(a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def _UpperCAmelCase ( self ) -> Tuple: # Initialize image_processing lowercase__ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , numpify=a ) for image in image_inputs: self.assertIsInstance(a , np.ndarray ) # Test not batched input lowercase__ : List[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowercase__ : Any = image_processing(a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def _UpperCAmelCase ( self ) -> Dict: # Initialize image_processing lowercase__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , torchify=a ) for image in image_inputs: self.assertIsInstance(a , torch.Tensor ) # Test not batched input lowercase__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowercase__ : Tuple = image_processing(a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
645
1
"""simple docstring""" import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class UpperCAmelCase_ ( _a , _a): @register_to_config def __init__( self , a = 1_2_8 , a = 2_5_6 , a = 2_000.0 , a = 7_6_8 , a = 1_2 , a = 1_2 , a = 6_4 , a = 2_0_4_8 , a = 0.1 , ) -> Optional[int]: super().__init__() lowercase__ : Any = nn.Sequential( nn.Linear(a , d_model * 4 , bias=a ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=a ) , nn.SiLU() , ) lowercase__ : Union[str, Any] = nn.Embedding(a , a ) lowercase__ : Any = False lowercase__ : List[str] = nn.Linear(a , a , bias=a ) lowercase__ : Dict = nn.Dropout(p=a ) lowercase__ : List[Any] = nn.ModuleList() for lyr_num in range(a ): # FiLM conditional T5 decoder lowercase__ : Tuple = DecoderLayer(d_model=a , d_kv=a , num_heads=a , d_ff=a , dropout_rate=a ) self.decoders.append(a ) lowercase__ : str = TaLayerNorm(a ) lowercase__ : List[Any] = nn.Dropout(p=a ) lowercase__ : List[str] = nn.Linear(a , a , bias=a ) def _UpperCAmelCase ( self , a , a ) -> int: lowercase__ : Optional[int] = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def _UpperCAmelCase ( self , a , a , a ) -> Optional[Any]: lowercase__ , lowercase__ , lowercase__ : List[str] = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. lowercase__ : Union[str, Any] = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) lowercase__ : Tuple = self.conditioning_emb(a ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) lowercase__ : Any = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. lowercase__ : int = torch.broadcast_to( torch.arange(a , device=decoder_input_tokens.device ) , (batch, seq_length) , ) lowercase__ : Union[str, Any] = self.position_encoding(a ) lowercase__ : Union[str, Any] = self.continuous_inputs_projection(a ) inputs += position_encodings lowercase__ : Tuple = self.dropout(a ) # decoder: No padding present. lowercase__ : Union[str, Any] = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. lowercase__ : Any = [(x, self.encoder_decoder_mask(a , a )) for x, y in encodings_and_masks] # cross attend style: concat encodings lowercase__ : Tuple = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) lowercase__ : Any = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: lowercase__ : List[str] = lyr( a , conditioning_emb=a , encoder_hidden_states=a , encoder_attention_mask=a , )[0] lowercase__ : Any = self.decoder_norm(a ) lowercase__ : Dict = self.post_dropout(a ) lowercase__ : Tuple = self.spec_out(a ) return spec_out class UpperCAmelCase_ ( nn.Module): def __init__( self , a , a , a , a , a , a=1e-6 ) -> Dict: super().__init__() lowercase__ : List[Any] = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=a , d_kv=a , num_heads=a , dropout_rate=a ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=a , d_kv=a , num_heads=a , dropout_rate=a , layer_norm_epsilon=a , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=a , d_ff=a , dropout_rate=a , layer_norm_epsilon=a ) ) def _UpperCAmelCase ( self , a , a=None , a=None , a=None , a=None , a=None , ) -> List[Any]: lowercase__ : List[Any] = self.layer[0]( a , conditioning_emb=a , attention_mask=a , ) if encoder_hidden_states is not None: lowercase__ : Optional[Any] = torch.where(encoder_attention_mask > 0 , 0 , -1e10 ).to( encoder_hidden_states.dtype ) lowercase__ : List[str] = self.layer[1]( a , key_value_states=a , attention_mask=a , ) # Apply Film Conditional Feed Forward layer lowercase__ : Union[str, Any] = self.layer[-1](a , a ) return (hidden_states,) class UpperCAmelCase_ ( nn.Module): def __init__( self , a , a , a , a ) -> Union[str, Any]: super().__init__() lowercase__ : List[Any] = TaLayerNorm(a ) lowercase__ : List[Any] = TaFiLMLayer(in_features=d_model * 4 , out_features=a ) lowercase__ : List[Any] = Attention(query_dim=a , heads=a , dim_head=a , out_bias=a , scale_qk=a ) lowercase__ : List[Any] = nn.Dropout(a ) def _UpperCAmelCase ( self , a , a=None , a=None , ) -> List[Any]: # pre_self_attention_layer_norm lowercase__ : Optional[Any] = self.layer_norm(a ) if conditioning_emb is not None: lowercase__ : List[Any] = self.FiLMLayer(a , a ) # Self-attention block lowercase__ : Dict = self.attention(a ) lowercase__ : str = hidden_states + self.dropout(a ) return hidden_states class UpperCAmelCase_ ( nn.Module): def __init__( self , a , a , a , a , a ) -> Union[str, Any]: super().__init__() lowercase__ : Tuple = Attention(query_dim=a , heads=a , dim_head=a , out_bias=a , scale_qk=a ) lowercase__ : Union[str, Any] = TaLayerNorm(a , eps=a ) lowercase__ : str = nn.Dropout(a ) def _UpperCAmelCase ( self , a , a=None , a=None , ) -> str: lowercase__ : Dict = self.layer_norm(a ) lowercase__ : int = self.attention( a , encoder_hidden_states=a , attention_mask=attention_mask.squeeze(1 ) , ) lowercase__ : Optional[int] = hidden_states + self.dropout(a ) return layer_output class UpperCAmelCase_ ( nn.Module): def __init__( self , a , a , a , a ) -> Tuple: super().__init__() lowercase__ : Optional[Any] = TaDenseGatedActDense(d_model=a , d_ff=a , dropout_rate=a ) lowercase__ : Optional[int] = TaFiLMLayer(in_features=d_model * 4 , out_features=a ) lowercase__ : int = TaLayerNorm(a , eps=a ) lowercase__ : Dict = nn.Dropout(a ) def _UpperCAmelCase ( self , a , a=None ) -> Optional[int]: lowercase__ : Any = self.layer_norm(a ) if conditioning_emb is not None: lowercase__ : Dict = self.film(a , a ) lowercase__ : List[Any] = self.DenseReluDense(a ) lowercase__ : Tuple = hidden_states + self.dropout(a ) return hidden_states class UpperCAmelCase_ ( nn.Module): def __init__( self , a , a , a ) -> List[str]: super().__init__() lowercase__ : Optional[int] = nn.Linear(a , a , bias=a ) lowercase__ : str = nn.Linear(a , a , bias=a ) lowercase__ : List[Any] = nn.Linear(a , a , bias=a ) lowercase__ : Optional[Any] = nn.Dropout(a ) lowercase__ : Optional[int] = NewGELUActivation() def _UpperCAmelCase ( self , a ) -> Optional[int]: lowercase__ : int = self.act(self.wi_a(a ) ) lowercase__ : str = self.wi_a(a ) lowercase__ : Union[str, Any] = hidden_gelu * hidden_linear lowercase__ : Dict = self.dropout(a ) lowercase__ : Optional[int] = self.wo(a ) return hidden_states class UpperCAmelCase_ ( nn.Module): def __init__( self , a , a=1e-6 ) -> Tuple: super().__init__() lowercase__ : Optional[Any] = nn.Parameter(torch.ones(a ) ) lowercase__ : Union[str, Any] = eps def _UpperCAmelCase ( self , a ) -> int: # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 lowercase__ : Dict = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=a ) lowercase__ : Optional[Any] = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: lowercase__ : Union[str, Any] = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class UpperCAmelCase_ ( nn.Module): def _UpperCAmelCase ( self , a ) -> torch.Tensor: return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.044_715 * torch.pow(a , 3.0 )) )) class UpperCAmelCase_ ( nn.Module): def __init__( self , a , a ) -> Union[str, Any]: super().__init__() lowercase__ : Optional[Any] = nn.Linear(a , out_features * 2 , bias=a ) def _UpperCAmelCase ( self , a , a ) -> str: lowercase__ : Tuple = self.scale_bias(a ) lowercase__ , lowercase__ : Any = torch.chunk(a , 2 , -1 ) lowercase__ : Dict = x * (1 + scale) + shift return x
645
"""simple docstring""" import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class UpperCAmelCase_ ( unittest.TestCase): def __init__( self , a , a=1_3 , a=7 , a=True , a=True , a=True , a=True , a=9_9 , a=3_2 , a=5 , a=4 , a=3_7 , a="gelu" , a=0.1 , a=0.1 , a=5_1_2 , a=1_6 , a=2 , a=0.02 , a=4 , ) -> Dict: lowercase__ : Optional[Any] = parent lowercase__ : Dict = batch_size lowercase__ : List[Any] = seq_length lowercase__ : int = is_training lowercase__ : str = use_attention_mask lowercase__ : Dict = use_token_type_ids lowercase__ : Optional[int] = use_labels lowercase__ : Tuple = vocab_size lowercase__ : List[str] = hidden_size lowercase__ : Union[str, Any] = num_hidden_layers lowercase__ : int = num_attention_heads lowercase__ : Dict = intermediate_size lowercase__ : List[str] = hidden_act lowercase__ : Dict = hidden_dropout_prob lowercase__ : Tuple = attention_probs_dropout_prob lowercase__ : List[str] = max_position_embeddings lowercase__ : int = type_vocab_size lowercase__ : List[str] = type_sequence_label_size lowercase__ : Union[str, Any] = initializer_range lowercase__ : Optional[int] = num_choices def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ : str = None if self.use_attention_mask: lowercase__ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ : List[str] = None if self.use_token_type_ids: lowercase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__ : Any = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _UpperCAmelCase ( self ) -> Any: lowercase__ : Optional[int] = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ : Tuple = config_and_inputs lowercase__ : Union[str, Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class UpperCAmelCase_ ( _a , unittest.TestCase): lowerCamelCase__ : Tuple = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : Union[str, Any] = FlaxAlbertModelTester(self ) @slow def _UpperCAmelCase ( self ) -> str: for model_class_name in self.all_model_classes: lowercase__ : str = model_class_name.from_pretrained('albert-base-v2' ) lowercase__ : Tuple = model(np.ones((1, 1) ) ) self.assertIsNotNone(a ) @require_flax class UpperCAmelCase_ ( unittest.TestCase): @slow def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : str = FlaxAlbertModel.from_pretrained('albert-base-v2' ) lowercase__ : Optional[int] = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) lowercase__ : Optional[Any] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) lowercase__ : Any = model(a , attention_mask=a )[0] lowercase__ : Tuple = (1, 1_1, 7_6_8) self.assertEqual(output.shape , a ) lowercase__ : Optional[Any] = np.array( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , a , atol=1e-4 ) )
645
1
"""simple docstring""" import os def a_ ( ): '''simple docstring''' with open(os.path.dirname(_lowerCAmelCase ) + '/p022_names.txt' ) as file: lowercase__ : Union[str, Any] = str(file.readlines()[0] ) lowercase__ : Tuple = names.replace('"' , '' ).split(',' ) names.sort() lowercase__ : Tuple = 0 lowercase__ : Optional[Any] = 0 for i, name in enumerate(_lowerCAmelCase ): for letter in name: name_score += ord(_lowerCAmelCase ) - 64 total_score += (i + 1) * name_score lowercase__ : Tuple = 0 return total_score if __name__ == "__main__": print(solution())
645
"""simple docstring""" from collections.abc import Sequence def a_ ( _lowerCAmelCase : Sequence[float] , _lowerCAmelCase : float ): '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(_lowerCAmelCase ) ) def a_ ( _lowerCAmelCase : Sequence[float] , _lowerCAmelCase : float ): '''simple docstring''' lowercase__ : int = 0.0 for coeff in reversed(_lowerCAmelCase ): lowercase__ : List[Any] = result * x + coeff return result if __name__ == "__main__": _UpperCamelCase : int = (0.0, 0.0, 5.0, 9.3, 7.0) _UpperCamelCase : Dict = 1_0.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
645
1
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging _UpperCamelCase : str = logging.get_logger(__name__) # TODO: upload to AWS _UpperCamelCase : Tuple = { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json" ), } class UpperCAmelCase_ ( _a): lowerCamelCase__ : int = "retribert" def __init__( self , a=3_0_5_2_2 , a=7_6_8 , a=8 , a=1_2 , a=3_0_7_2 , a="gelu" , a=0.1 , a=0.1 , a=5_1_2 , a=2 , a=0.02 , a=1e-12 , a=True , a=1_2_8 , a=0 , **a , ) -> Optional[int]: super().__init__(pad_token_id=a , **a ) lowercase__ : List[Any] = vocab_size lowercase__ : List[Any] = hidden_size lowercase__ : List[Any] = num_hidden_layers lowercase__ : Optional[int] = num_attention_heads lowercase__ : List[str] = hidden_act lowercase__ : List[Any] = intermediate_size lowercase__ : Any = hidden_dropout_prob lowercase__ : Optional[Any] = attention_probs_dropout_prob lowercase__ : Dict = max_position_embeddings lowercase__ : Any = type_vocab_size lowercase__ : Union[str, Any] = initializer_range lowercase__ : Union[str, Any] = layer_norm_eps lowercase__ : str = share_encoders lowercase__ : Optional[Any] = projection_dim
645
"""simple docstring""" import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path _UpperCamelCase : Any = [ {"dataset": "wikipedia", "config_name": "20220301.de"}, {"dataset": "wikipedia", "config_name": "20220301.en"}, {"dataset": "wikipedia", "config_name": "20220301.fr"}, {"dataset": "wikipedia", "config_name": "20220301.frr"}, {"dataset": "wikipedia", "config_name": "20220301.it"}, {"dataset": "wikipedia", "config_name": "20220301.simple"}, {"dataset": "snli", "config_name": "plain_text"}, {"dataset": "eli5", "config_name": "LFQA_reddit"}, {"dataset": "wiki40b", "config_name": "en"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.compressed"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.no_index"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.multiset.no_index"}, {"dataset": "natural_questions", "config_name": "default"}, ] def a_ ( _lowerCAmelCase : Optional[Any]=True ): '''simple docstring''' if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=_a)) class UpperCAmelCase_ ( _a): lowerCamelCase__ : str = None lowerCamelCase__ : Optional[Any] = None def _UpperCAmelCase ( self , a , a ) -> List[Any]: with TemporaryDirectory() as tmp_dir: lowercase__ : List[str] = dataset_module_factory(a , cache_dir=a ) lowercase__ : List[Any] = import_main_class(dataset_module.module_path , dataset=a ) lowercase__ : DatasetBuilder = builder_cls( cache_dir=a , config_name=a , hash=dataset_module.hash , ) lowercase__ : Union[str, Any] = '/'.join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=a ).replace(os.sep , '/' ), config.DATASET_INFO_FILENAME, ] ) lowercase__ : Union[str, Any] = cached_path(a , cache_dir=a ) self.assertTrue(os.path.exists(a ) ) @pytest.mark.integration def a_ ( _lowerCAmelCase : str ): '''simple docstring''' lowercase__ : Union[str, Any] = tmp_path_factory.mktemp('test_hf_gcp' ) / 'test_wikipedia_simple' lowercase__ : int = dataset_module_factory('wikipedia' , cache_dir=_lowerCAmelCase ) lowercase__ : Optional[int] = import_main_class(dataset_module.module_path ) lowercase__ : DatasetBuilder = builder_cls( cache_dir=_lowerCAmelCase , config_name='20220301.frr' , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam lowercase__ : Optional[int] = None builder_instance.download_and_prepare() lowercase__ : Optional[int] = builder_instance.as_dataset() assert ds @pytest.mark.integration def a_ ( _lowerCAmelCase : Optional[Any] ): '''simple docstring''' lowercase__ : Optional[int] = dataset_module_factory('wikipedia' , cache_dir=_lowerCAmelCase ) lowercase__ : List[str] = import_main_class(dataset_module.module_path , dataset=_lowerCAmelCase ) lowercase__ : DatasetBuilder = builder_cls( cache_dir=_lowerCAmelCase , config_name='20220301.frr' , hash=dataset_module.hash , ) lowercase__ : Union[str, Any] = builder_instance.as_streaming_dataset() assert ds assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert "train" in ds assert isinstance(ds['train'] , _lowerCAmelCase ) assert next(iter(ds['train'] ) )
645
1
"""simple docstring""" import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class UpperCAmelCase_ ( unittest.TestCase): lowerCamelCase__ : Optional[int] = MODEL_FOR_MASKED_LM_MAPPING lowerCamelCase__ : List[str] = TF_MODEL_FOR_MASKED_LM_MAPPING def _UpperCAmelCase ( self ) -> List[str]: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Dict = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , top_k=2 , framework='tf' ) lowercase__ : Tuple = unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(a , decimals=6 ) , [ {'sequence': 'My name is grouped', 'score': 2.1e-05, 'token': 3_8_0_1_5, 'token_str': ' grouped'}, {'sequence': 'My name is accuser', 'score': 2.1e-05, 'token': 2_5_5_0_6, 'token_str': ' accuser'}, ] , ) lowercase__ : Tuple = unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(a , decimals=6 ) , [ { 'sequence': 'The largest city in France is grouped', 'score': 2.1e-05, 'token': 3_8_0_1_5, 'token_str': ' grouped', }, { 'sequence': 'The largest city in France is accuser', 'score': 2.1e-05, 'token': 2_5_5_0_6, 'token_str': ' accuser', }, ] , ) lowercase__ : str = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 ) self.assertEqual( nested_simplify(a , decimals=6 ) , [ {'sequence': 'My name is Clara', 'score': 2e-05, 'token': 1_3_6_0_6, 'token_str': ' Clara'}, {'sequence': 'My name is Patrick', 'score': 2e-05, 'token': 3_4_9_9, 'token_str': ' Patrick'}, {'sequence': 'My name is Te', 'score': 1.9e-05, 'token': 2_9_4_1, 'token_str': ' Te'}, ] , ) @require_torch def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : int = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , top_k=2 , framework='pt' ) lowercase__ : Optional[Any] = unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(a , decimals=6 ) , [ {'sequence': 'My name is Maul', 'score': 2.2e-05, 'token': 3_5_6_7_6, 'token_str': ' Maul'}, {'sequence': 'My name isELS', 'score': 2.2e-05, 'token': 1_6_4_1_6, 'token_str': 'ELS'}, ] , ) lowercase__ : Tuple = unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(a , decimals=6 ) , [ { 'sequence': 'The largest city in France is Maul', 'score': 2.2e-05, 'token': 3_5_6_7_6, 'token_str': ' Maul', }, {'sequence': 'The largest city in France isELS', 'score': 2.2e-05, 'token': 1_6_4_1_6, 'token_str': 'ELS'}, ] , ) lowercase__ : Any = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 ) self.assertEqual( nested_simplify(a , decimals=6 ) , [ {'sequence': 'My name is Patrick', 'score': 2.1e-05, 'token': 3_4_9_9, 'token_str': ' Patrick'}, {'sequence': 'My name is Te', 'score': 2e-05, 'token': 2_9_4_1, 'token_str': ' Te'}, {'sequence': 'My name is Clara', 'score': 2e-05, 'token': 1_3_6_0_6, 'token_str': ' Clara'}, ] , ) lowercase__ : List[Any] = unmasker('My name is <mask> <mask>' , top_k=2 ) self.assertEqual( nested_simplify(a , decimals=6 ) , [ [ { 'score': 2.2e-05, 'token': 3_5_6_7_6, 'token_str': ' Maul', 'sequence': '<s>My name is Maul<mask></s>', }, {'score': 2.2e-05, 'token': 1_6_4_1_6, 'token_str': 'ELS', 'sequence': '<s>My name isELS<mask></s>'}, ], [ { 'score': 2.2e-05, 'token': 3_5_6_7_6, 'token_str': ' Maul', 'sequence': '<s>My name is<mask> Maul</s>', }, {'score': 2.2e-05, 'token': 1_6_4_1_6, 'token_str': 'ELS', 'sequence': '<s>My name is<mask>ELS</s>'}, ], ] , ) @require_torch_gpu def _UpperCAmelCase ( self ) -> str: lowercase__ : str = pipeline('fill-mask' , model='hf-internal-testing/tiny-random-distilbert' , device=0 , framework='pt' ) # convert model to fp16 pipe.model.half() lowercase__ : List[Any] = pipe('Paris is the [MASK] of France.' ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(a , a ) @slow @require_torch def _UpperCAmelCase ( self ) -> str: lowercase__ : Optional[Any] = pipeline(task='fill-mask' , model='distilroberta-base' , top_k=2 , framework='pt' ) self.run_large_test(a ) @slow @require_tf def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : Tuple = pipeline(task='fill-mask' , model='distilroberta-base' , top_k=2 , framework='tf' ) self.run_large_test(a ) def _UpperCAmelCase ( self , a ) -> Dict: lowercase__ : Dict = unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(a ) , [ {'sequence': 'My name is John', 'score': 0.008, 'token': 6_1_0, 'token_str': ' John'}, {'sequence': 'My name is Chris', 'score': 0.007, 'token': 1_5_7_3, 'token_str': ' Chris'}, ] , ) lowercase__ : Any = unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(a ) , [ { 'sequence': 'The largest city in France is Paris', 'score': 0.251, 'token': 2_2_0_1, 'token_str': ' Paris', }, { 'sequence': 'The largest city in France is Lyon', 'score': 0.214, 'token': 1_2_7_9_0, 'token_str': ' Lyon', }, ] , ) lowercase__ : Tuple = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 ) self.assertEqual( nested_simplify(a ) , [ {'sequence': 'My name is Patrick', 'score': 0.005, 'token': 3_4_9_9, 'token_str': ' Patrick'}, {'sequence': 'My name is Clara', 'score': 0.000, 'token': 1_3_6_0_6, 'token_str': ' Clara'}, {'sequence': 'My name is Te', 'score': 0.000, 'token': 2_9_4_1, 'token_str': ' Te'}, ] , ) @require_torch def _UpperCAmelCase ( self ) -> str: lowercase__ : int = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , framework='pt' ) lowercase__ : int = None lowercase__ : List[str] = None self.run_pipeline_test(a , [] ) @require_tf def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ : Optional[int] = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , framework='tf' ) lowercase__ : Union[str, Any] = None lowercase__ : Any = None self.run_pipeline_test(a , [] ) def _UpperCAmelCase ( self , a , a , a ) -> Optional[int]: if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest('The provided tokenizer has no mask token, (probably reformer or wav2vec2)' ) lowercase__ : Optional[Any] = FillMaskPipeline(model=a , tokenizer=a ) lowercase__ : Dict = [ f"""This is another {tokenizer.mask_token} test""", ] return fill_masker, examples def _UpperCAmelCase ( self , a , a ) -> Any: lowercase__ : List[Any] = fill_masker.tokenizer lowercase__ : Optional[int] = fill_masker.model lowercase__ : Tuple = fill_masker( f"""This is a {tokenizer.mask_token}""" , ) self.assertEqual( a , [ {'sequence': ANY(a ), 'score': ANY(a ), 'token': ANY(a ), 'token_str': ANY(a )}, {'sequence': ANY(a ), 'score': ANY(a ), 'token': ANY(a ), 'token_str': ANY(a )}, {'sequence': ANY(a ), 'score': ANY(a ), 'token': ANY(a ), 'token_str': ANY(a )}, {'sequence': ANY(a ), 'score': ANY(a ), 'token': ANY(a ), 'token_str': ANY(a )}, {'sequence': ANY(a ), 'score': ANY(a ), 'token': ANY(a ), 'token_str': ANY(a )}, ] , ) lowercase__ : List[Any] = fill_masker([f"""This is a {tokenizer.mask_token}"""] ) self.assertEqual( a , [ {'sequence': ANY(a ), 'score': ANY(a ), 'token': ANY(a ), 'token_str': ANY(a )}, {'sequence': ANY(a ), 'score': ANY(a ), 'token': ANY(a ), 'token_str': ANY(a )}, {'sequence': ANY(a ), 'score': ANY(a ), 'token': ANY(a ), 'token_str': ANY(a )}, {'sequence': ANY(a ), 'score': ANY(a ), 'token': ANY(a ), 'token_str': ANY(a )}, {'sequence': ANY(a ), 'score': ANY(a ), 'token': ANY(a ), 'token_str': ANY(a )}, ] , ) lowercase__ : Optional[int] = fill_masker([f"""This is a {tokenizer.mask_token}""", f"""Another {tokenizer.mask_token} great test."""] ) self.assertEqual( a , [ [ {'sequence': ANY(a ), 'score': ANY(a ), 'token': ANY(a ), 'token_str': ANY(a )}, {'sequence': ANY(a ), 'score': ANY(a ), 'token': ANY(a ), 'token_str': ANY(a )}, {'sequence': ANY(a ), 'score': ANY(a ), 'token': ANY(a ), 'token_str': ANY(a )}, {'sequence': ANY(a ), 'score': ANY(a ), 'token': ANY(a ), 'token_str': ANY(a )}, {'sequence': ANY(a ), 'score': ANY(a ), 'token': ANY(a ), 'token_str': ANY(a )}, ], [ {'sequence': ANY(a ), 'score': ANY(a ), 'token': ANY(a ), 'token_str': ANY(a )}, {'sequence': ANY(a ), 'score': ANY(a ), 'token': ANY(a ), 'token_str': ANY(a )}, {'sequence': ANY(a ), 'score': ANY(a ), 'token': ANY(a ), 'token_str': ANY(a )}, {'sequence': ANY(a ), 'score': ANY(a ), 'token': ANY(a ), 'token_str': ANY(a )}, {'sequence': ANY(a ), 'score': ANY(a ), 'token': ANY(a ), 'token_str': ANY(a )}, ], ] , ) with self.assertRaises(a ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(a ): fill_masker('This is' ) self.run_test_top_k(a , a ) self.run_test_targets(a , a ) self.run_test_top_k_targets(a , a ) self.fill_mask_with_duplicate_targets_and_top_k(a , a ) self.fill_mask_with_multiple_masks(a , a ) def _UpperCAmelCase ( self , a , a ) -> Tuple: lowercase__ : Optional[int] = tokenizer.get_vocab() lowercase__ : Dict = sorted(vocab.keys() )[:2] # Pipeline argument lowercase__ : Dict = FillMaskPipeline(model=a , tokenizer=a , targets=a ) lowercase__ : Union[str, Any] = fill_masker(f"""This is a {tokenizer.mask_token}""" ) self.assertEqual( a , [ {'sequence': ANY(a ), 'score': ANY(a ), 'token': ANY(a ), 'token_str': ANY(a )}, {'sequence': ANY(a ), 'score': ANY(a ), 'token': ANY(a ), 'token_str': ANY(a )}, ] , ) lowercase__ : Any = {vocab[el] for el in targets} self.assertEqual({el['token'] for el in outputs} , a ) lowercase__ : Optional[Any] = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['token_str'] for el in outputs} , set(a ) ) # Call argument lowercase__ : str = FillMaskPipeline(model=a , tokenizer=a ) lowercase__ : str = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=a ) self.assertEqual( a , [ {'sequence': ANY(a ), 'score': ANY(a ), 'token': ANY(a ), 'token_str': ANY(a )}, {'sequence': ANY(a ), 'score': ANY(a ), 'token': ANY(a ), 'token_str': ANY(a )}, ] , ) lowercase__ : Dict = {vocab[el] for el in targets} self.assertEqual({el['token'] for el in outputs} , a ) lowercase__ : Any = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['token_str'] for el in outputs} , set(a ) ) # Score equivalence lowercase__ : List[Any] = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=a ) lowercase__ : Optional[int] = [top_mask['token_str'] for top_mask in outputs] lowercase__ : int = [top_mask['score'] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(a ) == set(a ): lowercase__ : Optional[int] = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=a ) lowercase__ : Dict = [top_mask['score'] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(a ) , nested_simplify(a ) ) # Raises with invalid with self.assertRaises(a ): lowercase__ : Optional[int] = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(a ): lowercase__ : Dict = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=[''] ) with self.assertRaises(a ): lowercase__ : Optional[Any] = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets='' ) def _UpperCAmelCase ( self , a , a ) -> int: lowercase__ : List[str] = FillMaskPipeline(model=a , tokenizer=a , top_k=2 ) lowercase__ : Optional[int] = fill_masker(f"""This is a {tokenizer.mask_token}""" ) self.assertEqual( a , [ {'sequence': ANY(a ), 'score': ANY(a ), 'token': ANY(a ), 'token_str': ANY(a )}, {'sequence': ANY(a ), 'score': ANY(a ), 'token': ANY(a ), 'token_str': ANY(a )}, ] , ) lowercase__ : List[Any] = FillMaskPipeline(model=a , tokenizer=a ) lowercase__ : List[str] = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=2 ) self.assertEqual( a , [ {'sequence': ANY(a ), 'score': ANY(a ), 'token': ANY(a ), 'token_str': ANY(a )}, {'sequence': ANY(a ), 'score': ANY(a ), 'token': ANY(a ), 'token_str': ANY(a )}, ] , ) self.assertEqual(nested_simplify(a ) , nested_simplify(a ) ) def _UpperCAmelCase ( self , a , a ) -> List[str]: lowercase__ : Union[str, Any] = tokenizer.get_vocab() lowercase__ : Dict = FillMaskPipeline(model=a , tokenizer=a ) # top_k=2, ntargets=3 lowercase__ : Union[str, Any] = sorted(vocab.keys() )[:3] lowercase__ : int = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=2 , targets=a ) # If we use the most probably targets, and filter differently, we should still # have the same results lowercase__ : Optional[int] = [el['token_str'] for el in sorted(a , key=lambda a : x["score"] , reverse=a )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(a ).issubset(a ): lowercase__ : Optional[int] = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=3 , targets=a ) # They should yield exactly the same result self.assertEqual(nested_simplify(a ) , nested_simplify(a ) ) def _UpperCAmelCase ( self , a , a ) -> List[str]: lowercase__ : Dict = FillMaskPipeline(model=a , tokenizer=a ) lowercase__ : int = tokenizer.get_vocab() # String duplicates + id duplicates lowercase__ : Optional[Any] = sorted(vocab.keys() )[:3] lowercase__ : Tuple = [targets[0], targets[1], targets[0], targets[2], targets[1]] lowercase__ : Dict = fill_masker(f"""My name is {tokenizer.mask_token}""" , targets=a , top_k=1_0 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(a ) , 3 ) def _UpperCAmelCase ( self , a , a ) -> List[str]: lowercase__ : List[Any] = FillMaskPipeline(model=a , tokenizer=a ) lowercase__ : Tuple = fill_masker( f"""This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}""" , top_k=2 ) self.assertEqual( a , [ [ {'sequence': ANY(a ), 'score': ANY(a ), 'token': ANY(a ), 'token_str': ANY(a )}, {'sequence': ANY(a ), 'score': ANY(a ), 'token': ANY(a ), 'token_str': ANY(a )}, ], [ {'sequence': ANY(a ), 'score': ANY(a ), 'token': ANY(a ), 'token_str': ANY(a )}, {'sequence': ANY(a ), 'score': ANY(a ), 'token': ANY(a ), 'token_str': ANY(a )}, ], [ {'sequence': ANY(a ), 'score': ANY(a ), 'token': ANY(a ), 'token_str': ANY(a )}, {'sequence': ANY(a ), 'score': ANY(a ), 'token': ANY(a ), 'token_str': ANY(a )}, ], ] , )
645
"""simple docstring""" import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def a_ ( _lowerCAmelCase : dict ): '''simple docstring''' return (data["data"], data["target"]) def a_ ( _lowerCAmelCase : np.ndarray , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : np.ndarray ): '''simple docstring''' lowercase__ : Any = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(_lowerCAmelCase , _lowerCAmelCase ) # Predict target for test data lowercase__ : str = xgb.predict(_lowerCAmelCase ) lowercase__ : Union[str, Any] = predictions.reshape(len(_lowerCAmelCase ) , 1 ) return predictions def a_ ( ): '''simple docstring''' lowercase__ : Optional[Any] = fetch_california_housing() lowercase__ , lowercase__ : str = data_handling(_lowerCAmelCase ) lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = train_test_split( _lowerCAmelCase , _lowerCAmelCase , test_size=0.2_5 , random_state=1 ) lowercase__ : Any = xgboost(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Error printing print(f"""Mean Absolute Error : {mean_absolute_error(_lowerCAmelCase , _lowerCAmelCase )}""" ) print(f"""Mean Square Error : {mean_squared_error(_lowerCAmelCase , _lowerCAmelCase )}""" ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
645
1
"""simple docstring""" def a_ ( _lowerCAmelCase : int = 50 ): '''simple docstring''' lowercase__ : Optional[Any] = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(f'''{solution() = }''')
645
"""simple docstring""" import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class UpperCAmelCase_ : def __init__( self , a , a=1_3 , a=1_0 , a=3 , a=2 , a=2 , a=2 , a=True , a=True , a=3_2 , a=5 , a=4 , a=3_7 , a="gelu" , a=0.1 , a=0.1 , a=1_0 , a=0.02 , a=0.9 , a=None , ) -> Optional[Any]: lowercase__ : str = parent lowercase__ : int = batch_size lowercase__ : Union[str, Any] = image_size lowercase__ : Optional[Any] = num_channels lowercase__ : Dict = patch_size lowercase__ : Tuple = tubelet_size lowercase__ : Optional[int] = num_frames lowercase__ : Optional[int] = is_training lowercase__ : int = use_labels lowercase__ : Optional[int] = hidden_size lowercase__ : Union[str, Any] = num_hidden_layers lowercase__ : Optional[int] = num_attention_heads lowercase__ : Any = intermediate_size lowercase__ : str = hidden_act lowercase__ : List[Any] = hidden_dropout_prob lowercase__ : str = attention_probs_dropout_prob lowercase__ : Union[str, Any] = type_sequence_label_size lowercase__ : List[Any] = initializer_range lowercase__ : str = mask_ratio lowercase__ : Optional[Any] = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame lowercase__ : Optional[Any] = (image_size // patch_size) ** 2 lowercase__ : str = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos lowercase__ : str = int(mask_ratio * self.seq_length ) def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : int = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) lowercase__ : int = None if self.use_labels: lowercase__ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ : Dict = self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self ) -> Tuple: return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a , initializer_range=self.initializer_range , ) def _UpperCAmelCase ( self , a , a , a ) -> Optional[int]: lowercase__ : Dict = VideoMAEModel(config=a ) model.to(a ) model.eval() lowercase__ : Tuple = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self , a , a , a ) -> Union[str, Any]: lowercase__ : str = VideoMAEForPreTraining(a ) model.to(a ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowercase__ : Any = torch.ones((self.num_masks,) ) lowercase__ : str = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) lowercase__ : Optional[int] = mask.expand(self.batch_size , -1 ).bool() lowercase__ : str = model(a , a ) # model only returns predictions for masked patches lowercase__ : str = mask.sum().item() lowercase__ : int = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def _UpperCAmelCase ( self ) -> str: lowercase__ : Dict = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = config_and_inputs lowercase__ : List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _a , _a , unittest.TestCase): lowerCamelCase__ : Tuple = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) lowerCamelCase__ : Optional[int] = ( {"feature-extraction": VideoMAEModel, "video-classification": VideoMAEForVideoClassification} if is_torch_available() else {} ) lowerCamelCase__ : Any = False lowerCamelCase__ : Any = False lowerCamelCase__ : Union[str, Any] = False lowerCamelCase__ : str = False def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Optional[Any] = VideoMAEModelTester(self ) lowercase__ : Optional[Any] = ConfigTester(self , config_class=a , has_text_modality=a , hidden_size=3_7 ) def _UpperCAmelCase ( self , a , a , a=False ) -> Optional[int]: lowercase__ : Union[str, Any] = copy.deepcopy(a ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowercase__ : Optional[Any] = torch.ones((self.model_tester.num_masks,) ) lowercase__ : Any = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) lowercase__ : Any = mask.expand(self.model_tester.batch_size , -1 ).bool() lowercase__ : Union[str, Any] = bool_masked_pos.to(a ) if return_labels: if model_class in [ *get_values(a ), ]: lowercase__ : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a ) return inputs_dict def _UpperCAmelCase ( self ) -> Tuple: self.config_tester.run_common_tests() @unittest.skip(reason='VideoMAE does not use inputs_embeds' ) def _UpperCAmelCase ( self ) -> Dict: pass def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : int = model_class(a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase__ : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a , nn.Linear ) ) def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[str] = model_class(a ) lowercase__ : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Optional[Any] = [*signature.parameters.keys()] lowercase__ : int = ['pixel_values'] self.assertListEqual(arg_names[:1] , a ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*a ) @slow def _UpperCAmelCase ( self ) -> str: for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : List[Any] = VideoMAEModel.from_pretrained(a ) self.assertIsNotNone(a ) def _UpperCAmelCase ( self ) -> Optional[Any]: if not self.has_attentions: pass else: lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : str = True for model_class in self.all_model_classes: lowercase__ : Union[str, Any] = self.model_tester.seq_length - self.model_tester.num_masks lowercase__ : Any = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) lowercase__ : Optional[Any] = True lowercase__ : int = False lowercase__ : Any = True lowercase__ : List[str] = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : Optional[int] = model(**self._prepare_for_class(a , a ) ) lowercase__ : Dict = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase__ : str = True lowercase__ : List[str] = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : List[Any] = model(**self._prepare_for_class(a , a ) ) lowercase__ : Optional[Any] = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowercase__ : List[str] = len(a ) # Check attention is always last and order is fine lowercase__ : Optional[int] = True lowercase__ : List[str] = True lowercase__ : int = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : List[str] = model(**self._prepare_for_class(a , a ) ) self.assertEqual(out_len + 1 , len(a ) ) lowercase__ : int = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def _UpperCAmelCase ( self ) -> Optional[int]: def check_hidden_states_output(a , a , a ): lowercase__ : Optional[int] = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : Optional[Any] = model(**self._prepare_for_class(a , a ) ) lowercase__ : Optional[int] = outputs.hidden_states lowercase__ : List[Any] = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(a ) , a ) lowercase__ : Optional[Any] = self.model_tester.seq_length - self.model_tester.num_masks lowercase__ : Union[str, Any] = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowercase__ , lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Tuple = True check_hidden_states_output(a , a , a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : Union[str, Any] = True check_hidden_states_output(a , a , a ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _UpperCAmelCase ( self ) -> List[Any]: pass def a_ ( ): '''simple docstring''' lowercase__ : int = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename='eating_spaghetti.npy' , repo_type='dataset' ) lowercase__ : str = np.load(_lowerCAmelCase ) return list(_lowerCAmelCase ) @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase): @cached_property def _UpperCAmelCase ( self ) -> Optional[Any]: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def _UpperCAmelCase ( self ) -> int: lowercase__ : Dict = VideoMAEForVideoClassification.from_pretrained('MCG-NJU/videomae-base-finetuned-kinetics' ).to( a ) lowercase__ : str = self.default_image_processor lowercase__ : List[str] = prepare_video() lowercase__ : int = image_processor(a , return_tensors='pt' ).to(a ) # forward pass with torch.no_grad(): lowercase__ : Union[str, Any] = model(**a ) # verify the logits lowercase__ : str = torch.Size((1, 4_0_0) ) self.assertEqual(outputs.logits.shape , a ) lowercase__ : List[Any] = torch.tensor([0.3_669, -0.0_688, -0.2_421] ).to(a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a , atol=1e-4 ) ) @slow def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Optional[int] = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short' ).to(a ) lowercase__ : Optional[Any] = self.default_image_processor lowercase__ : List[str] = prepare_video() lowercase__ : str = image_processor(a , return_tensors='pt' ).to(a ) # add boolean mask, indicating which patches to mask lowercase__ : Union[str, Any] = hf_hub_download(repo_id='hf-internal-testing/bool-masked-pos' , filename='bool_masked_pos.pt' ) lowercase__ : str = torch.load(a ) # forward pass with torch.no_grad(): lowercase__ : List[Any] = model(**a ) # verify the logits lowercase__ : Dict = torch.Size([1, 1_4_0_8, 1_5_3_6] ) lowercase__ : List[str] = torch.tensor( [[0.7_994, 0.9_612, 0.8_508], [0.7_401, 0.8_958, 0.8_302], [0.5_862, 0.7_468, 0.7_325]] , device=a ) self.assertEqual(outputs.logits.shape , a ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , a , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) lowercase__ : List[Any] = torch.tensor([0.5_142] , device=a ) self.assertTrue(torch.allclose(outputs.loss , a , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) lowercase__ : Tuple = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short' , norm_pix_loss=a ).to( a ) with torch.no_grad(): lowercase__ : Any = model(**a ) lowercase__ : List[Any] = torch.tensor(torch.tensor([0.6_469] ) , device=a ) self.assertTrue(torch.allclose(outputs.loss , a , atol=1e-4 ) )
645
1
"""simple docstring""" from __future__ import annotations def a_ ( _lowerCAmelCase : float , _lowerCAmelCase : float , _lowerCAmelCase : float , ): '''simple docstring''' if (stress, tangential_force, area).count(0 ) != 1: raise ValueError('You cannot supply more or less than 2 values' ) elif stress < 0: raise ValueError('Stress cannot be negative' ) elif tangential_force < 0: raise ValueError('Tangential Force cannot be negative' ) elif area < 0: raise ValueError('Area cannot be negative' ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
645
"""simple docstring""" import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() _UpperCamelCase : Dict = logging.get_logger(__name__) _UpperCamelCase : List[Any] = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "encoder.layer_norm_for_extract": "layer_norm_for_extract", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "label_embs_concat": "label_embeddings_concat", "mask_emb": "masked_spec_embed", "spk_proj": "speaker_proj", } _UpperCamelCase : List[str] = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "label_embeddings_concat", "speaker_proj", "layer_norm_for_extract", ] def a_ ( _lowerCAmelCase : Any , _lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple ): '''simple docstring''' for attribute in key.split('.' ): lowercase__ : Dict = getattr(_lowerCAmelCase , _lowerCAmelCase ) if weight_type is not None: lowercase__ : Optional[int] = getattr(_lowerCAmelCase , _lowerCAmelCase ).shape else: lowercase__ : Optional[int] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowercase__ : Optional[Any] = value elif weight_type == "weight_g": lowercase__ : Dict = value elif weight_type == "weight_v": lowercase__ : List[str] = value elif weight_type == "bias": lowercase__ : Optional[Any] = value else: lowercase__ : List[str] = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def a_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] ): '''simple docstring''' lowercase__ : Tuple = [] lowercase__ : List[str] = fairseq_model.state_dict() lowercase__ : Union[str, Any] = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): lowercase__ : Optional[int] = False if "conv_layers" in name: load_conv_layer( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , hf_model.config.feat_extract_norm == 'group' , ) lowercase__ : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): lowercase__ : List[Any] = 'unispeech_sat.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('.' )[:-1] ) != key): # special case since naming is very similar continue lowercase__ : int = True if "*" in mapped_key: lowercase__ : Optional[int] = name.split(_lowerCAmelCase )[0].split('.' )[-2] lowercase__ : List[str] = mapped_key.replace('*' , _lowerCAmelCase ) if "weight_g" in name: lowercase__ : List[Any] = 'weight_g' elif "weight_v" in name: lowercase__ : int = 'weight_v' elif "bias" in name: lowercase__ : Dict = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj lowercase__ : Union[str, Any] = 'weight' else: lowercase__ : int = None set_recursively(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) continue if not is_used: unused_weights.append(_lowerCAmelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def a_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : Dict ): '''simple docstring''' lowercase__ : int = full_name.split('conv_layers.' )[-1] lowercase__ : int = name.split('.' ) lowercase__ : int = int(items[0] ) lowercase__ : Dict = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowercase__ : Union[str, Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowercase__ : Optional[int] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) lowercase__ : List[Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) lowercase__ : int = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_lowerCAmelCase ) @torch.no_grad() def a_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : str=None , _lowerCAmelCase : Tuple=True ): '''simple docstring''' if config_path is not None: lowercase__ : Any = UniSpeechSatConfig.from_pretrained(_lowerCAmelCase ) else: lowercase__ : Any = UniSpeechSatConfig() lowercase__ : Union[str, Any] = '' if is_finetuned: lowercase__ : Optional[Any] = UniSpeechSatForCTC(_lowerCAmelCase ) else: lowercase__ : List[Any] = UniSpeechSatForPreTraining(_lowerCAmelCase ) lowercase__ , lowercase__ , lowercase__ : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) lowercase__ : Union[str, Any] = model[0].eval() recursively_load_weights(_lowerCAmelCase , _lowerCAmelCase ) hf_wavavec.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": _UpperCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _UpperCamelCase : str = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
645
1
"""simple docstring""" import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase : List[Any] = logging.get_logger() def a_ ( _lowerCAmelCase : int , _lowerCAmelCase : str , _lowerCAmelCase : LevitConfig , _lowerCAmelCase : Path , _lowerCAmelCase : bool = True ): '''simple docstring''' print(f"""Converting {name}...""" ) with torch.no_grad(): if hidden_sizes == 128: if name[-1] == "S": lowercase__ : Tuple = timm.create_model('levit_128s' , pretrained=_lowerCAmelCase ) else: lowercase__ : List[Any] = timm.create_model('levit_128' , pretrained=_lowerCAmelCase ) if hidden_sizes == 192: lowercase__ : List[Any] = timm.create_model('levit_192' , pretrained=_lowerCAmelCase ) if hidden_sizes == 256: lowercase__ : Dict = timm.create_model('levit_256' , pretrained=_lowerCAmelCase ) if hidden_sizes == 384: lowercase__ : Any = timm.create_model('levit_384' , pretrained=_lowerCAmelCase ) from_model.eval() lowercase__ : Dict = LevitForImageClassificationWithTeacher(_lowerCAmelCase ).eval() lowercase__ : str = OrderedDict() lowercase__ : Any = from_model.state_dict() lowercase__ : Tuple = list(from_model.state_dict().keys() ) lowercase__ : List[str] = list(our_model.state_dict().keys() ) print(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) ) for i in range(len(_lowerCAmelCase ) ): lowercase__ : Tuple = weights[og_keys[i]] our_model.load_state_dict(_lowerCAmelCase ) lowercase__ : List[str] = torch.randn((2, 3, 224, 224) ) lowercase__ : Optional[Any] = from_model(_lowerCAmelCase ) lowercase__ : Union[str, Any] = our_model(_lowerCAmelCase ).logits assert torch.allclose(_lowerCAmelCase , _lowerCAmelCase ), "The model logits don't match the original one." lowercase__ : Dict = name print(_lowerCAmelCase ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) lowercase__ : int = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(f"""Pushed {checkpoint_name}""" ) def a_ ( _lowerCAmelCase : Path , _lowerCAmelCase : str = None , _lowerCAmelCase : bool = True ): '''simple docstring''' lowercase__ : int = 'imagenet-1k-id2label.json' lowercase__ : Union[str, Any] = 1000 lowercase__ : Any = (1, num_labels) lowercase__ : List[Any] = 'huggingface/label-files' lowercase__ : Optional[int] = num_labels lowercase__ : Tuple = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type='dataset' ) , 'r' ) ) lowercase__ : Union[str, Any] = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} lowercase__ : int = idalabel lowercase__ : List[str] = {v: k for k, v in idalabel.items()} lowercase__ : Optional[Any] = partial(_lowerCAmelCase , num_labels=_lowerCAmelCase , idalabel=_lowerCAmelCase , labelaid=_lowerCAmelCase ) lowercase__ : Optional[int] = { 'levit-128S': 128, 'levit-128': 128, 'levit-192': 192, 'levit-256': 256, 'levit-384': 384, } lowercase__ : List[str] = { 'levit-128S': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-128': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-192': ImageNetPreTrainedConfig( hidden_sizes=[192, 288, 384] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-256': ImageNetPreTrainedConfig( hidden_sizes=[256, 384, 512] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-384': ImageNetPreTrainedConfig( hidden_sizes=[384, 512, 768] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , _lowerCAmelCase , names_to_config[model_name] , _lowerCAmelCase , _lowerCAmelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return config, expected_shape if __name__ == "__main__": _UpperCamelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help="The name of the model you wish to convert, it must be one of the supported Levit* architecture,", ) parser.add_argument( "--pytorch_dump_folder_path", default="levit-dump-folder/", type=Path, required=False, help="Path to the output PyTorch model directory.", ) parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") parser.add_argument( "--no-push_to_hub", dest="push_to_hub", action="store_false", help="Do not push model and image processor to the hub", ) _UpperCamelCase : Optional[int] = parser.parse_args() _UpperCamelCase : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
645
"""simple docstring""" import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class UpperCAmelCase_ : def __init__( self , a , a=1_3 , a=3_2 , a=2 , a=3 , a=1_6 , a=[1, 2, 1] , a=[2, 2, 4] , a=2 , a=2.0 , a=True , a=0.0 , a=0.0 , a=0.1 , a="gelu" , a=False , a=True , a=0.02 , a=1e-5 , a=True , a=None , a=True , a=1_0 , a=8 , a=["stage1", "stage2", "stage3"] , a=[1, 2, 3] , ) -> int: lowercase__ : int = parent lowercase__ : Union[str, Any] = batch_size lowercase__ : Dict = image_size lowercase__ : str = patch_size lowercase__ : Optional[Any] = num_channels lowercase__ : List[str] = embed_dim lowercase__ : Any = depths lowercase__ : Dict = num_heads lowercase__ : List[str] = window_size lowercase__ : int = mlp_ratio lowercase__ : Tuple = qkv_bias lowercase__ : Union[str, Any] = hidden_dropout_prob lowercase__ : str = attention_probs_dropout_prob lowercase__ : Tuple = drop_path_rate lowercase__ : List[str] = hidden_act lowercase__ : Optional[Any] = use_absolute_embeddings lowercase__ : Optional[Any] = patch_norm lowercase__ : Any = layer_norm_eps lowercase__ : List[Any] = initializer_range lowercase__ : List[str] = is_training lowercase__ : int = scope lowercase__ : Optional[int] = use_labels lowercase__ : List[Any] = type_sequence_label_size lowercase__ : List[str] = encoder_stride lowercase__ : Optional[Any] = out_features lowercase__ : Dict = out_indices def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : Optional[Any] = None if self.use_labels: lowercase__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ : Tuple = self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self ) -> Union[str, Any]: return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def _UpperCAmelCase ( self , a , a , a ) -> Dict: lowercase__ : Tuple = MaskFormerSwinModel(config=a ) model.to(a ) model.eval() lowercase__ : str = model(a ) lowercase__ : str = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowercase__ : Dict = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def _UpperCAmelCase ( self , a , a , a ) -> Optional[int]: lowercase__ : List[Any] = MaskFormerSwinBackbone(config=a ) model.to(a ) model.eval() lowercase__ : int = model(a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [1_3, 1_6, 1_6, 1_6] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [1_6, 3_2, 6_4] ) # verify ValueError with self.parent.assertRaises(a ): lowercase__ : Dict = ['stem'] lowercase__ : List[str] = MaskFormerSwinBackbone(config=a ) def _UpperCAmelCase ( self ) -> str: lowercase__ : int = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Tuple = config_and_inputs lowercase__ : Union[str, Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _a , _a , unittest.TestCase): lowerCamelCase__ : Optional[int] = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) lowerCamelCase__ : List[str] = {"feature-extraction": MaskFormerSwinModel} if is_torch_available() else {} lowerCamelCase__ : str = False lowerCamelCase__ : Dict = False lowerCamelCase__ : Any = False lowerCamelCase__ : Dict = False lowerCamelCase__ : int = False def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : str = MaskFormerSwinModelTester(self ) lowercase__ : Tuple = ConfigTester(self , config_class=a , embed_dim=3_7 ) @require_torch_multi_gpu @unittest.skip( reason=( '`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with' ' `nn.DataParallel`' ) ) def _UpperCAmelCase ( self ) -> Optional[int]: pass def _UpperCAmelCase ( self ) -> Tuple: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _UpperCAmelCase ( self ) -> str: return def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*a ) @unittest.skip('Swin does not use inputs_embeds' ) def _UpperCAmelCase ( self ) -> Tuple: pass @unittest.skip('Swin does not support feedforward chunking' ) def _UpperCAmelCase ( self ) -> Tuple: pass def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[str] = model_class(a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase__ : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a , nn.Linear ) ) def _UpperCAmelCase ( self ) -> str: lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Any = model_class(a ) lowercase__ : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Optional[Any] = [*signature.parameters.keys()] lowercase__ : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , a ) @unittest.skip(reason='MaskFormerSwin is only used as backbone and doesn\'t support output_attentions' ) def _UpperCAmelCase ( self ) -> List[Any]: pass @unittest.skip(reason='MaskFormerSwin is only used as an internal backbone' ) def _UpperCAmelCase ( self ) -> int: pass def _UpperCAmelCase ( self , a , a , a , a ) -> Tuple: lowercase__ : Dict = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : str = model(**self._prepare_for_class(a , a ) ) lowercase__ : List[Any] = outputs.hidden_states lowercase__ : str = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(a ) , a ) # Swin has a different seq_length lowercase__ : Dict = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase__ : Tuple = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ , lowercase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : List[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: lowercase__ : List[str] = True self.check_hidden_states_output(a , a , a , a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : List[str] = True self.check_hidden_states_output(a , a , a , a ) def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Union[str, Any] = 3 lowercase__ : str = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowercase__ : Tuple = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase__ : Optional[int] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowercase__ : List[str] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: lowercase__ : List[str] = True self.check_hidden_states_output(a , a , a , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : int = True self.check_hidden_states_output(a , a , a , (padded_height, padded_width) ) @unittest.skip(reason='MaskFormerSwin doesn\'t have pretrained checkpoints' ) def _UpperCAmelCase ( self ) -> Optional[int]: pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def _UpperCAmelCase ( self ) -> Any: pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def _UpperCAmelCase ( self ) -> Any: pass def _UpperCAmelCase ( self ) -> Any: lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(a ): lowercase__ : Union[str, Any] = 0 return t def check_equivalence(a , a , a , a={} ): with torch.no_grad(): lowercase__ : Optional[Any] = model(**a , return_dict=a , **a ) lowercase__ : Optional[int] = model(**a , return_dict=a , **a ).to_tuple() def recursive_check(a , a ): if isinstance(a , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(a , a ): recursive_check(a , a ) elif isinstance(a , a ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(a , a ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(a ) , set_nan_tensor_to_zero(a ) , atol=1e-5 ) , msg=( 'Tuple and dict output are not equal. Difference:' f""" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:""" f""" {torch.isnan(a ).any()} and `inf`: {torch.isinf(a )}. Dict has""" f""" `nan`: {torch.isnan(a ).any()} and `inf`: {torch.isinf(a )}.""" ) , ) recursive_check(a , a ) for model_class in self.all_model_classes: lowercase__ : Any = model_class(a ) model.to(a ) model.eval() lowercase__ : Tuple = self._prepare_for_class(a , a ) lowercase__ : Optional[Any] = self._prepare_for_class(a , a ) check_equivalence(a , a , a ) lowercase__ : Any = self._prepare_for_class(a , a , return_labels=a ) lowercase__ : List[Any] = self._prepare_for_class(a , a , return_labels=a ) check_equivalence(a , a , a ) lowercase__ : Any = self._prepare_for_class(a , a ) lowercase__ : int = self._prepare_for_class(a , a ) check_equivalence(a , a , a , {'output_hidden_states': True} ) lowercase__ : Dict = self._prepare_for_class(a , a , return_labels=a ) lowercase__ : Optional[int] = self._prepare_for_class(a , a , return_labels=a ) check_equivalence(a , a , a , {'output_hidden_states': True} ) @require_torch class UpperCAmelCase_ ( unittest.TestCase , _a): lowerCamelCase__ : Dict = (MaskFormerSwinBackbone,) if is_torch_available() else () lowerCamelCase__ : Optional[int] = MaskFormerSwinConfig def _UpperCAmelCase ( self ) -> Dict: lowercase__ : Optional[int] = MaskFormerSwinModelTester(self ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : int = inputs_dict['pixel_values'].shape[0] for backbone_class in self.all_model_classes: lowercase__ : Optional[Any] = backbone_class(a ) backbone.to(a ) backbone.eval() lowercase__ : Union[str, Any] = backbone(**a ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , a ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True lowercase__ : List[str] = backbone(**a , output_hidden_states=a ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) lowercase__ , lowercase__ , lowercase__ : int = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: lowercase__ : List[Any] = backbone(**a , output_attentions=a ) self.assertIsNotNone(outputs.attentions )
645
1
"""simple docstring""" from __future__ import annotations def a_ ( _lowerCAmelCase : dict , _lowerCAmelCase : str ): '''simple docstring''' lowercase__ , lowercase__ : int = set(_lowerCAmelCase ), [start] while stack: lowercase__ : Dict = stack.pop() explored.add(_lowerCAmelCase ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(_lowerCAmelCase ) return explored _UpperCamelCase : Tuple = { "A": ["B", "C", "D"], "B": ["A", "D", "E"], "C": ["A", "F"], "D": ["B", "D"], "E": ["B", "F"], "F": ["C", "E", "G"], "G": ["F"], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, "A"))
645
"""simple docstring""" import math def a_ ( _lowerCAmelCase : int = 100 ): '''simple docstring''' lowercase__ : Union[str, Any] = sum(i * i for i in range(1 , n + 1 ) ) lowercase__ : str = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f'''{solution() = }''')
645
1
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class UpperCAmelCase_ ( unittest.TestCase): def _UpperCAmelCase ( self , a ) -> str: for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss'] ): lowercase__ : str = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(a ) def _UpperCAmelCase ( self ) -> int: lowercase__ : Dict = 'sshleifer/tiny-gpt2' lowercase__ : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=a , multi_process=a , ) lowercase__ : str = TensorFlowBenchmark(a ) lowercase__ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> int: lowercase__ : List[str] = 'sgugger/tiny-distilbert-classification' lowercase__ : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , only_pretrain_model=a , ) lowercase__ : Optional[Any] = TensorFlowBenchmark(a ) lowercase__ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : Optional[int] = 'sshleifer/tiny-gpt2' lowercase__ : Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , ) lowercase__ : Optional[Any] = TensorFlowBenchmark(a ) lowercase__ : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : Any = 'sshleifer/tiny-gpt2' lowercase__ : List[Any] = AutoConfig.from_pretrained(a ) lowercase__ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=a , multi_process=a , ) lowercase__ : Tuple = TensorFlowBenchmark(a , [config] ) lowercase__ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> int: lowercase__ : Optional[Any] = 'sshleifer/tiny-gpt2' lowercase__ : List[str] = AutoConfig.from_pretrained(a ) lowercase__ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , ) lowercase__ : List[str] = TensorFlowBenchmark(a , [config] ) lowercase__ : Any = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Optional[Any] = 'sshleifer/tiny-gpt2' lowercase__ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , ) lowercase__ : Optional[Any] = TensorFlowBenchmark(a ) lowercase__ : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _UpperCAmelCase ( self ) -> str: lowercase__ : Optional[Any] = 'sshleifer/tiny-gpt2' lowercase__ : Optional[int] = AutoConfig.from_pretrained(a ) lowercase__ : str = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , ) lowercase__ : str = TensorFlowBenchmark(a , [config] ) lowercase__ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : List[str] = 'patrickvonplaten/t5-tiny-random' lowercase__ : Any = AutoConfig.from_pretrained(a ) lowercase__ : List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , ) lowercase__ : int = TensorFlowBenchmark(a , configs=[config] ) lowercase__ : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU' ) ) == 0 , 'Cannot do xla on CPU.' ) def _UpperCAmelCase ( self ) -> Any: lowercase__ : Any = 'sshleifer/tiny-gpt2' lowercase__ : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , use_xla=a , multi_process=a , ) lowercase__ : Any = TensorFlowBenchmark(a ) lowercase__ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Any = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ : List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=a , save_to_csv=a , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(a , 'inf_time.csv' ) , inference_memory_csv_file=os.path.join(a , 'inf_mem.csv' ) , env_info_csv_file=os.path.join(a , 'env.csv' ) , multi_process=a , ) lowercase__ : Union[str, Any] = TensorFlowBenchmark(a ) benchmark.run() self.assertTrue(Path(os.path.join(a , 'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(a , 'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(a , 'env.csv' ) ).exists() ) def _UpperCAmelCase ( self ) -> Dict: lowercase__ : Tuple = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(a ): self.assertTrue(hasattr(a , 'sequential' ) ) self.assertTrue(hasattr(a , 'cumulative' ) ) self.assertTrue(hasattr(a , 'current' ) ) self.assertTrue(hasattr(a , 'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=a , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(a , 'log.txt' ) , log_print=a , trace_memory_line_by_line=a , eager_mode=a , multi_process=a , ) lowercase__ : Optional[int] = TensorFlowBenchmark(a ) lowercase__ : Optional[Any] = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(a , 'log.txt' ) ).exists() )
645
"""simple docstring""" import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class UpperCAmelCase_ ( unittest.TestCase): def _UpperCAmelCase ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() def _UpperCAmelCase ( self ) -> Tuple: lowercase__ , lowercase__ : str = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-canny' , from_pt=a , dtype=jnp.bfloataa ) lowercase__ , lowercase__ : List[str] = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , controlnet=a , from_pt=a , dtype=jnp.bfloataa ) lowercase__ : List[Any] = controlnet_params lowercase__ : int = 'bird' lowercase__ : List[Any] = jax.device_count() lowercase__ : Dict = pipe.prepare_text_inputs([prompts] * num_samples ) lowercase__ : Union[str, Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png' ) lowercase__ : Optional[int] = pipe.prepare_image_inputs([canny_image] * num_samples ) lowercase__ : List[Any] = jax.random.PRNGKey(0 ) lowercase__ : Tuple = jax.random.split(a , jax.device_count() ) lowercase__ : str = replicate(a ) lowercase__ : List[str] = shard(a ) lowercase__ : Dict = shard(a ) lowercase__ : List[Any] = pipe( prompt_ids=a , image=a , params=a , prng_seed=a , num_inference_steps=5_0 , jit=a , ).images assert images.shape == (jax.device_count(), 1, 7_6_8, 5_1_2, 3) lowercase__ : Any = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowercase__ : Tuple = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] lowercase__ : int = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowercase__ : Optional[Any] = jnp.array( [0.167_969, 0.116_699, 0.081_543, 0.154_297, 0.132_812, 0.108_887, 0.169_922, 0.169_922, 0.205_078] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def _UpperCAmelCase ( self ) -> List[str]: lowercase__ , lowercase__ : int = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-openpose' , from_pt=a , dtype=jnp.bfloataa ) lowercase__ , lowercase__ : Optional[Any] = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , controlnet=a , from_pt=a , dtype=jnp.bfloataa ) lowercase__ : Optional[Any] = controlnet_params lowercase__ : List[Any] = 'Chef in the kitchen' lowercase__ : List[str] = jax.device_count() lowercase__ : Dict = pipe.prepare_text_inputs([prompts] * num_samples ) lowercase__ : Optional[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png' ) lowercase__ : Optional[int] = pipe.prepare_image_inputs([pose_image] * num_samples ) lowercase__ : List[str] = jax.random.PRNGKey(0 ) lowercase__ : str = jax.random.split(a , jax.device_count() ) lowercase__ : Optional[Any] = replicate(a ) lowercase__ : Optional[Any] = shard(a ) lowercase__ : List[Any] = shard(a ) lowercase__ : List[Any] = pipe( prompt_ids=a , image=a , params=a , prng_seed=a , num_inference_steps=5_0 , jit=a , ).images assert images.shape == (jax.device_count(), 1, 7_6_8, 5_1_2, 3) lowercase__ : Union[str, Any] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowercase__ : List[str] = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] lowercase__ : Optional[int] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowercase__ : str = jnp.array( [[0.271_484, 0.261_719, 0.275_391, 0.277_344, 0.279_297, 0.291_016, 0.294_922, 0.302_734, 0.302_734]] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
645
1
"""simple docstring""" import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler _UpperCamelCase : Optional[int] = 16 _UpperCamelCase : List[str] = 32 def a_ ( _lowerCAmelCase : Accelerator , _lowerCAmelCase : int = 16 , _lowerCAmelCase : str = "bert-base-cased" ): '''simple docstring''' lowercase__ : Dict = AutoTokenizer.from_pretrained(_lowerCAmelCase ) lowercase__ : List[str] = load_dataset('glue' , 'mrpc' ) def tokenize_function(_lowerCAmelCase : Optional[int] ): # max_length=None => use the model max length (it's actually the default) lowercase__ : Optional[Any] = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowercase__ : Optional[Any] = datasets.map( _lowerCAmelCase , batched=_lowerCAmelCase , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=_lowerCAmelCase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ : Any = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(_lowerCAmelCase : int ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_lowerCAmelCase , padding='max_length' , max_length=128 , return_tensors='pt' ) return tokenizer.pad(_lowerCAmelCase , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. lowercase__ : List[Any] = DataLoader( tokenized_datasets['train'] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase ) lowercase__ : str = DataLoader( tokenized_datasets['validation'] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase ) return train_dataloader, eval_dataloader def a_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : List[Any] ): '''simple docstring''' lowercase__ : Optional[Any] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ : Optional[Any] = config['lr'] lowercase__ : str = int(config['num_epochs'] ) lowercase__ : int = int(config['seed'] ) lowercase__ : List[Any] = int(config['batch_size'] ) lowercase__ : str = args.model_name_or_path set_seed(_lowerCAmelCase ) lowercase__ , lowercase__ : Dict = get_dataloaders(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ : List[str] = AutoModelForSequenceClassification.from_pretrained(_lowerCAmelCase , return_dict=_lowerCAmelCase ) # Instantiate optimizer lowercase__ : Dict = ( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowercase__ : Optional[int] = optimizer_cls(params=model.parameters() , lr=_lowerCAmelCase ) if accelerator.state.deepspeed_plugin is not None: lowercase__ : Dict = accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: lowercase__ : Optional[Any] = 1 lowercase__ : Optional[Any] = (len(_lowerCAmelCase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowercase__ : List[str] = get_linear_schedule_with_warmup( optimizer=_lowerCAmelCase , num_warmup_steps=0 , num_training_steps=_lowerCAmelCase , ) else: lowercase__ : List[Any] = DummyScheduler(_lowerCAmelCase , total_num_steps=_lowerCAmelCase , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = accelerator.prepare( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # We need to keep track of how many total steps we have iterated over lowercase__ : Union[str, Any] = 0 # We also need to keep track of the stating epoch so files are named properly lowercase__ : Dict = 0 # Now we train the model lowercase__ : List[Any] = evaluate.load('glue' , 'mrpc' ) lowercase__ : Dict = 0 lowercase__ : Union[str, Any] = {} for epoch in range(_lowerCAmelCase , _lowerCAmelCase ): model.train() for step, batch in enumerate(_lowerCAmelCase ): lowercase__ : Dict = model(**_lowerCAmelCase ) lowercase__ : Optional[Any] = outputs.loss lowercase__ : Dict = loss / gradient_accumulation_steps accelerator.backward(_lowerCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() lowercase__ : Tuple = 0 for step, batch in enumerate(_lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ : Dict = model(**_lowerCAmelCase ) lowercase__ : Optional[int] = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times lowercase__ , lowercase__ : Dict = accelerator.gather( (predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(_lowerCAmelCase ) - 1: lowercase__ : Optional[int] = predictions[: len(eval_dataloader.dataset ) - samples_seen] lowercase__ : Union[str, Any] = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=_lowerCAmelCase , references=_lowerCAmelCase , ) lowercase__ : Optional[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , _lowerCAmelCase ) lowercase__ : List[str] = eval_metric['accuracy'] if best_performance < eval_metric["accuracy"]: lowercase__ : Optional[Any] = eval_metric['accuracy'] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), f"""Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}""" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , 'all_results.json' ) , 'w' ) as f: json.dump(_lowerCAmelCase , _lowerCAmelCase ) def a_ ( ): '''simple docstring''' lowercase__ : List[Any] = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path' , type=_lowerCAmelCase , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=_lowerCAmelCase , ) parser.add_argument( '--output_dir' , type=_lowerCAmelCase , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--performance_lower_bound' , type=_lowerCAmelCase , default=_lowerCAmelCase , help='Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.' , ) parser.add_argument( '--num_epochs' , type=_lowerCAmelCase , default=3 , help='Number of train epochs.' , ) lowercase__ : Tuple = parser.parse_args() lowercase__ : int = {'lr': 2E-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16} training_function(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": main()
645
"""simple docstring""" from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
645
1
"""simple docstring""" # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib _UpperCamelCase : Tuple = get_logger() _UpperCamelCase : Optional[dict] = None class UpperCAmelCase_ ( TensorFormatter[Mapping, "jax.Array", Mapping]): def __init__( self , a=None , a=None , **a ) -> List[str]: super().__init__(features=a ) import jax from jaxlib.xla_client import Device if isinstance(a , a ): raise ValueError( f"""Expected {device} to be a `str` not {type(a )}, as `jaxlib.xla_extension.Device` """ 'is not serializable neither with `pickle` nor with `dill`. Instead you can surround ' 'the device with `str()` to get its string identifier that will be internally mapped ' 'to the actual `jaxlib.xla_extension.Device`.' ) lowercase__ : Union[str, Any] = device if isinstance(a , a ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: lowercase__ : List[str] = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f"""Device with string identifier {self.device} not listed among the available """ f"""devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default """ f"""device: {str(jax.devices()[0] )}.""" ) lowercase__ : List[Any] = str(jax.devices()[0] ) lowercase__ : str = jnp_array_kwargs @staticmethod def _UpperCAmelCase ( ) -> Dict[str, "jaxlib.xla_extension.Device"]: import jax return {str(a ): device for device in jax.devices()} def _UpperCAmelCase ( self , a ) -> List[Any]: import jax import jax.numpy as jnp if isinstance(a , a ) and column: if all( isinstance(a , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(a , axis=0 ) return column def _UpperCAmelCase ( self , a ) -> Optional[Any]: import jax import jax.numpy as jnp if isinstance(a , (str, bytes, type(a )) ): return value elif isinstance(a , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() lowercase__ : Any = {} if isinstance(a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: lowercase__ : Optional[int] = {'dtype': jnp.intaa} else: lowercase__ : List[str] = {'dtype': jnp.intaa} elif isinstance(a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): lowercase__ : Union[str, Any] = {'dtype': jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(a , PIL.Image.Image ): lowercase__ : Optional[Any] = np.asarray(a ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: lowercase__ : List[str] = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(a , **{**default_dtype, **self.jnp_array_kwargs} ) def _UpperCAmelCase ( self , a ) -> Any: import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(a , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(a , '__array__' ) and not isinstance(a , jax.Array ): lowercase__ : Tuple = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(a , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(a ) for substruct in data_struct] ) elif isinstance(a , (list, tuple) ): return self._consolidate([self.recursive_tensorize(a ) for substruct in data_struct] ) return self._tensorize(a ) def _UpperCAmelCase ( self , a ) -> Any: return map_nested(self._recursive_tensorize , a , map_list=a ) def _UpperCAmelCase ( self , a ) -> Mapping: lowercase__ : Optional[int] = self.numpy_arrow_extractor().extract_row(a ) lowercase__ : List[Any] = self.python_features_decoder.decode_row(a ) return self.recursive_tensorize(a ) def _UpperCAmelCase ( self , a ) -> "jax.Array": lowercase__ : Union[str, Any] = self.numpy_arrow_extractor().extract_column(a ) lowercase__ : List[str] = self.python_features_decoder.decode_column(a , pa_table.column_names[0] ) lowercase__ : Union[str, Any] = self.recursive_tensorize(a ) lowercase__ : str = self._consolidate(a ) return column def _UpperCAmelCase ( self , a ) -> Mapping: lowercase__ : List[Any] = self.numpy_arrow_extractor().extract_batch(a ) lowercase__ : str = self.python_features_decoder.decode_batch(a ) lowercase__ : List[str] = self.recursive_tensorize(a ) for column_name in batch: lowercase__ : List[Any] = self._consolidate(batch[column_name] ) return batch
645
"""simple docstring""" import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase): @slow def _UpperCAmelCase ( self ) -> str: lowercase__ : Optional[Any] = AutoImageProcessor.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' ) lowercase__ : Union[str, Any] = AutoModelForImageClassification.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' ) model.to(a ) from datasets import load_dataset lowercase__ : str = load_dataset('nielsr/rvlcdip-demo' ) lowercase__ : Tuple = dataset['train'][0]['image'].convert('RGB' ) lowercase__ : int = image_processor(a , return_tensors='pt' ).to(a ) # forward pass with torch.no_grad(): lowercase__ : List[str] = model(**a ) lowercase__ : List[Any] = outputs.logits lowercase__ : Union[str, Any] = torch.Size((1, 1_6) ) self.assertEqual(logits.shape , a ) lowercase__ : Tuple = torch.tensor( [-0.4_158, -0.4_092, -0.4_347] , device=a , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , a , atol=1e-4 ) )
645
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class UpperCAmelCase_ ( metaclass=_a): lowerCamelCase__ : str = ["onnx"] def __init__( self , *a , **a ) -> List[str]: requires_backends(self , ['onnx'] ) @classmethod def _UpperCAmelCase ( cls , *a , **a ) -> Tuple: requires_backends(cls , ['onnx'] ) @classmethod def _UpperCAmelCase ( cls , *a , **a ) -> str: requires_backends(cls , ['onnx'] )
645
"""simple docstring""" import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class UpperCAmelCase_ : @staticmethod def _UpperCAmelCase ( *a , **a ) -> int: pass def a_ ( _lowerCAmelCase : Image ): '''simple docstring''' lowercase__ : List[str] = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class UpperCAmelCase_ ( unittest.TestCase): lowerCamelCase__ : Union[str, Any] = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def _UpperCAmelCase ( self , a , a , a ) -> Dict: lowercase__ : Union[str, Any] = DepthEstimationPipeline(model=a , image_processor=a ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def _UpperCAmelCase ( self , a , a ) -> Optional[int]: lowercase__ : Tuple = depth_estimator('./tests/fixtures/tests_samples/COCO/000000039769.png' ) self.assertEqual({'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )} , a ) import datasets lowercase__ : Tuple = datasets.load_dataset('hf-internal-testing/fixtures_image_utils' , 'image' , split='test' ) lowercase__ : List[Any] = depth_estimator( [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] ) self.assertEqual( [ {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, ] , a , ) @require_tf @unittest.skip('Depth estimation is not implemented in TF' ) def _UpperCAmelCase ( self ) -> Optional[int]: pass @slow @require_torch def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Tuple = 'Intel/dpt-large' lowercase__ : Optional[int] = pipeline('depth-estimation' , model=a ) lowercase__ : List[Any] = depth_estimator('http://images.cocodataset.org/val2017/000000039769.jpg' ) lowercase__ : Optional[Any] = hashimage(outputs['depth'] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['predicted_depth'].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs['predicted_depth'].min().item() ) , 2.662 ) @require_torch def _UpperCAmelCase ( self ) -> Optional[int]: # This is highly irregular to have no small tests. self.skipTest('There is not hf-internal-testing tiny model for either GLPN nor DPT' )
645
1
"""simple docstring""" import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class UpperCAmelCase_ ( _a): def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : int = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(a , 'hidden_sizes' ) ) self.parent.assertTrue(hasattr(a , 'num_attention_heads' ) ) class UpperCAmelCase_ : def __init__( self , a , a=1_3 , a=6_4 , a=3 , a=3 , a=2 , a=1 , a=1_6 , a=[1_2_8, 2_5_6, 3_8_4] , a=[4, 6, 8] , a=[2, 3, 4] , a=[1_6, 1_6, 1_6] , a=0 , a=[2, 2, 2] , a=[2, 2, 2] , a=0.02 , a=True , a=True , a=2 , ) -> List[str]: lowercase__ : List[Any] = parent lowercase__ : Dict = batch_size lowercase__ : Optional[int] = image_size lowercase__ : int = num_channels lowercase__ : Optional[Any] = kernel_size lowercase__ : List[str] = stride lowercase__ : Tuple = padding lowercase__ : int = hidden_sizes lowercase__ : int = num_attention_heads lowercase__ : List[str] = depths lowercase__ : Optional[int] = key_dim lowercase__ : List[str] = drop_path_rate lowercase__ : int = patch_size lowercase__ : Union[str, Any] = attention_ratio lowercase__ : Any = mlp_ratio lowercase__ : Dict = initializer_range lowercase__ : str = [ ['Subsample', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['Subsample', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] lowercase__ : int = is_training lowercase__ : Union[str, Any] = use_labels lowercase__ : Dict = num_labels lowercase__ : Tuple = initializer_range def _UpperCAmelCase ( self ) -> str: lowercase__ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : str = None if self.use_labels: lowercase__ : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) lowercase__ : Optional[Any] = self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self ) -> Tuple: return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def _UpperCAmelCase ( self , a , a , a ) -> Any: lowercase__ : List[str] = LevitModel(config=a ) model.to(a ) model.eval() lowercase__ : int = model(a ) lowercase__ : Tuple = (self.image_size, self.image_size) lowercase__ , lowercase__ : Optional[int] = image_size[0], image_size[1] for _ in range(4 ): lowercase__ : List[Any] = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) lowercase__ : Tuple = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def _UpperCAmelCase ( self , a , a , a ) -> List[Any]: lowercase__ : Dict = self.num_labels lowercase__ : List[Any] = LevitForImageClassification(a ) model.to(a ) model.eval() lowercase__ : Tuple = model(a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCAmelCase ( self ) -> int: lowercase__ : int = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Optional[int] = config_and_inputs lowercase__ : str = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _a , _a , unittest.TestCase): lowerCamelCase__ : Dict = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) lowerCamelCase__ : str = ( { "feature-extraction": LevitModel, "image-classification": (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) lowerCamelCase__ : Union[str, Any] = False lowerCamelCase__ : Tuple = False lowerCamelCase__ : Optional[Any] = False lowerCamelCase__ : Optional[int] = False lowerCamelCase__ : List[str] = False def _UpperCAmelCase ( self ) -> str: lowercase__ : List[str] = LevitModelTester(self ) lowercase__ : List[str] = ConfigTester(self , config_class=a , has_text_modality=a , hidden_size=3_7 ) def _UpperCAmelCase ( self ) -> List[str]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _UpperCAmelCase ( self ) -> Tuple: return @unittest.skip(reason='Levit does not use inputs_embeds' ) def _UpperCAmelCase ( self ) -> Optional[Any]: pass @unittest.skip(reason='Levit does not support input and output embeddings' ) def _UpperCAmelCase ( self ) -> Optional[int]: pass @unittest.skip(reason='Levit does not output attentions' ) def _UpperCAmelCase ( self ) -> Any: pass def _UpperCAmelCase ( self ) -> int: lowercase__ , lowercase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Tuple = model_class(a ) lowercase__ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Optional[int] = [*signature.parameters.keys()] lowercase__ : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , a ) def _UpperCAmelCase ( self ) -> str: def check_hidden_states_output(a , a , a ): lowercase__ : Tuple = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : List[Any] = model(**self._prepare_for_class(a , a ) ) lowercase__ : List[Any] = outputs.hidden_states lowercase__ : Union[str, Any] = len(self.model_tester.depths ) + 1 self.assertEqual(len(a ) , a ) lowercase__ : List[str] = (self.model_tester.image_size, self.model_tester.image_size) lowercase__ , lowercase__ : Any = image_size[0], image_size[1] for _ in range(4 ): lowercase__ : Union[str, Any] = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) lowercase__ : Any = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) lowercase__ , lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Optional[int] = True check_hidden_states_output(a , a , a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : Union[str, Any] = True check_hidden_states_output(a , a , a ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _UpperCAmelCase ( self ) -> Tuple: pass def _UpperCAmelCase ( self , a , a , a=False ) -> Tuple: lowercase__ : str = super()._prepare_for_class(a , a , return_labels=a ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a ) def _UpperCAmelCase ( self ) -> int: if not self.model_tester.is_training: return lowercase__ , lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Union[str, Any] = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(a ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue lowercase__ : Union[str, Any] = model_class(a ) model.to(a ) model.train() lowercase__ : Optional[Any] = self._prepare_for_class(a , a , return_labels=a ) lowercase__ : List[Any] = model(**a ).loss loss.backward() def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return lowercase__ : Tuple = False lowercase__ : Union[str, Any] = True for model_class in self.all_model_classes: if model_class in get_values(a ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue lowercase__ : int = model_class(a ) model.gradient_checkpointing_enable() model.to(a ) model.train() lowercase__ : int = self._prepare_for_class(a , a , return_labels=a ) lowercase__ : Optional[int] = model(**a ).loss loss.backward() def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ , lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Tuple = [ {'title': 'multi_label_classification', 'num_labels': 2, 'dtype': torch.float}, {'title': 'single_label_classification', 'num_labels': 1, 'dtype': torch.long}, {'title': 'regression', 'num_labels': 1, 'dtype': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(a ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f"""Testing {model_class} with {problem_type["title"]}""" ): lowercase__ : Any = problem_type['title'] lowercase__ : List[str] = problem_type['num_labels'] lowercase__ : Any = model_class(a ) model.to(a ) model.train() lowercase__ : List[Any] = self._prepare_for_class(a , a , return_labels=a ) if problem_type["num_labels"] > 1: lowercase__ : List[Any] = inputs['labels'].unsqueeze(1 ).repeat(1 , problem_type['num_labels'] ) lowercase__ : Any = inputs['labels'].to(problem_type['dtype'] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=a ) as warning_list: lowercase__ : str = model(**a ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( f"""Something is going wrong in the regression problem: intercepted {w.message}""" ) loss.backward() @slow def _UpperCAmelCase ( self ) -> str: for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Union[str, Any] = LevitModel.from_pretrained(a ) self.assertIsNotNone(a ) def a_ ( ): '''simple docstring''' lowercase__ : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase): @cached_property def _UpperCAmelCase ( self ) -> Any: return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Optional[int] = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( a ) lowercase__ : List[str] = self.default_image_processor lowercase__ : str = prepare_img() lowercase__ : List[str] = image_processor(images=a , return_tensors='pt' ).to(a ) # forward pass with torch.no_grad(): lowercase__ : List[Any] = model(**a ) # verify the logits lowercase__ : Union[str, Any] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , a ) lowercase__ : Dict = torch.tensor([1.0_448, -0.3_745, -1.8_317] ).to(a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a , atol=1e-4 ) )
645
"""simple docstring""" import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class UpperCAmelCase_ ( _a): def __init__( self ) -> Any: lowercase__ : Tuple = [] def _UpperCAmelCase ( self , a , a , a , **a ) -> Any: self.events.append('on_init_end' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Optional[int]: self.events.append('on_train_begin' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> List[str]: self.events.append('on_train_end' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> int: self.events.append('on_epoch_begin' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Optional[Any]: self.events.append('on_epoch_end' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> int: self.events.append('on_step_begin' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> str: self.events.append('on_step_end' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> int: self.events.append('on_evaluate' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Tuple: self.events.append('on_predict' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Union[str, Any]: self.events.append('on_save' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> List[str]: self.events.append('on_log' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Any: self.events.append('on_prediction_step' ) @require_torch class UpperCAmelCase_ ( unittest.TestCase): def _UpperCAmelCase ( self ) -> str: lowercase__ : str = tempfile.mkdtemp() def _UpperCAmelCase ( self ) -> Dict: shutil.rmtree(self.output_dir ) def _UpperCAmelCase ( self , a=0 , a=0 , a=6_4 , a=6_4 , a=None , a=False , **a ) -> int: # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. lowercase__ : str = RegressionDataset(length=a ) lowercase__ : Any = RegressionDataset(length=a ) lowercase__ : Optional[Any] = RegressionModelConfig(a=a , b=a ) lowercase__ : Union[str, Any] = RegressionPreTrainedModel(a ) lowercase__ : Tuple = TrainingArguments(self.output_dir , disable_tqdm=a , report_to=[] , **a ) return Trainer( a , a , train_dataset=a , eval_dataset=a , callbacks=a , ) def _UpperCAmelCase ( self , a , a ) -> Union[str, Any]: self.assertEqual(len(a ) , len(a ) ) # Order doesn't matter lowercase__ : Optional[int] = sorted(a , key=lambda a : cb.__name__ if isinstance(a , a ) else cb.__class__.__name__ ) lowercase__ : Tuple = sorted(a , key=lambda a : cb.__name__ if isinstance(a , a ) else cb.__class__.__name__ ) for cba, cba in zip(a , a ): if isinstance(a , a ) and isinstance(a , a ): self.assertEqual(a , a ) elif isinstance(a , a ) and not isinstance(a , a ): self.assertEqual(a , cba.__class__ ) elif not isinstance(a , a ) and isinstance(a , a ): self.assertEqual(cba.__class__ , a ) else: self.assertEqual(a , a ) def _UpperCAmelCase ( self , a ) -> Optional[Any]: lowercase__ : Dict = ['on_init_end', 'on_train_begin'] lowercase__ : List[Any] = 0 lowercase__ : Optional[int] = len(trainer.get_eval_dataloader() ) lowercase__ : Tuple = ['on_prediction_step'] * len(trainer.get_eval_dataloader() ) + ['on_log', 'on_evaluate'] for _ in range(trainer.state.num_train_epochs ): expected_events.append('on_epoch_begin' ) for _ in range(a ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append('on_log' ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append('on_save' ) expected_events.append('on_epoch_end' ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : int = self.get_trainer() lowercase__ : str = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) # Callbacks passed at init are added to the default callbacks lowercase__ : str = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback lowercase__ : List[Any] = self.get_trainer(disable_tqdm=a ) lowercase__ : Optional[Any] = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) def _UpperCAmelCase ( self ) -> Any: lowercase__ : int = DEFAULT_CALLBACKS.copy() + [ProgressCallback] lowercase__ : List[str] = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(a ) expected_callbacks.remove(a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) lowercase__ : Optional[Any] = self.get_trainer() lowercase__ : List[Any] = trainer.pop_callback(a ) self.assertEqual(cb.__class__ , a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) trainer.add_callback(a ) expected_callbacks.insert(0 , a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) # We can also add, pop, or remove by instance lowercase__ : int = self.get_trainer() lowercase__ : List[str] = trainer.callback_handler.callbacks[0] trainer.remove_callback(a ) expected_callbacks.remove(a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) lowercase__ : Tuple = self.get_trainer() lowercase__ : Dict = trainer.callback_handler.callbacks[0] lowercase__ : Union[str, Any] = trainer.pop_callback(a ) self.assertEqual(a , a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) trainer.add_callback(a ) expected_callbacks.insert(0 , a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) def _UpperCAmelCase ( self ) -> Tuple: import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action='ignore' , category=a ) lowercase__ : Optional[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() lowercase__ : Any = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) # Independent log/save/eval lowercase__ : List[str] = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() lowercase__ : int = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) lowercase__ : Union[str, Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() lowercase__ : Union[str, Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) lowercase__ : List[str] = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy='steps' ) trainer.train() lowercase__ : Optional[int] = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) lowercase__ : int = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy='epoch' ) trainer.train() lowercase__ : str = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) # A bit of everything lowercase__ : Any = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=1_0 , eval_steps=5 , evaluation_strategy='steps' , ) trainer.train() lowercase__ : Any = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) # warning should be emitted for duplicated callbacks with patch('transformers.trainer_callback.logger.warning' ) as warn_mock: lowercase__ : str = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(a ) in warn_mock.call_args[0][0]
645
1
"""simple docstring""" def a_ ( _lowerCAmelCase : str ): '''simple docstring''' return " ".join( ''.join(word[::-1] ) if len(_lowerCAmelCase ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words("Hey wollef sroirraw"))
645
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _UpperCamelCase : str = { "configuration_gpt_neo": ["GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoConfig", "GPTNeoOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Tuple = [ "GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoForCausalLM", "GPTNeoForQuestionAnswering", "GPTNeoForSequenceClassification", "GPTNeoForTokenClassification", "GPTNeoModel", "GPTNeoPreTrainedModel", "load_tf_weights_in_gpt_neo", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Dict = [ "FlaxGPTNeoForCausalLM", "FlaxGPTNeoModel", "FlaxGPTNeoPreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys _UpperCamelCase : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
645
1
"""simple docstring""" import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params _UpperCamelCase : Dict = getLogger(__name__) _UpperCamelCase : List[Any] = "cuda" if torch.cuda.is_available() else "cpu" def a_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : int = 8 , _lowerCAmelCase : str = DEFAULT_DEVICE , _lowerCAmelCase : Optional[Any]=False , _lowerCAmelCase : Union[str, Any]="summarization" , _lowerCAmelCase : Optional[Any]=None , **_lowerCAmelCase : Optional[Any] , ): '''simple docstring''' lowercase__ : List[str] = Path(_lowerCAmelCase ).open('w' , encoding='utf-8' ) lowercase__ : Any = str(_lowerCAmelCase ) lowercase__ : int = AutoModelForSeqaSeqLM.from_pretrained(_lowerCAmelCase ).to(_lowerCAmelCase ) if fpaa: lowercase__ : Union[str, Any] = model.half() lowercase__ : Optional[int] = AutoTokenizer.from_pretrained(_lowerCAmelCase ) logger.info(f"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type. lowercase__ : str = time.time() # update config with task specific params use_task_specific_params(_lowerCAmelCase , _lowerCAmelCase ) if prefix is None: lowercase__ : Tuple = prefix or getattr(model.config , 'prefix' , '' ) or '' for examples_chunk in tqdm(list(chunks(_lowerCAmelCase , _lowerCAmelCase ) ) ): lowercase__ : Tuple = [prefix + text for text in examples_chunk] lowercase__ : Optional[int] = tokenizer(_lowerCAmelCase , return_tensors='pt' , truncation=_lowerCAmelCase , padding='longest' ).to(_lowerCAmelCase ) lowercase__ : int = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **_lowerCAmelCase , ) lowercase__ : str = tokenizer.batch_decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase ) for hypothesis in dec: fout.write(hypothesis + '\n' ) fout.flush() fout.close() lowercase__ : str = int(time.time() - start_time ) # seconds lowercase__ : Union[str, Any] = len(_lowerCAmelCase ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def a_ ( ): '''simple docstring''' return datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S' ) def a_ ( _lowerCAmelCase : Tuple=True ): '''simple docstring''' lowercase__ : List[Any] = argparse.ArgumentParser() parser.add_argument('model_name' , type=_lowerCAmelCase , help='like facebook/bart-large-cnn,t5-base, etc.' ) parser.add_argument('input_path' , type=_lowerCAmelCase , help='like cnn_dm/test.source' ) parser.add_argument('save_path' , type=_lowerCAmelCase , help='where to save summaries' ) parser.add_argument('--reference_path' , type=_lowerCAmelCase , required=_lowerCAmelCase , help='like cnn_dm/test.target' ) parser.add_argument('--score_path' , type=_lowerCAmelCase , required=_lowerCAmelCase , default='metrics.json' , help='where to save metrics' ) parser.add_argument('--device' , type=_lowerCAmelCase , required=_lowerCAmelCase , default=_lowerCAmelCase , help='cuda, cuda:1, cpu etc.' ) parser.add_argument( '--prefix' , type=_lowerCAmelCase , required=_lowerCAmelCase , default=_lowerCAmelCase , help='will be added to the begininng of src examples' ) parser.add_argument('--task' , type=_lowerCAmelCase , default='summarization' , help='used for task_specific_params + metrics' ) parser.add_argument('--bs' , type=_lowerCAmelCase , default=8 , required=_lowerCAmelCase , help='batch size' ) parser.add_argument( '--n_obs' , type=_lowerCAmelCase , default=-1 , required=_lowerCAmelCase , help='How many observations. Defaults to all.' ) parser.add_argument('--fp16' , action='store_true' ) parser.add_argument('--dump-args' , action='store_true' , help='print the custom hparams with the results' ) parser.add_argument( '--info' , nargs='?' , type=_lowerCAmelCase , const=datetime_now() , help=( 'use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.' ' lang=en-ru. If no value is passed, the current datetime string will be used.' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate lowercase__ , lowercase__ : Any = parser.parse_known_args() lowercase__ : List[str] = parse_numeric_n_bool_cl_kwargs(_lowerCAmelCase ) if parsed_args and verbose: print(f"""parsed the following generate kwargs: {parsed_args}""" ) lowercase__ : Union[str, Any] = [' ' + x.rstrip() if 't5' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: lowercase__ : Tuple = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=_lowerCAmelCase ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(f"""score_path {args.score_path} will be overwritten unless you type ctrl-c.""" ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('Can\'t mix --fp16 and --device cpu' ) lowercase__ : List[Any] = generate_summaries_or_translations( _lowerCAmelCase , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **_lowerCAmelCase , ) if args.reference_path is None: return {} # Compute scores lowercase__ : Any = calculate_bleu if 'translation' in args.task else calculate_rouge lowercase__ : Any = [x.rstrip() for x in open(args.save_path ).readlines()] lowercase__ : str = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(_lowerCAmelCase )] lowercase__ : dict = score_fn(_lowerCAmelCase , _lowerCAmelCase ) scores.update(_lowerCAmelCase ) if args.dump_args: scores.update(_lowerCAmelCase ) if args.info: lowercase__ : List[str] = args.info if verbose: print(_lowerCAmelCase ) if args.score_path is not None: json.dump(_lowerCAmelCase , open(args.score_path , 'w' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
645
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class UpperCAmelCase_ ( unittest.TestCase): def _UpperCAmelCase ( self , a ) -> str: for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss'] ): lowercase__ : str = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(a ) def _UpperCAmelCase ( self ) -> int: lowercase__ : Dict = 'sshleifer/tiny-gpt2' lowercase__ : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=a , multi_process=a , ) lowercase__ : str = TensorFlowBenchmark(a ) lowercase__ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> int: lowercase__ : List[str] = 'sgugger/tiny-distilbert-classification' lowercase__ : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , only_pretrain_model=a , ) lowercase__ : Optional[Any] = TensorFlowBenchmark(a ) lowercase__ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : Optional[int] = 'sshleifer/tiny-gpt2' lowercase__ : Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , ) lowercase__ : Optional[Any] = TensorFlowBenchmark(a ) lowercase__ : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : Any = 'sshleifer/tiny-gpt2' lowercase__ : List[Any] = AutoConfig.from_pretrained(a ) lowercase__ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=a , multi_process=a , ) lowercase__ : Tuple = TensorFlowBenchmark(a , [config] ) lowercase__ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> int: lowercase__ : Optional[Any] = 'sshleifer/tiny-gpt2' lowercase__ : List[str] = AutoConfig.from_pretrained(a ) lowercase__ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , ) lowercase__ : List[str] = TensorFlowBenchmark(a , [config] ) lowercase__ : Any = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Optional[Any] = 'sshleifer/tiny-gpt2' lowercase__ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , ) lowercase__ : Optional[Any] = TensorFlowBenchmark(a ) lowercase__ : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _UpperCAmelCase ( self ) -> str: lowercase__ : Optional[Any] = 'sshleifer/tiny-gpt2' lowercase__ : Optional[int] = AutoConfig.from_pretrained(a ) lowercase__ : str = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , ) lowercase__ : str = TensorFlowBenchmark(a , [config] ) lowercase__ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : List[str] = 'patrickvonplaten/t5-tiny-random' lowercase__ : Any = AutoConfig.from_pretrained(a ) lowercase__ : List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , ) lowercase__ : int = TensorFlowBenchmark(a , configs=[config] ) lowercase__ : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU' ) ) == 0 , 'Cannot do xla on CPU.' ) def _UpperCAmelCase ( self ) -> Any: lowercase__ : Any = 'sshleifer/tiny-gpt2' lowercase__ : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , use_xla=a , multi_process=a , ) lowercase__ : Any = TensorFlowBenchmark(a ) lowercase__ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Any = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ : List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=a , save_to_csv=a , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(a , 'inf_time.csv' ) , inference_memory_csv_file=os.path.join(a , 'inf_mem.csv' ) , env_info_csv_file=os.path.join(a , 'env.csv' ) , multi_process=a , ) lowercase__ : Union[str, Any] = TensorFlowBenchmark(a ) benchmark.run() self.assertTrue(Path(os.path.join(a , 'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(a , 'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(a , 'env.csv' ) ).exists() ) def _UpperCAmelCase ( self ) -> Dict: lowercase__ : Tuple = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(a ): self.assertTrue(hasattr(a , 'sequential' ) ) self.assertTrue(hasattr(a , 'cumulative' ) ) self.assertTrue(hasattr(a , 'current' ) ) self.assertTrue(hasattr(a , 'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=a , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(a , 'log.txt' ) , log_print=a , trace_memory_line_by_line=a , eager_mode=a , multi_process=a , ) lowercase__ : Optional[int] = TensorFlowBenchmark(a ) lowercase__ : Optional[Any] = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(a , 'log.txt' ) ).exists() )
645
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCamelCase : int = logging.get_logger(__name__) _UpperCamelCase : List[str] = { "xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/config.json", "xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/config.json", "xlm-roberta-large-finetuned-conll02-dutch": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll02-spanish": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll03-english": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll03-german": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json" ), } class UpperCAmelCase_ ( _a): lowerCamelCase__ : Tuple = "xlm-roberta" def __init__( self , a=3_0_5_2_2 , a=7_6_8 , a=1_2 , a=1_2 , a=3_0_7_2 , a="gelu" , a=0.1 , a=0.1 , a=5_1_2 , a=2 , a=0.02 , a=1e-12 , a=1 , a=0 , a=2 , a="absolute" , a=True , a=None , **a , ) -> str: super().__init__(pad_token_id=a , bos_token_id=a , eos_token_id=a , **a ) lowercase__ : Dict = vocab_size lowercase__ : Any = hidden_size lowercase__ : Optional[int] = num_hidden_layers lowercase__ : Union[str, Any] = num_attention_heads lowercase__ : List[Any] = hidden_act lowercase__ : List[str] = intermediate_size lowercase__ : Tuple = hidden_dropout_prob lowercase__ : str = attention_probs_dropout_prob lowercase__ : List[Any] = max_position_embeddings lowercase__ : Optional[int] = type_vocab_size lowercase__ : List[Any] = initializer_range lowercase__ : Dict = layer_norm_eps lowercase__ : Dict = position_embedding_type lowercase__ : Optional[Any] = use_cache lowercase__ : int = classifier_dropout class UpperCAmelCase_ ( _a): @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": lowercase__ : Optional[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowercase__ : int = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
645
"""simple docstring""" import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class UpperCAmelCase_ ( _a): def __init__( self , a , a=1_3 , a=7 , a=True , a=True , a=False , a=True , a=9_9 , a=3_2 , a=5 , a=4 , a=3_7 , a="gelu" , a=0.1 , a=0.1 , a=5_1_2 , a=1_6 , a=2 , a=0.02 , a=3 , a=4 , a=None , ) -> Any: lowercase__ : Tuple = parent lowercase__ : List[Any] = batch_size lowercase__ : List[Any] = seq_length lowercase__ : List[Any] = is_training lowercase__ : Optional[Any] = use_input_mask lowercase__ : Optional[int] = use_token_type_ids lowercase__ : int = use_labels lowercase__ : Tuple = vocab_size lowercase__ : int = hidden_size lowercase__ : Any = num_hidden_layers lowercase__ : List[str] = num_attention_heads lowercase__ : Optional[Any] = intermediate_size lowercase__ : Optional[Any] = hidden_act lowercase__ : List[str] = hidden_dropout_prob lowercase__ : List[Any] = attention_probs_dropout_prob lowercase__ : List[Any] = max_position_embeddings lowercase__ : List[str] = type_vocab_size lowercase__ : Tuple = type_sequence_label_size lowercase__ : List[Any] = initializer_range lowercase__ : str = num_labels lowercase__ : Tuple = num_choices lowercase__ : str = scope def _UpperCAmelCase ( self ) -> Any: lowercase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ : str = None if self.use_input_mask: lowercase__ : Any = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ : Dict = None lowercase__ : Optional[Any] = None lowercase__ : int = None if self.use_labels: lowercase__ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__ : Dict = ids_tensor([self.batch_size] , self.num_choices ) lowercase__ : List[Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCAmelCase ( self ) -> Optional[int]: return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> Dict: lowercase__ : Tuple = DistilBertModel(config=a ) model.to(a ) model.eval() lowercase__ : Any = model(a , a ) lowercase__ : str = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> Dict: lowercase__ : Optional[int] = DistilBertForMaskedLM(config=a ) model.to(a ) model.eval() lowercase__ : Union[str, Any] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> int: lowercase__ : Tuple = DistilBertForQuestionAnswering(config=a ) model.to(a ) model.eval() lowercase__ : Tuple = model( a , attention_mask=a , start_positions=a , end_positions=a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> List[str]: lowercase__ : int = self.num_labels lowercase__ : Dict = DistilBertForSequenceClassification(a ) model.to(a ) model.eval() lowercase__ : Optional[Any] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> Any: lowercase__ : Any = self.num_labels lowercase__ : List[str] = DistilBertForTokenClassification(config=a ) model.to(a ) model.eval() lowercase__ : Any = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> Tuple: lowercase__ : List[Any] = self.num_choices lowercase__ : Any = DistilBertForMultipleChoice(config=a ) model.to(a ) model.eval() lowercase__ : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ : Optional[int] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ : int = model( a , attention_mask=a , labels=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _UpperCAmelCase ( self ) -> str: lowercase__ : Union[str, Any] = self.prepare_config_and_inputs() ((lowercase__) , (lowercase__) , (lowercase__) , (lowercase__) , (lowercase__) , (lowercase__)) : List[str] = config_and_inputs lowercase__ : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _a , _a , unittest.TestCase): lowerCamelCase__ : List[str] = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) lowerCamelCase__ : str = ( { "feature-extraction": DistilBertModel, "fill-mask": DistilBertForMaskedLM, "question-answering": DistilBertForQuestionAnswering, "text-classification": DistilBertForSequenceClassification, "token-classification": DistilBertForTokenClassification, "zero-shot": DistilBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ : Optional[int] = True lowerCamelCase__ : Any = True lowerCamelCase__ : List[Any] = True lowerCamelCase__ : Optional[Any] = True def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : str = DistilBertModelTester(self ) lowercase__ : int = ConfigTester(self , config_class=a , dim=3_7 ) def _UpperCAmelCase ( self ) -> Dict: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*a ) def _UpperCAmelCase ( self ) -> Any: lowercase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*a ) def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*a ) def _UpperCAmelCase ( self ) -> int: lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*a ) def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*a ) def _UpperCAmelCase ( self ) -> str: lowercase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*a ) @slow def _UpperCAmelCase ( self ) -> str: for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : str = DistilBertModel.from_pretrained(a ) self.assertIsNotNone(a ) @slow @require_torch_gpu def _UpperCAmelCase ( self ) -> Any: lowercase__ , lowercase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return lowercase__ : Optional[int] = True lowercase__ : Union[str, Any] = model_class(config=a ) lowercase__ : int = self._prepare_for_class(a , a ) lowercase__ : Tuple = torch.jit.trace( a , (inputs_dict['input_ids'].to('cpu' ), inputs_dict['attention_mask'].to('cpu' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a , os.path.join(a , 'traced_model.pt' ) ) lowercase__ : Optional[int] = torch.jit.load(os.path.join(a , 'traced_model.pt' ) , map_location=a ) loaded(inputs_dict['input_ids'].to(a ) , inputs_dict['attention_mask'].to(a ) ) @require_torch class UpperCAmelCase_ ( unittest.TestCase): @slow def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : int = DistilBertModel.from_pretrained('distilbert-base-uncased' ) lowercase__ : Union[str, Any] = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) lowercase__ : Optional[Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowercase__ : Optional[Any] = model(a , attention_mask=a )[0] lowercase__ : Tuple = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , a ) lowercase__ : List[Any] = torch.tensor( [[[-0.1_639, 0.3_299, 0.1_648], [-0.1_746, 0.3_289, 0.1_710], [-0.1_884, 0.3_357, 0.1_810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a , atol=1e-4 ) )
645
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor _UpperCamelCase : Optional[Any] = logging.get_logger(__name__) class UpperCAmelCase_ ( _a): def __init__( self , *a , **a ) -> None: warnings.warn( 'The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use ChineseCLIPImageProcessor instead.' , a , ) super().__init__(*a , **a )
645
"""simple docstring""" from __future__ import annotations def a_ ( _lowerCAmelCase : float , _lowerCAmelCase : float , _lowerCAmelCase : float , ): '''simple docstring''' if (stress, tangential_force, area).count(0 ) != 1: raise ValueError('You cannot supply more or less than 2 values' ) elif stress < 0: raise ValueError('Stress cannot be negative' ) elif tangential_force < 0: raise ValueError('Tangential Force cannot be negative' ) elif area < 0: raise ValueError('Area cannot be negative' ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
645
1
"""simple docstring""" from __future__ import annotations import bisect def a_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int , _lowerCAmelCase : int = 0 , _lowerCAmelCase : int = -1 ): '''simple docstring''' if hi < 0: lowercase__ : Union[str, Any] = len(_lowerCAmelCase ) while lo < hi: lowercase__ : Dict = lo + (hi - lo) // 2 if sorted_collection[mid] < item: lowercase__ : str = mid + 1 else: lowercase__ : List[str] = mid return lo def a_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int , _lowerCAmelCase : int = 0 , _lowerCAmelCase : int = -1 ): '''simple docstring''' if hi < 0: lowercase__ : str = len(_lowerCAmelCase ) while lo < hi: lowercase__ : Union[str, Any] = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: lowercase__ : List[str] = mid + 1 else: lowercase__ : Optional[int] = mid return lo def a_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int , _lowerCAmelCase : int = 0 , _lowerCAmelCase : int = -1 ): '''simple docstring''' sorted_collection.insert(bisect_left(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) def a_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int , _lowerCAmelCase : int = 0 , _lowerCAmelCase : int = -1 ): '''simple docstring''' sorted_collection.insert(bisect_right(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) def a_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int ): '''simple docstring''' lowercase__ : List[Any] = 0 lowercase__ : Optional[Any] = len(_lowerCAmelCase ) - 1 while left <= right: lowercase__ : Optional[int] = left + (right - left) // 2 lowercase__ : str = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: lowercase__ : Union[str, Any] = midpoint - 1 else: lowercase__ : Dict = midpoint + 1 return None def a_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int ): '''simple docstring''' lowercase__ : Dict = bisect.bisect_left(_lowerCAmelCase , _lowerCAmelCase ) if index != len(_lowerCAmelCase ) and sorted_collection[index] == item: return index return None def a_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ): '''simple docstring''' if right < left: return None lowercase__ : List[Any] = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , midpoint - 1 ) else: return binary_search_by_recursion(_lowerCAmelCase , _lowerCAmelCase , midpoint + 1 , _lowerCAmelCase ) if __name__ == "__main__": _UpperCamelCase : List[str] = input("Enter numbers separated by comma:\n").strip() _UpperCamelCase : List[str] = sorted(int(item) for item in user_input.split(",")) _UpperCamelCase : str = int(input("Enter a single number to be found in the list:\n")) _UpperCamelCase : Union[str, Any] = binary_search(collection, target) if result is None: print(f'''{target} was not found in {collection}.''') else: print(f'''{target} was found at position {result} in {collection}.''')
645
"""simple docstring""" import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase_ : def __init__( self , a , a=1_3 , a=[3_0, 3_0] , a=2 , a=3 , a=True , a=True , a=3_2 , a=5 , a=4 , a=3_7 , a="gelu" , a=0.1 , a=0.1 , a=1_0 , a=0.02 , a=3 , a=None , a=8 , a=1_0 , ) -> Any: lowercase__ : List[str] = parent lowercase__ : Optional[Any] = batch_size lowercase__ : Optional[int] = image_size lowercase__ : List[Any] = patch_size lowercase__ : Optional[Any] = num_channels lowercase__ : str = is_training lowercase__ : Optional[Any] = use_labels lowercase__ : Optional[Any] = hidden_size lowercase__ : Dict = num_hidden_layers lowercase__ : Optional[Any] = num_attention_heads lowercase__ : Dict = intermediate_size lowercase__ : List[Any] = hidden_act lowercase__ : List[Any] = hidden_dropout_prob lowercase__ : Any = attention_probs_dropout_prob lowercase__ : Any = type_sequence_label_size lowercase__ : Dict = initializer_range lowercase__ : Union[str, Any] = num_labels lowercase__ : Tuple = scope lowercase__ : Tuple = n_targets lowercase__ : Optional[int] = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens lowercase__ : Optional[Any] = (image_size[1] // patch_size) * (image_size[0] // patch_size) lowercase__ : Tuple = num_patches + 1 + self.num_detection_tokens def _UpperCAmelCase ( self ) -> Any: lowercase__ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) lowercase__ : Tuple = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) lowercase__ : int = [] for i in range(self.batch_size ): lowercase__ : Optional[Any] = {} lowercase__ : Any = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=a ) lowercase__ : List[str] = torch.rand(self.n_targets , 4 , device=a ) labels.append(a ) lowercase__ : Tuple = self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self ) -> List[Any]: return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def _UpperCAmelCase ( self , a , a , a ) -> int: lowercase__ : List[str] = YolosModel(config=a ) model.to(a ) model.eval() lowercase__ : List[Any] = model(a ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def _UpperCAmelCase ( self , a , a , a ) -> Union[str, Any]: lowercase__ : str = YolosForObjectDetection(a ) model.to(a ) model.eval() lowercase__ : Dict = model(pixel_values=a ) lowercase__ : Tuple = model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) lowercase__ : str = model(pixel_values=a , labels=a ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : int = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Any = config_and_inputs lowercase__ : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _a , _a , unittest.TestCase): lowerCamelCase__ : Optional[int] = (YolosModel, YolosForObjectDetection) if is_torch_available() else () lowerCamelCase__ : List[str] = ( {"feature-extraction": YolosModel, "object-detection": YolosForObjectDetection} if is_torch_available() else {} ) lowerCamelCase__ : List[Any] = False lowerCamelCase__ : Dict = False lowerCamelCase__ : Tuple = False lowerCamelCase__ : Union[str, Any] = False def _UpperCAmelCase ( self , a , a , a=False ) -> Dict: lowercase__ : List[str] = super()._prepare_for_class(a , a , return_labels=a ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": lowercase__ : Optional[Any] = [] for i in range(self.model_tester.batch_size ): lowercase__ : Dict = {} lowercase__ : Dict = torch.ones( size=(self.model_tester.n_targets,) , device=a , dtype=torch.long ) lowercase__ : Optional[Any] = torch.ones( self.model_tester.n_targets , 4 , device=a , dtype=torch.float ) labels.append(a ) lowercase__ : Union[str, Any] = labels return inputs_dict def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : Dict = YolosModelTester(self ) lowercase__ : Optional[int] = ConfigTester(self , config_class=a , has_text_modality=a , hidden_size=3_7 ) def _UpperCAmelCase ( self ) -> str: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Optional[Any]: # YOLOS does not use inputs_embeds pass def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[str] = model_class(a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase__ : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a , nn.Linear ) ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : int = model_class(a ) lowercase__ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Tuple = [*signature.parameters.keys()] lowercase__ : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , a ) def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _UpperCAmelCase ( self ) -> Dict: lowercase__ , lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Dict = True # in YOLOS, the seq_len is different lowercase__ : Tuple = self.model_tester.expected_seq_len for model_class in self.all_model_classes: lowercase__ : Optional[int] = True lowercase__ : str = False lowercase__ : str = True lowercase__ : List[str] = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : Any = model(**self._prepare_for_class(a , a ) ) lowercase__ : str = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase__ : Optional[int] = True lowercase__ : List[Any] = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : Union[str, Any] = model(**self._prepare_for_class(a , a ) ) lowercase__ : List[str] = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowercase__ : Dict = len(a ) # Check attention is always last and order is fine lowercase__ : Any = True lowercase__ : int = True lowercase__ : int = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : Any = model(**self._prepare_for_class(a , a ) ) lowercase__ : Optional[Any] = 1 self.assertEqual(out_len + added_hidden_states , len(a ) ) lowercase__ : Tuple = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def _UpperCAmelCase ( self ) -> List[str]: def check_hidden_states_output(a , a , a ): lowercase__ : str = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : int = model(**self._prepare_for_class(a , a ) ) lowercase__ : int = outputs.hidden_states lowercase__ : Any = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(a ) , a ) # YOLOS has a different seq_length lowercase__ : Optional[int] = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowercase__ , lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Any = True check_hidden_states_output(a , a , a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : List[Any] = True check_hidden_states_output(a , a , a ) def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*a ) @slow def _UpperCAmelCase ( self ) -> Union[str, Any]: for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : int = YolosModel.from_pretrained(a ) self.assertIsNotNone(a ) def a_ ( ): '''simple docstring''' lowercase__ : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase): @cached_property def _UpperCAmelCase ( self ) -> Union[str, Any]: return AutoImageProcessor.from_pretrained('hustvl/yolos-small' ) if is_vision_available() else None @slow def _UpperCAmelCase ( self ) -> int: lowercase__ : Dict = YolosForObjectDetection.from_pretrained('hustvl/yolos-small' ).to(a ) lowercase__ : Tuple = self.default_image_processor lowercase__ : Optional[int] = prepare_img() lowercase__ : int = image_processor(images=a , return_tensors='pt' ).to(a ) # forward pass with torch.no_grad(): lowercase__ : int = model(inputs.pixel_values ) # verify outputs lowercase__ : Tuple = torch.Size((1, 1_0_0, 9_2) ) self.assertEqual(outputs.logits.shape , a ) lowercase__ : Any = torch.tensor( [[-24.0_248, -10.3_024, -14.8_290], [-42.0_392, -16.8_200, -27.4_334], [-27.2_743, -11.8_154, -18.7_148]] , device=a , ) lowercase__ : List[str] = torch.tensor( [[0.2_559, 0.5_455, 0.4_706], [0.2_989, 0.7_279, 0.1_875], [0.7_732, 0.4_017, 0.4_462]] , device=a ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , a , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , a , atol=1e-4 ) ) # verify postprocessing lowercase__ : Optional[Any] = image_processor.post_process_object_detection( a , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] lowercase__ : str = torch.tensor([0.9_994, 0.9_790, 0.9_964, 0.9_972, 0.9_861] ).to(a ) lowercase__ : Any = [7_5, 7_5, 1_7, 6_3, 1_7] lowercase__ : Optional[int] = torch.tensor([335.0_609, 79.3_848, 375.4_216, 187.2_495] ).to(a ) self.assertEqual(len(results['scores'] ) , 5 ) self.assertTrue(torch.allclose(results['scores'] , a , atol=1e-4 ) ) self.assertSequenceEqual(results['labels'].tolist() , a ) self.assertTrue(torch.allclose(results['boxes'][0, :] , a ) )
645
1
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class UpperCAmelCase_ ( _a): lowerCamelCase__ : Optional[int] = "Speech2TextFeatureExtractor" lowerCamelCase__ : Any = "Speech2TextTokenizer" def __init__( self , a , a ) -> Union[str, Any]: super().__init__(a , a ) lowercase__ : List[str] = self.feature_extractor lowercase__ : str = False def __call__( self , *a , **a ) -> Optional[int]: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*a , **a ) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' ) lowercase__ : int = kwargs.pop('raw_speech' ) else: lowercase__ : Optional[Any] = kwargs.pop('audio' , a ) lowercase__ : Optional[int] = kwargs.pop('sampling_rate' , a ) lowercase__ : int = kwargs.pop('text' , a ) if len(a ) > 0: lowercase__ : Dict = args[0] lowercase__ : str = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: lowercase__ : Dict = self.feature_extractor(a , *a , sampling_rate=a , **a ) if text is not None: lowercase__ : Optional[int] = self.tokenizer(a , **a ) if text is None: return inputs elif audio is None: return encodings else: lowercase__ : Tuple = encodings['input_ids'] return inputs def _UpperCAmelCase ( self , *a , **a ) -> str: return self.tokenizer.batch_decode(*a , **a ) def _UpperCAmelCase ( self , *a , **a ) -> List[str]: return self.tokenizer.decode(*a , **a ) @contextmanager def _UpperCAmelCase ( self ) -> int: warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.' ) lowercase__ : Optional[int] = True lowercase__ : str = self.tokenizer yield lowercase__ : Union[str, Any] = self.feature_extractor lowercase__ : List[Any] = False
645
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch _UpperCamelCase : int = logging.get_logger(__name__) @dataclass class UpperCAmelCase_ : def __init__( self , a=False , a=False , a=6.0 , a=None , a=False , a=False , a=None , a="fp4" , a=False , **a , ) -> Tuple: lowercase__ : str = load_in_abit lowercase__ : str = load_in_abit lowercase__ : List[str] = llm_inta_threshold lowercase__ : Dict = llm_inta_skip_modules lowercase__ : Tuple = llm_inta_enable_fpaa_cpu_offload lowercase__ : Any = llm_inta_has_fpaa_weight lowercase__ : Any = bnb_abit_quant_type lowercase__ : Dict = bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: lowercase__ : Dict = torch.floataa elif isinstance(a , a ): lowercase__ : Any = getattr(a , a ) elif isinstance(a , torch.dtype ): lowercase__ : Any = bnb_abit_compute_dtype else: raise ValueError('bnb_4bit_compute_dtype must be a string or a torch.dtype' ) self.post_init() def _UpperCAmelCase ( self ) -> str: if not isinstance(self.llm_inta_threshold , a ): raise ValueError('llm_int8_threshold must be a float' ) if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , a ): raise ValueError('llm_int8_skip_modules must be a list of strings' ) if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , a ): raise ValueError('llm_int8_enable_fp32_cpu_offload must be a boolean' ) if not isinstance(self.llm_inta_has_fpaa_weight , a ): raise ValueError('llm_int8_has_fp16_weight must be a boolean' ) if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype ): raise ValueError('bnb_4bit_compute_dtype must be torch.dtype' ) if not isinstance(self.bnb_abit_quant_type , a ): raise ValueError('bnb_4bit_quant_type must be a string' ) if not isinstance(self.bnb_abit_use_double_quant , a ): raise ValueError('bnb_4bit_use_double_quant must be a boolean' ) if self.load_in_abit and not version.parse(importlib.metadata.version('bitsandbytes' ) ) >= version.parse( '0.39.0' ): raise ValueError( '4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version' ) def _UpperCAmelCase ( self ) -> Tuple: return self.load_in_abit or self.load_in_abit def _UpperCAmelCase ( self ) -> List[str]: if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def _UpperCAmelCase ( cls , a , a , **a ) -> Optional[Any]: lowercase__ : List[Any] = cls(**a ) lowercase__ : Union[str, Any] = [] for key, value in kwargs.items(): if hasattr(a , a ): setattr(a , a , a ) to_remove.append(a ) for key in to_remove: kwargs.pop(a , a ) if return_unused_kwargs: return config, kwargs else: return config def _UpperCAmelCase ( self , a ) -> Dict: with open(a , 'w' , encoding='utf-8' ) as writer: lowercase__ : Any = self.to_dict() lowercase__ : str = json.dumps(a , indent=2 , sort_keys=a ) + '\n' writer.write(a ) def _UpperCAmelCase ( self ) -> Dict[str, Any]: lowercase__ : Optional[Any] = copy.deepcopy(self.__dict__ ) lowercase__ : Any = str(output['bnb_4bit_compute_dtype'] ).split('.' )[1] return output def __repr__( self ) -> Dict: return f"""{self.__class__.__name__} {self.to_json_string()}""" def _UpperCAmelCase ( self , a = True ) -> str: if use_diff is True: lowercase__ : List[Any] = self.to_diff_dict() else: lowercase__ : List[str] = self.to_dict() return json.dumps(a , indent=2 , sort_keys=a ) + "\n" def _UpperCAmelCase ( self ) -> Dict[str, Any]: lowercase__ : Tuple = self.to_dict() # get the default config dict lowercase__ : Optional[Any] = BitsAndBytesConfig().to_dict() lowercase__ : int = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: lowercase__ : Optional[int] = value return serializable_config_dict
645
1
"""simple docstring""" from random import shuffle import tensorflow as tf from numpy import array def a_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple ): '''simple docstring''' lowercase__ : List[Any] = int(_lowerCAmelCase ) assert noofclusters < len(_lowerCAmelCase ) # Find out the dimensionality lowercase__ : Tuple = len(vectors[0] ) # Will help select random centroids from among the available vectors lowercase__ : int = list(range(len(_lowerCAmelCase ) ) ) shuffle(_lowerCAmelCase ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. lowercase__ : int = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION lowercase__ : List[Any] = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points lowercase__ : Dict = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(_lowerCAmelCase ) ] ##These nodes will assign the centroid Variables the appropriate ##values lowercase__ : Dict = tf.placeholder('float64' , [dim] ) lowercase__ : List[str] = [] for centroid in centroids: cent_assigns.append(tf.assign(_lowerCAmelCase , _lowerCAmelCase ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) lowercase__ : str = [tf.Variable(0 ) for i in range(len(_lowerCAmelCase ) )] ##These nodes will assign an assignment Variable the appropriate ##value lowercase__ : Tuple = tf.placeholder('int32' ) lowercase__ : List[str] = [] for assignment in assignments: cluster_assigns.append(tf.assign(_lowerCAmelCase , _lowerCAmelCase ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input lowercase__ : int = tf.placeholder('float' , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors lowercase__ : int = tf.reduce_mean(_lowerCAmelCase , 0 ) ##Node for computing Euclidean distances # Placeholders for input lowercase__ : Tuple = tf.placeholder('float' , [dim] ) lowercase__ : Tuple = tf.placeholder('float' , [dim] ) lowercase__ : Optional[int] = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(_lowerCAmelCase , _lowerCAmelCase ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input lowercase__ : List[str] = tf.placeholder('float' , [noofclusters] ) lowercase__ : Optional[int] = tf.argmin(_lowerCAmelCase , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. lowercase__ : List[str] = tf.initialize_all_variables() # Initialize all variables sess.run(_lowerCAmelCase ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. lowercase__ : Optional[int] = 100 for _ in range(_lowerCAmelCase ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(_lowerCAmelCase ) ): lowercase__ : Tuple = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. lowercase__ : Optional[int] = [ sess.run(_lowerCAmelCase , feed_dict={va: vect, va: sess.run(_lowerCAmelCase )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input lowercase__ : Dict = sess.run( _lowerCAmelCase , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(_lowerCAmelCase ): # Collect all the vectors assigned to this cluster lowercase__ : Optional[int] = [ vectors[i] for i in range(len(_lowerCAmelCase ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location lowercase__ : Optional[int] = sess.run( _lowerCAmelCase , feed_dict={mean_input: array(_lowerCAmelCase )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments lowercase__ : List[str] = sess.run(_lowerCAmelCase ) lowercase__ : Dict = sess.run(_lowerCAmelCase ) return centroids, assignments
645
"""simple docstring""" import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler _UpperCamelCase : int = 16 _UpperCamelCase : Union[str, Any] = 32 def a_ ( _lowerCAmelCase : Tuple ): '''simple docstring''' return int(x / 2**20 ) class UpperCAmelCase_ : def __enter__( self ) -> Union[str, Any]: gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero lowercase__ : List[str] = torch.cuda.memory_allocated() return self def __exit__( self , *a ) -> Any: gc.collect() torch.cuda.empty_cache() lowercase__ : Optional[Any] = torch.cuda.memory_allocated() lowercase__ : Union[str, Any] = torch.cuda.max_memory_allocated() lowercase__ : List[Any] = bamb(self.end - self.begin ) lowercase__ : List[Any] = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def a_ ( _lowerCAmelCase : Accelerator , _lowerCAmelCase : int = 16 , _lowerCAmelCase : str = "bert-base-cased" , _lowerCAmelCase : int = 320 , _lowerCAmelCase : int = 160 , ): '''simple docstring''' lowercase__ : List[Any] = AutoTokenizer.from_pretrained(_lowerCAmelCase ) lowercase__ : Union[str, Any] = load_dataset( 'glue' , 'mrpc' , split={'train': f"""train[:{n_train}]""", 'validation': f"""validation[:{n_val}]"""} ) def tokenize_function(_lowerCAmelCase : int ): # max_length=None => use the model max length (it's actually the default) lowercase__ : List[str] = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowercase__ : Union[str, Any] = datasets.map( _lowerCAmelCase , batched=_lowerCAmelCase , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=_lowerCAmelCase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ : Union[str, Any] = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(_lowerCAmelCase : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_lowerCAmelCase , padding='max_length' , max_length=128 , return_tensors='pt' ) return tokenizer.pad(_lowerCAmelCase , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. lowercase__ : Dict = DataLoader( tokenized_datasets['train'] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase ) lowercase__ : Dict = DataLoader( tokenized_datasets['validation'] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase ) return train_dataloader, eval_dataloader def a_ ( _lowerCAmelCase : Any , _lowerCAmelCase : List[str] ): '''simple docstring''' lowercase__ : List[Any] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ : Optional[int] = config['lr'] lowercase__ : Optional[Any] = int(config['num_epochs'] ) lowercase__ : Optional[Any] = int(config['seed'] ) lowercase__ : int = int(config['batch_size'] ) lowercase__ : Union[str, Any] = args.model_name_or_path set_seed(_lowerCAmelCase ) lowercase__ , lowercase__ : Tuple = get_dataloaders(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , args.n_train , args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ : List[Any] = AutoModelForSequenceClassification.from_pretrained(_lowerCAmelCase , return_dict=_lowerCAmelCase ) # Instantiate optimizer lowercase__ : List[Any] = ( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowercase__ : Optional[Any] = optimizer_cls(params=model.parameters() , lr=_lowerCAmelCase ) if accelerator.state.deepspeed_plugin is not None: lowercase__ : Optional[Any] = accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: lowercase__ : List[Any] = 1 lowercase__ : List[Any] = (len(_lowerCAmelCase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowercase__ : Optional[int] = get_linear_schedule_with_warmup( optimizer=_lowerCAmelCase , num_warmup_steps=0 , num_training_steps=_lowerCAmelCase , ) else: lowercase__ : Tuple = DummyScheduler(_lowerCAmelCase , total_num_steps=_lowerCAmelCase , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Dict = accelerator.prepare( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # We need to keep track of how many total steps we have iterated over lowercase__ : Optional[int] = 0 # We also need to keep track of the stating epoch so files are named properly lowercase__ : Tuple = 0 # Now we train the model lowercase__ : Optional[Any] = {} for epoch in range(_lowerCAmelCase , _lowerCAmelCase ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(_lowerCAmelCase ): lowercase__ : List[Any] = model(**_lowerCAmelCase ) lowercase__ : Dict = outputs.loss lowercase__ : int = loss / gradient_accumulation_steps accelerator.backward(_lowerCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print('Memory before entering the train : {}'.format(bamb(tracemalloc.begin ) ) ) accelerator.print('Memory consumed at the end of the train (end-begin): {}'.format(tracemalloc.used ) ) accelerator.print('Peak Memory consumed during the train (max-begin): {}'.format(tracemalloc.peaked ) ) accelerator.print( 'Total Peak Memory consumed during the train (max): {}'.format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) lowercase__ : int = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[f"""epoch-{epoch}"""] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , 'peak_memory_utilization.json' ) , 'w' ) as f: json.dump(_lowerCAmelCase , _lowerCAmelCase ) def a_ ( ): '''simple docstring''' lowercase__ : int = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path' , type=_lowerCAmelCase , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=_lowerCAmelCase , ) parser.add_argument( '--output_dir' , type=_lowerCAmelCase , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--peak_memory_upper_bound' , type=_lowerCAmelCase , default=_lowerCAmelCase , help='The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.' , ) parser.add_argument( '--n_train' , type=_lowerCAmelCase , default=320 , help='Number of training examples to use.' , ) parser.add_argument( '--n_val' , type=_lowerCAmelCase , default=160 , help='Number of validation examples to use.' , ) parser.add_argument( '--num_epochs' , type=_lowerCAmelCase , default=1 , help='Number of train epochs.' , ) lowercase__ : Any = parser.parse_args() lowercase__ : Optional[Any] = {'lr': 2E-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16} training_function(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": main()
645
1
"""simple docstring""" import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def a_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[str] ): '''simple docstring''' if isinstance(_lowerCAmelCase , torch.Tensor ): return image elif isinstance(_lowerCAmelCase , PIL.Image.Image ): lowercase__ : Union[str, Any] = [image] if isinstance(image[0] , PIL.Image.Image ): lowercase__ : int = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] lowercase__ : str = np.concatenate(_lowerCAmelCase , axis=0 ) lowercase__ : Union[str, Any] = np.array(_lowerCAmelCase ).astype(np.floataa ) / 2_5_5.0 lowercase__ : Union[str, Any] = image.transpose(0 , 3 , 1 , 2 ) lowercase__ : Optional[int] = 2.0 * image - 1.0 lowercase__ : Union[str, Any] = torch.from_numpy(_lowerCAmelCase ) elif isinstance(image[0] , torch.Tensor ): lowercase__ : Optional[int] = torch.cat(_lowerCAmelCase , dim=0 ) return image def a_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : Tuple=0.9_9_9_5 ): '''simple docstring''' if not isinstance(_lowerCAmelCase , np.ndarray ): lowercase__ : Optional[int] = True lowercase__ : str = va.device lowercase__ : Tuple = va.cpu().numpy() lowercase__ : Any = va.cpu().numpy() lowercase__ : Dict = np.sum(va * va / (np.linalg.norm(_lowerCAmelCase ) * np.linalg.norm(_lowerCAmelCase )) ) if np.abs(_lowerCAmelCase ) > DOT_THRESHOLD: lowercase__ : Optional[int] = (1 - t) * va + t * va else: lowercase__ : Dict = np.arccos(_lowerCAmelCase ) lowercase__ : Optional[Any] = np.sin(_lowerCAmelCase ) lowercase__ : Union[str, Any] = theta_a * t lowercase__ : List[Any] = np.sin(_lowerCAmelCase ) lowercase__ : str = np.sin(theta_a - theta_t ) / sin_theta_a lowercase__ : Any = sin_theta_t / sin_theta_a lowercase__ : Optional[Any] = sa * va + sa * va if inputs_are_torch: lowercase__ : List[str] = torch.from_numpy(_lowerCAmelCase ).to(_lowerCAmelCase ) return va def a_ ( _lowerCAmelCase : int , _lowerCAmelCase : Tuple ): '''simple docstring''' lowercase__ : Any = F.normalize(_lowerCAmelCase , dim=-1 ) lowercase__ : Dict = F.normalize(_lowerCAmelCase , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def a_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any] ): '''simple docstring''' for param in model.parameters(): lowercase__ : Optional[int] = value class UpperCAmelCase_ ( _a): def __init__( self , a , a , a , a , a , a , a , a=None , a=None , a=None , ) -> Any: super().__init__() self.register_modules( vae=a , text_encoder=a , clip_model=a , tokenizer=a , unet=a , scheduler=a , feature_extractor=a , coca_model=a , coca_tokenizer=a , coca_transform=a , ) lowercase__ : Tuple = ( feature_extractor.size if isinstance(feature_extractor.size , a ) else feature_extractor.size['shortest_edge'] ) lowercase__ : Optional[int] = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , a ) set_requires_grad(self.clip_model , a ) def _UpperCAmelCase ( self , a = "auto" ) -> List[Any]: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowercase__ : List[Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(a ) def _UpperCAmelCase ( self ) -> Dict: self.enable_attention_slicing(a ) def _UpperCAmelCase ( self ) -> Any: set_requires_grad(self.vae , a ) def _UpperCAmelCase ( self ) -> Optional[Any]: set_requires_grad(self.vae , a ) def _UpperCAmelCase ( self ) -> int: set_requires_grad(self.unet , a ) def _UpperCAmelCase ( self ) -> Any: set_requires_grad(self.unet , a ) def _UpperCAmelCase ( self , a , a , a ) -> int: # get the original timestep using init_timestep lowercase__ : int = min(int(num_inference_steps * strength ) , a ) lowercase__ : Optional[Any] = max(num_inference_steps - init_timestep , 0 ) lowercase__ : List[Any] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _UpperCAmelCase ( self , a , a , a , a , a , a=None ) -> Tuple: if not isinstance(a , torch.Tensor ): raise ValueError(f"""`image` has to be of type `torch.Tensor` but is {type(a )}""" ) lowercase__ : str = image.to(device=a , dtype=a ) if isinstance(a , a ): lowercase__ : Optional[Any] = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(a ) ] lowercase__ : Tuple = torch.cat(a , dim=0 ) else: lowercase__ : Any = self.vae.encode(a ).latent_dist.sample(a ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor lowercase__ : int = 0.18_215 * init_latents lowercase__ : int = init_latents.repeat_interleave(a , dim=0 ) lowercase__ : Dict = randn_tensor(init_latents.shape , generator=a , device=a , dtype=a ) # get latents lowercase__ : int = self.scheduler.add_noise(a , a , a ) lowercase__ : List[Any] = init_latents return latents def _UpperCAmelCase ( self , a ) -> List[str]: lowercase__ : List[Any] = self.coca_transform(a ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): lowercase__ : Any = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) lowercase__ : Optional[int] = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split('<end_of_text>' )[0].replace('<start_of_text>' , '' ).rstrip(' .,' ) def _UpperCAmelCase ( self , a , a ) -> List[Any]: lowercase__ : int = self.feature_extractor.preprocess(a ) lowercase__ : Optional[Any] = torch.from_numpy(clip_image_input['pixel_values'][0] ).unsqueeze(0 ).to(self.device ).half() lowercase__ : List[str] = self.clip_model.get_image_features(a ) lowercase__ : Tuple = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=a ) lowercase__ : Optional[Any] = image_embeddings_clip.repeat_interleave(a , dim=0 ) return image_embeddings_clip @torch.enable_grad() def _UpperCAmelCase ( self , a , a , a , a , a , a , a , ) -> str: lowercase__ : Tuple = latents.detach().requires_grad_() lowercase__ : Dict = self.scheduler.scale_model_input(a , a ) # predict the noise residual lowercase__ : int = self.unet(a , a , encoder_hidden_states=a ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): lowercase__ : int = self.scheduler.alphas_cumprod[timestep] lowercase__ : Tuple = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowercase__ : Any = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 lowercase__ : List[str] = torch.sqrt(a ) lowercase__ : Any = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , a ): lowercase__ : Dict = self.scheduler.sigmas[index] lowercase__ : List[str] = latents - sigma * noise_pred else: raise ValueError(f"""scheduler type {type(self.scheduler )} not supported""" ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor lowercase__ : str = 1 / 0.18_215 * sample lowercase__ : int = self.vae.decode(a ).sample lowercase__ : int = (image / 2 + 0.5).clamp(0 , 1 ) lowercase__ : Dict = transforms.Resize(self.feature_extractor_size )(a ) lowercase__ : Optional[int] = self.normalize(a ).to(latents.dtype ) lowercase__ : str = self.clip_model.get_image_features(a ) lowercase__ : Tuple = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=a ) lowercase__ : Dict = spherical_dist_loss(a , a ).mean() * clip_guidance_scale lowercase__ : Tuple = -torch.autograd.grad(a , a )[0] if isinstance(self.scheduler , a ): lowercase__ : int = latents.detach() + grads * (sigma**2) lowercase__ : Optional[Any] = noise_pred_original else: lowercase__ : List[Any] = noise_pred_original - torch.sqrt(a ) * grads return noise_pred, latents @torch.no_grad() def __call__( self , a , a , a = None , a = None , a = 5_1_2 , a = 5_1_2 , a = 0.6 , a = 5_0 , a = 7.5 , a = 1 , a = 0.0 , a = 1_0_0 , a = None , a = "pil" , a = True , a = 0.8 , a = 0.1 , a = 0.1 , ) -> Dict: if isinstance(a , a ) and len(a ) != batch_size: raise ValueError(f"""You have passed {batch_size} batch_size, but only {len(a )} generators.""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if isinstance(a , torch.Generator ) and batch_size > 1: lowercase__ : Optional[int] = [generator] + [None] * (batch_size - 1) lowercase__ : Tuple = [ ('model', self.coca_model is None), ('tokenizer', self.coca_tokenizer is None), ('transform', self.coca_transform is None), ] lowercase__ : Optional[Any] = [x[0] for x in coca_is_none if x[1]] lowercase__ : Dict = ', '.join(a ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(a ): raise ValueError( f"""Content prompt is None and CoCa [{coca_is_none_str}] is None.""" f"""Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) lowercase__ : int = self.get_image_description(a ) if style_prompt is None: if len(a ): raise ValueError( f"""Style prompt is None and CoCa [{coca_is_none_str}] is None.""" f""" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) lowercase__ : List[str] = self.get_image_description(a ) # get prompt text embeddings for content and style lowercase__ : Any = self.tokenizer( a , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=a , return_tensors='pt' , ) lowercase__ : Optional[Any] = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] lowercase__ : Tuple = self.tokenizer( a , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=a , return_tensors='pt' , ) lowercase__ : Union[str, Any] = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] lowercase__ : Union[str, Any] = slerp(a , a , a ) # duplicate text embeddings for each generation per prompt lowercase__ : Any = text_embeddings.repeat_interleave(a , dim=0 ) # set timesteps lowercase__ : List[str] = 'offset' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) lowercase__ : Optional[Any] = {} if accepts_offset: lowercase__ : Dict = 1 self.scheduler.set_timesteps(a , **a ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) lowercase__ , lowercase__ : Optional[int] = self.get_timesteps(a , a , self.device ) lowercase__ : List[Any] = timesteps[:1].repeat(a ) # Preprocess image lowercase__ : Tuple = preprocess(a , a , a ) lowercase__ : int = self.prepare_latents( a , a , a , text_embeddings.dtype , self.device , a ) lowercase__ : List[Any] = preprocess(a , a , a ) lowercase__ : Union[str, Any] = self.prepare_latents( a , a , a , text_embeddings.dtype , self.device , a ) lowercase__ : str = slerp(a , a , a ) if clip_guidance_scale > 0: lowercase__ : List[str] = self.get_clip_image_embeddings(a , a ) lowercase__ : Any = self.get_clip_image_embeddings(a , a ) lowercase__ : Dict = slerp( a , a , a ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowercase__ : Tuple = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowercase__ : Optional[int] = content_text_input.input_ids.shape[-1] lowercase__ : Optional[Any] = self.tokenizer([''] , padding='max_length' , max_length=a , return_tensors='pt' ) lowercase__ : Optional[int] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt lowercase__ : Optional[int] = uncond_embeddings.repeat_interleave(a , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase__ : Tuple = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowercase__ : Tuple = (batch_size, self.unet.config.in_channels, height // 8, width // 8) lowercase__ : str = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps lowercase__ : Tuple = torch.randn(a , generator=a , device='cpu' , dtype=a ).to( self.device ) else: lowercase__ : Any = torch.randn(a , generator=a , device=self.device , dtype=a ) else: if latents.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) lowercase__ : Tuple = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowercase__ : Union[str, Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowercase__ : Any = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowercase__ : Optional[int] = {} if accepts_eta: lowercase__ : str = eta # check if the scheduler accepts generator lowercase__ : List[Any] = 'generator' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: lowercase__ : str = generator with self.progress_bar(total=a ): for i, t in enumerate(a ): # expand the latents if we are doing classifier free guidance lowercase__ : List[Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase__ : Dict = self.scheduler.scale_model_input(a , a ) # predict the noise residual lowercase__ : List[Any] = self.unet(a , a , encoder_hidden_states=a ).sample # perform classifier free guidance if do_classifier_free_guidance: lowercase__ , lowercase__ : List[str] = noise_pred.chunk(2 ) lowercase__ : Optional[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: lowercase__ : int = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) lowercase__ , lowercase__ : int = self.cond_fn( a , a , a , a , a , a , a , ) # compute the previous noisy sample x_t -> x_t-1 lowercase__ : Optional[Any] = self.scheduler.step(a , a , a , **a ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor lowercase__ : int = 1 / 0.18_215 * latents lowercase__ : List[Any] = self.vae.decode(a ).sample lowercase__ : Dict = (image / 2 + 0.5).clamp(0 , 1 ) lowercase__ : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowercase__ : Tuple = self.numpy_to_pil(a ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=a , nsfw_content_detected=a )
645
"""simple docstring""" def a_ ( _lowerCAmelCase : str ): '''simple docstring''' lowercase__ : Any = [0] * len(_lowerCAmelCase ) for i in range(1 , len(_lowerCAmelCase ) ): # use last results for better performance - dynamic programming lowercase__ : List[str] = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: lowercase__ : Dict = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 lowercase__ : Union[str, Any] = j return prefix_result def a_ ( _lowerCAmelCase : str ): '''simple docstring''' return max(prefix_function(_lowerCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod()
645
1
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _UpperCamelCase : Optional[int] = logging.get_logger(__name__) _UpperCamelCase : Dict = { "SenseTime/deformable-detr": "https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json", # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class UpperCAmelCase_ ( _a): lowerCamelCase__ : str = "deformable_detr" lowerCamelCase__ : List[Any] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , a=True , a=None , a=3 , a=3_0_0 , a=1_0_2_4 , a=6 , a=1_0_2_4 , a=8 , a=6 , a=1_0_2_4 , a=8 , a=0.0 , a=True , a="relu" , a=2_5_6 , a=0.1 , a=0.0 , a=0.0 , a=0.02 , a=1.0 , a=True , a=False , a="sine" , a="resnet50" , a=True , a=False , a=4 , a=4 , a=4 , a=False , a=3_0_0 , a=False , a=1 , a=5 , a=2 , a=1 , a=1 , a=5 , a=2 , a=0.1 , a=0.25 , a=False , **a , ) -> Any: if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) lowercase__ : List[Any] = CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(a , a ): lowercase__ : Union[str, Any] = backbone_config.get('model_type' ) lowercase__ : List[Any] = CONFIG_MAPPING[backbone_model_type] lowercase__ : Union[str, Any] = config_class.from_dict(a ) lowercase__ : List[Any] = use_timm_backbone lowercase__ : int = backbone_config lowercase__ : Optional[int] = num_channels lowercase__ : Optional[Any] = num_queries lowercase__ : List[Any] = max_position_embeddings lowercase__ : List[str] = d_model lowercase__ : List[str] = encoder_ffn_dim lowercase__ : List[str] = encoder_layers lowercase__ : List[Any] = encoder_attention_heads lowercase__ : str = decoder_ffn_dim lowercase__ : Optional[Any] = decoder_layers lowercase__ : List[Any] = decoder_attention_heads lowercase__ : Optional[Any] = dropout lowercase__ : int = attention_dropout lowercase__ : Union[str, Any] = activation_dropout lowercase__ : Tuple = activation_function lowercase__ : Optional[int] = init_std lowercase__ : List[str] = init_xavier_std lowercase__ : Tuple = encoder_layerdrop lowercase__ : List[str] = auxiliary_loss lowercase__ : Tuple = position_embedding_type lowercase__ : Tuple = backbone lowercase__ : List[Any] = use_pretrained_backbone lowercase__ : List[Any] = dilation # deformable attributes lowercase__ : Dict = num_feature_levels lowercase__ : Optional[Any] = encoder_n_points lowercase__ : Union[str, Any] = decoder_n_points lowercase__ : List[Any] = two_stage lowercase__ : str = two_stage_num_proposals lowercase__ : Optional[int] = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.' ) # Hungarian matcher lowercase__ : int = class_cost lowercase__ : List[Any] = bbox_cost lowercase__ : Optional[Any] = giou_cost # Loss coefficients lowercase__ : List[Any] = mask_loss_coefficient lowercase__ : List[Any] = dice_loss_coefficient lowercase__ : Tuple = bbox_loss_coefficient lowercase__ : int = giou_loss_coefficient lowercase__ : Any = eos_coefficient lowercase__ : str = focal_alpha lowercase__ : Any = disable_custom_kernels super().__init__(is_encoder_decoder=a , **a ) @property def _UpperCAmelCase ( self ) -> int: return self.encoder_attention_heads @property def _UpperCAmelCase ( self ) -> int: return self.d_model def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : Dict = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: lowercase__ : Optional[Any] = self.backbone_config.to_dict() lowercase__ : Optional[Any] = self.__class__.model_type return output
645
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class UpperCAmelCase_ ( unittest.TestCase): def __init__( self , a , a=7 , a=3 , a=1_8 , a=3_0 , a=4_0_0 , a=True , a=None , a=True , a=None , a=True , ) -> List[str]: lowercase__ : Tuple = size if size is not None else {'shortest_edge': 2_0} lowercase__ : Union[str, Any] = crop_size if crop_size is not None else {'height': 1_8, 'width': 1_8} lowercase__ : Optional[int] = parent lowercase__ : Optional[int] = batch_size lowercase__ : str = num_channels lowercase__ : Any = image_size lowercase__ : Optional[Any] = min_resolution lowercase__ : int = max_resolution lowercase__ : List[Any] = do_resize lowercase__ : List[str] = size lowercase__ : str = do_center_crop lowercase__ : List[Any] = crop_size lowercase__ : Union[str, Any] = do_flip_channel_order def _UpperCAmelCase ( self ) -> int: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class UpperCAmelCase_ ( _a , unittest.TestCase): lowerCamelCase__ : Optional[Any] = MobileViTImageProcessor if is_vision_available() else None def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : Tuple = MobileViTImageProcessingTester(self ) @property def _UpperCAmelCase ( self ) -> int: return self.image_processor_tester.prepare_image_processor_dict() def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a , 'do_resize' ) ) self.assertTrue(hasattr(a , 'size' ) ) self.assertTrue(hasattr(a , 'do_center_crop' ) ) self.assertTrue(hasattr(a , 'center_crop' ) ) self.assertTrue(hasattr(a , 'do_flip_channel_order' ) ) def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 2_0} ) self.assertEqual(image_processor.crop_size , {'height': 1_8, 'width': 1_8} ) lowercase__ : str = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {'shortest_edge': 4_2} ) self.assertEqual(image_processor.crop_size , {'height': 8_4, 'width': 8_4} ) def _UpperCAmelCase ( self ) -> Tuple: pass def _UpperCAmelCase ( self ) -> str: # Initialize image_processing lowercase__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a ) for image in image_inputs: self.assertIsInstance(a , Image.Image ) # Test not batched input lowercase__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowercase__ : List[Any] = image_processing(a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def _UpperCAmelCase ( self ) -> Tuple: # Initialize image_processing lowercase__ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , numpify=a ) for image in image_inputs: self.assertIsInstance(a , np.ndarray ) # Test not batched input lowercase__ : List[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowercase__ : Any = image_processing(a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def _UpperCAmelCase ( self ) -> Dict: # Initialize image_processing lowercase__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , torchify=a ) for image in image_inputs: self.assertIsInstance(a , torch.Tensor ) # Test not batched input lowercase__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowercase__ : Tuple = image_processing(a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
645
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) _UpperCamelCase : Tuple = { "google/canine-s": "https://huggingface.co/google/canine-s/resolve/main/config.json", # See all CANINE models at https://huggingface.co/models?filter=canine } class UpperCAmelCase_ ( _a): lowerCamelCase__ : Optional[int] = "canine" def __init__( self , a=7_6_8 , a=1_2 , a=1_2 , a=3_0_7_2 , a="gelu" , a=0.1 , a=0.1 , a=1_6_3_8_4 , a=1_6 , a=0.02 , a=1e-12 , a=0 , a=0XE_000 , a=0XE_001 , a=4 , a=4 , a=8 , a=1_6_3_8_4 , a=1_2_8 , **a , ) -> Optional[int]: super().__init__(pad_token_id=a , bos_token_id=a , eos_token_id=a , **a ) lowercase__ : str = max_position_embeddings lowercase__ : Optional[int] = hidden_size lowercase__ : Any = num_hidden_layers lowercase__ : Dict = num_attention_heads lowercase__ : Any = intermediate_size lowercase__ : Any = hidden_act lowercase__ : Optional[int] = hidden_dropout_prob lowercase__ : Optional[Any] = attention_probs_dropout_prob lowercase__ : Dict = initializer_range lowercase__ : List[str] = type_vocab_size lowercase__ : Union[str, Any] = layer_norm_eps # Character config: lowercase__ : Any = downsampling_rate lowercase__ : List[str] = upsampling_kernel_size lowercase__ : Optional[int] = num_hash_functions lowercase__ : Optional[Any] = num_hash_buckets lowercase__ : Optional[int] = local_transformer_stride
645
"""simple docstring""" import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class UpperCAmelCase_ ( unittest.TestCase): def __init__( self , a , a=1_3 , a=7 , a=True , a=True , a=True , a=True , a=9_9 , a=3_2 , a=5 , a=4 , a=3_7 , a="gelu" , a=0.1 , a=0.1 , a=5_1_2 , a=1_6 , a=2 , a=0.02 , a=4 , ) -> Dict: lowercase__ : Optional[Any] = parent lowercase__ : Dict = batch_size lowercase__ : List[Any] = seq_length lowercase__ : int = is_training lowercase__ : str = use_attention_mask lowercase__ : Dict = use_token_type_ids lowercase__ : Optional[int] = use_labels lowercase__ : Tuple = vocab_size lowercase__ : List[str] = hidden_size lowercase__ : Union[str, Any] = num_hidden_layers lowercase__ : int = num_attention_heads lowercase__ : Dict = intermediate_size lowercase__ : List[str] = hidden_act lowercase__ : Dict = hidden_dropout_prob lowercase__ : Tuple = attention_probs_dropout_prob lowercase__ : List[str] = max_position_embeddings lowercase__ : int = type_vocab_size lowercase__ : List[str] = type_sequence_label_size lowercase__ : Union[str, Any] = initializer_range lowercase__ : Optional[int] = num_choices def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ : str = None if self.use_attention_mask: lowercase__ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ : List[str] = None if self.use_token_type_ids: lowercase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__ : Any = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _UpperCAmelCase ( self ) -> Any: lowercase__ : Optional[int] = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ : Tuple = config_and_inputs lowercase__ : Union[str, Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class UpperCAmelCase_ ( _a , unittest.TestCase): lowerCamelCase__ : Tuple = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : Union[str, Any] = FlaxAlbertModelTester(self ) @slow def _UpperCAmelCase ( self ) -> str: for model_class_name in self.all_model_classes: lowercase__ : str = model_class_name.from_pretrained('albert-base-v2' ) lowercase__ : Tuple = model(np.ones((1, 1) ) ) self.assertIsNotNone(a ) @require_flax class UpperCAmelCase_ ( unittest.TestCase): @slow def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : str = FlaxAlbertModel.from_pretrained('albert-base-v2' ) lowercase__ : Optional[int] = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) lowercase__ : Optional[Any] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) lowercase__ : Any = model(a , attention_mask=a )[0] lowercase__ : Tuple = (1, 1_1, 7_6_8) self.assertEqual(output.shape , a ) lowercase__ : Optional[Any] = np.array( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , a , atol=1e-4 ) )
645
1
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer _UpperCamelCase : int = logging.get_logger(__name__) _UpperCamelCase : Optional[int] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} _UpperCamelCase : str = { "vocab_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json" ), }, } _UpperCamelCase : Optional[int] = { "yjernite/retribert-base-uncased": 5_12, } _UpperCamelCase : Any = { "yjernite/retribert-base-uncased": {"do_lower_case": True}, } class UpperCAmelCase_ ( _a): lowerCamelCase__ : Any = VOCAB_FILES_NAMES lowerCamelCase__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ : List[Any] = PRETRAINED_INIT_CONFIGURATION lowerCamelCase__ : Any = RetriBertTokenizer lowerCamelCase__ : Optional[Any] = ["input_ids", "attention_mask"] def __init__( self , a=None , a=None , a=True , a="[UNK]" , a="[SEP]" , a="[PAD]" , a="[CLS]" , a="[MASK]" , a=True , a=None , **a , ) -> Union[str, Any]: super().__init__( a , tokenizer_file=a , do_lower_case=a , unk_token=a , sep_token=a , pad_token=a , cls_token=a , mask_token=a , tokenize_chinese_chars=a , strip_accents=a , **a , ) lowercase__ : str = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , a ) != do_lower_case or normalizer_state.get('strip_accents' , a ) != strip_accents or normalizer_state.get('handle_chinese_chars' , a ) != tokenize_chinese_chars ): lowercase__ : str = getattr(a , normalizer_state.pop('type' ) ) lowercase__ : List[Any] = do_lower_case lowercase__ : str = strip_accents lowercase__ : int = tokenize_chinese_chars lowercase__ : Optional[int] = normalizer_class(**a ) lowercase__ : Dict = do_lower_case def _UpperCAmelCase ( self , a , a=None ) -> Optional[Any]: lowercase__ : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _UpperCAmelCase ( self , a , a = None ) -> List[int]: lowercase__ : int = [self.sep_token_id] lowercase__ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _UpperCAmelCase ( self , a , a = None ) -> Tuple[str]: lowercase__ : List[str] = self._tokenizer.model.save(a , name=a ) return tuple(a )
645
"""simple docstring""" from collections.abc import Sequence def a_ ( _lowerCAmelCase : Sequence[float] , _lowerCAmelCase : float ): '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(_lowerCAmelCase ) ) def a_ ( _lowerCAmelCase : Sequence[float] , _lowerCAmelCase : float ): '''simple docstring''' lowercase__ : int = 0.0 for coeff in reversed(_lowerCAmelCase ): lowercase__ : List[Any] = result * x + coeff return result if __name__ == "__main__": _UpperCamelCase : int = (0.0, 0.0, 5.0, 9.3, 7.0) _UpperCamelCase : Dict = 1_0.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
645
1
"""simple docstring""" from __future__ import annotations from random import choice def a_ ( _lowerCAmelCase : List[Any] ): '''simple docstring''' return choice(_lowerCAmelCase ) def a_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int ): '''simple docstring''' lowercase__ : Optional[Any] = random_pivot(_lowerCAmelCase ) # partition based on pivot # linear time lowercase__ : Optional[int] = [e for e in lst if e < pivot] lowercase__ : str = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(_lowerCAmelCase ) == k - 1: return pivot # pivot is in elements bigger than k elif len(_lowerCAmelCase ) < k - 1: return kth_number(_lowerCAmelCase , k - len(_lowerCAmelCase ) - 1 ) # pivot is in elements smaller than k else: return kth_number(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
645
"""simple docstring""" import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path _UpperCamelCase : Any = [ {"dataset": "wikipedia", "config_name": "20220301.de"}, {"dataset": "wikipedia", "config_name": "20220301.en"}, {"dataset": "wikipedia", "config_name": "20220301.fr"}, {"dataset": "wikipedia", "config_name": "20220301.frr"}, {"dataset": "wikipedia", "config_name": "20220301.it"}, {"dataset": "wikipedia", "config_name": "20220301.simple"}, {"dataset": "snli", "config_name": "plain_text"}, {"dataset": "eli5", "config_name": "LFQA_reddit"}, {"dataset": "wiki40b", "config_name": "en"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.compressed"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.no_index"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.multiset.no_index"}, {"dataset": "natural_questions", "config_name": "default"}, ] def a_ ( _lowerCAmelCase : Optional[Any]=True ): '''simple docstring''' if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=_a)) class UpperCAmelCase_ ( _a): lowerCamelCase__ : str = None lowerCamelCase__ : Optional[Any] = None def _UpperCAmelCase ( self , a , a ) -> List[Any]: with TemporaryDirectory() as tmp_dir: lowercase__ : List[str] = dataset_module_factory(a , cache_dir=a ) lowercase__ : List[Any] = import_main_class(dataset_module.module_path , dataset=a ) lowercase__ : DatasetBuilder = builder_cls( cache_dir=a , config_name=a , hash=dataset_module.hash , ) lowercase__ : Union[str, Any] = '/'.join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=a ).replace(os.sep , '/' ), config.DATASET_INFO_FILENAME, ] ) lowercase__ : Union[str, Any] = cached_path(a , cache_dir=a ) self.assertTrue(os.path.exists(a ) ) @pytest.mark.integration def a_ ( _lowerCAmelCase : str ): '''simple docstring''' lowercase__ : Union[str, Any] = tmp_path_factory.mktemp('test_hf_gcp' ) / 'test_wikipedia_simple' lowercase__ : int = dataset_module_factory('wikipedia' , cache_dir=_lowerCAmelCase ) lowercase__ : Optional[int] = import_main_class(dataset_module.module_path ) lowercase__ : DatasetBuilder = builder_cls( cache_dir=_lowerCAmelCase , config_name='20220301.frr' , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam lowercase__ : Optional[int] = None builder_instance.download_and_prepare() lowercase__ : Optional[int] = builder_instance.as_dataset() assert ds @pytest.mark.integration def a_ ( _lowerCAmelCase : Optional[Any] ): '''simple docstring''' lowercase__ : Optional[int] = dataset_module_factory('wikipedia' , cache_dir=_lowerCAmelCase ) lowercase__ : List[str] = import_main_class(dataset_module.module_path , dataset=_lowerCAmelCase ) lowercase__ : DatasetBuilder = builder_cls( cache_dir=_lowerCAmelCase , config_name='20220301.frr' , hash=dataset_module.hash , ) lowercase__ : Union[str, Any] = builder_instance.as_streaming_dataset() assert ds assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert "train" in ds assert isinstance(ds['train'] , _lowerCAmelCase ) assert next(iter(ds['train'] ) )
645
1
"""simple docstring""" import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class UpperCAmelCase_ : lowerCamelCase__ : List[Any] = None def _UpperCAmelCase ( self ) -> int: lowercase__ : Any = self.feature_extraction_class(**self.feat_extract_dict ) lowercase__ : Union[str, Any] = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , a ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase__ : Any = os.path.join(a , 'feat_extract.json' ) feat_extract_first.to_json_file(a ) lowercase__ : List[str] = self.feature_extraction_class.from_json_file(a ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def _UpperCAmelCase ( self ) -> int: lowercase__ : Dict = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase__ : List[str] = feat_extract_first.save_pretrained(a )[0] check_json_file_has_correct_format(a ) lowercase__ : Tuple = self.feature_extraction_class.from_pretrained(a ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def _UpperCAmelCase ( self ) -> Any: lowercase__ : Union[str, Any] = self.feature_extraction_class() self.assertIsNotNone(a )
645
"""simple docstring""" import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def a_ ( _lowerCAmelCase : dict ): '''simple docstring''' return (data["data"], data["target"]) def a_ ( _lowerCAmelCase : np.ndarray , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : np.ndarray ): '''simple docstring''' lowercase__ : Any = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(_lowerCAmelCase , _lowerCAmelCase ) # Predict target for test data lowercase__ : str = xgb.predict(_lowerCAmelCase ) lowercase__ : Union[str, Any] = predictions.reshape(len(_lowerCAmelCase ) , 1 ) return predictions def a_ ( ): '''simple docstring''' lowercase__ : Optional[Any] = fetch_california_housing() lowercase__ , lowercase__ : str = data_handling(_lowerCAmelCase ) lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = train_test_split( _lowerCAmelCase , _lowerCAmelCase , test_size=0.2_5 , random_state=1 ) lowercase__ : Any = xgboost(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Error printing print(f"""Mean Absolute Error : {mean_absolute_error(_lowerCAmelCase , _lowerCAmelCase )}""" ) print(f"""Mean Square Error : {mean_squared_error(_lowerCAmelCase , _lowerCAmelCase )}""" ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
645
1
"""simple docstring""" import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def a_ ( _lowerCAmelCase : Tuple ): '''simple docstring''' lowercase__ : Union[str, Any] = int(_lowerCAmelCase ) lowercase__ , lowercase__ , lowercase__ : Tuple = t // 3600, (t // 60) % 60, t % 60 return f"""{h}:{m:02d}:{s:02d}""" if h != 0 else f"""{m:02d}:{s:02d}""" def a_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any]=300 ): '''simple docstring''' return f""" <div> {prefix} <progress value='{value}' max='{total}' style='width:{width}px; height:20px; vertical-align: middle;'></progress> {label} </div> """ def a_ ( _lowerCAmelCase : int ): '''simple docstring''' lowercase__ : List[Any] = '<table border="1" class="dataframe">\n' html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += f""" <th>{i}</th>\n""" html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: lowercase__ : Dict = f"""{elt:.6f}""" if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else str(_lowerCAmelCase ) html_code += f""" <td>{elt}</td>\n""" html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class UpperCAmelCase_ : lowerCamelCase__ : Tuple = 5 lowerCamelCase__ : Optional[Any] = 0.2 def __init__( self , a , a = None , a = True , a = None , a = 3_0_0 , ) -> Union[str, Any]: lowercase__ : Optional[int] = total lowercase__ : Union[str, Any] = '' if prefix is None else prefix lowercase__ : Optional[int] = leave lowercase__ : Union[str, Any] = parent lowercase__ : int = width lowercase__ : Optional[Any] = None lowercase__ : Dict = None lowercase__ : List[Any] = None def _UpperCAmelCase ( self , a , a = False , a = None ) -> Optional[int]: lowercase__ : List[Any] = value if comment is not None: lowercase__ : Optional[int] = comment if self.last_value is None: lowercase__ : Dict = time.time() lowercase__ : Optional[Any] = value lowercase__ : Any = None lowercase__ : Union[str, Any] = self.warmup lowercase__ : List[str] = 1 self.update_bar(a ) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ): if self.first_calls > 0: self.first_calls -= 1 lowercase__ : Union[str, Any] = time.time() lowercase__ : Any = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: lowercase__ : Optional[int] = self.elapsed_time / (value - self.start_value) else: lowercase__ : Tuple = None if value >= self.total: lowercase__ : str = self.total lowercase__ : int = None if not self.leave: self.close() elif self.average_time_per_item is not None: lowercase__ : Tuple = self.average_time_per_item * (self.total - value) self.update_bar(a ) lowercase__ : Any = value lowercase__ : str = current_time if self.average_time_per_item is None: lowercase__ : List[str] = 1 else: lowercase__ : Optional[Any] = max(int(self.update_every / self.average_time_per_item ) , 1 ) def _UpperCAmelCase ( self , a , a=None ) -> Optional[int]: lowercase__ : Optional[Any] = ' ' * (len(str(self.total ) ) - len(str(a ) )) + str(a ) if self.elapsed_time is None: lowercase__ : Optional[int] = f"""[{spaced_value}/{self.total} : < :""" elif self.predicted_remaining is None: lowercase__ : Optional[Any] = f"""[{spaced_value}/{self.total} {format_time(self.elapsed_time )}""" else: lowercase__ : Optional[int] = ( f"""[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <""" f""" {format_time(self.predicted_remaining )}""" ) self.label += f""", {1/self.average_time_per_item:.2f} it/s""" self.label += "]" if self.comment is None or len(self.comment ) == 0 else f""", {self.comment}]""" self.display() def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : List[str] = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: lowercase__ : Union[str, Any] = disp.display(disp.HTML(self.html_code ) , display_id=a ) else: self.output.update(disp.HTML(self.html_code ) ) def _UpperCAmelCase ( self ) -> Union[str, Any]: if self.parent is None and self.output is not None: self.output.update(disp.HTML('' ) ) class UpperCAmelCase_ ( _a): def __init__( self , a , a=None ) -> Tuple: super().__init__(a ) lowercase__ : Union[str, Any] = None if column_names is None else [column_names] lowercase__ : Optional[int] = None def _UpperCAmelCase ( self ) -> int: lowercase__ : Any = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table ) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: lowercase__ : str = disp.display(disp.HTML(self.html_code ) , display_id=a ) else: self.output.update(disp.HTML(self.html_code ) ) def _UpperCAmelCase ( self , a ) -> str: if self.inner_table is None: lowercase__ : Optional[int] = [list(values.keys() ), list(values.values() )] else: lowercase__ : List[str] = self.inner_table[0] if len(self.inner_table ) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(a ) lowercase__ : List[str] = columns self.inner_table.append([values[c] for c in columns] ) def _UpperCAmelCase ( self , a , a=None , a=3_0_0 ) -> Union[str, Any]: lowercase__ : Any = NotebookProgressBar(a , prefix=a , parent=self , width=a ) return self.child_bar def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : str = None self.display() class UpperCAmelCase_ ( _a): def __init__( self ) -> Any: lowercase__ : Tuple = None lowercase__ : Any = None lowercase__ : List[Any] = False def _UpperCAmelCase ( self , a , a , a , **a ) -> List[str]: lowercase__ : Tuple = 'Epoch' if args.evaluation_strategy == IntervalStrategy.EPOCH else 'Step' lowercase__ : int = 0 lowercase__ : Tuple = 0 lowercase__ : Tuple = [self.first_column] + ['Training Loss'] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append('Validation Loss' ) lowercase__ : Optional[int] = NotebookTrainingTracker(state.max_steps , a ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Optional[int]: lowercase__ : int = int(state.epoch ) if int(state.epoch ) == state.epoch else f"""{state.epoch:.2f}""" self.training_tracker.update( state.global_step + 1 , comment=f"""Epoch {epoch}/{state.num_train_epochs}""" , force_update=self._force_next_update , ) lowercase__ : int = False def _UpperCAmelCase ( self , a , a , a , a=None , **a ) -> Optional[Any]: if not has_length(a ): return if self.prediction_bar is None: if self.training_tracker is not None: lowercase__ : List[Any] = self.training_tracker.add_child(len(a ) ) else: lowercase__ : Any = NotebookProgressBar(len(a ) ) self.prediction_bar.update(1 ) else: self.prediction_bar.update(self.prediction_bar.value + 1 ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Tuple: if self.prediction_bar is not None: self.prediction_bar.close() lowercase__ : str = None def _UpperCAmelCase ( self , a , a , a , a=None , **a ) -> List[Any]: # Only for when there is no evaluation if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: lowercase__ : Any = {'Training Loss': logs['loss']} # First column is necessarily Step sine we're not in epoch eval strategy lowercase__ : Optional[Any] = state.global_step self.training_tracker.write_line(a ) def _UpperCAmelCase ( self , a , a , a , a=None , **a ) -> List[str]: if self.training_tracker is not None: lowercase__ : List[Any] = {'Training Loss': 'No log', 'Validation Loss': 'No log'} for log in reversed(state.log_history ): if "loss" in log: lowercase__ : str = log['loss'] break if self.first_column == "Epoch": lowercase__ : Union[str, Any] = int(state.epoch ) else: lowercase__ : str = state.global_step lowercase__ : Optional[int] = 'eval' for k in metrics: if k.endswith('_loss' ): lowercase__ : Dict = re.sub(R'\_loss$' , '' , a ) lowercase__ : Dict = metrics.pop('total_flos' , a ) lowercase__ : str = metrics.pop('epoch' , a ) lowercase__ : Any = metrics.pop(f"""{metric_key_prefix}_runtime""" , a ) lowercase__ : Optional[int] = metrics.pop(f"""{metric_key_prefix}_samples_per_second""" , a ) lowercase__ : Tuple = metrics.pop(f"""{metric_key_prefix}_steps_per_second""" , a ) lowercase__ : Optional[Any] = metrics.pop(f"""{metric_key_prefix}_jit_compilation_time""" , a ) for k, v in metrics.items(): if k == f"""{metric_key_prefix}_loss""": lowercase__ : List[Any] = v else: lowercase__ : Any = k.split('_' ) lowercase__ : str = ' '.join([part.capitalize() for part in splits[1:]] ) lowercase__ : Optional[int] = v self.training_tracker.write_line(a ) self.training_tracker.remove_child() lowercase__ : Optional[int] = None # Evaluation takes a long time so we should force the next update. lowercase__ : List[str] = True def _UpperCAmelCase ( self , a , a , a , **a ) -> str: self.training_tracker.update( state.global_step , comment=f"""Epoch {int(state.epoch )}/{state.num_train_epochs}""" , force_update=a ) lowercase__ : Optional[Any] = None
645
"""simple docstring""" import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class UpperCAmelCase_ : def __init__( self , a , a=1_3 , a=1_0 , a=3 , a=2 , a=2 , a=2 , a=True , a=True , a=3_2 , a=5 , a=4 , a=3_7 , a="gelu" , a=0.1 , a=0.1 , a=1_0 , a=0.02 , a=0.9 , a=None , ) -> Optional[Any]: lowercase__ : str = parent lowercase__ : int = batch_size lowercase__ : Union[str, Any] = image_size lowercase__ : Optional[Any] = num_channels lowercase__ : Dict = patch_size lowercase__ : Tuple = tubelet_size lowercase__ : Optional[int] = num_frames lowercase__ : Optional[int] = is_training lowercase__ : int = use_labels lowercase__ : Optional[int] = hidden_size lowercase__ : Union[str, Any] = num_hidden_layers lowercase__ : Optional[int] = num_attention_heads lowercase__ : Any = intermediate_size lowercase__ : str = hidden_act lowercase__ : List[Any] = hidden_dropout_prob lowercase__ : str = attention_probs_dropout_prob lowercase__ : Union[str, Any] = type_sequence_label_size lowercase__ : List[Any] = initializer_range lowercase__ : str = mask_ratio lowercase__ : Optional[Any] = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame lowercase__ : Optional[Any] = (image_size // patch_size) ** 2 lowercase__ : str = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos lowercase__ : str = int(mask_ratio * self.seq_length ) def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : int = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) lowercase__ : int = None if self.use_labels: lowercase__ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ : Dict = self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self ) -> Tuple: return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a , initializer_range=self.initializer_range , ) def _UpperCAmelCase ( self , a , a , a ) -> Optional[int]: lowercase__ : Dict = VideoMAEModel(config=a ) model.to(a ) model.eval() lowercase__ : Tuple = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self , a , a , a ) -> Union[str, Any]: lowercase__ : str = VideoMAEForPreTraining(a ) model.to(a ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowercase__ : Any = torch.ones((self.num_masks,) ) lowercase__ : str = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) lowercase__ : Optional[int] = mask.expand(self.batch_size , -1 ).bool() lowercase__ : str = model(a , a ) # model only returns predictions for masked patches lowercase__ : str = mask.sum().item() lowercase__ : int = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def _UpperCAmelCase ( self ) -> str: lowercase__ : Dict = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = config_and_inputs lowercase__ : List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _a , _a , unittest.TestCase): lowerCamelCase__ : Tuple = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) lowerCamelCase__ : Optional[int] = ( {"feature-extraction": VideoMAEModel, "video-classification": VideoMAEForVideoClassification} if is_torch_available() else {} ) lowerCamelCase__ : Any = False lowerCamelCase__ : Any = False lowerCamelCase__ : Union[str, Any] = False lowerCamelCase__ : str = False def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Optional[Any] = VideoMAEModelTester(self ) lowercase__ : Optional[Any] = ConfigTester(self , config_class=a , has_text_modality=a , hidden_size=3_7 ) def _UpperCAmelCase ( self , a , a , a=False ) -> Optional[int]: lowercase__ : Union[str, Any] = copy.deepcopy(a ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowercase__ : Optional[Any] = torch.ones((self.model_tester.num_masks,) ) lowercase__ : Any = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) lowercase__ : Any = mask.expand(self.model_tester.batch_size , -1 ).bool() lowercase__ : Union[str, Any] = bool_masked_pos.to(a ) if return_labels: if model_class in [ *get_values(a ), ]: lowercase__ : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a ) return inputs_dict def _UpperCAmelCase ( self ) -> Tuple: self.config_tester.run_common_tests() @unittest.skip(reason='VideoMAE does not use inputs_embeds' ) def _UpperCAmelCase ( self ) -> Dict: pass def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : int = model_class(a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase__ : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a , nn.Linear ) ) def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[str] = model_class(a ) lowercase__ : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Optional[Any] = [*signature.parameters.keys()] lowercase__ : int = ['pixel_values'] self.assertListEqual(arg_names[:1] , a ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*a ) @slow def _UpperCAmelCase ( self ) -> str: for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : List[Any] = VideoMAEModel.from_pretrained(a ) self.assertIsNotNone(a ) def _UpperCAmelCase ( self ) -> Optional[Any]: if not self.has_attentions: pass else: lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : str = True for model_class in self.all_model_classes: lowercase__ : Union[str, Any] = self.model_tester.seq_length - self.model_tester.num_masks lowercase__ : Any = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) lowercase__ : Optional[Any] = True lowercase__ : int = False lowercase__ : Any = True lowercase__ : List[str] = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : Optional[int] = model(**self._prepare_for_class(a , a ) ) lowercase__ : Dict = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase__ : str = True lowercase__ : List[str] = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : List[Any] = model(**self._prepare_for_class(a , a ) ) lowercase__ : Optional[Any] = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowercase__ : List[str] = len(a ) # Check attention is always last and order is fine lowercase__ : Optional[int] = True lowercase__ : List[str] = True lowercase__ : int = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : List[str] = model(**self._prepare_for_class(a , a ) ) self.assertEqual(out_len + 1 , len(a ) ) lowercase__ : int = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def _UpperCAmelCase ( self ) -> Optional[int]: def check_hidden_states_output(a , a , a ): lowercase__ : Optional[int] = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : Optional[Any] = model(**self._prepare_for_class(a , a ) ) lowercase__ : Optional[int] = outputs.hidden_states lowercase__ : List[Any] = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(a ) , a ) lowercase__ : Optional[Any] = self.model_tester.seq_length - self.model_tester.num_masks lowercase__ : Union[str, Any] = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowercase__ , lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Tuple = True check_hidden_states_output(a , a , a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : Union[str, Any] = True check_hidden_states_output(a , a , a ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _UpperCAmelCase ( self ) -> List[Any]: pass def a_ ( ): '''simple docstring''' lowercase__ : int = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename='eating_spaghetti.npy' , repo_type='dataset' ) lowercase__ : str = np.load(_lowerCAmelCase ) return list(_lowerCAmelCase ) @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase): @cached_property def _UpperCAmelCase ( self ) -> Optional[Any]: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def _UpperCAmelCase ( self ) -> int: lowercase__ : Dict = VideoMAEForVideoClassification.from_pretrained('MCG-NJU/videomae-base-finetuned-kinetics' ).to( a ) lowercase__ : str = self.default_image_processor lowercase__ : List[str] = prepare_video() lowercase__ : int = image_processor(a , return_tensors='pt' ).to(a ) # forward pass with torch.no_grad(): lowercase__ : Union[str, Any] = model(**a ) # verify the logits lowercase__ : str = torch.Size((1, 4_0_0) ) self.assertEqual(outputs.logits.shape , a ) lowercase__ : List[Any] = torch.tensor([0.3_669, -0.0_688, -0.2_421] ).to(a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a , atol=1e-4 ) ) @slow def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Optional[int] = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short' ).to(a ) lowercase__ : Optional[Any] = self.default_image_processor lowercase__ : List[str] = prepare_video() lowercase__ : str = image_processor(a , return_tensors='pt' ).to(a ) # add boolean mask, indicating which patches to mask lowercase__ : Union[str, Any] = hf_hub_download(repo_id='hf-internal-testing/bool-masked-pos' , filename='bool_masked_pos.pt' ) lowercase__ : str = torch.load(a ) # forward pass with torch.no_grad(): lowercase__ : List[Any] = model(**a ) # verify the logits lowercase__ : Dict = torch.Size([1, 1_4_0_8, 1_5_3_6] ) lowercase__ : List[str] = torch.tensor( [[0.7_994, 0.9_612, 0.8_508], [0.7_401, 0.8_958, 0.8_302], [0.5_862, 0.7_468, 0.7_325]] , device=a ) self.assertEqual(outputs.logits.shape , a ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , a , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) lowercase__ : List[Any] = torch.tensor([0.5_142] , device=a ) self.assertTrue(torch.allclose(outputs.loss , a , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) lowercase__ : Tuple = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short' , norm_pix_loss=a ).to( a ) with torch.no_grad(): lowercase__ : Any = model(**a ) lowercase__ : List[Any] = torch.tensor(torch.tensor([0.6_469] ) , device=a ) self.assertTrue(torch.allclose(outputs.loss , a , atol=1e-4 ) )
645
1
"""simple docstring""" def a_ ( _lowerCAmelCase : list ): '''simple docstring''' if len(_lowerCAmelCase ) <= 1: return lst lowercase__ : Dict = 1 while i < len(_lowerCAmelCase ): if lst[i - 1] <= lst[i]: i += 1 else: lowercase__ , lowercase__ : Optional[int] = lst[i], lst[i - 1] i -= 1 if i == 0: lowercase__ : int = 1 return lst if __name__ == "__main__": _UpperCamelCase : Union[str, Any] = input("Enter numbers separated by a comma:\n").strip() _UpperCamelCase : List[str] = [int(item) for item in user_input.split(",")] print(gnome_sort(unsorted))
645
"""simple docstring""" import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() _UpperCamelCase : Dict = logging.get_logger(__name__) _UpperCamelCase : List[Any] = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "encoder.layer_norm_for_extract": "layer_norm_for_extract", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "label_embs_concat": "label_embeddings_concat", "mask_emb": "masked_spec_embed", "spk_proj": "speaker_proj", } _UpperCamelCase : List[str] = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "label_embeddings_concat", "speaker_proj", "layer_norm_for_extract", ] def a_ ( _lowerCAmelCase : Any , _lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple ): '''simple docstring''' for attribute in key.split('.' ): lowercase__ : Dict = getattr(_lowerCAmelCase , _lowerCAmelCase ) if weight_type is not None: lowercase__ : Optional[int] = getattr(_lowerCAmelCase , _lowerCAmelCase ).shape else: lowercase__ : Optional[int] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowercase__ : Optional[Any] = value elif weight_type == "weight_g": lowercase__ : Dict = value elif weight_type == "weight_v": lowercase__ : List[str] = value elif weight_type == "bias": lowercase__ : Optional[Any] = value else: lowercase__ : List[str] = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def a_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] ): '''simple docstring''' lowercase__ : Tuple = [] lowercase__ : List[str] = fairseq_model.state_dict() lowercase__ : Union[str, Any] = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): lowercase__ : Optional[int] = False if "conv_layers" in name: load_conv_layer( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , hf_model.config.feat_extract_norm == 'group' , ) lowercase__ : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): lowercase__ : List[Any] = 'unispeech_sat.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('.' )[:-1] ) != key): # special case since naming is very similar continue lowercase__ : int = True if "*" in mapped_key: lowercase__ : Optional[int] = name.split(_lowerCAmelCase )[0].split('.' )[-2] lowercase__ : List[str] = mapped_key.replace('*' , _lowerCAmelCase ) if "weight_g" in name: lowercase__ : List[Any] = 'weight_g' elif "weight_v" in name: lowercase__ : int = 'weight_v' elif "bias" in name: lowercase__ : Dict = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj lowercase__ : Union[str, Any] = 'weight' else: lowercase__ : int = None set_recursively(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) continue if not is_used: unused_weights.append(_lowerCAmelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def a_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : Dict ): '''simple docstring''' lowercase__ : int = full_name.split('conv_layers.' )[-1] lowercase__ : int = name.split('.' ) lowercase__ : int = int(items[0] ) lowercase__ : Dict = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowercase__ : Union[str, Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowercase__ : Optional[int] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) lowercase__ : List[Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) lowercase__ : int = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_lowerCAmelCase ) @torch.no_grad() def a_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : str=None , _lowerCAmelCase : Tuple=True ): '''simple docstring''' if config_path is not None: lowercase__ : Any = UniSpeechSatConfig.from_pretrained(_lowerCAmelCase ) else: lowercase__ : Any = UniSpeechSatConfig() lowercase__ : Union[str, Any] = '' if is_finetuned: lowercase__ : Optional[Any] = UniSpeechSatForCTC(_lowerCAmelCase ) else: lowercase__ : List[Any] = UniSpeechSatForPreTraining(_lowerCAmelCase ) lowercase__ , lowercase__ , lowercase__ : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) lowercase__ : Union[str, Any] = model[0].eval() recursively_load_weights(_lowerCAmelCase , _lowerCAmelCase ) hf_wavavec.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": _UpperCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _UpperCamelCase : str = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
645
1
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase_ ( unittest.TestCase): def __init__( self , a , a=7 , a=3 , a=1_8 , a=3_0 , a=4_0_0 , a=True , a=None , a=True , ) -> Optional[Any]: lowercase__ : str = size if size is not None else {'height': 1_8, 'width': 1_8} lowercase__ : int = parent lowercase__ : List[Any] = batch_size lowercase__ : Optional[int] = num_channels lowercase__ : Union[str, Any] = image_size lowercase__ : List[Any] = min_resolution lowercase__ : Any = max_resolution lowercase__ : List[Any] = do_resize lowercase__ : List[str] = size lowercase__ : Union[str, Any] = apply_ocr def _UpperCAmelCase ( self ) -> Any: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class UpperCAmelCase_ ( _a , unittest.TestCase): lowerCamelCase__ : Union[str, Any] = LayoutLMvaImageProcessor if is_pytesseract_available() else None def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Dict = LayoutLMvaImageProcessingTester(self ) @property def _UpperCAmelCase ( self ) -> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def _UpperCAmelCase ( self ) -> int: lowercase__ : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a , 'do_resize' ) ) self.assertTrue(hasattr(a , 'size' ) ) self.assertTrue(hasattr(a , 'apply_ocr' ) ) def _UpperCAmelCase ( self ) -> Any: lowercase__ : Dict = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 1_8, 'width': 1_8} ) lowercase__ : str = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 ) self.assertEqual(image_processor.size , {'height': 4_2, 'width': 4_2} ) def _UpperCAmelCase ( self ) -> Dict: pass def _UpperCAmelCase ( self ) -> Union[str, Any]: # Initialize image_processing lowercase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=a ) for image in image_inputs: self.assertIsInstance(a , Image.Image ) # Test not batched input lowercase__ : Dict = image_processing(image_inputs[0] , return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , a ) self.assertIsInstance(encoding.boxes , a ) # Test batched lowercase__ : Optional[int] = image_processing(a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _UpperCAmelCase ( self ) -> str: # Initialize image_processing lowercase__ : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , numpify=a ) for image in image_inputs: self.assertIsInstance(a , np.ndarray ) # Test not batched input lowercase__ : Dict = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched lowercase__ : Optional[int] = image_processing(a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _UpperCAmelCase ( self ) -> Dict: # Initialize image_processing lowercase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , torchify=a ) for image in image_inputs: self.assertIsInstance(a , torch.Tensor ) # Test not batched input lowercase__ : List[str] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched lowercase__ : List[str] = image_processing(a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _UpperCAmelCase ( self ) -> List[str]: # with apply_OCR = True lowercase__ : List[str] = LayoutLMvaImageProcessor() from datasets import load_dataset lowercase__ : Optional[Any] = load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' ) lowercase__ : List[Any] = Image.open(ds[0]['file'] ).convert('RGB' ) lowercase__ : Dict = image_processing(a , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_2_4, 2_2_4) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 lowercase__ : str = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 lowercase__ : Any = [[[1_4_1, 5_7, 2_1_4, 6_9], [2_2_8, 5_8, 2_5_2, 6_9], [1_4_1, 7_5, 2_1_6, 8_8], [2_3_0, 7_9, 2_8_0, 8_8], [1_4_2, 2_6_0, 2_1_8, 2_7_3], [2_3_0, 2_6_1, 2_5_5, 2_7_3], [1_4_3, 2_7_9, 2_1_8, 2_9_0], [2_3_1, 2_8_2, 2_9_0, 2_9_1], [1_4_3, 3_4_2, 2_1_8, 3_5_4], [2_3_1, 3_4_5, 2_8_9, 3_5_5], [2_0_2, 3_6_2, 2_2_7, 3_7_3], [1_4_3, 3_7_9, 2_2_0, 3_9_2], [2_3_1, 3_8_2, 2_9_1, 3_9_4], [1_4_4, 7_1_4, 2_2_0, 7_2_6], [2_3_1, 7_1_5, 2_5_6, 7_2_6], [1_4_4, 7_3_2, 2_2_0, 7_4_5], [2_3_2, 7_3_6, 2_9_1, 7_4_7], [1_4_4, 7_6_9, 2_1_8, 7_8_2], [2_3_1, 7_7_0, 2_5_6, 7_8_2], [1_4_1, 7_8_8, 2_0_2, 8_0_1], [2_1_5, 7_9_1, 2_7_4, 8_0_4], [1_4_3, 8_2_6, 2_0_4, 8_3_8], [2_1_5, 8_2_6, 2_4_0, 8_3_8], [1_4_2, 8_4_4, 2_0_2, 8_5_7], [2_1_5, 8_4_7, 2_7_4, 8_5_9], [3_3_4, 5_7, 4_2_7, 6_9], [4_4_0, 5_7, 5_2_2, 6_9], [3_6_9, 7_5, 4_6_1, 8_8], [4_6_9, 7_5, 5_1_6, 8_8], [5_2_8, 7_6, 5_6_2, 8_8], [5_7_0, 7_6, 6_6_7, 8_8], [6_7_5, 7_5, 7_1_1, 8_7], [7_2_1, 7_9, 7_7_8, 8_8], [7_8_9, 7_5, 8_4_0, 8_8], [3_6_9, 9_7, 4_7_0, 1_0_7], [4_8_4, 9_4, 5_0_7, 1_0_6], [5_1_8, 9_4, 5_6_2, 1_0_7], [5_7_6, 9_4, 6_5_5, 1_1_0], [6_6_8, 9_4, 7_9_2, 1_0_9], [8_0_4, 9_5, 8_2_9, 1_0_7], [3_6_9, 1_1_3, 4_6_5, 1_2_5], [4_7_7, 1_1_6, 5_4_7, 1_2_5], [5_6_2, 1_1_3, 6_5_8, 1_2_5], [6_7_1, 1_1_6, 7_4_8, 1_2_5], [7_6_1, 1_1_3, 8_1_1, 1_2_5], [3_6_9, 1_3_1, 4_6_5, 1_4_3], [4_7_7, 1_3_3, 5_4_8, 1_4_3], [5_6_3, 1_3_0, 6_9_8, 1_4_5], [7_1_0, 1_3_0, 8_0_2, 1_4_6], [3_3_6, 1_7_1, 4_1_2, 1_8_3], [4_2_3, 1_7_1, 5_7_2, 1_8_3], [5_8_2, 1_7_0, 7_1_6, 1_8_4], [7_2_8, 1_7_1, 8_1_7, 1_8_7], [8_2_9, 1_7_1, 8_4_4, 1_8_6], [3_3_8, 1_9_7, 4_8_2, 2_1_2], [5_0_7, 1_9_6, 5_5_7, 2_0_9], [5_6_9, 1_9_6, 5_9_5, 2_0_8], [6_1_0, 1_9_6, 7_0_2, 2_0_9], [5_0_5, 2_1_4, 5_8_3, 2_2_6], [5_9_5, 2_1_4, 6_5_6, 2_2_7], [6_7_0, 2_1_5, 8_0_7, 2_2_7], [3_3_5, 2_5_9, 5_4_3, 2_7_4], [5_5_6, 2_5_9, 7_0_8, 2_7_2], [3_7_2, 2_7_9, 4_2_2, 2_9_1], [4_3_5, 2_7_9, 4_6_0, 2_9_1], [4_7_4, 2_7_9, 5_7_4, 2_9_2], [5_8_7, 2_7_8, 6_6_4, 2_9_1], [6_7_6, 2_7_8, 7_3_8, 2_9_1], [7_5_1, 2_7_9, 8_3_4, 2_9_1], [3_7_2, 2_9_8, 4_3_4, 3_1_0], [3_3_5, 3_4_1, 4_8_3, 3_5_4], [4_9_7, 3_4_1, 6_5_5, 3_5_4], [6_6_7, 3_4_1, 7_2_8, 3_5_4], [7_4_0, 3_4_1, 8_2_5, 3_5_4], [3_3_5, 3_6_0, 4_3_0, 3_7_2], [4_4_2, 3_6_0, 5_3_4, 3_7_2], [5_4_5, 3_5_9, 6_8_7, 3_7_2], [6_9_7, 3_6_0, 7_5_4, 3_7_2], [7_6_5, 3_6_0, 8_2_3, 3_7_3], [3_3_4, 3_7_8, 4_2_8, 3_9_1], [4_4_0, 3_7_8, 5_7_7, 3_9_4], [5_9_0, 3_7_8, 7_0_5, 3_9_1], [7_2_0, 3_7_8, 8_0_1, 3_9_1], [3_3_4, 3_9_7, 4_0_0, 4_0_9], [3_7_0, 4_1_6, 5_2_9, 4_2_9], [5_4_4, 4_1_6, 5_7_6, 4_3_2], [5_8_7, 4_1_6, 6_6_5, 4_2_8], [6_7_7, 4_1_6, 8_1_4, 4_2_9], [3_7_2, 4_3_5, 4_5_2, 4_5_0], [4_6_5, 4_3_4, 4_9_5, 4_4_7], [5_1_1, 4_3_4, 6_0_0, 4_4_7], [6_1_1, 4_3_6, 6_3_7, 4_4_7], [6_4_9, 4_3_6, 6_9_4, 4_5_1], [7_0_5, 4_3_8, 8_2_4, 4_4_7], [3_6_9, 4_5_3, 4_5_2, 4_6_6], [4_6_4, 4_5_4, 5_0_9, 4_6_6], [5_2_2, 4_5_3, 6_1_1, 4_6_9], [6_2_5, 4_5_3, 7_9_2, 4_6_9], [3_7_0, 4_7_2, 5_5_6, 4_8_8], [5_7_0, 4_7_2, 6_8_4, 4_8_7], [6_9_7, 4_7_2, 7_1_8, 4_8_5], [7_3_2, 4_7_2, 8_3_5, 4_8_8], [3_6_9, 4_9_0, 4_1_1, 5_0_3], [4_2_5, 4_9_0, 4_8_4, 5_0_3], [4_9_6, 4_9_0, 6_3_5, 5_0_6], [6_4_5, 4_9_0, 7_0_7, 5_0_3], [7_1_8, 4_9_1, 7_6_1, 5_0_3], [7_7_1, 4_9_0, 8_4_0, 5_0_3], [3_3_6, 5_1_0, 3_7_4, 5_2_1], [3_8_8, 5_1_0, 4_4_7, 5_2_2], [4_6_0, 5_1_0, 4_8_9, 5_2_1], [5_0_3, 5_1_0, 5_8_0, 5_2_2], [5_9_2, 5_0_9, 7_3_6, 5_2_5], [7_4_5, 5_0_9, 7_7_0, 5_2_2], [7_8_1, 5_0_9, 8_4_0, 5_2_2], [3_3_8, 5_2_8, 4_3_4, 5_4_1], [4_4_8, 5_2_8, 5_9_6, 5_4_1], [6_0_9, 5_2_7, 6_8_7, 5_4_0], [7_0_0, 5_2_8, 7_9_2, 5_4_1], [3_3_6, 5_4_6, 3_9_7, 5_5_9], [4_0_7, 5_4_6, 4_3_1, 5_5_9], [4_4_3, 5_4_6, 5_2_5, 5_6_0], [5_3_7, 5_4_6, 6_8_0, 5_6_2], [6_8_8, 5_4_6, 7_1_4, 5_5_9], [7_2_2, 5_4_6, 8_3_7, 5_6_2], [3_3_6, 5_6_5, 4_4_9, 5_8_1], [4_6_1, 5_6_5, 4_8_5, 5_7_7], [4_9_7, 5_6_5, 6_6_5, 5_8_1], [6_8_1, 5_6_5, 7_1_8, 5_7_7], [7_3_2, 5_6_5, 8_3_7, 5_8_0], [3_3_7, 5_8_4, 4_3_8, 5_9_7], [4_5_2, 5_8_3, 5_2_1, 5_9_6], [5_3_5, 5_8_4, 6_7_7, 5_9_9], [6_9_0, 5_8_3, 7_8_7, 5_9_6], [8_0_1, 5_8_3, 8_2_5, 5_9_6], [3_3_8, 6_0_2, 4_7_8, 6_1_5], [4_9_2, 6_0_2, 5_3_0, 6_1_4], [5_4_3, 6_0_2, 6_3_8, 6_1_5], [6_5_0, 6_0_2, 6_7_6, 6_1_4], [6_8_8, 6_0_2, 7_8_8, 6_1_5], [8_0_2, 6_0_2, 8_4_3, 6_1_4], [3_3_7, 6_2_1, 5_0_2, 6_3_3], [5_1_6, 6_2_1, 6_1_5, 6_3_7], [6_2_9, 6_2_1, 7_7_4, 6_3_6], [7_8_9, 6_2_1, 8_2_7, 6_3_3], [3_3_7, 6_3_9, 4_1_8, 6_5_2], [4_3_2, 6_4_0, 5_7_1, 6_5_3], [5_8_7, 6_3_9, 7_3_1, 6_5_5], [7_4_3, 6_3_9, 7_6_9, 6_5_2], [7_8_0, 6_3_9, 8_4_1, 6_5_2], [3_3_8, 6_5_8, 4_4_0, 6_7_3], [4_5_5, 6_5_8, 4_9_1, 6_7_0], [5_0_8, 6_5_8, 6_0_2, 6_7_1], [6_1_6, 6_5_8, 6_3_8, 6_7_0], [6_5_4, 6_5_8, 8_3_5, 6_7_4], [3_3_7, 6_7_7, 4_2_9, 6_8_9], [3_3_7, 7_1_4, 4_8_2, 7_2_6], [4_9_5, 7_1_4, 5_4_8, 7_2_6], [5_6_1, 7_1_4, 6_8_3, 7_2_6], [3_3_8, 7_7_0, 4_6_1, 7_8_2], [4_7_4, 7_6_9, 5_5_4, 7_8_5], [4_8_9, 7_8_8, 5_6_2, 8_0_3], [5_7_6, 7_8_8, 6_4_3, 8_0_1], [6_5_6, 7_8_7, 7_5_1, 8_0_4], [7_6_4, 7_8_8, 8_4_4, 8_0_1], [3_3_4, 8_2_5, 4_2_1, 8_3_8], [4_3_0, 8_2_4, 5_7_4, 8_3_8], [5_8_4, 8_2_4, 7_2_3, 8_4_1], [3_3_5, 8_4_4, 4_5_0, 8_5_7], [4_6_4, 8_4_3, 5_8_3, 8_6_0], [6_2_8, 8_6_2, 7_5_5, 8_7_5], [7_6_9, 8_6_1, 8_4_8, 8_7_8]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , a ) self.assertListEqual(encoding.boxes , a ) # with apply_OCR = False lowercase__ : List[str] = LayoutLMvaImageProcessor(apply_ocr=a ) lowercase__ : Dict = image_processing(a , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_2_4, 2_2_4) )
645
"""simple docstring""" import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class UpperCAmelCase_ : def __init__( self , a , a=1_3 , a=3_2 , a=2 , a=3 , a=1_6 , a=[1, 2, 1] , a=[2, 2, 4] , a=2 , a=2.0 , a=True , a=0.0 , a=0.0 , a=0.1 , a="gelu" , a=False , a=True , a=0.02 , a=1e-5 , a=True , a=None , a=True , a=1_0 , a=8 , a=["stage1", "stage2", "stage3"] , a=[1, 2, 3] , ) -> int: lowercase__ : int = parent lowercase__ : Union[str, Any] = batch_size lowercase__ : Dict = image_size lowercase__ : str = patch_size lowercase__ : Optional[Any] = num_channels lowercase__ : List[str] = embed_dim lowercase__ : Any = depths lowercase__ : Dict = num_heads lowercase__ : List[str] = window_size lowercase__ : int = mlp_ratio lowercase__ : Tuple = qkv_bias lowercase__ : Union[str, Any] = hidden_dropout_prob lowercase__ : str = attention_probs_dropout_prob lowercase__ : Tuple = drop_path_rate lowercase__ : List[str] = hidden_act lowercase__ : Optional[Any] = use_absolute_embeddings lowercase__ : Optional[Any] = patch_norm lowercase__ : Any = layer_norm_eps lowercase__ : List[Any] = initializer_range lowercase__ : List[str] = is_training lowercase__ : int = scope lowercase__ : Optional[int] = use_labels lowercase__ : List[Any] = type_sequence_label_size lowercase__ : List[str] = encoder_stride lowercase__ : Optional[Any] = out_features lowercase__ : Dict = out_indices def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : Optional[Any] = None if self.use_labels: lowercase__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ : Tuple = self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self ) -> Union[str, Any]: return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def _UpperCAmelCase ( self , a , a , a ) -> Dict: lowercase__ : Tuple = MaskFormerSwinModel(config=a ) model.to(a ) model.eval() lowercase__ : str = model(a ) lowercase__ : str = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowercase__ : Dict = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def _UpperCAmelCase ( self , a , a , a ) -> Optional[int]: lowercase__ : List[Any] = MaskFormerSwinBackbone(config=a ) model.to(a ) model.eval() lowercase__ : int = model(a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [1_3, 1_6, 1_6, 1_6] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [1_6, 3_2, 6_4] ) # verify ValueError with self.parent.assertRaises(a ): lowercase__ : Dict = ['stem'] lowercase__ : List[str] = MaskFormerSwinBackbone(config=a ) def _UpperCAmelCase ( self ) -> str: lowercase__ : int = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Tuple = config_and_inputs lowercase__ : Union[str, Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _a , _a , unittest.TestCase): lowerCamelCase__ : Optional[int] = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) lowerCamelCase__ : List[str] = {"feature-extraction": MaskFormerSwinModel} if is_torch_available() else {} lowerCamelCase__ : str = False lowerCamelCase__ : Dict = False lowerCamelCase__ : Any = False lowerCamelCase__ : Dict = False lowerCamelCase__ : int = False def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : str = MaskFormerSwinModelTester(self ) lowercase__ : Tuple = ConfigTester(self , config_class=a , embed_dim=3_7 ) @require_torch_multi_gpu @unittest.skip( reason=( '`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with' ' `nn.DataParallel`' ) ) def _UpperCAmelCase ( self ) -> Optional[int]: pass def _UpperCAmelCase ( self ) -> Tuple: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _UpperCAmelCase ( self ) -> str: return def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*a ) @unittest.skip('Swin does not use inputs_embeds' ) def _UpperCAmelCase ( self ) -> Tuple: pass @unittest.skip('Swin does not support feedforward chunking' ) def _UpperCAmelCase ( self ) -> Tuple: pass def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[str] = model_class(a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase__ : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a , nn.Linear ) ) def _UpperCAmelCase ( self ) -> str: lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Any = model_class(a ) lowercase__ : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Optional[Any] = [*signature.parameters.keys()] lowercase__ : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , a ) @unittest.skip(reason='MaskFormerSwin is only used as backbone and doesn\'t support output_attentions' ) def _UpperCAmelCase ( self ) -> List[Any]: pass @unittest.skip(reason='MaskFormerSwin is only used as an internal backbone' ) def _UpperCAmelCase ( self ) -> int: pass def _UpperCAmelCase ( self , a , a , a , a ) -> Tuple: lowercase__ : Dict = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : str = model(**self._prepare_for_class(a , a ) ) lowercase__ : List[Any] = outputs.hidden_states lowercase__ : str = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(a ) , a ) # Swin has a different seq_length lowercase__ : Dict = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase__ : Tuple = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ , lowercase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : List[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: lowercase__ : List[str] = True self.check_hidden_states_output(a , a , a , a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : List[str] = True self.check_hidden_states_output(a , a , a , a ) def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Union[str, Any] = 3 lowercase__ : str = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowercase__ : Tuple = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase__ : Optional[int] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowercase__ : List[str] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: lowercase__ : List[str] = True self.check_hidden_states_output(a , a , a , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : int = True self.check_hidden_states_output(a , a , a , (padded_height, padded_width) ) @unittest.skip(reason='MaskFormerSwin doesn\'t have pretrained checkpoints' ) def _UpperCAmelCase ( self ) -> Optional[int]: pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def _UpperCAmelCase ( self ) -> Any: pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def _UpperCAmelCase ( self ) -> Any: pass def _UpperCAmelCase ( self ) -> Any: lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(a ): lowercase__ : Union[str, Any] = 0 return t def check_equivalence(a , a , a , a={} ): with torch.no_grad(): lowercase__ : Optional[Any] = model(**a , return_dict=a , **a ) lowercase__ : Optional[int] = model(**a , return_dict=a , **a ).to_tuple() def recursive_check(a , a ): if isinstance(a , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(a , a ): recursive_check(a , a ) elif isinstance(a , a ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(a , a ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(a ) , set_nan_tensor_to_zero(a ) , atol=1e-5 ) , msg=( 'Tuple and dict output are not equal. Difference:' f""" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:""" f""" {torch.isnan(a ).any()} and `inf`: {torch.isinf(a )}. Dict has""" f""" `nan`: {torch.isnan(a ).any()} and `inf`: {torch.isinf(a )}.""" ) , ) recursive_check(a , a ) for model_class in self.all_model_classes: lowercase__ : Any = model_class(a ) model.to(a ) model.eval() lowercase__ : Tuple = self._prepare_for_class(a , a ) lowercase__ : Optional[Any] = self._prepare_for_class(a , a ) check_equivalence(a , a , a ) lowercase__ : Any = self._prepare_for_class(a , a , return_labels=a ) lowercase__ : List[Any] = self._prepare_for_class(a , a , return_labels=a ) check_equivalence(a , a , a ) lowercase__ : Any = self._prepare_for_class(a , a ) lowercase__ : int = self._prepare_for_class(a , a ) check_equivalence(a , a , a , {'output_hidden_states': True} ) lowercase__ : Dict = self._prepare_for_class(a , a , return_labels=a ) lowercase__ : Optional[int] = self._prepare_for_class(a , a , return_labels=a ) check_equivalence(a , a , a , {'output_hidden_states': True} ) @require_torch class UpperCAmelCase_ ( unittest.TestCase , _a): lowerCamelCase__ : Dict = (MaskFormerSwinBackbone,) if is_torch_available() else () lowerCamelCase__ : Optional[int] = MaskFormerSwinConfig def _UpperCAmelCase ( self ) -> Dict: lowercase__ : Optional[int] = MaskFormerSwinModelTester(self ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : int = inputs_dict['pixel_values'].shape[0] for backbone_class in self.all_model_classes: lowercase__ : Optional[Any] = backbone_class(a ) backbone.to(a ) backbone.eval() lowercase__ : Union[str, Any] = backbone(**a ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , a ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True lowercase__ : List[str] = backbone(**a , output_hidden_states=a ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) lowercase__ , lowercase__ , lowercase__ : int = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: lowercase__ : List[Any] = backbone(**a , output_attentions=a ) self.assertIsNotNone(outputs.attentions )
645
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor _UpperCamelCase : Optional[int] = logging.get_logger(__name__) class UpperCAmelCase_ ( _a): def __init__( self , *a , **a ) -> None: warnings.warn( 'The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use FlavaImageProcessor instead.' , a , ) super().__init__(*a , **a )
645
"""simple docstring""" import math def a_ ( _lowerCAmelCase : int = 100 ): '''simple docstring''' lowercase__ : Union[str, Any] = sum(i * i for i in range(1 , n + 1 ) ) lowercase__ : str = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f'''{solution() = }''')
645
1
"""simple docstring""" import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _UpperCamelCase : Any = 16 _UpperCamelCase : Tuple = 32 def a_ ( _lowerCAmelCase : Accelerator , _lowerCAmelCase : int = 16 ): '''simple docstring''' lowercase__ : List[str] = AutoTokenizer.from_pretrained('bert-base-cased' ) lowercase__ : int = load_dataset('glue' , 'mrpc' ) def tokenize_function(_lowerCAmelCase : List[Any] ): # max_length=None => use the model max length (it's actually the default) lowercase__ : List[Any] = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase__ : List[Any] = datasets.map( _lowerCAmelCase , batched=_lowerCAmelCase , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ : Dict = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(_lowerCAmelCase : List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase__ : Optional[int] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase__ : Dict = 16 elif accelerator.mixed_precision != "no": lowercase__ : List[Any] = 8 else: lowercase__ : List[str] = None return tokenizer.pad( _lowerCAmelCase , padding='longest' , max_length=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_tensors='pt' , ) # Instantiate dataloaders. lowercase__ : Dict = DataLoader( tokenized_datasets['train'] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase ) lowercase__ : Tuple = DataLoader( tokenized_datasets['validation'] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _UpperCamelCase : Any = mocked_dataloaders # noqa: F811 def a_ ( _lowerCAmelCase : Any , _lowerCAmelCase : int ): '''simple docstring''' if os.environ.get('TESTING_MOCKED_DATALOADERS' , _lowerCAmelCase ) == "1": lowercase__ : int = 2 # Initialize accelerator lowercase__ : Optional[int] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ : Dict = config['lr'] lowercase__ : Optional[Any] = int(config['num_epochs'] ) lowercase__ : List[Any] = int(config['seed'] ) lowercase__ : Dict = int(config['batch_size'] ) lowercase__ : str = evaluate.load('glue' , 'mrpc' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=_lowerCAmelCase ) def inner_training_loop(_lowerCAmelCase : List[Any] ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(_lowerCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ : List[Any] = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=_lowerCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase__ : Optional[Any] = model.to(accelerator.device ) # Instantiate optimizer lowercase__ : Union[str, Any] = AdamW(params=model.parameters() , lr=_lowerCAmelCase ) lowercase__ , lowercase__ : int = get_dataloaders(_lowerCAmelCase , _lowerCAmelCase ) # Instantiate scheduler lowercase__ : int = get_linear_schedule_with_warmup( optimizer=_lowerCAmelCase , num_warmup_steps=100 , num_training_steps=(len(_lowerCAmelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = accelerator.prepare( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Now we train the model for epoch in range(_lowerCAmelCase ): model.train() for step, batch in enumerate(_lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowercase__ : Union[str, Any] = model(**_lowerCAmelCase ) lowercase__ : Tuple = outputs.loss accelerator.backward(_lowerCAmelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ : str = model(**_lowerCAmelCase ) lowercase__ : List[Any] = outputs.logits.argmax(dim=-1 ) lowercase__ , lowercase__ : List[str] = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=_lowerCAmelCase , references=_lowerCAmelCase , ) lowercase__ : Any = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , _lowerCAmelCase ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def a_ ( ): '''simple docstring''' lowercase__ : Optional[Any] = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=_lowerCAmelCase , default=_lowerCAmelCase , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) lowercase__ : Optional[int] = parser.parse_args() lowercase__ : Any = {'lr': 2E-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": main()
645
"""simple docstring""" import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class UpperCAmelCase_ ( unittest.TestCase): def _UpperCAmelCase ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() def _UpperCAmelCase ( self ) -> Tuple: lowercase__ , lowercase__ : str = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-canny' , from_pt=a , dtype=jnp.bfloataa ) lowercase__ , lowercase__ : List[str] = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , controlnet=a , from_pt=a , dtype=jnp.bfloataa ) lowercase__ : List[Any] = controlnet_params lowercase__ : int = 'bird' lowercase__ : List[Any] = jax.device_count() lowercase__ : Dict = pipe.prepare_text_inputs([prompts] * num_samples ) lowercase__ : Union[str, Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png' ) lowercase__ : Optional[int] = pipe.prepare_image_inputs([canny_image] * num_samples ) lowercase__ : List[Any] = jax.random.PRNGKey(0 ) lowercase__ : Tuple = jax.random.split(a , jax.device_count() ) lowercase__ : str = replicate(a ) lowercase__ : List[str] = shard(a ) lowercase__ : Dict = shard(a ) lowercase__ : List[Any] = pipe( prompt_ids=a , image=a , params=a , prng_seed=a , num_inference_steps=5_0 , jit=a , ).images assert images.shape == (jax.device_count(), 1, 7_6_8, 5_1_2, 3) lowercase__ : Any = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowercase__ : Tuple = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] lowercase__ : int = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowercase__ : Optional[Any] = jnp.array( [0.167_969, 0.116_699, 0.081_543, 0.154_297, 0.132_812, 0.108_887, 0.169_922, 0.169_922, 0.205_078] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def _UpperCAmelCase ( self ) -> List[str]: lowercase__ , lowercase__ : int = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-openpose' , from_pt=a , dtype=jnp.bfloataa ) lowercase__ , lowercase__ : Optional[Any] = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , controlnet=a , from_pt=a , dtype=jnp.bfloataa ) lowercase__ : Optional[Any] = controlnet_params lowercase__ : List[Any] = 'Chef in the kitchen' lowercase__ : List[str] = jax.device_count() lowercase__ : Dict = pipe.prepare_text_inputs([prompts] * num_samples ) lowercase__ : Optional[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png' ) lowercase__ : Optional[int] = pipe.prepare_image_inputs([pose_image] * num_samples ) lowercase__ : List[str] = jax.random.PRNGKey(0 ) lowercase__ : str = jax.random.split(a , jax.device_count() ) lowercase__ : Optional[Any] = replicate(a ) lowercase__ : Optional[Any] = shard(a ) lowercase__ : List[Any] = shard(a ) lowercase__ : List[Any] = pipe( prompt_ids=a , image=a , params=a , prng_seed=a , num_inference_steps=5_0 , jit=a , ).images assert images.shape == (jax.device_count(), 1, 7_6_8, 5_1_2, 3) lowercase__ : Union[str, Any] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowercase__ : List[str] = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] lowercase__ : Optional[int] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowercase__ : str = jnp.array( [[0.271_484, 0.261_719, 0.275_391, 0.277_344, 0.279_297, 0.291_016, 0.294_922, 0.302_734, 0.302_734]] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
645
1
"""simple docstring""" import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer _UpperCamelCase : Optional[Any] = ["gpt2"] _UpperCamelCase : List[Any] = "gpt2" if is_tf_available(): class UpperCAmelCase_ ( tf.Module): def __init__( self , a ) -> List[Any]: super().__init__() lowercase__ : Dict = tokenizer lowercase__ : Any = AutoConfig.from_pretrained(a ) lowercase__ : Union[str, Any] = TFGPTaLMHeadModel.from_config(a ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='text' ),) ) def _UpperCAmelCase ( self , a ) -> Union[str, Any]: lowercase__ : List[Any] = self.tokenizer(a ) lowercase__ : Tuple = tokenized['input_ids'].to_tensor() lowercase__ : List[str] = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) lowercase__ : Optional[Any] = self.model(input_ids=a , attention_mask=a )['logits'] return outputs @require_tf @require_keras_nlp class UpperCAmelCase_ ( unittest.TestCase): def _UpperCAmelCase ( self ) -> List[Any]: super().setUp() lowercase__ : List[Any] = [GPTaTokenizer.from_pretrained(a ) for checkpoint in (TOKENIZER_CHECKPOINTS)] lowercase__ : int = [TFGPTaTokenizer.from_pretrained(a ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) lowercase__ : Optional[Any] = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] lowercase__ : Union[str, Any] = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def _UpperCAmelCase ( self ) -> List[Any]: for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: lowercase__ : str = tokenizer([test_inputs] , return_tensors='tf' ) lowercase__ : List[str] = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors lowercase__ : Optional[int] = python_outputs[key].numpy() lowercase__ : List[str] = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(a , tf.intaa ) == tf_outputs_values ) ) @slow def _UpperCAmelCase ( self ) -> int: for tf_tokenizer in self.tf_tokenizers: lowercase__ : Union[str, Any] = tf.function(a ) for test_inputs in self.test_sentences: lowercase__ : List[str] = tf.constant(a ) lowercase__ : Tuple = compiled_tokenizer(a ) lowercase__ : Union[str, Any] = tf_tokenizer(a ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def _UpperCAmelCase ( self ) -> Dict: for tf_tokenizer in self.tf_tokenizers: lowercase__ : str = ModelToSave(tokenizer=a ) lowercase__ : Tuple = tf.convert_to_tensor([self.test_sentences[0]] ) lowercase__ : Optional[int] = model.serving(a ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: lowercase__ : List[Any] = Path(a ) / 'saved.model' tf.saved_model.save(a , a , signatures={'serving_default': model.serving} ) lowercase__ : int = tf.saved_model.load(a ) lowercase__ : Optional[Any] = loaded_model.signatures['serving_default'](a )['output_0'] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def _UpperCAmelCase ( self ) -> Dict: for tf_tokenizer in self.tf_tokenizers: lowercase__ : List[str] = tf.convert_to_tensor([self.test_sentences[0]] ) lowercase__ : Optional[Any] = tf_tokenizer(a ) # Build model with some sample inputs lowercase__ : List[Any] = tf_tokenizer.get_config() lowercase__ : Dict = TFGPTaTokenizer.from_config(a ) lowercase__ : Optional[Any] = model_from_config(a ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def _UpperCAmelCase ( self ) -> Any: for tf_tokenizer in self.tf_tokenizers: # for the test to run lowercase__ : Optional[Any] = 1_2_3_1_2_3 for max_length in [3, 5, 1_0_2_4]: lowercase__ : Tuple = tf.convert_to_tensor([self.test_sentences[0]] ) lowercase__ : List[Any] = tf_tokenizer(a , max_length=a ) lowercase__ : Optional[Any] = out['input_ids'].numpy().shape[1] assert out_length == max_length
645
"""simple docstring""" from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
645
1
"""simple docstring""" import math def a_ ( _lowerCAmelCase : int ): '''simple docstring''' lowercase__ : Tuple = [True] * n lowercase__ : Optional[Any] = False lowercase__ : Dict = False lowercase__ : Dict = True for i in range(3 , int(n**0.5 + 1 ) , 2 ): lowercase__ : int = i * 2 while index < n: lowercase__ : Any = False lowercase__ : List[str] = index + i lowercase__ : Optional[Any] = [2] for i in range(3 , _lowerCAmelCase , 2 ): if is_prime[i]: primes.append(_lowerCAmelCase ) return primes def a_ ( _lowerCAmelCase : int = 9999_6666_3333 ): '''simple docstring''' lowercase__ : Any = math.floor(math.sqrt(_lowerCAmelCase ) ) + 100 lowercase__ : Dict = prime_sieve(_lowerCAmelCase ) lowercase__ : str = 0 lowercase__ : Tuple = 0 lowercase__ : Any = primes[prime_index] while (last_prime**2) <= limit: lowercase__ : Optional[Any] = primes[prime_index + 1] lowercase__ : str = last_prime**2 lowercase__ : Dict = next_prime**2 # Get numbers divisible by lps(current) lowercase__ : List[str] = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) lowercase__ : List[Any] = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps lowercase__ : Union[str, Any] = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair lowercase__ : str = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
645
"""simple docstring""" import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase): @slow def _UpperCAmelCase ( self ) -> str: lowercase__ : Optional[Any] = AutoImageProcessor.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' ) lowercase__ : Union[str, Any] = AutoModelForImageClassification.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' ) model.to(a ) from datasets import load_dataset lowercase__ : str = load_dataset('nielsr/rvlcdip-demo' ) lowercase__ : Tuple = dataset['train'][0]['image'].convert('RGB' ) lowercase__ : int = image_processor(a , return_tensors='pt' ).to(a ) # forward pass with torch.no_grad(): lowercase__ : List[str] = model(**a ) lowercase__ : List[Any] = outputs.logits lowercase__ : Union[str, Any] = torch.Size((1, 1_6) ) self.assertEqual(logits.shape , a ) lowercase__ : Tuple = torch.tensor( [-0.4_158, -0.4_092, -0.4_347] , device=a , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , a , atol=1e-4 ) )
645
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCamelCase : Union[str, Any] = { "configuration_blenderbot": [ "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotOnnxConfig", ], "tokenization_blenderbot": ["BlenderbotTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : str = ["BlenderbotTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Dict = [ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : List[str] = [ "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : List[str] = [ "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys _UpperCamelCase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
645
"""simple docstring""" import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class UpperCAmelCase_ : @staticmethod def _UpperCAmelCase ( *a , **a ) -> int: pass def a_ ( _lowerCAmelCase : Image ): '''simple docstring''' lowercase__ : List[str] = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class UpperCAmelCase_ ( unittest.TestCase): lowerCamelCase__ : Union[str, Any] = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def _UpperCAmelCase ( self , a , a , a ) -> Dict: lowercase__ : Union[str, Any] = DepthEstimationPipeline(model=a , image_processor=a ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def _UpperCAmelCase ( self , a , a ) -> Optional[int]: lowercase__ : Tuple = depth_estimator('./tests/fixtures/tests_samples/COCO/000000039769.png' ) self.assertEqual({'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )} , a ) import datasets lowercase__ : Tuple = datasets.load_dataset('hf-internal-testing/fixtures_image_utils' , 'image' , split='test' ) lowercase__ : List[Any] = depth_estimator( [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] ) self.assertEqual( [ {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, ] , a , ) @require_tf @unittest.skip('Depth estimation is not implemented in TF' ) def _UpperCAmelCase ( self ) -> Optional[int]: pass @slow @require_torch def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Tuple = 'Intel/dpt-large' lowercase__ : Optional[int] = pipeline('depth-estimation' , model=a ) lowercase__ : List[Any] = depth_estimator('http://images.cocodataset.org/val2017/000000039769.jpg' ) lowercase__ : Optional[Any] = hashimage(outputs['depth'] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['predicted_depth'].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs['predicted_depth'].min().item() ) , 2.662 ) @require_torch def _UpperCAmelCase ( self ) -> Optional[int]: # This is highly irregular to have no small tests. self.skipTest('There is not hf-internal-testing tiny model for either GLPN nor DPT' )
645
1
"""simple docstring""" # Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _UpperCamelCase : int = { "configuration_cpmant": ["CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP", "CpmAntConfig"], "tokenization_cpmant": ["CpmAntTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : str = [ "CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST", "CpmAntForCausalLM", "CpmAntModel", "CpmAntPreTrainedModel", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys _UpperCamelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
645
"""simple docstring""" import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class UpperCAmelCase_ ( _a): def __init__( self ) -> Any: lowercase__ : Tuple = [] def _UpperCAmelCase ( self , a , a , a , **a ) -> Any: self.events.append('on_init_end' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Optional[int]: self.events.append('on_train_begin' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> List[str]: self.events.append('on_train_end' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> int: self.events.append('on_epoch_begin' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Optional[Any]: self.events.append('on_epoch_end' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> int: self.events.append('on_step_begin' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> str: self.events.append('on_step_end' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> int: self.events.append('on_evaluate' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Tuple: self.events.append('on_predict' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Union[str, Any]: self.events.append('on_save' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> List[str]: self.events.append('on_log' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Any: self.events.append('on_prediction_step' ) @require_torch class UpperCAmelCase_ ( unittest.TestCase): def _UpperCAmelCase ( self ) -> str: lowercase__ : str = tempfile.mkdtemp() def _UpperCAmelCase ( self ) -> Dict: shutil.rmtree(self.output_dir ) def _UpperCAmelCase ( self , a=0 , a=0 , a=6_4 , a=6_4 , a=None , a=False , **a ) -> int: # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. lowercase__ : str = RegressionDataset(length=a ) lowercase__ : Any = RegressionDataset(length=a ) lowercase__ : Optional[Any] = RegressionModelConfig(a=a , b=a ) lowercase__ : Union[str, Any] = RegressionPreTrainedModel(a ) lowercase__ : Tuple = TrainingArguments(self.output_dir , disable_tqdm=a , report_to=[] , **a ) return Trainer( a , a , train_dataset=a , eval_dataset=a , callbacks=a , ) def _UpperCAmelCase ( self , a , a ) -> Union[str, Any]: self.assertEqual(len(a ) , len(a ) ) # Order doesn't matter lowercase__ : Optional[int] = sorted(a , key=lambda a : cb.__name__ if isinstance(a , a ) else cb.__class__.__name__ ) lowercase__ : Tuple = sorted(a , key=lambda a : cb.__name__ if isinstance(a , a ) else cb.__class__.__name__ ) for cba, cba in zip(a , a ): if isinstance(a , a ) and isinstance(a , a ): self.assertEqual(a , a ) elif isinstance(a , a ) and not isinstance(a , a ): self.assertEqual(a , cba.__class__ ) elif not isinstance(a , a ) and isinstance(a , a ): self.assertEqual(cba.__class__ , a ) else: self.assertEqual(a , a ) def _UpperCAmelCase ( self , a ) -> Optional[Any]: lowercase__ : Dict = ['on_init_end', 'on_train_begin'] lowercase__ : List[Any] = 0 lowercase__ : Optional[int] = len(trainer.get_eval_dataloader() ) lowercase__ : Tuple = ['on_prediction_step'] * len(trainer.get_eval_dataloader() ) + ['on_log', 'on_evaluate'] for _ in range(trainer.state.num_train_epochs ): expected_events.append('on_epoch_begin' ) for _ in range(a ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append('on_log' ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append('on_save' ) expected_events.append('on_epoch_end' ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : int = self.get_trainer() lowercase__ : str = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) # Callbacks passed at init are added to the default callbacks lowercase__ : str = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback lowercase__ : List[Any] = self.get_trainer(disable_tqdm=a ) lowercase__ : Optional[Any] = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) def _UpperCAmelCase ( self ) -> Any: lowercase__ : int = DEFAULT_CALLBACKS.copy() + [ProgressCallback] lowercase__ : List[str] = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(a ) expected_callbacks.remove(a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) lowercase__ : Optional[Any] = self.get_trainer() lowercase__ : List[Any] = trainer.pop_callback(a ) self.assertEqual(cb.__class__ , a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) trainer.add_callback(a ) expected_callbacks.insert(0 , a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) # We can also add, pop, or remove by instance lowercase__ : int = self.get_trainer() lowercase__ : List[str] = trainer.callback_handler.callbacks[0] trainer.remove_callback(a ) expected_callbacks.remove(a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) lowercase__ : Tuple = self.get_trainer() lowercase__ : Dict = trainer.callback_handler.callbacks[0] lowercase__ : Union[str, Any] = trainer.pop_callback(a ) self.assertEqual(a , a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) trainer.add_callback(a ) expected_callbacks.insert(0 , a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) def _UpperCAmelCase ( self ) -> Tuple: import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action='ignore' , category=a ) lowercase__ : Optional[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() lowercase__ : Any = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) # Independent log/save/eval lowercase__ : List[str] = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() lowercase__ : int = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) lowercase__ : Union[str, Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() lowercase__ : Union[str, Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) lowercase__ : List[str] = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy='steps' ) trainer.train() lowercase__ : Optional[int] = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) lowercase__ : int = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy='epoch' ) trainer.train() lowercase__ : str = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) # A bit of everything lowercase__ : Any = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=1_0 , eval_steps=5 , evaluation_strategy='steps' , ) trainer.train() lowercase__ : Any = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) # warning should be emitted for duplicated callbacks with patch('transformers.trainer_callback.logger.warning' ) as warn_mock: lowercase__ : str = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(a ) in warn_mock.call_args[0][0]
645
1
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class UpperCAmelCase_ : # setable values lowerCamelCase__ : Optional[int] = None lowerCamelCase__ : Optional[jnp.ndarray] = None lowerCamelCase__ : Optional[jnp.ndarray] = None # sigma(t_i) @classmethod def _UpperCAmelCase ( cls ) -> int: return cls() @dataclass class UpperCAmelCase_ ( _a): lowerCamelCase__ : jnp.ndarray lowerCamelCase__ : jnp.ndarray lowerCamelCase__ : KarrasVeSchedulerState class UpperCAmelCase_ ( _a , _a): @property def _UpperCAmelCase ( self ) -> Dict: return True @register_to_config def __init__( self , a = 0.02 , a = 1_0_0 , a = 1.007 , a = 8_0 , a = 0.05 , a = 5_0 , ) -> Optional[int]: pass def _UpperCAmelCase ( self ) -> int: return KarrasVeSchedulerState.create() def _UpperCAmelCase ( self , a , a , a = () ) -> KarrasVeSchedulerState: lowercase__ : Optional[Any] = jnp.arange(0 , a )[::-1].copy() lowercase__ : str = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=a , schedule=jnp.array(a , dtype=jnp.floataa ) , timesteps=a , ) def _UpperCAmelCase ( self , a , a , a , a , ) -> Tuple[jnp.ndarray, float]: if self.config.s_min <= sigma <= self.config.s_max: lowercase__ : Optional[int] = min(self.config.s_churn / state.num_inference_steps , 2**0.5 - 1 ) else: lowercase__ : int = 0 # sample eps ~ N(0, S_noise^2 * I) lowercase__ : int = random.split(a , num=1 ) lowercase__ : List[Any] = self.config.s_noise * random.normal(key=a , shape=sample.shape ) lowercase__ : List[str] = sigma + gamma * sigma lowercase__ : int = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def _UpperCAmelCase ( self , a , a , a , a , a , a = True , ) -> Union[FlaxKarrasVeOutput, Tuple]: lowercase__ : Union[str, Any] = sample_hat + sigma_hat * model_output lowercase__ : int = (sample_hat - pred_original_sample) / sigma_hat lowercase__ : Tuple = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=a , derivative=a , state=a ) def _UpperCAmelCase ( self , a , a , a , a , a , a , a , a = True , ) -> Union[FlaxKarrasVeOutput, Tuple]: lowercase__ : Dict = sample_prev + sigma_prev * model_output lowercase__ : List[str] = (sample_prev - pred_original_sample) / sigma_prev lowercase__ : Tuple = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=a , derivative=a , state=a ) def _UpperCAmelCase ( self , a , a , a , a ) -> Optional[Any]: raise NotImplementedError()
645
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _UpperCamelCase : str = { "configuration_gpt_neo": ["GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoConfig", "GPTNeoOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Tuple = [ "GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoForCausalLM", "GPTNeoForQuestionAnswering", "GPTNeoForSequenceClassification", "GPTNeoForTokenClassification", "GPTNeoModel", "GPTNeoPreTrainedModel", "load_tf_weights_in_gpt_neo", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Dict = [ "FlaxGPTNeoForCausalLM", "FlaxGPTNeoModel", "FlaxGPTNeoPreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys _UpperCamelCase : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
645
1
"""simple docstring""" from functools import lru_cache def a_ ( _lowerCAmelCase : int ): '''simple docstring''' lowercase__ : Optional[int] = 2 lowercase__ : List[Any] = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(_lowerCAmelCase ) if n > 1: factors.add(_lowerCAmelCase ) return factors @lru_cache def a_ ( _lowerCAmelCase : int ): '''simple docstring''' return len(unique_prime_factors(_lowerCAmelCase ) ) def a_ ( _lowerCAmelCase : list ): '''simple docstring''' return len(set(_lowerCAmelCase ) ) in (0, 1) def a_ ( _lowerCAmelCase : int ): '''simple docstring''' lowercase__ : List[Any] = 2 while True: # Increment each value of a generated range lowercase__ : List[Any] = [base + i for i in range(_lowerCAmelCase )] # Run elements through out unique_prime_factors function # Append our target number to the end. lowercase__ : Tuple = [upf_len(_lowerCAmelCase ) for x in group] checker.append(_lowerCAmelCase ) # If all numbers in the list are equal, return the group variable. if equality(_lowerCAmelCase ): return group # Increment our base variable by 1 base += 1 def a_ ( _lowerCAmelCase : int = 4 ): '''simple docstring''' lowercase__ : Optional[Any] = run(_lowerCAmelCase ) return results[0] if len(_lowerCAmelCase ) else None if __name__ == "__main__": print(solution())
645
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class UpperCAmelCase_ ( unittest.TestCase): def _UpperCAmelCase ( self , a ) -> str: for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss'] ): lowercase__ : str = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(a ) def _UpperCAmelCase ( self ) -> int: lowercase__ : Dict = 'sshleifer/tiny-gpt2' lowercase__ : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=a , multi_process=a , ) lowercase__ : str = TensorFlowBenchmark(a ) lowercase__ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> int: lowercase__ : List[str] = 'sgugger/tiny-distilbert-classification' lowercase__ : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , only_pretrain_model=a , ) lowercase__ : Optional[Any] = TensorFlowBenchmark(a ) lowercase__ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : Optional[int] = 'sshleifer/tiny-gpt2' lowercase__ : Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , ) lowercase__ : Optional[Any] = TensorFlowBenchmark(a ) lowercase__ : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : Any = 'sshleifer/tiny-gpt2' lowercase__ : List[Any] = AutoConfig.from_pretrained(a ) lowercase__ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=a , multi_process=a , ) lowercase__ : Tuple = TensorFlowBenchmark(a , [config] ) lowercase__ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> int: lowercase__ : Optional[Any] = 'sshleifer/tiny-gpt2' lowercase__ : List[str] = AutoConfig.from_pretrained(a ) lowercase__ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , ) lowercase__ : List[str] = TensorFlowBenchmark(a , [config] ) lowercase__ : Any = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Optional[Any] = 'sshleifer/tiny-gpt2' lowercase__ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , ) lowercase__ : Optional[Any] = TensorFlowBenchmark(a ) lowercase__ : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _UpperCAmelCase ( self ) -> str: lowercase__ : Optional[Any] = 'sshleifer/tiny-gpt2' lowercase__ : Optional[int] = AutoConfig.from_pretrained(a ) lowercase__ : str = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , ) lowercase__ : str = TensorFlowBenchmark(a , [config] ) lowercase__ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : List[str] = 'patrickvonplaten/t5-tiny-random' lowercase__ : Any = AutoConfig.from_pretrained(a ) lowercase__ : List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , ) lowercase__ : int = TensorFlowBenchmark(a , configs=[config] ) lowercase__ : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU' ) ) == 0 , 'Cannot do xla on CPU.' ) def _UpperCAmelCase ( self ) -> Any: lowercase__ : Any = 'sshleifer/tiny-gpt2' lowercase__ : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , use_xla=a , multi_process=a , ) lowercase__ : Any = TensorFlowBenchmark(a ) lowercase__ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Any = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ : List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=a , save_to_csv=a , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(a , 'inf_time.csv' ) , inference_memory_csv_file=os.path.join(a , 'inf_mem.csv' ) , env_info_csv_file=os.path.join(a , 'env.csv' ) , multi_process=a , ) lowercase__ : Union[str, Any] = TensorFlowBenchmark(a ) benchmark.run() self.assertTrue(Path(os.path.join(a , 'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(a , 'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(a , 'env.csv' ) ).exists() ) def _UpperCAmelCase ( self ) -> Dict: lowercase__ : Tuple = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(a ): self.assertTrue(hasattr(a , 'sequential' ) ) self.assertTrue(hasattr(a , 'cumulative' ) ) self.assertTrue(hasattr(a , 'current' ) ) self.assertTrue(hasattr(a , 'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=a , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(a , 'log.txt' ) , log_print=a , trace_memory_line_by_line=a , eager_mode=a , multi_process=a , ) lowercase__ : Optional[int] = TensorFlowBenchmark(a ) lowercase__ : Optional[Any] = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(a , 'log.txt' ) ).exists() )
645
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _UpperCamelCase : Any = { "configuration_data2vec_audio": ["DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecAudioConfig"], "configuration_data2vec_text": [ "DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecTextConfig", "Data2VecTextOnnxConfig", ], "configuration_data2vec_vision": [ "DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecVisionConfig", "Data2VecVisionOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Union[str, Any] = [ "DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecAudioForAudioFrameClassification", "Data2VecAudioForCTC", "Data2VecAudioForSequenceClassification", "Data2VecAudioForXVector", "Data2VecAudioModel", "Data2VecAudioPreTrainedModel", ] _UpperCamelCase : int = [ "DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecTextForCausalLM", "Data2VecTextForMaskedLM", "Data2VecTextForMultipleChoice", "Data2VecTextForQuestionAnswering", "Data2VecTextForSequenceClassification", "Data2VecTextForTokenClassification", "Data2VecTextModel", "Data2VecTextPreTrainedModel", ] _UpperCamelCase : Any = [ "DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecVisionForImageClassification", "Data2VecVisionForMaskedImageModeling", "Data2VecVisionForSemanticSegmentation", "Data2VecVisionModel", "Data2VecVisionPreTrainedModel", ] if is_tf_available(): _UpperCamelCase : Optional[int] = [ "TFData2VecVisionForImageClassification", "TFData2VecVisionForSemanticSegmentation", "TFData2VecVisionModel", "TFData2VecVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys _UpperCamelCase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
645
"""simple docstring""" import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class UpperCAmelCase_ ( _a): def __init__( self , a , a=1_3 , a=7 , a=True , a=True , a=False , a=True , a=9_9 , a=3_2 , a=5 , a=4 , a=3_7 , a="gelu" , a=0.1 , a=0.1 , a=5_1_2 , a=1_6 , a=2 , a=0.02 , a=3 , a=4 , a=None , ) -> Any: lowercase__ : Tuple = parent lowercase__ : List[Any] = batch_size lowercase__ : List[Any] = seq_length lowercase__ : List[Any] = is_training lowercase__ : Optional[Any] = use_input_mask lowercase__ : Optional[int] = use_token_type_ids lowercase__ : int = use_labels lowercase__ : Tuple = vocab_size lowercase__ : int = hidden_size lowercase__ : Any = num_hidden_layers lowercase__ : List[str] = num_attention_heads lowercase__ : Optional[Any] = intermediate_size lowercase__ : Optional[Any] = hidden_act lowercase__ : List[str] = hidden_dropout_prob lowercase__ : List[Any] = attention_probs_dropout_prob lowercase__ : List[Any] = max_position_embeddings lowercase__ : List[str] = type_vocab_size lowercase__ : Tuple = type_sequence_label_size lowercase__ : List[Any] = initializer_range lowercase__ : str = num_labels lowercase__ : Tuple = num_choices lowercase__ : str = scope def _UpperCAmelCase ( self ) -> Any: lowercase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ : str = None if self.use_input_mask: lowercase__ : Any = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ : Dict = None lowercase__ : Optional[Any] = None lowercase__ : int = None if self.use_labels: lowercase__ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__ : Dict = ids_tensor([self.batch_size] , self.num_choices ) lowercase__ : List[Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCAmelCase ( self ) -> Optional[int]: return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> Dict: lowercase__ : Tuple = DistilBertModel(config=a ) model.to(a ) model.eval() lowercase__ : Any = model(a , a ) lowercase__ : str = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> Dict: lowercase__ : Optional[int] = DistilBertForMaskedLM(config=a ) model.to(a ) model.eval() lowercase__ : Union[str, Any] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> int: lowercase__ : Tuple = DistilBertForQuestionAnswering(config=a ) model.to(a ) model.eval() lowercase__ : Tuple = model( a , attention_mask=a , start_positions=a , end_positions=a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> List[str]: lowercase__ : int = self.num_labels lowercase__ : Dict = DistilBertForSequenceClassification(a ) model.to(a ) model.eval() lowercase__ : Optional[Any] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> Any: lowercase__ : Any = self.num_labels lowercase__ : List[str] = DistilBertForTokenClassification(config=a ) model.to(a ) model.eval() lowercase__ : Any = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> Tuple: lowercase__ : List[Any] = self.num_choices lowercase__ : Any = DistilBertForMultipleChoice(config=a ) model.to(a ) model.eval() lowercase__ : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ : Optional[int] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ : int = model( a , attention_mask=a , labels=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _UpperCAmelCase ( self ) -> str: lowercase__ : Union[str, Any] = self.prepare_config_and_inputs() ((lowercase__) , (lowercase__) , (lowercase__) , (lowercase__) , (lowercase__) , (lowercase__)) : List[str] = config_and_inputs lowercase__ : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _a , _a , unittest.TestCase): lowerCamelCase__ : List[str] = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) lowerCamelCase__ : str = ( { "feature-extraction": DistilBertModel, "fill-mask": DistilBertForMaskedLM, "question-answering": DistilBertForQuestionAnswering, "text-classification": DistilBertForSequenceClassification, "token-classification": DistilBertForTokenClassification, "zero-shot": DistilBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ : Optional[int] = True lowerCamelCase__ : Any = True lowerCamelCase__ : List[Any] = True lowerCamelCase__ : Optional[Any] = True def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : str = DistilBertModelTester(self ) lowercase__ : int = ConfigTester(self , config_class=a , dim=3_7 ) def _UpperCAmelCase ( self ) -> Dict: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*a ) def _UpperCAmelCase ( self ) -> Any: lowercase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*a ) def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*a ) def _UpperCAmelCase ( self ) -> int: lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*a ) def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*a ) def _UpperCAmelCase ( self ) -> str: lowercase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*a ) @slow def _UpperCAmelCase ( self ) -> str: for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : str = DistilBertModel.from_pretrained(a ) self.assertIsNotNone(a ) @slow @require_torch_gpu def _UpperCAmelCase ( self ) -> Any: lowercase__ , lowercase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return lowercase__ : Optional[int] = True lowercase__ : Union[str, Any] = model_class(config=a ) lowercase__ : int = self._prepare_for_class(a , a ) lowercase__ : Tuple = torch.jit.trace( a , (inputs_dict['input_ids'].to('cpu' ), inputs_dict['attention_mask'].to('cpu' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a , os.path.join(a , 'traced_model.pt' ) ) lowercase__ : Optional[int] = torch.jit.load(os.path.join(a , 'traced_model.pt' ) , map_location=a ) loaded(inputs_dict['input_ids'].to(a ) , inputs_dict['attention_mask'].to(a ) ) @require_torch class UpperCAmelCase_ ( unittest.TestCase): @slow def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : int = DistilBertModel.from_pretrained('distilbert-base-uncased' ) lowercase__ : Union[str, Any] = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) lowercase__ : Optional[Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowercase__ : Optional[Any] = model(a , attention_mask=a )[0] lowercase__ : Tuple = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , a ) lowercase__ : List[Any] = torch.tensor( [[[-0.1_639, 0.3_299, 0.1_648], [-0.1_746, 0.3_289, 0.1_710], [-0.1_884, 0.3_357, 0.1_810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a , atol=1e-4 ) )
645
1
"""simple docstring""" import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class UpperCAmelCase_ ( unittest.TestCase): def __init__( self , a ) -> List[Any]: lowercase__ : List[Any] = parent def _UpperCAmelCase ( self ) -> str: return {} def a_ ( ): '''simple docstring''' lowercase__ : List[str] = '<HTML>\n\n <HEAD>\n <TITLE>sample document</TITLE>\n </HEAD>\n\n <BODY BGCOLOR="FFFFFF">\n <HR>\n <a href="http://google.com">Goog</a>\n <H1>This is one header</H1>\n <H2>This is a another Header</H2>\n <P>Travel from\n <P>\n <B>SFO to JFK</B>\n <BR>\n <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B>\n <HR>\n <div style="color:#0000FF">\n <h3>Traveler <b> name </b> is\n <p> John Doe </p>\n </div>' lowercase__ : Optional[Any] = '\n <!DOCTYPE html>\n <html>\n <body>\n\n <h1>My First Heading</h1>\n <p>My first paragraph.</p>\n\n </body>\n </html>\n ' return [html_string_a, html_string_a] @require_bsa class UpperCAmelCase_ ( _a , unittest.TestCase): lowerCamelCase__ : Dict = MarkupLMFeatureExtractor if is_bsa_available() else None def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ : Union[str, Any] = MarkupLMFeatureExtractionTester(self ) @property def _UpperCAmelCase ( self ) -> Union[str, Any]: return self.feature_extract_tester.prepare_feat_extract_dict() def _UpperCAmelCase ( self ) -> Optional[int]: # Initialize feature_extractor lowercase__ : List[Any] = self.feature_extraction_class() # Test not batched input lowercase__ : Tuple = get_html_strings()[0] lowercase__ : Any = feature_extractor(a ) # fmt: off lowercase__ : Dict = [['sample document', 'Goog', 'This is one header', 'This is a another Header', 'Travel from', 'SFO to JFK', 'on May 2, 2015 at 2:00 pm. For details go to confirm.com', 'Traveler', 'name', 'is', 'John Doe']] lowercase__ : str = [['/html/head/title', '/html/body/a', '/html/body/h1', '/html/body/h2', '/html/body/p', '/html/body/p/p/b[1]', '/html/body/p/p/b[2]/i', '/html/body/p/p/div/h3', '/html/body/p/p/div/h3/b', '/html/body/p/p/div/h3', '/html/body/p/p/div/h3/p']] # fmt: on self.assertEqual(encoding.nodes , a ) self.assertEqual(encoding.xpaths , a ) # Test batched lowercase__ : List[Any] = get_html_strings() lowercase__ : List[Any] = feature_extractor(a ) # fmt: off lowercase__ : Union[str, Any] = expected_nodes + [['My First Heading', 'My first paragraph.']] lowercase__ : Dict = expected_xpaths + [['/html/body/h1', '/html/body/p']] self.assertEqual(len(encoding.nodes ) , 2 ) self.assertEqual(len(encoding.xpaths ) , 2 ) self.assertEqual(encoding.nodes , a ) self.assertEqual(encoding.xpaths , a )
645
"""simple docstring""" from __future__ import annotations def a_ ( _lowerCAmelCase : float , _lowerCAmelCase : float , _lowerCAmelCase : float , ): '''simple docstring''' if (stress, tangential_force, area).count(0 ) != 1: raise ValueError('You cannot supply more or less than 2 values' ) elif stress < 0: raise ValueError('Stress cannot be negative' ) elif tangential_force < 0: raise ValueError('Tangential Force cannot be negative' ) elif area < 0: raise ValueError('Area cannot be negative' ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
645
1
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _UpperCamelCase : int = { "configuration_efficientnet": [ "EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "EfficientNetConfig", "EfficientNetOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Dict = ["EfficientNetImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : int = [ "EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST", "EfficientNetForImageClassification", "EfficientNetModel", "EfficientNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys _UpperCamelCase : str = _LazyModule(__name__, globals()["__file__"], _import_structure)
645
"""simple docstring""" import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase_ : def __init__( self , a , a=1_3 , a=[3_0, 3_0] , a=2 , a=3 , a=True , a=True , a=3_2 , a=5 , a=4 , a=3_7 , a="gelu" , a=0.1 , a=0.1 , a=1_0 , a=0.02 , a=3 , a=None , a=8 , a=1_0 , ) -> Any: lowercase__ : List[str] = parent lowercase__ : Optional[Any] = batch_size lowercase__ : Optional[int] = image_size lowercase__ : List[Any] = patch_size lowercase__ : Optional[Any] = num_channels lowercase__ : str = is_training lowercase__ : Optional[Any] = use_labels lowercase__ : Optional[Any] = hidden_size lowercase__ : Dict = num_hidden_layers lowercase__ : Optional[Any] = num_attention_heads lowercase__ : Dict = intermediate_size lowercase__ : List[Any] = hidden_act lowercase__ : List[Any] = hidden_dropout_prob lowercase__ : Any = attention_probs_dropout_prob lowercase__ : Any = type_sequence_label_size lowercase__ : Dict = initializer_range lowercase__ : Union[str, Any] = num_labels lowercase__ : Tuple = scope lowercase__ : Tuple = n_targets lowercase__ : Optional[int] = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens lowercase__ : Optional[Any] = (image_size[1] // patch_size) * (image_size[0] // patch_size) lowercase__ : Tuple = num_patches + 1 + self.num_detection_tokens def _UpperCAmelCase ( self ) -> Any: lowercase__ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) lowercase__ : Tuple = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) lowercase__ : int = [] for i in range(self.batch_size ): lowercase__ : Optional[Any] = {} lowercase__ : Any = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=a ) lowercase__ : List[str] = torch.rand(self.n_targets , 4 , device=a ) labels.append(a ) lowercase__ : Tuple = self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self ) -> List[Any]: return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def _UpperCAmelCase ( self , a , a , a ) -> int: lowercase__ : List[str] = YolosModel(config=a ) model.to(a ) model.eval() lowercase__ : List[Any] = model(a ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def _UpperCAmelCase ( self , a , a , a ) -> Union[str, Any]: lowercase__ : str = YolosForObjectDetection(a ) model.to(a ) model.eval() lowercase__ : Dict = model(pixel_values=a ) lowercase__ : Tuple = model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) lowercase__ : str = model(pixel_values=a , labels=a ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : int = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Any = config_and_inputs lowercase__ : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _a , _a , unittest.TestCase): lowerCamelCase__ : Optional[int] = (YolosModel, YolosForObjectDetection) if is_torch_available() else () lowerCamelCase__ : List[str] = ( {"feature-extraction": YolosModel, "object-detection": YolosForObjectDetection} if is_torch_available() else {} ) lowerCamelCase__ : List[Any] = False lowerCamelCase__ : Dict = False lowerCamelCase__ : Tuple = False lowerCamelCase__ : Union[str, Any] = False def _UpperCAmelCase ( self , a , a , a=False ) -> Dict: lowercase__ : List[str] = super()._prepare_for_class(a , a , return_labels=a ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": lowercase__ : Optional[Any] = [] for i in range(self.model_tester.batch_size ): lowercase__ : Dict = {} lowercase__ : Dict = torch.ones( size=(self.model_tester.n_targets,) , device=a , dtype=torch.long ) lowercase__ : Optional[Any] = torch.ones( self.model_tester.n_targets , 4 , device=a , dtype=torch.float ) labels.append(a ) lowercase__ : Union[str, Any] = labels return inputs_dict def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : Dict = YolosModelTester(self ) lowercase__ : Optional[int] = ConfigTester(self , config_class=a , has_text_modality=a , hidden_size=3_7 ) def _UpperCAmelCase ( self ) -> str: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Optional[Any]: # YOLOS does not use inputs_embeds pass def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[str] = model_class(a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase__ : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a , nn.Linear ) ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : int = model_class(a ) lowercase__ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Tuple = [*signature.parameters.keys()] lowercase__ : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , a ) def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _UpperCAmelCase ( self ) -> Dict: lowercase__ , lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Dict = True # in YOLOS, the seq_len is different lowercase__ : Tuple = self.model_tester.expected_seq_len for model_class in self.all_model_classes: lowercase__ : Optional[int] = True lowercase__ : str = False lowercase__ : str = True lowercase__ : List[str] = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : Any = model(**self._prepare_for_class(a , a ) ) lowercase__ : str = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase__ : Optional[int] = True lowercase__ : List[Any] = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : Union[str, Any] = model(**self._prepare_for_class(a , a ) ) lowercase__ : List[str] = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowercase__ : Dict = len(a ) # Check attention is always last and order is fine lowercase__ : Any = True lowercase__ : int = True lowercase__ : int = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : Any = model(**self._prepare_for_class(a , a ) ) lowercase__ : Optional[Any] = 1 self.assertEqual(out_len + added_hidden_states , len(a ) ) lowercase__ : Tuple = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def _UpperCAmelCase ( self ) -> List[str]: def check_hidden_states_output(a , a , a ): lowercase__ : str = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : int = model(**self._prepare_for_class(a , a ) ) lowercase__ : int = outputs.hidden_states lowercase__ : Any = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(a ) , a ) # YOLOS has a different seq_length lowercase__ : Optional[int] = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowercase__ , lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Any = True check_hidden_states_output(a , a , a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : List[Any] = True check_hidden_states_output(a , a , a ) def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*a ) @slow def _UpperCAmelCase ( self ) -> Union[str, Any]: for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : int = YolosModel.from_pretrained(a ) self.assertIsNotNone(a ) def a_ ( ): '''simple docstring''' lowercase__ : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase): @cached_property def _UpperCAmelCase ( self ) -> Union[str, Any]: return AutoImageProcessor.from_pretrained('hustvl/yolos-small' ) if is_vision_available() else None @slow def _UpperCAmelCase ( self ) -> int: lowercase__ : Dict = YolosForObjectDetection.from_pretrained('hustvl/yolos-small' ).to(a ) lowercase__ : Tuple = self.default_image_processor lowercase__ : Optional[int] = prepare_img() lowercase__ : int = image_processor(images=a , return_tensors='pt' ).to(a ) # forward pass with torch.no_grad(): lowercase__ : int = model(inputs.pixel_values ) # verify outputs lowercase__ : Tuple = torch.Size((1, 1_0_0, 9_2) ) self.assertEqual(outputs.logits.shape , a ) lowercase__ : Any = torch.tensor( [[-24.0_248, -10.3_024, -14.8_290], [-42.0_392, -16.8_200, -27.4_334], [-27.2_743, -11.8_154, -18.7_148]] , device=a , ) lowercase__ : List[str] = torch.tensor( [[0.2_559, 0.5_455, 0.4_706], [0.2_989, 0.7_279, 0.1_875], [0.7_732, 0.4_017, 0.4_462]] , device=a ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , a , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , a , atol=1e-4 ) ) # verify postprocessing lowercase__ : Optional[Any] = image_processor.post_process_object_detection( a , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] lowercase__ : str = torch.tensor([0.9_994, 0.9_790, 0.9_964, 0.9_972, 0.9_861] ).to(a ) lowercase__ : Any = [7_5, 7_5, 1_7, 6_3, 1_7] lowercase__ : Optional[int] = torch.tensor([335.0_609, 79.3_848, 375.4_216, 187.2_495] ).to(a ) self.assertEqual(len(results['scores'] ) , 5 ) self.assertTrue(torch.allclose(results['scores'] , a , atol=1e-4 ) ) self.assertSequenceEqual(results['labels'].tolist() , a ) self.assertTrue(torch.allclose(results['boxes'][0, :] , a ) )
645
1
"""simple docstring""" from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
645
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch _UpperCamelCase : int = logging.get_logger(__name__) @dataclass class UpperCAmelCase_ : def __init__( self , a=False , a=False , a=6.0 , a=None , a=False , a=False , a=None , a="fp4" , a=False , **a , ) -> Tuple: lowercase__ : str = load_in_abit lowercase__ : str = load_in_abit lowercase__ : List[str] = llm_inta_threshold lowercase__ : Dict = llm_inta_skip_modules lowercase__ : Tuple = llm_inta_enable_fpaa_cpu_offload lowercase__ : Any = llm_inta_has_fpaa_weight lowercase__ : Any = bnb_abit_quant_type lowercase__ : Dict = bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: lowercase__ : Dict = torch.floataa elif isinstance(a , a ): lowercase__ : Any = getattr(a , a ) elif isinstance(a , torch.dtype ): lowercase__ : Any = bnb_abit_compute_dtype else: raise ValueError('bnb_4bit_compute_dtype must be a string or a torch.dtype' ) self.post_init() def _UpperCAmelCase ( self ) -> str: if not isinstance(self.llm_inta_threshold , a ): raise ValueError('llm_int8_threshold must be a float' ) if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , a ): raise ValueError('llm_int8_skip_modules must be a list of strings' ) if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , a ): raise ValueError('llm_int8_enable_fp32_cpu_offload must be a boolean' ) if not isinstance(self.llm_inta_has_fpaa_weight , a ): raise ValueError('llm_int8_has_fp16_weight must be a boolean' ) if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype ): raise ValueError('bnb_4bit_compute_dtype must be torch.dtype' ) if not isinstance(self.bnb_abit_quant_type , a ): raise ValueError('bnb_4bit_quant_type must be a string' ) if not isinstance(self.bnb_abit_use_double_quant , a ): raise ValueError('bnb_4bit_use_double_quant must be a boolean' ) if self.load_in_abit and not version.parse(importlib.metadata.version('bitsandbytes' ) ) >= version.parse( '0.39.0' ): raise ValueError( '4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version' ) def _UpperCAmelCase ( self ) -> Tuple: return self.load_in_abit or self.load_in_abit def _UpperCAmelCase ( self ) -> List[str]: if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def _UpperCAmelCase ( cls , a , a , **a ) -> Optional[Any]: lowercase__ : List[Any] = cls(**a ) lowercase__ : Union[str, Any] = [] for key, value in kwargs.items(): if hasattr(a , a ): setattr(a , a , a ) to_remove.append(a ) for key in to_remove: kwargs.pop(a , a ) if return_unused_kwargs: return config, kwargs else: return config def _UpperCAmelCase ( self , a ) -> Dict: with open(a , 'w' , encoding='utf-8' ) as writer: lowercase__ : Any = self.to_dict() lowercase__ : str = json.dumps(a , indent=2 , sort_keys=a ) + '\n' writer.write(a ) def _UpperCAmelCase ( self ) -> Dict[str, Any]: lowercase__ : Optional[Any] = copy.deepcopy(self.__dict__ ) lowercase__ : Any = str(output['bnb_4bit_compute_dtype'] ).split('.' )[1] return output def __repr__( self ) -> Dict: return f"""{self.__class__.__name__} {self.to_json_string()}""" def _UpperCAmelCase ( self , a = True ) -> str: if use_diff is True: lowercase__ : List[Any] = self.to_diff_dict() else: lowercase__ : List[str] = self.to_dict() return json.dumps(a , indent=2 , sort_keys=a ) + "\n" def _UpperCAmelCase ( self ) -> Dict[str, Any]: lowercase__ : Tuple = self.to_dict() # get the default config dict lowercase__ : Optional[Any] = BitsAndBytesConfig().to_dict() lowercase__ : int = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: lowercase__ : Optional[int] = value return serializable_config_dict
645
1
"""simple docstring""" import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip _UpperCamelCase : List[Any] = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def a_ ( _lowerCAmelCase : int ): '''simple docstring''' if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def a_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict ): '''simple docstring''' return max(metric_fn(_lowerCAmelCase , _lowerCAmelCase ) for gt in ground_truths ) def a_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int ): '''simple docstring''' lowercase__ : Any = [line.strip() for line in open(_lowerCAmelCase , 'r' ).readlines()] lowercase__ : Optional[int] = [] if args.gold_data_mode == "qa": lowercase__ : Any = pd.read_csv(_lowerCAmelCase , sep='\t' , header=_lowerCAmelCase ) for answer_list in data[1]: lowercase__ : str = ast.literal_eval(_lowerCAmelCase ) answers.append(_lowerCAmelCase ) else: lowercase__ : List[Any] = [line.strip() for line in open(_lowerCAmelCase , 'r' ).readlines()] lowercase__ : int = [[reference] for reference in references] lowercase__ : Tuple = 0 for prediction, ground_truths in zip(_lowerCAmelCase , _lowerCAmelCase ): total += 1 em += metric_max_over_ground_truths(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) fa += metric_max_over_ground_truths(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) lowercase__ : str = 1_0_0.0 * em / total lowercase__ : str = 1_0_0.0 * fa / total logger.info(f"""F1: {fa:.2f}""" ) logger.info(f"""EM: {em:.2f}""" ) def a_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple ): '''simple docstring''' lowercase__ : Optional[Any] = args.k lowercase__ : Optional[int] = [line.strip() for line in open(_lowerCAmelCase , 'r' ).readlines()] lowercase__ : List[str] = [line.strip() for line in open(_lowerCAmelCase , 'r' ).readlines()] lowercase__ : List[Any] = 0 for hypo, reference in zip(_lowerCAmelCase , _lowerCAmelCase ): lowercase__ : Union[str, Any] = set(hypo.split('\t' )[:k] ) lowercase__ : Tuple = set(reference.split('\t' ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k lowercase__ : int = 1_0_0.0 * em / total logger.info(f"""Precision@{k}: {em: .2f}""" ) def a_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] ): '''simple docstring''' def strip_title(_lowerCAmelCase : List[Any] ): if title.startswith('"' ): lowercase__ : int = title[1:] if title.endswith('"' ): lowercase__ : Optional[int] = title[:-1] return title lowercase__ : List[Any] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( _lowerCAmelCase , return_tensors='pt' , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , )['input_ids'].to(args.device ) lowercase__ : Optional[Any] = rag_model.rag.question_encoder(_lowerCAmelCase ) lowercase__ : Optional[Any] = question_enc_outputs[0] lowercase__ : str = rag_model.retriever( _lowerCAmelCase , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors='pt' , ) lowercase__ : List[str] = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) lowercase__ : str = [] for docs in all_docs: lowercase__ : Tuple = [strip_title(_lowerCAmelCase ) for title in docs['title']] provenance_strings.append('\t'.join(_lowerCAmelCase ) ) return provenance_strings def a_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Union[str, Any] ): '''simple docstring''' with torch.no_grad(): lowercase__ : Optional[int] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( _lowerCAmelCase , return_tensors='pt' , padding=_lowerCAmelCase , truncation=_lowerCAmelCase ) lowercase__ : int = inputs_dict.input_ids.to(args.device ) lowercase__ : int = inputs_dict.attention_mask.to(args.device ) lowercase__ : Any = rag_model.generate( # rag_model overwrites generate _lowerCAmelCase , attention_mask=_lowerCAmelCase , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=_lowerCAmelCase , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) lowercase__ : List[str] = rag_model.retriever.generator_tokenizer.batch_decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) if args.print_predictions: for q, a in zip(_lowerCAmelCase , _lowerCAmelCase ): logger.info('Q: {} - A: {}'.format(_lowerCAmelCase , _lowerCAmelCase ) ) return answers def a_ ( ): '''simple docstring''' lowercase__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '--model_type' , choices=['rag_sequence', 'rag_token', 'bart'] , type=_lowerCAmelCase , help=( 'RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the' ' model_name_or_path' ) , ) parser.add_argument( '--index_name' , default=_lowerCAmelCase , choices=['exact', 'compressed', 'legacy'] , type=_lowerCAmelCase , help='RAG model retriever type' , ) parser.add_argument( '--index_path' , default=_lowerCAmelCase , type=_lowerCAmelCase , help='Path to the retrieval index' , ) parser.add_argument('--n_docs' , default=5 , type=_lowerCAmelCase , help='Number of retrieved docs' ) parser.add_argument( '--model_name_or_path' , default=_lowerCAmelCase , type=_lowerCAmelCase , required=_lowerCAmelCase , help='Path to pretrained checkpoints or model identifier from huggingface.co/models' , ) parser.add_argument( '--eval_mode' , choices=['e2e', 'retrieval'] , default='e2e' , type=_lowerCAmelCase , help=( 'Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates' ' precision@k.' ) , ) parser.add_argument('--k' , default=1 , type=_lowerCAmelCase , help='k for the precision@k calculation' ) parser.add_argument( '--evaluation_set' , default=_lowerCAmelCase , type=_lowerCAmelCase , required=_lowerCAmelCase , help='Path to a file containing evaluation samples' , ) parser.add_argument( '--gold_data_path' , default=_lowerCAmelCase , type=_lowerCAmelCase , required=_lowerCAmelCase , help='Path to a tab-separated file with gold samples' , ) parser.add_argument( '--gold_data_mode' , default='qa' , type=_lowerCAmelCase , choices=['qa', 'ans'] , help=( 'Format of the gold data file' 'qa - a single line in the following format: question [tab] answer_list' 'ans - a single line of the gold file contains the expected answer string' ) , ) parser.add_argument( '--predictions_path' , type=_lowerCAmelCase , default='predictions.txt' , help='Name of the predictions file, to be stored in the checkpoints directory' , ) parser.add_argument( '--eval_all_checkpoints' , action='store_true' , help='Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number' , ) parser.add_argument( '--eval_batch_size' , default=8 , type=_lowerCAmelCase , help='Batch size per GPU/CPU for evaluation.' , ) parser.add_argument( '--recalculate' , help='Recalculate predictions even if the prediction file exists' , action='store_true' , ) parser.add_argument( '--num_beams' , default=4 , type=_lowerCAmelCase , help='Number of beams to be used when generating answers' , ) parser.add_argument('--min_length' , default=1 , type=_lowerCAmelCase , help='Min length of the generated answers' ) parser.add_argument('--max_length' , default=50 , type=_lowerCAmelCase , help='Max length of the generated answers' ) parser.add_argument( '--print_predictions' , action='store_true' , help='If True, prints predictions while evaluating.' , ) parser.add_argument( '--print_docs' , action='store_true' , help='If True, prints docs retried while generating.' , ) lowercase__ : Optional[int] = parser.parse_args() lowercase__ : Tuple = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) return args def a_ ( _lowerCAmelCase : List[str] ): '''simple docstring''' lowercase__ : int = {} if args.model_type is None: lowercase__ : Union[str, Any] = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith('rag' ): lowercase__ : Tuple = RagTokenForGeneration if args.model_type == 'rag_token' else RagSequenceForGeneration lowercase__ : Tuple = args.n_docs if args.index_name is not None: lowercase__ : Any = args.index_name if args.index_path is not None: lowercase__ : Tuple = args.index_path else: lowercase__ : Tuple = BartForConditionalGeneration lowercase__ : Optional[Any] = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info('Evaluate the following checkpoints: %s' , _lowerCAmelCase ) lowercase__ : Dict = get_scores if args.eval_mode == 'e2e' else get_precision_at_k lowercase__ : Union[str, Any] = evaluate_batch_eae if args.eval_mode == 'e2e' else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info('Calculating metrics based on an existing predictions file: {}'.format(args.predictions_path ) ) score_fn(_lowerCAmelCase , args.predictions_path , args.gold_data_path ) continue logger.info('***** Running evaluation for {} *****'.format(_lowerCAmelCase ) ) logger.info(' Batch size = %d' , args.eval_batch_size ) logger.info(' Predictions will be stored under {}'.format(args.predictions_path ) ) if args.model_type.startswith('rag' ): lowercase__ : Tuple = RagRetriever.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) lowercase__ : List[str] = model_class.from_pretrained(_lowerCAmelCase , retriever=_lowerCAmelCase , **_lowerCAmelCase ) model.retriever.init_retrieval() else: lowercase__ : Optional[int] = model_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) model.to(args.device ) with open(args.evaluation_set , 'r' ) as eval_file, open(args.predictions_path , 'w' ) as preds_file: lowercase__ : Dict = [] for line in tqdm(_lowerCAmelCase ): questions.append(line.strip() ) if len(_lowerCAmelCase ) == args.eval_batch_size: lowercase__ : List[str] = evaluate_batch_fn(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) preds_file.write('\n'.join(_lowerCAmelCase ) + '\n' ) preds_file.flush() lowercase__ : Union[str, Any] = [] if len(_lowerCAmelCase ) > 0: lowercase__ : Union[str, Any] = evaluate_batch_fn(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) preds_file.write('\n'.join(_lowerCAmelCase ) ) preds_file.flush() score_fn(_lowerCAmelCase , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": _UpperCamelCase : Any = get_args() main(args)
645
"""simple docstring""" import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler _UpperCamelCase : int = 16 _UpperCamelCase : Union[str, Any] = 32 def a_ ( _lowerCAmelCase : Tuple ): '''simple docstring''' return int(x / 2**20 ) class UpperCAmelCase_ : def __enter__( self ) -> Union[str, Any]: gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero lowercase__ : List[str] = torch.cuda.memory_allocated() return self def __exit__( self , *a ) -> Any: gc.collect() torch.cuda.empty_cache() lowercase__ : Optional[Any] = torch.cuda.memory_allocated() lowercase__ : Union[str, Any] = torch.cuda.max_memory_allocated() lowercase__ : List[Any] = bamb(self.end - self.begin ) lowercase__ : List[Any] = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def a_ ( _lowerCAmelCase : Accelerator , _lowerCAmelCase : int = 16 , _lowerCAmelCase : str = "bert-base-cased" , _lowerCAmelCase : int = 320 , _lowerCAmelCase : int = 160 , ): '''simple docstring''' lowercase__ : List[Any] = AutoTokenizer.from_pretrained(_lowerCAmelCase ) lowercase__ : Union[str, Any] = load_dataset( 'glue' , 'mrpc' , split={'train': f"""train[:{n_train}]""", 'validation': f"""validation[:{n_val}]"""} ) def tokenize_function(_lowerCAmelCase : int ): # max_length=None => use the model max length (it's actually the default) lowercase__ : List[str] = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowercase__ : Union[str, Any] = datasets.map( _lowerCAmelCase , batched=_lowerCAmelCase , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=_lowerCAmelCase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ : Union[str, Any] = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(_lowerCAmelCase : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_lowerCAmelCase , padding='max_length' , max_length=128 , return_tensors='pt' ) return tokenizer.pad(_lowerCAmelCase , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. lowercase__ : Dict = DataLoader( tokenized_datasets['train'] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase ) lowercase__ : Dict = DataLoader( tokenized_datasets['validation'] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase ) return train_dataloader, eval_dataloader def a_ ( _lowerCAmelCase : Any , _lowerCAmelCase : List[str] ): '''simple docstring''' lowercase__ : List[Any] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ : Optional[int] = config['lr'] lowercase__ : Optional[Any] = int(config['num_epochs'] ) lowercase__ : Optional[Any] = int(config['seed'] ) lowercase__ : int = int(config['batch_size'] ) lowercase__ : Union[str, Any] = args.model_name_or_path set_seed(_lowerCAmelCase ) lowercase__ , lowercase__ : Tuple = get_dataloaders(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , args.n_train , args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ : List[Any] = AutoModelForSequenceClassification.from_pretrained(_lowerCAmelCase , return_dict=_lowerCAmelCase ) # Instantiate optimizer lowercase__ : List[Any] = ( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowercase__ : Optional[Any] = optimizer_cls(params=model.parameters() , lr=_lowerCAmelCase ) if accelerator.state.deepspeed_plugin is not None: lowercase__ : Optional[Any] = accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: lowercase__ : List[Any] = 1 lowercase__ : List[Any] = (len(_lowerCAmelCase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowercase__ : Optional[int] = get_linear_schedule_with_warmup( optimizer=_lowerCAmelCase , num_warmup_steps=0 , num_training_steps=_lowerCAmelCase , ) else: lowercase__ : Tuple = DummyScheduler(_lowerCAmelCase , total_num_steps=_lowerCAmelCase , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Dict = accelerator.prepare( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # We need to keep track of how many total steps we have iterated over lowercase__ : Optional[int] = 0 # We also need to keep track of the stating epoch so files are named properly lowercase__ : Tuple = 0 # Now we train the model lowercase__ : Optional[Any] = {} for epoch in range(_lowerCAmelCase , _lowerCAmelCase ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(_lowerCAmelCase ): lowercase__ : List[Any] = model(**_lowerCAmelCase ) lowercase__ : Dict = outputs.loss lowercase__ : int = loss / gradient_accumulation_steps accelerator.backward(_lowerCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print('Memory before entering the train : {}'.format(bamb(tracemalloc.begin ) ) ) accelerator.print('Memory consumed at the end of the train (end-begin): {}'.format(tracemalloc.used ) ) accelerator.print('Peak Memory consumed during the train (max-begin): {}'.format(tracemalloc.peaked ) ) accelerator.print( 'Total Peak Memory consumed during the train (max): {}'.format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) lowercase__ : int = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[f"""epoch-{epoch}"""] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , 'peak_memory_utilization.json' ) , 'w' ) as f: json.dump(_lowerCAmelCase , _lowerCAmelCase ) def a_ ( ): '''simple docstring''' lowercase__ : int = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path' , type=_lowerCAmelCase , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=_lowerCAmelCase , ) parser.add_argument( '--output_dir' , type=_lowerCAmelCase , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--peak_memory_upper_bound' , type=_lowerCAmelCase , default=_lowerCAmelCase , help='The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.' , ) parser.add_argument( '--n_train' , type=_lowerCAmelCase , default=320 , help='Number of training examples to use.' , ) parser.add_argument( '--n_val' , type=_lowerCAmelCase , default=160 , help='Number of validation examples to use.' , ) parser.add_argument( '--num_epochs' , type=_lowerCAmelCase , default=1 , help='Number of train epochs.' , ) lowercase__ : Any = parser.parse_args() lowercase__ : Optional[Any] = {'lr': 2E-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16} training_function(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": main()
645
1
"""simple docstring""" import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def a_ ( _lowerCAmelCase : Tuple ): '''simple docstring''' lowercase__ : str = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(_lowerCAmelCase , _lowerCAmelCase ) def a_ ( _lowerCAmelCase : Optional[Any] ): '''simple docstring''' lowercase__ , lowercase__ : Optional[Any] = emb.weight.shape lowercase__ : Optional[int] = nn.Linear(_lowerCAmelCase , _lowerCAmelCase , bias=_lowerCAmelCase ) lowercase__ : Dict = emb.weight.data return lin_layer def a_ ( _lowerCAmelCase : Union[str, Any] ): '''simple docstring''' lowercase__ : Optional[Any] = torch.load(_lowerCAmelCase , map_location='cpu' ) lowercase__ : Optional[int] = mam_aaa['args'] or mam_aaa['cfg']['model'] lowercase__ : Union[str, Any] = mam_aaa['model'] remove_ignore_keys_(_lowerCAmelCase ) lowercase__ : Tuple = state_dict['encoder.embed_tokens.weight'].shape[0] lowercase__ : Optional[int] = MaMaaaConfig( vocab_size=_lowerCAmelCase , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='relu' , ) lowercase__ : List[Any] = state_dict['decoder.embed_tokens.weight'] lowercase__ : List[str] = MaMaaaForConditionalGeneration(_lowerCAmelCase ) model.model.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) lowercase__ : Optional[int] = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": _UpperCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument("fairseq_path", type=str, help="path to a model.pt on local filesystem.") parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") _UpperCamelCase : List[Any] = parser.parse_args() _UpperCamelCase : Tuple = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
645
"""simple docstring""" def a_ ( _lowerCAmelCase : str ): '''simple docstring''' lowercase__ : Any = [0] * len(_lowerCAmelCase ) for i in range(1 , len(_lowerCAmelCase ) ): # use last results for better performance - dynamic programming lowercase__ : List[str] = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: lowercase__ : Dict = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 lowercase__ : Union[str, Any] = j return prefix_result def a_ ( _lowerCAmelCase : str ): '''simple docstring''' return max(prefix_function(_lowerCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod()
645
1
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class UpperCAmelCase_ ( unittest.TestCase): def __init__( self , a , a=7 , a=3 , a=3_0 , a=4_0_0 , a=True , a=None , a=True , a=[0.5, 0.5, 0.5] , a=[0.5, 0.5, 0.5] , a=True , a=1 / 2_5_5 , a=True , ) -> Union[str, Any]: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p lowercase__ : str = size if size is not None else {'shortest_edge': 1_8, 'longest_edge': 1_3_3_3} lowercase__ : str = parent lowercase__ : Optional[Any] = batch_size lowercase__ : str = num_channels lowercase__ : Optional[Any] = min_resolution lowercase__ : int = max_resolution lowercase__ : Any = do_resize lowercase__ : Dict = size lowercase__ : Union[str, Any] = do_normalize lowercase__ : Optional[Any] = image_mean lowercase__ : List[Any] = image_std lowercase__ : int = do_rescale lowercase__ : str = rescale_factor lowercase__ : List[Any] = do_pad def _UpperCAmelCase ( self ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _UpperCAmelCase ( self , a , a=False ) -> int: if not batched: lowercase__ : List[str] = image_inputs[0] if isinstance(a , Image.Image ): lowercase__ , lowercase__ : str = image.size else: lowercase__ , lowercase__ : List[Any] = image.shape[1], image.shape[2] if w < h: lowercase__ : str = int(self.size['shortest_edge'] * h / w ) lowercase__ : List[str] = self.size['shortest_edge'] elif w > h: lowercase__ : str = self.size['shortest_edge'] lowercase__ : Union[str, Any] = int(self.size['shortest_edge'] * w / h ) else: lowercase__ : int = self.size['shortest_edge'] lowercase__ : int = self.size['shortest_edge'] else: lowercase__ : Union[str, Any] = [] for image in image_inputs: lowercase__ , lowercase__ : Any = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowercase__ : Union[str, Any] = max(a , key=lambda a : item[0] )[0] lowercase__ : Optional[Any] = max(a , key=lambda a : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCAmelCase_ ( _a , unittest.TestCase): lowerCamelCase__ : Any = DeformableDetrImageProcessor if is_vision_available() else None def _UpperCAmelCase ( self ) -> Any: lowercase__ : Union[str, Any] = DeformableDetrImageProcessingTester(self ) @property def _UpperCAmelCase ( self ) -> List[Any]: return self.image_processor_tester.prepare_image_processor_dict() def _UpperCAmelCase ( self ) -> int: lowercase__ : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a , 'image_mean' ) ) self.assertTrue(hasattr(a , 'image_std' ) ) self.assertTrue(hasattr(a , 'do_normalize' ) ) self.assertTrue(hasattr(a , 'do_resize' ) ) self.assertTrue(hasattr(a , 'do_rescale' ) ) self.assertTrue(hasattr(a , 'do_pad' ) ) self.assertTrue(hasattr(a , 'size' ) ) def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 1_8, 'longest_edge': 1_3_3_3} ) self.assertEqual(image_processor.do_pad , a ) lowercase__ : Optional[int] = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=a ) self.assertEqual(image_processor.size , {'shortest_edge': 4_2, 'longest_edge': 8_4} ) self.assertEqual(image_processor.do_pad , a ) def _UpperCAmelCase ( self ) -> Any: pass def _UpperCAmelCase ( self ) -> str: # Initialize image_processing lowercase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a ) for image in image_inputs: self.assertIsInstance(a , Image.Image ) # Test not batched input lowercase__ : Any = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values lowercase__ , lowercase__ : List[str] = self.image_processor_tester.get_expected_values(a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase__ , lowercase__ : Dict = self.image_processor_tester.get_expected_values(a , batched=a ) lowercase__ : Optional[int] = image_processing(a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _UpperCAmelCase ( self ) -> Union[str, Any]: # Initialize image_processing lowercase__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , numpify=a ) for image in image_inputs: self.assertIsInstance(a , np.ndarray ) # Test not batched input lowercase__ : Optional[int] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values lowercase__ , lowercase__ : Dict = self.image_processor_tester.get_expected_values(a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase__ : Tuple = image_processing(a , return_tensors='pt' ).pixel_values lowercase__ , lowercase__ : List[Any] = self.image_processor_tester.get_expected_values(a , batched=a ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _UpperCAmelCase ( self ) -> List[Any]: # Initialize image_processing lowercase__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , torchify=a ) for image in image_inputs: self.assertIsInstance(a , torch.Tensor ) # Test not batched input lowercase__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values lowercase__ , lowercase__ : List[Any] = self.image_processor_tester.get_expected_values(a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase__ : List[str] = image_processing(a , return_tensors='pt' ).pixel_values lowercase__ , lowercase__ : Optional[Any] = self.image_processor_tester.get_expected_values(a , batched=a ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _UpperCAmelCase ( self ) -> Any: # prepare image and target lowercase__ : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: lowercase__ : Dict = json.loads(f.read() ) lowercase__ : Tuple = {'image_id': 3_9_7_6_9, 'annotations': target} # encode them lowercase__ : Optional[int] = DeformableDetrImageProcessor() lowercase__ : Tuple = image_processing(images=a , annotations=a , return_tensors='pt' ) # verify pixel values lowercase__ : int = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['pixel_values'].shape , a ) lowercase__ : Dict = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , a , atol=1e-4 ) ) # verify area lowercase__ : Any = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , a ) ) # verify boxes lowercase__ : List[str] = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , a ) lowercase__ : Optional[int] = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , a , atol=1e-3 ) ) # verify image_id lowercase__ : Any = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , a ) ) # verify is_crowd lowercase__ : List[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , a ) ) # verify class_labels lowercase__ : str = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , a ) ) # verify orig_size lowercase__ : Tuple = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , a ) ) # verify size lowercase__ : Union[str, Any] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , a ) ) @slow def _UpperCAmelCase ( self ) -> Optional[Any]: # prepare image, target and masks_path lowercase__ : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: lowercase__ : Optional[int] = json.loads(f.read() ) lowercase__ : int = {'file_name': '000000039769.png', 'image_id': 3_9_7_6_9, 'segments_info': target} lowercase__ : Optional[Any] = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them lowercase__ : int = DeformableDetrImageProcessor(format='coco_panoptic' ) lowercase__ : Tuple = image_processing(images=a , annotations=a , masks_path=a , return_tensors='pt' ) # verify pixel values lowercase__ : int = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['pixel_values'].shape , a ) lowercase__ : Union[str, Any] = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , a , atol=1e-4 ) ) # verify area lowercase__ : Dict = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , a ) ) # verify boxes lowercase__ : List[Any] = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , a ) lowercase__ : Optional[Any] = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , a , atol=1e-3 ) ) # verify image_id lowercase__ : Dict = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , a ) ) # verify is_crowd lowercase__ : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , a ) ) # verify class_labels lowercase__ : int = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , a ) ) # verify masks lowercase__ : List[Any] = 8_2_2_8_7_3 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , a ) # verify orig_size lowercase__ : Optional[Any] = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , a ) ) # verify size lowercase__ : List[str] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , a ) )
645
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class UpperCAmelCase_ ( unittest.TestCase): def __init__( self , a , a=7 , a=3 , a=1_8 , a=3_0 , a=4_0_0 , a=True , a=None , a=True , a=None , a=True , ) -> List[str]: lowercase__ : Tuple = size if size is not None else {'shortest_edge': 2_0} lowercase__ : Union[str, Any] = crop_size if crop_size is not None else {'height': 1_8, 'width': 1_8} lowercase__ : Optional[int] = parent lowercase__ : Optional[int] = batch_size lowercase__ : str = num_channels lowercase__ : Any = image_size lowercase__ : Optional[Any] = min_resolution lowercase__ : int = max_resolution lowercase__ : List[Any] = do_resize lowercase__ : List[str] = size lowercase__ : str = do_center_crop lowercase__ : List[Any] = crop_size lowercase__ : Union[str, Any] = do_flip_channel_order def _UpperCAmelCase ( self ) -> int: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class UpperCAmelCase_ ( _a , unittest.TestCase): lowerCamelCase__ : Optional[Any] = MobileViTImageProcessor if is_vision_available() else None def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : Tuple = MobileViTImageProcessingTester(self ) @property def _UpperCAmelCase ( self ) -> int: return self.image_processor_tester.prepare_image_processor_dict() def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a , 'do_resize' ) ) self.assertTrue(hasattr(a , 'size' ) ) self.assertTrue(hasattr(a , 'do_center_crop' ) ) self.assertTrue(hasattr(a , 'center_crop' ) ) self.assertTrue(hasattr(a , 'do_flip_channel_order' ) ) def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 2_0} ) self.assertEqual(image_processor.crop_size , {'height': 1_8, 'width': 1_8} ) lowercase__ : str = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {'shortest_edge': 4_2} ) self.assertEqual(image_processor.crop_size , {'height': 8_4, 'width': 8_4} ) def _UpperCAmelCase ( self ) -> Tuple: pass def _UpperCAmelCase ( self ) -> str: # Initialize image_processing lowercase__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a ) for image in image_inputs: self.assertIsInstance(a , Image.Image ) # Test not batched input lowercase__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowercase__ : List[Any] = image_processing(a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def _UpperCAmelCase ( self ) -> Tuple: # Initialize image_processing lowercase__ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , numpify=a ) for image in image_inputs: self.assertIsInstance(a , np.ndarray ) # Test not batched input lowercase__ : List[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowercase__ : Any = image_processing(a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def _UpperCAmelCase ( self ) -> Dict: # Initialize image_processing lowercase__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , torchify=a ) for image in image_inputs: self.assertIsInstance(a , torch.Tensor ) # Test not batched input lowercase__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowercase__ : Tuple = image_processing(a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
645
1
"""simple docstring""" import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class UpperCAmelCase_ ( _a): def __init__( self ) -> Any: lowercase__ : Tuple = [] def _UpperCAmelCase ( self , a , a , a , **a ) -> Any: self.events.append('on_init_end' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Optional[int]: self.events.append('on_train_begin' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> List[str]: self.events.append('on_train_end' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> int: self.events.append('on_epoch_begin' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Optional[Any]: self.events.append('on_epoch_end' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> int: self.events.append('on_step_begin' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> str: self.events.append('on_step_end' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> int: self.events.append('on_evaluate' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Tuple: self.events.append('on_predict' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Union[str, Any]: self.events.append('on_save' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> List[str]: self.events.append('on_log' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Any: self.events.append('on_prediction_step' ) @require_torch class UpperCAmelCase_ ( unittest.TestCase): def _UpperCAmelCase ( self ) -> str: lowercase__ : str = tempfile.mkdtemp() def _UpperCAmelCase ( self ) -> Dict: shutil.rmtree(self.output_dir ) def _UpperCAmelCase ( self , a=0 , a=0 , a=6_4 , a=6_4 , a=None , a=False , **a ) -> int: # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. lowercase__ : str = RegressionDataset(length=a ) lowercase__ : Any = RegressionDataset(length=a ) lowercase__ : Optional[Any] = RegressionModelConfig(a=a , b=a ) lowercase__ : Union[str, Any] = RegressionPreTrainedModel(a ) lowercase__ : Tuple = TrainingArguments(self.output_dir , disable_tqdm=a , report_to=[] , **a ) return Trainer( a , a , train_dataset=a , eval_dataset=a , callbacks=a , ) def _UpperCAmelCase ( self , a , a ) -> Union[str, Any]: self.assertEqual(len(a ) , len(a ) ) # Order doesn't matter lowercase__ : Optional[int] = sorted(a , key=lambda a : cb.__name__ if isinstance(a , a ) else cb.__class__.__name__ ) lowercase__ : Tuple = sorted(a , key=lambda a : cb.__name__ if isinstance(a , a ) else cb.__class__.__name__ ) for cba, cba in zip(a , a ): if isinstance(a , a ) and isinstance(a , a ): self.assertEqual(a , a ) elif isinstance(a , a ) and not isinstance(a , a ): self.assertEqual(a , cba.__class__ ) elif not isinstance(a , a ) and isinstance(a , a ): self.assertEqual(cba.__class__ , a ) else: self.assertEqual(a , a ) def _UpperCAmelCase ( self , a ) -> Optional[Any]: lowercase__ : Dict = ['on_init_end', 'on_train_begin'] lowercase__ : List[Any] = 0 lowercase__ : Optional[int] = len(trainer.get_eval_dataloader() ) lowercase__ : Tuple = ['on_prediction_step'] * len(trainer.get_eval_dataloader() ) + ['on_log', 'on_evaluate'] for _ in range(trainer.state.num_train_epochs ): expected_events.append('on_epoch_begin' ) for _ in range(a ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append('on_log' ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append('on_save' ) expected_events.append('on_epoch_end' ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : int = self.get_trainer() lowercase__ : str = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) # Callbacks passed at init are added to the default callbacks lowercase__ : str = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback lowercase__ : List[Any] = self.get_trainer(disable_tqdm=a ) lowercase__ : Optional[Any] = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) def _UpperCAmelCase ( self ) -> Any: lowercase__ : int = DEFAULT_CALLBACKS.copy() + [ProgressCallback] lowercase__ : List[str] = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(a ) expected_callbacks.remove(a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) lowercase__ : Optional[Any] = self.get_trainer() lowercase__ : List[Any] = trainer.pop_callback(a ) self.assertEqual(cb.__class__ , a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) trainer.add_callback(a ) expected_callbacks.insert(0 , a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) # We can also add, pop, or remove by instance lowercase__ : int = self.get_trainer() lowercase__ : List[str] = trainer.callback_handler.callbacks[0] trainer.remove_callback(a ) expected_callbacks.remove(a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) lowercase__ : Tuple = self.get_trainer() lowercase__ : Dict = trainer.callback_handler.callbacks[0] lowercase__ : Union[str, Any] = trainer.pop_callback(a ) self.assertEqual(a , a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) trainer.add_callback(a ) expected_callbacks.insert(0 , a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) def _UpperCAmelCase ( self ) -> Tuple: import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action='ignore' , category=a ) lowercase__ : Optional[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() lowercase__ : Any = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) # Independent log/save/eval lowercase__ : List[str] = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() lowercase__ : int = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) lowercase__ : Union[str, Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() lowercase__ : Union[str, Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) lowercase__ : List[str] = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy='steps' ) trainer.train() lowercase__ : Optional[int] = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) lowercase__ : int = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy='epoch' ) trainer.train() lowercase__ : str = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) # A bit of everything lowercase__ : Any = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=1_0 , eval_steps=5 , evaluation_strategy='steps' , ) trainer.train() lowercase__ : Any = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) # warning should be emitted for duplicated callbacks with patch('transformers.trainer_callback.logger.warning' ) as warn_mock: lowercase__ : str = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(a ) in warn_mock.call_args[0][0]
645
"""simple docstring""" import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class UpperCAmelCase_ ( unittest.TestCase): def __init__( self , a , a=1_3 , a=7 , a=True , a=True , a=True , a=True , a=9_9 , a=3_2 , a=5 , a=4 , a=3_7 , a="gelu" , a=0.1 , a=0.1 , a=5_1_2 , a=1_6 , a=2 , a=0.02 , a=4 , ) -> Dict: lowercase__ : Optional[Any] = parent lowercase__ : Dict = batch_size lowercase__ : List[Any] = seq_length lowercase__ : int = is_training lowercase__ : str = use_attention_mask lowercase__ : Dict = use_token_type_ids lowercase__ : Optional[int] = use_labels lowercase__ : Tuple = vocab_size lowercase__ : List[str] = hidden_size lowercase__ : Union[str, Any] = num_hidden_layers lowercase__ : int = num_attention_heads lowercase__ : Dict = intermediate_size lowercase__ : List[str] = hidden_act lowercase__ : Dict = hidden_dropout_prob lowercase__ : Tuple = attention_probs_dropout_prob lowercase__ : List[str] = max_position_embeddings lowercase__ : int = type_vocab_size lowercase__ : List[str] = type_sequence_label_size lowercase__ : Union[str, Any] = initializer_range lowercase__ : Optional[int] = num_choices def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ : str = None if self.use_attention_mask: lowercase__ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ : List[str] = None if self.use_token_type_ids: lowercase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__ : Any = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _UpperCAmelCase ( self ) -> Any: lowercase__ : Optional[int] = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ : Tuple = config_and_inputs lowercase__ : Union[str, Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class UpperCAmelCase_ ( _a , unittest.TestCase): lowerCamelCase__ : Tuple = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : Union[str, Any] = FlaxAlbertModelTester(self ) @slow def _UpperCAmelCase ( self ) -> str: for model_class_name in self.all_model_classes: lowercase__ : str = model_class_name.from_pretrained('albert-base-v2' ) lowercase__ : Tuple = model(np.ones((1, 1) ) ) self.assertIsNotNone(a ) @require_flax class UpperCAmelCase_ ( unittest.TestCase): @slow def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : str = FlaxAlbertModel.from_pretrained('albert-base-v2' ) lowercase__ : Optional[int] = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) lowercase__ : Optional[Any] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) lowercase__ : Any = model(a , attention_mask=a )[0] lowercase__ : Tuple = (1, 1_1, 7_6_8) self.assertEqual(output.shape , a ) lowercase__ : Optional[Any] = np.array( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , a , atol=1e-4 ) )
645
1
"""simple docstring""" import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler _UpperCamelCase : int = 16 _UpperCamelCase : Union[str, Any] = 32 def a_ ( _lowerCAmelCase : Tuple ): '''simple docstring''' return int(x / 2**20 ) class UpperCAmelCase_ : def __enter__( self ) -> Union[str, Any]: gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero lowercase__ : List[str] = torch.cuda.memory_allocated() return self def __exit__( self , *a ) -> Any: gc.collect() torch.cuda.empty_cache() lowercase__ : Optional[Any] = torch.cuda.memory_allocated() lowercase__ : Union[str, Any] = torch.cuda.max_memory_allocated() lowercase__ : List[Any] = bamb(self.end - self.begin ) lowercase__ : List[Any] = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def a_ ( _lowerCAmelCase : Accelerator , _lowerCAmelCase : int = 16 , _lowerCAmelCase : str = "bert-base-cased" , _lowerCAmelCase : int = 320 , _lowerCAmelCase : int = 160 , ): '''simple docstring''' lowercase__ : List[Any] = AutoTokenizer.from_pretrained(_lowerCAmelCase ) lowercase__ : Union[str, Any] = load_dataset( 'glue' , 'mrpc' , split={'train': f"""train[:{n_train}]""", 'validation': f"""validation[:{n_val}]"""} ) def tokenize_function(_lowerCAmelCase : int ): # max_length=None => use the model max length (it's actually the default) lowercase__ : List[str] = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowercase__ : Union[str, Any] = datasets.map( _lowerCAmelCase , batched=_lowerCAmelCase , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=_lowerCAmelCase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ : Union[str, Any] = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(_lowerCAmelCase : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_lowerCAmelCase , padding='max_length' , max_length=128 , return_tensors='pt' ) return tokenizer.pad(_lowerCAmelCase , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. lowercase__ : Dict = DataLoader( tokenized_datasets['train'] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase ) lowercase__ : Dict = DataLoader( tokenized_datasets['validation'] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase ) return train_dataloader, eval_dataloader def a_ ( _lowerCAmelCase : Any , _lowerCAmelCase : List[str] ): '''simple docstring''' lowercase__ : List[Any] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ : Optional[int] = config['lr'] lowercase__ : Optional[Any] = int(config['num_epochs'] ) lowercase__ : Optional[Any] = int(config['seed'] ) lowercase__ : int = int(config['batch_size'] ) lowercase__ : Union[str, Any] = args.model_name_or_path set_seed(_lowerCAmelCase ) lowercase__ , lowercase__ : Tuple = get_dataloaders(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , args.n_train , args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ : List[Any] = AutoModelForSequenceClassification.from_pretrained(_lowerCAmelCase , return_dict=_lowerCAmelCase ) # Instantiate optimizer lowercase__ : List[Any] = ( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowercase__ : Optional[Any] = optimizer_cls(params=model.parameters() , lr=_lowerCAmelCase ) if accelerator.state.deepspeed_plugin is not None: lowercase__ : Optional[Any] = accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: lowercase__ : List[Any] = 1 lowercase__ : List[Any] = (len(_lowerCAmelCase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowercase__ : Optional[int] = get_linear_schedule_with_warmup( optimizer=_lowerCAmelCase , num_warmup_steps=0 , num_training_steps=_lowerCAmelCase , ) else: lowercase__ : Tuple = DummyScheduler(_lowerCAmelCase , total_num_steps=_lowerCAmelCase , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Dict = accelerator.prepare( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # We need to keep track of how many total steps we have iterated over lowercase__ : Optional[int] = 0 # We also need to keep track of the stating epoch so files are named properly lowercase__ : Tuple = 0 # Now we train the model lowercase__ : Optional[Any] = {} for epoch in range(_lowerCAmelCase , _lowerCAmelCase ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(_lowerCAmelCase ): lowercase__ : List[Any] = model(**_lowerCAmelCase ) lowercase__ : Dict = outputs.loss lowercase__ : int = loss / gradient_accumulation_steps accelerator.backward(_lowerCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print('Memory before entering the train : {}'.format(bamb(tracemalloc.begin ) ) ) accelerator.print('Memory consumed at the end of the train (end-begin): {}'.format(tracemalloc.used ) ) accelerator.print('Peak Memory consumed during the train (max-begin): {}'.format(tracemalloc.peaked ) ) accelerator.print( 'Total Peak Memory consumed during the train (max): {}'.format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) lowercase__ : int = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[f"""epoch-{epoch}"""] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , 'peak_memory_utilization.json' ) , 'w' ) as f: json.dump(_lowerCAmelCase , _lowerCAmelCase ) def a_ ( ): '''simple docstring''' lowercase__ : int = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path' , type=_lowerCAmelCase , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=_lowerCAmelCase , ) parser.add_argument( '--output_dir' , type=_lowerCAmelCase , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--peak_memory_upper_bound' , type=_lowerCAmelCase , default=_lowerCAmelCase , help='The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.' , ) parser.add_argument( '--n_train' , type=_lowerCAmelCase , default=320 , help='Number of training examples to use.' , ) parser.add_argument( '--n_val' , type=_lowerCAmelCase , default=160 , help='Number of validation examples to use.' , ) parser.add_argument( '--num_epochs' , type=_lowerCAmelCase , default=1 , help='Number of train epochs.' , ) lowercase__ : Any = parser.parse_args() lowercase__ : Optional[Any] = {'lr': 2E-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16} training_function(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": main()
645
"""simple docstring""" from collections.abc import Sequence def a_ ( _lowerCAmelCase : Sequence[float] , _lowerCAmelCase : float ): '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(_lowerCAmelCase ) ) def a_ ( _lowerCAmelCase : Sequence[float] , _lowerCAmelCase : float ): '''simple docstring''' lowercase__ : int = 0.0 for coeff in reversed(_lowerCAmelCase ): lowercase__ : List[Any] = result * x + coeff return result if __name__ == "__main__": _UpperCamelCase : int = (0.0, 0.0, 5.0, 9.3, 7.0) _UpperCamelCase : Dict = 1_0.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
645
1
"""simple docstring""" from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class UpperCAmelCase_ ( _a): def _UpperCAmelCase ( self ) -> Any: lowercase__ : Dict = SMALL_MODEL_IDENTIFIER lowercase__ : Dict = 'pt' lowercase__ : Union[str, Any] = 'tf' def _UpperCAmelCase ( self , a ) -> int: lowercase__ : Optional[Any] = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(a ) def _UpperCAmelCase ( self , a ) -> int: lowercase__ : Any = TFAutoModel.from_pretrained(self.test_model , from_pt=a ) model_tf.save_pretrained(a ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : Any = 'mock_framework' # Framework provided - return whatever the user provides lowercase__ : Tuple = FeaturesManager.determine_framework(self.test_model , a ) self.assertEqual(a , a ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(a ) lowercase__ : Dict = FeaturesManager.determine_framework(a , a ) self.assertEqual(a , a ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(a ) lowercase__ : Optional[Any] = FeaturesManager.determine_framework(a , a ) self.assertEqual(a , a ) def _UpperCAmelCase ( self ) -> Optional[int]: # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(a ) lowercase__ : str = FeaturesManager.determine_framework(a ) self.assertEqual(a , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(a ) lowercase__ : List[Any] = FeaturesManager.determine_framework(a ) self.assertEqual(a , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(a ): lowercase__ : List[str] = FeaturesManager.determine_framework(a ) def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Optional[int] = MagicMock(return_value=a ) with patch('transformers.onnx.features.is_tf_available' , a ): lowercase__ : Tuple = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(a , self.framework_pt ) # PyTorch not in environment -> use TensorFlow lowercase__ : Dict = MagicMock(return_value=a ) with patch('transformers.onnx.features.is_torch_available' , a ): lowercase__ : List[Any] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(a , self.framework_tf ) # Both in environment -> use PyTorch lowercase__ : Union[str, Any] = MagicMock(return_value=a ) lowercase__ : Tuple = MagicMock(return_value=a ) with patch('transformers.onnx.features.is_tf_available' , a ), patch( 'transformers.onnx.features.is_torch_available' , a ): lowercase__ : List[str] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(a , self.framework_pt ) # Both not in environment -> raise error lowercase__ : Union[str, Any] = MagicMock(return_value=a ) lowercase__ : List[Any] = MagicMock(return_value=a ) with patch('transformers.onnx.features.is_tf_available' , a ), patch( 'transformers.onnx.features.is_torch_available' , a ): with self.assertRaises(a ): lowercase__ : Any = FeaturesManager.determine_framework(self.test_model )
645
"""simple docstring""" import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path _UpperCamelCase : Any = [ {"dataset": "wikipedia", "config_name": "20220301.de"}, {"dataset": "wikipedia", "config_name": "20220301.en"}, {"dataset": "wikipedia", "config_name": "20220301.fr"}, {"dataset": "wikipedia", "config_name": "20220301.frr"}, {"dataset": "wikipedia", "config_name": "20220301.it"}, {"dataset": "wikipedia", "config_name": "20220301.simple"}, {"dataset": "snli", "config_name": "plain_text"}, {"dataset": "eli5", "config_name": "LFQA_reddit"}, {"dataset": "wiki40b", "config_name": "en"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.compressed"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.no_index"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.multiset.no_index"}, {"dataset": "natural_questions", "config_name": "default"}, ] def a_ ( _lowerCAmelCase : Optional[Any]=True ): '''simple docstring''' if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=_a)) class UpperCAmelCase_ ( _a): lowerCamelCase__ : str = None lowerCamelCase__ : Optional[Any] = None def _UpperCAmelCase ( self , a , a ) -> List[Any]: with TemporaryDirectory() as tmp_dir: lowercase__ : List[str] = dataset_module_factory(a , cache_dir=a ) lowercase__ : List[Any] = import_main_class(dataset_module.module_path , dataset=a ) lowercase__ : DatasetBuilder = builder_cls( cache_dir=a , config_name=a , hash=dataset_module.hash , ) lowercase__ : Union[str, Any] = '/'.join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=a ).replace(os.sep , '/' ), config.DATASET_INFO_FILENAME, ] ) lowercase__ : Union[str, Any] = cached_path(a , cache_dir=a ) self.assertTrue(os.path.exists(a ) ) @pytest.mark.integration def a_ ( _lowerCAmelCase : str ): '''simple docstring''' lowercase__ : Union[str, Any] = tmp_path_factory.mktemp('test_hf_gcp' ) / 'test_wikipedia_simple' lowercase__ : int = dataset_module_factory('wikipedia' , cache_dir=_lowerCAmelCase ) lowercase__ : Optional[int] = import_main_class(dataset_module.module_path ) lowercase__ : DatasetBuilder = builder_cls( cache_dir=_lowerCAmelCase , config_name='20220301.frr' , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam lowercase__ : Optional[int] = None builder_instance.download_and_prepare() lowercase__ : Optional[int] = builder_instance.as_dataset() assert ds @pytest.mark.integration def a_ ( _lowerCAmelCase : Optional[Any] ): '''simple docstring''' lowercase__ : Optional[int] = dataset_module_factory('wikipedia' , cache_dir=_lowerCAmelCase ) lowercase__ : List[str] = import_main_class(dataset_module.module_path , dataset=_lowerCAmelCase ) lowercase__ : DatasetBuilder = builder_cls( cache_dir=_lowerCAmelCase , config_name='20220301.frr' , hash=dataset_module.hash , ) lowercase__ : Union[str, Any] = builder_instance.as_streaming_dataset() assert ds assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert "train" in ds assert isinstance(ds['train'] , _lowerCAmelCase ) assert next(iter(ds['train'] ) )
645
1
"""simple docstring""" import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _UpperCamelCase : Union[str, Any] = 16 _UpperCamelCase : Optional[Any] = 32 def a_ ( _lowerCAmelCase : Accelerator , _lowerCAmelCase : DatasetDict , _lowerCAmelCase : List[int] , _lowerCAmelCase : List[int] , _lowerCAmelCase : int = 16 ): '''simple docstring''' lowercase__ : int = AutoTokenizer.from_pretrained('bert-base-cased' ) lowercase__ : str = DatasetDict( { 'train': dataset['train'].select(_lowerCAmelCase ), 'validation': dataset['train'].select(_lowerCAmelCase ), 'test': dataset['validation'], } ) def tokenize_function(_lowerCAmelCase : Dict ): # max_length=None => use the model max length (it's actually the default) lowercase__ : List[Any] = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase__ : Union[str, Any] = datasets.map( _lowerCAmelCase , batched=_lowerCAmelCase , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ : Any = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(_lowerCAmelCase : List[str] ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase__ : Tuple = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase__ : Optional[Any] = 16 elif accelerator.mixed_precision != "no": lowercase__ : Dict = 8 else: lowercase__ : Optional[int] = None return tokenizer.pad( _lowerCAmelCase , padding='longest' , max_length=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_tensors='pt' , ) # Instantiate dataloaders. lowercase__ : List[str] = DataLoader( tokenized_datasets['train'] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase ) lowercase__ : str = DataLoader( tokenized_datasets['validation'] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase ) lowercase__ : Dict = DataLoader( tokenized_datasets['test'] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase ) return train_dataloader, eval_dataloader, test_dataloader def a_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict ): '''simple docstring''' lowercase__ : Optional[Any] = [] # Download the dataset lowercase__ : Optional[Any] = load_dataset('glue' , 'mrpc' ) # Create our splits lowercase__ : List[str] = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator lowercase__ : List[str] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ : int = config['lr'] lowercase__ : Optional[int] = int(config['num_epochs'] ) lowercase__ : Optional[Any] = int(config['seed'] ) lowercase__ : Optional[int] = int(config['batch_size'] ) lowercase__ : Union[str, Any] = evaluate.load('glue' , 'mrpc' ) # If the batch size is too big we use gradient accumulation lowercase__ : Tuple = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: lowercase__ : Dict = batch_size // MAX_GPU_BATCH_SIZE lowercase__ : Dict = MAX_GPU_BATCH_SIZE set_seed(_lowerCAmelCase ) # New Code # # Create our folds: lowercase__ : Optional[Any] = kfold.split(np.zeros(datasets['train'].num_rows ) , datasets['train']['label'] ) lowercase__ : Optional[Any] = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(_lowerCAmelCase ): lowercase__ , lowercase__ , lowercase__ : Optional[int] = get_fold_dataloaders( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ : Any = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=_lowerCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase__ : Any = model.to(accelerator.device ) # Instantiate optimizer lowercase__ : Tuple = AdamW(params=model.parameters() , lr=_lowerCAmelCase ) # Instantiate scheduler lowercase__ : Dict = get_linear_schedule_with_warmup( optimizer=_lowerCAmelCase , num_warmup_steps=100 , num_training_steps=(len(_lowerCAmelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : List[str] = accelerator.prepare( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Now we train the model for epoch in range(_lowerCAmelCase ): model.train() for step, batch in enumerate(_lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowercase__ : List[str] = model(**_lowerCAmelCase ) lowercase__ : Dict = outputs.loss lowercase__ : List[Any] = loss / gradient_accumulation_steps accelerator.backward(_lowerCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ : str = model(**_lowerCAmelCase ) lowercase__ : str = outputs.logits.argmax(dim=-1 ) lowercase__ , lowercase__ : str = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=_lowerCAmelCase , references=_lowerCAmelCase , ) lowercase__ : Optional[int] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , _lowerCAmelCase ) # New Code # # We also run predictions on the test set at the very end lowercase__ : Optional[int] = [] for step, batch in enumerate(_lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ : Any = model(**_lowerCAmelCase ) lowercase__ : Optional[Any] = outputs.logits lowercase__ , lowercase__ : Optional[int] = accelerator.gather_for_metrics((predictions, batch['labels']) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(_lowerCAmelCase , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: lowercase__ : Tuple = torch.cat(_lowerCAmelCase , dim=0 ) lowercase__ : Optional[int] = torch.stack(_lowerCAmelCase , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) lowercase__ : Optional[int] = metric.compute(predictions=_lowerCAmelCase , references=_lowerCAmelCase ) accelerator.print('Average test metrics from all folds:' , _lowerCAmelCase ) def a_ ( ): '''simple docstring''' lowercase__ : Tuple = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=_lowerCAmelCase , default=_lowerCAmelCase , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) # New Code # parser.add_argument('--num_folds' , type=_lowerCAmelCase , default=3 , help='The number of splits to perform across the dataset' ) lowercase__ : List[Any] = parser.parse_args() lowercase__ : Optional[int] = {'lr': 2E-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": main()
645
"""simple docstring""" import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def a_ ( _lowerCAmelCase : dict ): '''simple docstring''' return (data["data"], data["target"]) def a_ ( _lowerCAmelCase : np.ndarray , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : np.ndarray ): '''simple docstring''' lowercase__ : Any = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(_lowerCAmelCase , _lowerCAmelCase ) # Predict target for test data lowercase__ : str = xgb.predict(_lowerCAmelCase ) lowercase__ : Union[str, Any] = predictions.reshape(len(_lowerCAmelCase ) , 1 ) return predictions def a_ ( ): '''simple docstring''' lowercase__ : Optional[Any] = fetch_california_housing() lowercase__ , lowercase__ : str = data_handling(_lowerCAmelCase ) lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = train_test_split( _lowerCAmelCase , _lowerCAmelCase , test_size=0.2_5 , random_state=1 ) lowercase__ : Any = xgboost(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Error printing print(f"""Mean Absolute Error : {mean_absolute_error(_lowerCAmelCase , _lowerCAmelCase )}""" ) print(f"""Mean Square Error : {mean_squared_error(_lowerCAmelCase , _lowerCAmelCase )}""" ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
645
1
"""simple docstring""" import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase_ : def __init__( self , a , a=1_3 , a=7 , a=True , a=True , a=False , a=True , a=9_9 , a=3_2 , a=5 , a=4 , a=3_7 , a="gelu" , a=0.1 , a=0.1 , a=5_1_2 , a=1_6 , a=2 , a=0.02 , a=3 , a=4 , a=None , ) -> str: lowercase__ : Optional[int] = parent lowercase__ : Optional[Any] = batch_size lowercase__ : str = seq_length lowercase__ : List[str] = is_training lowercase__ : List[str] = use_input_mask lowercase__ : Any = use_token_type_ids lowercase__ : Tuple = use_labels lowercase__ : Tuple = vocab_size lowercase__ : Tuple = hidden_size lowercase__ : Optional[int] = num_hidden_layers lowercase__ : Optional[Any] = num_attention_heads lowercase__ : Union[str, Any] = intermediate_size lowercase__ : Dict = hidden_act lowercase__ : Union[str, Any] = hidden_dropout_prob lowercase__ : Any = attention_probs_dropout_prob lowercase__ : List[str] = max_position_embeddings lowercase__ : Optional[int] = type_vocab_size lowercase__ : Dict = type_sequence_label_size lowercase__ : Optional[int] = initializer_range lowercase__ : Union[str, Any] = num_labels lowercase__ : List[Any] = num_choices lowercase__ : str = scope def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ : Any = None if self.use_input_mask: lowercase__ : Dict = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ : Optional[int] = None if self.use_token_type_ids: lowercase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__ : Any = None lowercase__ : List[Any] = None lowercase__ : Optional[int] = None if self.use_labels: lowercase__ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__ : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) lowercase__ : Optional[int] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCAmelCase ( self ) -> Union[str, Any]: return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a , initializer_range=self.initializer_range , ) def _UpperCAmelCase ( self , a , a , a , a , a , a , a ) -> Optional[Any]: lowercase__ : Optional[Any] = BioGptModel(config=a ) model.to(a ) model.eval() lowercase__ : List[Any] = model(a , attention_mask=a ) lowercase__ : Optional[int] = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self , a , a , a , a , a , a , a , a , a , ) -> Tuple: lowercase__ : Union[str, Any] = BioGptForCausalLM(config=a ) model.to(a ) model.eval() lowercase__ : Dict = model(a , attention_mask=a , token_type_ids=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self , a , a , a , a , a , *a ) -> str: lowercase__ : Tuple = BioGptModel(config=a ) model.to(a ) model.eval() # create attention mask lowercase__ : int = torch.ones(input_ids.shape , dtype=torch.long , device=a ) lowercase__ : List[Any] = self.seq_length // 2 lowercase__ : str = 0 # first forward pass lowercase__ , lowercase__ : List[str] = model(a , attention_mask=a ).to_tuple() # create hypothetical next token and extent to next_input_ids lowercase__ : Union[str, Any] = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids lowercase__ : Optional[int] = ids_tensor((1,) , a ).item() + 1 lowercase__ : List[str] = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) lowercase__ : Optional[int] = random_other_next_tokens # append to next input_ids and attn_mask lowercase__ : Optional[int] = torch.cat([input_ids, next_tokens] , dim=-1 ) lowercase__ : Union[str, Any] = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=a )] , dim=1 , ) # get two different outputs lowercase__ : str = model(a , attention_mask=a )['last_hidden_state'] lowercase__ : List[Any] = model(a , past_key_values=a , attention_mask=a )['last_hidden_state'] # select random slice lowercase__ : str = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowercase__ : Optional[Any] = output_from_no_past[:, -1, random_slice_idx].detach() lowercase__ : Dict = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(a , a , atol=1e-3 ) ) def _UpperCAmelCase ( self , a , a , a , a , a , *a ) -> Tuple: lowercase__ : Tuple = BioGptModel(config=a ).to(a ).eval() lowercase__ : List[Any] = torch.ones(input_ids.shape , dtype=torch.long , device=a ) # first forward pass lowercase__ : int = model(a , attention_mask=a , use_cache=a ) lowercase__ , lowercase__ : Any = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids lowercase__ : Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowercase__ : Dict = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and lowercase__ : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) lowercase__ : str = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) lowercase__ : List[Any] = model(a , attention_mask=a )['last_hidden_state'] lowercase__ : str = model(a , attention_mask=a , past_key_values=a )[ 'last_hidden_state' ] # select random slice lowercase__ : str = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowercase__ : Any = output_from_no_past[:, -3:, random_slice_idx].detach() lowercase__ : Optional[int] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(a , a , atol=1e-3 ) ) def _UpperCAmelCase ( self , a , a , a , a , a , *a , a=False ) -> Union[str, Any]: lowercase__ : int = BioGptForCausalLM(a ) model.to(a ) if gradient_checkpointing: model.gradient_checkpointing_enable() lowercase__ : List[Any] = model(a , labels=a ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def _UpperCAmelCase ( self , a , *a ) -> str: lowercase__ : str = BioGptModel(a ) lowercase__ : int = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.001 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 ) def _UpperCAmelCase ( self , a , a , a , a , a , *a ) -> int: lowercase__ : Optional[int] = self.num_labels lowercase__ : List[str] = BioGptForTokenClassification(a ) model.to(a ) model.eval() lowercase__ : str = model(a , attention_mask=a , token_type_ids=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : List[Any] = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) : Dict = config_and_inputs lowercase__ : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _a , _a , _a , unittest.TestCase): lowerCamelCase__ : Tuple = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) lowerCamelCase__ : str = (BioGptForCausalLM,) if is_torch_available() else () lowerCamelCase__ : List[Any] = ( { "feature-extraction": BioGptModel, "text-classification": BioGptForSequenceClassification, "text-generation": BioGptForCausalLM, "token-classification": BioGptForTokenClassification, "zero-shot": BioGptForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ : Optional[Any] = False def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : List[Any] = BioGptModelTester(self ) lowercase__ : int = ConfigTester(self , config_class=a , hidden_size=3_7 ) def _UpperCAmelCase ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> int: lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _UpperCAmelCase ( self ) -> int: lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase__ : Optional[Any] = type self.model_tester.create_and_check_model(*a ) def _UpperCAmelCase ( self ) -> Dict: lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*a ) def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*a , gradient_checkpointing=a ) def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*a ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*a ) def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*a ) @slow def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : Tuple = BioGptForCausalLM.from_pretrained('microsoft/biogpt' ) model.to(a ) lowercase__ : List[Any] = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) lowercase__ : int = 'left' # Define PAD Token = EOS Token = 50256 lowercase__ : Optional[Any] = tokenizer.eos_token lowercase__ : Dict = model.config.eos_token_id # use different length sentences to test batching lowercase__ : List[Any] = [ 'Hello, my dog is a little', 'Today, I', ] lowercase__ : Optional[int] = tokenizer(a , return_tensors='pt' , padding=a ) lowercase__ : Optional[Any] = inputs['input_ids'].to(a ) lowercase__ : Optional[int] = model.generate( input_ids=a , attention_mask=inputs['attention_mask'].to(a ) , ) lowercase__ : Optional[Any] = tokenizer(sentences[0] , return_tensors='pt' ).input_ids.to(a ) lowercase__ : Any = model.generate(input_ids=a ) lowercase__ : str = inputs_non_padded.shape[-1] - inputs['attention_mask'][-1].long().sum().cpu().item() lowercase__ : str = tokenizer(sentences[1] , return_tensors='pt' ).input_ids.to(a ) lowercase__ : int = model.generate(input_ids=a , max_length=model.config.max_length - num_paddings ) lowercase__ : Dict = tokenizer.batch_decode(a , skip_special_tokens=a ) lowercase__ : List[Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=a ) lowercase__ : int = tokenizer.decode(output_padded[0] , skip_special_tokens=a ) lowercase__ : Union[str, Any] = [ 'Hello, my dog is a little bit bigger than a little bit.', 'Today, I have a good idea of how to use the information', ] self.assertListEqual(a , a ) self.assertListEqual(a , [non_padded_sentence, padded_sentence] ) @slow def _UpperCAmelCase ( self ) -> str: for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Union[str, Any] = BioGptModel.from_pretrained(a ) self.assertIsNotNone(a ) def _UpperCAmelCase ( self ) -> Dict: lowercase__ , lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : List[str] = 3 lowercase__ : str = input_dict['input_ids'] lowercase__ : List[str] = input_ids.ne(1 ).to(a ) lowercase__ : Dict = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowercase__ : List[Any] = BioGptForSequenceClassification(a ) model.to(a ) model.eval() lowercase__ : Any = model(a , attention_mask=a , labels=a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ , lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Dict = 3 lowercase__ : Any = 'multi_label_classification' lowercase__ : Optional[Any] = input_dict['input_ids'] lowercase__ : str = input_ids.ne(1 ).to(a ) lowercase__ : List[Any] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowercase__ : Optional[int] = BioGptForSequenceClassification(a ) model.to(a ) model.eval() lowercase__ : Optional[Any] = model(a , attention_mask=a , labels=a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class UpperCAmelCase_ ( unittest.TestCase): @slow def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : List[Any] = BioGptForCausalLM.from_pretrained('microsoft/biogpt' ) lowercase__ : Union[str, Any] = torch.tensor([[2, 4_8_0_5, 9, 6_5_6, 2_1]] ) lowercase__ : List[str] = model(a )[0] lowercase__ : int = 4_2_3_8_4 lowercase__ : int = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , a ) lowercase__ : Any = torch.tensor( [[[-9.5_236, -9.8_918, 10.4_557], [-11.0_469, -9.6_423, 8.1_022], [-8.8_664, -7.8_826, 5.5_325]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , a , atol=1e-4 ) ) @slow def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : Optional[int] = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) lowercase__ : Optional[Any] = BioGptForCausalLM.from_pretrained('microsoft/biogpt' ) model.to(a ) torch.manual_seed(0 ) lowercase__ : int = tokenizer('COVID-19 is' , return_tensors='pt' ).to(a ) lowercase__ : Optional[int] = model.generate( **a , min_length=1_0_0 , max_length=1_0_2_4 , num_beams=5 , early_stopping=a , ) lowercase__ : Optional[Any] = tokenizer.decode(output_ids[0] , skip_special_tokens=a ) lowercase__ : str = ( 'COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the' ' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and' ' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),' ' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and' ' more than 800,000 deaths.' ) self.assertEqual(a , a )
645
"""simple docstring""" import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class UpperCAmelCase_ : def __init__( self , a , a=1_3 , a=1_0 , a=3 , a=2 , a=2 , a=2 , a=True , a=True , a=3_2 , a=5 , a=4 , a=3_7 , a="gelu" , a=0.1 , a=0.1 , a=1_0 , a=0.02 , a=0.9 , a=None , ) -> Optional[Any]: lowercase__ : str = parent lowercase__ : int = batch_size lowercase__ : Union[str, Any] = image_size lowercase__ : Optional[Any] = num_channels lowercase__ : Dict = patch_size lowercase__ : Tuple = tubelet_size lowercase__ : Optional[int] = num_frames lowercase__ : Optional[int] = is_training lowercase__ : int = use_labels lowercase__ : Optional[int] = hidden_size lowercase__ : Union[str, Any] = num_hidden_layers lowercase__ : Optional[int] = num_attention_heads lowercase__ : Any = intermediate_size lowercase__ : str = hidden_act lowercase__ : List[Any] = hidden_dropout_prob lowercase__ : str = attention_probs_dropout_prob lowercase__ : Union[str, Any] = type_sequence_label_size lowercase__ : List[Any] = initializer_range lowercase__ : str = mask_ratio lowercase__ : Optional[Any] = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame lowercase__ : Optional[Any] = (image_size // patch_size) ** 2 lowercase__ : str = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos lowercase__ : str = int(mask_ratio * self.seq_length ) def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : int = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) lowercase__ : int = None if self.use_labels: lowercase__ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ : Dict = self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self ) -> Tuple: return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a , initializer_range=self.initializer_range , ) def _UpperCAmelCase ( self , a , a , a ) -> Optional[int]: lowercase__ : Dict = VideoMAEModel(config=a ) model.to(a ) model.eval() lowercase__ : Tuple = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self , a , a , a ) -> Union[str, Any]: lowercase__ : str = VideoMAEForPreTraining(a ) model.to(a ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowercase__ : Any = torch.ones((self.num_masks,) ) lowercase__ : str = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) lowercase__ : Optional[int] = mask.expand(self.batch_size , -1 ).bool() lowercase__ : str = model(a , a ) # model only returns predictions for masked patches lowercase__ : str = mask.sum().item() lowercase__ : int = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def _UpperCAmelCase ( self ) -> str: lowercase__ : Dict = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = config_and_inputs lowercase__ : List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _a , _a , unittest.TestCase): lowerCamelCase__ : Tuple = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) lowerCamelCase__ : Optional[int] = ( {"feature-extraction": VideoMAEModel, "video-classification": VideoMAEForVideoClassification} if is_torch_available() else {} ) lowerCamelCase__ : Any = False lowerCamelCase__ : Any = False lowerCamelCase__ : Union[str, Any] = False lowerCamelCase__ : str = False def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Optional[Any] = VideoMAEModelTester(self ) lowercase__ : Optional[Any] = ConfigTester(self , config_class=a , has_text_modality=a , hidden_size=3_7 ) def _UpperCAmelCase ( self , a , a , a=False ) -> Optional[int]: lowercase__ : Union[str, Any] = copy.deepcopy(a ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowercase__ : Optional[Any] = torch.ones((self.model_tester.num_masks,) ) lowercase__ : Any = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) lowercase__ : Any = mask.expand(self.model_tester.batch_size , -1 ).bool() lowercase__ : Union[str, Any] = bool_masked_pos.to(a ) if return_labels: if model_class in [ *get_values(a ), ]: lowercase__ : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a ) return inputs_dict def _UpperCAmelCase ( self ) -> Tuple: self.config_tester.run_common_tests() @unittest.skip(reason='VideoMAE does not use inputs_embeds' ) def _UpperCAmelCase ( self ) -> Dict: pass def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : int = model_class(a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase__ : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a , nn.Linear ) ) def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[str] = model_class(a ) lowercase__ : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Optional[Any] = [*signature.parameters.keys()] lowercase__ : int = ['pixel_values'] self.assertListEqual(arg_names[:1] , a ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*a ) @slow def _UpperCAmelCase ( self ) -> str: for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : List[Any] = VideoMAEModel.from_pretrained(a ) self.assertIsNotNone(a ) def _UpperCAmelCase ( self ) -> Optional[Any]: if not self.has_attentions: pass else: lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : str = True for model_class in self.all_model_classes: lowercase__ : Union[str, Any] = self.model_tester.seq_length - self.model_tester.num_masks lowercase__ : Any = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) lowercase__ : Optional[Any] = True lowercase__ : int = False lowercase__ : Any = True lowercase__ : List[str] = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : Optional[int] = model(**self._prepare_for_class(a , a ) ) lowercase__ : Dict = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase__ : str = True lowercase__ : List[str] = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : List[Any] = model(**self._prepare_for_class(a , a ) ) lowercase__ : Optional[Any] = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowercase__ : List[str] = len(a ) # Check attention is always last and order is fine lowercase__ : Optional[int] = True lowercase__ : List[str] = True lowercase__ : int = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : List[str] = model(**self._prepare_for_class(a , a ) ) self.assertEqual(out_len + 1 , len(a ) ) lowercase__ : int = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def _UpperCAmelCase ( self ) -> Optional[int]: def check_hidden_states_output(a , a , a ): lowercase__ : Optional[int] = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : Optional[Any] = model(**self._prepare_for_class(a , a ) ) lowercase__ : Optional[int] = outputs.hidden_states lowercase__ : List[Any] = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(a ) , a ) lowercase__ : Optional[Any] = self.model_tester.seq_length - self.model_tester.num_masks lowercase__ : Union[str, Any] = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowercase__ , lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Tuple = True check_hidden_states_output(a , a , a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : Union[str, Any] = True check_hidden_states_output(a , a , a ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _UpperCAmelCase ( self ) -> List[Any]: pass def a_ ( ): '''simple docstring''' lowercase__ : int = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename='eating_spaghetti.npy' , repo_type='dataset' ) lowercase__ : str = np.load(_lowerCAmelCase ) return list(_lowerCAmelCase ) @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase): @cached_property def _UpperCAmelCase ( self ) -> Optional[Any]: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def _UpperCAmelCase ( self ) -> int: lowercase__ : Dict = VideoMAEForVideoClassification.from_pretrained('MCG-NJU/videomae-base-finetuned-kinetics' ).to( a ) lowercase__ : str = self.default_image_processor lowercase__ : List[str] = prepare_video() lowercase__ : int = image_processor(a , return_tensors='pt' ).to(a ) # forward pass with torch.no_grad(): lowercase__ : Union[str, Any] = model(**a ) # verify the logits lowercase__ : str = torch.Size((1, 4_0_0) ) self.assertEqual(outputs.logits.shape , a ) lowercase__ : List[Any] = torch.tensor([0.3_669, -0.0_688, -0.2_421] ).to(a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a , atol=1e-4 ) ) @slow def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Optional[int] = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short' ).to(a ) lowercase__ : Optional[Any] = self.default_image_processor lowercase__ : List[str] = prepare_video() lowercase__ : str = image_processor(a , return_tensors='pt' ).to(a ) # add boolean mask, indicating which patches to mask lowercase__ : Union[str, Any] = hf_hub_download(repo_id='hf-internal-testing/bool-masked-pos' , filename='bool_masked_pos.pt' ) lowercase__ : str = torch.load(a ) # forward pass with torch.no_grad(): lowercase__ : List[Any] = model(**a ) # verify the logits lowercase__ : Dict = torch.Size([1, 1_4_0_8, 1_5_3_6] ) lowercase__ : List[str] = torch.tensor( [[0.7_994, 0.9_612, 0.8_508], [0.7_401, 0.8_958, 0.8_302], [0.5_862, 0.7_468, 0.7_325]] , device=a ) self.assertEqual(outputs.logits.shape , a ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , a , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) lowercase__ : List[Any] = torch.tensor([0.5_142] , device=a ) self.assertTrue(torch.allclose(outputs.loss , a , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) lowercase__ : Tuple = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short' , norm_pix_loss=a ).to( a ) with torch.no_grad(): lowercase__ : Any = model(**a ) lowercase__ : List[Any] = torch.tensor(torch.tensor([0.6_469] ) , device=a ) self.assertTrue(torch.allclose(outputs.loss , a , atol=1e-4 ) )
645
1
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer _UpperCamelCase : str = logging.get_logger(__name__) _UpperCamelCase : Union[str, Any] = {"vocab_file": "vocab.txt"} _UpperCamelCase : List[str] = { "vocab_file": { "YituTech/conv-bert-base": "https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt", "YituTech/conv-bert-medium-small": ( "https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt" ), "YituTech/conv-bert-small": "https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt", } } _UpperCamelCase : str = { "YituTech/conv-bert-base": 5_12, "YituTech/conv-bert-medium-small": 5_12, "YituTech/conv-bert-small": 5_12, } _UpperCamelCase : int = { "YituTech/conv-bert-base": {"do_lower_case": True}, "YituTech/conv-bert-medium-small": {"do_lower_case": True}, "YituTech/conv-bert-small": {"do_lower_case": True}, } class UpperCAmelCase_ ( _a): lowerCamelCase__ : List[Any] = VOCAB_FILES_NAMES lowerCamelCase__ : Dict = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ : List[Any] = PRETRAINED_INIT_CONFIGURATION lowerCamelCase__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ : Any = ConvBertTokenizer def __init__( self , a=None , a=None , a=True , a="[UNK]" , a="[SEP]" , a="[PAD]" , a="[CLS]" , a="[MASK]" , a=True , a=None , **a , ) -> Any: super().__init__( a , tokenizer_file=a , do_lower_case=a , unk_token=a , sep_token=a , pad_token=a , cls_token=a , mask_token=a , tokenize_chinese_chars=a , strip_accents=a , **a , ) lowercase__ : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , a ) != do_lower_case or normalizer_state.get('strip_accents' , a ) != strip_accents or normalizer_state.get('handle_chinese_chars' , a ) != tokenize_chinese_chars ): lowercase__ : Dict = getattr(a , normalizer_state.pop('type' ) ) lowercase__ : Any = do_lower_case lowercase__ : Optional[int] = strip_accents lowercase__ : Tuple = tokenize_chinese_chars lowercase__ : Dict = normalizer_class(**a ) lowercase__ : Any = do_lower_case def _UpperCAmelCase ( self , a , a=None ) -> List[str]: lowercase__ : List[str] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _UpperCAmelCase ( self , a , a = None ) -> List[int]: lowercase__ : Dict = [self.sep_token_id] lowercase__ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _UpperCAmelCase ( self , a , a = None ) -> Tuple[str]: lowercase__ : List[Any] = self._tokenizer.model.save(a , name=a ) return tuple(a )
645
"""simple docstring""" import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() _UpperCamelCase : Dict = logging.get_logger(__name__) _UpperCamelCase : List[Any] = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "encoder.layer_norm_for_extract": "layer_norm_for_extract", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "label_embs_concat": "label_embeddings_concat", "mask_emb": "masked_spec_embed", "spk_proj": "speaker_proj", } _UpperCamelCase : List[str] = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "label_embeddings_concat", "speaker_proj", "layer_norm_for_extract", ] def a_ ( _lowerCAmelCase : Any , _lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple ): '''simple docstring''' for attribute in key.split('.' ): lowercase__ : Dict = getattr(_lowerCAmelCase , _lowerCAmelCase ) if weight_type is not None: lowercase__ : Optional[int] = getattr(_lowerCAmelCase , _lowerCAmelCase ).shape else: lowercase__ : Optional[int] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowercase__ : Optional[Any] = value elif weight_type == "weight_g": lowercase__ : Dict = value elif weight_type == "weight_v": lowercase__ : List[str] = value elif weight_type == "bias": lowercase__ : Optional[Any] = value else: lowercase__ : List[str] = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def a_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] ): '''simple docstring''' lowercase__ : Tuple = [] lowercase__ : List[str] = fairseq_model.state_dict() lowercase__ : Union[str, Any] = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): lowercase__ : Optional[int] = False if "conv_layers" in name: load_conv_layer( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , hf_model.config.feat_extract_norm == 'group' , ) lowercase__ : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): lowercase__ : List[Any] = 'unispeech_sat.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('.' )[:-1] ) != key): # special case since naming is very similar continue lowercase__ : int = True if "*" in mapped_key: lowercase__ : Optional[int] = name.split(_lowerCAmelCase )[0].split('.' )[-2] lowercase__ : List[str] = mapped_key.replace('*' , _lowerCAmelCase ) if "weight_g" in name: lowercase__ : List[Any] = 'weight_g' elif "weight_v" in name: lowercase__ : int = 'weight_v' elif "bias" in name: lowercase__ : Dict = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj lowercase__ : Union[str, Any] = 'weight' else: lowercase__ : int = None set_recursively(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) continue if not is_used: unused_weights.append(_lowerCAmelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def a_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : Dict ): '''simple docstring''' lowercase__ : int = full_name.split('conv_layers.' )[-1] lowercase__ : int = name.split('.' ) lowercase__ : int = int(items[0] ) lowercase__ : Dict = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowercase__ : Union[str, Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowercase__ : Optional[int] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) lowercase__ : List[Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) lowercase__ : int = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_lowerCAmelCase ) @torch.no_grad() def a_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : str=None , _lowerCAmelCase : Tuple=True ): '''simple docstring''' if config_path is not None: lowercase__ : Any = UniSpeechSatConfig.from_pretrained(_lowerCAmelCase ) else: lowercase__ : Any = UniSpeechSatConfig() lowercase__ : Union[str, Any] = '' if is_finetuned: lowercase__ : Optional[Any] = UniSpeechSatForCTC(_lowerCAmelCase ) else: lowercase__ : List[Any] = UniSpeechSatForPreTraining(_lowerCAmelCase ) lowercase__ , lowercase__ , lowercase__ : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) lowercase__ : Union[str, Any] = model[0].eval() recursively_load_weights(_lowerCAmelCase , _lowerCAmelCase ) hf_wavavec.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": _UpperCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _UpperCamelCase : str = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
645
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _UpperCamelCase : Dict = { "configuration_swiftformer": [ "SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "SwiftFormerConfig", "SwiftFormerOnnxConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : List[Any] = [ "SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "SwiftFormerForImageClassification", "SwiftFormerModel", "SwiftFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys _UpperCamelCase : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
645
"""simple docstring""" import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class UpperCAmelCase_ : def __init__( self , a , a=1_3 , a=3_2 , a=2 , a=3 , a=1_6 , a=[1, 2, 1] , a=[2, 2, 4] , a=2 , a=2.0 , a=True , a=0.0 , a=0.0 , a=0.1 , a="gelu" , a=False , a=True , a=0.02 , a=1e-5 , a=True , a=None , a=True , a=1_0 , a=8 , a=["stage1", "stage2", "stage3"] , a=[1, 2, 3] , ) -> int: lowercase__ : int = parent lowercase__ : Union[str, Any] = batch_size lowercase__ : Dict = image_size lowercase__ : str = patch_size lowercase__ : Optional[Any] = num_channels lowercase__ : List[str] = embed_dim lowercase__ : Any = depths lowercase__ : Dict = num_heads lowercase__ : List[str] = window_size lowercase__ : int = mlp_ratio lowercase__ : Tuple = qkv_bias lowercase__ : Union[str, Any] = hidden_dropout_prob lowercase__ : str = attention_probs_dropout_prob lowercase__ : Tuple = drop_path_rate lowercase__ : List[str] = hidden_act lowercase__ : Optional[Any] = use_absolute_embeddings lowercase__ : Optional[Any] = patch_norm lowercase__ : Any = layer_norm_eps lowercase__ : List[Any] = initializer_range lowercase__ : List[str] = is_training lowercase__ : int = scope lowercase__ : Optional[int] = use_labels lowercase__ : List[Any] = type_sequence_label_size lowercase__ : List[str] = encoder_stride lowercase__ : Optional[Any] = out_features lowercase__ : Dict = out_indices def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : Optional[Any] = None if self.use_labels: lowercase__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ : Tuple = self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self ) -> Union[str, Any]: return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def _UpperCAmelCase ( self , a , a , a ) -> Dict: lowercase__ : Tuple = MaskFormerSwinModel(config=a ) model.to(a ) model.eval() lowercase__ : str = model(a ) lowercase__ : str = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowercase__ : Dict = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def _UpperCAmelCase ( self , a , a , a ) -> Optional[int]: lowercase__ : List[Any] = MaskFormerSwinBackbone(config=a ) model.to(a ) model.eval() lowercase__ : int = model(a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [1_3, 1_6, 1_6, 1_6] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [1_6, 3_2, 6_4] ) # verify ValueError with self.parent.assertRaises(a ): lowercase__ : Dict = ['stem'] lowercase__ : List[str] = MaskFormerSwinBackbone(config=a ) def _UpperCAmelCase ( self ) -> str: lowercase__ : int = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Tuple = config_and_inputs lowercase__ : Union[str, Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _a , _a , unittest.TestCase): lowerCamelCase__ : Optional[int] = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) lowerCamelCase__ : List[str] = {"feature-extraction": MaskFormerSwinModel} if is_torch_available() else {} lowerCamelCase__ : str = False lowerCamelCase__ : Dict = False lowerCamelCase__ : Any = False lowerCamelCase__ : Dict = False lowerCamelCase__ : int = False def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : str = MaskFormerSwinModelTester(self ) lowercase__ : Tuple = ConfigTester(self , config_class=a , embed_dim=3_7 ) @require_torch_multi_gpu @unittest.skip( reason=( '`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with' ' `nn.DataParallel`' ) ) def _UpperCAmelCase ( self ) -> Optional[int]: pass def _UpperCAmelCase ( self ) -> Tuple: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _UpperCAmelCase ( self ) -> str: return def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*a ) @unittest.skip('Swin does not use inputs_embeds' ) def _UpperCAmelCase ( self ) -> Tuple: pass @unittest.skip('Swin does not support feedforward chunking' ) def _UpperCAmelCase ( self ) -> Tuple: pass def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[str] = model_class(a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase__ : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a , nn.Linear ) ) def _UpperCAmelCase ( self ) -> str: lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Any = model_class(a ) lowercase__ : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Optional[Any] = [*signature.parameters.keys()] lowercase__ : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , a ) @unittest.skip(reason='MaskFormerSwin is only used as backbone and doesn\'t support output_attentions' ) def _UpperCAmelCase ( self ) -> List[Any]: pass @unittest.skip(reason='MaskFormerSwin is only used as an internal backbone' ) def _UpperCAmelCase ( self ) -> int: pass def _UpperCAmelCase ( self , a , a , a , a ) -> Tuple: lowercase__ : Dict = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : str = model(**self._prepare_for_class(a , a ) ) lowercase__ : List[Any] = outputs.hidden_states lowercase__ : str = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(a ) , a ) # Swin has a different seq_length lowercase__ : Dict = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase__ : Tuple = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ , lowercase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : List[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: lowercase__ : List[str] = True self.check_hidden_states_output(a , a , a , a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : List[str] = True self.check_hidden_states_output(a , a , a , a ) def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Union[str, Any] = 3 lowercase__ : str = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowercase__ : Tuple = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase__ : Optional[int] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowercase__ : List[str] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: lowercase__ : List[str] = True self.check_hidden_states_output(a , a , a , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : int = True self.check_hidden_states_output(a , a , a , (padded_height, padded_width) ) @unittest.skip(reason='MaskFormerSwin doesn\'t have pretrained checkpoints' ) def _UpperCAmelCase ( self ) -> Optional[int]: pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def _UpperCAmelCase ( self ) -> Any: pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def _UpperCAmelCase ( self ) -> Any: pass def _UpperCAmelCase ( self ) -> Any: lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(a ): lowercase__ : Union[str, Any] = 0 return t def check_equivalence(a , a , a , a={} ): with torch.no_grad(): lowercase__ : Optional[Any] = model(**a , return_dict=a , **a ) lowercase__ : Optional[int] = model(**a , return_dict=a , **a ).to_tuple() def recursive_check(a , a ): if isinstance(a , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(a , a ): recursive_check(a , a ) elif isinstance(a , a ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(a , a ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(a ) , set_nan_tensor_to_zero(a ) , atol=1e-5 ) , msg=( 'Tuple and dict output are not equal. Difference:' f""" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:""" f""" {torch.isnan(a ).any()} and `inf`: {torch.isinf(a )}. Dict has""" f""" `nan`: {torch.isnan(a ).any()} and `inf`: {torch.isinf(a )}.""" ) , ) recursive_check(a , a ) for model_class in self.all_model_classes: lowercase__ : Any = model_class(a ) model.to(a ) model.eval() lowercase__ : Tuple = self._prepare_for_class(a , a ) lowercase__ : Optional[Any] = self._prepare_for_class(a , a ) check_equivalence(a , a , a ) lowercase__ : Any = self._prepare_for_class(a , a , return_labels=a ) lowercase__ : List[Any] = self._prepare_for_class(a , a , return_labels=a ) check_equivalence(a , a , a ) lowercase__ : Any = self._prepare_for_class(a , a ) lowercase__ : int = self._prepare_for_class(a , a ) check_equivalence(a , a , a , {'output_hidden_states': True} ) lowercase__ : Dict = self._prepare_for_class(a , a , return_labels=a ) lowercase__ : Optional[int] = self._prepare_for_class(a , a , return_labels=a ) check_equivalence(a , a , a , {'output_hidden_states': True} ) @require_torch class UpperCAmelCase_ ( unittest.TestCase , _a): lowerCamelCase__ : Dict = (MaskFormerSwinBackbone,) if is_torch_available() else () lowerCamelCase__ : Optional[int] = MaskFormerSwinConfig def _UpperCAmelCase ( self ) -> Dict: lowercase__ : Optional[int] = MaskFormerSwinModelTester(self ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : int = inputs_dict['pixel_values'].shape[0] for backbone_class in self.all_model_classes: lowercase__ : Optional[Any] = backbone_class(a ) backbone.to(a ) backbone.eval() lowercase__ : Union[str, Any] = backbone(**a ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , a ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True lowercase__ : List[str] = backbone(**a , output_hidden_states=a ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) lowercase__ , lowercase__ , lowercase__ : int = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: lowercase__ : List[Any] = backbone(**a , output_attentions=a ) self.assertIsNotNone(outputs.attentions )
645
1
"""simple docstring""" from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class UpperCAmelCase_ ( _a): def __init__( self , a , a=None , a=None , a=0 ) -> Any: lowercase__ : Optional[Any] = 1.0 if scale is None else scale lowercase__ : Optional[Any] = 0.0 if loc is None else loc super().__init__(a , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=a )] ) @property def _UpperCAmelCase ( self ) -> List[Any]: return self.base_dist.mean * self.scale + self.loc @property def _UpperCAmelCase ( self ) -> List[str]: return self.base_dist.variance * self.scale**2 @property def _UpperCAmelCase ( self ) -> Any: return self.variance.sqrt() class UpperCAmelCase_ ( nn.Module): def __init__( self , a , a , a , **a ) -> None: super().__init__(**a ) lowercase__ : Tuple = args_dim lowercase__ : Optional[int] = nn.ModuleList([nn.Linear(a , a ) for dim in args_dim.values()] ) lowercase__ : str = domain_map def _UpperCAmelCase ( self , a ) -> Tuple[torch.Tensor]: lowercase__ : Union[str, Any] = [proj(a ) for proj in self.proj] return self.domain_map(*a ) class UpperCAmelCase_ ( nn.Module): def __init__( self , a ) -> int: super().__init__() lowercase__ : Any = function def _UpperCAmelCase ( self , a , *a ) -> List[str]: return self.function(a , *a ) class UpperCAmelCase_ : lowerCamelCase__ : type lowerCamelCase__ : int lowerCamelCase__ : Dict[str, int] def __init__( self , a = 1 ) -> None: lowercase__ : Optional[int] = dim lowercase__ : Tuple = {k: dim * self.args_dim[k] for k in self.args_dim} def _UpperCAmelCase ( self , a ) -> List[str]: if self.dim == 1: return self.distribution_class(*a ) else: return Independent(self.distribution_class(*a ) , 1 ) def _UpperCAmelCase ( self , a , a = None , a = None , ) -> Distribution: lowercase__ : Optional[int] = self._base_distribution(a ) if loc is None and scale is None: return distr else: return AffineTransformed(a , loc=a , scale=a , event_dim=self.event_dim ) @property def _UpperCAmelCase ( self ) -> Tuple: return () if self.dim == 1 else (self.dim,) @property def _UpperCAmelCase ( self ) -> int: return len(self.event_shape ) @property def _UpperCAmelCase ( self ) -> float: return 0.0 def _UpperCAmelCase ( self , a ) -> nn.Module: return ParameterProjection( in_features=a , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def _UpperCAmelCase ( self , *a ) -> Any: raise NotImplementedError() @staticmethod def _UpperCAmelCase ( a ) -> torch.Tensor: return (x + torch.sqrt(torch.square(a ) + 4.0 )) / 2.0 class UpperCAmelCase_ ( _a): lowerCamelCase__ : Dict[str, int] = {"df": 1, "loc": 1, "scale": 1} lowerCamelCase__ : type = StudentT @classmethod def _UpperCAmelCase ( cls , a , a , a ) -> str: lowercase__ : str = cls.squareplus(a ).clamp_min(torch.finfo(scale.dtype ).eps ) lowercase__ : Dict = 2.0 + cls.squareplus(a ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class UpperCAmelCase_ ( _a): lowerCamelCase__ : Dict[str, int] = {"loc": 1, "scale": 1} lowerCamelCase__ : type = Normal @classmethod def _UpperCAmelCase ( cls , a , a ) -> Tuple: lowercase__ : Union[str, Any] = cls.squareplus(a ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class UpperCAmelCase_ ( _a): lowerCamelCase__ : Dict[str, int] = {"total_count": 1, "logits": 1} lowerCamelCase__ : type = NegativeBinomial @classmethod def _UpperCAmelCase ( cls , a , a ) -> str: lowercase__ : List[str] = cls.squareplus(a ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def _UpperCAmelCase ( self , a ) -> Distribution: lowercase__ , lowercase__ : Any = distr_args if self.dim == 1: return self.distribution_class(total_count=a , logits=a ) else: return Independent(self.distribution_class(total_count=a , logits=a ) , 1 ) def _UpperCAmelCase ( self , a , a = None , a = None ) -> Distribution: lowercase__ , lowercase__ : int = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
645
"""simple docstring""" import math def a_ ( _lowerCAmelCase : int = 100 ): '''simple docstring''' lowercase__ : Union[str, Any] = sum(i * i for i in range(1 , n + 1 ) ) lowercase__ : str = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f'''{solution() = }''')
645
1
"""simple docstring""" from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig _UpperCamelCase : Tuple = logging.get_logger(__name__) _UpperCamelCase : Any = "T5Config" class UpperCAmelCase_ ( _a): lowerCamelCase__ : Optional[Any] = "mt5" lowerCamelCase__ : Tuple = MTaConfig class UpperCAmelCase_ ( _a): lowerCamelCase__ : List[str] = "mt5" lowerCamelCase__ : str = MTaConfig class UpperCAmelCase_ ( _a): lowerCamelCase__ : int = "mt5" lowerCamelCase__ : List[Any] = MTaConfig
645
"""simple docstring""" import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class UpperCAmelCase_ ( unittest.TestCase): def _UpperCAmelCase ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() def _UpperCAmelCase ( self ) -> Tuple: lowercase__ , lowercase__ : str = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-canny' , from_pt=a , dtype=jnp.bfloataa ) lowercase__ , lowercase__ : List[str] = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , controlnet=a , from_pt=a , dtype=jnp.bfloataa ) lowercase__ : List[Any] = controlnet_params lowercase__ : int = 'bird' lowercase__ : List[Any] = jax.device_count() lowercase__ : Dict = pipe.prepare_text_inputs([prompts] * num_samples ) lowercase__ : Union[str, Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png' ) lowercase__ : Optional[int] = pipe.prepare_image_inputs([canny_image] * num_samples ) lowercase__ : List[Any] = jax.random.PRNGKey(0 ) lowercase__ : Tuple = jax.random.split(a , jax.device_count() ) lowercase__ : str = replicate(a ) lowercase__ : List[str] = shard(a ) lowercase__ : Dict = shard(a ) lowercase__ : List[Any] = pipe( prompt_ids=a , image=a , params=a , prng_seed=a , num_inference_steps=5_0 , jit=a , ).images assert images.shape == (jax.device_count(), 1, 7_6_8, 5_1_2, 3) lowercase__ : Any = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowercase__ : Tuple = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] lowercase__ : int = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowercase__ : Optional[Any] = jnp.array( [0.167_969, 0.116_699, 0.081_543, 0.154_297, 0.132_812, 0.108_887, 0.169_922, 0.169_922, 0.205_078] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def _UpperCAmelCase ( self ) -> List[str]: lowercase__ , lowercase__ : int = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-openpose' , from_pt=a , dtype=jnp.bfloataa ) lowercase__ , lowercase__ : Optional[Any] = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , controlnet=a , from_pt=a , dtype=jnp.bfloataa ) lowercase__ : Optional[Any] = controlnet_params lowercase__ : List[Any] = 'Chef in the kitchen' lowercase__ : List[str] = jax.device_count() lowercase__ : Dict = pipe.prepare_text_inputs([prompts] * num_samples ) lowercase__ : Optional[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png' ) lowercase__ : Optional[int] = pipe.prepare_image_inputs([pose_image] * num_samples ) lowercase__ : List[str] = jax.random.PRNGKey(0 ) lowercase__ : str = jax.random.split(a , jax.device_count() ) lowercase__ : Optional[Any] = replicate(a ) lowercase__ : Optional[Any] = shard(a ) lowercase__ : List[Any] = shard(a ) lowercase__ : List[Any] = pipe( prompt_ids=a , image=a , params=a , prng_seed=a , num_inference_steps=5_0 , jit=a , ).images assert images.shape == (jax.device_count(), 1, 7_6_8, 5_1_2, 3) lowercase__ : Union[str, Any] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowercase__ : List[str] = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] lowercase__ : Optional[int] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowercase__ : str = jnp.array( [[0.271_484, 0.261_719, 0.275_391, 0.277_344, 0.279_297, 0.291_016, 0.294_922, 0.302_734, 0.302_734]] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
645
1
"""simple docstring""" import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase): @slow def _UpperCAmelCase ( self ) -> str: lowercase__ : Optional[Any] = AutoImageProcessor.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' ) lowercase__ : Union[str, Any] = AutoModelForImageClassification.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' ) model.to(a ) from datasets import load_dataset lowercase__ : str = load_dataset('nielsr/rvlcdip-demo' ) lowercase__ : Tuple = dataset['train'][0]['image'].convert('RGB' ) lowercase__ : int = image_processor(a , return_tensors='pt' ).to(a ) # forward pass with torch.no_grad(): lowercase__ : List[str] = model(**a ) lowercase__ : List[Any] = outputs.logits lowercase__ : Union[str, Any] = torch.Size((1, 1_6) ) self.assertEqual(logits.shape , a ) lowercase__ : Tuple = torch.tensor( [-0.4_158, -0.4_092, -0.4_347] , device=a , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , a , atol=1e-4 ) )
645
"""simple docstring""" from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
645
1
"""simple docstring""" import functools from typing import Any def a_ ( _lowerCAmelCase : str , _lowerCAmelCase : list[str] ): '''simple docstring''' if not isinstance(_lowerCAmelCase , _lowerCAmelCase ) or len(_lowerCAmelCase ) == 0: raise ValueError('the string should be not empty string' ) if not isinstance(_lowerCAmelCase , _lowerCAmelCase ) or not all( isinstance(_lowerCAmelCase , _lowerCAmelCase ) and len(_lowerCAmelCase ) > 0 for item in words ): raise ValueError('the words should be a list of non-empty strings' ) # Build trie lowercase__ : dict[str, Any] = {} lowercase__ : str = 'WORD_KEEPER' for word in words: lowercase__ : int = trie for c in word: if c not in trie_node: lowercase__ : Optional[Any] = {} lowercase__ : Tuple = trie_node[c] lowercase__ : Optional[int] = True lowercase__ : Union[str, Any] = len(_lowerCAmelCase ) # Dynamic programming method @functools.cache def is_breakable(_lowerCAmelCase : int ) -> bool: if index == len_string: return True lowercase__ : Union[str, Any] = trie for i in range(_lowerCAmelCase , _lowerCAmelCase ): lowercase__ : Any = trie_node.get(string[i] , _lowerCAmelCase ) if trie_node is None: return False if trie_node.get(_lowerCAmelCase , _lowerCAmelCase ) and is_breakable(i + 1 ): return True return False return is_breakable(0 ) if __name__ == "__main__": import doctest doctest.testmod()
645
"""simple docstring""" import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase): @slow def _UpperCAmelCase ( self ) -> str: lowercase__ : Optional[Any] = AutoImageProcessor.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' ) lowercase__ : Union[str, Any] = AutoModelForImageClassification.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' ) model.to(a ) from datasets import load_dataset lowercase__ : str = load_dataset('nielsr/rvlcdip-demo' ) lowercase__ : Tuple = dataset['train'][0]['image'].convert('RGB' ) lowercase__ : int = image_processor(a , return_tensors='pt' ).to(a ) # forward pass with torch.no_grad(): lowercase__ : List[str] = model(**a ) lowercase__ : List[Any] = outputs.logits lowercase__ : Union[str, Any] = torch.Size((1, 1_6) ) self.assertEqual(logits.shape , a ) lowercase__ : Tuple = torch.tensor( [-0.4_158, -0.4_092, -0.4_347] , device=a , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , a , atol=1e-4 ) )
645
1
"""simple docstring""" from __future__ import annotations def a_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int ): '''simple docstring''' lowercase__ : list[list[int]] = [] lowercase__ : list[int] = [] lowercase__ : Tuple = 0 lowercase__ : int = sum(_lowerCAmelCase ) create_state_space_tree(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return result def a_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : list[int] , _lowerCAmelCase : list[list[int]] , _lowerCAmelCase : int , ): '''simple docstring''' if sum(_lowerCAmelCase ) > max_sum or (remaining_nums_sum + sum(_lowerCAmelCase )) < max_sum: return if sum(_lowerCAmelCase ) == max_sum: result.append(_lowerCAmelCase ) return for index in range(_lowerCAmelCase , len(_lowerCAmelCase ) ): create_state_space_tree( _lowerCAmelCase , _lowerCAmelCase , index + 1 , [*path, nums[index]] , _lowerCAmelCase , remaining_nums_sum - nums[index] , ) _UpperCamelCase : Any = [3, 34, 4, 12, 5, 2] _UpperCamelCase : List[str] = 9 _UpperCamelCase : Dict = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
645
"""simple docstring""" import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class UpperCAmelCase_ : @staticmethod def _UpperCAmelCase ( *a , **a ) -> int: pass def a_ ( _lowerCAmelCase : Image ): '''simple docstring''' lowercase__ : List[str] = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class UpperCAmelCase_ ( unittest.TestCase): lowerCamelCase__ : Union[str, Any] = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def _UpperCAmelCase ( self , a , a , a ) -> Dict: lowercase__ : Union[str, Any] = DepthEstimationPipeline(model=a , image_processor=a ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def _UpperCAmelCase ( self , a , a ) -> Optional[int]: lowercase__ : Tuple = depth_estimator('./tests/fixtures/tests_samples/COCO/000000039769.png' ) self.assertEqual({'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )} , a ) import datasets lowercase__ : Tuple = datasets.load_dataset('hf-internal-testing/fixtures_image_utils' , 'image' , split='test' ) lowercase__ : List[Any] = depth_estimator( [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] ) self.assertEqual( [ {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, ] , a , ) @require_tf @unittest.skip('Depth estimation is not implemented in TF' ) def _UpperCAmelCase ( self ) -> Optional[int]: pass @slow @require_torch def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Tuple = 'Intel/dpt-large' lowercase__ : Optional[int] = pipeline('depth-estimation' , model=a ) lowercase__ : List[Any] = depth_estimator('http://images.cocodataset.org/val2017/000000039769.jpg' ) lowercase__ : Optional[Any] = hashimage(outputs['depth'] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['predicted_depth'].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs['predicted_depth'].min().item() ) , 2.662 ) @require_torch def _UpperCAmelCase ( self ) -> Optional[int]: # This is highly irregular to have no small tests. self.skipTest('There is not hf-internal-testing tiny model for either GLPN nor DPT' )
645
1
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _UpperCamelCase : str = logging.get_logger(__name__) _UpperCamelCase : List[Any] = "▁" _UpperCamelCase : List[str] = {"vocab_file": "sentencepiece.bpe.model"} _UpperCamelCase : int = { "vocab_file": { "xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large-finetuned-conll02-dutch": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll02-spanish": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-english": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-german": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model" ), } } _UpperCamelCase : List[str] = { "xlm-roberta-base": 5_12, "xlm-roberta-large": 5_12, "xlm-roberta-large-finetuned-conll02-dutch": 5_12, "xlm-roberta-large-finetuned-conll02-spanish": 5_12, "xlm-roberta-large-finetuned-conll03-english": 5_12, "xlm-roberta-large-finetuned-conll03-german": 5_12, } class UpperCAmelCase_ ( _a): lowerCamelCase__ : Tuple = VOCAB_FILES_NAMES lowerCamelCase__ : List[str] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ : Any = ["input_ids", "attention_mask"] def __init__( self , a , a="<s>" , a="</s>" , a="</s>" , a="<s>" , a="<unk>" , a="<pad>" , a="<mask>" , a = None , **a , ) -> None: # Mask token behave like a normal word, i.e. include the space before it lowercase__ : Optional[int] = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else mask_token lowercase__ : Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=a , eos_token=a , unk_token=a , sep_token=a , cls_token=a , pad_token=a , mask_token=a , sp_model_kwargs=self.sp_model_kwargs , **a , ) lowercase__ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(a ) ) lowercase__ : int = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token lowercase__ : int = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowercase__ : Optional[int] = 1 lowercase__ : List[str] = len(self.sp_model ) + self.fairseq_offset lowercase__ : Any = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> List[Any]: lowercase__ : List[str] = self.__dict__.copy() lowercase__ : int = None lowercase__ : List[str] = self.sp_model.serialized_model_proto() return state def __setstate__( self , a ) -> List[Any]: lowercase__ : List[Any] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowercase__ : Tuple = {} lowercase__ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _UpperCAmelCase ( self , a , a = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase__ : Optional[int] = [self.cls_token_id] lowercase__ : str = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _UpperCAmelCase ( self , a , a = None , a = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a , token_ids_a=a , already_has_special_tokens=a ) if token_ids_a is None: return [1] + ([0] * len(a )) + [1] return [1] + ([0] * len(a )) + [1, 1] + ([0] * len(a )) + [1] def _UpperCAmelCase ( self , a , a = None ) -> List[int]: lowercase__ : List[Any] = [self.sep_token_id] lowercase__ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _UpperCAmelCase ( self ) -> Optional[int]: return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def _UpperCAmelCase ( self ) -> Any: lowercase__ : List[str] = {self.convert_ids_to_tokens(a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _UpperCAmelCase ( self , a ) -> List[str]: return self.sp_model.encode(a , out_type=a ) def _UpperCAmelCase ( self , a ) -> Dict: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowercase__ : Union[str, Any] = self.sp_model.PieceToId(a ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _UpperCAmelCase ( self , a ) -> int: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _UpperCAmelCase ( self , a ) -> str: lowercase__ : List[Any] = ''.join(a ).replace(a , ' ' ).strip() return out_string def _UpperCAmelCase ( self , a , a = None ) -> Tuple[str]: if not os.path.isdir(a ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ : Optional[Any] = os.path.join( a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a ) elif not os.path.isfile(self.vocab_file ): with open(a , 'wb' ) as fi: lowercase__ : Any = self.sp_model.serialized_model_proto() fi.write(a ) return (out_vocab_file,)
645
"""simple docstring""" import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class UpperCAmelCase_ ( _a): def __init__( self ) -> Any: lowercase__ : Tuple = [] def _UpperCAmelCase ( self , a , a , a , **a ) -> Any: self.events.append('on_init_end' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Optional[int]: self.events.append('on_train_begin' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> List[str]: self.events.append('on_train_end' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> int: self.events.append('on_epoch_begin' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Optional[Any]: self.events.append('on_epoch_end' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> int: self.events.append('on_step_begin' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> str: self.events.append('on_step_end' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> int: self.events.append('on_evaluate' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Tuple: self.events.append('on_predict' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Union[str, Any]: self.events.append('on_save' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> List[str]: self.events.append('on_log' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Any: self.events.append('on_prediction_step' ) @require_torch class UpperCAmelCase_ ( unittest.TestCase): def _UpperCAmelCase ( self ) -> str: lowercase__ : str = tempfile.mkdtemp() def _UpperCAmelCase ( self ) -> Dict: shutil.rmtree(self.output_dir ) def _UpperCAmelCase ( self , a=0 , a=0 , a=6_4 , a=6_4 , a=None , a=False , **a ) -> int: # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. lowercase__ : str = RegressionDataset(length=a ) lowercase__ : Any = RegressionDataset(length=a ) lowercase__ : Optional[Any] = RegressionModelConfig(a=a , b=a ) lowercase__ : Union[str, Any] = RegressionPreTrainedModel(a ) lowercase__ : Tuple = TrainingArguments(self.output_dir , disable_tqdm=a , report_to=[] , **a ) return Trainer( a , a , train_dataset=a , eval_dataset=a , callbacks=a , ) def _UpperCAmelCase ( self , a , a ) -> Union[str, Any]: self.assertEqual(len(a ) , len(a ) ) # Order doesn't matter lowercase__ : Optional[int] = sorted(a , key=lambda a : cb.__name__ if isinstance(a , a ) else cb.__class__.__name__ ) lowercase__ : Tuple = sorted(a , key=lambda a : cb.__name__ if isinstance(a , a ) else cb.__class__.__name__ ) for cba, cba in zip(a , a ): if isinstance(a , a ) and isinstance(a , a ): self.assertEqual(a , a ) elif isinstance(a , a ) and not isinstance(a , a ): self.assertEqual(a , cba.__class__ ) elif not isinstance(a , a ) and isinstance(a , a ): self.assertEqual(cba.__class__ , a ) else: self.assertEqual(a , a ) def _UpperCAmelCase ( self , a ) -> Optional[Any]: lowercase__ : Dict = ['on_init_end', 'on_train_begin'] lowercase__ : List[Any] = 0 lowercase__ : Optional[int] = len(trainer.get_eval_dataloader() ) lowercase__ : Tuple = ['on_prediction_step'] * len(trainer.get_eval_dataloader() ) + ['on_log', 'on_evaluate'] for _ in range(trainer.state.num_train_epochs ): expected_events.append('on_epoch_begin' ) for _ in range(a ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append('on_log' ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append('on_save' ) expected_events.append('on_epoch_end' ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : int = self.get_trainer() lowercase__ : str = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) # Callbacks passed at init are added to the default callbacks lowercase__ : str = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback lowercase__ : List[Any] = self.get_trainer(disable_tqdm=a ) lowercase__ : Optional[Any] = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) def _UpperCAmelCase ( self ) -> Any: lowercase__ : int = DEFAULT_CALLBACKS.copy() + [ProgressCallback] lowercase__ : List[str] = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(a ) expected_callbacks.remove(a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) lowercase__ : Optional[Any] = self.get_trainer() lowercase__ : List[Any] = trainer.pop_callback(a ) self.assertEqual(cb.__class__ , a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) trainer.add_callback(a ) expected_callbacks.insert(0 , a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) # We can also add, pop, or remove by instance lowercase__ : int = self.get_trainer() lowercase__ : List[str] = trainer.callback_handler.callbacks[0] trainer.remove_callback(a ) expected_callbacks.remove(a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) lowercase__ : Tuple = self.get_trainer() lowercase__ : Dict = trainer.callback_handler.callbacks[0] lowercase__ : Union[str, Any] = trainer.pop_callback(a ) self.assertEqual(a , a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) trainer.add_callback(a ) expected_callbacks.insert(0 , a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) def _UpperCAmelCase ( self ) -> Tuple: import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action='ignore' , category=a ) lowercase__ : Optional[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() lowercase__ : Any = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) # Independent log/save/eval lowercase__ : List[str] = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() lowercase__ : int = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) lowercase__ : Union[str, Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() lowercase__ : Union[str, Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) lowercase__ : List[str] = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy='steps' ) trainer.train() lowercase__ : Optional[int] = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) lowercase__ : int = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy='epoch' ) trainer.train() lowercase__ : str = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) # A bit of everything lowercase__ : Any = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=1_0 , eval_steps=5 , evaluation_strategy='steps' , ) trainer.train() lowercase__ : Any = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) # warning should be emitted for duplicated callbacks with patch('transformers.trainer_callback.logger.warning' ) as warn_mock: lowercase__ : str = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(a ) in warn_mock.call_args[0][0]
645
1
"""simple docstring""" from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig _UpperCamelCase : Optional[Any] = logging.get_logger(__name__) # General docstring _UpperCamelCase : Optional[int] = "ResNetConfig" # Base docstring _UpperCamelCase : List[str] = "microsoft/resnet-50" _UpperCamelCase : Any = [1, 20_48, 7, 7] # Image classification docstring _UpperCamelCase : str = "microsoft/resnet-50" _UpperCamelCase : Any = "tiger cat" _UpperCamelCase : Any = [ "microsoft/resnet-50", # See all resnet models at https://huggingface.co/models?filter=resnet ] class UpperCAmelCase_ ( nn.Module): def __init__( self , a , a , a = 3 , a = 1 , a = "relu" ) -> Tuple: super().__init__() lowercase__ : List[Any] = nn.Convad( a , a , kernel_size=a , stride=a , padding=kernel_size // 2 , bias=a ) lowercase__ : List[str] = nn.BatchNormad(a ) lowercase__ : str = ACTaFN[activation] if activation is not None else nn.Identity() def _UpperCAmelCase ( self , a ) -> Tensor: lowercase__ : Dict = self.convolution(a ) lowercase__ : Any = self.normalization(a ) lowercase__ : Any = self.activation(a ) return hidden_state class UpperCAmelCase_ ( nn.Module): def __init__( self , a ) -> Tuple: super().__init__() lowercase__ : List[Any] = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) lowercase__ : Union[str, Any] = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) lowercase__ : Any = config.num_channels def _UpperCAmelCase ( self , a ) -> Tensor: lowercase__ : Optional[Any] = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) lowercase__ : Dict = self.embedder(a ) lowercase__ : Dict = self.pooler(a ) return embedding class UpperCAmelCase_ ( nn.Module): def __init__( self , a , a , a = 2 ) -> List[str]: super().__init__() lowercase__ : Union[str, Any] = nn.Convad(a , a , kernel_size=1 , stride=a , bias=a ) lowercase__ : Union[str, Any] = nn.BatchNormad(a ) def _UpperCAmelCase ( self , a ) -> Tensor: lowercase__ : Union[str, Any] = self.convolution(a ) lowercase__ : Optional[Any] = self.normalization(a ) return hidden_state class UpperCAmelCase_ ( nn.Module): def __init__( self , a , a , a = 1 , a = "relu" ) -> Dict: super().__init__() lowercase__ : Optional[Any] = in_channels != out_channels or stride != 1 lowercase__ : Union[str, Any] = ( ResNetShortCut(a , a , stride=a ) if should_apply_shortcut else nn.Identity() ) lowercase__ : List[Any] = nn.Sequential( ResNetConvLayer(a , a , stride=a ) , ResNetConvLayer(a , a , activation=a ) , ) lowercase__ : Dict = ACTaFN[activation] def _UpperCAmelCase ( self , a ) -> List[Any]: lowercase__ : List[str] = hidden_state lowercase__ : int = self.layer(a ) lowercase__ : Tuple = self.shortcut(a ) hidden_state += residual lowercase__ : Tuple = self.activation(a ) return hidden_state class UpperCAmelCase_ ( nn.Module): def __init__( self , a , a , a = 1 , a = "relu" , a = 4 ) -> Any: super().__init__() lowercase__ : List[Any] = in_channels != out_channels or stride != 1 lowercase__ : int = out_channels // reduction lowercase__ : Tuple = ( ResNetShortCut(a , a , stride=a ) if should_apply_shortcut else nn.Identity() ) lowercase__ : Any = nn.Sequential( ResNetConvLayer(a , a , kernel_size=1 ) , ResNetConvLayer(a , a , stride=a ) , ResNetConvLayer(a , a , kernel_size=1 , activation=a ) , ) lowercase__ : str = ACTaFN[activation] def _UpperCAmelCase ( self , a ) -> Any: lowercase__ : Optional[int] = hidden_state lowercase__ : str = self.layer(a ) lowercase__ : List[Any] = self.shortcut(a ) hidden_state += residual lowercase__ : List[Any] = self.activation(a ) return hidden_state class UpperCAmelCase_ ( nn.Module): def __init__( self , a , a , a , a = 2 , a = 2 , ) -> Union[str, Any]: super().__init__() lowercase__ : Dict = ResNetBottleNeckLayer if config.layer_type == 'bottleneck' else ResNetBasicLayer lowercase__ : List[Any] = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(a , a , stride=a , activation=config.hidden_act ) , *[layer(a , a , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def _UpperCAmelCase ( self , a ) -> Tensor: lowercase__ : str = input for layer in self.layers: lowercase__ : Tuple = layer(a ) return hidden_state class UpperCAmelCase_ ( nn.Module): def __init__( self , a ) -> Optional[Any]: super().__init__() lowercase__ : Tuple = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( a , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) lowercase__ : Optional[int] = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(a , config.depths[1:] ): self.stages.append(ResNetStage(a , a , a , depth=a ) ) def _UpperCAmelCase ( self , a , a = False , a = True ) -> BaseModelOutputWithNoAttention: lowercase__ : Union[str, Any] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowercase__ : int = hidden_states + (hidden_state,) lowercase__ : Optional[int] = stage_module(a ) if output_hidden_states: lowercase__ : Tuple = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=a , hidden_states=a , ) class UpperCAmelCase_ ( _a): lowerCamelCase__ : Tuple = ResNetConfig lowerCamelCase__ : Union[str, Any] = "resnet" lowerCamelCase__ : int = "pixel_values" lowerCamelCase__ : Any = True def _UpperCAmelCase ( self , a ) -> Union[str, Any]: if isinstance(a , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu' ) elif isinstance(a , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def _UpperCAmelCase ( self , a , a=False ) -> int: if isinstance(a , a ): lowercase__ : Any = value _UpperCamelCase : str = r"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`ResNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" _UpperCamelCase : Tuple = r"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( "The bare ResNet model outputting raw features without any specific head on top." , _a , ) class UpperCAmelCase_ ( _a): def __init__( self , a ) -> List[Any]: super().__init__(a ) lowercase__ : str = config lowercase__ : Dict = ResNetEmbeddings(a ) lowercase__ : Dict = ResNetEncoder(a ) lowercase__ : str = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(a ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=a , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _UpperCAmelCase ( self , a , a = None , a = None ) -> BaseModelOutputWithPoolingAndNoAttention: lowercase__ : List[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase__ : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ : Tuple = self.embedder(a ) lowercase__ : int = self.encoder( a , output_hidden_states=a , return_dict=a ) lowercase__ : Optional[int] = encoder_outputs[0] lowercase__ : Optional[Any] = self.pooler(a ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=a , pooler_output=a , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( "\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , _a , ) class UpperCAmelCase_ ( _a): def __init__( self , a ) -> List[Any]: super().__init__(a ) lowercase__ : Any = config.num_labels lowercase__ : Dict = ResNetModel(a ) # classification head lowercase__ : Optional[Any] = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(a ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=a , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _UpperCAmelCase ( self , a = None , a = None , a = None , a = None , ) -> ImageClassifierOutputWithNoAttention: lowercase__ : Dict = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ : Dict = self.resnet(a , output_hidden_states=a , return_dict=a ) lowercase__ : Union[str, Any] = outputs.pooler_output if return_dict else outputs[1] lowercase__ : Tuple = self.classifier(a ) lowercase__ : List[str] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowercase__ : List[Any] = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowercase__ : Union[str, Any] = 'single_label_classification' else: lowercase__ : Optional[int] = 'multi_label_classification' if self.config.problem_type == "regression": lowercase__ : Any = MSELoss() if self.num_labels == 1: lowercase__ : Any = loss_fct(logits.squeeze() , labels.squeeze() ) else: lowercase__ : Dict = loss_fct(a , a ) elif self.config.problem_type == "single_label_classification": lowercase__ : List[str] = CrossEntropyLoss() lowercase__ : List[str] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowercase__ : Optional[int] = BCEWithLogitsLoss() lowercase__ : List[str] = loss_fct(a , a ) if not return_dict: lowercase__ : List[Any] = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=a , logits=a , hidden_states=outputs.hidden_states ) @add_start_docstrings( "\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n " , _a , ) class UpperCAmelCase_ ( _a , _a): def __init__( self , a ) -> Any: super().__init__(a ) super()._init_backbone(a ) lowercase__ : List[str] = [config.embedding_size] + config.hidden_sizes lowercase__ : Tuple = ResNetEmbeddings(a ) lowercase__ : Optional[Any] = ResNetEncoder(a ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(a ) @replace_return_docstrings(output_type=a , config_class=_CONFIG_FOR_DOC ) def _UpperCAmelCase ( self , a , a = None , a = None ) -> BackboneOutput: lowercase__ : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase__ : List[str] = self.embedder(a ) lowercase__ : List[str] = self.encoder(a , output_hidden_states=a , return_dict=a ) lowercase__ : Union[str, Any] = outputs.hidden_states lowercase__ : Dict = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: lowercase__ : List[Any] = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=a , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=a , )
645
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _UpperCamelCase : str = { "configuration_gpt_neo": ["GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoConfig", "GPTNeoOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Tuple = [ "GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoForCausalLM", "GPTNeoForQuestionAnswering", "GPTNeoForSequenceClassification", "GPTNeoForTokenClassification", "GPTNeoModel", "GPTNeoPreTrainedModel", "load_tf_weights_in_gpt_neo", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Dict = [ "FlaxGPTNeoForCausalLM", "FlaxGPTNeoModel", "FlaxGPTNeoPreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys _UpperCamelCase : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
645
1
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING _UpperCamelCase : Any = logging.get_logger(__name__) class UpperCAmelCase_ ( _a): lowerCamelCase__ : List[Any] = "upernet" def __init__( self , a=None , a=5_1_2 , a=0.02 , a=[1, 2, 3, 6] , a=True , a=0.4 , a=3_8_4 , a=2_5_6 , a=1 , a=False , a=2_5_5 , **a , ) -> List[Any]: super().__init__(**a ) if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) lowercase__ : Tuple = CONFIG_MAPPING['resnet'](out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) elif isinstance(a , a ): lowercase__ : Any = backbone_config.get('model_type' ) lowercase__ : Any = CONFIG_MAPPING[backbone_model_type] lowercase__ : str = config_class.from_dict(a ) lowercase__ : Optional[Any] = backbone_config lowercase__ : Any = hidden_size lowercase__ : Dict = initializer_range lowercase__ : Tuple = pool_scales lowercase__ : List[Any] = use_auxiliary_head lowercase__ : Any = auxiliary_loss_weight lowercase__ : List[Any] = auxiliary_in_channels lowercase__ : Any = auxiliary_channels lowercase__ : str = auxiliary_num_convs lowercase__ : Tuple = auxiliary_concat_input lowercase__ : List[Any] = loss_ignore_index def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Any = copy.deepcopy(self.__dict__ ) lowercase__ : Union[str, Any] = self.backbone_config.to_dict() lowercase__ : Optional[Any] = self.__class__.model_type return output
645
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class UpperCAmelCase_ ( unittest.TestCase): def _UpperCAmelCase ( self , a ) -> str: for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss'] ): lowercase__ : str = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(a ) def _UpperCAmelCase ( self ) -> int: lowercase__ : Dict = 'sshleifer/tiny-gpt2' lowercase__ : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=a , multi_process=a , ) lowercase__ : str = TensorFlowBenchmark(a ) lowercase__ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> int: lowercase__ : List[str] = 'sgugger/tiny-distilbert-classification' lowercase__ : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , only_pretrain_model=a , ) lowercase__ : Optional[Any] = TensorFlowBenchmark(a ) lowercase__ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : Optional[int] = 'sshleifer/tiny-gpt2' lowercase__ : Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , ) lowercase__ : Optional[Any] = TensorFlowBenchmark(a ) lowercase__ : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : Any = 'sshleifer/tiny-gpt2' lowercase__ : List[Any] = AutoConfig.from_pretrained(a ) lowercase__ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=a , multi_process=a , ) lowercase__ : Tuple = TensorFlowBenchmark(a , [config] ) lowercase__ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> int: lowercase__ : Optional[Any] = 'sshleifer/tiny-gpt2' lowercase__ : List[str] = AutoConfig.from_pretrained(a ) lowercase__ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , ) lowercase__ : List[str] = TensorFlowBenchmark(a , [config] ) lowercase__ : Any = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Optional[Any] = 'sshleifer/tiny-gpt2' lowercase__ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , ) lowercase__ : Optional[Any] = TensorFlowBenchmark(a ) lowercase__ : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _UpperCAmelCase ( self ) -> str: lowercase__ : Optional[Any] = 'sshleifer/tiny-gpt2' lowercase__ : Optional[int] = AutoConfig.from_pretrained(a ) lowercase__ : str = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , ) lowercase__ : str = TensorFlowBenchmark(a , [config] ) lowercase__ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : List[str] = 'patrickvonplaten/t5-tiny-random' lowercase__ : Any = AutoConfig.from_pretrained(a ) lowercase__ : List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , ) lowercase__ : int = TensorFlowBenchmark(a , configs=[config] ) lowercase__ : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU' ) ) == 0 , 'Cannot do xla on CPU.' ) def _UpperCAmelCase ( self ) -> Any: lowercase__ : Any = 'sshleifer/tiny-gpt2' lowercase__ : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , use_xla=a , multi_process=a , ) lowercase__ : Any = TensorFlowBenchmark(a ) lowercase__ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Any = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ : List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=a , save_to_csv=a , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(a , 'inf_time.csv' ) , inference_memory_csv_file=os.path.join(a , 'inf_mem.csv' ) , env_info_csv_file=os.path.join(a , 'env.csv' ) , multi_process=a , ) lowercase__ : Union[str, Any] = TensorFlowBenchmark(a ) benchmark.run() self.assertTrue(Path(os.path.join(a , 'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(a , 'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(a , 'env.csv' ) ).exists() ) def _UpperCAmelCase ( self ) -> Dict: lowercase__ : Tuple = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(a ): self.assertTrue(hasattr(a , 'sequential' ) ) self.assertTrue(hasattr(a , 'cumulative' ) ) self.assertTrue(hasattr(a , 'current' ) ) self.assertTrue(hasattr(a , 'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=a , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(a , 'log.txt' ) , log_print=a , trace_memory_line_by_line=a , eager_mode=a , multi_process=a , ) lowercase__ : Optional[int] = TensorFlowBenchmark(a ) lowercase__ : Optional[Any] = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(a , 'log.txt' ) ).exists() )
645
1
"""simple docstring""" import numpy as np _UpperCamelCase : Optional[Any] = [ ["a", "b", "c", "d", "e"], ["f", "g", "h", "i", "k"], ["l", "m", "n", "o", "p"], ["q", "r", "s", "t", "u"], ["v", "w", "x", "y", "z"], ] class UpperCAmelCase_ : def __init__( self ) -> None: lowercase__ : Optional[int] = np.array(a ) def _UpperCAmelCase ( self , a ) -> np.ndarray: lowercase__ , lowercase__ : List[str] = np.where(letter == self.SQUARE ) lowercase__ : Tuple = np.concatenate([indexa + 1, indexa + 1] ) return indexes def _UpperCAmelCase ( self , a , a ) -> str: lowercase__ : List[str] = self.SQUARE[indexa - 1, indexa - 1] return letter def _UpperCAmelCase ( self , a ) -> str: lowercase__ : Dict = message.lower() lowercase__ : List[Any] = message.replace(' ' , '' ) lowercase__ : Optional[Any] = message.replace('j' , 'i' ) lowercase__ : str = np.empty((2, len(a )) ) for letter_index in range(len(a ) ): lowercase__ : Optional[int] = self.letter_to_numbers(message[letter_index] ) lowercase__ : str = numbers[0] lowercase__ : Union[str, Any] = numbers[1] lowercase__ : int = first_step.reshape(2 * len(a ) ) lowercase__ : Any = '' for numbers_index in range(len(a ) ): lowercase__ : List[str] = int(second_step[numbers_index * 2] ) lowercase__ : Any = int(second_step[(numbers_index * 2) + 1] ) lowercase__ : Any = self.numbers_to_letter(a , a ) lowercase__ : Union[str, Any] = encoded_message + letter return encoded_message def _UpperCAmelCase ( self , a ) -> str: lowercase__ : Tuple = message.lower() message.replace(' ' , '' ) lowercase__ : Any = np.empty(2 * len(a ) ) for letter_index in range(len(a ) ): lowercase__ : List[Any] = self.letter_to_numbers(message[letter_index] ) lowercase__ : List[str] = numbers[0] lowercase__ : int = numbers[1] lowercase__ : Any = first_step.reshape((2, len(a )) ) lowercase__ : Optional[Any] = '' for numbers_index in range(len(a ) ): lowercase__ : int = int(second_step[0, numbers_index] ) lowercase__ : List[str] = int(second_step[1, numbers_index] ) lowercase__ : Tuple = self.numbers_to_letter(a , a ) lowercase__ : Any = decoded_message + letter return decoded_message
645
"""simple docstring""" import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class UpperCAmelCase_ ( _a): def __init__( self , a , a=1_3 , a=7 , a=True , a=True , a=False , a=True , a=9_9 , a=3_2 , a=5 , a=4 , a=3_7 , a="gelu" , a=0.1 , a=0.1 , a=5_1_2 , a=1_6 , a=2 , a=0.02 , a=3 , a=4 , a=None , ) -> Any: lowercase__ : Tuple = parent lowercase__ : List[Any] = batch_size lowercase__ : List[Any] = seq_length lowercase__ : List[Any] = is_training lowercase__ : Optional[Any] = use_input_mask lowercase__ : Optional[int] = use_token_type_ids lowercase__ : int = use_labels lowercase__ : Tuple = vocab_size lowercase__ : int = hidden_size lowercase__ : Any = num_hidden_layers lowercase__ : List[str] = num_attention_heads lowercase__ : Optional[Any] = intermediate_size lowercase__ : Optional[Any] = hidden_act lowercase__ : List[str] = hidden_dropout_prob lowercase__ : List[Any] = attention_probs_dropout_prob lowercase__ : List[Any] = max_position_embeddings lowercase__ : List[str] = type_vocab_size lowercase__ : Tuple = type_sequence_label_size lowercase__ : List[Any] = initializer_range lowercase__ : str = num_labels lowercase__ : Tuple = num_choices lowercase__ : str = scope def _UpperCAmelCase ( self ) -> Any: lowercase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ : str = None if self.use_input_mask: lowercase__ : Any = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ : Dict = None lowercase__ : Optional[Any] = None lowercase__ : int = None if self.use_labels: lowercase__ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__ : Dict = ids_tensor([self.batch_size] , self.num_choices ) lowercase__ : List[Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCAmelCase ( self ) -> Optional[int]: return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> Dict: lowercase__ : Tuple = DistilBertModel(config=a ) model.to(a ) model.eval() lowercase__ : Any = model(a , a ) lowercase__ : str = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> Dict: lowercase__ : Optional[int] = DistilBertForMaskedLM(config=a ) model.to(a ) model.eval() lowercase__ : Union[str, Any] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> int: lowercase__ : Tuple = DistilBertForQuestionAnswering(config=a ) model.to(a ) model.eval() lowercase__ : Tuple = model( a , attention_mask=a , start_positions=a , end_positions=a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> List[str]: lowercase__ : int = self.num_labels lowercase__ : Dict = DistilBertForSequenceClassification(a ) model.to(a ) model.eval() lowercase__ : Optional[Any] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> Any: lowercase__ : Any = self.num_labels lowercase__ : List[str] = DistilBertForTokenClassification(config=a ) model.to(a ) model.eval() lowercase__ : Any = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> Tuple: lowercase__ : List[Any] = self.num_choices lowercase__ : Any = DistilBertForMultipleChoice(config=a ) model.to(a ) model.eval() lowercase__ : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ : Optional[int] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ : int = model( a , attention_mask=a , labels=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _UpperCAmelCase ( self ) -> str: lowercase__ : Union[str, Any] = self.prepare_config_and_inputs() ((lowercase__) , (lowercase__) , (lowercase__) , (lowercase__) , (lowercase__) , (lowercase__)) : List[str] = config_and_inputs lowercase__ : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _a , _a , unittest.TestCase): lowerCamelCase__ : List[str] = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) lowerCamelCase__ : str = ( { "feature-extraction": DistilBertModel, "fill-mask": DistilBertForMaskedLM, "question-answering": DistilBertForQuestionAnswering, "text-classification": DistilBertForSequenceClassification, "token-classification": DistilBertForTokenClassification, "zero-shot": DistilBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ : Optional[int] = True lowerCamelCase__ : Any = True lowerCamelCase__ : List[Any] = True lowerCamelCase__ : Optional[Any] = True def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : str = DistilBertModelTester(self ) lowercase__ : int = ConfigTester(self , config_class=a , dim=3_7 ) def _UpperCAmelCase ( self ) -> Dict: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*a ) def _UpperCAmelCase ( self ) -> Any: lowercase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*a ) def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*a ) def _UpperCAmelCase ( self ) -> int: lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*a ) def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*a ) def _UpperCAmelCase ( self ) -> str: lowercase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*a ) @slow def _UpperCAmelCase ( self ) -> str: for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : str = DistilBertModel.from_pretrained(a ) self.assertIsNotNone(a ) @slow @require_torch_gpu def _UpperCAmelCase ( self ) -> Any: lowercase__ , lowercase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return lowercase__ : Optional[int] = True lowercase__ : Union[str, Any] = model_class(config=a ) lowercase__ : int = self._prepare_for_class(a , a ) lowercase__ : Tuple = torch.jit.trace( a , (inputs_dict['input_ids'].to('cpu' ), inputs_dict['attention_mask'].to('cpu' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a , os.path.join(a , 'traced_model.pt' ) ) lowercase__ : Optional[int] = torch.jit.load(os.path.join(a , 'traced_model.pt' ) , map_location=a ) loaded(inputs_dict['input_ids'].to(a ) , inputs_dict['attention_mask'].to(a ) ) @require_torch class UpperCAmelCase_ ( unittest.TestCase): @slow def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : int = DistilBertModel.from_pretrained('distilbert-base-uncased' ) lowercase__ : Union[str, Any] = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) lowercase__ : Optional[Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowercase__ : Optional[Any] = model(a , attention_mask=a )[0] lowercase__ : Tuple = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , a ) lowercase__ : List[Any] = torch.tensor( [[[-0.1_639, 0.3_299, 0.1_648], [-0.1_746, 0.3_289, 0.1_710], [-0.1_884, 0.3_357, 0.1_810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a , atol=1e-4 ) )
645
1
"""simple docstring""" from math import isqrt def a_ ( _lowerCAmelCase : int ): '''simple docstring''' return all(number % divisor != 0 for divisor in range(2 , isqrt(_lowerCAmelCase ) + 1 ) ) def a_ ( _lowerCAmelCase : int = 10**6 ): '''simple docstring''' lowercase__ : List[Any] = 0 lowercase__ : Any = 1 lowercase__ : Union[str, Any] = 7 while prime_candidate < max_prime: primes_count += is_prime(_lowerCAmelCase ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(f'''{solution() = }''')
645
"""simple docstring""" from __future__ import annotations def a_ ( _lowerCAmelCase : float , _lowerCAmelCase : float , _lowerCAmelCase : float , ): '''simple docstring''' if (stress, tangential_force, area).count(0 ) != 1: raise ValueError('You cannot supply more or less than 2 values' ) elif stress < 0: raise ValueError('Stress cannot be negative' ) elif tangential_force < 0: raise ValueError('Tangential Force cannot be negative' ) elif area < 0: raise ValueError('Area cannot be negative' ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
645
1
"""simple docstring""" import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() _UpperCamelCase : Dict = logging.get_logger(__name__) _UpperCamelCase : List[Any] = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "encoder.layer_norm_for_extract": "layer_norm_for_extract", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "label_embs_concat": "label_embeddings_concat", "mask_emb": "masked_spec_embed", "spk_proj": "speaker_proj", } _UpperCamelCase : List[str] = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "label_embeddings_concat", "speaker_proj", "layer_norm_for_extract", ] def a_ ( _lowerCAmelCase : Any , _lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple ): '''simple docstring''' for attribute in key.split('.' ): lowercase__ : Dict = getattr(_lowerCAmelCase , _lowerCAmelCase ) if weight_type is not None: lowercase__ : Optional[int] = getattr(_lowerCAmelCase , _lowerCAmelCase ).shape else: lowercase__ : Optional[int] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowercase__ : Optional[Any] = value elif weight_type == "weight_g": lowercase__ : Dict = value elif weight_type == "weight_v": lowercase__ : List[str] = value elif weight_type == "bias": lowercase__ : Optional[Any] = value else: lowercase__ : List[str] = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def a_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] ): '''simple docstring''' lowercase__ : Tuple = [] lowercase__ : List[str] = fairseq_model.state_dict() lowercase__ : Union[str, Any] = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): lowercase__ : Optional[int] = False if "conv_layers" in name: load_conv_layer( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , hf_model.config.feat_extract_norm == 'group' , ) lowercase__ : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): lowercase__ : List[Any] = 'unispeech_sat.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('.' )[:-1] ) != key): # special case since naming is very similar continue lowercase__ : int = True if "*" in mapped_key: lowercase__ : Optional[int] = name.split(_lowerCAmelCase )[0].split('.' )[-2] lowercase__ : List[str] = mapped_key.replace('*' , _lowerCAmelCase ) if "weight_g" in name: lowercase__ : List[Any] = 'weight_g' elif "weight_v" in name: lowercase__ : int = 'weight_v' elif "bias" in name: lowercase__ : Dict = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj lowercase__ : Union[str, Any] = 'weight' else: lowercase__ : int = None set_recursively(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) continue if not is_used: unused_weights.append(_lowerCAmelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def a_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : Dict ): '''simple docstring''' lowercase__ : int = full_name.split('conv_layers.' )[-1] lowercase__ : int = name.split('.' ) lowercase__ : int = int(items[0] ) lowercase__ : Dict = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowercase__ : Union[str, Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowercase__ : Optional[int] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) lowercase__ : List[Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) lowercase__ : int = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_lowerCAmelCase ) @torch.no_grad() def a_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : str=None , _lowerCAmelCase : Tuple=True ): '''simple docstring''' if config_path is not None: lowercase__ : Any = UniSpeechSatConfig.from_pretrained(_lowerCAmelCase ) else: lowercase__ : Any = UniSpeechSatConfig() lowercase__ : Union[str, Any] = '' if is_finetuned: lowercase__ : Optional[Any] = UniSpeechSatForCTC(_lowerCAmelCase ) else: lowercase__ : List[Any] = UniSpeechSatForPreTraining(_lowerCAmelCase ) lowercase__ , lowercase__ , lowercase__ : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) lowercase__ : Union[str, Any] = model[0].eval() recursively_load_weights(_lowerCAmelCase , _lowerCAmelCase ) hf_wavavec.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": _UpperCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _UpperCamelCase : str = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
645
"""simple docstring""" import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase_ : def __init__( self , a , a=1_3 , a=[3_0, 3_0] , a=2 , a=3 , a=True , a=True , a=3_2 , a=5 , a=4 , a=3_7 , a="gelu" , a=0.1 , a=0.1 , a=1_0 , a=0.02 , a=3 , a=None , a=8 , a=1_0 , ) -> Any: lowercase__ : List[str] = parent lowercase__ : Optional[Any] = batch_size lowercase__ : Optional[int] = image_size lowercase__ : List[Any] = patch_size lowercase__ : Optional[Any] = num_channels lowercase__ : str = is_training lowercase__ : Optional[Any] = use_labels lowercase__ : Optional[Any] = hidden_size lowercase__ : Dict = num_hidden_layers lowercase__ : Optional[Any] = num_attention_heads lowercase__ : Dict = intermediate_size lowercase__ : List[Any] = hidden_act lowercase__ : List[Any] = hidden_dropout_prob lowercase__ : Any = attention_probs_dropout_prob lowercase__ : Any = type_sequence_label_size lowercase__ : Dict = initializer_range lowercase__ : Union[str, Any] = num_labels lowercase__ : Tuple = scope lowercase__ : Tuple = n_targets lowercase__ : Optional[int] = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens lowercase__ : Optional[Any] = (image_size[1] // patch_size) * (image_size[0] // patch_size) lowercase__ : Tuple = num_patches + 1 + self.num_detection_tokens def _UpperCAmelCase ( self ) -> Any: lowercase__ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) lowercase__ : Tuple = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) lowercase__ : int = [] for i in range(self.batch_size ): lowercase__ : Optional[Any] = {} lowercase__ : Any = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=a ) lowercase__ : List[str] = torch.rand(self.n_targets , 4 , device=a ) labels.append(a ) lowercase__ : Tuple = self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self ) -> List[Any]: return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def _UpperCAmelCase ( self , a , a , a ) -> int: lowercase__ : List[str] = YolosModel(config=a ) model.to(a ) model.eval() lowercase__ : List[Any] = model(a ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def _UpperCAmelCase ( self , a , a , a ) -> Union[str, Any]: lowercase__ : str = YolosForObjectDetection(a ) model.to(a ) model.eval() lowercase__ : Dict = model(pixel_values=a ) lowercase__ : Tuple = model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) lowercase__ : str = model(pixel_values=a , labels=a ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : int = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Any = config_and_inputs lowercase__ : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _a , _a , unittest.TestCase): lowerCamelCase__ : Optional[int] = (YolosModel, YolosForObjectDetection) if is_torch_available() else () lowerCamelCase__ : List[str] = ( {"feature-extraction": YolosModel, "object-detection": YolosForObjectDetection} if is_torch_available() else {} ) lowerCamelCase__ : List[Any] = False lowerCamelCase__ : Dict = False lowerCamelCase__ : Tuple = False lowerCamelCase__ : Union[str, Any] = False def _UpperCAmelCase ( self , a , a , a=False ) -> Dict: lowercase__ : List[str] = super()._prepare_for_class(a , a , return_labels=a ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": lowercase__ : Optional[Any] = [] for i in range(self.model_tester.batch_size ): lowercase__ : Dict = {} lowercase__ : Dict = torch.ones( size=(self.model_tester.n_targets,) , device=a , dtype=torch.long ) lowercase__ : Optional[Any] = torch.ones( self.model_tester.n_targets , 4 , device=a , dtype=torch.float ) labels.append(a ) lowercase__ : Union[str, Any] = labels return inputs_dict def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : Dict = YolosModelTester(self ) lowercase__ : Optional[int] = ConfigTester(self , config_class=a , has_text_modality=a , hidden_size=3_7 ) def _UpperCAmelCase ( self ) -> str: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Optional[Any]: # YOLOS does not use inputs_embeds pass def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[str] = model_class(a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase__ : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a , nn.Linear ) ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : int = model_class(a ) lowercase__ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Tuple = [*signature.parameters.keys()] lowercase__ : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , a ) def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _UpperCAmelCase ( self ) -> Dict: lowercase__ , lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Dict = True # in YOLOS, the seq_len is different lowercase__ : Tuple = self.model_tester.expected_seq_len for model_class in self.all_model_classes: lowercase__ : Optional[int] = True lowercase__ : str = False lowercase__ : str = True lowercase__ : List[str] = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : Any = model(**self._prepare_for_class(a , a ) ) lowercase__ : str = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase__ : Optional[int] = True lowercase__ : List[Any] = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : Union[str, Any] = model(**self._prepare_for_class(a , a ) ) lowercase__ : List[str] = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowercase__ : Dict = len(a ) # Check attention is always last and order is fine lowercase__ : Any = True lowercase__ : int = True lowercase__ : int = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : Any = model(**self._prepare_for_class(a , a ) ) lowercase__ : Optional[Any] = 1 self.assertEqual(out_len + added_hidden_states , len(a ) ) lowercase__ : Tuple = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def _UpperCAmelCase ( self ) -> List[str]: def check_hidden_states_output(a , a , a ): lowercase__ : str = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : int = model(**self._prepare_for_class(a , a ) ) lowercase__ : int = outputs.hidden_states lowercase__ : Any = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(a ) , a ) # YOLOS has a different seq_length lowercase__ : Optional[int] = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowercase__ , lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Any = True check_hidden_states_output(a , a , a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : List[Any] = True check_hidden_states_output(a , a , a ) def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*a ) @slow def _UpperCAmelCase ( self ) -> Union[str, Any]: for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : int = YolosModel.from_pretrained(a ) self.assertIsNotNone(a ) def a_ ( ): '''simple docstring''' lowercase__ : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase): @cached_property def _UpperCAmelCase ( self ) -> Union[str, Any]: return AutoImageProcessor.from_pretrained('hustvl/yolos-small' ) if is_vision_available() else None @slow def _UpperCAmelCase ( self ) -> int: lowercase__ : Dict = YolosForObjectDetection.from_pretrained('hustvl/yolos-small' ).to(a ) lowercase__ : Tuple = self.default_image_processor lowercase__ : Optional[int] = prepare_img() lowercase__ : int = image_processor(images=a , return_tensors='pt' ).to(a ) # forward pass with torch.no_grad(): lowercase__ : int = model(inputs.pixel_values ) # verify outputs lowercase__ : Tuple = torch.Size((1, 1_0_0, 9_2) ) self.assertEqual(outputs.logits.shape , a ) lowercase__ : Any = torch.tensor( [[-24.0_248, -10.3_024, -14.8_290], [-42.0_392, -16.8_200, -27.4_334], [-27.2_743, -11.8_154, -18.7_148]] , device=a , ) lowercase__ : List[str] = torch.tensor( [[0.2_559, 0.5_455, 0.4_706], [0.2_989, 0.7_279, 0.1_875], [0.7_732, 0.4_017, 0.4_462]] , device=a ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , a , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , a , atol=1e-4 ) ) # verify postprocessing lowercase__ : Optional[Any] = image_processor.post_process_object_detection( a , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] lowercase__ : str = torch.tensor([0.9_994, 0.9_790, 0.9_964, 0.9_972, 0.9_861] ).to(a ) lowercase__ : Any = [7_5, 7_5, 1_7, 6_3, 1_7] lowercase__ : Optional[int] = torch.tensor([335.0_609, 79.3_848, 375.4_216, 187.2_495] ).to(a ) self.assertEqual(len(results['scores'] ) , 5 ) self.assertTrue(torch.allclose(results['scores'] , a , atol=1e-4 ) ) self.assertSequenceEqual(results['labels'].tolist() , a ) self.assertTrue(torch.allclose(results['boxes'][0, :] , a ) )
645
1
"""simple docstring""" from graphs.minimum_spanning_tree_kruskal import kruskal def a_ ( ): '''simple docstring''' lowercase__ : Optional[int] = 9 lowercase__ : str = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] lowercase__ : Any = kruskal(_lowerCAmelCase , _lowerCAmelCase ) lowercase__ : Optional[int] = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(_lowerCAmelCase ) == sorted(_lowerCAmelCase )
645
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch _UpperCamelCase : int = logging.get_logger(__name__) @dataclass class UpperCAmelCase_ : def __init__( self , a=False , a=False , a=6.0 , a=None , a=False , a=False , a=None , a="fp4" , a=False , **a , ) -> Tuple: lowercase__ : str = load_in_abit lowercase__ : str = load_in_abit lowercase__ : List[str] = llm_inta_threshold lowercase__ : Dict = llm_inta_skip_modules lowercase__ : Tuple = llm_inta_enable_fpaa_cpu_offload lowercase__ : Any = llm_inta_has_fpaa_weight lowercase__ : Any = bnb_abit_quant_type lowercase__ : Dict = bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: lowercase__ : Dict = torch.floataa elif isinstance(a , a ): lowercase__ : Any = getattr(a , a ) elif isinstance(a , torch.dtype ): lowercase__ : Any = bnb_abit_compute_dtype else: raise ValueError('bnb_4bit_compute_dtype must be a string or a torch.dtype' ) self.post_init() def _UpperCAmelCase ( self ) -> str: if not isinstance(self.llm_inta_threshold , a ): raise ValueError('llm_int8_threshold must be a float' ) if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , a ): raise ValueError('llm_int8_skip_modules must be a list of strings' ) if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , a ): raise ValueError('llm_int8_enable_fp32_cpu_offload must be a boolean' ) if not isinstance(self.llm_inta_has_fpaa_weight , a ): raise ValueError('llm_int8_has_fp16_weight must be a boolean' ) if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype ): raise ValueError('bnb_4bit_compute_dtype must be torch.dtype' ) if not isinstance(self.bnb_abit_quant_type , a ): raise ValueError('bnb_4bit_quant_type must be a string' ) if not isinstance(self.bnb_abit_use_double_quant , a ): raise ValueError('bnb_4bit_use_double_quant must be a boolean' ) if self.load_in_abit and not version.parse(importlib.metadata.version('bitsandbytes' ) ) >= version.parse( '0.39.0' ): raise ValueError( '4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version' ) def _UpperCAmelCase ( self ) -> Tuple: return self.load_in_abit or self.load_in_abit def _UpperCAmelCase ( self ) -> List[str]: if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def _UpperCAmelCase ( cls , a , a , **a ) -> Optional[Any]: lowercase__ : List[Any] = cls(**a ) lowercase__ : Union[str, Any] = [] for key, value in kwargs.items(): if hasattr(a , a ): setattr(a , a , a ) to_remove.append(a ) for key in to_remove: kwargs.pop(a , a ) if return_unused_kwargs: return config, kwargs else: return config def _UpperCAmelCase ( self , a ) -> Dict: with open(a , 'w' , encoding='utf-8' ) as writer: lowercase__ : Any = self.to_dict() lowercase__ : str = json.dumps(a , indent=2 , sort_keys=a ) + '\n' writer.write(a ) def _UpperCAmelCase ( self ) -> Dict[str, Any]: lowercase__ : Optional[Any] = copy.deepcopy(self.__dict__ ) lowercase__ : Any = str(output['bnb_4bit_compute_dtype'] ).split('.' )[1] return output def __repr__( self ) -> Dict: return f"""{self.__class__.__name__} {self.to_json_string()}""" def _UpperCAmelCase ( self , a = True ) -> str: if use_diff is True: lowercase__ : List[Any] = self.to_diff_dict() else: lowercase__ : List[str] = self.to_dict() return json.dumps(a , indent=2 , sort_keys=a ) + "\n" def _UpperCAmelCase ( self ) -> Dict[str, Any]: lowercase__ : Tuple = self.to_dict() # get the default config dict lowercase__ : Optional[Any] = BitsAndBytesConfig().to_dict() lowercase__ : int = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: lowercase__ : Optional[int] = value return serializable_config_dict
645
1
"""simple docstring""" def a_ ( _lowerCAmelCase : int = 10**9 ): '''simple docstring''' lowercase__ : Union[str, Any] = 1 lowercase__ : Union[str, Any] = 2 lowercase__ : Tuple = 0 lowercase__ : Union[str, Any] = 0 lowercase__ : List[Any] = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value lowercase__ : Tuple = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f'''{solution() = }''')
645
"""simple docstring""" import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler _UpperCamelCase : int = 16 _UpperCamelCase : Union[str, Any] = 32 def a_ ( _lowerCAmelCase : Tuple ): '''simple docstring''' return int(x / 2**20 ) class UpperCAmelCase_ : def __enter__( self ) -> Union[str, Any]: gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero lowercase__ : List[str] = torch.cuda.memory_allocated() return self def __exit__( self , *a ) -> Any: gc.collect() torch.cuda.empty_cache() lowercase__ : Optional[Any] = torch.cuda.memory_allocated() lowercase__ : Union[str, Any] = torch.cuda.max_memory_allocated() lowercase__ : List[Any] = bamb(self.end - self.begin ) lowercase__ : List[Any] = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def a_ ( _lowerCAmelCase : Accelerator , _lowerCAmelCase : int = 16 , _lowerCAmelCase : str = "bert-base-cased" , _lowerCAmelCase : int = 320 , _lowerCAmelCase : int = 160 , ): '''simple docstring''' lowercase__ : List[Any] = AutoTokenizer.from_pretrained(_lowerCAmelCase ) lowercase__ : Union[str, Any] = load_dataset( 'glue' , 'mrpc' , split={'train': f"""train[:{n_train}]""", 'validation': f"""validation[:{n_val}]"""} ) def tokenize_function(_lowerCAmelCase : int ): # max_length=None => use the model max length (it's actually the default) lowercase__ : List[str] = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowercase__ : Union[str, Any] = datasets.map( _lowerCAmelCase , batched=_lowerCAmelCase , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=_lowerCAmelCase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ : Union[str, Any] = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(_lowerCAmelCase : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_lowerCAmelCase , padding='max_length' , max_length=128 , return_tensors='pt' ) return tokenizer.pad(_lowerCAmelCase , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. lowercase__ : Dict = DataLoader( tokenized_datasets['train'] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase ) lowercase__ : Dict = DataLoader( tokenized_datasets['validation'] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase ) return train_dataloader, eval_dataloader def a_ ( _lowerCAmelCase : Any , _lowerCAmelCase : List[str] ): '''simple docstring''' lowercase__ : List[Any] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ : Optional[int] = config['lr'] lowercase__ : Optional[Any] = int(config['num_epochs'] ) lowercase__ : Optional[Any] = int(config['seed'] ) lowercase__ : int = int(config['batch_size'] ) lowercase__ : Union[str, Any] = args.model_name_or_path set_seed(_lowerCAmelCase ) lowercase__ , lowercase__ : Tuple = get_dataloaders(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , args.n_train , args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ : List[Any] = AutoModelForSequenceClassification.from_pretrained(_lowerCAmelCase , return_dict=_lowerCAmelCase ) # Instantiate optimizer lowercase__ : List[Any] = ( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowercase__ : Optional[Any] = optimizer_cls(params=model.parameters() , lr=_lowerCAmelCase ) if accelerator.state.deepspeed_plugin is not None: lowercase__ : Optional[Any] = accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: lowercase__ : List[Any] = 1 lowercase__ : List[Any] = (len(_lowerCAmelCase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowercase__ : Optional[int] = get_linear_schedule_with_warmup( optimizer=_lowerCAmelCase , num_warmup_steps=0 , num_training_steps=_lowerCAmelCase , ) else: lowercase__ : Tuple = DummyScheduler(_lowerCAmelCase , total_num_steps=_lowerCAmelCase , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Dict = accelerator.prepare( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # We need to keep track of how many total steps we have iterated over lowercase__ : Optional[int] = 0 # We also need to keep track of the stating epoch so files are named properly lowercase__ : Tuple = 0 # Now we train the model lowercase__ : Optional[Any] = {} for epoch in range(_lowerCAmelCase , _lowerCAmelCase ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(_lowerCAmelCase ): lowercase__ : List[Any] = model(**_lowerCAmelCase ) lowercase__ : Dict = outputs.loss lowercase__ : int = loss / gradient_accumulation_steps accelerator.backward(_lowerCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print('Memory before entering the train : {}'.format(bamb(tracemalloc.begin ) ) ) accelerator.print('Memory consumed at the end of the train (end-begin): {}'.format(tracemalloc.used ) ) accelerator.print('Peak Memory consumed during the train (max-begin): {}'.format(tracemalloc.peaked ) ) accelerator.print( 'Total Peak Memory consumed during the train (max): {}'.format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) lowercase__ : int = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[f"""epoch-{epoch}"""] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , 'peak_memory_utilization.json' ) , 'w' ) as f: json.dump(_lowerCAmelCase , _lowerCAmelCase ) def a_ ( ): '''simple docstring''' lowercase__ : int = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path' , type=_lowerCAmelCase , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=_lowerCAmelCase , ) parser.add_argument( '--output_dir' , type=_lowerCAmelCase , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--peak_memory_upper_bound' , type=_lowerCAmelCase , default=_lowerCAmelCase , help='The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.' , ) parser.add_argument( '--n_train' , type=_lowerCAmelCase , default=320 , help='Number of training examples to use.' , ) parser.add_argument( '--n_val' , type=_lowerCAmelCase , default=160 , help='Number of validation examples to use.' , ) parser.add_argument( '--num_epochs' , type=_lowerCAmelCase , default=1 , help='Number of train epochs.' , ) lowercase__ : Any = parser.parse_args() lowercase__ : Optional[Any] = {'lr': 2E-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16} training_function(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": main()
645
1
"""simple docstring""" import math def a_ ( _lowerCAmelCase : int ): '''simple docstring''' lowercase__ : Optional[Any] = [] lowercase__ : str = 2 lowercase__ : Dict = int(math.sqrt(_lowerCAmelCase ) ) # Size of every segment lowercase__ : List[Any] = [True] * (end + 1) lowercase__ : Any = [] while start <= end: if temp[start] is True: in_prime.append(_lowerCAmelCase ) for i in range(start * start , end + 1 , _lowerCAmelCase ): lowercase__ : Any = False start += 1 prime += in_prime lowercase__ : Union[str, Any] = end + 1 lowercase__ : Any = min(2 * end , _lowerCAmelCase ) while low <= n: lowercase__ : Any = [True] * (high - low + 1) for each in in_prime: lowercase__ : List[str] = math.floor(low / each ) * each if t < low: t += each for j in range(_lowerCAmelCase , high + 1 , _lowerCAmelCase ): lowercase__ : Tuple = False for j in range(len(_lowerCAmelCase ) ): if temp[j] is True: prime.append(j + low ) lowercase__ : Any = high + 1 lowercase__ : int = min(high + end , _lowerCAmelCase ) return prime print(sieve(10**6))
645
"""simple docstring""" def a_ ( _lowerCAmelCase : str ): '''simple docstring''' lowercase__ : Any = [0] * len(_lowerCAmelCase ) for i in range(1 , len(_lowerCAmelCase ) ): # use last results for better performance - dynamic programming lowercase__ : List[str] = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: lowercase__ : Dict = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 lowercase__ : Union[str, Any] = j return prefix_result def a_ ( _lowerCAmelCase : str ): '''simple docstring''' return max(prefix_function(_lowerCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod()
645
1
"""simple docstring""" import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline _UpperCamelCase : Any = { "n_samples": 64, "horizon": 32, "num_inference_steps": 20, "n_guide_steps": 2, # can set to 0 for faster sampling, does not use value network "scale_grad_by_std": True, "scale": 0.1, "eta": 0.0, "t_grad_cutoff": 2, "device": "cpu", } if __name__ == "__main__": _UpperCamelCase : Dict = "hopper-medium-v2" _UpperCamelCase : int = gym.make(env_name) _UpperCamelCase : Optional[Any] = ValueGuidedRLPipeline.from_pretrained( "bglick13/hopper-medium-v2-value-function-hor32", env=env, ) env.seed(0) _UpperCamelCase : Optional[Any] = env.reset() _UpperCamelCase : Optional[int] = 0 _UpperCamelCase : List[str] = 0 _UpperCamelCase : List[Any] = 10_00 _UpperCamelCase : int = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy _UpperCamelCase : int = pipeline(obs, planning_horizon=32) # execute action in environment _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Optional[Any] = env.step(denorm_actions) _UpperCamelCase : List[Any] = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( f'''Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:''' f''' {total_score}''' ) # save observations for rendering rollout.append(next_observation.copy()) _UpperCamelCase : Union[str, Any] = next_observation except KeyboardInterrupt: pass print(f'''Total reward: {total_reward}''')
645
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class UpperCAmelCase_ ( unittest.TestCase): def __init__( self , a , a=7 , a=3 , a=1_8 , a=3_0 , a=4_0_0 , a=True , a=None , a=True , a=None , a=True , ) -> List[str]: lowercase__ : Tuple = size if size is not None else {'shortest_edge': 2_0} lowercase__ : Union[str, Any] = crop_size if crop_size is not None else {'height': 1_8, 'width': 1_8} lowercase__ : Optional[int] = parent lowercase__ : Optional[int] = batch_size lowercase__ : str = num_channels lowercase__ : Any = image_size lowercase__ : Optional[Any] = min_resolution lowercase__ : int = max_resolution lowercase__ : List[Any] = do_resize lowercase__ : List[str] = size lowercase__ : str = do_center_crop lowercase__ : List[Any] = crop_size lowercase__ : Union[str, Any] = do_flip_channel_order def _UpperCAmelCase ( self ) -> int: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class UpperCAmelCase_ ( _a , unittest.TestCase): lowerCamelCase__ : Optional[Any] = MobileViTImageProcessor if is_vision_available() else None def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : Tuple = MobileViTImageProcessingTester(self ) @property def _UpperCAmelCase ( self ) -> int: return self.image_processor_tester.prepare_image_processor_dict() def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a , 'do_resize' ) ) self.assertTrue(hasattr(a , 'size' ) ) self.assertTrue(hasattr(a , 'do_center_crop' ) ) self.assertTrue(hasattr(a , 'center_crop' ) ) self.assertTrue(hasattr(a , 'do_flip_channel_order' ) ) def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 2_0} ) self.assertEqual(image_processor.crop_size , {'height': 1_8, 'width': 1_8} ) lowercase__ : str = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {'shortest_edge': 4_2} ) self.assertEqual(image_processor.crop_size , {'height': 8_4, 'width': 8_4} ) def _UpperCAmelCase ( self ) -> Tuple: pass def _UpperCAmelCase ( self ) -> str: # Initialize image_processing lowercase__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a ) for image in image_inputs: self.assertIsInstance(a , Image.Image ) # Test not batched input lowercase__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowercase__ : List[Any] = image_processing(a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def _UpperCAmelCase ( self ) -> Tuple: # Initialize image_processing lowercase__ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , numpify=a ) for image in image_inputs: self.assertIsInstance(a , np.ndarray ) # Test not batched input lowercase__ : List[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowercase__ : Any = image_processing(a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def _UpperCAmelCase ( self ) -> Dict: # Initialize image_processing lowercase__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , torchify=a ) for image in image_inputs: self.assertIsInstance(a , torch.Tensor ) # Test not batched input lowercase__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowercase__ : Tuple = image_processing(a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
645
1
"""simple docstring""" from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
645
"""simple docstring""" import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class UpperCAmelCase_ ( unittest.TestCase): def __init__( self , a , a=1_3 , a=7 , a=True , a=True , a=True , a=True , a=9_9 , a=3_2 , a=5 , a=4 , a=3_7 , a="gelu" , a=0.1 , a=0.1 , a=5_1_2 , a=1_6 , a=2 , a=0.02 , a=4 , ) -> Dict: lowercase__ : Optional[Any] = parent lowercase__ : Dict = batch_size lowercase__ : List[Any] = seq_length lowercase__ : int = is_training lowercase__ : str = use_attention_mask lowercase__ : Dict = use_token_type_ids lowercase__ : Optional[int] = use_labels lowercase__ : Tuple = vocab_size lowercase__ : List[str] = hidden_size lowercase__ : Union[str, Any] = num_hidden_layers lowercase__ : int = num_attention_heads lowercase__ : Dict = intermediate_size lowercase__ : List[str] = hidden_act lowercase__ : Dict = hidden_dropout_prob lowercase__ : Tuple = attention_probs_dropout_prob lowercase__ : List[str] = max_position_embeddings lowercase__ : int = type_vocab_size lowercase__ : List[str] = type_sequence_label_size lowercase__ : Union[str, Any] = initializer_range lowercase__ : Optional[int] = num_choices def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ : str = None if self.use_attention_mask: lowercase__ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ : List[str] = None if self.use_token_type_ids: lowercase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__ : Any = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _UpperCAmelCase ( self ) -> Any: lowercase__ : Optional[int] = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ : Tuple = config_and_inputs lowercase__ : Union[str, Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class UpperCAmelCase_ ( _a , unittest.TestCase): lowerCamelCase__ : Tuple = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : Union[str, Any] = FlaxAlbertModelTester(self ) @slow def _UpperCAmelCase ( self ) -> str: for model_class_name in self.all_model_classes: lowercase__ : str = model_class_name.from_pretrained('albert-base-v2' ) lowercase__ : Tuple = model(np.ones((1, 1) ) ) self.assertIsNotNone(a ) @require_flax class UpperCAmelCase_ ( unittest.TestCase): @slow def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : str = FlaxAlbertModel.from_pretrained('albert-base-v2' ) lowercase__ : Optional[int] = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) lowercase__ : Optional[Any] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) lowercase__ : Any = model(a , attention_mask=a )[0] lowercase__ : Tuple = (1, 1_1, 7_6_8) self.assertEqual(output.shape , a ) lowercase__ : Optional[Any] = np.array( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , a , atol=1e-4 ) )
645
1
"""simple docstring""" from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class UpperCAmelCase_ ( _a): def __init__( self , a , a = None , a = None , a = True , a = None , a = False , a = None , a = True , a = "arrow" , **a , ) -> Optional[Any]: super().__init__( split=a , features=a , cache_dir=a , keep_in_memory=a , streaming=a , **a , ) lowercase__ : Tuple = load_from_cache_file lowercase__ : Optional[Any] = file_format lowercase__ : List[Any] = Spark( df=a , features=a , cache_dir=a , working_dir=a , **a , ) def _UpperCAmelCase ( self ) -> Any: if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) lowercase__ : List[Any] = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=a , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
645
"""simple docstring""" from collections.abc import Sequence def a_ ( _lowerCAmelCase : Sequence[float] , _lowerCAmelCase : float ): '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(_lowerCAmelCase ) ) def a_ ( _lowerCAmelCase : Sequence[float] , _lowerCAmelCase : float ): '''simple docstring''' lowercase__ : int = 0.0 for coeff in reversed(_lowerCAmelCase ): lowercase__ : List[Any] = result * x + coeff return result if __name__ == "__main__": _UpperCamelCase : int = (0.0, 0.0, 5.0, 9.3, 7.0) _UpperCamelCase : Dict = 1_0.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
645
1
"""simple docstring""" from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCAmelCase_ ( _a): lowerCamelCase__ : Tuple = ["image_processor", "tokenizer"] lowerCamelCase__ : Optional[int] = "AutoImageProcessor" lowerCamelCase__ : Dict = "AutoTokenizer" def __init__( self , a , a ) -> Any: super().__init__(a , a ) lowercase__ : Optional[Any] = self.image_processor def __call__( self , a=None , a=None , a=None , **a ) -> Tuple: if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: lowercase__ : List[str] = self.tokenizer(a , return_tensors=a , **a ) if images is not None: lowercase__ : Optional[int] = self.image_processor(a , return_tensors=a , **a ) if text is not None and images is not None: lowercase__ : str = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a ) , tensor_type=a ) def _UpperCAmelCase ( self , *a , **a ) -> Optional[Any]: return self.tokenizer.batch_decode(*a , **a ) def _UpperCAmelCase ( self , *a , **a ) -> Optional[int]: return self.tokenizer.decode(*a , **a ) @property def _UpperCAmelCase ( self ) -> Optional[Any]: return ["input_ids", "attention_mask", "pixel_values"]
645
"""simple docstring""" import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path _UpperCamelCase : Any = [ {"dataset": "wikipedia", "config_name": "20220301.de"}, {"dataset": "wikipedia", "config_name": "20220301.en"}, {"dataset": "wikipedia", "config_name": "20220301.fr"}, {"dataset": "wikipedia", "config_name": "20220301.frr"}, {"dataset": "wikipedia", "config_name": "20220301.it"}, {"dataset": "wikipedia", "config_name": "20220301.simple"}, {"dataset": "snli", "config_name": "plain_text"}, {"dataset": "eli5", "config_name": "LFQA_reddit"}, {"dataset": "wiki40b", "config_name": "en"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.compressed"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.no_index"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.multiset.no_index"}, {"dataset": "natural_questions", "config_name": "default"}, ] def a_ ( _lowerCAmelCase : Optional[Any]=True ): '''simple docstring''' if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=_a)) class UpperCAmelCase_ ( _a): lowerCamelCase__ : str = None lowerCamelCase__ : Optional[Any] = None def _UpperCAmelCase ( self , a , a ) -> List[Any]: with TemporaryDirectory() as tmp_dir: lowercase__ : List[str] = dataset_module_factory(a , cache_dir=a ) lowercase__ : List[Any] = import_main_class(dataset_module.module_path , dataset=a ) lowercase__ : DatasetBuilder = builder_cls( cache_dir=a , config_name=a , hash=dataset_module.hash , ) lowercase__ : Union[str, Any] = '/'.join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=a ).replace(os.sep , '/' ), config.DATASET_INFO_FILENAME, ] ) lowercase__ : Union[str, Any] = cached_path(a , cache_dir=a ) self.assertTrue(os.path.exists(a ) ) @pytest.mark.integration def a_ ( _lowerCAmelCase : str ): '''simple docstring''' lowercase__ : Union[str, Any] = tmp_path_factory.mktemp('test_hf_gcp' ) / 'test_wikipedia_simple' lowercase__ : int = dataset_module_factory('wikipedia' , cache_dir=_lowerCAmelCase ) lowercase__ : Optional[int] = import_main_class(dataset_module.module_path ) lowercase__ : DatasetBuilder = builder_cls( cache_dir=_lowerCAmelCase , config_name='20220301.frr' , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam lowercase__ : Optional[int] = None builder_instance.download_and_prepare() lowercase__ : Optional[int] = builder_instance.as_dataset() assert ds @pytest.mark.integration def a_ ( _lowerCAmelCase : Optional[Any] ): '''simple docstring''' lowercase__ : Optional[int] = dataset_module_factory('wikipedia' , cache_dir=_lowerCAmelCase ) lowercase__ : List[str] = import_main_class(dataset_module.module_path , dataset=_lowerCAmelCase ) lowercase__ : DatasetBuilder = builder_cls( cache_dir=_lowerCAmelCase , config_name='20220301.frr' , hash=dataset_module.hash , ) lowercase__ : Union[str, Any] = builder_instance.as_streaming_dataset() assert ds assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert "train" in ds assert isinstance(ds['train'] , _lowerCAmelCase ) assert next(iter(ds['train'] ) )
645
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCamelCase : List[Any] = { "configuration_xlm_roberta_xl": [ "XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMRobertaXLConfig", "XLMRobertaXLOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Dict = [ "XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMRobertaXLForCausalLM", "XLMRobertaXLForMaskedLM", "XLMRobertaXLForMultipleChoice", "XLMRobertaXLForQuestionAnswering", "XLMRobertaXLForSequenceClassification", "XLMRobertaXLForTokenClassification", "XLMRobertaXLModel", "XLMRobertaXLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaXLConfig, XLMRobertaXLOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLModel, XLMRobertaXLPreTrainedModel, ) else: import sys _UpperCamelCase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure)
645
"""simple docstring""" import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def a_ ( _lowerCAmelCase : dict ): '''simple docstring''' return (data["data"], data["target"]) def a_ ( _lowerCAmelCase : np.ndarray , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : np.ndarray ): '''simple docstring''' lowercase__ : Any = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(_lowerCAmelCase , _lowerCAmelCase ) # Predict target for test data lowercase__ : str = xgb.predict(_lowerCAmelCase ) lowercase__ : Union[str, Any] = predictions.reshape(len(_lowerCAmelCase ) , 1 ) return predictions def a_ ( ): '''simple docstring''' lowercase__ : Optional[Any] = fetch_california_housing() lowercase__ , lowercase__ : str = data_handling(_lowerCAmelCase ) lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = train_test_split( _lowerCAmelCase , _lowerCAmelCase , test_size=0.2_5 , random_state=1 ) lowercase__ : Any = xgboost(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Error printing print(f"""Mean Absolute Error : {mean_absolute_error(_lowerCAmelCase , _lowerCAmelCase )}""" ) print(f"""Mean Square Error : {mean_squared_error(_lowerCAmelCase , _lowerCAmelCase )}""" ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
645
1
"""simple docstring""" import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase_ : def __init__( self , a , a=1_3 , a=7 , a=True , a=True , a=True , a=True , a=9_9 , a=2_4 , a=2 , a=6 , a=3_7 , a="gelu" , a=0.1 , a=0.1 , a=5_1_2 , a=1_6 , a=2 , a=0.02 , a=3 , a=None , a=1_0_0_0 , ) -> Dict: lowercase__ : Optional[int] = parent lowercase__ : List[str] = batch_size lowercase__ : Optional[int] = seq_length lowercase__ : List[str] = is_training lowercase__ : Optional[int] = use_input_mask lowercase__ : List[Any] = use_token_type_ids lowercase__ : Any = use_labels lowercase__ : Union[str, Any] = vocab_size lowercase__ : List[str] = hidden_size lowercase__ : Tuple = num_hidden_layers lowercase__ : Dict = num_attention_heads lowercase__ : List[str] = intermediate_size lowercase__ : Dict = hidden_act lowercase__ : Dict = hidden_dropout_prob lowercase__ : Optional[Any] = attention_probs_dropout_prob lowercase__ : int = max_position_embeddings lowercase__ : int = type_vocab_size lowercase__ : Tuple = type_sequence_label_size lowercase__ : List[str] = initializer_range lowercase__ : Dict = num_labels lowercase__ : Any = scope lowercase__ : Dict = range_bbox def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ : str = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowercase__ : List[Any] = bbox[i, j, 3] lowercase__ : str = bbox[i, j, 1] lowercase__ : Union[str, Any] = t if bbox[i, j, 2] < bbox[i, j, 0]: lowercase__ : Optional[int] = bbox[i, j, 2] lowercase__ : Dict = bbox[i, j, 0] lowercase__ : Tuple = t lowercase__ : str = None if self.use_input_mask: lowercase__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) lowercase__ : int = None if self.use_token_type_ids: lowercase__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__ : Optional[int] = None lowercase__ : Tuple = None if self.use_labels: lowercase__ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__ : str = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def _UpperCAmelCase ( self ) -> Optional[Any]: return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def _UpperCAmelCase ( self , a , a , a , a , a , a , a , ) -> Dict: lowercase__ : Union[str, Any] = LiltModel(config=a ) model.to(a ) model.eval() lowercase__ : Optional[Any] = model(a , bbox=a , attention_mask=a , token_type_ids=a ) lowercase__ : Optional[int] = model(a , bbox=a , token_type_ids=a ) lowercase__ : List[str] = model(a , bbox=a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _UpperCAmelCase ( self , a , a , a , a , a , a , a , ) -> Tuple: lowercase__ : Union[str, Any] = self.num_labels lowercase__ : List[str] = LiltForTokenClassification(config=a ) model.to(a ) model.eval() lowercase__ : int = model( a , bbox=a , attention_mask=a , token_type_ids=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCAmelCase ( self , a , a , a , a , a , a , a , ) -> Optional[int]: lowercase__ : List[str] = LiltForQuestionAnswering(config=a ) model.to(a ) model.eval() lowercase__ : int = model( a , bbox=a , attention_mask=a , token_type_ids=a , start_positions=a , end_positions=a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : int = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) : Union[str, Any] = config_and_inputs lowercase__ : Dict = { 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class UpperCAmelCase_ ( _a , _a , _a , unittest.TestCase): lowerCamelCase__ : Tuple = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) lowerCamelCase__ : str = ( { "feature-extraction": LiltModel, "question-answering": LiltForQuestionAnswering, "text-classification": LiltForSequenceClassification, "token-classification": LiltForTokenClassification, "zero-shot": LiltForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ : List[Any] = False lowerCamelCase__ : Dict = False def _UpperCAmelCase ( self , a , a , a , a , a ) -> str: return True def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : List[str] = LiltModelTester(self ) lowercase__ : Optional[int] = ConfigTester(self , config_class=a , hidden_size=3_7 ) def _UpperCAmelCase ( self ) -> int: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase__ : List[str] = type self.model_tester.create_and_check_model(*a ) def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a ) def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a ) @slow def _UpperCAmelCase ( self ) -> Optional[int]: for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : str = LiltModel.from_pretrained(a ) self.assertIsNotNone(a ) @require_torch @slow class UpperCAmelCase_ ( unittest.TestCase): def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Union[str, Any] = LiltModel.from_pretrained('SCUT-DLVCLab/lilt-roberta-en-base' ).to(a ) lowercase__ : Any = torch.tensor([[1, 2]] , device=a ) lowercase__ : Union[str, Any] = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=a ) # forward pass with torch.no_grad(): lowercase__ : Tuple = model(input_ids=a , bbox=a ) lowercase__ : str = torch.Size([1, 2, 7_6_8] ) lowercase__ : str = torch.tensor( [[-0.0_653, 0.0_950, -0.0_061], [-0.0_545, 0.0_926, -0.0_324]] , device=a , ) self.assertTrue(outputs.last_hidden_state.shape , a ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , a , atol=1e-3 ) )
645
"""simple docstring""" import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class UpperCAmelCase_ : def __init__( self , a , a=1_3 , a=1_0 , a=3 , a=2 , a=2 , a=2 , a=True , a=True , a=3_2 , a=5 , a=4 , a=3_7 , a="gelu" , a=0.1 , a=0.1 , a=1_0 , a=0.02 , a=0.9 , a=None , ) -> Optional[Any]: lowercase__ : str = parent lowercase__ : int = batch_size lowercase__ : Union[str, Any] = image_size lowercase__ : Optional[Any] = num_channels lowercase__ : Dict = patch_size lowercase__ : Tuple = tubelet_size lowercase__ : Optional[int] = num_frames lowercase__ : Optional[int] = is_training lowercase__ : int = use_labels lowercase__ : Optional[int] = hidden_size lowercase__ : Union[str, Any] = num_hidden_layers lowercase__ : Optional[int] = num_attention_heads lowercase__ : Any = intermediate_size lowercase__ : str = hidden_act lowercase__ : List[Any] = hidden_dropout_prob lowercase__ : str = attention_probs_dropout_prob lowercase__ : Union[str, Any] = type_sequence_label_size lowercase__ : List[Any] = initializer_range lowercase__ : str = mask_ratio lowercase__ : Optional[Any] = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame lowercase__ : Optional[Any] = (image_size // patch_size) ** 2 lowercase__ : str = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos lowercase__ : str = int(mask_ratio * self.seq_length ) def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : int = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) lowercase__ : int = None if self.use_labels: lowercase__ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ : Dict = self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self ) -> Tuple: return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a , initializer_range=self.initializer_range , ) def _UpperCAmelCase ( self , a , a , a ) -> Optional[int]: lowercase__ : Dict = VideoMAEModel(config=a ) model.to(a ) model.eval() lowercase__ : Tuple = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self , a , a , a ) -> Union[str, Any]: lowercase__ : str = VideoMAEForPreTraining(a ) model.to(a ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowercase__ : Any = torch.ones((self.num_masks,) ) lowercase__ : str = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) lowercase__ : Optional[int] = mask.expand(self.batch_size , -1 ).bool() lowercase__ : str = model(a , a ) # model only returns predictions for masked patches lowercase__ : str = mask.sum().item() lowercase__ : int = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def _UpperCAmelCase ( self ) -> str: lowercase__ : Dict = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = config_and_inputs lowercase__ : List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _a , _a , unittest.TestCase): lowerCamelCase__ : Tuple = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) lowerCamelCase__ : Optional[int] = ( {"feature-extraction": VideoMAEModel, "video-classification": VideoMAEForVideoClassification} if is_torch_available() else {} ) lowerCamelCase__ : Any = False lowerCamelCase__ : Any = False lowerCamelCase__ : Union[str, Any] = False lowerCamelCase__ : str = False def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Optional[Any] = VideoMAEModelTester(self ) lowercase__ : Optional[Any] = ConfigTester(self , config_class=a , has_text_modality=a , hidden_size=3_7 ) def _UpperCAmelCase ( self , a , a , a=False ) -> Optional[int]: lowercase__ : Union[str, Any] = copy.deepcopy(a ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowercase__ : Optional[Any] = torch.ones((self.model_tester.num_masks,) ) lowercase__ : Any = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) lowercase__ : Any = mask.expand(self.model_tester.batch_size , -1 ).bool() lowercase__ : Union[str, Any] = bool_masked_pos.to(a ) if return_labels: if model_class in [ *get_values(a ), ]: lowercase__ : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a ) return inputs_dict def _UpperCAmelCase ( self ) -> Tuple: self.config_tester.run_common_tests() @unittest.skip(reason='VideoMAE does not use inputs_embeds' ) def _UpperCAmelCase ( self ) -> Dict: pass def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : int = model_class(a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase__ : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a , nn.Linear ) ) def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[str] = model_class(a ) lowercase__ : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Optional[Any] = [*signature.parameters.keys()] lowercase__ : int = ['pixel_values'] self.assertListEqual(arg_names[:1] , a ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*a ) @slow def _UpperCAmelCase ( self ) -> str: for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : List[Any] = VideoMAEModel.from_pretrained(a ) self.assertIsNotNone(a ) def _UpperCAmelCase ( self ) -> Optional[Any]: if not self.has_attentions: pass else: lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : str = True for model_class in self.all_model_classes: lowercase__ : Union[str, Any] = self.model_tester.seq_length - self.model_tester.num_masks lowercase__ : Any = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) lowercase__ : Optional[Any] = True lowercase__ : int = False lowercase__ : Any = True lowercase__ : List[str] = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : Optional[int] = model(**self._prepare_for_class(a , a ) ) lowercase__ : Dict = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase__ : str = True lowercase__ : List[str] = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : List[Any] = model(**self._prepare_for_class(a , a ) ) lowercase__ : Optional[Any] = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowercase__ : List[str] = len(a ) # Check attention is always last and order is fine lowercase__ : Optional[int] = True lowercase__ : List[str] = True lowercase__ : int = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : List[str] = model(**self._prepare_for_class(a , a ) ) self.assertEqual(out_len + 1 , len(a ) ) lowercase__ : int = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def _UpperCAmelCase ( self ) -> Optional[int]: def check_hidden_states_output(a , a , a ): lowercase__ : Optional[int] = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : Optional[Any] = model(**self._prepare_for_class(a , a ) ) lowercase__ : Optional[int] = outputs.hidden_states lowercase__ : List[Any] = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(a ) , a ) lowercase__ : Optional[Any] = self.model_tester.seq_length - self.model_tester.num_masks lowercase__ : Union[str, Any] = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowercase__ , lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Tuple = True check_hidden_states_output(a , a , a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : Union[str, Any] = True check_hidden_states_output(a , a , a ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _UpperCAmelCase ( self ) -> List[Any]: pass def a_ ( ): '''simple docstring''' lowercase__ : int = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename='eating_spaghetti.npy' , repo_type='dataset' ) lowercase__ : str = np.load(_lowerCAmelCase ) return list(_lowerCAmelCase ) @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase): @cached_property def _UpperCAmelCase ( self ) -> Optional[Any]: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def _UpperCAmelCase ( self ) -> int: lowercase__ : Dict = VideoMAEForVideoClassification.from_pretrained('MCG-NJU/videomae-base-finetuned-kinetics' ).to( a ) lowercase__ : str = self.default_image_processor lowercase__ : List[str] = prepare_video() lowercase__ : int = image_processor(a , return_tensors='pt' ).to(a ) # forward pass with torch.no_grad(): lowercase__ : Union[str, Any] = model(**a ) # verify the logits lowercase__ : str = torch.Size((1, 4_0_0) ) self.assertEqual(outputs.logits.shape , a ) lowercase__ : List[Any] = torch.tensor([0.3_669, -0.0_688, -0.2_421] ).to(a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a , atol=1e-4 ) ) @slow def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Optional[int] = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short' ).to(a ) lowercase__ : Optional[Any] = self.default_image_processor lowercase__ : List[str] = prepare_video() lowercase__ : str = image_processor(a , return_tensors='pt' ).to(a ) # add boolean mask, indicating which patches to mask lowercase__ : Union[str, Any] = hf_hub_download(repo_id='hf-internal-testing/bool-masked-pos' , filename='bool_masked_pos.pt' ) lowercase__ : str = torch.load(a ) # forward pass with torch.no_grad(): lowercase__ : List[Any] = model(**a ) # verify the logits lowercase__ : Dict = torch.Size([1, 1_4_0_8, 1_5_3_6] ) lowercase__ : List[str] = torch.tensor( [[0.7_994, 0.9_612, 0.8_508], [0.7_401, 0.8_958, 0.8_302], [0.5_862, 0.7_468, 0.7_325]] , device=a ) self.assertEqual(outputs.logits.shape , a ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , a , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) lowercase__ : List[Any] = torch.tensor([0.5_142] , device=a ) self.assertTrue(torch.allclose(outputs.loss , a , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) lowercase__ : Tuple = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short' , norm_pix_loss=a ).to( a ) with torch.no_grad(): lowercase__ : Any = model(**a ) lowercase__ : List[Any] = torch.tensor(torch.tensor([0.6_469] ) , device=a ) self.assertTrue(torch.allclose(outputs.loss , a , atol=1e-4 ) )
645
1
"""simple docstring""" def a_ ( _lowerCAmelCase : int , _lowerCAmelCase : int ): '''simple docstring''' if number < 0 or shift_amount < 0: raise ValueError('both inputs must be positive integers' ) lowercase__ : Optional[Any] = str(bin(_lowerCAmelCase ) ) binary_number += "0" * shift_amount return binary_number def a_ ( _lowerCAmelCase : int , _lowerCAmelCase : int ): '''simple docstring''' if number < 0 or shift_amount < 0: raise ValueError('both inputs must be positive integers' ) lowercase__ : Optional[Any] = str(bin(_lowerCAmelCase ) )[2:] if shift_amount >= len(_lowerCAmelCase ): return "0b0" lowercase__ : int = binary_number[: len(_lowerCAmelCase ) - shift_amount] return "0b" + shifted_binary_number def a_ ( _lowerCAmelCase : int , _lowerCAmelCase : int ): '''simple docstring''' if number >= 0: # Get binary representation of positive number lowercase__ : Tuple = '0' + str(bin(_lowerCAmelCase ) ).strip('-' )[2:] else: # Get binary (2's complement) representation of negative number lowercase__ : Tuple = len(bin(_lowerCAmelCase )[3:] ) # Find 2's complement of number lowercase__ : str = bin(abs(_lowerCAmelCase ) - (1 << binary_number_length) )[3:] lowercase__ : Union[str, Any] = ( '1' + '0' * (binary_number_length - len(_lowerCAmelCase )) + binary_number ) if shift_amount >= len(_lowerCAmelCase ): return "0b" + binary_number[0] * len(_lowerCAmelCase ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(_lowerCAmelCase ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
645
"""simple docstring""" import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() _UpperCamelCase : Dict = logging.get_logger(__name__) _UpperCamelCase : List[Any] = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "encoder.layer_norm_for_extract": "layer_norm_for_extract", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "label_embs_concat": "label_embeddings_concat", "mask_emb": "masked_spec_embed", "spk_proj": "speaker_proj", } _UpperCamelCase : List[str] = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "label_embeddings_concat", "speaker_proj", "layer_norm_for_extract", ] def a_ ( _lowerCAmelCase : Any , _lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple ): '''simple docstring''' for attribute in key.split('.' ): lowercase__ : Dict = getattr(_lowerCAmelCase , _lowerCAmelCase ) if weight_type is not None: lowercase__ : Optional[int] = getattr(_lowerCAmelCase , _lowerCAmelCase ).shape else: lowercase__ : Optional[int] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowercase__ : Optional[Any] = value elif weight_type == "weight_g": lowercase__ : Dict = value elif weight_type == "weight_v": lowercase__ : List[str] = value elif weight_type == "bias": lowercase__ : Optional[Any] = value else: lowercase__ : List[str] = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def a_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] ): '''simple docstring''' lowercase__ : Tuple = [] lowercase__ : List[str] = fairseq_model.state_dict() lowercase__ : Union[str, Any] = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): lowercase__ : Optional[int] = False if "conv_layers" in name: load_conv_layer( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , hf_model.config.feat_extract_norm == 'group' , ) lowercase__ : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): lowercase__ : List[Any] = 'unispeech_sat.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('.' )[:-1] ) != key): # special case since naming is very similar continue lowercase__ : int = True if "*" in mapped_key: lowercase__ : Optional[int] = name.split(_lowerCAmelCase )[0].split('.' )[-2] lowercase__ : List[str] = mapped_key.replace('*' , _lowerCAmelCase ) if "weight_g" in name: lowercase__ : List[Any] = 'weight_g' elif "weight_v" in name: lowercase__ : int = 'weight_v' elif "bias" in name: lowercase__ : Dict = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj lowercase__ : Union[str, Any] = 'weight' else: lowercase__ : int = None set_recursively(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) continue if not is_used: unused_weights.append(_lowerCAmelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def a_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : Dict ): '''simple docstring''' lowercase__ : int = full_name.split('conv_layers.' )[-1] lowercase__ : int = name.split('.' ) lowercase__ : int = int(items[0] ) lowercase__ : Dict = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowercase__ : Union[str, Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowercase__ : Optional[int] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) lowercase__ : List[Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) lowercase__ : int = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_lowerCAmelCase ) @torch.no_grad() def a_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : str=None , _lowerCAmelCase : Tuple=True ): '''simple docstring''' if config_path is not None: lowercase__ : Any = UniSpeechSatConfig.from_pretrained(_lowerCAmelCase ) else: lowercase__ : Any = UniSpeechSatConfig() lowercase__ : Union[str, Any] = '' if is_finetuned: lowercase__ : Optional[Any] = UniSpeechSatForCTC(_lowerCAmelCase ) else: lowercase__ : List[Any] = UniSpeechSatForPreTraining(_lowerCAmelCase ) lowercase__ , lowercase__ , lowercase__ : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) lowercase__ : Union[str, Any] = model[0].eval() recursively_load_weights(_lowerCAmelCase , _lowerCAmelCase ) hf_wavavec.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": _UpperCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _UpperCamelCase : str = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
645
1
"""simple docstring""" from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def a_ ( _lowerCAmelCase : Namespace ): '''simple docstring''' return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) _UpperCamelCase : List[Any] = "\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n" class UpperCAmelCase_ ( _a): @staticmethod def _UpperCAmelCase ( a ) -> Tuple: lowercase__ : Dict = parser.add_parser( 'convert' , help='CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.' , ) train_parser.add_argument('--model_type' , type=a , required=a , help='Model\'s type.' ) train_parser.add_argument( '--tf_checkpoint' , type=a , required=a , help='TensorFlow checkpoint path or folder.' ) train_parser.add_argument( '--pytorch_dump_output' , type=a , required=a , help='Path to the PyTorch saved model output.' ) train_parser.add_argument('--config' , type=a , default='' , help='Configuration file path or folder.' ) train_parser.add_argument( '--finetuning_task_name' , type=a , default=a , help='Optional fine-tuning task name if the TF model was a finetuned model.' , ) train_parser.set_defaults(func=a ) def __init__( self , a , a , a , a , a , *a , ) -> Union[str, Any]: lowercase__ : List[str] = logging.get_logger('transformers-cli/converting' ) self._logger.info(f"""Loading model {model_type}""" ) lowercase__ : int = model_type lowercase__ : Dict = tf_checkpoint lowercase__ : Union[str, Any] = pytorch_dump_output lowercase__ : int = config lowercase__ : str = finetuning_task_name def _UpperCAmelCase ( self ) -> Dict: if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(a ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(a ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(a ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(a ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(a ) if "ckpt" in self._tf_checkpoint.lower(): lowercase__ : Optional[int] = self._tf_checkpoint lowercase__ : int = '' else: lowercase__ : Optional[int] = self._tf_checkpoint lowercase__ : List[str] = '' convert_transfo_xl_checkpoint_to_pytorch( a , self._config , self._pytorch_dump_output , a ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(a ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(a ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( '--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]' )
645
"""simple docstring""" import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class UpperCAmelCase_ : def __init__( self , a , a=1_3 , a=3_2 , a=2 , a=3 , a=1_6 , a=[1, 2, 1] , a=[2, 2, 4] , a=2 , a=2.0 , a=True , a=0.0 , a=0.0 , a=0.1 , a="gelu" , a=False , a=True , a=0.02 , a=1e-5 , a=True , a=None , a=True , a=1_0 , a=8 , a=["stage1", "stage2", "stage3"] , a=[1, 2, 3] , ) -> int: lowercase__ : int = parent lowercase__ : Union[str, Any] = batch_size lowercase__ : Dict = image_size lowercase__ : str = patch_size lowercase__ : Optional[Any] = num_channels lowercase__ : List[str] = embed_dim lowercase__ : Any = depths lowercase__ : Dict = num_heads lowercase__ : List[str] = window_size lowercase__ : int = mlp_ratio lowercase__ : Tuple = qkv_bias lowercase__ : Union[str, Any] = hidden_dropout_prob lowercase__ : str = attention_probs_dropout_prob lowercase__ : Tuple = drop_path_rate lowercase__ : List[str] = hidden_act lowercase__ : Optional[Any] = use_absolute_embeddings lowercase__ : Optional[Any] = patch_norm lowercase__ : Any = layer_norm_eps lowercase__ : List[Any] = initializer_range lowercase__ : List[str] = is_training lowercase__ : int = scope lowercase__ : Optional[int] = use_labels lowercase__ : List[Any] = type_sequence_label_size lowercase__ : List[str] = encoder_stride lowercase__ : Optional[Any] = out_features lowercase__ : Dict = out_indices def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : Optional[Any] = None if self.use_labels: lowercase__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ : Tuple = self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self ) -> Union[str, Any]: return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def _UpperCAmelCase ( self , a , a , a ) -> Dict: lowercase__ : Tuple = MaskFormerSwinModel(config=a ) model.to(a ) model.eval() lowercase__ : str = model(a ) lowercase__ : str = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowercase__ : Dict = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def _UpperCAmelCase ( self , a , a , a ) -> Optional[int]: lowercase__ : List[Any] = MaskFormerSwinBackbone(config=a ) model.to(a ) model.eval() lowercase__ : int = model(a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [1_3, 1_6, 1_6, 1_6] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [1_6, 3_2, 6_4] ) # verify ValueError with self.parent.assertRaises(a ): lowercase__ : Dict = ['stem'] lowercase__ : List[str] = MaskFormerSwinBackbone(config=a ) def _UpperCAmelCase ( self ) -> str: lowercase__ : int = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Tuple = config_and_inputs lowercase__ : Union[str, Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _a , _a , unittest.TestCase): lowerCamelCase__ : Optional[int] = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) lowerCamelCase__ : List[str] = {"feature-extraction": MaskFormerSwinModel} if is_torch_available() else {} lowerCamelCase__ : str = False lowerCamelCase__ : Dict = False lowerCamelCase__ : Any = False lowerCamelCase__ : Dict = False lowerCamelCase__ : int = False def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : str = MaskFormerSwinModelTester(self ) lowercase__ : Tuple = ConfigTester(self , config_class=a , embed_dim=3_7 ) @require_torch_multi_gpu @unittest.skip( reason=( '`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with' ' `nn.DataParallel`' ) ) def _UpperCAmelCase ( self ) -> Optional[int]: pass def _UpperCAmelCase ( self ) -> Tuple: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _UpperCAmelCase ( self ) -> str: return def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*a ) @unittest.skip('Swin does not use inputs_embeds' ) def _UpperCAmelCase ( self ) -> Tuple: pass @unittest.skip('Swin does not support feedforward chunking' ) def _UpperCAmelCase ( self ) -> Tuple: pass def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[str] = model_class(a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase__ : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a , nn.Linear ) ) def _UpperCAmelCase ( self ) -> str: lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Any = model_class(a ) lowercase__ : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Optional[Any] = [*signature.parameters.keys()] lowercase__ : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , a ) @unittest.skip(reason='MaskFormerSwin is only used as backbone and doesn\'t support output_attentions' ) def _UpperCAmelCase ( self ) -> List[Any]: pass @unittest.skip(reason='MaskFormerSwin is only used as an internal backbone' ) def _UpperCAmelCase ( self ) -> int: pass def _UpperCAmelCase ( self , a , a , a , a ) -> Tuple: lowercase__ : Dict = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : str = model(**self._prepare_for_class(a , a ) ) lowercase__ : List[Any] = outputs.hidden_states lowercase__ : str = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(a ) , a ) # Swin has a different seq_length lowercase__ : Dict = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase__ : Tuple = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ , lowercase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : List[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: lowercase__ : List[str] = True self.check_hidden_states_output(a , a , a , a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : List[str] = True self.check_hidden_states_output(a , a , a , a ) def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Union[str, Any] = 3 lowercase__ : str = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowercase__ : Tuple = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase__ : Optional[int] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowercase__ : List[str] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: lowercase__ : List[str] = True self.check_hidden_states_output(a , a , a , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : int = True self.check_hidden_states_output(a , a , a , (padded_height, padded_width) ) @unittest.skip(reason='MaskFormerSwin doesn\'t have pretrained checkpoints' ) def _UpperCAmelCase ( self ) -> Optional[int]: pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def _UpperCAmelCase ( self ) -> Any: pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def _UpperCAmelCase ( self ) -> Any: pass def _UpperCAmelCase ( self ) -> Any: lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(a ): lowercase__ : Union[str, Any] = 0 return t def check_equivalence(a , a , a , a={} ): with torch.no_grad(): lowercase__ : Optional[Any] = model(**a , return_dict=a , **a ) lowercase__ : Optional[int] = model(**a , return_dict=a , **a ).to_tuple() def recursive_check(a , a ): if isinstance(a , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(a , a ): recursive_check(a , a ) elif isinstance(a , a ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(a , a ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(a ) , set_nan_tensor_to_zero(a ) , atol=1e-5 ) , msg=( 'Tuple and dict output are not equal. Difference:' f""" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:""" f""" {torch.isnan(a ).any()} and `inf`: {torch.isinf(a )}. Dict has""" f""" `nan`: {torch.isnan(a ).any()} and `inf`: {torch.isinf(a )}.""" ) , ) recursive_check(a , a ) for model_class in self.all_model_classes: lowercase__ : Any = model_class(a ) model.to(a ) model.eval() lowercase__ : Tuple = self._prepare_for_class(a , a ) lowercase__ : Optional[Any] = self._prepare_for_class(a , a ) check_equivalence(a , a , a ) lowercase__ : Any = self._prepare_for_class(a , a , return_labels=a ) lowercase__ : List[Any] = self._prepare_for_class(a , a , return_labels=a ) check_equivalence(a , a , a ) lowercase__ : Any = self._prepare_for_class(a , a ) lowercase__ : int = self._prepare_for_class(a , a ) check_equivalence(a , a , a , {'output_hidden_states': True} ) lowercase__ : Dict = self._prepare_for_class(a , a , return_labels=a ) lowercase__ : Optional[int] = self._prepare_for_class(a , a , return_labels=a ) check_equivalence(a , a , a , {'output_hidden_states': True} ) @require_torch class UpperCAmelCase_ ( unittest.TestCase , _a): lowerCamelCase__ : Dict = (MaskFormerSwinBackbone,) if is_torch_available() else () lowerCamelCase__ : Optional[int] = MaskFormerSwinConfig def _UpperCAmelCase ( self ) -> Dict: lowercase__ : Optional[int] = MaskFormerSwinModelTester(self ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : int = inputs_dict['pixel_values'].shape[0] for backbone_class in self.all_model_classes: lowercase__ : Optional[Any] = backbone_class(a ) backbone.to(a ) backbone.eval() lowercase__ : Union[str, Any] = backbone(**a ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , a ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True lowercase__ : List[str] = backbone(**a , output_hidden_states=a ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) lowercase__ , lowercase__ , lowercase__ : int = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: lowercase__ : List[Any] = backbone(**a , output_attentions=a ) self.assertIsNotNone(outputs.attentions )
645
1
"""simple docstring""" import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def a_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : int ): '''simple docstring''' lowercase__ : Tuple = StableDiffusionPipeline.from_pretrained(_lowerCAmelCase , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors lowercase__ : Optional[Any] = load_file(_lowerCAmelCase ) lowercase__ : Optional[Any] = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: lowercase__ : Any = key.split('.' )[0].split(LORA_PREFIX_TEXT_ENCODER + '_' )[-1].split('_' ) lowercase__ : Dict = pipeline.text_encoder else: lowercase__ : List[str] = key.split('.' )[0].split(LORA_PREFIX_UNET + '_' )[-1].split('_' ) lowercase__ : Optional[Any] = pipeline.unet # find the target layer lowercase__ : int = layer_infos.pop(0 ) while len(_lowerCAmelCase ) > -1: try: lowercase__ : List[Any] = curr_layer.__getattr__(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: lowercase__ : Optional[int] = layer_infos.pop(0 ) elif len(_lowerCAmelCase ) == 0: break except Exception: if len(_lowerCAmelCase ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: lowercase__ : Optional[int] = layer_infos.pop(0 ) lowercase__ : Tuple = [] if "lora_down" in key: pair_keys.append(key.replace('lora_down' , 'lora_up' ) ) pair_keys.append(_lowerCAmelCase ) else: pair_keys.append(_lowerCAmelCase ) pair_keys.append(key.replace('lora_up' , 'lora_down' ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: lowercase__ : Optional[int] = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) lowercase__ : Dict = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(_lowerCAmelCase , _lowerCAmelCase ).unsqueeze(2 ).unsqueeze(3 ) else: lowercase__ : Union[str, Any] = state_dict[pair_keys[0]].to(torch.floataa ) lowercase__ : Union[str, Any] = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(_lowerCAmelCase , _lowerCAmelCase ) # update visited list for item in pair_keys: visited.append(_lowerCAmelCase ) return pipeline if __name__ == "__main__": _UpperCamelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( "--base_model_path", default=None, type=str, required=True, help="Path to the base model in diffusers format." ) parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument( "--lora_prefix_unet", default="lora_unet", type=str, help="The prefix of UNet weight in safetensors" ) parser.add_argument( "--lora_prefix_text_encoder", default="lora_te", type=str, help="The prefix of text encoder weight in safetensors", ) parser.add_argument("--alpha", default=0.7_5, type=float, help="The merging ratio in W = W0 + alpha * deltaW") parser.add_argument( "--to_safetensors", action="store_true", help="Whether to store pipeline in safetensors format or not." ) parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)") _UpperCamelCase : Optional[Any] = parser.parse_args() _UpperCamelCase : str = args.base_model_path _UpperCamelCase : Tuple = args.checkpoint_path _UpperCamelCase : str = args.dump_path _UpperCamelCase : Tuple = args.lora_prefix_unet _UpperCamelCase : Optional[int] = args.lora_prefix_text_encoder _UpperCamelCase : List[Any] = args.alpha _UpperCamelCase : Any = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) _UpperCamelCase : List[str] = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
645
"""simple docstring""" import math def a_ ( _lowerCAmelCase : int = 100 ): '''simple docstring''' lowercase__ : Union[str, Any] = sum(i * i for i in range(1 , n + 1 ) ) lowercase__ : str = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f'''{solution() = }''')
645
1
"""simple docstring""" from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
645
"""simple docstring""" import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class UpperCAmelCase_ ( unittest.TestCase): def _UpperCAmelCase ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() def _UpperCAmelCase ( self ) -> Tuple: lowercase__ , lowercase__ : str = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-canny' , from_pt=a , dtype=jnp.bfloataa ) lowercase__ , lowercase__ : List[str] = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , controlnet=a , from_pt=a , dtype=jnp.bfloataa ) lowercase__ : List[Any] = controlnet_params lowercase__ : int = 'bird' lowercase__ : List[Any] = jax.device_count() lowercase__ : Dict = pipe.prepare_text_inputs([prompts] * num_samples ) lowercase__ : Union[str, Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png' ) lowercase__ : Optional[int] = pipe.prepare_image_inputs([canny_image] * num_samples ) lowercase__ : List[Any] = jax.random.PRNGKey(0 ) lowercase__ : Tuple = jax.random.split(a , jax.device_count() ) lowercase__ : str = replicate(a ) lowercase__ : List[str] = shard(a ) lowercase__ : Dict = shard(a ) lowercase__ : List[Any] = pipe( prompt_ids=a , image=a , params=a , prng_seed=a , num_inference_steps=5_0 , jit=a , ).images assert images.shape == (jax.device_count(), 1, 7_6_8, 5_1_2, 3) lowercase__ : Any = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowercase__ : Tuple = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] lowercase__ : int = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowercase__ : Optional[Any] = jnp.array( [0.167_969, 0.116_699, 0.081_543, 0.154_297, 0.132_812, 0.108_887, 0.169_922, 0.169_922, 0.205_078] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def _UpperCAmelCase ( self ) -> List[str]: lowercase__ , lowercase__ : int = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-openpose' , from_pt=a , dtype=jnp.bfloataa ) lowercase__ , lowercase__ : Optional[Any] = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , controlnet=a , from_pt=a , dtype=jnp.bfloataa ) lowercase__ : Optional[Any] = controlnet_params lowercase__ : List[Any] = 'Chef in the kitchen' lowercase__ : List[str] = jax.device_count() lowercase__ : Dict = pipe.prepare_text_inputs([prompts] * num_samples ) lowercase__ : Optional[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png' ) lowercase__ : Optional[int] = pipe.prepare_image_inputs([pose_image] * num_samples ) lowercase__ : List[str] = jax.random.PRNGKey(0 ) lowercase__ : str = jax.random.split(a , jax.device_count() ) lowercase__ : Optional[Any] = replicate(a ) lowercase__ : Optional[Any] = shard(a ) lowercase__ : List[Any] = shard(a ) lowercase__ : List[Any] = pipe( prompt_ids=a , image=a , params=a , prng_seed=a , num_inference_steps=5_0 , jit=a , ).images assert images.shape == (jax.device_count(), 1, 7_6_8, 5_1_2, 3) lowercase__ : Union[str, Any] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowercase__ : List[str] = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] lowercase__ : Optional[int] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowercase__ : str = jnp.array( [[0.271_484, 0.261_719, 0.275_391, 0.277_344, 0.279_297, 0.291_016, 0.294_922, 0.302_734, 0.302_734]] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
645
1
"""simple docstring""" import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin _UpperCamelCase : Tuple = logging.get_logger(__name__) enable_full_determinism() class UpperCAmelCase_ ( _a , _a , unittest.TestCase): lowerCamelCase__ : str = UNetaDModel lowerCamelCase__ : int = "sample" @property def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : Union[str, Any] = 4 lowercase__ : List[str] = 3 lowercase__ : Union[str, Any] = (3_2, 3_2) lowercase__ : Tuple = floats_tensor((batch_size, num_channels) + sizes ).to(a ) lowercase__ : List[str] = torch.tensor([1_0] ).to(a ) return {"sample": noise, "timestep": time_step} @property def _UpperCAmelCase ( self ) -> List[str]: return (3, 3_2, 3_2) @property def _UpperCAmelCase ( self ) -> List[Any]: return (3, 3_2, 3_2) def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ : int = { 'block_out_channels': (3_2, 6_4), 'down_block_types': ('DownBlock2D', 'AttnDownBlock2D'), 'up_block_types': ('AttnUpBlock2D', 'UpBlock2D'), 'attention_head_dim': 3, 'out_channels': 3, 'in_channels': 3, 'layers_per_block': 2, 'sample_size': 3_2, } lowercase__ : str = self.dummy_input return init_dict, inputs_dict class UpperCAmelCase_ ( _a , _a , unittest.TestCase): lowerCamelCase__ : Optional[int] = UNetaDModel lowerCamelCase__ : int = "sample" @property def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ : Optional[int] = 4 lowercase__ : Tuple = 4 lowercase__ : Tuple = (3_2, 3_2) lowercase__ : Union[str, Any] = floats_tensor((batch_size, num_channels) + sizes ).to(a ) lowercase__ : Any = torch.tensor([1_0] ).to(a ) return {"sample": noise, "timestep": time_step} @property def _UpperCAmelCase ( self ) -> Tuple: return (4, 3_2, 3_2) @property def _UpperCAmelCase ( self ) -> List[Any]: return (4, 3_2, 3_2) def _UpperCAmelCase ( self ) -> Any: lowercase__ : Tuple = { 'sample_size': 3_2, 'in_channels': 4, 'out_channels': 4, 'layers_per_block': 2, 'block_out_channels': (3_2, 6_4), 'attention_head_dim': 3_2, 'down_block_types': ('DownBlock2D', 'DownBlock2D'), 'up_block_types': ('UpBlock2D', 'UpBlock2D'), } lowercase__ : str = self.dummy_input return init_dict, inputs_dict def _UpperCAmelCase ( self ) -> Any: lowercase__ , lowercase__ : Optional[int] = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' , output_loading_info=a ) self.assertIsNotNone(a ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(a ) lowercase__ : Dict = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != 'cuda' , 'This test is supposed to run on GPU' ) def _UpperCAmelCase ( self ) -> List[str]: lowercase__ , lowercase__ : int = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' , output_loading_info=a ) model.to(a ) lowercase__ : Tuple = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != 'cuda' , 'This test is supposed to run on GPU' ) def _UpperCAmelCase ( self ) -> Union[str, Any]: # by defautl model loading will use accelerate as `low_cpu_mem_usage=True` lowercase__ , lowercase__ : Optional[Any] = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' , output_loading_info=a ) model_accelerate.to(a ) model_accelerate.eval() lowercase__ : List[str] = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) lowercase__ : Any = noise.to(a ) lowercase__ : Optional[Any] = torch.tensor([1_0] * noise.shape[0] ).to(a ) lowercase__ : int = model_accelerate(a , a )['sample'] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() lowercase__ , lowercase__ : Any = UNetaDModel.from_pretrained( 'fusing/unet-ldm-dummy-update' , output_loading_info=a , low_cpu_mem_usage=a ) model_normal_load.to(a ) model_normal_load.eval() lowercase__ : Tuple = model_normal_load(a , a )['sample'] assert torch_all_close(a , a , rtol=1e-3 ) def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : List[Any] = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' ) model.eval() model.to(a ) lowercase__ : Dict = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) lowercase__ : str = noise.to(a ) lowercase__ : Union[str, Any] = torch.tensor([1_0] * noise.shape[0] ).to(a ) with torch.no_grad(): lowercase__ : Any = model(a , a ).sample lowercase__ : Optional[int] = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off lowercase__ : Union[str, Any] = torch.tensor([-13.3_258, -20.1_100, -15.9_873, -17.6_617, -23.0_596, -17.9_419, -13.3_675, -16.1_889, -12.3_800] ) # fmt: on self.assertTrue(torch_all_close(a , a , rtol=1e-3 ) ) class UpperCAmelCase_ ( _a , _a , unittest.TestCase): lowerCamelCase__ : Any = UNetaDModel lowerCamelCase__ : str = "sample" @property def _UpperCAmelCase ( self , a=(3_2, 3_2) ) -> Tuple: lowercase__ : List[Any] = 4 lowercase__ : Dict = 3 lowercase__ : List[Any] = floats_tensor((batch_size, num_channels) + sizes ).to(a ) lowercase__ : Optional[int] = torch.tensor(batch_size * [1_0] ).to(dtype=torch.intaa , device=a ) return {"sample": noise, "timestep": time_step} @property def _UpperCAmelCase ( self ) -> Optional[int]: return (3, 3_2, 3_2) @property def _UpperCAmelCase ( self ) -> Tuple: return (3, 3_2, 3_2) def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Tuple = { 'block_out_channels': [3_2, 6_4, 6_4, 6_4], 'in_channels': 3, 'layers_per_block': 1, 'out_channels': 3, 'time_embedding_type': 'fourier', 'norm_eps': 1e-6, 'mid_block_scale_factor': math.sqrt(2.0 ), 'norm_num_groups': None, 'down_block_types': [ 'SkipDownBlock2D', 'AttnSkipDownBlock2D', 'SkipDownBlock2D', 'SkipDownBlock2D', ], 'up_block_types': [ 'SkipUpBlock2D', 'SkipUpBlock2D', 'AttnSkipUpBlock2D', 'SkipUpBlock2D', ], } lowercase__ : Optional[Any] = self.dummy_input return init_dict, inputs_dict @slow def _UpperCAmelCase ( self ) -> Any: lowercase__ , lowercase__ : str = UNetaDModel.from_pretrained('google/ncsnpp-celebahq-256' , output_loading_info=a ) self.assertIsNotNone(a ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(a ) lowercase__ : str = self.dummy_input lowercase__ : Dict = floats_tensor((4, 3) + (2_5_6, 2_5_6) ).to(a ) lowercase__ : str = noise lowercase__ : Optional[Any] = model(**a ) assert image is not None, "Make sure output is not None" @slow def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : Any = UNetaDModel.from_pretrained('google/ncsnpp-celebahq-256' ) model.to(a ) lowercase__ : Optional[Any] = 4 lowercase__ : int = 3 lowercase__ : Optional[Any] = (2_5_6, 2_5_6) lowercase__ : Dict = torch.ones((batch_size, num_channels) + sizes ).to(a ) lowercase__ : Union[str, Any] = torch.tensor(batch_size * [1e-4] ).to(a ) with torch.no_grad(): lowercase__ : Tuple = model(a , a ).sample lowercase__ : List[Any] = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off lowercase__ : List[str] = torch.tensor([-4_842.8_691, -6_499.6_631, -3_800.1_953, -7_978.2_686, -10_980.7_129, -20_028.8_535, 8_148.2_822, 2_342.2_905, 567.7_608] ) # fmt: on self.assertTrue(torch_all_close(a , a , rtol=1e-2 ) ) def _UpperCAmelCase ( self ) -> Dict: lowercase__ : Any = UNetaDModel.from_pretrained('fusing/ncsnpp-ffhq-ve-dummy-update' ) model.to(a ) lowercase__ : Dict = 4 lowercase__ : List[str] = 3 lowercase__ : List[str] = (3_2, 3_2) lowercase__ : Union[str, Any] = torch.ones((batch_size, num_channels) + sizes ).to(a ) lowercase__ : Union[str, Any] = torch.tensor(batch_size * [1e-4] ).to(a ) with torch.no_grad(): lowercase__ : List[str] = model(a , a ).sample lowercase__ : int = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off lowercase__ : Dict = torch.tensor([-0.0_325, -0.0_900, -0.0_869, -0.0_332, -0.0_725, -0.0_270, -0.0_101, 0.0_227, 0.0_256] ) # fmt: on self.assertTrue(torch_all_close(a , a , rtol=1e-2 ) ) def _UpperCAmelCase ( self ) -> Any: # not required for this model pass
645
"""simple docstring""" from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
645
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class UpperCAmelCase_ : def __init__( self , a , a=1_3 , a=7 , a=True , a=True , a=True , a=True , a=9_9 , a=3_2 , a=2 , a=4 , a=3_7 , a="gelu" , a=0.1 , a=0.1 , a=5_1_2 , a=1_6 , a=2 , a=0.02 , a=3 , a=4 , a=None , a=0 , ) -> str: lowercase__ : List[str] = parent lowercase__ : List[str] = batch_size lowercase__ : Optional[int] = seq_length lowercase__ : Any = is_training lowercase__ : Tuple = use_input_mask lowercase__ : Optional[Any] = use_token_type_ids lowercase__ : Union[str, Any] = use_labels lowercase__ : List[str] = vocab_size lowercase__ : Any = hidden_size lowercase__ : List[Any] = num_hidden_layers lowercase__ : List[str] = num_attention_heads lowercase__ : Optional[int] = intermediate_size lowercase__ : Dict = hidden_act lowercase__ : Dict = hidden_dropout_prob lowercase__ : Tuple = attention_probs_dropout_prob lowercase__ : str = max_position_embeddings lowercase__ : Optional[int] = type_vocab_size lowercase__ : Optional[int] = type_sequence_label_size lowercase__ : Tuple = initializer_range lowercase__ : List[Any] = num_labels lowercase__ : List[str] = num_choices lowercase__ : int = scope lowercase__ : int = projection_dim def _UpperCAmelCase ( self ) -> int: lowercase__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ : List[str] = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py lowercase__ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ : Optional[Any] = None if self.use_token_type_ids: lowercase__ : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__ : List[Any] = None lowercase__ : Optional[Any] = None lowercase__ : List[str] = None if self.use_labels: lowercase__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__ : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) lowercase__ : int = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a , initializer_range=self.initializer_range , ) lowercase__ : int = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCAmelCase ( self , a , a , a , a , a , a , a ) -> List[Any]: lowercase__ : Optional[int] = TFDPRContextEncoder(config=a ) lowercase__ : Any = model(a , attention_mask=a , token_type_ids=a ) lowercase__ : Any = model(a , token_type_ids=a ) lowercase__ : Tuple = model(a ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def _UpperCAmelCase ( self , a , a , a , a , a , a , a ) -> List[str]: lowercase__ : List[Any] = TFDPRQuestionEncoder(config=a ) lowercase__ : List[Any] = model(a , attention_mask=a , token_type_ids=a ) lowercase__ : str = model(a , token_type_ids=a ) lowercase__ : Optional[Any] = model(a ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def _UpperCAmelCase ( self , a , a , a , a , a , a , a ) -> Tuple: lowercase__ : int = TFDPRReader(config=a ) lowercase__ : Union[str, Any] = model(a , attention_mask=a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : int = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) : Any = config_and_inputs lowercase__ : Optional[Any] = {'input_ids': input_ids} return config, inputs_dict @require_tf class UpperCAmelCase_ ( _a , _a , unittest.TestCase): lowerCamelCase__ : str = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) lowerCamelCase__ : List[str] = {"feature-extraction": TFDPRQuestionEncoder} if is_tf_available() else {} lowerCamelCase__ : Any = False lowerCamelCase__ : Union[str, Any] = False lowerCamelCase__ : Tuple = False lowerCamelCase__ : Optional[Any] = False lowerCamelCase__ : int = False def _UpperCAmelCase ( self ) -> int: lowercase__ : Tuple = TFDPRModelTester(self ) lowercase__ : str = ConfigTester(self , config_class=a , hidden_size=3_7 ) def _UpperCAmelCase ( self ) -> Optional[Any]: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> int: lowercase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*a ) def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*a ) def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*a ) @slow def _UpperCAmelCase ( self ) -> Optional[Any]: for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : List[Any] = TFDPRContextEncoder.from_pretrained(a ) self.assertIsNotNone(a ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Tuple = TFDPRContextEncoder.from_pretrained(a ) self.assertIsNotNone(a ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Union[str, Any] = TFDPRQuestionEncoder.from_pretrained(a ) self.assertIsNotNone(a ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Tuple = TFDPRReader.from_pretrained(a ) self.assertIsNotNone(a ) @require_tf class UpperCAmelCase_ ( unittest.TestCase): @slow def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Any = TFDPRQuestionEncoder.from_pretrained('facebook/dpr-question_encoder-single-nq-base' ) lowercase__ : List[Any] = tf.constant( [[1_0_1, 7_5_9_2, 1_0_1_0, 2_0_0_3, 2_0_2_6, 3_8_9_9, 1_0_1_4_0, 1_0_2_9, 1_0_2]] ) # [CLS] hello, is my dog cute? [SEP] lowercase__ : Optional[int] = model(a )[0] # embedding shape = (1, 768) # compare the actual values for a slice. lowercase__ : Tuple = tf.constant( [ [ 0.03_236_253, 0.12_753_335, 0.16_818_509, 0.00_279_786, 0.3_896_933, 0.24_264_945, 0.2_178_971, -0.02_335_227, -0.08_481_959, -0.14_324_117, ] ] ) self.assertTrue(numpy.allclose(output[:, :1_0].numpy() , expected_slice.numpy() , atol=1e-4 ) )
645
"""simple docstring""" import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase): @slow def _UpperCAmelCase ( self ) -> str: lowercase__ : Optional[Any] = AutoImageProcessor.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' ) lowercase__ : Union[str, Any] = AutoModelForImageClassification.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' ) model.to(a ) from datasets import load_dataset lowercase__ : str = load_dataset('nielsr/rvlcdip-demo' ) lowercase__ : Tuple = dataset['train'][0]['image'].convert('RGB' ) lowercase__ : int = image_processor(a , return_tensors='pt' ).to(a ) # forward pass with torch.no_grad(): lowercase__ : List[str] = model(**a ) lowercase__ : List[Any] = outputs.logits lowercase__ : Union[str, Any] = torch.Size((1, 1_6) ) self.assertEqual(logits.shape , a ) lowercase__ : Tuple = torch.tensor( [-0.4_158, -0.4_092, -0.4_347] , device=a , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , a , atol=1e-4 ) )
645
1
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline _UpperCamelCase : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCAmelCase_ ( _a): def __init__( self , a , a ) -> int: super().__init__() self.register_modules(unet=a , scheduler=a ) @torch.no_grad() def __call__( self , a = 1 , a = 1_0_0 , a = None , a = None , a = True , ) -> Union[AudioPipelineOutput, Tuple]: if audio_length_in_s is None: lowercase__ : Dict = self.unet.config.sample_size / self.unet.config.sample_rate lowercase__ : Optional[Any] = audio_length_in_s * self.unet.config.sample_rate lowercase__ : Any = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( f"""{audio_length_in_s} is too small. Make sure it's bigger or equal to""" f""" {3 * down_scale_factor / self.unet.config.sample_rate}.""" ) lowercase__ : List[Any] = int(a ) if sample_size % down_scale_factor != 0: lowercase__ : Tuple = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( f"""{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled""" f""" by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising""" ' process.' ) lowercase__ : Union[str, Any] = int(a ) lowercase__ : str = next(iter(self.unet.parameters() ) ).dtype lowercase__ : Optional[Any] = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(a , a ) and len(a ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(a )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) lowercase__ : Tuple = randn_tensor(a , generator=a , device=self.device , dtype=a ) # set step values self.scheduler.set_timesteps(a , device=audio.device ) lowercase__ : Union[str, Any] = self.scheduler.timesteps.to(a ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowercase__ : Dict = self.unet(a , a ).sample # 2. compute previous image: x_t -> t_t-1 lowercase__ : Dict = self.scheduler.step(a , a , a ).prev_sample lowercase__ : str = audio.clamp(-1 , 1 ).float().cpu().numpy() lowercase__ : List[str] = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=a )
645
"""simple docstring""" import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class UpperCAmelCase_ : @staticmethod def _UpperCAmelCase ( *a , **a ) -> int: pass def a_ ( _lowerCAmelCase : Image ): '''simple docstring''' lowercase__ : List[str] = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class UpperCAmelCase_ ( unittest.TestCase): lowerCamelCase__ : Union[str, Any] = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def _UpperCAmelCase ( self , a , a , a ) -> Dict: lowercase__ : Union[str, Any] = DepthEstimationPipeline(model=a , image_processor=a ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def _UpperCAmelCase ( self , a , a ) -> Optional[int]: lowercase__ : Tuple = depth_estimator('./tests/fixtures/tests_samples/COCO/000000039769.png' ) self.assertEqual({'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )} , a ) import datasets lowercase__ : Tuple = datasets.load_dataset('hf-internal-testing/fixtures_image_utils' , 'image' , split='test' ) lowercase__ : List[Any] = depth_estimator( [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] ) self.assertEqual( [ {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, ] , a , ) @require_tf @unittest.skip('Depth estimation is not implemented in TF' ) def _UpperCAmelCase ( self ) -> Optional[int]: pass @slow @require_torch def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Tuple = 'Intel/dpt-large' lowercase__ : Optional[int] = pipeline('depth-estimation' , model=a ) lowercase__ : List[Any] = depth_estimator('http://images.cocodataset.org/val2017/000000039769.jpg' ) lowercase__ : Optional[Any] = hashimage(outputs['depth'] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['predicted_depth'].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs['predicted_depth'].min().item() ) , 2.662 ) @require_torch def _UpperCAmelCase ( self ) -> Optional[int]: # This is highly irregular to have no small tests. self.skipTest('There is not hf-internal-testing tiny model for either GLPN nor DPT' )
645
1
"""simple docstring""" class UpperCAmelCase_ : def __init__( self , a = "" , a = False ) -> None: # Mapping from the first character of the prefix of the node lowercase__ : dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word lowercase__ : Tuple = is_leaf lowercase__ : List[Any] = prefix def _UpperCAmelCase ( self , a ) -> tuple[str, str, str]: lowercase__ : Union[str, Any] = 0 for q, w in zip(self.prefix , a ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def _UpperCAmelCase ( self , a ) -> None: for word in words: self.insert(a ) def _UpperCAmelCase ( self , a ) -> None: # Case 1: If the word is the prefix of the node # Solution: We set the current node as leaf if self.prefix == word: lowercase__ : Any = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: lowercase__ : Tuple = RadixNode(prefix=a , is_leaf=a ) else: lowercase__ : List[str] = self.nodes[word[0]] lowercase__ , lowercase__ , lowercase__ : Optional[int] = incoming_node.match( a ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(a ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: lowercase__ : Optional[int] = remaining_prefix lowercase__ : List[Any] = self.nodes[matching_string[0]] lowercase__ : List[str] = RadixNode(a , a ) lowercase__ : Tuple = aux_node if remaining_word == "": lowercase__ : Optional[Any] = True else: self.nodes[matching_string[0]].insert(a ) def _UpperCAmelCase ( self , a ) -> bool: lowercase__ : Union[str, Any] = self.nodes.get(word[0] , a ) if not incoming_node: return False else: lowercase__ , lowercase__ , lowercase__ : Dict = incoming_node.match( a ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(a ) def _UpperCAmelCase ( self , a ) -> bool: lowercase__ : str = self.nodes.get(word[0] , a ) if not incoming_node: return False else: lowercase__ , lowercase__ , lowercase__ : Optional[int] = incoming_node.match( a ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(a ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: lowercase__ : Optional[Any] = list(self.nodes.values() )[0] lowercase__ : int = merging_node.is_leaf self.prefix += merging_node.prefix lowercase__ : Optional[int] = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: lowercase__ : Any = False # If there is 1 edge, we merge it with its child else: lowercase__ : Any = list(incoming_node.nodes.values() )[0] lowercase__ : Tuple = merging_node.is_leaf incoming_node.prefix += merging_node.prefix lowercase__ : Dict = merging_node.nodes return True def _UpperCAmelCase ( self , a = 0 ) -> None: if self.prefix != "": print('-' * height , self.prefix , ' (leaf)' if self.is_leaf else '' ) for value in self.nodes.values(): value.print_tree(height + 1 ) def a_ ( ): '''simple docstring''' lowercase__ : Optional[Any] = 'banana bananas bandana band apple all beast'.split() lowercase__ : Optional[int] = RadixNode() root.insert_many(_lowerCAmelCase ) assert all(root.find(_lowerCAmelCase ) for word in words ) assert not root.find('bandanas' ) assert not root.find('apps' ) root.delete('all' ) assert not root.find('all' ) root.delete('banana' ) assert not root.find('banana' ) assert root.find('bananas' ) return True def a_ ( ): '''simple docstring''' assert test_trie() def a_ ( ): '''simple docstring''' lowercase__ : Any = RadixNode() lowercase__ : Union[str, Any] = 'banana bananas bandanas bandana band apple all beast'.split() root.insert_many(_lowerCAmelCase ) print('Words:' , _lowerCAmelCase ) print('Tree:' ) root.print_tree() if __name__ == "__main__": main()
645
"""simple docstring""" import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class UpperCAmelCase_ ( _a): def __init__( self ) -> Any: lowercase__ : Tuple = [] def _UpperCAmelCase ( self , a , a , a , **a ) -> Any: self.events.append('on_init_end' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Optional[int]: self.events.append('on_train_begin' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> List[str]: self.events.append('on_train_end' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> int: self.events.append('on_epoch_begin' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Optional[Any]: self.events.append('on_epoch_end' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> int: self.events.append('on_step_begin' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> str: self.events.append('on_step_end' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> int: self.events.append('on_evaluate' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Tuple: self.events.append('on_predict' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Union[str, Any]: self.events.append('on_save' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> List[str]: self.events.append('on_log' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Any: self.events.append('on_prediction_step' ) @require_torch class UpperCAmelCase_ ( unittest.TestCase): def _UpperCAmelCase ( self ) -> str: lowercase__ : str = tempfile.mkdtemp() def _UpperCAmelCase ( self ) -> Dict: shutil.rmtree(self.output_dir ) def _UpperCAmelCase ( self , a=0 , a=0 , a=6_4 , a=6_4 , a=None , a=False , **a ) -> int: # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. lowercase__ : str = RegressionDataset(length=a ) lowercase__ : Any = RegressionDataset(length=a ) lowercase__ : Optional[Any] = RegressionModelConfig(a=a , b=a ) lowercase__ : Union[str, Any] = RegressionPreTrainedModel(a ) lowercase__ : Tuple = TrainingArguments(self.output_dir , disable_tqdm=a , report_to=[] , **a ) return Trainer( a , a , train_dataset=a , eval_dataset=a , callbacks=a , ) def _UpperCAmelCase ( self , a , a ) -> Union[str, Any]: self.assertEqual(len(a ) , len(a ) ) # Order doesn't matter lowercase__ : Optional[int] = sorted(a , key=lambda a : cb.__name__ if isinstance(a , a ) else cb.__class__.__name__ ) lowercase__ : Tuple = sorted(a , key=lambda a : cb.__name__ if isinstance(a , a ) else cb.__class__.__name__ ) for cba, cba in zip(a , a ): if isinstance(a , a ) and isinstance(a , a ): self.assertEqual(a , a ) elif isinstance(a , a ) and not isinstance(a , a ): self.assertEqual(a , cba.__class__ ) elif not isinstance(a , a ) and isinstance(a , a ): self.assertEqual(cba.__class__ , a ) else: self.assertEqual(a , a ) def _UpperCAmelCase ( self , a ) -> Optional[Any]: lowercase__ : Dict = ['on_init_end', 'on_train_begin'] lowercase__ : List[Any] = 0 lowercase__ : Optional[int] = len(trainer.get_eval_dataloader() ) lowercase__ : Tuple = ['on_prediction_step'] * len(trainer.get_eval_dataloader() ) + ['on_log', 'on_evaluate'] for _ in range(trainer.state.num_train_epochs ): expected_events.append('on_epoch_begin' ) for _ in range(a ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append('on_log' ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append('on_save' ) expected_events.append('on_epoch_end' ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : int = self.get_trainer() lowercase__ : str = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) # Callbacks passed at init are added to the default callbacks lowercase__ : str = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback lowercase__ : List[Any] = self.get_trainer(disable_tqdm=a ) lowercase__ : Optional[Any] = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) def _UpperCAmelCase ( self ) -> Any: lowercase__ : int = DEFAULT_CALLBACKS.copy() + [ProgressCallback] lowercase__ : List[str] = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(a ) expected_callbacks.remove(a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) lowercase__ : Optional[Any] = self.get_trainer() lowercase__ : List[Any] = trainer.pop_callback(a ) self.assertEqual(cb.__class__ , a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) trainer.add_callback(a ) expected_callbacks.insert(0 , a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) # We can also add, pop, or remove by instance lowercase__ : int = self.get_trainer() lowercase__ : List[str] = trainer.callback_handler.callbacks[0] trainer.remove_callback(a ) expected_callbacks.remove(a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) lowercase__ : Tuple = self.get_trainer() lowercase__ : Dict = trainer.callback_handler.callbacks[0] lowercase__ : Union[str, Any] = trainer.pop_callback(a ) self.assertEqual(a , a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) trainer.add_callback(a ) expected_callbacks.insert(0 , a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) def _UpperCAmelCase ( self ) -> Tuple: import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action='ignore' , category=a ) lowercase__ : Optional[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() lowercase__ : Any = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) # Independent log/save/eval lowercase__ : List[str] = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() lowercase__ : int = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) lowercase__ : Union[str, Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() lowercase__ : Union[str, Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) lowercase__ : List[str] = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy='steps' ) trainer.train() lowercase__ : Optional[int] = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) lowercase__ : int = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy='epoch' ) trainer.train() lowercase__ : str = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) # A bit of everything lowercase__ : Any = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=1_0 , eval_steps=5 , evaluation_strategy='steps' , ) trainer.train() lowercase__ : Any = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) # warning should be emitted for duplicated callbacks with patch('transformers.trainer_callback.logger.warning' ) as warn_mock: lowercase__ : str = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(a ) in warn_mock.call_args[0][0]
645
1
"""simple docstring""" from heapq import heappop, heappush import numpy as np def a_ ( _lowerCAmelCase : np.ndarray , _lowerCAmelCase : tuple[int, int] , _lowerCAmelCase : tuple[int, int] , _lowerCAmelCase : bool , ): '''simple docstring''' lowercase__ , lowercase__ : Optional[int] = grid.shape lowercase__ : List[Any] = [-1, 1, 0, 0] lowercase__ : str = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] lowercase__ , lowercase__ : List[str] = [(0, source)], set() lowercase__ : Optional[int] = np.full((rows, cols) , np.inf ) lowercase__ : Union[str, Any] = 0 lowercase__ : List[str] = np.empty((rows, cols) , dtype=_lowerCAmelCase ) lowercase__ : Any = None while queue: ((lowercase__) , (lowercase__)) : Union[str, Any] = heappop(_lowerCAmelCase ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: lowercase__ : str = [] while (x, y) != source: path.append((x, y) ) lowercase__ , lowercase__ : Union[str, Any] = predecessors[x, y] path.append(_lowerCAmelCase ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(_lowerCAmelCase ) ): lowercase__ , lowercase__ : Any = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: lowercase__ : Any = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(_lowerCAmelCase , (dist + 1, (nx, ny)) ) lowercase__ : List[str] = dist + 1 lowercase__ : Optional[int] = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
645
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _UpperCamelCase : str = { "configuration_gpt_neo": ["GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoConfig", "GPTNeoOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Tuple = [ "GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoForCausalLM", "GPTNeoForQuestionAnswering", "GPTNeoForSequenceClassification", "GPTNeoForTokenClassification", "GPTNeoModel", "GPTNeoPreTrainedModel", "load_tf_weights_in_gpt_neo", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Dict = [ "FlaxGPTNeoForCausalLM", "FlaxGPTNeoModel", "FlaxGPTNeoPreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys _UpperCamelCase : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
645
1
"""simple docstring""" from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=_a) class UpperCAmelCase_ ( _a): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization lowerCamelCase__ : str = field(default="summarization" , metadata={"include_in_asdict_even_if_is_default": True}) lowerCamelCase__ : ClassVar[Features] = Features({"text": Value("string")}) lowerCamelCase__ : ClassVar[Features] = Features({"summary": Value("string")}) lowerCamelCase__ : str = "text" lowerCamelCase__ : str = "summary" @property def _UpperCAmelCase ( self ) -> Dict[str, str]: return {self.text_column: "text", self.summary_column: "summary"}
645
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class UpperCAmelCase_ ( unittest.TestCase): def _UpperCAmelCase ( self , a ) -> str: for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss'] ): lowercase__ : str = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(a ) def _UpperCAmelCase ( self ) -> int: lowercase__ : Dict = 'sshleifer/tiny-gpt2' lowercase__ : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=a , multi_process=a , ) lowercase__ : str = TensorFlowBenchmark(a ) lowercase__ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> int: lowercase__ : List[str] = 'sgugger/tiny-distilbert-classification' lowercase__ : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , only_pretrain_model=a , ) lowercase__ : Optional[Any] = TensorFlowBenchmark(a ) lowercase__ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : Optional[int] = 'sshleifer/tiny-gpt2' lowercase__ : Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , ) lowercase__ : Optional[Any] = TensorFlowBenchmark(a ) lowercase__ : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : Any = 'sshleifer/tiny-gpt2' lowercase__ : List[Any] = AutoConfig.from_pretrained(a ) lowercase__ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=a , multi_process=a , ) lowercase__ : Tuple = TensorFlowBenchmark(a , [config] ) lowercase__ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> int: lowercase__ : Optional[Any] = 'sshleifer/tiny-gpt2' lowercase__ : List[str] = AutoConfig.from_pretrained(a ) lowercase__ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , ) lowercase__ : List[str] = TensorFlowBenchmark(a , [config] ) lowercase__ : Any = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Optional[Any] = 'sshleifer/tiny-gpt2' lowercase__ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , ) lowercase__ : Optional[Any] = TensorFlowBenchmark(a ) lowercase__ : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _UpperCAmelCase ( self ) -> str: lowercase__ : Optional[Any] = 'sshleifer/tiny-gpt2' lowercase__ : Optional[int] = AutoConfig.from_pretrained(a ) lowercase__ : str = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , ) lowercase__ : str = TensorFlowBenchmark(a , [config] ) lowercase__ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : List[str] = 'patrickvonplaten/t5-tiny-random' lowercase__ : Any = AutoConfig.from_pretrained(a ) lowercase__ : List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , ) lowercase__ : int = TensorFlowBenchmark(a , configs=[config] ) lowercase__ : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU' ) ) == 0 , 'Cannot do xla on CPU.' ) def _UpperCAmelCase ( self ) -> Any: lowercase__ : Any = 'sshleifer/tiny-gpt2' lowercase__ : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , use_xla=a , multi_process=a , ) lowercase__ : Any = TensorFlowBenchmark(a ) lowercase__ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Any = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ : List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=a , save_to_csv=a , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(a , 'inf_time.csv' ) , inference_memory_csv_file=os.path.join(a , 'inf_mem.csv' ) , env_info_csv_file=os.path.join(a , 'env.csv' ) , multi_process=a , ) lowercase__ : Union[str, Any] = TensorFlowBenchmark(a ) benchmark.run() self.assertTrue(Path(os.path.join(a , 'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(a , 'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(a , 'env.csv' ) ).exists() ) def _UpperCAmelCase ( self ) -> Dict: lowercase__ : Tuple = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(a ): self.assertTrue(hasattr(a , 'sequential' ) ) self.assertTrue(hasattr(a , 'cumulative' ) ) self.assertTrue(hasattr(a , 'current' ) ) self.assertTrue(hasattr(a , 'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=a , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(a , 'log.txt' ) , log_print=a , trace_memory_line_by_line=a , eager_mode=a , multi_process=a , ) lowercase__ : Optional[int] = TensorFlowBenchmark(a ) lowercase__ : Optional[Any] = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(a , 'log.txt' ) ).exists() )
645
1
"""simple docstring""" from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES _UpperCamelCase : Tuple = logging.get_logger(__name__) _UpperCamelCase : Tuple = OrderedDict( [ # Base model mapping ("albert", "FlaxAlbertModel"), ("bart", "FlaxBartModel"), ("beit", "FlaxBeitModel"), ("bert", "FlaxBertModel"), ("big_bird", "FlaxBigBirdModel"), ("blenderbot", "FlaxBlenderbotModel"), ("blenderbot-small", "FlaxBlenderbotSmallModel"), ("clip", "FlaxCLIPModel"), ("distilbert", "FlaxDistilBertModel"), ("electra", "FlaxElectraModel"), ("gpt-sw3", "FlaxGPT2Model"), ("gpt2", "FlaxGPT2Model"), ("gpt_neo", "FlaxGPTNeoModel"), ("gptj", "FlaxGPTJModel"), ("longt5", "FlaxLongT5Model"), ("marian", "FlaxMarianModel"), ("mbart", "FlaxMBartModel"), ("mt5", "FlaxMT5Model"), ("opt", "FlaxOPTModel"), ("pegasus", "FlaxPegasusModel"), ("regnet", "FlaxRegNetModel"), ("resnet", "FlaxResNetModel"), ("roberta", "FlaxRobertaModel"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormModel"), ("roformer", "FlaxRoFormerModel"), ("t5", "FlaxT5Model"), ("vision-text-dual-encoder", "FlaxVisionTextDualEncoderModel"), ("vit", "FlaxViTModel"), ("wav2vec2", "FlaxWav2Vec2Model"), ("whisper", "FlaxWhisperModel"), ("xglm", "FlaxXGLMModel"), ("xlm-roberta", "FlaxXLMRobertaModel"), ] ) _UpperCamelCase : str = OrderedDict( [ # Model for pre-training mapping ("albert", "FlaxAlbertForPreTraining"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForPreTraining"), ("big_bird", "FlaxBigBirdForPreTraining"), ("electra", "FlaxElectraForPreTraining"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("t5", "FlaxT5ForConditionalGeneration"), ("wav2vec2", "FlaxWav2Vec2ForPreTraining"), ("whisper", "FlaxWhisperForConditionalGeneration"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) _UpperCamelCase : int = OrderedDict( [ # Model for Masked LM mapping ("albert", "FlaxAlbertForMaskedLM"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForMaskedLM"), ("big_bird", "FlaxBigBirdForMaskedLM"), ("distilbert", "FlaxDistilBertForMaskedLM"), ("electra", "FlaxElectraForMaskedLM"), ("mbart", "FlaxMBartForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) _UpperCamelCase : List[Any] = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ("bart", "FlaxBartForConditionalGeneration"), ("blenderbot", "FlaxBlenderbotForConditionalGeneration"), ("blenderbot-small", "FlaxBlenderbotSmallForConditionalGeneration"), ("encoder-decoder", "FlaxEncoderDecoderModel"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("marian", "FlaxMarianMTModel"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("pegasus", "FlaxPegasusForConditionalGeneration"), ("t5", "FlaxT5ForConditionalGeneration"), ] ) _UpperCamelCase : Optional[int] = OrderedDict( [ # Model for Image-classsification ("beit", "FlaxBeitForImageClassification"), ("regnet", "FlaxRegNetForImageClassification"), ("resnet", "FlaxResNetForImageClassification"), ("vit", "FlaxViTForImageClassification"), ] ) _UpperCamelCase : List[str] = OrderedDict( [ ("vision-encoder-decoder", "FlaxVisionEncoderDecoderModel"), ] ) _UpperCamelCase : List[Any] = OrderedDict( [ # Model for Causal LM mapping ("bart", "FlaxBartForCausalLM"), ("bert", "FlaxBertForCausalLM"), ("big_bird", "FlaxBigBirdForCausalLM"), ("electra", "FlaxElectraForCausalLM"), ("gpt-sw3", "FlaxGPT2LMHeadModel"), ("gpt2", "FlaxGPT2LMHeadModel"), ("gpt_neo", "FlaxGPTNeoForCausalLM"), ("gptj", "FlaxGPTJForCausalLM"), ("opt", "FlaxOPTForCausalLM"), ("roberta", "FlaxRobertaForCausalLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForCausalLM"), ("xglm", "FlaxXGLMForCausalLM"), ("xlm-roberta", "FlaxXLMRobertaForCausalLM"), ] ) _UpperCamelCase : Optional[Any] = OrderedDict( [ # Model for Sequence Classification mapping ("albert", "FlaxAlbertForSequenceClassification"), ("bart", "FlaxBartForSequenceClassification"), ("bert", "FlaxBertForSequenceClassification"), ("big_bird", "FlaxBigBirdForSequenceClassification"), ("distilbert", "FlaxDistilBertForSequenceClassification"), ("electra", "FlaxElectraForSequenceClassification"), ("mbart", "FlaxMBartForSequenceClassification"), ("roberta", "FlaxRobertaForSequenceClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForSequenceClassification"), ("roformer", "FlaxRoFormerForSequenceClassification"), ("xlm-roberta", "FlaxXLMRobertaForSequenceClassification"), ] ) _UpperCamelCase : Optional[int] = OrderedDict( [ # Model for Question Answering mapping ("albert", "FlaxAlbertForQuestionAnswering"), ("bart", "FlaxBartForQuestionAnswering"), ("bert", "FlaxBertForQuestionAnswering"), ("big_bird", "FlaxBigBirdForQuestionAnswering"), ("distilbert", "FlaxDistilBertForQuestionAnswering"), ("electra", "FlaxElectraForQuestionAnswering"), ("mbart", "FlaxMBartForQuestionAnswering"), ("roberta", "FlaxRobertaForQuestionAnswering"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForQuestionAnswering"), ("roformer", "FlaxRoFormerForQuestionAnswering"), ("xlm-roberta", "FlaxXLMRobertaForQuestionAnswering"), ] ) _UpperCamelCase : Tuple = OrderedDict( [ # Model for Token Classification mapping ("albert", "FlaxAlbertForTokenClassification"), ("bert", "FlaxBertForTokenClassification"), ("big_bird", "FlaxBigBirdForTokenClassification"), ("distilbert", "FlaxDistilBertForTokenClassification"), ("electra", "FlaxElectraForTokenClassification"), ("roberta", "FlaxRobertaForTokenClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForTokenClassification"), ("roformer", "FlaxRoFormerForTokenClassification"), ("xlm-roberta", "FlaxXLMRobertaForTokenClassification"), ] ) _UpperCamelCase : str = OrderedDict( [ # Model for Multiple Choice mapping ("albert", "FlaxAlbertForMultipleChoice"), ("bert", "FlaxBertForMultipleChoice"), ("big_bird", "FlaxBigBirdForMultipleChoice"), ("distilbert", "FlaxDistilBertForMultipleChoice"), ("electra", "FlaxElectraForMultipleChoice"), ("roberta", "FlaxRobertaForMultipleChoice"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMultipleChoice"), ("roformer", "FlaxRoFormerForMultipleChoice"), ("xlm-roberta", "FlaxXLMRobertaForMultipleChoice"), ] ) _UpperCamelCase : Optional[int] = OrderedDict( [ ("bert", "FlaxBertForNextSentencePrediction"), ] ) _UpperCamelCase : Optional[int] = OrderedDict( [ ("speech-encoder-decoder", "FlaxSpeechEncoderDecoderModel"), ("whisper", "FlaxWhisperForConditionalGeneration"), ] ) _UpperCamelCase : List[Any] = OrderedDict( [ ("whisper", "FlaxWhisperForAudioClassification"), ] ) _UpperCamelCase : str = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) _UpperCamelCase : str = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) _UpperCamelCase : str = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) _UpperCamelCase : Dict = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) _UpperCamelCase : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) _UpperCamelCase : Tuple = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) _UpperCamelCase : str = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) _UpperCamelCase : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) _UpperCamelCase : Optional[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) _UpperCamelCase : Optional[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) _UpperCamelCase : Union[str, Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) _UpperCamelCase : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) _UpperCamelCase : str = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) _UpperCamelCase : str = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class UpperCAmelCase_ ( _BaseAutoModelClass): lowerCamelCase__ : Union[str, Any] = FLAX_MODEL_MAPPING _UpperCamelCase : Optional[Any] = auto_class_update(FlaxAutoModel) class UpperCAmelCase_ ( _BaseAutoModelClass): lowerCamelCase__ : Optional[int] = FLAX_MODEL_FOR_PRETRAINING_MAPPING _UpperCamelCase : Tuple = auto_class_update(FlaxAutoModelForPreTraining, head_doc="pretraining") class UpperCAmelCase_ ( _BaseAutoModelClass): lowerCamelCase__ : str = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING _UpperCamelCase : Union[str, Any] = auto_class_update(FlaxAutoModelForCausalLM, head_doc="causal language modeling") class UpperCAmelCase_ ( _BaseAutoModelClass): lowerCamelCase__ : Any = FLAX_MODEL_FOR_MASKED_LM_MAPPING _UpperCamelCase : str = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="masked language modeling") class UpperCAmelCase_ ( _BaseAutoModelClass): lowerCamelCase__ : Optional[int] = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _UpperCamelCase : Tuple = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc="sequence-to-sequence language modeling", checkpoint_for_example="t5-base" ) class UpperCAmelCase_ ( _BaseAutoModelClass): lowerCamelCase__ : Union[str, Any] = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _UpperCamelCase : Optional[Any] = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc="sequence classification" ) class UpperCAmelCase_ ( _BaseAutoModelClass): lowerCamelCase__ : str = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING _UpperCamelCase : Union[str, Any] = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="question answering") class UpperCAmelCase_ ( _BaseAutoModelClass): lowerCamelCase__ : Tuple = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING _UpperCamelCase : Optional[Any] = auto_class_update( FlaxAutoModelForTokenClassification, head_doc="token classification" ) class UpperCAmelCase_ ( _BaseAutoModelClass): lowerCamelCase__ : Any = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING _UpperCamelCase : List[Any] = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="multiple choice") class UpperCAmelCase_ ( _BaseAutoModelClass): lowerCamelCase__ : Optional[int] = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING _UpperCamelCase : List[Any] = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc="next sentence prediction" ) class UpperCAmelCase_ ( _BaseAutoModelClass): lowerCamelCase__ : Optional[int] = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING _UpperCamelCase : int = auto_class_update( FlaxAutoModelForImageClassification, head_doc="image classification" ) class UpperCAmelCase_ ( _BaseAutoModelClass): lowerCamelCase__ : Union[str, Any] = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING _UpperCamelCase : Union[str, Any] = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="vision-to-text modeling") class UpperCAmelCase_ ( _BaseAutoModelClass): lowerCamelCase__ : List[str] = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING _UpperCamelCase : Optional[int] = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc="sequence-to-sequence speech-to-text modeling" )
645
"""simple docstring""" import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class UpperCAmelCase_ ( _a): def __init__( self , a , a=1_3 , a=7 , a=True , a=True , a=False , a=True , a=9_9 , a=3_2 , a=5 , a=4 , a=3_7 , a="gelu" , a=0.1 , a=0.1 , a=5_1_2 , a=1_6 , a=2 , a=0.02 , a=3 , a=4 , a=None , ) -> Any: lowercase__ : Tuple = parent lowercase__ : List[Any] = batch_size lowercase__ : List[Any] = seq_length lowercase__ : List[Any] = is_training lowercase__ : Optional[Any] = use_input_mask lowercase__ : Optional[int] = use_token_type_ids lowercase__ : int = use_labels lowercase__ : Tuple = vocab_size lowercase__ : int = hidden_size lowercase__ : Any = num_hidden_layers lowercase__ : List[str] = num_attention_heads lowercase__ : Optional[Any] = intermediate_size lowercase__ : Optional[Any] = hidden_act lowercase__ : List[str] = hidden_dropout_prob lowercase__ : List[Any] = attention_probs_dropout_prob lowercase__ : List[Any] = max_position_embeddings lowercase__ : List[str] = type_vocab_size lowercase__ : Tuple = type_sequence_label_size lowercase__ : List[Any] = initializer_range lowercase__ : str = num_labels lowercase__ : Tuple = num_choices lowercase__ : str = scope def _UpperCAmelCase ( self ) -> Any: lowercase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ : str = None if self.use_input_mask: lowercase__ : Any = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ : Dict = None lowercase__ : Optional[Any] = None lowercase__ : int = None if self.use_labels: lowercase__ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__ : Dict = ids_tensor([self.batch_size] , self.num_choices ) lowercase__ : List[Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCAmelCase ( self ) -> Optional[int]: return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> Dict: lowercase__ : Tuple = DistilBertModel(config=a ) model.to(a ) model.eval() lowercase__ : Any = model(a , a ) lowercase__ : str = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> Dict: lowercase__ : Optional[int] = DistilBertForMaskedLM(config=a ) model.to(a ) model.eval() lowercase__ : Union[str, Any] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> int: lowercase__ : Tuple = DistilBertForQuestionAnswering(config=a ) model.to(a ) model.eval() lowercase__ : Tuple = model( a , attention_mask=a , start_positions=a , end_positions=a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> List[str]: lowercase__ : int = self.num_labels lowercase__ : Dict = DistilBertForSequenceClassification(a ) model.to(a ) model.eval() lowercase__ : Optional[Any] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> Any: lowercase__ : Any = self.num_labels lowercase__ : List[str] = DistilBertForTokenClassification(config=a ) model.to(a ) model.eval() lowercase__ : Any = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> Tuple: lowercase__ : List[Any] = self.num_choices lowercase__ : Any = DistilBertForMultipleChoice(config=a ) model.to(a ) model.eval() lowercase__ : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ : Optional[int] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ : int = model( a , attention_mask=a , labels=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _UpperCAmelCase ( self ) -> str: lowercase__ : Union[str, Any] = self.prepare_config_and_inputs() ((lowercase__) , (lowercase__) , (lowercase__) , (lowercase__) , (lowercase__) , (lowercase__)) : List[str] = config_and_inputs lowercase__ : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _a , _a , unittest.TestCase): lowerCamelCase__ : List[str] = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) lowerCamelCase__ : str = ( { "feature-extraction": DistilBertModel, "fill-mask": DistilBertForMaskedLM, "question-answering": DistilBertForQuestionAnswering, "text-classification": DistilBertForSequenceClassification, "token-classification": DistilBertForTokenClassification, "zero-shot": DistilBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ : Optional[int] = True lowerCamelCase__ : Any = True lowerCamelCase__ : List[Any] = True lowerCamelCase__ : Optional[Any] = True def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : str = DistilBertModelTester(self ) lowercase__ : int = ConfigTester(self , config_class=a , dim=3_7 ) def _UpperCAmelCase ( self ) -> Dict: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*a ) def _UpperCAmelCase ( self ) -> Any: lowercase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*a ) def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*a ) def _UpperCAmelCase ( self ) -> int: lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*a ) def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*a ) def _UpperCAmelCase ( self ) -> str: lowercase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*a ) @slow def _UpperCAmelCase ( self ) -> str: for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : str = DistilBertModel.from_pretrained(a ) self.assertIsNotNone(a ) @slow @require_torch_gpu def _UpperCAmelCase ( self ) -> Any: lowercase__ , lowercase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return lowercase__ : Optional[int] = True lowercase__ : Union[str, Any] = model_class(config=a ) lowercase__ : int = self._prepare_for_class(a , a ) lowercase__ : Tuple = torch.jit.trace( a , (inputs_dict['input_ids'].to('cpu' ), inputs_dict['attention_mask'].to('cpu' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a , os.path.join(a , 'traced_model.pt' ) ) lowercase__ : Optional[int] = torch.jit.load(os.path.join(a , 'traced_model.pt' ) , map_location=a ) loaded(inputs_dict['input_ids'].to(a ) , inputs_dict['attention_mask'].to(a ) ) @require_torch class UpperCAmelCase_ ( unittest.TestCase): @slow def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : int = DistilBertModel.from_pretrained('distilbert-base-uncased' ) lowercase__ : Union[str, Any] = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) lowercase__ : Optional[Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowercase__ : Optional[Any] = model(a , attention_mask=a )[0] lowercase__ : Tuple = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , a ) lowercase__ : List[Any] = torch.tensor( [[[-0.1_639, 0.3_299, 0.1_648], [-0.1_746, 0.3_289, 0.1_710], [-0.1_884, 0.3_357, 0.1_810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a , atol=1e-4 ) )
645
1
"""simple docstring""" import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class UpperCAmelCase_ ( _a , unittest.TestCase): lowerCamelCase__ : List[Any] = "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline" def _UpperCAmelCase ( self , a=0 ) -> Optional[Any]: lowercase__ : Optional[int] = floats_tensor((1, 3, 1_2_8, 1_2_8) , rng=random.Random(a ) ) lowercase__ : List[Any] = np.random.RandomState(a ) lowercase__ : int = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'strength': 0.75, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : Tuple = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=a ) lowercase__ : int = self.get_dummy_inputs() lowercase__ : Optional[Any] = pipe(**a ).images lowercase__ : int = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 1_2_8, 1_2_8, 3) lowercase__ : Union[str, Any] = np.array([0.69_643, 0.58_484, 0.50_314, 0.58_760, 0.55_368, 0.59_643, 0.51_529, 0.41_217, 0.49_087] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : Union[str, Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) lowercase__ : Optional[Any] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=a ) pipe.set_progress_bar_config(disable=a ) lowercase__ : List[Any] = self.get_dummy_inputs() lowercase__ : str = pipe(**a ).images lowercase__ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) lowercase__ : Union[str, Any] = np.array([0.61_737, 0.54_642, 0.53_183, 0.54_465, 0.52_742, 0.60_525, 0.49_969, 0.40_655, 0.48_154] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _UpperCAmelCase ( self ) -> str: lowercase__ : int = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) lowercase__ : int = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a ) # warmup pass to apply optimizations lowercase__ : str = pipe(**self.get_dummy_inputs() ) lowercase__ : Optional[int] = self.get_dummy_inputs() lowercase__ : int = pipe(**a ).images lowercase__ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) lowercase__ : str = np.array([0.52_761, 0.59_977, 0.49_033, 0.49_619, 0.54_282, 0.50_311, 0.47_600, 0.40_918, 0.45_203] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : Union[str, Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) lowercase__ : Optional[int] = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a ) lowercase__ : List[str] = self.get_dummy_inputs() lowercase__ : Tuple = pipe(**a ).images lowercase__ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) lowercase__ : List[Any] = np.array([0.52_911, 0.60_004, 0.49_229, 0.49_805, 0.54_502, 0.50_680, 0.47_777, 0.41_028, 0.45_304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Optional[int] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) lowercase__ : Optional[Any] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a ) lowercase__ : str = self.get_dummy_inputs() lowercase__ : int = pipe(**a ).images lowercase__ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) lowercase__ : Optional[int] = np.array([0.52_911, 0.60_004, 0.49_229, 0.49_805, 0.54_502, 0.50_680, 0.47_777, 0.41_028, 0.45_304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _UpperCAmelCase ( self ) -> Dict: lowercase__ : Tuple = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) lowercase__ : Optional[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a ) lowercase__ : Optional[Any] = self.get_dummy_inputs() lowercase__ : Tuple = pipe(**a ).images lowercase__ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) lowercase__ : List[Any] = np.array([0.65_331, 0.58_277, 0.48_204, 0.56_059, 0.53_665, 0.56_235, 0.50_969, 0.40_009, 0.46_552] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase): @property def _UpperCAmelCase ( self ) -> int: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _UpperCAmelCase ( self ) -> Any: lowercase__ : Tuple = ort.SessionOptions() lowercase__ : List[Any] = False return options def _UpperCAmelCase ( self ) -> str: lowercase__ : Optional[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) lowercase__ : Optional[int] = init_image.resize((7_6_8, 5_1_2) ) # using the PNDM scheduler by default lowercase__ : List[str] = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='onnx' , safety_checker=a , feature_extractor=a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a ) lowercase__ : int = 'A fantasy landscape, trending on artstation' lowercase__ : int = np.random.RandomState(0 ) lowercase__ : str = pipe( prompt=a , image=a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=1_0 , generator=a , output_type='np' , ) lowercase__ : List[str] = output.images lowercase__ : List[Any] = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 7_6_8, 3) lowercase__ : Optional[Any] = np.array([0.4_909, 0.5_059, 0.5_372, 0.4_623, 0.4_876, 0.5_049, 0.4_820, 0.4_956, 0.5_019] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : Dict = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) lowercase__ : Optional[int] = init_image.resize((7_6_8, 5_1_2) ) lowercase__ : Optional[Any] = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5' , subfolder='scheduler' , revision='onnx' ) lowercase__ : Optional[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , revision='onnx' , scheduler=a , safety_checker=a , feature_extractor=a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a ) lowercase__ : str = 'A fantasy landscape, trending on artstation' lowercase__ : Any = np.random.RandomState(0 ) lowercase__ : Optional[int] = pipe( prompt=a , image=a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=2_0 , generator=a , output_type='np' , ) lowercase__ : str = output.images lowercase__ : Tuple = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 7_6_8, 3) lowercase__ : List[str] = np.array([0.8_043, 0.926, 0.9_581, 0.8_119, 0.8_954, 0.913, 0.7_209, 0.7_463, 0.7_431] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
645
"""simple docstring""" from __future__ import annotations def a_ ( _lowerCAmelCase : float , _lowerCAmelCase : float , _lowerCAmelCase : float , ): '''simple docstring''' if (stress, tangential_force, area).count(0 ) != 1: raise ValueError('You cannot supply more or less than 2 values' ) elif stress < 0: raise ValueError('Stress cannot be negative' ) elif tangential_force < 0: raise ValueError('Tangential Force cannot be negative' ) elif area < 0: raise ValueError('Area cannot be negative' ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
645
1