code
stringlengths 81
54k
| code_codestyle
int64 0
721
| style_context
stringlengths 91
41.9k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
|---|---|---|---|---|
import time
from contextlib import contextmanager
from pathlib import Path
import pytest
import requests
from huggingface_hub.hf_api import HfApi, HfFolder
snake_case_ : str = "__DUMMY_TRANSFORMERS_USER__"
snake_case_ : Optional[Any] = "Dummy User"
snake_case_ : Optional[int] = "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"
snake_case_ : Any = "https://hub-ci.huggingface.co"
snake_case_ : List[str] = CI_HUB_ENDPOINT + "/datasets/{repo_id}/resolve/{revision}/{path}"
snake_case_ : Tuple = CI_HUB_ENDPOINT + "/{repo_id}/resolve/{revision}/{filename}"
snake_case_ : List[str] = Path("~/.huggingface/hub_ci_token").expanduser()
@pytest.fixture
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> List[str]:
monkeypatch.setattr(
'''huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE''', SCREAMING_SNAKE_CASE__ )
@pytest.fixture
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Dict:
monkeypatch.setattr('''datasets.config.HF_ENDPOINT''', SCREAMING_SNAKE_CASE__ )
monkeypatch.setattr('''datasets.config.HUB_DATASETS_URL''', SCREAMING_SNAKE_CASE__ )
@pytest.fixture
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Dict ) -> Optional[Any]:
monkeypatch.setattr('''huggingface_hub.hf_api.HfFolder.path_token''', SCREAMING_SNAKE_CASE__ )
@pytest.fixture
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : str, SCREAMING_SNAKE_CASE__ : List[str] ) -> Dict:
HfFolder.save_token(SCREAMING_SNAKE_CASE__ )
yield
HfFolder.delete_token()
@pytest.fixture(scope='''session''' )
def lowerCamelCase_ ( ) -> Dict:
return HfApi(endpoint=SCREAMING_SNAKE_CASE__ )
@pytest.fixture(scope='''session''' )
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : HfApi ) -> List[str]:
UpperCAmelCase_ : Dict = HfFolder.get_token()
HfFolder.save_token(SCREAMING_SNAKE_CASE__ )
yield CI_HUB_USER_TOKEN
if previous_token is not None:
HfFolder.save_token(SCREAMING_SNAKE_CASE__ )
@pytest.fixture
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[str] ) -> Dict:
def _cleanup_repo(SCREAMING_SNAKE_CASE__ : Optional[Any] ):
hf_api.delete_repo(SCREAMING_SNAKE_CASE__, token=SCREAMING_SNAKE_CASE__, repo_type='''dataset''' )
return _cleanup_repo
@pytest.fixture
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[Any]:
@contextmanager
def _temporary_repo(SCREAMING_SNAKE_CASE__ : List[str] ):
try:
yield repo_id
finally:
cleanup_repo(SCREAMING_SNAKE_CASE__ )
return _temporary_repo
@pytest.fixture(scope='''session''' )
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : HfApi, SCREAMING_SNAKE_CASE__ : Dict, SCREAMING_SNAKE_CASE__ : List[str] ) -> Any:
UpperCAmelCase_ : Optional[Any] = F"""repo_txt_data-{int(time.time() * 10E3 )}"""
UpperCAmelCase_ : Tuple = F"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(SCREAMING_SNAKE_CASE__, token=SCREAMING_SNAKE_CASE__, repo_type='''dataset''', private=SCREAMING_SNAKE_CASE__ )
hf_api.upload_file(
token=SCREAMING_SNAKE_CASE__, path_or_fileobj=str(SCREAMING_SNAKE_CASE__ ), path_in_repo='''data/text_data.txt''', repo_id=SCREAMING_SNAKE_CASE__, repo_type='''dataset''', )
yield repo_id
try:
hf_api.delete_repo(SCREAMING_SNAKE_CASE__, token=SCREAMING_SNAKE_CASE__, repo_type='''dataset''' )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[str], SCREAMING_SNAKE_CASE__ : Dict, SCREAMING_SNAKE_CASE__ : str ) -> Dict:
return hf_private_dataset_repo_txt_data_
@pytest.fixture(scope='''session''' )
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : HfApi, SCREAMING_SNAKE_CASE__ : Dict, SCREAMING_SNAKE_CASE__ : List[str] ) -> Union[str, Any]:
UpperCAmelCase_ : Dict = F"""repo_zipped_txt_data-{int(time.time() * 10E3 )}"""
UpperCAmelCase_ : str = F"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(SCREAMING_SNAKE_CASE__, token=SCREAMING_SNAKE_CASE__, repo_type='''dataset''', private=SCREAMING_SNAKE_CASE__ )
hf_api.upload_file(
token=SCREAMING_SNAKE_CASE__, path_or_fileobj=str(SCREAMING_SNAKE_CASE__ ), path_in_repo='''data.zip''', repo_id=SCREAMING_SNAKE_CASE__, repo_type='''dataset''', )
yield repo_id
try:
hf_api.delete_repo(SCREAMING_SNAKE_CASE__, token=SCREAMING_SNAKE_CASE__, repo_type='''dataset''' )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Optional[Any], SCREAMING_SNAKE_CASE__ : Optional[Any], SCREAMING_SNAKE_CASE__ : str ) -> Optional[Any]:
return hf_private_dataset_repo_zipped_txt_data_
@pytest.fixture(scope='''session''' )
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : HfApi, SCREAMING_SNAKE_CASE__ : Dict, SCREAMING_SNAKE_CASE__ : Any ) -> Tuple:
UpperCAmelCase_ : str = F"""repo_zipped_img_data-{int(time.time() * 10E3 )}"""
UpperCAmelCase_ : Dict = F"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(SCREAMING_SNAKE_CASE__, token=SCREAMING_SNAKE_CASE__, repo_type='''dataset''', private=SCREAMING_SNAKE_CASE__ )
hf_api.upload_file(
token=SCREAMING_SNAKE_CASE__, path_or_fileobj=str(SCREAMING_SNAKE_CASE__ ), path_in_repo='''data.zip''', repo_id=SCREAMING_SNAKE_CASE__, repo_type='''dataset''', )
yield repo_id
try:
hf_api.delete_repo(SCREAMING_SNAKE_CASE__, token=SCREAMING_SNAKE_CASE__, repo_type='''dataset''' )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Any, SCREAMING_SNAKE_CASE__ : Dict, SCREAMING_SNAKE_CASE__ : List[str] ) -> Any:
return hf_private_dataset_repo_zipped_img_data_
| 700
|
'''simple docstring'''
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from transformers.generation import DisjunctiveConstraint
@require_torch
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
# For consistency across different places the DisjunctiveConstraint is called,
# dc.token_ids is a list of integers. It is also initialized only by integers.
UpperCAmelCase_ : List[str] = [[1, 2, 4], [1, 2, 3, 4]]
UpperCAmelCase_ : List[str] = DisjunctiveConstraint(__magic_name__ )
self.assertTrue(isinstance(dc.token_ids , __magic_name__ ) )
with self.assertRaises(__magic_name__ ):
DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) )
with self.assertRaises(__magic_name__ ):
DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] )
def UpperCAmelCase__ ( self : List[str] ) -> Dict:
"""simple docstring"""
# We can't have constraints that are complete subsets of another. This leads to a preverse
# interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint?
# It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially
# fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm
# will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it).
UpperCAmelCase_ : Tuple = [[1, 2], [1, 2, 3, 4]]
with self.assertRaises(__magic_name__ ):
DisjunctiveConstraint(__magic_name__ ) # fails here
def UpperCAmelCase__ ( self : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = [[1, 2, 3], [1, 2, 4]]
UpperCAmelCase_ : List[str] = DisjunctiveConstraint(__magic_name__ )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = dc.update(1 )
UpperCAmelCase_ : Dict = stepped is True and completed is False and reset is False
self.assertTrue(__magic_name__ )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = dc.update(2 )
UpperCAmelCase_ : Optional[Any] = stepped is True and completed is False and reset is False
self.assertTrue(__magic_name__ )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = dc.update(3 )
UpperCAmelCase_ : Dict = stepped is True and completed is True and reset is False
self.assertTrue(__magic_name__ )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 3] )
def UpperCAmelCase__ ( self : int ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : Any = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]]
UpperCAmelCase_ : Tuple = DisjunctiveConstraint(__magic_name__ )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = dc.update(4 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2, 4] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 4, 5] )
dc.reset()
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 3 )
self.assertTrue(dc.current_seq == [1] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 2 )
self.assertTrue(dc.current_seq == [1, 2] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.remaining() == 0 )
self.assertTrue(dc.current_seq == [1, 2, 5] )
| 644
| 0
|
'''simple docstring'''
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_tf_available
from transformers.testing_utils import require_tf
if is_tf_available():
import tensorflow as tf
from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments
@require_tf
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : str , __magic_name__ : str ) -> Any:
"""simple docstring"""
for model_result in results.values():
for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ):
UpperCAmelCase_ : Optional[Any] = model_result['''result'''][batch_size][sequence_length]
self.assertIsNotNone(__magic_name__ )
def UpperCAmelCase__ ( self : Optional[int] ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Tuple = '''sshleifer/tiny-gpt2'''
UpperCAmelCase_ : str = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__magic_name__ , inference=__magic_name__ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__magic_name__ , multi_process=__magic_name__ , )
UpperCAmelCase_ : Dict = TensorFlowBenchmark(__magic_name__ )
UpperCAmelCase_ : List[str] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCAmelCase__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = '''sgugger/tiny-distilbert-classification'''
UpperCAmelCase_ : int = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__magic_name__ , inference=__magic_name__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__magic_name__ , only_pretrain_model=__magic_name__ , )
UpperCAmelCase_ : Any = TensorFlowBenchmark(__magic_name__ )
UpperCAmelCase_ : int = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCAmelCase__ ( self : Optional[int] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : List[str] = '''sshleifer/tiny-gpt2'''
UpperCAmelCase_ : Any = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__magic_name__ , inference=__magic_name__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__magic_name__ , )
UpperCAmelCase_ : Optional[Any] = TensorFlowBenchmark(__magic_name__ )
UpperCAmelCase_ : Dict = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCAmelCase__ ( self : Optional[Any] ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : int = '''sshleifer/tiny-gpt2'''
UpperCAmelCase_ : List[str] = AutoConfig.from_pretrained(__magic_name__ )
UpperCAmelCase_ : Tuple = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__magic_name__ , inference=__magic_name__ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__magic_name__ , multi_process=__magic_name__ , )
UpperCAmelCase_ : str = TensorFlowBenchmark(__magic_name__ , [config] )
UpperCAmelCase_ : Dict = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCAmelCase__ ( self : Dict ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : Dict = '''sshleifer/tiny-gpt2'''
UpperCAmelCase_ : List[Any] = AutoConfig.from_pretrained(__magic_name__ )
UpperCAmelCase_ : str = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__magic_name__ , inference=__magic_name__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__magic_name__ , )
UpperCAmelCase_ : Optional[Any] = TensorFlowBenchmark(__magic_name__ , [config] )
UpperCAmelCase_ : Dict = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCAmelCase__ ( self : Any ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = '''sshleifer/tiny-gpt2'''
UpperCAmelCase_ : Dict = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__magic_name__ , inference=__magic_name__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__magic_name__ , )
UpperCAmelCase_ : Any = TensorFlowBenchmark(__magic_name__ )
UpperCAmelCase_ : str = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def UpperCAmelCase__ ( self : List[str] ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : str = '''sshleifer/tiny-gpt2'''
UpperCAmelCase_ : Dict = AutoConfig.from_pretrained(__magic_name__ )
UpperCAmelCase_ : Tuple = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__magic_name__ , inference=__magic_name__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__magic_name__ , )
UpperCAmelCase_ : List[str] = TensorFlowBenchmark(__magic_name__ , [config] )
UpperCAmelCase_ : str = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def UpperCAmelCase__ ( self : Dict ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Any = '''patrickvonplaten/t5-tiny-random'''
UpperCAmelCase_ : Union[str, Any] = AutoConfig.from_pretrained(__magic_name__ )
UpperCAmelCase_ : Union[str, Any] = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__magic_name__ , inference=__magic_name__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__magic_name__ , )
UpperCAmelCase_ : List[Any] = TensorFlowBenchmark(__magic_name__ , configs=[config] )
UpperCAmelCase_ : Any = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , '''Cannot do xla on CPU.''' )
def UpperCAmelCase__ ( self : int ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = '''sshleifer/tiny-gpt2'''
UpperCAmelCase_ : Tuple = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__magic_name__ , inference=__magic_name__ , sequence_lengths=[8] , batch_sizes=[1] , use_xla=__magic_name__ , multi_process=__magic_name__ , )
UpperCAmelCase_ : Dict = TensorFlowBenchmark(__magic_name__ )
UpperCAmelCase_ : List[Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCAmelCase__ ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : int = '''sshleifer/tiny-gpt2'''
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCAmelCase_ : Union[str, Any] = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , inference=__magic_name__ , save_to_csv=__magic_name__ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__magic_name__ , '''inf_time.csv''' ) , inference_memory_csv_file=os.path.join(__magic_name__ , '''inf_mem.csv''' ) , env_info_csv_file=os.path.join(__magic_name__ , '''env.csv''' ) , multi_process=__magic_name__ , )
UpperCAmelCase_ : Optional[int] = TensorFlowBenchmark(__magic_name__ )
benchmark.run()
self.assertTrue(Path(os.path.join(__magic_name__ , '''inf_time.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(__magic_name__ , '''inf_mem.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(__magic_name__ , '''env.csv''' ) ).exists() )
def UpperCAmelCase__ ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : str = '''sshleifer/tiny-gpt2'''
def _check_summary_is_not_empty(__magic_name__ : str ):
self.assertTrue(hasattr(__magic_name__ , '''sequential''' ) )
self.assertTrue(hasattr(__magic_name__ , '''cumulative''' ) )
self.assertTrue(hasattr(__magic_name__ , '''current''' ) )
self.assertTrue(hasattr(__magic_name__ , '''total''' ) )
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCAmelCase_ : str = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , inference=__magic_name__ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__magic_name__ , '''log.txt''' ) , log_print=__magic_name__ , trace_memory_line_by_line=__magic_name__ , eager_mode=__magic_name__ , multi_process=__magic_name__ , )
UpperCAmelCase_ : Dict = TensorFlowBenchmark(__magic_name__ )
UpperCAmelCase_ : Dict = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
self.assertTrue(Path(os.path.join(__magic_name__ , '''log.txt''' ) ).exists() )
| 701
|
'''simple docstring'''
import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.layers import LSTM, Dense
from tensorflow.keras.models import Sequential
if __name__ == "__main__":
snake_case_ : List[Any] = pd.read_csv("sample_data.csv", header=None)
snake_case_ : Optional[Any] = df.shape[:1][0]
# If you're using some other dataset input the target column
snake_case_ : Any = df.iloc[:, 1:2]
snake_case_ : str = actual_data.values.reshape(len_data, 1)
snake_case_ : Optional[Any] = MinMaxScaler().fit_transform(actual_data)
snake_case_ : List[str] = 10
snake_case_ : Any = 5
snake_case_ : Any = 20
snake_case_ : Tuple = len_data - periods * look_back
snake_case_ : str = actual_data[:division]
snake_case_ : Optional[int] = actual_data[division - look_back :]
snake_case_ ,snake_case_ : Any = [], []
snake_case_ ,snake_case_ : Union[str, Any] = [], []
for i in range(0, len(train_data) - forward_days - look_back + 1):
train_x.append(train_data[i : i + look_back])
train_y.append(train_data[i + look_back : i + look_back + forward_days])
for i in range(0, len(test_data) - forward_days - look_back + 1):
test_x.append(test_data[i : i + look_back])
test_y.append(test_data[i + look_back : i + look_back + forward_days])
snake_case_ : Any = np.array(train_x)
snake_case_ : Optional[Any] = np.array(test_x)
snake_case_ : Optional[Any] = np.array([list(i.ravel()) for i in train_y])
snake_case_ : List[str] = np.array([list(i.ravel()) for i in test_y])
snake_case_ : List[Any] = Sequential()
model.add(LSTM(1_28, input_shape=(look_back, 1), return_sequences=True))
model.add(LSTM(64, input_shape=(1_28, 1)))
model.add(Dense(forward_days))
model.compile(loss="mean_squared_error", optimizer="adam")
snake_case_ : Dict = model.fit(
x_train, y_train, epochs=1_50, verbose=1, shuffle=True, batch_size=4
)
snake_case_ : Optional[Any] = model.predict(x_test)
| 644
| 0
|
'''simple docstring'''
from __future__ import annotations
from statistics import mean
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : list[int], SCREAMING_SNAKE_CASE__ : list[int], SCREAMING_SNAKE_CASE__ : int ) -> list[int]:
UpperCAmelCase_ : List[str] = [0] * no_of_processes
UpperCAmelCase_ : Optional[int] = [0] * no_of_processes
# Initialize remaining_time to waiting_time.
for i in range(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase_ : int = burst_time[i]
UpperCAmelCase_ : list[int] = []
UpperCAmelCase_ : Dict = 0
UpperCAmelCase_ : Any = 0
# When processes are not completed,
# A process whose arrival time has passed \
# and has remaining execution time is put into the ready_process.
# The shortest process in the ready_process, target_process is executed.
while completed != no_of_processes:
UpperCAmelCase_ : Any = []
UpperCAmelCase_ : Any = -1
for i in range(SCREAMING_SNAKE_CASE__ ):
if (arrival_time[i] <= total_time) and (remaining_time[i] > 0):
ready_process.append(SCREAMING_SNAKE_CASE__ )
if len(SCREAMING_SNAKE_CASE__ ) > 0:
UpperCAmelCase_ : int = ready_process[0]
for i in ready_process:
if remaining_time[i] < remaining_time[target_process]:
UpperCAmelCase_ : str = i
total_time += burst_time[target_process]
completed += 1
UpperCAmelCase_ : Union[str, Any] = 0
UpperCAmelCase_ : Optional[int] = (
total_time - arrival_time[target_process] - burst_time[target_process]
)
else:
total_time += 1
return waiting_time
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : list[int], SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : list[int] ) -> list[int]:
UpperCAmelCase_ : Union[str, Any] = [0] * no_of_processes
for i in range(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase_ : Dict = burst_time[i] + waiting_time[i]
return turn_around_time
if __name__ == "__main__":
print("[TEST CASE 01]")
snake_case_ : Tuple = 4
snake_case_ : int = [2, 5, 3, 7]
snake_case_ : Union[str, Any] = [0, 0, 0, 0]
snake_case_ : int = calculate_waitingtime(arrival_time, burst_time, no_of_processes)
snake_case_ : Tuple = calculate_turnaroundtime(
burst_time, no_of_processes, waiting_time
)
# Printing the Result
print("PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time")
for i, process_id in enumerate(list(range(1, 5))):
print(
f'''{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t'''
f'''{waiting_time[i]}\t\t\t\t{turn_around_time[i]}'''
)
print(f'''\nAverage waiting time = {mean(waiting_time):.5f}''')
print(f'''Average turnaround time = {mean(turn_around_time):.5f}''')
| 702
|
'''simple docstring'''
from typing import Any, Callable, Dict, List, Optional, Union
import torch
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
snake_case_ : Union[str, Any] = "CompVis/stable-diffusion-v1-1"
snake_case_ : Dict = "CompVis/stable-diffusion-v1-2"
snake_case_ : Any = "CompVis/stable-diffusion-v1-3"
snake_case_ : str = "CompVis/stable-diffusion-v1-4"
class __a (lowerCamelCase ):
def __init__( self : Any , __magic_name__ : AutoencoderKL , __magic_name__ : CLIPTextModel , __magic_name__ : CLIPTokenizer , __magic_name__ : UNetaDConditionModel , __magic_name__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __magic_name__ : StableDiffusionSafetyChecker , __magic_name__ : CLIPImageProcessor , __magic_name__ : bool = True , ) -> str:
"""simple docstring"""
super()._init_()
UpperCAmelCase_ : Any = StableDiffusionPipeline.from_pretrained(__magic_name__ )
UpperCAmelCase_ : Dict = StableDiffusionPipeline.from_pretrained(__magic_name__ )
UpperCAmelCase_ : List[Any] = StableDiffusionPipeline.from_pretrained(__magic_name__ )
UpperCAmelCase_ : Tuple = StableDiffusionPipeline(
vae=__magic_name__ , text_encoder=__magic_name__ , tokenizer=__magic_name__ , unet=__magic_name__ , scheduler=__magic_name__ , safety_checker=__magic_name__ , feature_extractor=__magic_name__ , requires_safety_checker=__magic_name__ , )
self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea )
@property
def UpperCAmelCase__ ( self : Tuple ) -> Dict[str, Any]:
"""simple docstring"""
return {k: getattr(self , __magic_name__ ) for k in self.config.keys() if not k.startswith('''_''' )}
def UpperCAmelCase__ ( self : Dict , __magic_name__ : Optional[Union[str, int]] = "auto" ) -> int:
"""simple docstring"""
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
UpperCAmelCase_ : List[str] = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(__magic_name__ )
def UpperCAmelCase__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
self.enable_attention_slicing(__magic_name__ )
@torch.no_grad()
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Tuple , ) -> Optional[int]:
"""simple docstring"""
return self.pipea(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
@torch.no_grad()
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Any , ) -> Any:
"""simple docstring"""
return self.pipea(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
@torch.no_grad()
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Dict , ) -> List[str]:
"""simple docstring"""
return self.pipea(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
@torch.no_grad()
def UpperCAmelCase__ ( self : int , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Optional[int] , ) -> str:
"""simple docstring"""
return self.pipea(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
@torch.no_grad()
def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Optional[int] , ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : int = '''cuda''' if torch.cuda.is_available() else '''cpu'''
self.to(__magic_name__ )
# Checks if the height and width are divisible by 8 or not
if height % 8 != 0 or width % 8 != 0:
raise ValueError(F"""`height` and `width` must be divisible by 8 but are {height} and {width}.""" )
# Get first result from Stable Diffusion Checkpoint v1.1
UpperCAmelCase_ : Optional[int] = self.textaimg_sda_a(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
# Get first result from Stable Diffusion Checkpoint v1.2
UpperCAmelCase_ : int = self.textaimg_sda_a(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
# Get first result from Stable Diffusion Checkpoint v1.3
UpperCAmelCase_ : str = self.textaimg_sda_a(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
# Get first result from Stable Diffusion Checkpoint v1.4
UpperCAmelCase_ : str = self.textaimg_sda_a(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
# Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result
return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
| 644
| 0
|
'''simple docstring'''
from typing import List, Optional, Union
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class __a (lowerCamelCase ):
__a : Optional[int] = ["image_processor", "tokenizer"]
__a : Optional[Any] = "BlipImageProcessor"
__a : List[str] = ("BertTokenizer", "BertTokenizerFast")
def __init__( self : List[str] , __magic_name__ : Tuple , __magic_name__ : Dict ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = False
super().__init__(__magic_name__ , __magic_name__ )
UpperCAmelCase_ : Union[str, Any] = self.image_processor
def __call__( self : Optional[int] , __magic_name__ : ImageInput = None , __magic_name__ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __magic_name__ : bool = True , __magic_name__ : Union[bool, str, PaddingStrategy] = False , __magic_name__ : Union[bool, str, TruncationStrategy] = None , __magic_name__ : Optional[int] = None , __magic_name__ : int = 0 , __magic_name__ : Optional[int] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : bool = False , __magic_name__ : bool = False , __magic_name__ : bool = False , __magic_name__ : bool = False , __magic_name__ : bool = False , __magic_name__ : bool = True , __magic_name__ : Optional[Union[str, TensorType]] = None , **__magic_name__ : Optional[int] , ) -> BatchEncoding:
"""simple docstring"""
if images is None and text is None:
raise ValueError('''You have to specify either images or text.''' )
# Get only text
if images is None:
UpperCAmelCase_ : Any = self.tokenizer
UpperCAmelCase_ : Any = self.tokenizer(
text=__magic_name__ , add_special_tokens=__magic_name__ , padding=__magic_name__ , truncation=__magic_name__ , max_length=__magic_name__ , stride=__magic_name__ , pad_to_multiple_of=__magic_name__ , return_attention_mask=__magic_name__ , return_overflowing_tokens=__magic_name__ , return_special_tokens_mask=__magic_name__ , return_offsets_mapping=__magic_name__ , return_token_type_ids=__magic_name__ , return_length=__magic_name__ , verbose=__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ , )
return text_encoding
# add pixel_values
UpperCAmelCase_ : Union[str, Any] = self.image_processor(__magic_name__ , return_tensors=__magic_name__ )
if text is not None:
UpperCAmelCase_ : int = self.tokenizer(
text=__magic_name__ , add_special_tokens=__magic_name__ , padding=__magic_name__ , truncation=__magic_name__ , max_length=__magic_name__ , stride=__magic_name__ , pad_to_multiple_of=__magic_name__ , return_attention_mask=__magic_name__ , return_overflowing_tokens=__magic_name__ , return_special_tokens_mask=__magic_name__ , return_offsets_mapping=__magic_name__ , return_token_type_ids=__magic_name__ , return_length=__magic_name__ , verbose=__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ , )
else:
UpperCAmelCase_ : Optional[Any] = None
if text_encoding is not None:
encoding_image_processor.update(__magic_name__ )
return encoding_image_processor
def UpperCAmelCase__ ( self : int , *__magic_name__ : Any , **__magic_name__ : Any ) -> Union[str, Any]:
"""simple docstring"""
return self.tokenizer.batch_decode(*__magic_name__ , **__magic_name__ )
def UpperCAmelCase__ ( self : str , *__magic_name__ : Optional[Any] , **__magic_name__ : List[str] ) -> Dict:
"""simple docstring"""
return self.tokenizer.decode(*__magic_name__ , **__magic_name__ )
@property
def UpperCAmelCase__ ( self : str ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : Tuple = self.tokenizer.model_input_names
UpperCAmelCase_ : Any = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 703
|
'''simple docstring'''
import argparse
import json
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
snake_case_ : Optional[int] = 16
snake_case_ : Tuple = 32
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Accelerator, SCREAMING_SNAKE_CASE__ : int = 16, SCREAMING_SNAKE_CASE__ : str = "bert-base-cased" ) -> Dict:
UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : int = load_dataset('''glue''', '''mrpc''' )
def tokenize_function(SCREAMING_SNAKE_CASE__ : Optional[int] ):
# max_length=None => use the model max length (it's actually the default)
UpperCAmelCase_ : Union[str, Any] = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=SCREAMING_SNAKE_CASE__, max_length=SCREAMING_SNAKE_CASE__ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
UpperCAmelCase_ : Tuple = datasets.map(
SCREAMING_SNAKE_CASE__, batched=SCREAMING_SNAKE_CASE__, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], load_from_cache_file=SCREAMING_SNAKE_CASE__ )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
UpperCAmelCase_ : Optional[Any] = tokenized_datasets.rename_column('''label''', '''labels''' )
def collate_fn(SCREAMING_SNAKE_CASE__ : str ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(SCREAMING_SNAKE_CASE__, padding='''max_length''', max_length=128, return_tensors='''pt''' )
return tokenizer.pad(SCREAMING_SNAKE_CASE__, padding='''longest''', return_tensors='''pt''' )
# Instantiate dataloaders.
UpperCAmelCase_ : str = DataLoader(
tokenized_datasets['''train'''], shuffle=SCREAMING_SNAKE_CASE__, collate_fn=SCREAMING_SNAKE_CASE__, batch_size=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : int = DataLoader(
tokenized_datasets['''validation'''], shuffle=SCREAMING_SNAKE_CASE__, collate_fn=SCREAMING_SNAKE_CASE__, batch_size=SCREAMING_SNAKE_CASE__ )
return train_dataloader, eval_dataloader
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Optional[Any], SCREAMING_SNAKE_CASE__ : Optional[int], SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : Any ) -> Any:
model.eval()
UpperCAmelCase_ : List[str] = 0
for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
UpperCAmelCase_ : Dict = model(**SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : str = outputs.logits.argmax(dim=-1 )
# It is slightly faster to call this once, than multiple times
UpperCAmelCase_ , UpperCAmelCase_ : List[str] = accelerator.gather(
(predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates
if accelerator.use_distributed:
if step == len(SCREAMING_SNAKE_CASE__ ) - 1:
UpperCAmelCase_ : Tuple = predictions[: len(eval_dataloader.dataset ) - samples_seen]
UpperCAmelCase_ : int = references[: len(eval_dataloader.dataset ) - samples_seen]
else:
samples_seen += references.shape[0]
metric.add_batch(
predictions=SCREAMING_SNAKE_CASE__, references=SCREAMING_SNAKE_CASE__, )
UpperCAmelCase_ : List[str] = metric.compute()
return eval_metric["accuracy"]
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : int ) -> Tuple:
# Initialize accelerator
UpperCAmelCase_ : Union[str, Any] = Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
UpperCAmelCase_ : int = config['''lr''']
UpperCAmelCase_ : Optional[int] = int(config['''num_epochs'''] )
UpperCAmelCase_ : Optional[int] = int(config['''seed'''] )
UpperCAmelCase_ : List[str] = int(config['''batch_size'''] )
UpperCAmelCase_ : Optional[int] = args.model_name_or_path
set_seed(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = get_dataloaders(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
UpperCAmelCase_ : List[Any] = AutoModelForSequenceClassification.from_pretrained(SCREAMING_SNAKE_CASE__, return_dict=SCREAMING_SNAKE_CASE__ )
# Instantiate optimizer
UpperCAmelCase_ : str = (
AdamW
if accelerator.state.deepspeed_plugin is None
or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
UpperCAmelCase_ : List[str] = optimizer_cls(params=model.parameters(), lr=SCREAMING_SNAKE_CASE__ )
if accelerator.state.deepspeed_plugin is not None:
UpperCAmelCase_ : List[Any] = accelerator.state.deepspeed_plugin.deepspeed_config[
'''gradient_accumulation_steps'''
]
else:
UpperCAmelCase_ : Tuple = 1
UpperCAmelCase_ : int = (len(SCREAMING_SNAKE_CASE__ ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
UpperCAmelCase_ : Tuple = get_linear_schedule_with_warmup(
optimizer=SCREAMING_SNAKE_CASE__, num_warmup_steps=0, num_training_steps=SCREAMING_SNAKE_CASE__, )
else:
UpperCAmelCase_ : Any = DummyScheduler(SCREAMING_SNAKE_CASE__, total_num_steps=SCREAMING_SNAKE_CASE__, warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = accelerator.prepare(
SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
# We need to keep track of how many total steps we have iterated over
UpperCAmelCase_ : Union[str, Any] = 0
# We also need to keep track of the stating epoch so files are named properly
UpperCAmelCase_ : Dict = 0
UpperCAmelCase_ : int = evaluate.load('''glue''', '''mrpc''' )
UpperCAmelCase_ : Optional[Any] = num_epochs
if args.partial_train_epoch is not None:
UpperCAmelCase_ : List[Any] = args.partial_train_epoch
if args.resume_from_checkpoint:
accelerator.load_state(args.resume_from_checkpoint )
UpperCAmelCase_ : Tuple = args.resume_from_checkpoint.split('''epoch_''' )[1]
UpperCAmelCase_ : int = ''''''
for char in epoch_string:
if char.isdigit():
state_epoch_num += char
else:
break
UpperCAmelCase_ : Union[str, Any] = int(SCREAMING_SNAKE_CASE__ ) + 1
UpperCAmelCase_ : Dict = evaluation_loop(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
accelerator.print('''resumed checkpoint performance:''', SCREAMING_SNAKE_CASE__ )
accelerator.print('''resumed checkpoint\'s scheduler\'s lr:''', lr_scheduler.get_lr()[0] )
accelerator.print('''resumed optimizers\'s lr:''', optimizer.param_groups[0]['''lr'''] )
with open(os.path.join(args.output_dir, F"""state_{starting_epoch-1}.json""" ), '''r''' ) as f:
UpperCAmelCase_ : Optional[int] = json.load(SCREAMING_SNAKE_CASE__ )
assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed"
assert (
resumed_state["lr"] == lr_scheduler.get_lr()[0]
), "Scheduler learning rate mismatch, loading from checkpoint failed"
assert (
resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"]
), "Optimizer learning rate mismatch, loading from checkpoint failed"
assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed"
return
# Now we train the model
UpperCAmelCase_ : int = {}
for epoch in range(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ):
model.train()
for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase_ : Optional[int] = model(**SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Any = outputs.loss
UpperCAmelCase_ : Tuple = loss / gradient_accumulation_steps
accelerator.backward(SCREAMING_SNAKE_CASE__ )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
UpperCAmelCase_ : Tuple = F"""epoch_{epoch}"""
UpperCAmelCase_ : Optional[int] = os.path.join(args.output_dir, SCREAMING_SNAKE_CASE__ )
accelerator.save_state(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : int = evaluation_loop(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Optional[Any] = accuracy
UpperCAmelCase_ : Any = lr_scheduler.get_lr()[0]
UpperCAmelCase_ : List[str] = optimizer.param_groups[0]['''lr''']
UpperCAmelCase_ : Tuple = epoch
UpperCAmelCase_ : Dict = overall_step
accelerator.print(F"""epoch {epoch}:""", SCREAMING_SNAKE_CASE__ )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir, F"""state_{epoch}.json""" ), '''w''' ) as f:
json.dump(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
def lowerCamelCase_ ( ) -> List[str]:
UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' )
parser.add_argument(
'''--model_name_or_path''', type=SCREAMING_SNAKE_CASE__, default='''bert-base-cased''', help='''Path to pretrained model or model identifier from huggingface.co/models.''', required=SCREAMING_SNAKE_CASE__, )
parser.add_argument(
'''--output_dir''', type=SCREAMING_SNAKE_CASE__, default='''.''', help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''', )
parser.add_argument(
'''--resume_from_checkpoint''', type=SCREAMING_SNAKE_CASE__, default=SCREAMING_SNAKE_CASE__, help='''If the training should continue from a checkpoint folder.''', )
parser.add_argument(
'''--partial_train_epoch''', type=SCREAMING_SNAKE_CASE__, default=SCREAMING_SNAKE_CASE__, help='''If passed, the training will stop after this number of epochs.''', )
parser.add_argument(
'''--num_epochs''', type=SCREAMING_SNAKE_CASE__, default=2, help='''Number of train epochs.''', )
UpperCAmelCase_ : Optional[int] = parser.parse_args()
UpperCAmelCase_ : List[Any] = {'''lr''': 2E-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16}
training_function(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
main()
| 644
| 0
|
import math
class __a :
def UpperCAmelCase__ ( self : str , __magic_name__ : list[list[float]] , __magic_name__ : list[int] ) -> int:
"""simple docstring"""
UpperCAmelCase_ : str = 0.0
UpperCAmelCase_ : Tuple = 0.0
for i in range(len(__magic_name__ ) ):
da += math.pow((sample[i] - weights[0][i]) , 2 )
da += math.pow((sample[i] - weights[1][i]) , 2 )
return 0 if da > da else 1
return 0
def UpperCAmelCase__ ( self : str , __magic_name__ : list[list[int | float]] , __magic_name__ : list[int] , __magic_name__ : int , __magic_name__ : float ) -> list[list[int | float]]:
"""simple docstring"""
for i in range(len(__magic_name__ ) ):
weights[j][i] += alpha * (sample[i] - weights[j][i])
return weights
def lowerCamelCase_ ( ) -> None:
# Training Examples ( m, n )
UpperCAmelCase_ : Dict = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]]
# weight initialization ( n, C )
UpperCAmelCase_ : Tuple = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]]
# training
UpperCAmelCase_ : int = SelfOrganizingMap()
UpperCAmelCase_ : Optional[int] = 3
UpperCAmelCase_ : Optional[Any] = 0.5
for _ in range(SCREAMING_SNAKE_CASE__ ):
for j in range(len(SCREAMING_SNAKE_CASE__ ) ):
# training sample
UpperCAmelCase_ : List[Any] = training_samples[j]
# Compute the winning vector
UpperCAmelCase_ : Tuple = self_organizing_map.get_winner(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
# Update the winning vector
UpperCAmelCase_ : int = self_organizing_map.update(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
# classify test sample
UpperCAmelCase_ : List[str] = [0, 0, 0, 1]
UpperCAmelCase_ : List[str] = self_organizing_map.get_winner(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
# results
print(F"""Clusters that the test sample belongs to : {winner}""" )
print(F"""Weights that have been trained : {weights}""" )
# running the main() function
if __name__ == "__main__":
main()
| 704
|
'''simple docstring'''
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : list[int] ) -> list[list[int]]:
UpperCAmelCase_ : int = []
if len(SCREAMING_SNAKE_CASE__ ) == 1:
return [nums.copy()]
for _ in range(len(SCREAMING_SNAKE_CASE__ ) ):
UpperCAmelCase_ : List[Any] = nums.pop(0 )
UpperCAmelCase_ : Optional[Any] = permute(SCREAMING_SNAKE_CASE__ )
for perm in permutations:
perm.append(SCREAMING_SNAKE_CASE__ )
result.extend(SCREAMING_SNAKE_CASE__ )
nums.append(SCREAMING_SNAKE_CASE__ )
return result
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[str] ) -> Any:
def backtrack(SCREAMING_SNAKE_CASE__ : Union[str, Any] ):
if start == len(SCREAMING_SNAKE_CASE__ ) - 1:
output.append(nums[:] )
else:
for i in range(SCREAMING_SNAKE_CASE__, len(SCREAMING_SNAKE_CASE__ ) ):
UpperCAmelCase_ , UpperCAmelCase_ : Tuple = nums[i], nums[start]
backtrack(start + 1 )
UpperCAmelCase_ , UpperCAmelCase_ : int = nums[i], nums[start] # backtrack
UpperCAmelCase_ : Optional[int] = []
backtrack(0 )
return output
if __name__ == "__main__":
import doctest
# use res to print the data in permute2 function
snake_case_ : Tuple = permutea([1, 2, 3])
print(res)
doctest.testmod()
| 644
| 0
|
'''simple docstring'''
from typing import Dict, Iterable, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
snake_case_ : List[Any] = logging.get_logger(__name__)
class __a (lowerCamelCase ):
__a : Any = ["pixel_values"]
def __init__( self : Optional[Any] , __magic_name__ : bool = True , __magic_name__ : Dict[str, int] = None , __magic_name__ : PILImageResampling = PILImageResampling.BICUBIC , __magic_name__ : bool = True , __magic_name__ : Dict[str, int] = None , __magic_name__ : bool = True , __magic_name__ : Union[int, float] = 1 / 2_55 , __magic_name__ : bool = True , __magic_name__ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , __magic_name__ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **__magic_name__ : List[str] , ) -> None:
"""simple docstring"""
super().__init__(**__magic_name__ )
UpperCAmelCase_ : Any = size if size is not None else {'''shortest_edge''': 2_24}
UpperCAmelCase_ : int = get_size_dict(__magic_name__ , default_to_square=__magic_name__ )
UpperCAmelCase_ : Any = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24}
UpperCAmelCase_ : Tuple = get_size_dict(__magic_name__ , param_name='''crop_size''' )
UpperCAmelCase_ : Tuple = do_resize
UpperCAmelCase_ : List[str] = size
UpperCAmelCase_ : int = resample
UpperCAmelCase_ : Optional[int] = do_center_crop
UpperCAmelCase_ : Dict = crop_size
UpperCAmelCase_ : str = do_rescale
UpperCAmelCase_ : List[str] = rescale_factor
UpperCAmelCase_ : Tuple = do_normalize
UpperCAmelCase_ : List[str] = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
UpperCAmelCase_ : Any = image_std if image_std is not None else IMAGENET_DEFAULT_STD
def UpperCAmelCase__ ( self : Any , __magic_name__ : np.ndarray , __magic_name__ : Dict[str, int] , __magic_name__ : PILImageResampling = PILImageResampling.BICUBIC , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : int , ) -> np.ndarray:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = get_size_dict(__magic_name__ , default_to_square=__magic_name__ )
# size_dict is a dict with either keys "height" and "width" or "shortest_edge"
if "shortest_edge" in size:
UpperCAmelCase_ : Dict = int((2_56 / 2_24) * size['''shortest_edge'''] )
UpperCAmelCase_ : Optional[Any] = get_resize_output_image_size(__magic_name__ , size=__magic_name__ , default_to_square=__magic_name__ )
UpperCAmelCase_ : Any = {'''height''': output_size[0], '''width''': output_size[1]}
if "height" not in size_dict or "width" not in size_dict:
raise ValueError(
F"""Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}""" )
return resize(
__magic_name__ , size=(size_dict['''height'''], size_dict['''width''']) , resample=__magic_name__ , data_format=__magic_name__ , **__magic_name__ )
def UpperCAmelCase__ ( self : Dict , __magic_name__ : np.ndarray , __magic_name__ : Dict[str, int] , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : Dict , ) -> np.ndarray:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = get_size_dict(__magic_name__ )
if "height" not in size or "width" not in size:
raise ValueError(F"""Size dict must have keys 'height' and 'width'. Got {size.keys()}""" )
return center_crop(__magic_name__ , size=(size['''height'''], size['''width''']) , data_format=__magic_name__ , **__magic_name__ )
def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : np.ndarray , __magic_name__ : Union[int, float] , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : int , ) -> np.ndarray:
"""simple docstring"""
return rescale(__magic_name__ , scale=__magic_name__ , data_format=__magic_name__ , **__magic_name__ )
def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : np.ndarray , __magic_name__ : Union[float, List[float]] , __magic_name__ : Union[float, List[float]] , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : Tuple , ) -> np.ndarray:
"""simple docstring"""
return normalize(__magic_name__ , mean=__magic_name__ , std=__magic_name__ , data_format=__magic_name__ , **__magic_name__ )
def UpperCAmelCase__ ( self : Dict , __magic_name__ : ImageInput , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[Dict[str, int]] = None , __magic_name__ : PILImageResampling = None , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[Dict[str, int]] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[float] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[Union[float, Iterable[float]]] = None , __magic_name__ : Optional[Union[float, Iterable[float]]] = None , __magic_name__ : Optional[TensorType] = None , __magic_name__ : ChannelDimension = ChannelDimension.FIRST , **__magic_name__ : Any , ) -> BatchFeature:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = do_resize if do_resize is not None else self.do_resize
UpperCAmelCase_ : List[Any] = resample if resample is not None else self.resample
UpperCAmelCase_ : List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop
UpperCAmelCase_ : List[Any] = do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase_ : Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCAmelCase_ : Tuple = do_normalize if do_normalize is not None else self.do_normalize
UpperCAmelCase_ : str = image_mean if image_mean is not None else self.image_mean
UpperCAmelCase_ : Any = image_std if image_std is not None else self.image_std
UpperCAmelCase_ : Optional[int] = size if size is not None else self.size
UpperCAmelCase_ : List[Any] = get_size_dict(__magic_name__ , default_to_square=__magic_name__ )
UpperCAmelCase_ : Optional[int] = crop_size if crop_size is not None else self.crop_size
UpperCAmelCase_ : int = get_size_dict(__magic_name__ , param_name='''crop_size''' )
UpperCAmelCase_ : int = make_list_of_images(__magic_name__ )
if not valid_images(__magic_name__ ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# All transformations expect numpy arrays.
UpperCAmelCase_ : str = [to_numpy_array(__magic_name__ ) for image in images]
if do_resize:
UpperCAmelCase_ : Union[str, Any] = [self.resize(__magic_name__ , __magic_name__ , __magic_name__ ) for image in images]
if do_center_crop:
UpperCAmelCase_ : Optional[int] = [self.center_crop(__magic_name__ , __magic_name__ ) for image in images]
if do_rescale:
UpperCAmelCase_ : Optional[Any] = [self.rescale(__magic_name__ , __magic_name__ ) for image in images]
if do_normalize:
UpperCAmelCase_ : Union[str, Any] = [self.normalize(__magic_name__ , __magic_name__ , __magic_name__ ) for image in images]
UpperCAmelCase_ : List[str] = [to_channel_dimension_format(__magic_name__ , __magic_name__ ) for image in images]
UpperCAmelCase_ : Dict = {'''pixel_values''': images}
return BatchFeature(data=__magic_name__ , tensor_type=__magic_name__ )
| 705
|
'''simple docstring'''
class __a :
def __init__( self : List[Any] , __magic_name__ : int ) -> None:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = size
UpperCAmelCase_ : Tuple = [0] * size
UpperCAmelCase_ : Optional[Any] = [0] * size
@staticmethod
def UpperCAmelCase__ ( __magic_name__ : int ) -> int:
"""simple docstring"""
return index | (index + 1)
@staticmethod
def UpperCAmelCase__ ( __magic_name__ : int ) -> int:
"""simple docstring"""
return (index & (index + 1)) - 1
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : int , __magic_name__ : int ) -> None:
"""simple docstring"""
UpperCAmelCase_ : int = value
while index < self.size:
UpperCAmelCase_ : str = self.get_prev(__magic_name__ ) + 1
if current_left_border == index:
UpperCAmelCase_ : List[str] = value
else:
UpperCAmelCase_ : Optional[int] = max(__magic_name__ , __magic_name__ , __magic_name__ )
UpperCAmelCase_ : Tuple = self.get_next(__magic_name__ )
def UpperCAmelCase__ ( self : Any , __magic_name__ : int , __magic_name__ : int ) -> int:
"""simple docstring"""
right -= 1 # Because of right is exclusive
UpperCAmelCase_ : List[str] = 0
while left <= right:
UpperCAmelCase_ : Optional[Any] = self.get_prev(__magic_name__ )
if left <= current_left:
UpperCAmelCase_ : Dict = max(__magic_name__ , self.tree[right] )
UpperCAmelCase_ : Optional[Any] = current_left
else:
UpperCAmelCase_ : str = max(__magic_name__ , self.arr[right] )
right -= 1
return result
if __name__ == "__main__":
import doctest
doctest.testmod()
| 644
| 0
|
'''simple docstring'''
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Dict:
UpperCAmelCase_ : Union[str, Any] = len(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : List[Any] = sum(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : List[Any] = [[False for x in range(s + 1 )] for y in range(n + 1 )]
for i in range(1, n + 1 ):
UpperCAmelCase_ : Tuple = True
for i in range(1, s + 1 ):
UpperCAmelCase_ : str = False
for i in range(1, n + 1 ):
for j in range(1, s + 1 ):
UpperCAmelCase_ : Any = dp[i][j - 1]
if arr[i - 1] <= j:
UpperCAmelCase_ : Dict = dp[i][j] or dp[i - 1][j - arr[i - 1]]
for j in range(int(s / 2 ), -1, -1 ):
if dp[n][j] is True:
UpperCAmelCase_ : Dict = s - 2 * j
break
return diff
| 706
|
'''simple docstring'''
import math
import unittest
from transformers import BioGptConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptTokenizer,
)
from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST
class __a :
def __init__( self : List[str] , __magic_name__ : List[str] , __magic_name__ : str=13 , __magic_name__ : Union[str, Any]=7 , __magic_name__ : Union[str, Any]=True , __magic_name__ : Any=True , __magic_name__ : List[str]=False , __magic_name__ : Optional[int]=True , __magic_name__ : Dict=99 , __magic_name__ : Tuple=32 , __magic_name__ : int=5 , __magic_name__ : Dict=4 , __magic_name__ : Tuple=37 , __magic_name__ : Optional[int]="gelu" , __magic_name__ : List[str]=0.1 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : str=5_12 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : int=2 , __magic_name__ : List[Any]=0.0_2 , __magic_name__ : Tuple=3 , __magic_name__ : Union[str, Any]=4 , __magic_name__ : Optional[int]=None , ) -> str:
"""simple docstring"""
UpperCAmelCase_ : Any = parent
UpperCAmelCase_ : Union[str, Any] = batch_size
UpperCAmelCase_ : List[Any] = seq_length
UpperCAmelCase_ : str = is_training
UpperCAmelCase_ : Any = use_input_mask
UpperCAmelCase_ : List[str] = use_token_type_ids
UpperCAmelCase_ : Union[str, Any] = use_labels
UpperCAmelCase_ : Dict = vocab_size
UpperCAmelCase_ : Optional[Any] = hidden_size
UpperCAmelCase_ : Dict = num_hidden_layers
UpperCAmelCase_ : List[Any] = num_attention_heads
UpperCAmelCase_ : Optional[int] = intermediate_size
UpperCAmelCase_ : Union[str, Any] = hidden_act
UpperCAmelCase_ : str = hidden_dropout_prob
UpperCAmelCase_ : Optional[Any] = attention_probs_dropout_prob
UpperCAmelCase_ : Any = max_position_embeddings
UpperCAmelCase_ : str = type_vocab_size
UpperCAmelCase_ : Optional[Any] = type_sequence_label_size
UpperCAmelCase_ : List[Any] = initializer_range
UpperCAmelCase_ : int = num_labels
UpperCAmelCase_ : Optional[int] = num_choices
UpperCAmelCase_ : Tuple = scope
def UpperCAmelCase__ ( self : Union[str, Any] ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase_ : Union[str, Any] = None
if self.use_input_mask:
UpperCAmelCase_ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase_ : str = None
if self.use_token_type_ids:
UpperCAmelCase_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase_ : Tuple = None
UpperCAmelCase_ : List[str] = None
UpperCAmelCase_ : Union[str, Any] = None
if self.use_labels:
UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase_ : int = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCAmelCase__ ( self : Any ) -> List[Any]:
"""simple docstring"""
return BioGptConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__magic_name__ , initializer_range=self.initializer_range , )
def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : Tuple , __magic_name__ : str , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = BioGptModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : Dict = model(__magic_name__ , attention_mask=__magic_name__ )
UpperCAmelCase_ : Optional[Any] = model(__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : Dict , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Any , __magic_name__ : Tuple , __magic_name__ : List[str] , __magic_name__ : Optional[int] , ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Dict = BioGptForCausalLM(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : List[Any] = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCAmelCase__ ( self : str , __magic_name__ : Optional[int] , __magic_name__ : Tuple , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : str , *__magic_name__ : Any ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Dict = BioGptModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
# create attention mask
UpperCAmelCase_ : Optional[Any] = torch.ones(input_ids.shape , dtype=torch.long , device=__magic_name__ )
UpperCAmelCase_ : Any = self.seq_length // 2
UpperCAmelCase_ : Tuple = 0
# first forward pass
UpperCAmelCase_ , UpperCAmelCase_ : Dict = model(__magic_name__ , attention_mask=__magic_name__ ).to_tuple()
# create hypothetical next token and extent to next_input_ids
UpperCAmelCase_ : Tuple = ids_tensor((self.batch_size, 1) , config.vocab_size )
# change a random masked slice from input_ids
UpperCAmelCase_ : List[str] = ids_tensor((1,) , __magic_name__ ).item() + 1
UpperCAmelCase_ : Tuple = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 )
UpperCAmelCase_ : str = random_other_next_tokens
# append to next input_ids and attn_mask
UpperCAmelCase_ : Tuple = torch.cat([input_ids, next_tokens] , dim=-1 )
UpperCAmelCase_ : int = torch.cat(
[attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=__magic_name__ )] , dim=1 , )
# get two different outputs
UpperCAmelCase_ : Any = model(__magic_name__ , attention_mask=__magic_name__ )['''last_hidden_state''']
UpperCAmelCase_ : int = model(__magic_name__ , past_key_values=__magic_name__ , attention_mask=__magic_name__ )['''last_hidden_state''']
# select random slice
UpperCAmelCase_ : Optional[int] = ids_tensor((1,) , output_from_past.shape[-1] ).item()
UpperCAmelCase_ : Union[str, Any] = output_from_no_past[:, -1, random_slice_idx].detach()
UpperCAmelCase_ : Dict = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) )
def UpperCAmelCase__ ( self : Dict , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : Dict , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , *__magic_name__ : str ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Dict = BioGptModel(config=__magic_name__ ).to(__magic_name__ ).eval()
UpperCAmelCase_ : Optional[int] = torch.ones(input_ids.shape , dtype=torch.long , device=__magic_name__ )
# first forward pass
UpperCAmelCase_ : Union[str, Any] = model(__magic_name__ , attention_mask=__magic_name__ , use_cache=__magic_name__ )
UpperCAmelCase_ , UpperCAmelCase_ : int = outputs.to_tuple()
# create hypothetical multiple next token and extent to next_input_ids
UpperCAmelCase_ : Any = ids_tensor((self.batch_size, 3) , config.vocab_size )
UpperCAmelCase_ : Any = ids_tensor((self.batch_size, 3) , 2 )
# append to next input_ids and
UpperCAmelCase_ : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1 )
UpperCAmelCase_ : List[str] = torch.cat([attention_mask, next_attn_mask] , dim=-1 )
UpperCAmelCase_ : Any = model(__magic_name__ , attention_mask=__magic_name__ )['''last_hidden_state''']
UpperCAmelCase_ : Optional[Any] = model(__magic_name__ , attention_mask=__magic_name__ , past_key_values=__magic_name__ )[
'''last_hidden_state'''
]
# select random slice
UpperCAmelCase_ : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item()
UpperCAmelCase_ : str = output_from_no_past[:, -3:, random_slice_idx].detach()
UpperCAmelCase_ : Optional[int] = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) )
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : str , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , *__magic_name__ : Any , __magic_name__ : List[Any]=False ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Any = BioGptForCausalLM(__magic_name__ )
model.to(__magic_name__ )
if gradient_checkpointing:
model.gradient_checkpointing_enable()
UpperCAmelCase_ : List[str] = model(__magic_name__ , labels=__magic_name__ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
result.loss.backward()
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Optional[int] , *__magic_name__ : List[str] ) -> str:
"""simple docstring"""
UpperCAmelCase_ : int = BioGptModel(__magic_name__ )
UpperCAmelCase_ : Dict = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers )
for key in model.state_dict().keys():
if "c_proj" in key and "weight" in key:
self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.0_0_1 )
self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.0_1 )
def UpperCAmelCase__ ( self : int , __magic_name__ : Tuple , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] , *__magic_name__ : Any ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : str = self.num_labels
UpperCAmelCase_ : Any = BioGptForTokenClassification(__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : Any = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCAmelCase__ ( self : Optional[Any] ) -> str:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = self.prepare_config_and_inputs()
(
(
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) ,
) : int = config_and_inputs
UpperCAmelCase_ : Any = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class __a (lowerCamelCase , lowerCamelCase , lowerCamelCase , unittest.TestCase ):
__a : str = (
(BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification)
if is_torch_available()
else ()
)
__a : List[Any] = (BioGptForCausalLM,) if is_torch_available() else ()
__a : Union[str, Any] = (
{
"feature-extraction": BioGptModel,
"text-classification": BioGptForSequenceClassification,
"text-generation": BioGptForCausalLM,
"token-classification": BioGptForTokenClassification,
"zero-shot": BioGptForSequenceClassification,
}
if is_torch_available()
else {}
)
__a : List[str] = False
def UpperCAmelCase__ ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : List[str] = BioGptModelTester(self )
UpperCAmelCase_ : Optional[Any] = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 )
def UpperCAmelCase__ ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCAmelCase__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__magic_name__ )
def UpperCAmelCase__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
UpperCAmelCase_ : str = type
self.model_tester.create_and_check_model(*__magic_name__ )
def UpperCAmelCase__ ( self : Optional[int] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_attention_mask_past(*__magic_name__ )
def UpperCAmelCase__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_forward_and_backwards(*__magic_name__ , gradient_checkpointing=__magic_name__ )
def UpperCAmelCase__ ( self : str ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_past_large_inputs(*__magic_name__ )
def UpperCAmelCase__ ( self : Dict ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_weight_initialization(*__magic_name__ )
def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_for_token_classification(*__magic_name__ )
@slow
def UpperCAmelCase__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' )
model.to(__magic_name__ )
UpperCAmelCase_ : List[str] = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' )
UpperCAmelCase_ : Tuple = '''left'''
# Define PAD Token = EOS Token = 50256
UpperCAmelCase_ : List[Any] = tokenizer.eos_token
UpperCAmelCase_ : List[Any] = model.config.eos_token_id
# use different length sentences to test batching
UpperCAmelCase_ : Tuple = [
'''Hello, my dog is a little''',
'''Today, I''',
]
UpperCAmelCase_ : Optional[Any] = tokenizer(__magic_name__ , return_tensors='''pt''' , padding=__magic_name__ )
UpperCAmelCase_ : Optional[Any] = inputs['''input_ids'''].to(__magic_name__ )
UpperCAmelCase_ : Any = model.generate(
input_ids=__magic_name__ , attention_mask=inputs['''attention_mask'''].to(__magic_name__ ) , )
UpperCAmelCase_ : Union[str, Any] = tokenizer(sentences[0] , return_tensors='''pt''' ).input_ids.to(__magic_name__ )
UpperCAmelCase_ : Tuple = model.generate(input_ids=__magic_name__ )
UpperCAmelCase_ : List[str] = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item()
UpperCAmelCase_ : List[Any] = tokenizer(sentences[1] , return_tensors='''pt''' ).input_ids.to(__magic_name__ )
UpperCAmelCase_ : Tuple = model.generate(input_ids=__magic_name__ , max_length=model.config.max_length - num_paddings )
UpperCAmelCase_ : int = tokenizer.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ )
UpperCAmelCase_ : Dict = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__magic_name__ )
UpperCAmelCase_ : Union[str, Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=__magic_name__ )
UpperCAmelCase_ : Optional[Any] = [
'''Hello, my dog is a little bit bigger than a little bit.''',
'''Today, I have a good idea of how to use the information''',
]
self.assertListEqual(__magic_name__ , __magic_name__ )
self.assertListEqual(__magic_name__ , [non_padded_sentence, padded_sentence] )
@slow
def UpperCAmelCase__ ( self : str ) -> Optional[Any]:
"""simple docstring"""
for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase_ : List[Any] = BioGptModel.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
def UpperCAmelCase__ ( self : Tuple ) -> str:
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase_ : List[str] = 3
UpperCAmelCase_ : Tuple = input_dict['''input_ids''']
UpperCAmelCase_ : Dict = input_ids.ne(1 ).to(__magic_name__ )
UpperCAmelCase_ : List[str] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
UpperCAmelCase_ : Dict = BioGptForSequenceClassification(__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : int = model(__magic_name__ , attention_mask=__magic_name__ , labels=__magic_name__ )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase_ : List[Any] = 3
UpperCAmelCase_ : Optional[int] = '''multi_label_classification'''
UpperCAmelCase_ : int = input_dict['''input_ids''']
UpperCAmelCase_ : str = input_ids.ne(1 ).to(__magic_name__ )
UpperCAmelCase_ : Any = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
UpperCAmelCase_ : Union[str, Any] = BioGptForSequenceClassification(__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : str = model(__magic_name__ , attention_mask=__magic_name__ , labels=__magic_name__ )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
@require_torch
class __a (unittest.TestCase ):
@slow
def UpperCAmelCase__ ( self : List[Any] ) -> str:
"""simple docstring"""
UpperCAmelCase_ : str = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' )
UpperCAmelCase_ : List[str] = torch.tensor([[2, 48_05, 9, 6_56, 21]] )
UpperCAmelCase_ : str = model(__magic_name__ )[0]
UpperCAmelCase_ : Optional[int] = 4_23_84
UpperCAmelCase_ : Tuple = torch.Size((1, 5, vocab_size) )
self.assertEqual(output.shape , __magic_name__ )
UpperCAmelCase_ : List[Any] = torch.tensor(
[[[-9.5_2_3_6, -9.8_9_1_8, 1_0.4_5_5_7], [-1_1.0_4_6_9, -9.6_4_2_3, 8.1_0_2_2], [-8.8_6_6_4, -7.8_8_2_6, 5.5_3_2_5]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __magic_name__ , atol=1E-4 ) )
@slow
def UpperCAmelCase__ ( self : Any ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Any = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' )
UpperCAmelCase_ : str = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' )
model.to(__magic_name__ )
torch.manual_seed(0 )
UpperCAmelCase_ : Optional[Any] = tokenizer('''COVID-19 is''' , return_tensors='''pt''' ).to(__magic_name__ )
UpperCAmelCase_ : Optional[int] = model.generate(
**__magic_name__ , min_length=1_00 , max_length=10_24 , num_beams=5 , early_stopping=__magic_name__ , )
UpperCAmelCase_ : int = tokenizer.decode(output_ids[0] , skip_special_tokens=__magic_name__ )
UpperCAmelCase_ : Optional[Any] = (
'''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the'''
''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and'''
''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),'''
''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and'''
''' more than 800,000 deaths.'''
)
self.assertEqual(__magic_name__ , __magic_name__ )
| 644
| 0
|
'''simple docstring'''
import argparse
import requests
import torch
# pip3 install salesforce-lavis
# I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis
from lavis.models import load_model_and_preprocess
from PIL import Image
from transformers import (
AutoTokenizer,
BlipaConfig,
BlipaForConditionalGeneration,
BlipaProcessor,
BlipaVisionConfig,
BlipImageProcessor,
OPTConfig,
TaConfig,
)
from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
def lowerCamelCase_ ( ) -> int:
UpperCAmelCase_ : Dict = '''https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png'''
UpperCAmelCase_ : Optional[Any] = Image.open(requests.get(SCREAMING_SNAKE_CASE__, stream=SCREAMING_SNAKE_CASE__ ).raw ).convert('''RGB''' )
return image
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[str] ) -> Optional[Any]:
UpperCAmelCase_ : Any = []
# fmt: off
# vision encoder
rename_keys.append(('''visual_encoder.cls_token''', '''vision_model.embeddings.class_embedding''') )
rename_keys.append(('''visual_encoder.pos_embed''', '''vision_model.embeddings.position_embedding''') )
rename_keys.append(('''visual_encoder.patch_embed.proj.weight''', '''vision_model.embeddings.patch_embedding.weight''') )
rename_keys.append(('''visual_encoder.patch_embed.proj.bias''', '''vision_model.embeddings.patch_embedding.bias''') )
rename_keys.append(('''ln_vision.weight''', '''vision_model.post_layernorm.weight''') )
rename_keys.append(('''ln_vision.bias''', '''vision_model.post_layernorm.bias''') )
for i in range(config.vision_config.num_hidden_layers ):
rename_keys.append((F"""visual_encoder.blocks.{i}.norm1.weight""", F"""vision_model.encoder.layers.{i}.layer_norm1.weight""") )
rename_keys.append((F"""visual_encoder.blocks.{i}.norm1.bias""", F"""vision_model.encoder.layers.{i}.layer_norm1.bias""") )
rename_keys.append((F"""visual_encoder.blocks.{i}.norm2.weight""", F"""vision_model.encoder.layers.{i}.layer_norm2.weight""") )
rename_keys.append((F"""visual_encoder.blocks.{i}.norm2.bias""", F"""vision_model.encoder.layers.{i}.layer_norm2.bias""") )
rename_keys.append((F"""visual_encoder.blocks.{i}.attn.qkv.weight""", F"""vision_model.encoder.layers.{i}.self_attn.qkv.weight""") )
rename_keys.append((F"""visual_encoder.blocks.{i}.attn.proj.weight""", F"""vision_model.encoder.layers.{i}.self_attn.projection.weight""",) )
rename_keys.append((F"""visual_encoder.blocks.{i}.attn.proj.bias""", F"""vision_model.encoder.layers.{i}.self_attn.projection.bias""") )
rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc1.weight""", F"""vision_model.encoder.layers.{i}.mlp.fc1.weight""") )
rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc1.bias""", F"""vision_model.encoder.layers.{i}.mlp.fc1.bias""") )
rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc2.weight""", F"""vision_model.encoder.layers.{i}.mlp.fc2.weight""") )
rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc2.bias""", F"""vision_model.encoder.layers.{i}.mlp.fc2.bias""") )
# QFormer
rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.weight''', '''qformer.layernorm.weight''') )
rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.bias''', '''qformer.layernorm.bias''') )
# fmt: on
return rename_keys
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Union[str, Any], SCREAMING_SNAKE_CASE__ : Union[str, Any], SCREAMING_SNAKE_CASE__ : List[Any] ) -> Any:
UpperCAmelCase_ : int = dct.pop(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Union[str, Any] = val
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[Any], SCREAMING_SNAKE_CASE__ : Tuple ) -> List[str]:
for i in range(config.vision_config.num_hidden_layers ):
# read in original q and v biases
UpperCAmelCase_ : Optional[int] = state_dict.pop(F"""visual_encoder.blocks.{i}.attn.q_bias""" )
UpperCAmelCase_ : Any = state_dict.pop(F"""visual_encoder.blocks.{i}.attn.v_bias""" )
# next, set bias in the state dict
UpperCAmelCase_ : Dict = torch.cat((q_bias, torch.zeros_like(SCREAMING_SNAKE_CASE__, requires_grad=SCREAMING_SNAKE_CASE__ ), v_bias) )
UpperCAmelCase_ : Union[str, Any] = qkv_bias
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Dict, SCREAMING_SNAKE_CASE__ : Optional[int] ) -> str:
UpperCAmelCase_ : Optional[int] = 364 if '''coco''' in model_name else 224
UpperCAmelCase_ : List[str] = BlipaVisionConfig(image_size=SCREAMING_SNAKE_CASE__ ).to_dict()
# make sure the models have proper bos_token_id and eos_token_id set (important for generation)
# seems like flan-T5 models don't have bos_token_id properly set?
if "opt-2.7b" in model_name:
UpperCAmelCase_ : Dict = OPTConfig.from_pretrained('''facebook/opt-2.7b''', eos_token_id=SCREAMING_SNAKE_CASE__ ).to_dict()
elif "opt-6.7b" in model_name:
UpperCAmelCase_ : int = OPTConfig.from_pretrained('''facebook/opt-6.7b''', eos_token_id=SCREAMING_SNAKE_CASE__ ).to_dict()
elif "t5-xl" in model_name:
UpperCAmelCase_ : Any = TaConfig.from_pretrained('''google/flan-t5-xl''', dense_act_fn='''gelu''', bos_token_id=1 ).to_dict()
elif "t5-xxl" in model_name:
UpperCAmelCase_ : str = TaConfig.from_pretrained('''google/flan-t5-xxl''', dense_act_fn='''gelu''', bos_token_id=1 ).to_dict()
UpperCAmelCase_ : str = BlipaConfig(vision_config=SCREAMING_SNAKE_CASE__, text_config=SCREAMING_SNAKE_CASE__ )
return config, image_size
@torch.no_grad()
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : str, SCREAMING_SNAKE_CASE__ : List[str]=None, SCREAMING_SNAKE_CASE__ : Tuple=False ) -> Optional[Any]:
UpperCAmelCase_ : Union[str, Any] = (
AutoTokenizer.from_pretrained('''facebook/opt-2.7b''' )
if '''opt''' in model_name
else AutoTokenizer.from_pretrained('''google/flan-t5-xl''' )
)
UpperCAmelCase_ : Union[str, Any] = tokenizer('''\n''', add_special_tokens=SCREAMING_SNAKE_CASE__ ).input_ids[0]
UpperCAmelCase_ : List[str] = get_blipa_config(SCREAMING_SNAKE_CASE__, eos_token_id=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Optional[int] = BlipaForConditionalGeneration(SCREAMING_SNAKE_CASE__ ).eval()
UpperCAmelCase_ : Optional[int] = {
'''blip2-opt-2.7b''': ('''blip2_opt''', '''pretrain_opt2.7b'''),
'''blip2-opt-6.7b''': ('''blip2_opt''', '''pretrain_opt6.7b'''),
'''blip2-opt-2.7b-coco''': ('''blip2_opt''', '''caption_coco_opt2.7b'''),
'''blip2-opt-6.7b-coco''': ('''blip2_opt''', '''caption_coco_opt6.7b'''),
'''blip2-flan-t5-xl''': ('''blip2_t5''', '''pretrain_flant5xl'''),
'''blip2-flan-t5-xl-coco''': ('''blip2_t5''', '''caption_coco_flant5xl'''),
'''blip2-flan-t5-xxl''': ('''blip2_t5''', '''pretrain_flant5xxl'''),
}
UpperCAmelCase_ : List[str] = model_name_to_original[model_name]
# load original model
print('''Loading original model...''' )
UpperCAmelCase_ : List[Any] = '''cuda''' if torch.cuda.is_available() else '''cpu'''
UpperCAmelCase_ : List[Any] = load_model_and_preprocess(
name=SCREAMING_SNAKE_CASE__, model_type=SCREAMING_SNAKE_CASE__, is_eval=SCREAMING_SNAKE_CASE__, device=SCREAMING_SNAKE_CASE__ )
original_model.eval()
print('''Done!''' )
# update state dict keys
UpperCAmelCase_ : Union[str, Any] = original_model.state_dict()
UpperCAmelCase_ : Dict = create_rename_keys(SCREAMING_SNAKE_CASE__ )
for src, dest in rename_keys:
rename_key(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
# some keys can be renamed efficiently
for key, val in state_dict.copy().items():
UpperCAmelCase_ : int = state_dict.pop(SCREAMING_SNAKE_CASE__ )
if key.startswith('''Qformer.bert''' ):
UpperCAmelCase_ : Optional[int] = key.replace('''Qformer.bert''', '''qformer''' )
if "attention.self" in key:
UpperCAmelCase_ : Any = key.replace('''self''', '''attention''' )
if "opt_proj" in key:
UpperCAmelCase_ : Tuple = key.replace('''opt_proj''', '''language_projection''' )
if "t5_proj" in key:
UpperCAmelCase_ : int = key.replace('''t5_proj''', '''language_projection''' )
if key.startswith('''opt''' ):
UpperCAmelCase_ : int = key.replace('''opt''', '''language''' )
if key.startswith('''t5''' ):
UpperCAmelCase_ : Union[str, Any] = key.replace('''t5''', '''language''' )
UpperCAmelCase_ : str = val
# read in qv biases
read_in_q_v_bias(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Optional[Any] = hf_model.load_state_dict(SCREAMING_SNAKE_CASE__, strict=SCREAMING_SNAKE_CASE__ )
assert len(SCREAMING_SNAKE_CASE__ ) == 0
assert unexpected_keys == ["qformer.embeddings.position_ids"]
UpperCAmelCase_ : Optional[Any] = load_demo_image()
UpperCAmelCase_ : Optional[int] = vis_processors['''eval'''](SCREAMING_SNAKE_CASE__ ).unsqueeze(0 ).to(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : List[Any] = tokenizer(['''\n'''], return_tensors='''pt''' ).input_ids.to(SCREAMING_SNAKE_CASE__ )
# create processor
UpperCAmelCase_ : Any = BlipImageProcessor(
size={'''height''': image_size, '''width''': image_size}, image_mean=SCREAMING_SNAKE_CASE__, image_std=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Tuple = BlipaProcessor(image_processor=SCREAMING_SNAKE_CASE__, tokenizer=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Dict = processor(images=SCREAMING_SNAKE_CASE__, return_tensors='''pt''' ).pixel_values.to(SCREAMING_SNAKE_CASE__ )
# make sure processor creates exact same pixel values
assert torch.allclose(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
original_model.to(SCREAMING_SNAKE_CASE__ )
hf_model.to(SCREAMING_SNAKE_CASE__ )
with torch.no_grad():
if "opt" in model_name:
UpperCAmelCase_ : List[Any] = original_model({'''image''': original_pixel_values, '''text_input''': ['''''']} ).logits
UpperCAmelCase_ : Any = hf_model(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ).logits
else:
UpperCAmelCase_ : List[Any] = original_model(
{'''image''': original_pixel_values, '''text_input''': ['''\n'''], '''text_output''': ['''\n''']} ).logits
UpperCAmelCase_ : Dict = input_ids.masked_fill(input_ids == tokenizer.pad_token_id, -100 )
UpperCAmelCase_ : List[str] = hf_model(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, labels=SCREAMING_SNAKE_CASE__ ).logits
assert original_logits.shape == logits.shape
print('''First values of original logits:''', original_logits[0, :3, :3] )
print('''First values of HF logits:''', logits[0, :3, :3] )
# assert values
if model_name == "blip2-flan-t5-xl":
UpperCAmelCase_ : Any = torch.tensor(
[[-41.58_50, -4.44_40, -8.99_22], [-47.43_22, -5.91_43, -1.73_40]], device=SCREAMING_SNAKE_CASE__ )
assert torch.allclose(logits[0, :3, :3], SCREAMING_SNAKE_CASE__, atol=1E-4 )
elif model_name == "blip2-flan-t5-xl-coco":
UpperCAmelCase_ : Optional[Any] = torch.tensor(
[[-57.01_09, -9.89_67, -12.62_80], [-68.65_78, -12.71_91, -10.50_65]], device=SCREAMING_SNAKE_CASE__ )
else:
# cast to same type
UpperCAmelCase_ : List[str] = logits.dtype
assert torch.allclose(original_logits.to(SCREAMING_SNAKE_CASE__ ), SCREAMING_SNAKE_CASE__, atol=1E-2 )
print('''Looks ok!''' )
print('''Generating a caption...''' )
UpperCAmelCase_ : Tuple = ''''''
UpperCAmelCase_ : Any = tokenizer(SCREAMING_SNAKE_CASE__, return_tensors='''pt''' ).input_ids.to(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : int = original_model.generate({'''image''': original_pixel_values} )
UpperCAmelCase_ : str = hf_model.generate(
SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, do_sample=SCREAMING_SNAKE_CASE__, num_beams=5, max_length=30, min_length=1, top_p=0.9, repetition_penalty=1.0, length_penalty=1.0, temperature=1, )
print('''Original generation:''', SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : str = input_ids.shape[1]
UpperCAmelCase_ : Tuple = processor.batch_decode(outputs[:, prompt_length:], skip_special_tokens=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Union[str, Any] = [text.strip() for text in output_text]
print('''HF generation:''', SCREAMING_SNAKE_CASE__ )
if pytorch_dump_folder_path is not None:
processor.save_pretrained(SCREAMING_SNAKE_CASE__ )
hf_model.save_pretrained(SCREAMING_SNAKE_CASE__ )
if push_to_hub:
processor.push_to_hub(F"""nielsr/{model_name}""" )
hf_model.push_to_hub(F"""nielsr/{model_name}""" )
if __name__ == "__main__":
lowerCamelCase : int = argparse.ArgumentParser()
lowerCamelCase : int = [
"blip2-opt-2.7b",
"blip2-opt-6.7b",
"blip2-opt-2.7b-coco",
"blip2-opt-6.7b-coco",
"blip2-flan-t5-xl",
"blip2-flan-t5-xl-coco",
"blip2-flan-t5-xxl",
]
parser.add_argument(
"--model_name",
default="blip2-opt-2.7b",
choices=choices,
type=str,
help="Path to hf config.json of model to convert",
)
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument(
"--push_to_hub",
action="store_true",
help="Whether to push the model and processor to the hub after converting",
)
lowerCamelCase : List[str] = parser.parse_args()
convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 707
|
'''simple docstring'''
import json
import os
import unittest
from transformers.models.blenderbot_small.tokenization_blenderbot_small import (
VOCAB_FILES_NAMES,
BlenderbotSmallTokenizer,
)
from ...test_tokenization_common import TokenizerTesterMixin
class __a (lowerCamelCase , unittest.TestCase ):
__a : List[str] = BlenderbotSmallTokenizer
__a : List[Any] = False
def UpperCAmelCase__ ( self : str ) -> str:
"""simple docstring"""
super().setUp()
UpperCAmelCase_ : Tuple = ['''__start__''', '''adapt''', '''act''', '''ap@@''', '''te''', '''__end__''', '''__unk__''']
UpperCAmelCase_ : Optional[Any] = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) )
UpperCAmelCase_ : int = ['''#version: 0.2''', '''a p''', '''t e</w>''', '''ap t</w>''', '''a d''', '''ad apt</w>''', '''a c''', '''ac t</w>''', '''''']
UpperCAmelCase_ : Optional[Any] = {'''unk_token''': '''__unk__''', '''bos_token''': '''__start__''', '''eos_token''': '''__end__'''}
UpperCAmelCase_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
UpperCAmelCase_ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(__magic_name__ ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(__magic_name__ ) )
def UpperCAmelCase__ ( self : List[Any] , **__magic_name__ : Dict ) -> Tuple:
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **__magic_name__ )
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : List[str] ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : str = '''adapt act apte'''
UpperCAmelCase_ : Tuple = '''adapt act apte'''
return input_text, output_text
def UpperCAmelCase__ ( self : str ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : str = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map )
UpperCAmelCase_ : List[Any] = '''adapt act apte'''
UpperCAmelCase_ : Dict = ['''adapt''', '''act''', '''ap@@''', '''te''']
UpperCAmelCase_ : Dict = tokenizer.tokenize(__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
UpperCAmelCase_ : Tuple = [tokenizer.bos_token] + tokens + [tokenizer.eos_token]
UpperCAmelCase_ : Dict = [0, 1, 2, 3, 4, 5]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , __magic_name__ )
def UpperCAmelCase__ ( self : int ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' )
assert tok('''sam''' ).input_ids == [13_84]
UpperCAmelCase_ : Optional[int] = '''I am a small frog.'''
UpperCAmelCase_ : List[str] = tok([src_text] , padding=__magic_name__ , truncation=__magic_name__ )['''input_ids''']
UpperCAmelCase_ : Dict = tok.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ , clean_up_tokenization_spaces=__magic_name__ )[0]
assert src_text != decoded # I wish it did!
assert decoded == "i am a small frog ."
def UpperCAmelCase__ ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : int = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' )
UpperCAmelCase_ : List[Any] = '''I am a small frog .'''
UpperCAmelCase_ : Any = '''.'''
UpperCAmelCase_ : List[Any] = tok(__magic_name__ )['''input_ids''']
UpperCAmelCase_ : Optional[int] = tok(__magic_name__ )['''input_ids''']
assert encoded[-1] == encoded_dot[0]
| 644
| 0
|
'''simple docstring'''
import argparse
import logging
import pickle
import random
import time
import numpy as np
from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO
)
snake_case_ : str = logging.getLogger(__name__)
def lowerCamelCase_ ( ) -> Tuple:
UpperCAmelCase_ : int = argparse.ArgumentParser(
description='''Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).''' )
parser.add_argument('''--file_path''', type=SCREAMING_SNAKE_CASE__, default='''data/dump.txt''', help='''The path to the data.''' )
parser.add_argument('''--tokenizer_type''', type=SCREAMING_SNAKE_CASE__, default='''bert''', choices=['''bert''', '''roberta''', '''gpt2'''] )
parser.add_argument('''--tokenizer_name''', type=SCREAMING_SNAKE_CASE__, default='''bert-base-uncased''', help='''The tokenizer to use.''' )
parser.add_argument('''--dump_file''', type=SCREAMING_SNAKE_CASE__, default='''data/dump''', help='''The dump file prefix.''' )
UpperCAmelCase_ : int = parser.parse_args()
logger.info(F"""Loading Tokenizer ({args.tokenizer_name})""" )
if args.tokenizer_type == "bert":
UpperCAmelCase_ : Any = BertTokenizer.from_pretrained(args.tokenizer_name )
UpperCAmelCase_ : Tuple = tokenizer.special_tokens_map['''cls_token'''] # `[CLS]`
UpperCAmelCase_ : Optional[int] = tokenizer.special_tokens_map['''sep_token'''] # `[SEP]`
elif args.tokenizer_type == "roberta":
UpperCAmelCase_ : Optional[Any] = RobertaTokenizer.from_pretrained(args.tokenizer_name )
UpperCAmelCase_ : str = tokenizer.special_tokens_map['''cls_token'''] # `<s>`
UpperCAmelCase_ : Any = tokenizer.special_tokens_map['''sep_token'''] # `</s>`
elif args.tokenizer_type == "gpt2":
UpperCAmelCase_ : int = GPTaTokenizer.from_pretrained(args.tokenizer_name )
UpperCAmelCase_ : Optional[Any] = tokenizer.special_tokens_map['''bos_token'''] # `<|endoftext|>`
UpperCAmelCase_ : List[Any] = tokenizer.special_tokens_map['''eos_token'''] # `<|endoftext|>`
logger.info(F"""Loading text from {args.file_path}""" )
with open(args.file_path, '''r''', encoding='''utf8''' ) as fp:
UpperCAmelCase_ : List[str] = fp.readlines()
logger.info('''Start encoding''' )
logger.info(F"""{len(SCREAMING_SNAKE_CASE__ )} examples to process.""" )
UpperCAmelCase_ : str = []
UpperCAmelCase_ : Tuple = 0
UpperCAmelCase_ : List[str] = 10000
UpperCAmelCase_ : Any = time.time()
for text in data:
UpperCAmelCase_ : Optional[int] = F"""{bos} {text.strip()} {sep}"""
UpperCAmelCase_ : str = tokenizer.encode(SCREAMING_SNAKE_CASE__, add_special_tokens=SCREAMING_SNAKE_CASE__ )
rslt.append(SCREAMING_SNAKE_CASE__ )
iter += 1
if iter % interval == 0:
UpperCAmelCase_ : int = time.time()
logger.info(F"""{iter} examples processed. - {(end-start):.2f}s/{interval}expl""" )
UpperCAmelCase_ : Tuple = time.time()
logger.info('''Finished binarization''' )
logger.info(F"""{len(SCREAMING_SNAKE_CASE__ )} examples processed.""" )
UpperCAmelCase_ : int = F"""{args.dump_file}.{args.tokenizer_name}.pickle"""
UpperCAmelCase_ : Optional[Any] = tokenizer.vocab_size
if vocab_size < (1 << 16):
UpperCAmelCase_ : Tuple = [np.uintaa(SCREAMING_SNAKE_CASE__ ) for d in rslt]
else:
UpperCAmelCase_ : List[str] = [np.intaa(SCREAMING_SNAKE_CASE__ ) for d in rslt]
random.shuffle(rslt_ )
logger.info(F"""Dump to {dp_file}""" )
with open(SCREAMING_SNAKE_CASE__, '''wb''' ) as handle:
pickle.dump(rslt_, SCREAMING_SNAKE_CASE__, protocol=pickle.HIGHEST_PROTOCOL )
if __name__ == "__main__":
main()
| 708
|
'''simple docstring'''
import unittest
import torch
from torch import nn
from diffusers.models.activations import get_activation
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : Dict ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : Dict = get_activation('''swish''' )
self.assertIsInstance(__magic_name__ , nn.SiLU )
self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
def UpperCAmelCase__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = get_activation('''silu''' )
self.assertIsInstance(__magic_name__ , nn.SiLU )
self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
def UpperCAmelCase__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = get_activation('''mish''' )
self.assertIsInstance(__magic_name__ , nn.Mish )
self.assertEqual(act(torch.tensor(-2_00 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
def UpperCAmelCase__ ( self : str ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = get_activation('''gelu''' )
self.assertIsInstance(__magic_name__ , nn.GELU )
self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
| 644
| 0
|
'''simple docstring'''
from __future__ import annotations
from typing import Any
class __a :
def __init__( self : str , __magic_name__ : int , __magic_name__ : int , __magic_name__ : float = 0 ) -> None:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = row, column
UpperCAmelCase_ : Any = [[default_value for c in range(__magic_name__ )] for r in range(__magic_name__ )]
def __str__( self : Any ) -> str:
"""simple docstring"""
UpperCAmelCase_ : Dict = F"""Matrix consist of {self.row} rows and {self.column} columns\n"""
# Make string identifier
UpperCAmelCase_ : Tuple = 0
for row_vector in self.array:
for obj in row_vector:
UpperCAmelCase_ : Optional[Any] = max(__magic_name__ , len(str(__magic_name__ ) ) )
UpperCAmelCase_ : Union[str, Any] = F"""%{max_element_length}s"""
# Make string and return
def single_line(__magic_name__ : list[float] ) -> str:
nonlocal string_format_identifier
UpperCAmelCase_ : Dict = '''['''
line += ", ".join(string_format_identifier % (obj,) for obj in row_vector )
line += "]"
return line
s += "\n".join(single_line(__magic_name__ ) for row_vector in self.array )
return s
def __repr__( self : Tuple ) -> str:
"""simple docstring"""
return str(self )
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : tuple[int, int] ) -> bool:
"""simple docstring"""
if not (isinstance(__magic_name__ , (list, tuple) ) and len(__magic_name__ ) == 2):
return False
elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column):
return False
else:
return True
def __getitem__( self : Optional[Any] , __magic_name__ : tuple[int, int] ) -> Any:
"""simple docstring"""
assert self.validate_indicies(__magic_name__ )
return self.array[loc[0]][loc[1]]
def __setitem__( self : str , __magic_name__ : tuple[int, int] , __magic_name__ : float ) -> None:
"""simple docstring"""
assert self.validate_indicies(__magic_name__ )
UpperCAmelCase_ : Optional[int] = value
def __add__( self : Any , __magic_name__ : Matrix ) -> Matrix:
"""simple docstring"""
assert isinstance(__magic_name__ , __magic_name__ )
assert self.row == another.row and self.column == another.column
# Add
UpperCAmelCase_ : Optional[Any] = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
UpperCAmelCase_ : str = self[r, c] + another[r, c]
return result
def __neg__( self : Optional[Any] ) -> Matrix:
"""simple docstring"""
UpperCAmelCase_ : Dict = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
UpperCAmelCase_ : str = -self[r, c]
return result
def __sub__( self : Dict , __magic_name__ : Matrix ) -> Matrix:
"""simple docstring"""
return self + (-another)
def __mul__( self : Tuple , __magic_name__ : int | float | Matrix ) -> Matrix:
"""simple docstring"""
if isinstance(__magic_name__ , (int, float) ): # Scalar multiplication
UpperCAmelCase_ : Tuple = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
UpperCAmelCase_ : List[str] = self[r, c] * another
return result
elif isinstance(__magic_name__ , __magic_name__ ): # Matrix multiplication
assert self.column == another.row
UpperCAmelCase_ : Dict = Matrix(self.row , another.column )
for r in range(self.row ):
for c in range(another.column ):
for i in range(self.column ):
result[r, c] += self[r, i] * another[i, c]
return result
else:
UpperCAmelCase_ : List[str] = F"""Unsupported type given for another ({type(__magic_name__ )})"""
raise TypeError(__magic_name__ )
def UpperCAmelCase__ ( self : List[str] ) -> Matrix:
"""simple docstring"""
UpperCAmelCase_ : Tuple = Matrix(self.column , self.row )
for r in range(self.row ):
for c in range(self.column ):
UpperCAmelCase_ : List[Any] = self[r, c]
return result
def UpperCAmelCase__ ( self : Any , __magic_name__ : Matrix , __magic_name__ : Matrix ) -> Any:
"""simple docstring"""
assert isinstance(__magic_name__ , __magic_name__ ) and isinstance(__magic_name__ , __magic_name__ )
assert self.row == self.column == u.row == v.row # u, v should be column vector
assert u.column == v.column == 1 # u, v should be column vector
# Calculate
UpperCAmelCase_ : str = v.transpose()
UpperCAmelCase_ : Dict = (v_t * self * u)[0, 0] + 1
if numerator_factor == 0:
return None # It's not invertable
return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor))
# Testing
if __name__ == "__main__":
def lowerCamelCase_ ( ) -> None:
# a^(-1)
UpperCAmelCase_ : Any = Matrix(3, 3, 0 )
for i in range(3 ):
UpperCAmelCase_ : List[str] = 1
print(F"""a^(-1) is {ainv}""" )
# u, v
UpperCAmelCase_ : List[Any] = Matrix(3, 1, 0 )
UpperCAmelCase_ : Tuple = 1, 2, -3
UpperCAmelCase_ : Optional[Any] = Matrix(3, 1, 0 )
UpperCAmelCase_ : Tuple = 4, -2, 5
print(F"""u is {u}""" )
print(F"""v is {v}""" )
print(F"""uv^T is {u * v.transpose()}""" )
# Sherman Morrison
print(F"""(a + uv^T)^(-1) is {ainv.sherman_morrison(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )}""" )
def lowerCamelCase_ ( ) -> None:
import doctest
doctest.testmod()
testa()
| 709
|
'''simple docstring'''
from typing import List, Optional, Union
import numpy as np
import PIL.Image
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import rescale, resize, to_channel_dimension_format
from ...image_utils import (
ChannelDimension,
PILImageResampling,
get_image_size,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
snake_case_ : Union[str, Any] = logging.get_logger(__name__)
class __a (lowerCamelCase ):
__a : Tuple = ["pixel_values"]
def __init__( self : List[Any] , __magic_name__ : bool = True , __magic_name__ : int = 32 , __magic_name__ : Union[str, Any]=PILImageResampling.BILINEAR , __magic_name__ : bool = True , **__magic_name__ : List[str] , ) -> None:
"""simple docstring"""
UpperCAmelCase_ : int = do_resize
UpperCAmelCase_ : Tuple = do_rescale
UpperCAmelCase_ : List[Any] = size_divisor
UpperCAmelCase_ : Any = resample
super().__init__(**__magic_name__ )
def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : np.ndarray , __magic_name__ : int , __magic_name__ : str , __magic_name__ : Optional[ChannelDimension] = None , **__magic_name__ : Tuple ) -> np.ndarray:
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : List[str] = get_image_size(__magic_name__ )
# Rounds the height and width down to the closest multiple of size_divisor
UpperCAmelCase_ : Dict = height // size_divisor * size_divisor
UpperCAmelCase_ : Dict = width // size_divisor * size_divisor
UpperCAmelCase_ : Any = resize(__magic_name__ , (new_h, new_w) , resample=__magic_name__ , data_format=__magic_name__ , **__magic_name__ )
return image
def UpperCAmelCase__ ( self : int , __magic_name__ : np.ndarray , __magic_name__ : float , __magic_name__ : Optional[ChannelDimension] = None , **__magic_name__ : Optional[Any] ) -> np.ndarray:
"""simple docstring"""
return rescale(image=__magic_name__ , scale=__magic_name__ , data_format=__magic_name__ , **__magic_name__ )
def UpperCAmelCase__ ( self : str , __magic_name__ : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[int] = None , __magic_name__ : Any=None , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[Union[TensorType, str]] = None , __magic_name__ : ChannelDimension = ChannelDimension.FIRST , **__magic_name__ : Tuple , ) -> BatchFeature:
"""simple docstring"""
UpperCAmelCase_ : Dict = do_resize if do_resize is not None else self.do_resize
UpperCAmelCase_ : str = do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase_ : Any = size_divisor if size_divisor is not None else self.size_divisor
UpperCAmelCase_ : Dict = resample if resample is not None else self.resample
if do_resize and size_divisor is None:
raise ValueError('''size_divisor is required for resizing''' )
UpperCAmelCase_ : Optional[int] = make_list_of_images(__magic_name__ )
if not valid_images(__magic_name__ ):
raise ValueError('''Invalid image(s)''' )
# All transformations expect numpy arrays.
UpperCAmelCase_ : List[str] = [to_numpy_array(__magic_name__ ) for img in images]
if do_resize:
UpperCAmelCase_ : str = [self.resize(__magic_name__ , size_divisor=__magic_name__ , resample=__magic_name__ ) for image in images]
if do_rescale:
UpperCAmelCase_ : Tuple = [self.rescale(__magic_name__ , scale=1 / 2_55 ) for image in images]
UpperCAmelCase_ : Union[str, Any] = [to_channel_dimension_format(__magic_name__ , __magic_name__ ) for image in images]
UpperCAmelCase_ : int = {'''pixel_values''': images}
return BatchFeature(data=__magic_name__ , tensor_type=__magic_name__ )
| 644
| 0
|
'''simple docstring'''
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
snake_case_ = {
"configuration_autoformer": [
"AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"AutoformerConfig",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ = [
"AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"AutoformerForPrediction",
"AutoformerModel",
"AutoformerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_autoformer import (
AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
AutoformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_autoformer import (
AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
AutoformerForPrediction,
AutoformerModel,
AutoformerPreTrainedModel,
)
else:
import sys
snake_case_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 710
|
'''simple docstring'''
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int = 10, SCREAMING_SNAKE_CASE__ : int = 22 ) -> int:
UpperCAmelCase_ : Optional[int] = range(1, SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : List[Any] = range(1, SCREAMING_SNAKE_CASE__ )
return sum(
1 for power in powers for base in bases if len(str(base**power ) ) == power )
if __name__ == "__main__":
print(f'''{solution(10, 22) = }''')
| 644
| 0
|
'''simple docstring'''
snake_case_ : List[Any] = 8.314_4598
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : float, SCREAMING_SNAKE_CASE__ : float ) -> float:
if temperature < 0:
raise Exception('''Temperature cannot be less than 0 K''' )
if molar_mass <= 0:
raise Exception('''Molar mass cannot be less than or equal to 0 kg/mol''' )
else:
return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5
if __name__ == "__main__":
import doctest
# run doctest
doctest.testmod()
# example
snake_case_ : int = 3_00
snake_case_ : Dict = 28
snake_case_ : Optional[Any] = rms_speed_of_molecule(temperature, molar_mass)
print(f'''Vrms of Nitrogen gas at 300 K is {vrms} m/s''')
| 711
|
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
import torch
from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor
from ..utils import requires_backends
from .base import PipelineTool
if TYPE_CHECKING:
from PIL import Image
class __a (lowerCamelCase ):
__a : int = "dandelin/vilt-b32-finetuned-vqa"
__a : Any = (
"This is a tool that answers a question about an image. It takes an input named `image` which should be the "
"image containing the information, as well as a `question` which should be the question in English. It "
"returns a text that is the answer to the question."
)
__a : Any = "image_qa"
__a : str = AutoProcessor
__a : Any = AutoModelForVisualQuestionAnswering
__a : List[Any] = ["image", "text"]
__a : int = ["text"]
def __init__( self : Tuple , *__magic_name__ : Any , **__magic_name__ : Any ) -> Tuple:
"""simple docstring"""
requires_backends(self , ['''vision'''] )
super().__init__(*__magic_name__ , **__magic_name__ )
def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : "Image" , __magic_name__ : str ) -> Tuple:
"""simple docstring"""
return self.pre_processor(__magic_name__ , __magic_name__ , return_tensors='''pt''' )
def UpperCAmelCase__ ( self : Any , __magic_name__ : List[str] ) -> Optional[Any]:
"""simple docstring"""
with torch.no_grad():
return self.model(**__magic_name__ ).logits
def UpperCAmelCase__ ( self : int , __magic_name__ : int ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Dict = outputs.argmax(-1 ).item()
return self.model.config.idalabel[idx]
| 644
| 0
|
'''simple docstring'''
import inspect
import os
import re
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_config_docstrings.py
snake_case_ : Optional[int] = "src/transformers"
# This is to make sure the transformers module imported is the one in the repo.
snake_case_ : Optional[int] = direct_transformers_import(PATH_TO_TRANSFORMERS)
snake_case_ : Optional[Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING
snake_case_ : int = {
# used to compute the property `self.chunk_length`
"EncodecConfig": ["overlap"],
# used as `self.bert_model = BertModel(config, ...)`
"DPRConfig": True,
# not used in modeling files, but it's an important information
"FSMTConfig": ["langs"],
# used internally in the configuration class file
"GPTNeoConfig": ["attention_types"],
# used internally in the configuration class file
"EsmConfig": ["is_folding_model"],
# used during training (despite we don't have training script for these models yet)
"Mask2FormerConfig": ["ignore_value"],
# `ignore_value` used during training (despite we don't have training script for these models yet)
# `norm` used in conversion script (despite not using in the modeling file)
"OneFormerConfig": ["ignore_value", "norm"],
# used during preprocessing and collation, see `collating_graphormer.py`
"GraphormerConfig": ["spatial_pos_max"],
# used internally in the configuration class file
"T5Config": ["feed_forward_proj"],
# used internally in the configuration class file
# `tokenizer_class` get default value `T5Tokenizer` intentionally
"MT5Config": ["feed_forward_proj", "tokenizer_class"],
"UMT5Config": ["feed_forward_proj", "tokenizer_class"],
# used internally in the configuration class file
"LongT5Config": ["feed_forward_proj"],
# used internally in the configuration class file
"SwitchTransformersConfig": ["feed_forward_proj"],
# having default values other than `1e-5` - we can't fix them without breaking
"BioGptConfig": ["layer_norm_eps"],
# having default values other than `1e-5` - we can't fix them without breaking
"GLPNConfig": ["layer_norm_eps"],
# having default values other than `1e-5` - we can't fix them without breaking
"SegformerConfig": ["layer_norm_eps"],
# having default values other than `1e-5` - we can't fix them without breaking
"CvtConfig": ["layer_norm_eps"],
# having default values other than `1e-5` - we can't fix them without breaking
"PerceiverConfig": ["layer_norm_eps"],
# used internally to calculate the feature size
"InformerConfig": ["num_static_real_features", "num_time_features"],
# used internally to calculate the feature size
"TimeSeriesTransformerConfig": ["num_static_real_features", "num_time_features"],
# used internally to calculate the feature size
"AutoformerConfig": ["num_static_real_features", "num_time_features"],
# used internally to calculate `mlp_dim`
"SamVisionConfig": ["mlp_ratio"],
# For (head) training, but so far not implemented
"ClapAudioConfig": ["num_classes"],
# Not used, but providing useful information to users
"SpeechT5HifiGanConfig": ["sampling_rate"],
}
# TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure
SPECIAL_CASES_TO_ALLOW.update(
{
"CLIPSegConfig": True,
"DeformableDetrConfig": True,
"DetaConfig": True,
"DinatConfig": True,
"DonutSwinConfig": True,
"EfficientFormerConfig": True,
"FSMTConfig": True,
"JukeboxConfig": True,
"LayoutLMv2Config": True,
"MaskFormerSwinConfig": True,
"MT5Config": True,
"NatConfig": True,
"OneFormerConfig": True,
"PerceiverConfig": True,
"RagConfig": True,
"SpeechT5Config": True,
"SwinConfig": True,
"Swin2SRConfig": True,
"Swinv2Config": True,
"SwitchTransformersConfig": True,
"TableTransformerConfig": True,
"TapasConfig": True,
"TransfoXLConfig": True,
"UniSpeechConfig": True,
"UniSpeechSatConfig": True,
"WavLMConfig": True,
"WhisperConfig": True,
# TODO: @Arthur (for `alignment_head` and `alignment_layer`)
"JukeboxPriorConfig": True,
# TODO: @Younes (for `is_decoder`)
"Pix2StructTextConfig": True,
}
)
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Dict, SCREAMING_SNAKE_CASE__ : Union[str, Any], SCREAMING_SNAKE_CASE__ : List[Any], SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Tuple:
UpperCAmelCase_ : Union[str, Any] = False
for attribute in attributes:
for modeling_source in source_strings:
# check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)`
if (
F"""config.{attribute}""" in modeling_source
or F"""getattr(config, \"{attribute}\"""" in modeling_source
or F"""getattr(self.config, \"{attribute}\"""" in modeling_source
):
UpperCAmelCase_ : int = True
# Deal with multi-line cases
elif (
re.search(
RF"""getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*\"{attribute}\"""", SCREAMING_SNAKE_CASE__, )
is not None
):
UpperCAmelCase_ : Any = True
# `SequenceSummary` is called with `SequenceSummary(config)`
elif attribute in [
"summary_type",
"summary_use_proj",
"summary_activation",
"summary_last_dropout",
"summary_proj_to_labels",
"summary_first_dropout",
]:
if "SequenceSummary" in modeling_source:
UpperCAmelCase_ : Optional[int] = True
if attribute_used:
break
if attribute_used:
break
# common and important attributes, even if they do not always appear in the modeling files
UpperCAmelCase_ : Union[str, Any] = [
'''bos_index''',
'''eos_index''',
'''pad_index''',
'''unk_index''',
'''mask_index''',
'''image_size''',
'''use_cache''',
'''out_features''',
'''out_indices''',
]
UpperCAmelCase_ : Any = ['''encoder_no_repeat_ngram_size''']
# Special cases to be allowed
UpperCAmelCase_ : Union[str, Any] = True
if not attribute_used:
UpperCAmelCase_ : List[str] = False
for attribute in attributes:
# Allow if the default value in the configuration class is different from the one in `PretrainedConfig`
if attribute in ["is_encoder_decoder"] and default_value is True:
UpperCAmelCase_ : Tuple = True
elif attribute in ["tie_word_embeddings"] and default_value is False:
UpperCAmelCase_ : Any = True
# Allow cases without checking the default value in the configuration class
elif attribute in attributes_to_allow + attributes_used_in_generation:
UpperCAmelCase_ : Optional[int] = True
elif attribute.endswith('''_token_id''' ):
UpperCAmelCase_ : Any = True
# configuration class specific cases
if not case_allowed:
UpperCAmelCase_ : str = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__, [] )
UpperCAmelCase_ : Tuple = allowed_cases is True or attribute in allowed_cases
return attribute_used or case_allowed
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int ) -> str:
UpperCAmelCase_ : Any = dict(inspect.signature(config_class.__init__ ).parameters )
UpperCAmelCase_ : List[Any] = [x for x in list(signature.keys() ) if x not in ['''self''', '''kwargs''']]
UpperCAmelCase_ : str = [signature[param].default for param in parameter_names]
# If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long
# as one variant is used, the test should pass
UpperCAmelCase_ : Tuple = {}
if len(config_class.attribute_map ) > 0:
UpperCAmelCase_ : Optional[int] = {v: k for k, v in config_class.attribute_map.items()}
# Get the path to modeling source files
UpperCAmelCase_ : Optional[int] = inspect.getsourcefile(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Optional[int] = os.path.dirname(SCREAMING_SNAKE_CASE__ )
# Let's check against all frameworks: as long as one framework uses an attribute, we are good.
UpperCAmelCase_ : Optional[int] = [os.path.join(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) for fn in os.listdir(SCREAMING_SNAKE_CASE__ ) if fn.startswith('''modeling_''' )]
# Get the source code strings
UpperCAmelCase_ : List[str] = []
for path in modeling_paths:
if os.path.isfile(SCREAMING_SNAKE_CASE__ ):
with open(SCREAMING_SNAKE_CASE__ ) as fp:
modeling_sources.append(fp.read() )
UpperCAmelCase_ : Dict = []
for config_param, default_value in zip(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ):
# `attributes` here is all the variant names for `config_param`
UpperCAmelCase_ : List[Any] = [config_param]
# some configuration classes have non-empty `attribute_map`, and both names could be used in the
# corresponding modeling files. As long as one of them appears, it is fine.
if config_param in reversed_attribute_map:
attributes.append(reversed_attribute_map[config_param] )
if not check_attribute_being_used(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ):
unused_attributes.append(attributes[0] )
return sorted(SCREAMING_SNAKE_CASE__ )
def lowerCamelCase_ ( ) -> List[str]:
UpperCAmelCase_ : str = {}
for _config_class in list(CONFIG_MAPPING.values() ):
# Skip deprecated models
if "models.deprecated" in _config_class.__module__:
continue
# Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.)
UpperCAmelCase_ : Any = [
cls
for name, cls in inspect.getmembers(
inspect.getmodule(_config_class ), lambda SCREAMING_SNAKE_CASE__ : inspect.isclass(SCREAMING_SNAKE_CASE__ )
and issubclass(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
and inspect.getmodule(SCREAMING_SNAKE_CASE__ ) == inspect.getmodule(_config_class ), )
]
for config_class in config_classes_in_module:
UpperCAmelCase_ : Optional[Any] = check_config_attributes_being_used(SCREAMING_SNAKE_CASE__ )
if len(SCREAMING_SNAKE_CASE__ ) > 0:
UpperCAmelCase_ : Optional[int] = unused_attributes
if len(SCREAMING_SNAKE_CASE__ ) > 0:
UpperCAmelCase_ : Dict = '''The following configuration classes contain unused attributes in the corresponding modeling files:\n'''
for name, attributes in configs_with_unused_attributes.items():
error += F"""{name}: {attributes}\n"""
raise ValueError(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
check_config_attributes()
| 712
|
'''simple docstring'''
from collections.abc import Iterable
from typing import Any
class __a :
def __init__( self : Optional[Any] , __magic_name__ : int | None = None ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : List[str] = value
UpperCAmelCase_ : Node | None = None # Added in order to delete a node easier
UpperCAmelCase_ : Node | None = None
UpperCAmelCase_ : Node | None = None
def __repr__( self : List[str] ) -> str:
"""simple docstring"""
from pprint import pformat
if self.left is None and self.right is None:
return str(self.value )
return pformat({F"""{self.value}""": (self.left, self.right)} , indent=1 )
class __a :
def __init__( self : int , __magic_name__ : Node | None = None ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : str = root
def __str__( self : Any ) -> str:
"""simple docstring"""
return str(self.root )
def UpperCAmelCase__ ( self : Any , __magic_name__ : Node , __magic_name__ : Node | None ) -> None:
"""simple docstring"""
if new_children is not None: # reset its kids
UpperCAmelCase_ : Dict = node.parent
if node.parent is not None: # reset its parent
if self.is_right(__magic_name__ ): # If it is the right children
UpperCAmelCase_ : Optional[Any] = new_children
else:
UpperCAmelCase_ : Optional[int] = new_children
else:
UpperCAmelCase_ : List[str] = new_children
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Node ) -> bool:
"""simple docstring"""
if node.parent and node.parent.right:
return node == node.parent.right
return False
def UpperCAmelCase__ ( self : Union[str, Any] ) -> bool:
"""simple docstring"""
return self.root is None
def UpperCAmelCase__ ( self : Any , __magic_name__ : str ) -> None:
"""simple docstring"""
UpperCAmelCase_ : Tuple = Node(__magic_name__ ) # create a new Node
if self.empty(): # if Tree is empty
UpperCAmelCase_ : List[Any] = new_node # set its root
else: # Tree is not empty
UpperCAmelCase_ : str = self.root # from root
if parent_node is None:
return
while True: # While we don't get to a leaf
if value < parent_node.value: # We go left
if parent_node.left is None:
UpperCAmelCase_ : Union[str, Any] = new_node # We insert the new node in a leaf
break
else:
UpperCAmelCase_ : List[Any] = parent_node.left
else:
if parent_node.right is None:
UpperCAmelCase_ : List[Any] = new_node
break
else:
UpperCAmelCase_ : Union[str, Any] = parent_node.right
UpperCAmelCase_ : Union[str, Any] = parent_node
def UpperCAmelCase__ ( self : Optional[Any] , *__magic_name__ : List[str] ) -> None:
"""simple docstring"""
for value in values:
self.__insert(__magic_name__ )
def UpperCAmelCase__ ( self : Dict , __magic_name__ : int ) -> Node | None:
"""simple docstring"""
if self.empty():
raise IndexError('''Warning: Tree is empty! please use another.''' )
else:
UpperCAmelCase_ : str = self.root
# use lazy evaluation here to avoid NoneType Attribute error
while node is not None and node.value is not value:
UpperCAmelCase_ : List[str] = node.left if value < node.value else node.right
return node
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : Node | None = None ) -> Node | None:
"""simple docstring"""
if node is None:
if self.root is None:
return None
UpperCAmelCase_ : Dict = self.root
if not self.empty():
while node.right is not None:
UpperCAmelCase_ : Any = node.right
return node
def UpperCAmelCase__ ( self : Dict , __magic_name__ : Node | None = None ) -> Node | None:
"""simple docstring"""
if node is None:
UpperCAmelCase_ : Optional[int] = self.root
if self.root is None:
return None
if not self.empty():
UpperCAmelCase_ : Union[str, Any] = self.root
while node.left is not None:
UpperCAmelCase_ : Dict = node.left
return node
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : int ) -> None:
"""simple docstring"""
UpperCAmelCase_ : List[str] = self.search(__magic_name__ ) # Look for the node with that label
if node is not None:
if node.left is None and node.right is None: # If it has no children
self.__reassign_nodes(__magic_name__ , __magic_name__ )
elif node.left is None: # Has only right children
self.__reassign_nodes(__magic_name__ , node.right )
elif node.right is None: # Has only left children
self.__reassign_nodes(__magic_name__ , node.left )
else:
UpperCAmelCase_ : List[str] = self.get_max(
node.left ) # Gets the max value of the left branch
self.remove(tmp_node.value ) # type: ignore
UpperCAmelCase_ : Optional[int] = (
tmp_node.value # type: ignore
) # Assigns the value to the node to delete and keep tree structure
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Node | None ) -> Iterable:
"""simple docstring"""
if node is not None:
yield node # Preorder Traversal
yield from self.preorder_traverse(node.left )
yield from self.preorder_traverse(node.right )
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : List[Any]=None ) -> Any:
"""simple docstring"""
if traversal_function is None:
return self.preorder_traverse(self.root )
else:
return traversal_function(self.root )
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : list , __magic_name__ : Node | None ) -> None:
"""simple docstring"""
if node:
self.inorder(__magic_name__ , node.left )
arr.append(node.value )
self.inorder(__magic_name__ , node.right )
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : int , __magic_name__ : Node ) -> int:
"""simple docstring"""
UpperCAmelCase_ : list[int] = []
self.inorder(__magic_name__ , __magic_name__ ) # append all values to list using inorder traversal
return arr[k - 1]
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Node | None ) -> list[Node]:
UpperCAmelCase_ : Any = []
if curr_node is not None:
UpperCAmelCase_ : Any = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node]
return node_list
def lowerCamelCase_ ( ) -> None:
UpperCAmelCase_ : str = (8, 3, 6, 1, 10, 14, 13, 4, 7)
UpperCAmelCase_ : Tuple = BinarySearchTree()
for i in testlist:
t.insert(SCREAMING_SNAKE_CASE__ )
# Prints all the elements of the list in order traversal
print(SCREAMING_SNAKE_CASE__ )
if t.search(6 ) is not None:
print('''The value 6 exists''' )
else:
print('''The value 6 doesn\'t exist''' )
if t.search(-1 ) is not None:
print('''The value -1 exists''' )
else:
print('''The value -1 doesn\'t exist''' )
if not t.empty():
print('''Max Value: ''', t.get_max().value ) # type: ignore
print('''Min Value: ''', t.get_min().value ) # type: ignore
for i in testlist:
t.remove(SCREAMING_SNAKE_CASE__ )
print(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
| 644
| 0
|
import requests
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : str, SCREAMING_SNAKE_CASE__ : str ) -> None:
UpperCAmelCase_ : List[str] = {'''Content-Type''': '''application/json'''}
UpperCAmelCase_ : Optional[Any] = requests.post(SCREAMING_SNAKE_CASE__, json={'''text''': message_body}, headers=SCREAMING_SNAKE_CASE__ )
if response.status_code != 200:
UpperCAmelCase_ : str = (
'''Request to slack returned an error '''
F"""{response.status_code}, the response is:\n{response.text}"""
)
raise ValueError(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
# Set the slack url to the one provided by Slack when you create the webhook at
# https://my.slack.com/services/new/incoming-webhook/
send_slack_message("<YOUR MESSAGE BODY>", "<SLACK CHANNEL URL>")
| 713
|
'''simple docstring'''
import sys
import turtle
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : tuple[float, float] ) -> tuple[float, float]:
return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : int, ) -> None:
my_pen.up()
my_pen.goto(vertexa[0], vertexa[1] )
my_pen.down()
my_pen.goto(vertexa[0], vertexa[1] )
my_pen.goto(vertexa[0], vertexa[1] )
my_pen.goto(vertexa[0], vertexa[1] )
if depth == 0:
return
triangle(SCREAMING_SNAKE_CASE__, get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), depth - 1 )
triangle(SCREAMING_SNAKE_CASE__, get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), depth - 1 )
triangle(SCREAMING_SNAKE_CASE__, get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), depth - 1 )
if __name__ == "__main__":
if len(sys.argv) != 2:
raise ValueError(
"Correct format for using this script: "
"python fractals.py <int:depth_for_fractal>"
)
snake_case_ : Any = turtle.Turtle()
my_pen.ht()
my_pen.speed(5)
my_pen.pencolor("red")
snake_case_ : Tuple = [(-1_75, -1_25), (0, 1_75), (1_75, -1_25)] # vertices of triangle
triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
| 644
| 0
|
import unittest
from transformers import CamembertTokenizer, CamembertTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.utils import is_torch_available
from ...test_tokenization_common import TokenizerTesterMixin
snake_case_ : Tuple = get_tests_dir("fixtures/test_sentencepiece.model")
snake_case_ : List[str] = get_tests_dir("fixtures/test_sentencepiece_bpe.model")
snake_case_ : List[str] = "pt" if is_torch_available() else "tf"
@require_sentencepiece
@require_tokenizers
class __a (lowerCamelCase , unittest.TestCase ):
__a : str = CamembertTokenizer
__a : Optional[int] = CamembertTokenizerFast
__a : List[Any] = True
__a : Union[str, Any] = True
def UpperCAmelCase__ ( self : int ) -> Tuple:
"""simple docstring"""
super().setUp()
# We have a SentencePiece fixture for testing
UpperCAmelCase_ : Optional[Any] = CamembertTokenizer(__magic_name__ )
tokenizer.save_pretrained(self.tmpdirname )
def UpperCAmelCase__ ( self : Any ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : int = '''<pad>'''
UpperCAmelCase_ : Union[str, Any] = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__magic_name__ ) , __magic_name__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__magic_name__ ) , __magic_name__ )
def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : List[str] = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<s>NOTUSED''' )
self.assertEqual(vocab_keys[1] , '''<pad>''' )
self.assertEqual(vocab_keys[-1] , '''<mask>''' )
self.assertEqual(len(__magic_name__ ) , 10_04 )
def UpperCAmelCase__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 10_05 )
def UpperCAmelCase__ ( self : List[Any] ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = CamembertTokenizer(__magic_name__ )
tokenizer.save_pretrained(self.tmpdirname )
UpperCAmelCase_ : Optional[Any] = CamembertTokenizerFast.from_pretrained(self.tmpdirname )
UpperCAmelCase_ : Optional[int] = '''I was born in 92000, and this is falsé.'''
UpperCAmelCase_ : Any = tokenizer.encode(__magic_name__ )
UpperCAmelCase_ : Optional[Any] = rust_tokenizer.encode(__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
UpperCAmelCase_ : Tuple = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
UpperCAmelCase_ : List[str] = rust_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
# <unk> tokens are not the same for `rust` than for `slow`.
# Because spm gives back raw token instead of `unk` in EncodeAsPieces
# tokens = tokenizer.tokenize(sequence)
UpperCAmelCase_ : List[Any] = tokenizer.convert_ids_to_tokens(__magic_name__ )
UpperCAmelCase_ : Any = rust_tokenizer.tokenize(__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
def UpperCAmelCase__ ( self : Union[str, Any] ) -> List[str]:
"""simple docstring"""
if not self.test_rust_tokenizer:
return
UpperCAmelCase_ : List[str] = self.get_tokenizer()
UpperCAmelCase_ : Union[str, Any] = self.get_rust_tokenizer()
UpperCAmelCase_ : List[Any] = '''I was born in 92000, and this is falsé.'''
UpperCAmelCase_ : int = tokenizer.tokenize(__magic_name__ )
UpperCAmelCase_ : List[Any] = rust_tokenizer.tokenize(__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
UpperCAmelCase_ : int = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
UpperCAmelCase_ : Any = rust_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
UpperCAmelCase_ : Tuple = self.get_rust_tokenizer()
UpperCAmelCase_ : int = tokenizer.encode(__magic_name__ )
UpperCAmelCase_ : List[Any] = rust_tokenizer.encode(__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
@slow
def UpperCAmelCase__ ( self : Any ) -> str:
"""simple docstring"""
UpperCAmelCase_ : str = {'''input_ids''': [[5, 54, 71_96, 2_97, 30, 23, 7_76, 18, 11, 32_15, 37_05, 82_52, 22, 31_64, 11_81, 21_16, 29, 16, 8_13, 25, 7_91, 33_14, 20, 34_46, 38, 2_75_75, 1_20, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 4_68, 17, 11, 90_88, 20, 15_17, 8, 2_28_04, 1_88_18, 10, 38, 6_29, 6_07, 6_07, 1_42, 19, 71_96, 8_67, 56, 1_03_26, 24, 22_67, 20, 4_16, 50_72, 1_56_12, 2_33, 7_34, 7, 23_99, 27, 16, 30_15, 16_49, 7, 24, 20, 43_38, 23_99, 27, 13, 34_00, 14, 13, 61_89, 8, 9_30, 9, 6]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
# camembert is a french model. So we also use french texts.
UpperCAmelCase_ : List[Any] = [
'''Le transformeur est un modèle d\'apprentissage profond introduit en 2017, '''
'''utilisé principalement dans le domaine du traitement automatique des langues (TAL).''',
'''À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus '''
'''pour gérer des données séquentielles, telles que le langage naturel, pour des tâches '''
'''telles que la traduction et la synthèse de texte.''',
]
self.tokenizer_integration_test_util(
expected_encoding=__magic_name__ , model_name='''camembert-base''' , revision='''3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf''' , sequences=__magic_name__ , )
| 714
|
'''simple docstring'''
import gc
import tempfile
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionPipeline
from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device
snake_case_ : List[str] = False
class __a (unittest.TestCase ):
pass
@nightly
@require_torch_gpu
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : int ) -> str:
"""simple docstring"""
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : List[Any] = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' )
UpperCAmelCase_ : Optional[int] = torch.manual_seed(0 )
UpperCAmelCase_ : Union[str, Any] = pipe.dual_guided(
prompt='''first prompt''' , image=__magic_name__ , text_to_image_strength=0.7_5 , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(__magic_name__ )
UpperCAmelCase_ : Optional[int] = VersatileDiffusionPipeline.from_pretrained(__magic_name__ , torch_dtype=torch.floataa )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : Any = generator.manual_seed(0 )
UpperCAmelCase_ : Dict = pipe.dual_guided(
prompt='''first prompt''' , image=__magic_name__ , text_to_image_strength=0.7_5 , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images
assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass"
def UpperCAmelCase__ ( self : str ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : str = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : Union[str, Any] = '''cyberpunk 2077'''
UpperCAmelCase_ : Union[str, Any] = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' )
UpperCAmelCase_ : Tuple = torch.manual_seed(0 )
UpperCAmelCase_ : Optional[Any] = pipe.dual_guided(
prompt=__magic_name__ , image=__magic_name__ , text_to_image_strength=0.7_5 , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' , ).images
UpperCAmelCase_ : List[str] = image[0, 2_53:2_56, 2_53:2_56, -1]
assert image.shape == (1, 5_12, 5_12, 3)
UpperCAmelCase_ : Union[str, Any] = np.array([0.1_4_4_8, 0.1_6_1_9, 0.1_7_4_1, 0.1_0_8_6, 0.1_1_4_7, 0.1_1_2_8, 0.1_1_9_9, 0.1_1_6_5, 0.1_0_0_1] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
UpperCAmelCase_ : Tuple = '''A painting of a squirrel eating a burger '''
UpperCAmelCase_ : Optional[int] = torch.manual_seed(0 )
UpperCAmelCase_ : List[Any] = pipe.text_to_image(
prompt=__magic_name__ , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' ).images
UpperCAmelCase_ : Tuple = image[0, 2_53:2_56, 2_53:2_56, -1]
assert image.shape == (1, 5_12, 5_12, 3)
UpperCAmelCase_ : Any = np.array([0.3_3_6_7, 0.3_1_6_9, 0.2_6_5_6, 0.3_8_7_0, 0.4_7_9_0, 0.3_7_9_6, 0.4_0_0_9, 0.4_8_7_8, 0.4_7_7_8] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
UpperCAmelCase_ : Tuple = pipe.image_variation(__magic_name__ , generator=__magic_name__ , output_type='''numpy''' ).images
UpperCAmelCase_ : Optional[Any] = image[0, 2_53:2_56, 2_53:2_56, -1]
assert image.shape == (1, 5_12, 5_12, 3)
UpperCAmelCase_ : List[str] = np.array([0.3_0_7_6, 0.3_1_2_3, 0.3_2_8_4, 0.3_7_8_2, 0.3_7_7_0, 0.3_8_9_4, 0.4_2_9_7, 0.4_3_3_1, 0.4_4_5_6] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
| 644
| 0
|
'''simple docstring'''
from __future__ import annotations
class __a :
def __init__( self : Optional[int] , __magic_name__ : str=None ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = data
UpperCAmelCase_ : Optional[int] = None
def __repr__( self : List[str] ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : Any = []
UpperCAmelCase_ : Any = self
while temp:
string_rep.append(F"""{temp.data}""" )
UpperCAmelCase_ : List[str] = temp.next
return "->".join(__magic_name__ )
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : list ) -> Optional[int]:
if not elements_list:
raise Exception('''The Elements List is empty''' )
UpperCAmelCase_ : Tuple = Node(elements_list[0] )
for i in range(1, len(SCREAMING_SNAKE_CASE__ ) ):
UpperCAmelCase_ : Tuple = Node(elements_list[i] )
UpperCAmelCase_ : str = current.next
return head
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Node ) -> None:
if head_node is not None and isinstance(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ):
print_reverse(head_node.next )
print(head_node.data )
def lowerCamelCase_ ( ) -> Optional[Any]:
from doctest import testmod
testmod()
UpperCAmelCase_ : Optional[Any] = make_linked_list([14, 52, 14, 12, 43] )
print('''Linked List:''' )
print(SCREAMING_SNAKE_CASE__ )
print('''Elements in Reverse:''' )
print_reverse(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
main()
| 715
|
'''simple docstring'''
snake_case_ : int = {
"Pillow": "Pillow",
"accelerate": "accelerate>=0.11.0",
"compel": "compel==0.1.8",
"black": "black~=23.1",
"datasets": "datasets",
"filelock": "filelock",
"flax": "flax>=0.4.1",
"hf-doc-builder": "hf-doc-builder>=0.3.0",
"huggingface-hub": "huggingface-hub>=0.13.2",
"requests-mock": "requests-mock==1.10.0",
"importlib_metadata": "importlib_metadata",
"invisible-watermark": "invisible-watermark",
"isort": "isort>=5.5.4",
"jax": "jax>=0.2.8,!=0.3.2",
"jaxlib": "jaxlib>=0.1.65",
"Jinja2": "Jinja2",
"k-diffusion": "k-diffusion>=0.0.12",
"torchsde": "torchsde",
"note_seq": "note_seq",
"librosa": "librosa",
"numpy": "numpy",
"omegaconf": "omegaconf",
"parameterized": "parameterized",
"protobuf": "protobuf>=3.20.3,<4",
"pytest": "pytest",
"pytest-timeout": "pytest-timeout",
"pytest-xdist": "pytest-xdist",
"ruff": "ruff>=0.0.241",
"safetensors": "safetensors",
"sentencepiece": "sentencepiece>=0.1.91,!=0.1.92",
"scipy": "scipy",
"onnx": "onnx",
"regex": "regex!=2019.12.17",
"requests": "requests",
"tensorboard": "tensorboard",
"torch": "torch>=1.4",
"torchvision": "torchvision",
"transformers": "transformers>=4.25.1",
"urllib3": "urllib3<=2.0.0",
}
| 644
| 0
|
'''simple docstring'''
import numpy as np
import torch
import tqdm
from ...models.unet_ad import UNetaDModel
from ...pipelines import DiffusionPipeline
from ...utils import randn_tensor
from ...utils.dummy_pt_objects import DDPMScheduler
class __a (lowerCamelCase ):
def __init__( self : int , __magic_name__ : UNetaDModel , __magic_name__ : UNetaDModel , __magic_name__ : DDPMScheduler , __magic_name__ : Union[str, Any] , ) -> Dict:
"""simple docstring"""
super().__init__()
UpperCAmelCase_ : Optional[int] = value_function
UpperCAmelCase_ : Tuple = unet
UpperCAmelCase_ : List[Any] = scheduler
UpperCAmelCase_ : List[str] = env
UpperCAmelCase_ : Any = env.get_dataset()
UpperCAmelCase_ : str = {}
for key in self.data.keys():
try:
UpperCAmelCase_ : Optional[int] = self.data[key].mean()
except: # noqa: E722
pass
UpperCAmelCase_ : Dict = {}
for key in self.data.keys():
try:
UpperCAmelCase_ : Tuple = self.data[key].std()
except: # noqa: E722
pass
UpperCAmelCase_ : List[str] = env.observation_space.shape[0]
UpperCAmelCase_ : Union[str, Any] = env.action_space.shape[0]
def UpperCAmelCase__ ( self : int , __magic_name__ : str , __magic_name__ : Optional[int] ) -> Tuple:
"""simple docstring"""
return (x_in - self.means[key]) / self.stds[key]
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Dict , __magic_name__ : Any ) -> Optional[int]:
"""simple docstring"""
return x_in * self.stds[key] + self.means[key]
def UpperCAmelCase__ ( self : str , __magic_name__ : str ) -> Dict:
"""simple docstring"""
if type(__magic_name__ ) is dict:
return {k: self.to_torch(__magic_name__ ) for k, v in x_in.items()}
elif torch.is_tensor(__magic_name__ ):
return x_in.to(self.unet.device )
return torch.tensor(__magic_name__ , device=self.unet.device )
def UpperCAmelCase__ ( self : Dict , __magic_name__ : str , __magic_name__ : List[str] , __magic_name__ : Tuple ) -> Tuple:
"""simple docstring"""
for key, val in cond.items():
UpperCAmelCase_ : Union[str, Any] = val.clone()
return x_in
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : str , __magic_name__ : List[Any] ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Any = x.shape[0]
UpperCAmelCase_ : int = None
for i in tqdm.tqdm(self.scheduler.timesteps ):
# create batch of timesteps to pass into model
UpperCAmelCase_ : Union[str, Any] = torch.full((batch_size,) , __magic_name__ , device=self.unet.device , dtype=torch.long )
for _ in range(__magic_name__ ):
with torch.enable_grad():
x.requires_grad_()
# permute to match dimension for pre-trained models
UpperCAmelCase_ : List[str] = self.value_function(x.permute(0 , 2 , 1 ) , __magic_name__ ).sample
UpperCAmelCase_ : str = torch.autograd.grad([y.sum()] , [x] )[0]
UpperCAmelCase_ : Union[str, Any] = self.scheduler._get_variance(__magic_name__ )
UpperCAmelCase_ : str = torch.exp(0.5 * posterior_variance )
UpperCAmelCase_ : Union[str, Any] = model_std * grad
UpperCAmelCase_ : int = 0
UpperCAmelCase_ : List[str] = x.detach()
UpperCAmelCase_ : str = x + scale * grad
UpperCAmelCase_ : int = self.reset_xa(__magic_name__ , __magic_name__ , self.action_dim )
UpperCAmelCase_ : Optional[int] = self.unet(x.permute(0 , 2 , 1 ) , __magic_name__ ).sample.permute(0 , 2 , 1 )
# TODO: verify deprecation of this kwarg
UpperCAmelCase_ : Dict = self.scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , predict_epsilon=__magic_name__ )['''prev_sample''']
# apply conditions to the trajectory (set the initial state)
UpperCAmelCase_ : Any = self.reset_xa(__magic_name__ , __magic_name__ , self.action_dim )
UpperCAmelCase_ : Union[str, Any] = self.to_torch(__magic_name__ )
return x, y
def __call__( self : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : str=64 , __magic_name__ : Optional[Any]=32 , __magic_name__ : List[str]=2 , __magic_name__ : List[str]=0.1 ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = self.normalize(__magic_name__ , '''observations''' )
UpperCAmelCase_ : Dict = obs[None].repeat(__magic_name__ , axis=0 )
UpperCAmelCase_ : List[str] = {0: self.to_torch(__magic_name__ )}
UpperCAmelCase_ : Optional[int] = (batch_size, planning_horizon, self.state_dim + self.action_dim)
# generate initial noise and apply our conditions (to make the trajectories start at current state)
UpperCAmelCase_ : Optional[int] = randn_tensor(__magic_name__ , device=self.unet.device )
UpperCAmelCase_ : Union[str, Any] = self.reset_xa(__magic_name__ , __magic_name__ , self.action_dim )
UpperCAmelCase_ : Tuple = self.to_torch(__magic_name__ )
# run the diffusion process
UpperCAmelCase_ : Dict = self.run_diffusion(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
# sort output trajectories by value
UpperCAmelCase_ : List[str] = y.argsort(0 , descending=__magic_name__ ).squeeze()
UpperCAmelCase_ : Optional[Any] = x[sorted_idx]
UpperCAmelCase_ : List[Any] = sorted_values[:, :, : self.action_dim]
UpperCAmelCase_ : Optional[Any] = actions.detach().cpu().numpy()
UpperCAmelCase_ : Union[str, Any] = self.de_normalize(__magic_name__ , key='''actions''' )
# select the action with the highest value
if y is not None:
UpperCAmelCase_ : List[str] = 0
else:
# if we didn't run value guiding, select a random action
UpperCAmelCase_ : List[Any] = np.random.randint(0 , __magic_name__ )
UpperCAmelCase_ : Tuple = denorm_actions[selected_index, 0]
return denorm_actions
| 716
|
'''simple docstring'''
import unittest
import numpy as np
import torch
from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class __a (unittest.TestCase ):
@property
def UpperCAmelCase__ ( self : Dict ) -> str:
"""simple docstring"""
torch.manual_seed(0 )
UpperCAmelCase_ : Optional[Any] = UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , )
return model
def UpperCAmelCase__ ( self : Dict ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = self.dummy_uncond_unet
UpperCAmelCase_ : Dict = KarrasVeScheduler()
UpperCAmelCase_ : Union[str, Any] = KarrasVePipeline(unet=__magic_name__ , scheduler=__magic_name__ )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : Dict = torch.manual_seed(0 )
UpperCAmelCase_ : Optional[int] = pipe(num_inference_steps=2 , generator=__magic_name__ , output_type='''numpy''' ).images
UpperCAmelCase_ : Tuple = torch.manual_seed(0 )
UpperCAmelCase_ : str = pipe(num_inference_steps=2 , generator=__magic_name__ , output_type='''numpy''' , return_dict=__magic_name__ )[0]
UpperCAmelCase_ : Union[str, Any] = image[0, -3:, -3:, -1]
UpperCAmelCase_ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
UpperCAmelCase_ : Dict = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : int ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : List[str] = '''google/ncsnpp-celebahq-256'''
UpperCAmelCase_ : List[str] = UNetaDModel.from_pretrained(__magic_name__ )
UpperCAmelCase_ : List[Any] = KarrasVeScheduler()
UpperCAmelCase_ : Any = KarrasVePipeline(unet=__magic_name__ , scheduler=__magic_name__ )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : Dict = torch.manual_seed(0 )
UpperCAmelCase_ : Optional[Any] = pipe(num_inference_steps=20 , generator=__magic_name__ , output_type='''numpy''' ).images
UpperCAmelCase_ : Any = image[0, -3:, -3:, -1]
assert image.shape == (1, 2_56, 2_56, 3)
UpperCAmelCase_ : Optional[Any] = np.array([0.5_7_8, 0.5_8_1_1, 0.5_9_2_4, 0.5_8_0_9, 0.5_8_7, 0.5_8_8_6, 0.5_8_6_1, 0.5_8_0_2, 0.5_8_6] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 644
| 0
|
'''simple docstring'''
from __future__ import annotations
from typing import Any
class __a :
def __init__( self : List[Any] , __magic_name__ : int ) -> None:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = num_of_nodes
UpperCAmelCase_ : list[list[int]] = []
UpperCAmelCase_ : dict[int, int] = {}
def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int ) -> None:
"""simple docstring"""
self.m_edges.append([u_node, v_node, weight] )
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : int ) -> int:
"""simple docstring"""
if self.m_component[u_node] == u_node:
return u_node
return self.find_component(self.m_component[u_node] )
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : int ) -> None:
"""simple docstring"""
if self.m_component[u_node] != u_node:
for k in self.m_component:
UpperCAmelCase_ : int = self.find_component(__magic_name__ )
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : list[int] , __magic_name__ : int , __magic_name__ : int ) -> None:
"""simple docstring"""
if component_size[u_node] <= component_size[v_node]:
UpperCAmelCase_ : Dict = v_node
component_size[v_node] += component_size[u_node]
self.set_component(__magic_name__ )
elif component_size[u_node] >= component_size[v_node]:
UpperCAmelCase_ : str = self.find_component(__magic_name__ )
component_size[u_node] += component_size[v_node]
self.set_component(__magic_name__ )
def UpperCAmelCase__ ( self : Union[str, Any] ) -> None:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = []
UpperCAmelCase_ : List[str] = 0
UpperCAmelCase_ : list[Any] = [-1] * self.m_num_of_nodes
# A list of components (initialized to all of the nodes)
for node in range(self.m_num_of_nodes ):
self.m_component.update({node: node} )
component_size.append(1 )
UpperCAmelCase_ : Optional[int] = self.m_num_of_nodes
while num_of_components > 1:
for edge in self.m_edges:
UpperCAmelCase_ : Tuple = edge
UpperCAmelCase_ : List[Any] = self.m_component[u]
UpperCAmelCase_ : List[Any] = self.m_component[v]
if u_component != v_component:
for component in (u_component, v_component):
if (
minimum_weight_edge[component] == -1
or minimum_weight_edge[component][2] > w
):
UpperCAmelCase_ : Dict = [u, v, w]
for edge in minimum_weight_edge:
if isinstance(__magic_name__ , __magic_name__ ):
UpperCAmelCase_ : Dict = edge
UpperCAmelCase_ : int = self.m_component[u]
UpperCAmelCase_ : int = self.m_component[v]
if u_component != v_component:
mst_weight += w
self.union(__magic_name__ , __magic_name__ , __magic_name__ )
print(F"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" )
num_of_components -= 1
UpperCAmelCase_ : Optional[Any] = [-1] * self.m_num_of_nodes
print(F"""The total weight of the minimal spanning tree is: {mst_weight}""" )
def lowerCamelCase_ ( ) -> None:
'''simple docstring'''
pass
if __name__ == "__main__":
import doctest
doctest.testmod()
| 717
|
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor
from .base import PipelineTool
class __a (lowerCamelCase ):
__a : List[Any] = "openai/whisper-base"
__a : Optional[Any] = (
"This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the "
"transcribed text."
)
__a : Any = "transcriber"
__a : str = WhisperProcessor
__a : List[Any] = WhisperForConditionalGeneration
__a : int = ["audio"]
__a : Optional[Any] = ["text"]
def UpperCAmelCase__ ( self : Dict , __magic_name__ : List[str] ) -> Optional[int]:
"""simple docstring"""
return self.pre_processor(__magic_name__ , return_tensors='''pt''' ).input_features
def UpperCAmelCase__ ( self : Dict , __magic_name__ : Dict ) -> Tuple:
"""simple docstring"""
return self.model.generate(inputs=__magic_name__ )
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Dict ) -> str:
"""simple docstring"""
return self.pre_processor.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ )[0]
| 644
| 0
|
'''simple docstring'''
import json
import os
import unittest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class __a (lowerCamelCase , unittest.TestCase ):
__a : Optional[Any] = MgpstrTokenizer
__a : str = False
__a : Union[str, Any] = {}
__a : Any = False
def UpperCAmelCase__ ( self : str ) -> str:
"""simple docstring"""
super().setUp()
# fmt: off
UpperCAmelCase_ : Union[str, Any] = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z''']
# fmt: on
UpperCAmelCase_ : Dict = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) )
UpperCAmelCase_ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(__magic_name__ ) + '''\n''' )
def UpperCAmelCase__ ( self : List[Any] , **__magic_name__ : str ) -> int:
"""simple docstring"""
return MgpstrTokenizer.from_pretrained(self.tmpdirname , **__magic_name__ )
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : Optional[int] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : str = '''tester'''
UpperCAmelCase_ : Any = '''tester'''
return input_text, output_text
@unittest.skip('''MGP-STR always lower cases letters.''' )
def UpperCAmelCase__ ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
pass
def UpperCAmelCase__ ( self : Tuple ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
UpperCAmelCase_ : int = '''[SPECIAL_TOKEN]'''
tokenizer.add_special_tokens({'''cls_token''': special_token} )
UpperCAmelCase_ : List[Any] = tokenizer.encode([special_token] , add_special_tokens=__magic_name__ )
self.assertEqual(len(__magic_name__ ) , 1 )
UpperCAmelCase_ : int = tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ )
self.assertTrue(special_token not in decoded )
def UpperCAmelCase__ ( self : Dict ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
UpperCAmelCase_ : Any = self.get_input_output_texts(__magic_name__ )
UpperCAmelCase_ : int = tokenizer.tokenize(__magic_name__ )
UpperCAmelCase_ : Optional[Any] = tokenizer.convert_tokens_to_ids(__magic_name__ )
UpperCAmelCase_ : Any = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
UpperCAmelCase_ : int = tokenizer.convert_ids_to_tokens(__magic_name__ )
self.assertNotEqual(len(__magic_name__ ) , 0 )
UpperCAmelCase_ : Dict = tokenizer.decode(__magic_name__ )
self.assertIsInstance(__magic_name__ , __magic_name__ )
self.assertEqual(text_a.replace(''' ''' , '''''' ) , __magic_name__ )
@unittest.skip('''MGP-STR tokenizer only handles one sequence.''' )
def UpperCAmelCase__ ( self : str ) -> Optional[int]:
"""simple docstring"""
pass
@unittest.skip('''inputs cannot be pretokenized in MgpstrTokenizer''' )
def UpperCAmelCase__ ( self : int ) -> List[Any]:
"""simple docstring"""
pass
| 718
|
'''simple docstring'''
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : int ) -> int:
return abs(SCREAMING_SNAKE_CASE__ ) if a == 0 else greatest_common_divisor(b % a, SCREAMING_SNAKE_CASE__ )
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : int ) -> int:
while y: # --> when y=0 then loop will terminate and return x as final GCD.
UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = y, x % y
return abs(SCREAMING_SNAKE_CASE__ )
def lowerCamelCase_ ( ) -> Optional[int]:
try:
UpperCAmelCase_ : Optional[Any] = input('''Enter two integers separated by comma (,): ''' ).split(''',''' )
UpperCAmelCase_ : Optional[int] = int(nums[0] )
UpperCAmelCase_ : List[Any] = int(nums[1] )
print(
F"""greatest_common_divisor({num_a}, {num_a}) = """
F"""{greatest_common_divisor(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )}""" )
print(F"""By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )}""" )
except (IndexError, UnboundLocalError, ValueError):
print('''Wrong input''' )
if __name__ == "__main__":
main()
| 644
| 0
|
'''simple docstring'''
import gc
import tempfile
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionPipeline
from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device
snake_case_ : List[str] = False
class __a (unittest.TestCase ):
pass
@nightly
@require_torch_gpu
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : int ) -> str:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : List[Any] = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' )
UpperCAmelCase_ : Optional[int] = torch.manual_seed(0 )
UpperCAmelCase_ : Union[str, Any] = pipe.dual_guided(
prompt='''first prompt''' , image=__magic_name__ , text_to_image_strength=0.7_5 , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(__magic_name__ )
UpperCAmelCase_ : Optional[int] = VersatileDiffusionPipeline.from_pretrained(__magic_name__ , torch_dtype=torch.floataa )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : Any = generator.manual_seed(0 )
UpperCAmelCase_ : Dict = pipe.dual_guided(
prompt='''first prompt''' , image=__magic_name__ , text_to_image_strength=0.7_5 , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images
assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass"
def UpperCAmelCase__ ( self : str ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : str = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : Union[str, Any] = '''cyberpunk 2077'''
UpperCAmelCase_ : Union[str, Any] = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' )
UpperCAmelCase_ : Tuple = torch.manual_seed(0 )
UpperCAmelCase_ : Optional[Any] = pipe.dual_guided(
prompt=__magic_name__ , image=__magic_name__ , text_to_image_strength=0.7_5 , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' , ).images
UpperCAmelCase_ : List[str] = image[0, 2_53:2_56, 2_53:2_56, -1]
assert image.shape == (1, 5_12, 5_12, 3)
UpperCAmelCase_ : Union[str, Any] = np.array([0.1_4_4_8, 0.1_6_1_9, 0.1_7_4_1, 0.1_0_8_6, 0.1_1_4_7, 0.1_1_2_8, 0.1_1_9_9, 0.1_1_6_5, 0.1_0_0_1] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
UpperCAmelCase_ : Tuple = '''A painting of a squirrel eating a burger '''
UpperCAmelCase_ : Optional[int] = torch.manual_seed(0 )
UpperCAmelCase_ : List[Any] = pipe.text_to_image(
prompt=__magic_name__ , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' ).images
UpperCAmelCase_ : Tuple = image[0, 2_53:2_56, 2_53:2_56, -1]
assert image.shape == (1, 5_12, 5_12, 3)
UpperCAmelCase_ : Any = np.array([0.3_3_6_7, 0.3_1_6_9, 0.2_6_5_6, 0.3_8_7_0, 0.4_7_9_0, 0.3_7_9_6, 0.4_0_0_9, 0.4_8_7_8, 0.4_7_7_8] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
UpperCAmelCase_ : Tuple = pipe.image_variation(__magic_name__ , generator=__magic_name__ , output_type='''numpy''' ).images
UpperCAmelCase_ : Optional[Any] = image[0, 2_53:2_56, 2_53:2_56, -1]
assert image.shape == (1, 5_12, 5_12, 3)
UpperCAmelCase_ : List[str] = np.array([0.3_0_7_6, 0.3_1_2_3, 0.3_2_8_4, 0.3_7_8_2, 0.3_7_7_0, 0.3_8_9_4, 0.4_2_9_7, 0.4_3_3_1, 0.4_4_5_6] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
| 719
|
'''simple docstring'''
import unittest
from transformers import LiltConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
LiltForQuestionAnswering,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltModel,
)
from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST
class __a :
def __init__( self : int , __magic_name__ : Optional[Any] , __magic_name__ : Any=13 , __magic_name__ : Any=7 , __magic_name__ : Union[str, Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : str=True , __magic_name__ : Optional[int]=True , __magic_name__ : List[Any]=99 , __magic_name__ : int=24 , __magic_name__ : Optional[int]=2 , __magic_name__ : Tuple=6 , __magic_name__ : Union[str, Any]=37 , __magic_name__ : Optional[Any]="gelu" , __magic_name__ : Any=0.1 , __magic_name__ : str=0.1 , __magic_name__ : Tuple=5_12 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : Tuple=2 , __magic_name__ : Tuple=0.0_2 , __magic_name__ : Optional[Any]=3 , __magic_name__ : Optional[int]=None , __magic_name__ : Any=10_00 , ) -> str:
"""simple docstring"""
UpperCAmelCase_ : Tuple = parent
UpperCAmelCase_ : Optional[int] = batch_size
UpperCAmelCase_ : List[str] = seq_length
UpperCAmelCase_ : Dict = is_training
UpperCAmelCase_ : List[str] = use_input_mask
UpperCAmelCase_ : Any = use_token_type_ids
UpperCAmelCase_ : Any = use_labels
UpperCAmelCase_ : Any = vocab_size
UpperCAmelCase_ : Dict = hidden_size
UpperCAmelCase_ : Tuple = num_hidden_layers
UpperCAmelCase_ : Tuple = num_attention_heads
UpperCAmelCase_ : int = intermediate_size
UpperCAmelCase_ : Union[str, Any] = hidden_act
UpperCAmelCase_ : Optional[int] = hidden_dropout_prob
UpperCAmelCase_ : Optional[Any] = attention_probs_dropout_prob
UpperCAmelCase_ : Union[str, Any] = max_position_embeddings
UpperCAmelCase_ : int = type_vocab_size
UpperCAmelCase_ : List[Any] = type_sequence_label_size
UpperCAmelCase_ : int = initializer_range
UpperCAmelCase_ : Dict = num_labels
UpperCAmelCase_ : List[str] = scope
UpperCAmelCase_ : List[str] = range_bbox
def UpperCAmelCase__ ( self : Optional[int] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
UpperCAmelCase_ : List[str] = bbox[i, j, 3]
UpperCAmelCase_ : Dict = bbox[i, j, 1]
UpperCAmelCase_ : Optional[Any] = t
if bbox[i, j, 2] < bbox[i, j, 0]:
UpperCAmelCase_ : List[str] = bbox[i, j, 2]
UpperCAmelCase_ : Tuple = bbox[i, j, 0]
UpperCAmelCase_ : Union[str, Any] = t
UpperCAmelCase_ : int = None
if self.use_input_mask:
UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
UpperCAmelCase_ : Optional[int] = None
if self.use_token_type_ids:
UpperCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase_ : Dict = None
UpperCAmelCase_ : Tuple = None
if self.use_labels:
UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase_ : int = self.get_config()
return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels
def UpperCAmelCase__ ( self : Any ) -> List[Any]:
"""simple docstring"""
return LiltConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : str , __magic_name__ : Optional[Any] , __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : int , ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Any = LiltModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : Optional[Any] = model(__magic_name__ , bbox=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ )
UpperCAmelCase_ : List[Any] = model(__magic_name__ , bbox=__magic_name__ , token_type_ids=__magic_name__ )
UpperCAmelCase_ : Optional[int] = model(__magic_name__ , bbox=__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def UpperCAmelCase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[int] , __magic_name__ : List[Any] , ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : Any = self.num_labels
UpperCAmelCase_ : List[Any] = LiltForTokenClassification(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : List[Any] = model(
__magic_name__ , bbox=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCAmelCase__ ( self : Any , __magic_name__ : Optional[Any] , __magic_name__ : Dict , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : Any , ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : str = LiltForQuestionAnswering(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : Optional[Any] = model(
__magic_name__ , bbox=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = self.prepare_config_and_inputs()
(
(
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) ,
) : Optional[int] = config_and_inputs
UpperCAmelCase_ : Tuple = {
'''input_ids''': input_ids,
'''bbox''': bbox,
'''token_type_ids''': token_type_ids,
'''attention_mask''': input_mask,
}
return config, inputs_dict
@require_torch
class __a (lowerCamelCase , lowerCamelCase , lowerCamelCase , unittest.TestCase ):
__a : Tuple = (
(
LiltModel,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltForQuestionAnswering,
)
if is_torch_available()
else ()
)
__a : Any = (
{
"feature-extraction": LiltModel,
"question-answering": LiltForQuestionAnswering,
"text-classification": LiltForSequenceClassification,
"token-classification": LiltForTokenClassification,
"zero-shot": LiltForSequenceClassification,
}
if is_torch_available()
else {}
)
__a : Union[str, Any] = False
__a : int = False
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : int ) -> str:
"""simple docstring"""
return True
def UpperCAmelCase__ ( self : str ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = LiltModelTester(self )
UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 )
def UpperCAmelCase__ ( self : Union[str, Any] ) -> str:
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCAmelCase__ ( self : str ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__magic_name__ )
def UpperCAmelCase__ ( self : str ) -> str:
"""simple docstring"""
UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
UpperCAmelCase_ : Tuple = type
self.model_tester.create_and_check_model(*__magic_name__ )
def UpperCAmelCase__ ( self : Union[str, Any] ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__magic_name__ )
def UpperCAmelCase__ ( self : str ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__magic_name__ )
@slow
def UpperCAmelCase__ ( self : int ) -> Union[str, Any]:
"""simple docstring"""
for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase_ : Optional[int] = LiltModel.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
@require_torch
@slow
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : str = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(__magic_name__ )
UpperCAmelCase_ : Any = torch.tensor([[1, 2]] , device=__magic_name__ )
UpperCAmelCase_ : int = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=__magic_name__ )
# forward pass
with torch.no_grad():
UpperCAmelCase_ : Optional[int] = model(input_ids=__magic_name__ , bbox=__magic_name__ )
UpperCAmelCase_ : int = torch.Size([1, 2, 7_68] )
UpperCAmelCase_ : List[str] = torch.tensor(
[[-0.0_6_5_3, 0.0_9_5_0, -0.0_0_6_1], [-0.0_5_4_5, 0.0_9_2_6, -0.0_3_2_4]] , device=__magic_name__ , )
self.assertTrue(outputs.last_hidden_state.shape , __magic_name__ )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , __magic_name__ , atol=1E-3 ) )
| 644
| 0
|
from typing import Optional, Tuple
import jax
import jax.numpy as jnp
from flax import linen as nn
from flax.core.frozen_dict import FrozenDict
from transformers import CLIPConfig, FlaxPreTrainedModel
from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : str, SCREAMING_SNAKE_CASE__ : Any, SCREAMING_SNAKE_CASE__ : Union[str, Any]=1E-12 ) -> Optional[Any]:
UpperCAmelCase_ : Any = jnp.divide(emb_a.T, jnp.clip(jnp.linalg.norm(SCREAMING_SNAKE_CASE__, axis=1 ), a_min=SCREAMING_SNAKE_CASE__ ) ).T
UpperCAmelCase_ : Optional[int] = jnp.divide(emb_a.T, jnp.clip(jnp.linalg.norm(SCREAMING_SNAKE_CASE__, axis=1 ), a_min=SCREAMING_SNAKE_CASE__ ) ).T
return jnp.matmul(SCREAMING_SNAKE_CASE__, norm_emb_a.T )
class __a (nn.Module ):
__a : CLIPConfig
__a : jnp.dtype = jnp.floataa
def UpperCAmelCase__ ( self : Union[str, Any] ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = FlaxCLIPVisionModule(self.config.vision_config )
UpperCAmelCase_ : Tuple = nn.Dense(self.config.projection_dim , use_bias=__magic_name__ , dtype=self.dtype )
UpperCAmelCase_ : Optional[Any] = self.param('''concept_embeds''' , jax.nn.initializers.ones , (17, self.config.projection_dim) )
UpperCAmelCase_ : Union[str, Any] = self.param(
'''special_care_embeds''' , jax.nn.initializers.ones , (3, self.config.projection_dim) )
UpperCAmelCase_ : Tuple = self.param('''concept_embeds_weights''' , jax.nn.initializers.ones , (17,) )
UpperCAmelCase_ : Tuple = self.param('''special_care_embeds_weights''' , jax.nn.initializers.ones , (3,) )
def __call__( self : Any , __magic_name__ : Tuple ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Dict = self.vision_model(__magic_name__ )[1]
UpperCAmelCase_ : Optional[Any] = self.visual_projection(__magic_name__ )
UpperCAmelCase_ : Union[str, Any] = jax_cosine_distance(__magic_name__ , self.special_care_embeds )
UpperCAmelCase_ : Optional[int] = jax_cosine_distance(__magic_name__ , self.concept_embeds )
# increase this value to create a stronger `nfsw` filter
# at the cost of increasing the possibility of filtering benign image inputs
UpperCAmelCase_ : Any = 0.0
UpperCAmelCase_ : Any = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment
UpperCAmelCase_ : List[Any] = jnp.round(__magic_name__ , 3 )
UpperCAmelCase_ : Optional[Any] = jnp.any(special_scores > 0 , axis=1 , keepdims=__magic_name__ )
# Use a lower threshold if an image has any special care concept
UpperCAmelCase_ : Union[str, Any] = is_special_care * 0.0_1
UpperCAmelCase_ : str = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment
UpperCAmelCase_ : Optional[Any] = jnp.round(__magic_name__ , 3 )
UpperCAmelCase_ : Optional[Any] = jnp.any(concept_scores > 0 , axis=1 )
return has_nsfw_concepts
class __a (lowerCamelCase ):
__a : str = CLIPConfig
__a : Optional[Any] = "clip_input"
__a : List[str] = FlaxStableDiffusionSafetyCheckerModule
def __init__( self : Optional[Any] , __magic_name__ : CLIPConfig , __magic_name__ : Optional[Tuple] = None , __magic_name__ : int = 0 , __magic_name__ : jnp.dtype = jnp.floataa , __magic_name__ : bool = True , **__magic_name__ : int , ) -> Any:
"""simple docstring"""
if input_shape is None:
UpperCAmelCase_ : List[str] = (1, 2_24, 2_24, 3)
UpperCAmelCase_ : Dict = self.module_class(config=__magic_name__ , dtype=__magic_name__ , **__magic_name__ )
super().__init__(__magic_name__ , __magic_name__ , input_shape=__magic_name__ , seed=__magic_name__ , dtype=__magic_name__ , _do_init=_do_init )
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : jax.random.KeyArray , __magic_name__ : Tuple , __magic_name__ : FrozenDict = None ) -> FrozenDict:
"""simple docstring"""
UpperCAmelCase_ : Dict = jax.random.normal(__magic_name__ , __magic_name__ )
UpperCAmelCase_ : str = jax.random.split(__magic_name__ )
UpperCAmelCase_ : Union[str, Any] = {'''params''': params_rng, '''dropout''': dropout_rng}
UpperCAmelCase_ : Optional[Any] = self.module.init(__magic_name__ , __magic_name__ )['''params''']
return random_params
def __call__( self : Optional[Any] , __magic_name__ : Any , __magic_name__ : dict = None , ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = jnp.transpose(__magic_name__ , (0, 2, 3, 1) )
return self.module.apply(
{'''params''': params or self.params} , jnp.array(__magic_name__ , dtype=jnp.floataa ) , rngs={} , )
| 720
|
'''simple docstring'''
import io
import os
import unicodedata
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
snake_case_ : str = logging.get_logger(__name__)
snake_case_ : int = "▁"
snake_case_ : str = {"vocab_file": "vocab.txt", "sentencepiece_model_ckpt": "sentencepiece.bpe.model"}
snake_case_ : int = {
"sentencepiece_model_file": "sentencepiece.bpe.model",
"vocab_file": "vocab.txt",
}
snake_case_ : Optional[Any] = {
"vocab_file": {
"ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt",
"ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt",
},
"sentencepiece_model_file": {
"ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model",
"ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model",
},
}
snake_case_ : Dict = {
"ernie-m-base": 5_14,
"ernie-m-large": 5_14,
}
snake_case_ : Any = {
"ernie-m-base": {"do_lower_case": False},
"ernie-m-large": {"do_lower_case": False},
}
class __a (lowerCamelCase ):
__a : List[str] = ["input_ids"]
__a : Union[str, Any] = VOCAB_FILES_NAMES
__a : Tuple = PRETRAINED_INIT_CONFIGURATION
__a : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__a : Optional[int] = PRETRAINED_VOCAB_FILES_MAP
__a : Union[str, Any] = RESOURCE_FILES_NAMES
def __init__( self : Union[str, Any] , __magic_name__ : Dict , __magic_name__ : int=None , __magic_name__ : str=False , __magic_name__ : int="utf8" , __magic_name__ : Optional[int]="[UNK]" , __magic_name__ : Dict="[SEP]" , __magic_name__ : List[Any]="[PAD]" , __magic_name__ : str="[CLS]" , __magic_name__ : Optional[int]="[MASK]" , __magic_name__ : Optional[Dict[str, Any]] = None , **__magic_name__ : Union[str, Any] , ) -> None:
"""simple docstring"""
# Mask token behave like a normal word, i.e. include the space before it and
# is included in the raw text, there should be a match in a non-normalized sentence.
UpperCAmelCase_ : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=__magic_name__ , unk_token=__magic_name__ , sep_token=__magic_name__ , pad_token=__magic_name__ , cls_token=__magic_name__ , mask_token=__magic_name__ , vocab_file=__magic_name__ , encoding=__magic_name__ , sp_model_kwargs=self.sp_model_kwargs , **__magic_name__ , )
UpperCAmelCase_ : Optional[Any] = do_lower_case
UpperCAmelCase_ : List[str] = sentencepiece_model_ckpt
UpperCAmelCase_ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(__magic_name__ )
# to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning
if vocab_file is not None:
UpperCAmelCase_ : List[Any] = self.load_vocab(filepath=__magic_name__ )
else:
UpperCAmelCase_ : str = {self.sp_model.id_to_piece(__magic_name__ ): id for id in range(self.sp_model.get_piece_size() )}
UpperCAmelCase_ : int = {v: k for k, v in self.vocab.items()}
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Any ) -> Any:
"""simple docstring"""
if text is None:
return None
UpperCAmelCase_ : str = self.tokenize(__magic_name__ )
UpperCAmelCase_ , UpperCAmelCase_ : str = '''''', []
for i, ch in enumerate(__magic_name__ ):
if ch in self.SP_CHAR_MAPPING:
UpperCAmelCase_ : Optional[int] = self.SP_CHAR_MAPPING.get(__magic_name__ )
else:
UpperCAmelCase_ : Union[str, Any] = unicodedata.normalize('''NFKC''' , __magic_name__ )
if self.is_whitespace(__magic_name__ ):
continue
normalized_text += ch
char_mapping.extend([i] * len(__magic_name__ ) )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = normalized_text, [], 0
if self.do_lower_case:
UpperCAmelCase_ : Optional[int] = text.lower()
for token in split_tokens:
if token[:1] == "▁":
UpperCAmelCase_ : Tuple = token[1:]
UpperCAmelCase_ : int = text[offset:].index(__magic_name__ ) + offset
UpperCAmelCase_ : Optional[int] = start + len(__magic_name__ )
token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) )
UpperCAmelCase_ : int = end
return token_mapping
@property
def UpperCAmelCase__ ( self : Any ) -> Any:
"""simple docstring"""
return len(self.vocab )
def UpperCAmelCase__ ( self : List[Any] ) -> int:
"""simple docstring"""
return dict(self.vocab , **self.added_tokens_encoder )
def __getstate__( self : str ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = self.__dict__.copy()
UpperCAmelCase_ : Optional[Any] = None
return state
def __setstate__( self : str , __magic_name__ : Any ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : Dict = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
UpperCAmelCase_ : int = {}
UpperCAmelCase_ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.sentencepiece_model_ckpt )
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : Any ) -> List[str]:
"""simple docstring"""
return "".join((self.SP_CHAR_MAPPING.get(__magic_name__ , __magic_name__ ) for c in text) )
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Tuple , __magic_name__ : Any=False , __magic_name__ : List[str]=64 , __magic_name__ : List[str]=0.1 ) -> List[str]:
"""simple docstring"""
if self.sp_model_kwargs.get('''enable_sampling''' ) is True:
UpperCAmelCase_ : Dict = True
if self.sp_model_kwargs.get('''alpha''' ) is not None:
UpperCAmelCase_ : Union[str, Any] = self.sp_model_kwargs.get('''alpha''' )
if self.sp_model_kwargs.get('''nbest_size''' ) is not None:
UpperCAmelCase_ : Any = self.sp_model_kwargs.get('''nbest_size''' )
if not enable_sampling:
UpperCAmelCase_ : Dict = self.sp_model.EncodeAsPieces(__magic_name__ )
else:
UpperCAmelCase_ : Dict = self.sp_model.SampleEncodeAsPieces(__magic_name__ , __magic_name__ , __magic_name__ )
UpperCAmelCase_ : List[Any] = []
for pi, piece in enumerate(__magic_name__ ):
if piece == SPIECE_UNDERLINE:
if not pieces[pi + 1].startswith(__magic_name__ ) and pi != 0:
new_pieces.append(__magic_name__ )
continue
else:
continue
UpperCAmelCase_ : List[str] = 0
for i, chunk in enumerate(__magic_name__ ):
if chunk == SPIECE_UNDERLINE:
continue
if self.is_ch_char(__magic_name__ ) or self.is_punct(__magic_name__ ):
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
new_pieces.append(__magic_name__ )
UpperCAmelCase_ : List[Any] = i + 1
elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
UpperCAmelCase_ : List[str] = i
elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
UpperCAmelCase_ : str = i
if len(__magic_name__ ) > lst_i:
new_pieces.append(piece[lst_i:] )
return new_pieces
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Optional[int] ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = ''''''.join(__magic_name__ ).replace(__magic_name__ , ''' ''' ).strip()
return out_string
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Union[str, Any] ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : str = self.convert_ids_to_tokens(__magic_name__ )
UpperCAmelCase_ : Optional[Any] = ''''''.join(__magic_name__ ).replace(__magic_name__ , ''' ''' ).strip()
return out_string
def UpperCAmelCase__ ( self : str , __magic_name__ : Optional[Any] ) -> List[Any]:
"""simple docstring"""
return self.vocab.get(__magic_name__ , self.vocab.get(self.unk_token ) )
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
return self.reverse_vocab.get(__magic_name__ , self.unk_token )
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Any , __magic_name__ : Union[str, Any]=None ) -> Any:
"""simple docstring"""
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
UpperCAmelCase_ : Union[str, Any] = [self.cls_token_id]
UpperCAmelCase_ : List[Any] = [self.sep_token_id]
return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep
def UpperCAmelCase__ ( self : Any , __magic_name__ : Optional[Any] , __magic_name__ : List[str]=None ) -> int:
"""simple docstring"""
if offset_mapping_a is None:
return [(0, 0)] + offset_mapping_a + [(0, 0)]
return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)]
def UpperCAmelCase__ ( self : Dict , __magic_name__ : Optional[Any] , __magic_name__ : List[str]=None , __magic_name__ : Optional[Any]=False ) -> Optional[int]:
"""simple docstring"""
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(__magic_name__ )) + [1, 1] + ([0] * len(__magic_name__ )) + [1]
return [1] + ([0] * len(__magic_name__ )) + [1]
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
# called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method
if token_ids_a is None:
# [CLS] X [SEP]
return (len(__magic_name__ ) + 2) * [0]
# [CLS] A [SEP] [SEP] B [SEP]
return [0] * (len(__magic_name__ ) + 1) + [1] * (len(__magic_name__ ) + 3)
def UpperCAmelCase__ ( self : Dict , __magic_name__ : str ) -> Tuple:
"""simple docstring"""
if "\u4e00" <= char <= "\u9fff":
return True
return False
def UpperCAmelCase__ ( self : int , __magic_name__ : Optional[int] ) -> str:
"""simple docstring"""
if ("a" <= char <= "z") or ("A" <= char <= "Z"):
return True
return False
def UpperCAmelCase__ ( self : int , __magic_name__ : Optional[Any] ) -> Dict:
"""simple docstring"""
if char in ",;:.?!~,;:。?!《》【】":
return True
return False
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Any ) -> Union[str, Any]:
"""simple docstring"""
if char == " " or char == "\t" or char == "\n" or char == "\r":
return True
if len(__magic_name__ ) == 1:
UpperCAmelCase_ : Optional[Any] = unicodedata.category(__magic_name__ )
if cat == "Zs":
return True
return False
def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : Tuple ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = {}
with io.open(__magic_name__ , '''r''' , encoding='''utf-8''' ) as f:
for index, line in enumerate(__magic_name__ ):
UpperCAmelCase_ : List[Any] = line.rstrip('''\n''' )
UpperCAmelCase_ : Dict = int(__magic_name__ )
return token_to_idx
def UpperCAmelCase__ ( self : Dict , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = 0
if os.path.isdir(__magic_name__ ):
UpperCAmelCase_ : Any = os.path.join(
__magic_name__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
else:
UpperCAmelCase_ : List[str] = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory
with open(__magic_name__ , '''w''' , encoding='''utf-8''' ) as writer:
for token, token_index in sorted(self.vocab.items() , key=lambda __magic_name__ : kv[1] ):
if index != token_index:
logger.warning(
F"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."""
''' Please check that the vocabulary is not corrupted!''' )
UpperCAmelCase_ : Dict = token_index
writer.write(token + '''\n''' )
index += 1
UpperCAmelCase_ : Union[str, Any] = os.path.join(__magic_name__ , '''sentencepiece.bpe.model''' )
with open(__magic_name__ , '''wb''' ) as fi:
UpperCAmelCase_ : Optional[int] = self.sp_model.serialized_model_proto()
fi.write(__magic_name__ )
return (vocab_file,)
| 644
| 0
|
'''simple docstring'''
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
snake_case_ : int = logging.get_logger(__name__)
snake_case_ : str = {
"SenseTime/deformable-detr": "https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json",
# See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr
}
class __a (lowerCamelCase ):
__a : Optional[Any] = "deformable_detr"
__a : Optional[Any] = {
"hidden_size": "d_model",
"num_attention_heads": "encoder_attention_heads",
}
def __init__( self : List[Any] , __magic_name__ : str=True , __magic_name__ : Tuple=None , __magic_name__ : Optional[Any]=3 , __magic_name__ : int=3_00 , __magic_name__ : str=10_24 , __magic_name__ : List[Any]=6 , __magic_name__ : Dict=10_24 , __magic_name__ : Optional[int]=8 , __magic_name__ : List[Any]=6 , __magic_name__ : Dict=10_24 , __magic_name__ : int=8 , __magic_name__ : Tuple=0.0 , __magic_name__ : Tuple=True , __magic_name__ : Tuple="relu" , __magic_name__ : Union[str, Any]=2_56 , __magic_name__ : Dict=0.1 , __magic_name__ : Optional[int]=0.0 , __magic_name__ : Optional[int]=0.0 , __magic_name__ : int=0.0_2 , __magic_name__ : Dict=1.0 , __magic_name__ : Dict=True , __magic_name__ : str=False , __magic_name__ : str="sine" , __magic_name__ : List[Any]="resnet50" , __magic_name__ : List[str]=True , __magic_name__ : Optional[int]=False , __magic_name__ : List[str]=4 , __magic_name__ : List[Any]=4 , __magic_name__ : Optional[Any]=4 , __magic_name__ : List[str]=False , __magic_name__ : Tuple=3_00 , __magic_name__ : List[str]=False , __magic_name__ : Optional[int]=1 , __magic_name__ : int=5 , __magic_name__ : Union[str, Any]=2 , __magic_name__ : Optional[int]=1 , __magic_name__ : Tuple=1 , __magic_name__ : Optional[Any]=5 , __magic_name__ : Optional[int]=2 , __magic_name__ : Optional[Any]=0.1 , __magic_name__ : Dict=0.2_5 , __magic_name__ : Tuple=False , **__magic_name__ : List[Any] , ) -> Tuple:
"""simple docstring"""
if backbone_config is not None and use_timm_backbone:
raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' )
if not use_timm_backbone:
if backbone_config is None:
logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' )
UpperCAmelCase_ : Tuple = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] )
elif isinstance(__magic_name__ , __magic_name__ ):
UpperCAmelCase_ : Tuple = backbone_config.get('''model_type''' )
UpperCAmelCase_ : Optional[int] = CONFIG_MAPPING[backbone_model_type]
UpperCAmelCase_ : Any = config_class.from_dict(__magic_name__ )
UpperCAmelCase_ : Dict = use_timm_backbone
UpperCAmelCase_ : List[str] = backbone_config
UpperCAmelCase_ : Union[str, Any] = num_channels
UpperCAmelCase_ : int = num_queries
UpperCAmelCase_ : Optional[Any] = max_position_embeddings
UpperCAmelCase_ : Dict = d_model
UpperCAmelCase_ : Tuple = encoder_ffn_dim
UpperCAmelCase_ : List[Any] = encoder_layers
UpperCAmelCase_ : Any = encoder_attention_heads
UpperCAmelCase_ : List[Any] = decoder_ffn_dim
UpperCAmelCase_ : Optional[Any] = decoder_layers
UpperCAmelCase_ : Any = decoder_attention_heads
UpperCAmelCase_ : Optional[int] = dropout
UpperCAmelCase_ : Union[str, Any] = attention_dropout
UpperCAmelCase_ : Tuple = activation_dropout
UpperCAmelCase_ : Optional[int] = activation_function
UpperCAmelCase_ : Dict = init_std
UpperCAmelCase_ : int = init_xavier_std
UpperCAmelCase_ : List[str] = encoder_layerdrop
UpperCAmelCase_ : List[Any] = auxiliary_loss
UpperCAmelCase_ : Optional[int] = position_embedding_type
UpperCAmelCase_ : Union[str, Any] = backbone
UpperCAmelCase_ : Optional[Any] = use_pretrained_backbone
UpperCAmelCase_ : Dict = dilation
# deformable attributes
UpperCAmelCase_ : Optional[int] = num_feature_levels
UpperCAmelCase_ : str = encoder_n_points
UpperCAmelCase_ : Tuple = decoder_n_points
UpperCAmelCase_ : Dict = two_stage
UpperCAmelCase_ : Optional[int] = two_stage_num_proposals
UpperCAmelCase_ : Dict = with_box_refine
if two_stage is True and with_box_refine is False:
raise ValueError('''If two_stage is True, with_box_refine must be True.''' )
# Hungarian matcher
UpperCAmelCase_ : Union[str, Any] = class_cost
UpperCAmelCase_ : List[str] = bbox_cost
UpperCAmelCase_ : Dict = giou_cost
# Loss coefficients
UpperCAmelCase_ : Tuple = mask_loss_coefficient
UpperCAmelCase_ : int = dice_loss_coefficient
UpperCAmelCase_ : Optional[Any] = bbox_loss_coefficient
UpperCAmelCase_ : Any = giou_loss_coefficient
UpperCAmelCase_ : List[Any] = eos_coefficient
UpperCAmelCase_ : Dict = focal_alpha
UpperCAmelCase_ : int = disable_custom_kernels
super().__init__(is_encoder_decoder=__magic_name__ , **__magic_name__ )
@property
def UpperCAmelCase__ ( self : List[Any] ) -> int:
"""simple docstring"""
return self.encoder_attention_heads
@property
def UpperCAmelCase__ ( self : List[Any] ) -> int:
"""simple docstring"""
return self.d_model
def UpperCAmelCase__ ( self : Optional[Any] ) -> str:
"""simple docstring"""
UpperCAmelCase_ : int = copy.deepcopy(self.__dict__ )
if self.backbone_config is not None:
UpperCAmelCase_ : str = self.backbone_config.to_dict()
UpperCAmelCase_ : List[Any] = self.__class__.model_type
return output
| 721
|
'''simple docstring'''
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int ) -> str:
if number > 0:
raise ValueError('''input must be a negative integer''' )
UpperCAmelCase_ : Union[str, Any] = len(bin(SCREAMING_SNAKE_CASE__ )[3:] )
UpperCAmelCase_ : Union[str, Any] = bin(abs(SCREAMING_SNAKE_CASE__ ) - (1 << binary_number_length) )[3:]
UpperCAmelCase_ : Optional[Any] = (
(
'''1'''
+ '''0''' * (binary_number_length - len(SCREAMING_SNAKE_CASE__ ))
+ twos_complement_number
)
if number < 0
else '''0'''
)
return "0b" + twos_complement_number
if __name__ == "__main__":
import doctest
doctest.testmod()
| 644
| 0
|
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
snake_case_ : Dict = {
"configuration_swinv2": ["SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Swinv2Config"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ : str = [
"SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST",
"Swinv2ForImageClassification",
"Swinv2ForMaskedImageModeling",
"Swinv2Model",
"Swinv2PreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_swinva import (
SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST,
SwinvaForImageClassification,
SwinvaForMaskedImageModeling,
SwinvaModel,
SwinvaPreTrainedModel,
)
else:
import sys
snake_case_ : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 700
|
'''simple docstring'''
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from transformers.generation import DisjunctiveConstraint
@require_torch
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
# For consistency across different places the DisjunctiveConstraint is called,
# dc.token_ids is a list of integers. It is also initialized only by integers.
UpperCAmelCase_ : List[str] = [[1, 2, 4], [1, 2, 3, 4]]
UpperCAmelCase_ : List[str] = DisjunctiveConstraint(__magic_name__ )
self.assertTrue(isinstance(dc.token_ids , __magic_name__ ) )
with self.assertRaises(__magic_name__ ):
DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) )
with self.assertRaises(__magic_name__ ):
DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] )
def UpperCAmelCase__ ( self : List[str] ) -> Dict:
"""simple docstring"""
# We can't have constraints that are complete subsets of another. This leads to a preverse
# interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint?
# It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially
# fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm
# will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it).
UpperCAmelCase_ : Tuple = [[1, 2], [1, 2, 3, 4]]
with self.assertRaises(__magic_name__ ):
DisjunctiveConstraint(__magic_name__ ) # fails here
def UpperCAmelCase__ ( self : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = [[1, 2, 3], [1, 2, 4]]
UpperCAmelCase_ : List[str] = DisjunctiveConstraint(__magic_name__ )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = dc.update(1 )
UpperCAmelCase_ : Dict = stepped is True and completed is False and reset is False
self.assertTrue(__magic_name__ )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = dc.update(2 )
UpperCAmelCase_ : Optional[Any] = stepped is True and completed is False and reset is False
self.assertTrue(__magic_name__ )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = dc.update(3 )
UpperCAmelCase_ : Dict = stepped is True and completed is True and reset is False
self.assertTrue(__magic_name__ )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 3] )
def UpperCAmelCase__ ( self : int ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : Any = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]]
UpperCAmelCase_ : Tuple = DisjunctiveConstraint(__magic_name__ )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = dc.update(4 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2, 4] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 4, 5] )
dc.reset()
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 3 )
self.assertTrue(dc.current_seq == [1] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 2 )
self.assertTrue(dc.current_seq == [1, 2] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.remaining() == 0 )
self.assertTrue(dc.current_seq == [1, 2, 5] )
| 644
| 0
|
'''simple docstring'''
from random import shuffle
import tensorflow as tf
from numpy import array
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[Any], SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Tuple:
UpperCAmelCase_ : List[str] = int(SCREAMING_SNAKE_CASE__ )
assert noofclusters < len(SCREAMING_SNAKE_CASE__ )
# Find out the dimensionality
UpperCAmelCase_ : Tuple = len(vectors[0] )
# Will help select random centroids from among the available vectors
UpperCAmelCase_ : Optional[Any] = list(range(len(SCREAMING_SNAKE_CASE__ ) ) )
shuffle(SCREAMING_SNAKE_CASE__ )
# GRAPH OF COMPUTATION
# We initialize a new graph and set it as the default during each run
# of this algorithm. This ensures that as this function is called
# multiple times, the default graph doesn't keep getting crowded with
# unused ops and Variables from previous function calls.
UpperCAmelCase_ : Union[str, Any] = tf.Graph()
with graph.as_default():
# SESSION OF COMPUTATION
UpperCAmelCase_ : Union[str, Any] = tf.Session()
##CONSTRUCTING THE ELEMENTS OF COMPUTATION
##First lets ensure we have a Variable vector for each centroid,
##initialized to one of the vectors from the available data points
UpperCAmelCase_ : List[str] = [
tf.Variable(vectors[vector_indices[i]] ) for i in range(SCREAMING_SNAKE_CASE__ )
]
##These nodes will assign the centroid Variables the appropriate
##values
UpperCAmelCase_ : Any = tf.placeholder('''float64''', [dim] )
UpperCAmelCase_ : List[Any] = []
for centroid in centroids:
cent_assigns.append(tf.assign(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) )
##Variables for cluster assignments of individual vectors(initialized
##to 0 at first)
UpperCAmelCase_ : Union[str, Any] = [tf.Variable(0 ) for i in range(len(SCREAMING_SNAKE_CASE__ ) )]
##These nodes will assign an assignment Variable the appropriate
##value
UpperCAmelCase_ : Any = tf.placeholder('''int32''' )
UpperCAmelCase_ : Optional[Any] = []
for assignment in assignments:
cluster_assigns.append(tf.assign(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) )
##Now lets construct the node that will compute the mean
# The placeholder for the input
UpperCAmelCase_ : Tuple = tf.placeholder('''float''', [None, dim] )
# The Node/op takes the input and computes a mean along the 0th
# dimension, i.e. the list of input vectors
UpperCAmelCase_ : Dict = tf.reduce_mean(SCREAMING_SNAKE_CASE__, 0 )
##Node for computing Euclidean distances
# Placeholders for input
UpperCAmelCase_ : int = tf.placeholder('''float''', [dim] )
UpperCAmelCase_ : Optional[Any] = tf.placeholder('''float''', [dim] )
UpperCAmelCase_ : Optional[int] = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), 2 ) ) )
##This node will figure out which cluster to assign a vector to,
##based on Euclidean distances of the vector from the centroids.
# Placeholder for input
UpperCAmelCase_ : Dict = tf.placeholder('''float''', [noofclusters] )
UpperCAmelCase_ : Dict = tf.argmin(SCREAMING_SNAKE_CASE__, 0 )
##INITIALIZING STATE VARIABLES
##This will help initialization of all Variables defined with respect
##to the graph. The Variable-initializer should be defined after
##all the Variables have been constructed, so that each of them
##will be included in the initialization.
UpperCAmelCase_ : str = tf.initialize_all_variables()
# Initialize all variables
sess.run(SCREAMING_SNAKE_CASE__ )
##CLUSTERING ITERATIONS
# Now perform the Expectation-Maximization steps of K-Means clustering
# iterations. To keep things simple, we will only do a set number of
# iterations, instead of using a Stopping Criterion.
UpperCAmelCase_ : Optional[Any] = 100
for _ in range(SCREAMING_SNAKE_CASE__ ):
##EXPECTATION STEP
##Based on the centroid locations till last iteration, compute
##the _expected_ centroid assignments.
# Iterate over each vector
for vector_n in range(len(SCREAMING_SNAKE_CASE__ ) ):
UpperCAmelCase_ : Dict = vectors[vector_n]
# Compute Euclidean distance between this vector and each
# centroid. Remember that this list cannot be named
#'centroid_distances', since that is the input to the
# cluster assignment node.
UpperCAmelCase_ : List[Any] = [
sess.run(SCREAMING_SNAKE_CASE__, feed_dict={va: vect, va: sess.run(SCREAMING_SNAKE_CASE__ )} )
for centroid in centroids
]
# Now use the cluster assignment node, with the distances
# as the input
UpperCAmelCase_ : List[Any] = sess.run(
SCREAMING_SNAKE_CASE__, feed_dict={centroid_distances: distances} )
# Now assign the value to the appropriate state variable
sess.run(
cluster_assigns[vector_n], feed_dict={assignment_value: assignment} )
##MAXIMIZATION STEP
# Based on the expected state computed from the Expectation Step,
# compute the locations of the centroids so as to maximize the
# overall objective of minimizing within-cluster Sum-of-Squares
for cluster_n in range(SCREAMING_SNAKE_CASE__ ):
# Collect all the vectors assigned to this cluster
UpperCAmelCase_ : Dict = [
vectors[i]
for i in range(len(SCREAMING_SNAKE_CASE__ ) )
if sess.run(assignments[i] ) == cluster_n
]
# Compute new centroid location
UpperCAmelCase_ : Dict = sess.run(
SCREAMING_SNAKE_CASE__, feed_dict={mean_input: array(SCREAMING_SNAKE_CASE__ )} )
# Assign value to appropriate variable
sess.run(
cent_assigns[cluster_n], feed_dict={centroid_value: new_location} )
# Return centroids and assignments
UpperCAmelCase_ : Union[str, Any] = sess.run(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Optional[int] = sess.run(SCREAMING_SNAKE_CASE__ )
return centroids, assignments
| 701
|
'''simple docstring'''
import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.layers import LSTM, Dense
from tensorflow.keras.models import Sequential
if __name__ == "__main__":
snake_case_ : List[Any] = pd.read_csv("sample_data.csv", header=None)
snake_case_ : Optional[Any] = df.shape[:1][0]
# If you're using some other dataset input the target column
snake_case_ : Any = df.iloc[:, 1:2]
snake_case_ : str = actual_data.values.reshape(len_data, 1)
snake_case_ : Optional[Any] = MinMaxScaler().fit_transform(actual_data)
snake_case_ : List[str] = 10
snake_case_ : Any = 5
snake_case_ : Any = 20
snake_case_ : Tuple = len_data - periods * look_back
snake_case_ : str = actual_data[:division]
snake_case_ : Optional[int] = actual_data[division - look_back :]
snake_case_ ,snake_case_ : Any = [], []
snake_case_ ,snake_case_ : Union[str, Any] = [], []
for i in range(0, len(train_data) - forward_days - look_back + 1):
train_x.append(train_data[i : i + look_back])
train_y.append(train_data[i + look_back : i + look_back + forward_days])
for i in range(0, len(test_data) - forward_days - look_back + 1):
test_x.append(test_data[i : i + look_back])
test_y.append(test_data[i + look_back : i + look_back + forward_days])
snake_case_ : Any = np.array(train_x)
snake_case_ : Optional[Any] = np.array(test_x)
snake_case_ : Optional[Any] = np.array([list(i.ravel()) for i in train_y])
snake_case_ : List[str] = np.array([list(i.ravel()) for i in test_y])
snake_case_ : List[Any] = Sequential()
model.add(LSTM(1_28, input_shape=(look_back, 1), return_sequences=True))
model.add(LSTM(64, input_shape=(1_28, 1)))
model.add(Dense(forward_days))
model.compile(loss="mean_squared_error", optimizer="adam")
snake_case_ : Dict = model.fit(
x_train, y_train, epochs=1_50, verbose=1, shuffle=True, batch_size=4
)
snake_case_ : Optional[Any] = model.predict(x_test)
| 644
| 0
|
'''simple docstring'''
import re
from ..models.auto import AutoProcessor
from ..models.vision_encoder_decoder import VisionEncoderDecoderModel
from ..utils import is_vision_available
from .base import PipelineTool
if is_vision_available():
from PIL import Image
class __a (lowerCamelCase ):
__a : Dict = "naver-clova-ix/donut-base-finetuned-docvqa"
__a : Optional[int] = (
"This is a tool that answers a question about an document (pdf). It takes an input named `document` which "
"should be the document containing the information, as well as a `question` that is the question about the "
"document. It returns a text that contains the answer to the question."
)
__a : int = "document_qa"
__a : Optional[Any] = AutoProcessor
__a : Optional[Any] = VisionEncoderDecoderModel
__a : Any = ["image", "text"]
__a : Union[str, Any] = ["text"]
def __init__( self : int , *__magic_name__ : Union[str, Any] , **__magic_name__ : List[Any] ) -> List[Any]:
"""simple docstring"""
if not is_vision_available():
raise ValueError('''Pillow must be installed to use the DocumentQuestionAnsweringTool.''' )
super().__init__(*__magic_name__ , **__magic_name__ )
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : "Image" , __magic_name__ : str ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>'''
UpperCAmelCase_ : Any = task_prompt.replace('''{user_input}''' , __magic_name__ )
UpperCAmelCase_ : int = self.pre_processor.tokenizer(
__magic_name__ , add_special_tokens=__magic_name__ , return_tensors='''pt''' ).input_ids
UpperCAmelCase_ : int = self.pre_processor(__magic_name__ , return_tensors='''pt''' ).pixel_values
return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values}
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Optional[Any] ) -> List[str]:
"""simple docstring"""
return self.model.generate(
inputs['''pixel_values'''].to(self.device ) , decoder_input_ids=inputs['''decoder_input_ids'''].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__magic_name__ , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__magic_name__ , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__magic_name__ , ).sequences
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Tuple ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = self.pre_processor.batch_decode(__magic_name__ )[0]
UpperCAmelCase_ : Dict = sequence.replace(self.pre_processor.tokenizer.eos_token , '''''' )
UpperCAmelCase_ : Optional[int] = sequence.replace(self.pre_processor.tokenizer.pad_token , '''''' )
UpperCAmelCase_ : Dict = re.sub(R'''<.*?>''' , '''''' , __magic_name__ , count=1 ).strip() # remove first task start token
UpperCAmelCase_ : List[str] = self.pre_processor.tokenajson(__magic_name__ )
return sequence["answer"]
| 702
|
'''simple docstring'''
from typing import Any, Callable, Dict, List, Optional, Union
import torch
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
snake_case_ : Union[str, Any] = "CompVis/stable-diffusion-v1-1"
snake_case_ : Dict = "CompVis/stable-diffusion-v1-2"
snake_case_ : Any = "CompVis/stable-diffusion-v1-3"
snake_case_ : str = "CompVis/stable-diffusion-v1-4"
class __a (lowerCamelCase ):
def __init__( self : Any , __magic_name__ : AutoencoderKL , __magic_name__ : CLIPTextModel , __magic_name__ : CLIPTokenizer , __magic_name__ : UNetaDConditionModel , __magic_name__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __magic_name__ : StableDiffusionSafetyChecker , __magic_name__ : CLIPImageProcessor , __magic_name__ : bool = True , ) -> str:
"""simple docstring"""
super()._init_()
UpperCAmelCase_ : Any = StableDiffusionPipeline.from_pretrained(__magic_name__ )
UpperCAmelCase_ : Dict = StableDiffusionPipeline.from_pretrained(__magic_name__ )
UpperCAmelCase_ : List[Any] = StableDiffusionPipeline.from_pretrained(__magic_name__ )
UpperCAmelCase_ : Tuple = StableDiffusionPipeline(
vae=__magic_name__ , text_encoder=__magic_name__ , tokenizer=__magic_name__ , unet=__magic_name__ , scheduler=__magic_name__ , safety_checker=__magic_name__ , feature_extractor=__magic_name__ , requires_safety_checker=__magic_name__ , )
self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea )
@property
def UpperCAmelCase__ ( self : Tuple ) -> Dict[str, Any]:
"""simple docstring"""
return {k: getattr(self , __magic_name__ ) for k in self.config.keys() if not k.startswith('''_''' )}
def UpperCAmelCase__ ( self : Dict , __magic_name__ : Optional[Union[str, int]] = "auto" ) -> int:
"""simple docstring"""
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
UpperCAmelCase_ : List[str] = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(__magic_name__ )
def UpperCAmelCase__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
self.enable_attention_slicing(__magic_name__ )
@torch.no_grad()
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Tuple , ) -> Optional[int]:
"""simple docstring"""
return self.pipea(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
@torch.no_grad()
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Any , ) -> Any:
"""simple docstring"""
return self.pipea(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
@torch.no_grad()
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Dict , ) -> List[str]:
"""simple docstring"""
return self.pipea(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
@torch.no_grad()
def UpperCAmelCase__ ( self : int , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Optional[int] , ) -> str:
"""simple docstring"""
return self.pipea(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
@torch.no_grad()
def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Optional[int] , ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : int = '''cuda''' if torch.cuda.is_available() else '''cpu'''
self.to(__magic_name__ )
# Checks if the height and width are divisible by 8 or not
if height % 8 != 0 or width % 8 != 0:
raise ValueError(F"""`height` and `width` must be divisible by 8 but are {height} and {width}.""" )
# Get first result from Stable Diffusion Checkpoint v1.1
UpperCAmelCase_ : Optional[int] = self.textaimg_sda_a(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
# Get first result from Stable Diffusion Checkpoint v1.2
UpperCAmelCase_ : int = self.textaimg_sda_a(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
# Get first result from Stable Diffusion Checkpoint v1.3
UpperCAmelCase_ : str = self.textaimg_sda_a(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
# Get first result from Stable Diffusion Checkpoint v1.4
UpperCAmelCase_ : str = self.textaimg_sda_a(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
# Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result
return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
| 644
| 0
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
snake_case_ : List[Any] = {"configuration_opt": ["OPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "OPTConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ : str = [
"OPT_PRETRAINED_MODEL_ARCHIVE_LIST",
"OPTForCausalLM",
"OPTModel",
"OPTPreTrainedModel",
"OPTForSequenceClassification",
"OPTForQuestionAnswering",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ : Optional[Any] = ["TFOPTForCausalLM", "TFOPTModel", "TFOPTPreTrainedModel"]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ : Dict = [
"FlaxOPTForCausalLM",
"FlaxOPTModel",
"FlaxOPTPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_opt import (
OPT_PRETRAINED_MODEL_ARCHIVE_LIST,
OPTForCausalLM,
OPTForQuestionAnswering,
OPTForSequenceClassification,
OPTModel,
OPTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel
else:
import sys
snake_case_ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 703
|
'''simple docstring'''
import argparse
import json
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
snake_case_ : Optional[int] = 16
snake_case_ : Tuple = 32
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Accelerator, SCREAMING_SNAKE_CASE__ : int = 16, SCREAMING_SNAKE_CASE__ : str = "bert-base-cased" ) -> Dict:
UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : int = load_dataset('''glue''', '''mrpc''' )
def tokenize_function(SCREAMING_SNAKE_CASE__ : Optional[int] ):
# max_length=None => use the model max length (it's actually the default)
UpperCAmelCase_ : Union[str, Any] = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=SCREAMING_SNAKE_CASE__, max_length=SCREAMING_SNAKE_CASE__ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
UpperCAmelCase_ : Tuple = datasets.map(
SCREAMING_SNAKE_CASE__, batched=SCREAMING_SNAKE_CASE__, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], load_from_cache_file=SCREAMING_SNAKE_CASE__ )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
UpperCAmelCase_ : Optional[Any] = tokenized_datasets.rename_column('''label''', '''labels''' )
def collate_fn(SCREAMING_SNAKE_CASE__ : str ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(SCREAMING_SNAKE_CASE__, padding='''max_length''', max_length=128, return_tensors='''pt''' )
return tokenizer.pad(SCREAMING_SNAKE_CASE__, padding='''longest''', return_tensors='''pt''' )
# Instantiate dataloaders.
UpperCAmelCase_ : str = DataLoader(
tokenized_datasets['''train'''], shuffle=SCREAMING_SNAKE_CASE__, collate_fn=SCREAMING_SNAKE_CASE__, batch_size=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : int = DataLoader(
tokenized_datasets['''validation'''], shuffle=SCREAMING_SNAKE_CASE__, collate_fn=SCREAMING_SNAKE_CASE__, batch_size=SCREAMING_SNAKE_CASE__ )
return train_dataloader, eval_dataloader
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Optional[Any], SCREAMING_SNAKE_CASE__ : Optional[int], SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : Any ) -> Any:
model.eval()
UpperCAmelCase_ : List[str] = 0
for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
UpperCAmelCase_ : Dict = model(**SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : str = outputs.logits.argmax(dim=-1 )
# It is slightly faster to call this once, than multiple times
UpperCAmelCase_ , UpperCAmelCase_ : List[str] = accelerator.gather(
(predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates
if accelerator.use_distributed:
if step == len(SCREAMING_SNAKE_CASE__ ) - 1:
UpperCAmelCase_ : Tuple = predictions[: len(eval_dataloader.dataset ) - samples_seen]
UpperCAmelCase_ : int = references[: len(eval_dataloader.dataset ) - samples_seen]
else:
samples_seen += references.shape[0]
metric.add_batch(
predictions=SCREAMING_SNAKE_CASE__, references=SCREAMING_SNAKE_CASE__, )
UpperCAmelCase_ : List[str] = metric.compute()
return eval_metric["accuracy"]
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : int ) -> Tuple:
# Initialize accelerator
UpperCAmelCase_ : Union[str, Any] = Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
UpperCAmelCase_ : int = config['''lr''']
UpperCAmelCase_ : Optional[int] = int(config['''num_epochs'''] )
UpperCAmelCase_ : Optional[int] = int(config['''seed'''] )
UpperCAmelCase_ : List[str] = int(config['''batch_size'''] )
UpperCAmelCase_ : Optional[int] = args.model_name_or_path
set_seed(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = get_dataloaders(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
UpperCAmelCase_ : List[Any] = AutoModelForSequenceClassification.from_pretrained(SCREAMING_SNAKE_CASE__, return_dict=SCREAMING_SNAKE_CASE__ )
# Instantiate optimizer
UpperCAmelCase_ : str = (
AdamW
if accelerator.state.deepspeed_plugin is None
or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
UpperCAmelCase_ : List[str] = optimizer_cls(params=model.parameters(), lr=SCREAMING_SNAKE_CASE__ )
if accelerator.state.deepspeed_plugin is not None:
UpperCAmelCase_ : List[Any] = accelerator.state.deepspeed_plugin.deepspeed_config[
'''gradient_accumulation_steps'''
]
else:
UpperCAmelCase_ : Tuple = 1
UpperCAmelCase_ : int = (len(SCREAMING_SNAKE_CASE__ ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
UpperCAmelCase_ : Tuple = get_linear_schedule_with_warmup(
optimizer=SCREAMING_SNAKE_CASE__, num_warmup_steps=0, num_training_steps=SCREAMING_SNAKE_CASE__, )
else:
UpperCAmelCase_ : Any = DummyScheduler(SCREAMING_SNAKE_CASE__, total_num_steps=SCREAMING_SNAKE_CASE__, warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = accelerator.prepare(
SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
# We need to keep track of how many total steps we have iterated over
UpperCAmelCase_ : Union[str, Any] = 0
# We also need to keep track of the stating epoch so files are named properly
UpperCAmelCase_ : Dict = 0
UpperCAmelCase_ : int = evaluate.load('''glue''', '''mrpc''' )
UpperCAmelCase_ : Optional[Any] = num_epochs
if args.partial_train_epoch is not None:
UpperCAmelCase_ : List[Any] = args.partial_train_epoch
if args.resume_from_checkpoint:
accelerator.load_state(args.resume_from_checkpoint )
UpperCAmelCase_ : Tuple = args.resume_from_checkpoint.split('''epoch_''' )[1]
UpperCAmelCase_ : int = ''''''
for char in epoch_string:
if char.isdigit():
state_epoch_num += char
else:
break
UpperCAmelCase_ : Union[str, Any] = int(SCREAMING_SNAKE_CASE__ ) + 1
UpperCAmelCase_ : Dict = evaluation_loop(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
accelerator.print('''resumed checkpoint performance:''', SCREAMING_SNAKE_CASE__ )
accelerator.print('''resumed checkpoint\'s scheduler\'s lr:''', lr_scheduler.get_lr()[0] )
accelerator.print('''resumed optimizers\'s lr:''', optimizer.param_groups[0]['''lr'''] )
with open(os.path.join(args.output_dir, F"""state_{starting_epoch-1}.json""" ), '''r''' ) as f:
UpperCAmelCase_ : Optional[int] = json.load(SCREAMING_SNAKE_CASE__ )
assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed"
assert (
resumed_state["lr"] == lr_scheduler.get_lr()[0]
), "Scheduler learning rate mismatch, loading from checkpoint failed"
assert (
resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"]
), "Optimizer learning rate mismatch, loading from checkpoint failed"
assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed"
return
# Now we train the model
UpperCAmelCase_ : int = {}
for epoch in range(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ):
model.train()
for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase_ : Optional[int] = model(**SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Any = outputs.loss
UpperCAmelCase_ : Tuple = loss / gradient_accumulation_steps
accelerator.backward(SCREAMING_SNAKE_CASE__ )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
UpperCAmelCase_ : Tuple = F"""epoch_{epoch}"""
UpperCAmelCase_ : Optional[int] = os.path.join(args.output_dir, SCREAMING_SNAKE_CASE__ )
accelerator.save_state(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : int = evaluation_loop(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Optional[Any] = accuracy
UpperCAmelCase_ : Any = lr_scheduler.get_lr()[0]
UpperCAmelCase_ : List[str] = optimizer.param_groups[0]['''lr''']
UpperCAmelCase_ : Tuple = epoch
UpperCAmelCase_ : Dict = overall_step
accelerator.print(F"""epoch {epoch}:""", SCREAMING_SNAKE_CASE__ )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir, F"""state_{epoch}.json""" ), '''w''' ) as f:
json.dump(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
def lowerCamelCase_ ( ) -> List[str]:
UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' )
parser.add_argument(
'''--model_name_or_path''', type=SCREAMING_SNAKE_CASE__, default='''bert-base-cased''', help='''Path to pretrained model or model identifier from huggingface.co/models.''', required=SCREAMING_SNAKE_CASE__, )
parser.add_argument(
'''--output_dir''', type=SCREAMING_SNAKE_CASE__, default='''.''', help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''', )
parser.add_argument(
'''--resume_from_checkpoint''', type=SCREAMING_SNAKE_CASE__, default=SCREAMING_SNAKE_CASE__, help='''If the training should continue from a checkpoint folder.''', )
parser.add_argument(
'''--partial_train_epoch''', type=SCREAMING_SNAKE_CASE__, default=SCREAMING_SNAKE_CASE__, help='''If passed, the training will stop after this number of epochs.''', )
parser.add_argument(
'''--num_epochs''', type=SCREAMING_SNAKE_CASE__, default=2, help='''Number of train epochs.''', )
UpperCAmelCase_ : Optional[int] = parser.parse_args()
UpperCAmelCase_ : List[Any] = {'''lr''': 2E-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16}
training_function(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
main()
| 644
| 0
|
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel
from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline
from diffusers.utils import floats_tensor, nightly, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def UpperCAmelCase__ ( self : Optional[int] ) -> int:
"""simple docstring"""
UpperCAmelCase_ : int = 1
UpperCAmelCase_ : Union[str, Any] = 3
UpperCAmelCase_ : Union[str, Any] = (32, 32)
UpperCAmelCase_ : List[str] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__magic_name__ )
return image
@property
def UpperCAmelCase__ ( self : Tuple ) -> List[Any]:
"""simple docstring"""
torch.manual_seed(0 )
UpperCAmelCase_ : List[Any] = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , )
return model
@property
def UpperCAmelCase__ ( self : Optional[Any] ) -> str:
"""simple docstring"""
torch.manual_seed(0 )
UpperCAmelCase_ : List[Any] = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
return model
@property
def UpperCAmelCase__ ( self : List[str] ) -> Dict:
"""simple docstring"""
torch.manual_seed(0 )
UpperCAmelCase_ : int = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , )
return CLIPTextModel(__magic_name__ )
@property
def UpperCAmelCase__ ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
def extract(*__magic_name__ : int , **__magic_name__ : Optional[Any] ):
class __a :
def __init__( self : Any ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = torch.ones([0] )
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Tuple ) -> Dict:
"""simple docstring"""
self.pixel_values.to(__magic_name__ )
return self
return Out()
return extract
def UpperCAmelCase__ ( self : str ) -> int:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator
UpperCAmelCase_ : Any = self.dummy_cond_unet
UpperCAmelCase_ : Any = DDIMScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=__magic_name__ , set_alpha_to_one=__magic_name__ , )
UpperCAmelCase_ : List[str] = self.dummy_vae
UpperCAmelCase_ : Any = self.dummy_text_encoder
UpperCAmelCase_ : str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
# make sure here that pndm scheduler skips prk
UpperCAmelCase_ : Dict = StableDiffusionPipeline(
unet=__magic_name__ , scheduler=__magic_name__ , vae=__magic_name__ , text_encoder=__magic_name__ , tokenizer=__magic_name__ , safety_checker=__magic_name__ , feature_extractor=self.dummy_extractor , )
UpperCAmelCase_ : str = sd_pipe.to(__magic_name__ )
sd_pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : Optional[Any] = '''A painting of a squirrel eating a burger'''
UpperCAmelCase_ : List[str] = torch.Generator(device=__magic_name__ ).manual_seed(0 )
UpperCAmelCase_ : Tuple = sd_pipe([prompt] , generator=__magic_name__ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' )
UpperCAmelCase_ : List[Any] = output.images
UpperCAmelCase_ : List[str] = torch.Generator(device=__magic_name__ ).manual_seed(0 )
UpperCAmelCase_ : List[Any] = sd_pipe(
[prompt] , generator=__magic_name__ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , return_dict=__magic_name__ , )[0]
UpperCAmelCase_ : Optional[Any] = image[0, -3:, -3:, -1]
UpperCAmelCase_ : Optional[int] = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
UpperCAmelCase_ : Union[str, Any] = np.array([0.5_7_5_6, 0.6_1_1_8, 0.5_0_0_5, 0.5_0_4_1, 0.5_4_7_1, 0.4_7_2_6, 0.4_9_7_6, 0.4_8_6_5, 0.4_8_6_4] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def UpperCAmelCase__ ( self : Optional[Any] ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Any = '''cpu''' # ensure determinism for the device-dependent torch.Generator
UpperCAmelCase_ : Union[str, Any] = self.dummy_cond_unet
UpperCAmelCase_ : Union[str, Any] = PNDMScheduler(skip_prk_steps=__magic_name__ )
UpperCAmelCase_ : Tuple = self.dummy_vae
UpperCAmelCase_ : List[Any] = self.dummy_text_encoder
UpperCAmelCase_ : List[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
# make sure here that pndm scheduler skips prk
UpperCAmelCase_ : int = StableDiffusionPipeline(
unet=__magic_name__ , scheduler=__magic_name__ , vae=__magic_name__ , text_encoder=__magic_name__ , tokenizer=__magic_name__ , safety_checker=__magic_name__ , feature_extractor=self.dummy_extractor , )
UpperCAmelCase_ : Union[str, Any] = sd_pipe.to(__magic_name__ )
sd_pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : str = '''A painting of a squirrel eating a burger'''
UpperCAmelCase_ : str = torch.Generator(device=__magic_name__ ).manual_seed(0 )
UpperCAmelCase_ : List[str] = sd_pipe([prompt] , generator=__magic_name__ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' )
UpperCAmelCase_ : int = output.images
UpperCAmelCase_ : str = torch.Generator(device=__magic_name__ ).manual_seed(0 )
UpperCAmelCase_ : Optional[Any] = sd_pipe(
[prompt] , generator=__magic_name__ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , return_dict=__magic_name__ , )[0]
UpperCAmelCase_ : Optional[int] = image[0, -3:, -3:, -1]
UpperCAmelCase_ : List[Any] = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
UpperCAmelCase_ : str = np.array([0.5_1_2_5, 0.5_7_1_6, 0.4_8_2_8, 0.5_0_6_0, 0.5_6_5_0, 0.4_7_6_8, 0.5_1_8_5, 0.4_8_9_5, 0.4_9_9_3] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def UpperCAmelCase__ ( self : Dict ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : int = StableDiffusionPipeline.from_pretrained(
'''hf-internal-testing/tiny-stable-diffusion-lms-pipe''' , safety_checker=__magic_name__ )
assert isinstance(__magic_name__ , __magic_name__ )
assert isinstance(pipe.scheduler , __magic_name__ )
assert pipe.safety_checker is None
UpperCAmelCase_ : Tuple = pipe('''example prompt''' , num_inference_steps=2 ).images[0]
assert image is not None
# check that there's no error when saving a pipeline with one of the models being None
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(__magic_name__ )
UpperCAmelCase_ : Dict = StableDiffusionPipeline.from_pretrained(__magic_name__ )
# sanity check that the pipeline still works
assert pipe.safety_checker is None
UpperCAmelCase_ : int = pipe('''example prompt''' , num_inference_steps=2 ).images[0]
assert image is not None
@unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' )
def UpperCAmelCase__ ( self : List[Any] ) -> int:
"""simple docstring"""
UpperCAmelCase_ : str = self.dummy_cond_unet
UpperCAmelCase_ : Optional[int] = PNDMScheduler(skip_prk_steps=__magic_name__ )
UpperCAmelCase_ : Optional[int] = self.dummy_vae
UpperCAmelCase_ : List[str] = self.dummy_text_encoder
UpperCAmelCase_ : Optional[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
# put models in fp16
UpperCAmelCase_ : Tuple = unet.half()
UpperCAmelCase_ : List[str] = vae.half()
UpperCAmelCase_ : Union[str, Any] = bert.half()
# make sure here that pndm scheduler skips prk
UpperCAmelCase_ : Union[str, Any] = StableDiffusionPipeline(
unet=__magic_name__ , scheduler=__magic_name__ , vae=__magic_name__ , text_encoder=__magic_name__ , tokenizer=__magic_name__ , safety_checker=__magic_name__ , feature_extractor=self.dummy_extractor , )
UpperCAmelCase_ : Optional[Any] = sd_pipe.to(__magic_name__ )
sd_pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : Union[str, Any] = '''A painting of a squirrel eating a burger'''
UpperCAmelCase_ : Any = sd_pipe([prompt] , num_inference_steps=2 , output_type='''np''' ).images
assert image.shape == (1, 64, 64, 3)
@nightly
@require_torch_gpu
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : Dict ) -> str:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ ( self : Optional[int] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' , safety_checker=__magic_name__ )
UpperCAmelCase_ : Any = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config )
UpperCAmelCase_ : Optional[int] = sd_pipe.to(__magic_name__ )
sd_pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : Tuple = (
'''portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle'''
''' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with'''
''' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and'''
''' children from bahnhof zoo, detailed '''
)
UpperCAmelCase_ : Dict = 40_03_66_03_46
UpperCAmelCase_ : Optional[int] = 7
# without safety guidance (sld_guidance_scale = 0)
UpperCAmelCase_ : Union[str, Any] = torch.manual_seed(__magic_name__ )
UpperCAmelCase_ : Dict = sd_pipe(
[prompt] , generator=__magic_name__ , guidance_scale=__magic_name__ , num_inference_steps=50 , output_type='''np''' , width=5_12 , height=5_12 , sld_guidance_scale=0 , )
UpperCAmelCase_ : Optional[int] = output.images
UpperCAmelCase_ : Union[str, Any] = image[0, -3:, -3:, -1]
UpperCAmelCase_ : Dict = [0.2_2_7_8, 0.2_2_3_1, 0.2_2_4_9, 0.2_3_3_3, 0.2_3_0_3, 0.1_8_8_5, 0.2_2_7_3, 0.2_1_4_4, 0.2_1_7_6]
assert image.shape == (1, 5_12, 5_12, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
# without safety guidance (strong configuration)
UpperCAmelCase_ : Union[str, Any] = torch.manual_seed(__magic_name__ )
UpperCAmelCase_ : Any = sd_pipe(
[prompt] , generator=__magic_name__ , guidance_scale=__magic_name__ , num_inference_steps=50 , output_type='''np''' , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
UpperCAmelCase_ : str = output.images
UpperCAmelCase_ : Optional[int] = image[0, -3:, -3:, -1]
UpperCAmelCase_ : List[Any] = [0.2_3_8_3, 0.2_2_7_6, 0.2_3_6, 0.2_1_9_2, 0.2_1_8_6, 0.2_0_5_3, 0.1_9_7_1, 0.1_9_0_1, 0.1_7_1_9]
assert image.shape == (1, 5_12, 5_12, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def UpperCAmelCase__ ( self : int ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' , safety_checker=__magic_name__ )
UpperCAmelCase_ : Tuple = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config )
UpperCAmelCase_ : List[Any] = sd_pipe.to(__magic_name__ )
sd_pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : Any = '''padme amidala taking a bath artwork, safe for work, no nudity'''
UpperCAmelCase_ : Union[str, Any] = 27_34_97_17_55
UpperCAmelCase_ : str = 7
UpperCAmelCase_ : List[str] = torch.manual_seed(__magic_name__ )
UpperCAmelCase_ : Tuple = sd_pipe(
[prompt] , generator=__magic_name__ , guidance_scale=__magic_name__ , num_inference_steps=50 , output_type='''np''' , width=5_12 , height=5_12 , sld_guidance_scale=0 , )
UpperCAmelCase_ : str = output.images
UpperCAmelCase_ : int = image[0, -3:, -3:, -1]
UpperCAmelCase_ : Dict = [0.3_5_0_2, 0.3_6_2_2, 0.3_3_9_6, 0.3_6_4_2, 0.3_4_7_8, 0.3_3_1_8, 0.3_5, 0.3_3_4_8, 0.3_2_9_7]
assert image.shape == (1, 5_12, 5_12, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
UpperCAmelCase_ : Optional[Any] = torch.manual_seed(__magic_name__ )
UpperCAmelCase_ : int = sd_pipe(
[prompt] , generator=__magic_name__ , guidance_scale=__magic_name__ , num_inference_steps=50 , output_type='''np''' , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
UpperCAmelCase_ : Optional[int] = output.images
UpperCAmelCase_ : Union[str, Any] = image[0, -3:, -3:, -1]
UpperCAmelCase_ : Optional[Any] = [0.5_5_3_1, 0.5_2_0_6, 0.4_8_9_5, 0.5_1_5_6, 0.5_1_8_2, 0.4_7_5_1, 0.4_8_0_2, 0.4_8_0_3, 0.4_4_4_3]
assert image.shape == (1, 5_12, 5_12, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def UpperCAmelCase__ ( self : Optional[int] ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' )
UpperCAmelCase_ : Optional[Any] = sd_pipe.to(__magic_name__ )
sd_pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : str = (
'''the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.'''
''' leyendecker'''
)
UpperCAmelCase_ : Any = 10_44_35_52_34
UpperCAmelCase_ : Dict = 12
UpperCAmelCase_ : List[str] = torch.manual_seed(__magic_name__ )
UpperCAmelCase_ : int = sd_pipe(
[prompt] , generator=__magic_name__ , guidance_scale=__magic_name__ , num_inference_steps=50 , output_type='''np''' , width=5_12 , height=5_12 , sld_guidance_scale=0 , )
UpperCAmelCase_ : Union[str, Any] = output.images
UpperCAmelCase_ : Optional[int] = image[0, -3:, -3:, -1]
UpperCAmelCase_ : List[Any] = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] )
assert image.shape == (1, 5_12, 5_12, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7
UpperCAmelCase_ : Union[str, Any] = torch.manual_seed(__magic_name__ )
UpperCAmelCase_ : Any = sd_pipe(
[prompt] , generator=__magic_name__ , guidance_scale=__magic_name__ , num_inference_steps=50 , output_type='''np''' , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
UpperCAmelCase_ : Tuple = output.images
UpperCAmelCase_ : Any = image[0, -3:, -3:, -1]
UpperCAmelCase_ : Optional[int] = np.array([0.5_8_1_8, 0.6_2_8_5, 0.6_8_3_5, 0.6_0_1_9, 0.6_2_5, 0.6_7_5_4, 0.6_0_9_6, 0.6_3_3_4, 0.6_5_6_1] )
assert image.shape == (1, 5_12, 5_12, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 704
|
'''simple docstring'''
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : list[int] ) -> list[list[int]]:
UpperCAmelCase_ : int = []
if len(SCREAMING_SNAKE_CASE__ ) == 1:
return [nums.copy()]
for _ in range(len(SCREAMING_SNAKE_CASE__ ) ):
UpperCAmelCase_ : List[Any] = nums.pop(0 )
UpperCAmelCase_ : Optional[Any] = permute(SCREAMING_SNAKE_CASE__ )
for perm in permutations:
perm.append(SCREAMING_SNAKE_CASE__ )
result.extend(SCREAMING_SNAKE_CASE__ )
nums.append(SCREAMING_SNAKE_CASE__ )
return result
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[str] ) -> Any:
def backtrack(SCREAMING_SNAKE_CASE__ : Union[str, Any] ):
if start == len(SCREAMING_SNAKE_CASE__ ) - 1:
output.append(nums[:] )
else:
for i in range(SCREAMING_SNAKE_CASE__, len(SCREAMING_SNAKE_CASE__ ) ):
UpperCAmelCase_ , UpperCAmelCase_ : Tuple = nums[i], nums[start]
backtrack(start + 1 )
UpperCAmelCase_ , UpperCAmelCase_ : int = nums[i], nums[start] # backtrack
UpperCAmelCase_ : Optional[int] = []
backtrack(0 )
return output
if __name__ == "__main__":
import doctest
# use res to print the data in permute2 function
snake_case_ : Tuple = permutea([1, 2, 3])
print(res)
doctest.testmod()
| 644
| 0
|
'''simple docstring'''
from __future__ import annotations
from typing import Any
class __a :
def __init__( self : List[str] , __magic_name__ : int = 6 ) -> None:
"""simple docstring"""
UpperCAmelCase_ : Node | None = None
UpperCAmelCase_ : Node | None = None
self.create_linked_list(__magic_name__ )
def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : int ) -> None:
"""simple docstring"""
UpperCAmelCase_ : Tuple = Node()
UpperCAmelCase_ : Optional[int] = current_node
UpperCAmelCase_ : int = current_node
UpperCAmelCase_ : Optional[int] = current_node
for _ in range(1 , __magic_name__ ):
UpperCAmelCase_ : str = Node()
UpperCAmelCase_ : Dict = current_node
UpperCAmelCase_ : Union[str, Any] = previous_node
UpperCAmelCase_ : List[str] = current_node
UpperCAmelCase_ : List[Any] = self.front
UpperCAmelCase_ : Union[str, Any] = previous_node
def UpperCAmelCase__ ( self : str ) -> bool:
"""simple docstring"""
return (
self.front == self.rear
and self.front is not None
and self.front.data is None
)
def UpperCAmelCase__ ( self : List[str] ) -> Any | None:
"""simple docstring"""
self.check_can_perform_operation()
return self.front.data if self.front else None
def UpperCAmelCase__ ( self : Any , __magic_name__ : Any ) -> None:
"""simple docstring"""
if self.rear is None:
return
self.check_is_full()
if not self.is_empty():
UpperCAmelCase_ : Any = self.rear.next
if self.rear:
UpperCAmelCase_ : List[str] = data
def UpperCAmelCase__ ( self : Union[str, Any] ) -> Any:
"""simple docstring"""
self.check_can_perform_operation()
if self.rear is None or self.front is None:
return None
if self.front == self.rear:
UpperCAmelCase_ : Any = self.front.data
UpperCAmelCase_ : Optional[Any] = None
return data
UpperCAmelCase_ : Dict = self.front
UpperCAmelCase_ : Dict = old_front.next
UpperCAmelCase_ : Optional[Any] = old_front.data
UpperCAmelCase_ : List[str] = None
return data
def UpperCAmelCase__ ( self : Tuple ) -> None:
"""simple docstring"""
if self.is_empty():
raise Exception('''Empty Queue''' )
def UpperCAmelCase__ ( self : str ) -> None:
"""simple docstring"""
if self.rear and self.rear.next == self.front:
raise Exception('''Full Queue''' )
class __a :
def __init__( self : Optional[int] ) -> None:
"""simple docstring"""
UpperCAmelCase_ : Any | None = None
UpperCAmelCase_ : Node | None = None
UpperCAmelCase_ : Node | None = None
if __name__ == "__main__":
import doctest
doctest.testmod()
| 705
|
'''simple docstring'''
class __a :
def __init__( self : List[Any] , __magic_name__ : int ) -> None:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = size
UpperCAmelCase_ : Tuple = [0] * size
UpperCAmelCase_ : Optional[Any] = [0] * size
@staticmethod
def UpperCAmelCase__ ( __magic_name__ : int ) -> int:
"""simple docstring"""
return index | (index + 1)
@staticmethod
def UpperCAmelCase__ ( __magic_name__ : int ) -> int:
"""simple docstring"""
return (index & (index + 1)) - 1
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : int , __magic_name__ : int ) -> None:
"""simple docstring"""
UpperCAmelCase_ : int = value
while index < self.size:
UpperCAmelCase_ : str = self.get_prev(__magic_name__ ) + 1
if current_left_border == index:
UpperCAmelCase_ : List[str] = value
else:
UpperCAmelCase_ : Optional[int] = max(__magic_name__ , __magic_name__ , __magic_name__ )
UpperCAmelCase_ : Tuple = self.get_next(__magic_name__ )
def UpperCAmelCase__ ( self : Any , __magic_name__ : int , __magic_name__ : int ) -> int:
"""simple docstring"""
right -= 1 # Because of right is exclusive
UpperCAmelCase_ : List[str] = 0
while left <= right:
UpperCAmelCase_ : Optional[Any] = self.get_prev(__magic_name__ )
if left <= current_left:
UpperCAmelCase_ : Dict = max(__magic_name__ , self.tree[right] )
UpperCAmelCase_ : Optional[Any] = current_left
else:
UpperCAmelCase_ : str = max(__magic_name__ , self.arr[right] )
right -= 1
return result
if __name__ == "__main__":
import doctest
doctest.testmod()
| 644
| 0
|
'''simple docstring'''
from __future__ import annotations
from random import random
from typing import Generic, TypeVar
snake_case_ : List[str] = TypeVar("KT")
snake_case_ : int = TypeVar("VT")
class __a (Generic[KT, VT] ):
def __init__( self : Union[str, Any] , __magic_name__ : KT | str = "root" , __magic_name__ : VT | None = None ) -> str:
"""simple docstring"""
UpperCAmelCase_ : str = key
UpperCAmelCase_ : Dict = value
UpperCAmelCase_ : list[Node[KT, VT]] = []
def __repr__( self : Optional[Any] ) -> str:
"""simple docstring"""
return F"""Node({self.key}: {self.value})"""
@property
def UpperCAmelCase__ ( self : Any ) -> int:
"""simple docstring"""
return len(self.forward )
class __a (Generic[KT, VT] ):
def __init__( self : str , __magic_name__ : float = 0.5 , __magic_name__ : int = 16 ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : Node[KT, VT] = Node[KT, VT]()
UpperCAmelCase_ : Dict = 0
UpperCAmelCase_ : Tuple = p
UpperCAmelCase_ : Tuple = max_level
def __str__( self : Optional[Any] ) -> str:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = list(self )
if len(__magic_name__ ) == 0:
return F"""SkipList(level={self.level})"""
UpperCAmelCase_ : Tuple = max((len(str(__magic_name__ ) ) for item in items) , default=4 )
UpperCAmelCase_ : Tuple = max(__magic_name__ , 4 ) + 4
UpperCAmelCase_ : Dict = self.head
UpperCAmelCase_ : str = []
UpperCAmelCase_ : int = node.forward.copy()
lines.append(F"""[{node.key}]""".ljust(__magic_name__ , '''-''' ) + '''* ''' * len(__magic_name__ ) )
lines.append(''' ''' * label_size + '''| ''' * len(__magic_name__ ) )
while len(node.forward ) != 0:
UpperCAmelCase_ : str = node.forward[0]
lines.append(
F"""[{node.key}]""".ljust(__magic_name__ , '''-''' )
+ ''' '''.join(str(n.key ) if n.key == node.key else '''|''' for n in forwards ) )
lines.append(''' ''' * label_size + '''| ''' * len(__magic_name__ ) )
UpperCAmelCase_ : List[Any] = node.forward
lines.append('''None'''.ljust(__magic_name__ ) + '''* ''' * len(__magic_name__ ) )
return F"""SkipList(level={self.level})\n""" + "\n".join(__magic_name__ )
def __iter__( self : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = self.head
while len(node.forward ) != 0:
yield node.forward[0].key
UpperCAmelCase_ : Any = node.forward[0]
def UpperCAmelCase__ ( self : Any ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = 1
while random() < self.p and level < self.max_level:
level += 1
return level
def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : str ) -> tuple[Node[KT, VT] | None, list[Node[KT, VT]]]:
"""simple docstring"""
UpperCAmelCase_ : List[str] = []
UpperCAmelCase_ : str = self.head
for i in reversed(range(self.level ) ):
# i < node.level - When node level is lesser than `i` decrement `i`.
# node.forward[i].key < key - Jumping to node with key value higher
# or equal to searched key would result
# in skipping searched key.
while i < node.level and node.forward[i].key < key:
UpperCAmelCase_ : int = node.forward[i]
# Each leftmost node (relative to searched node) will potentially have to
# be updated.
update_vector.append(__magic_name__ )
update_vector.reverse() # Note that we were inserting values in reverse order.
# len(node.forward) != 0 - If current node doesn't contain any further
# references then searched key is not present.
# node.forward[0].key == key - Next node key should be equal to search key
# if key is present.
if len(node.forward ) != 0 and node.forward[0].key == key:
return node.forward[0], update_vector
else:
return None, update_vector
def UpperCAmelCase__ ( self : int , __magic_name__ : KT ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : Any = self._locate_node(__magic_name__ )
if node is not None:
for i, update_node in enumerate(__magic_name__ ):
# Remove or replace all references to removed node.
if update_node.level > i and update_node.forward[i].key == key:
if node.level > i:
UpperCAmelCase_ : Optional[int] = node.forward[i]
else:
UpperCAmelCase_ : List[Any] = update_node.forward[:i]
def UpperCAmelCase__ ( self : str , __magic_name__ : KT , __magic_name__ : VT ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Dict = self._locate_node(__magic_name__ )
if node is not None:
UpperCAmelCase_ : str = value
else:
UpperCAmelCase_ : Optional[Any] = self.random_level()
if level > self.level:
# After level increase we have to add additional nodes to head.
for _ in range(self.level - 1 , __magic_name__ ):
update_vector.append(self.head )
UpperCAmelCase_ : int = level
UpperCAmelCase_ : Optional[int] = Node(__magic_name__ , __magic_name__ )
for i, update_node in enumerate(update_vector[:level] ):
# Change references to pass through new node.
if update_node.level > i:
new_node.forward.append(update_node.forward[i] )
if update_node.level < i + 1:
update_node.forward.append(__magic_name__ )
else:
UpperCAmelCase_ : Tuple = new_node
def UpperCAmelCase__ ( self : Any , __magic_name__ : VT ) -> VT | None:
"""simple docstring"""
UpperCAmelCase_ : Tuple = self._locate_node(__magic_name__ )
if node is not None:
return node.value
return None
def lowerCamelCase_ ( ) -> List[Any]:
UpperCAmelCase_ : List[Any] = SkipList()
skip_list.insert('''Key1''', 3 )
skip_list.insert('''Key2''', 12 )
skip_list.insert('''Key3''', 41 )
skip_list.insert('''Key4''', -19 )
UpperCAmelCase_ : Dict = skip_list.head
UpperCAmelCase_ : Any = {}
while node.level != 0:
UpperCAmelCase_ : List[str] = node.forward[0]
UpperCAmelCase_ : Any = node.value
assert len(SCREAMING_SNAKE_CASE__ ) == 4
assert all_values["Key1"] == 3
assert all_values["Key2"] == 12
assert all_values["Key3"] == 41
assert all_values["Key4"] == -19
def lowerCamelCase_ ( ) -> Any:
UpperCAmelCase_ : List[str] = SkipList()
skip_list.insert('''Key1''', 10 )
skip_list.insert('''Key1''', 12 )
skip_list.insert('''Key5''', 7 )
skip_list.insert('''Key7''', 10 )
skip_list.insert('''Key10''', 5 )
skip_list.insert('''Key7''', 7 )
skip_list.insert('''Key5''', 5 )
skip_list.insert('''Key10''', 10 )
UpperCAmelCase_ : Optional[Any] = skip_list.head
UpperCAmelCase_ : Dict = {}
while node.level != 0:
UpperCAmelCase_ : List[Any] = node.forward[0]
UpperCAmelCase_ : Dict = node.value
if len(SCREAMING_SNAKE_CASE__ ) != 4:
print()
assert len(SCREAMING_SNAKE_CASE__ ) == 4
assert all_values["Key1"] == 12
assert all_values["Key7"] == 7
assert all_values["Key5"] == 5
assert all_values["Key10"] == 10
def lowerCamelCase_ ( ) -> Union[str, Any]:
UpperCAmelCase_ : Any = SkipList()
assert skip_list.find('''Some key''' ) is None
def lowerCamelCase_ ( ) -> Optional[Any]:
UpperCAmelCase_ : Optional[Any] = SkipList()
skip_list.insert('''Key2''', 20 )
assert skip_list.find('''Key2''' ) == 20
skip_list.insert('''Some Key''', 10 )
skip_list.insert('''Key2''', 8 )
skip_list.insert('''V''', 13 )
assert skip_list.find('''Y''' ) is None
assert skip_list.find('''Key2''' ) == 8
assert skip_list.find('''Some Key''' ) == 10
assert skip_list.find('''V''' ) == 13
def lowerCamelCase_ ( ) -> Optional[int]:
UpperCAmelCase_ : int = SkipList()
skip_list.delete('''Some key''' )
assert len(skip_list.head.forward ) == 0
def lowerCamelCase_ ( ) -> List[str]:
UpperCAmelCase_ : Optional[Any] = SkipList()
skip_list.insert('''Key1''', 12 )
skip_list.insert('''V''', 13 )
skip_list.insert('''X''', 14 )
skip_list.insert('''Key2''', 15 )
skip_list.delete('''V''' )
skip_list.delete('''Key2''' )
assert skip_list.find('''V''' ) is None
assert skip_list.find('''Key2''' ) is None
def lowerCamelCase_ ( ) -> Optional[Any]:
UpperCAmelCase_ : int = SkipList()
skip_list.insert('''Key1''', 12 )
skip_list.insert('''V''', 13 )
skip_list.insert('''X''', 14 )
skip_list.insert('''Key2''', 15 )
skip_list.delete('''V''' )
assert skip_list.find('''V''' ) is None
assert skip_list.find('''X''' ) == 14
assert skip_list.find('''Key1''' ) == 12
assert skip_list.find('''Key2''' ) == 15
skip_list.delete('''X''' )
assert skip_list.find('''V''' ) is None
assert skip_list.find('''X''' ) is None
assert skip_list.find('''Key1''' ) == 12
assert skip_list.find('''Key2''' ) == 15
skip_list.delete('''Key1''' )
assert skip_list.find('''V''' ) is None
assert skip_list.find('''X''' ) is None
assert skip_list.find('''Key1''' ) is None
assert skip_list.find('''Key2''' ) == 15
skip_list.delete('''Key2''' )
assert skip_list.find('''V''' ) is None
assert skip_list.find('''X''' ) is None
assert skip_list.find('''Key1''' ) is None
assert skip_list.find('''Key2''' ) is None
def lowerCamelCase_ ( ) -> Tuple:
UpperCAmelCase_ : Tuple = SkipList()
skip_list.insert('''Key1''', 12 )
skip_list.insert('''V''', 13 )
skip_list.insert('''X''', 142 )
skip_list.insert('''Key2''', 15 )
skip_list.delete('''X''' )
def traverse_keys(SCREAMING_SNAKE_CASE__ : Optional[Any] ):
yield node.key
for forward_node in node.forward:
yield from traverse_keys(SCREAMING_SNAKE_CASE__ )
assert len(set(traverse_keys(skip_list.head ) ) ) == 4
def lowerCamelCase_ ( ) -> Union[str, Any]:
def is_sorted(SCREAMING_SNAKE_CASE__ : Tuple ):
return all(next_item >= item for item, next_item in zip(SCREAMING_SNAKE_CASE__, lst[1:] ) )
UpperCAmelCase_ : Union[str, Any] = SkipList()
for i in range(10 ):
skip_list.insert(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
assert is_sorted(list(SCREAMING_SNAKE_CASE__ ) )
skip_list.delete(5 )
skip_list.delete(8 )
skip_list.delete(2 )
assert is_sorted(list(SCREAMING_SNAKE_CASE__ ) )
skip_list.insert(-12, -12 )
skip_list.insert(77, 77 )
assert is_sorted(list(SCREAMING_SNAKE_CASE__ ) )
def lowerCamelCase_ ( ) -> Any:
for _ in range(100 ):
# Repeat test 100 times due to the probabilistic nature of skip list
# random values == random bugs
test_insert()
test_insert_overrides_existing_value()
test_searching_empty_list_returns_none()
test_search()
test_deleting_item_from_empty_list_do_nothing()
test_deleted_items_are_not_founded_by_find_method()
test_delete_removes_only_given_key()
test_delete_doesnt_leave_dead_nodes()
test_iter_always_yields_sorted_values()
def lowerCamelCase_ ( ) -> Any:
UpperCAmelCase_ : Dict = SkipList()
skip_list.insert(2, '''2''' )
skip_list.insert(4, '''4''' )
skip_list.insert(6, '''4''' )
skip_list.insert(4, '''5''' )
skip_list.insert(8, '''4''' )
skip_list.insert(9, '''4''' )
skip_list.delete(4 )
print(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 706
|
'''simple docstring'''
import math
import unittest
from transformers import BioGptConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptTokenizer,
)
from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST
class __a :
def __init__( self : List[str] , __magic_name__ : List[str] , __magic_name__ : str=13 , __magic_name__ : Union[str, Any]=7 , __magic_name__ : Union[str, Any]=True , __magic_name__ : Any=True , __magic_name__ : List[str]=False , __magic_name__ : Optional[int]=True , __magic_name__ : Dict=99 , __magic_name__ : Tuple=32 , __magic_name__ : int=5 , __magic_name__ : Dict=4 , __magic_name__ : Tuple=37 , __magic_name__ : Optional[int]="gelu" , __magic_name__ : List[str]=0.1 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : str=5_12 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : int=2 , __magic_name__ : List[Any]=0.0_2 , __magic_name__ : Tuple=3 , __magic_name__ : Union[str, Any]=4 , __magic_name__ : Optional[int]=None , ) -> str:
"""simple docstring"""
UpperCAmelCase_ : Any = parent
UpperCAmelCase_ : Union[str, Any] = batch_size
UpperCAmelCase_ : List[Any] = seq_length
UpperCAmelCase_ : str = is_training
UpperCAmelCase_ : Any = use_input_mask
UpperCAmelCase_ : List[str] = use_token_type_ids
UpperCAmelCase_ : Union[str, Any] = use_labels
UpperCAmelCase_ : Dict = vocab_size
UpperCAmelCase_ : Optional[Any] = hidden_size
UpperCAmelCase_ : Dict = num_hidden_layers
UpperCAmelCase_ : List[Any] = num_attention_heads
UpperCAmelCase_ : Optional[int] = intermediate_size
UpperCAmelCase_ : Union[str, Any] = hidden_act
UpperCAmelCase_ : str = hidden_dropout_prob
UpperCAmelCase_ : Optional[Any] = attention_probs_dropout_prob
UpperCAmelCase_ : Any = max_position_embeddings
UpperCAmelCase_ : str = type_vocab_size
UpperCAmelCase_ : Optional[Any] = type_sequence_label_size
UpperCAmelCase_ : List[Any] = initializer_range
UpperCAmelCase_ : int = num_labels
UpperCAmelCase_ : Optional[int] = num_choices
UpperCAmelCase_ : Tuple = scope
def UpperCAmelCase__ ( self : Union[str, Any] ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase_ : Union[str, Any] = None
if self.use_input_mask:
UpperCAmelCase_ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase_ : str = None
if self.use_token_type_ids:
UpperCAmelCase_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase_ : Tuple = None
UpperCAmelCase_ : List[str] = None
UpperCAmelCase_ : Union[str, Any] = None
if self.use_labels:
UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase_ : int = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCAmelCase__ ( self : Any ) -> List[Any]:
"""simple docstring"""
return BioGptConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__magic_name__ , initializer_range=self.initializer_range , )
def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : Tuple , __magic_name__ : str , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = BioGptModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : Dict = model(__magic_name__ , attention_mask=__magic_name__ )
UpperCAmelCase_ : Optional[Any] = model(__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : Dict , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Any , __magic_name__ : Tuple , __magic_name__ : List[str] , __magic_name__ : Optional[int] , ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Dict = BioGptForCausalLM(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : List[Any] = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCAmelCase__ ( self : str , __magic_name__ : Optional[int] , __magic_name__ : Tuple , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : str , *__magic_name__ : Any ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Dict = BioGptModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
# create attention mask
UpperCAmelCase_ : Optional[Any] = torch.ones(input_ids.shape , dtype=torch.long , device=__magic_name__ )
UpperCAmelCase_ : Any = self.seq_length // 2
UpperCAmelCase_ : Tuple = 0
# first forward pass
UpperCAmelCase_ , UpperCAmelCase_ : Dict = model(__magic_name__ , attention_mask=__magic_name__ ).to_tuple()
# create hypothetical next token and extent to next_input_ids
UpperCAmelCase_ : Tuple = ids_tensor((self.batch_size, 1) , config.vocab_size )
# change a random masked slice from input_ids
UpperCAmelCase_ : List[str] = ids_tensor((1,) , __magic_name__ ).item() + 1
UpperCAmelCase_ : Tuple = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 )
UpperCAmelCase_ : str = random_other_next_tokens
# append to next input_ids and attn_mask
UpperCAmelCase_ : Tuple = torch.cat([input_ids, next_tokens] , dim=-1 )
UpperCAmelCase_ : int = torch.cat(
[attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=__magic_name__ )] , dim=1 , )
# get two different outputs
UpperCAmelCase_ : Any = model(__magic_name__ , attention_mask=__magic_name__ )['''last_hidden_state''']
UpperCAmelCase_ : int = model(__magic_name__ , past_key_values=__magic_name__ , attention_mask=__magic_name__ )['''last_hidden_state''']
# select random slice
UpperCAmelCase_ : Optional[int] = ids_tensor((1,) , output_from_past.shape[-1] ).item()
UpperCAmelCase_ : Union[str, Any] = output_from_no_past[:, -1, random_slice_idx].detach()
UpperCAmelCase_ : Dict = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) )
def UpperCAmelCase__ ( self : Dict , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : Dict , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , *__magic_name__ : str ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Dict = BioGptModel(config=__magic_name__ ).to(__magic_name__ ).eval()
UpperCAmelCase_ : Optional[int] = torch.ones(input_ids.shape , dtype=torch.long , device=__magic_name__ )
# first forward pass
UpperCAmelCase_ : Union[str, Any] = model(__magic_name__ , attention_mask=__magic_name__ , use_cache=__magic_name__ )
UpperCAmelCase_ , UpperCAmelCase_ : int = outputs.to_tuple()
# create hypothetical multiple next token and extent to next_input_ids
UpperCAmelCase_ : Any = ids_tensor((self.batch_size, 3) , config.vocab_size )
UpperCAmelCase_ : Any = ids_tensor((self.batch_size, 3) , 2 )
# append to next input_ids and
UpperCAmelCase_ : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1 )
UpperCAmelCase_ : List[str] = torch.cat([attention_mask, next_attn_mask] , dim=-1 )
UpperCAmelCase_ : Any = model(__magic_name__ , attention_mask=__magic_name__ )['''last_hidden_state''']
UpperCAmelCase_ : Optional[Any] = model(__magic_name__ , attention_mask=__magic_name__ , past_key_values=__magic_name__ )[
'''last_hidden_state'''
]
# select random slice
UpperCAmelCase_ : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item()
UpperCAmelCase_ : str = output_from_no_past[:, -3:, random_slice_idx].detach()
UpperCAmelCase_ : Optional[int] = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) )
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : str , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , *__magic_name__ : Any , __magic_name__ : List[Any]=False ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Any = BioGptForCausalLM(__magic_name__ )
model.to(__magic_name__ )
if gradient_checkpointing:
model.gradient_checkpointing_enable()
UpperCAmelCase_ : List[str] = model(__magic_name__ , labels=__magic_name__ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
result.loss.backward()
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Optional[int] , *__magic_name__ : List[str] ) -> str:
"""simple docstring"""
UpperCAmelCase_ : int = BioGptModel(__magic_name__ )
UpperCAmelCase_ : Dict = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers )
for key in model.state_dict().keys():
if "c_proj" in key and "weight" in key:
self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.0_0_1 )
self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.0_1 )
def UpperCAmelCase__ ( self : int , __magic_name__ : Tuple , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] , *__magic_name__ : Any ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : str = self.num_labels
UpperCAmelCase_ : Any = BioGptForTokenClassification(__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : Any = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCAmelCase__ ( self : Optional[Any] ) -> str:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = self.prepare_config_and_inputs()
(
(
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) ,
) : int = config_and_inputs
UpperCAmelCase_ : Any = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class __a (lowerCamelCase , lowerCamelCase , lowerCamelCase , unittest.TestCase ):
__a : str = (
(BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification)
if is_torch_available()
else ()
)
__a : List[Any] = (BioGptForCausalLM,) if is_torch_available() else ()
__a : Union[str, Any] = (
{
"feature-extraction": BioGptModel,
"text-classification": BioGptForSequenceClassification,
"text-generation": BioGptForCausalLM,
"token-classification": BioGptForTokenClassification,
"zero-shot": BioGptForSequenceClassification,
}
if is_torch_available()
else {}
)
__a : List[str] = False
def UpperCAmelCase__ ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : List[str] = BioGptModelTester(self )
UpperCAmelCase_ : Optional[Any] = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 )
def UpperCAmelCase__ ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCAmelCase__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__magic_name__ )
def UpperCAmelCase__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
UpperCAmelCase_ : str = type
self.model_tester.create_and_check_model(*__magic_name__ )
def UpperCAmelCase__ ( self : Optional[int] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_attention_mask_past(*__magic_name__ )
def UpperCAmelCase__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_forward_and_backwards(*__magic_name__ , gradient_checkpointing=__magic_name__ )
def UpperCAmelCase__ ( self : str ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_past_large_inputs(*__magic_name__ )
def UpperCAmelCase__ ( self : Dict ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_weight_initialization(*__magic_name__ )
def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_for_token_classification(*__magic_name__ )
@slow
def UpperCAmelCase__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' )
model.to(__magic_name__ )
UpperCAmelCase_ : List[str] = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' )
UpperCAmelCase_ : Tuple = '''left'''
# Define PAD Token = EOS Token = 50256
UpperCAmelCase_ : List[Any] = tokenizer.eos_token
UpperCAmelCase_ : List[Any] = model.config.eos_token_id
# use different length sentences to test batching
UpperCAmelCase_ : Tuple = [
'''Hello, my dog is a little''',
'''Today, I''',
]
UpperCAmelCase_ : Optional[Any] = tokenizer(__magic_name__ , return_tensors='''pt''' , padding=__magic_name__ )
UpperCAmelCase_ : Optional[Any] = inputs['''input_ids'''].to(__magic_name__ )
UpperCAmelCase_ : Any = model.generate(
input_ids=__magic_name__ , attention_mask=inputs['''attention_mask'''].to(__magic_name__ ) , )
UpperCAmelCase_ : Union[str, Any] = tokenizer(sentences[0] , return_tensors='''pt''' ).input_ids.to(__magic_name__ )
UpperCAmelCase_ : Tuple = model.generate(input_ids=__magic_name__ )
UpperCAmelCase_ : List[str] = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item()
UpperCAmelCase_ : List[Any] = tokenizer(sentences[1] , return_tensors='''pt''' ).input_ids.to(__magic_name__ )
UpperCAmelCase_ : Tuple = model.generate(input_ids=__magic_name__ , max_length=model.config.max_length - num_paddings )
UpperCAmelCase_ : int = tokenizer.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ )
UpperCAmelCase_ : Dict = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__magic_name__ )
UpperCAmelCase_ : Union[str, Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=__magic_name__ )
UpperCAmelCase_ : Optional[Any] = [
'''Hello, my dog is a little bit bigger than a little bit.''',
'''Today, I have a good idea of how to use the information''',
]
self.assertListEqual(__magic_name__ , __magic_name__ )
self.assertListEqual(__magic_name__ , [non_padded_sentence, padded_sentence] )
@slow
def UpperCAmelCase__ ( self : str ) -> Optional[Any]:
"""simple docstring"""
for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase_ : List[Any] = BioGptModel.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
def UpperCAmelCase__ ( self : Tuple ) -> str:
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase_ : List[str] = 3
UpperCAmelCase_ : Tuple = input_dict['''input_ids''']
UpperCAmelCase_ : Dict = input_ids.ne(1 ).to(__magic_name__ )
UpperCAmelCase_ : List[str] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
UpperCAmelCase_ : Dict = BioGptForSequenceClassification(__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : int = model(__magic_name__ , attention_mask=__magic_name__ , labels=__magic_name__ )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase_ : List[Any] = 3
UpperCAmelCase_ : Optional[int] = '''multi_label_classification'''
UpperCAmelCase_ : int = input_dict['''input_ids''']
UpperCAmelCase_ : str = input_ids.ne(1 ).to(__magic_name__ )
UpperCAmelCase_ : Any = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
UpperCAmelCase_ : Union[str, Any] = BioGptForSequenceClassification(__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : str = model(__magic_name__ , attention_mask=__magic_name__ , labels=__magic_name__ )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
@require_torch
class __a (unittest.TestCase ):
@slow
def UpperCAmelCase__ ( self : List[Any] ) -> str:
"""simple docstring"""
UpperCAmelCase_ : str = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' )
UpperCAmelCase_ : List[str] = torch.tensor([[2, 48_05, 9, 6_56, 21]] )
UpperCAmelCase_ : str = model(__magic_name__ )[0]
UpperCAmelCase_ : Optional[int] = 4_23_84
UpperCAmelCase_ : Tuple = torch.Size((1, 5, vocab_size) )
self.assertEqual(output.shape , __magic_name__ )
UpperCAmelCase_ : List[Any] = torch.tensor(
[[[-9.5_2_3_6, -9.8_9_1_8, 1_0.4_5_5_7], [-1_1.0_4_6_9, -9.6_4_2_3, 8.1_0_2_2], [-8.8_6_6_4, -7.8_8_2_6, 5.5_3_2_5]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __magic_name__ , atol=1E-4 ) )
@slow
def UpperCAmelCase__ ( self : Any ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Any = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' )
UpperCAmelCase_ : str = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' )
model.to(__magic_name__ )
torch.manual_seed(0 )
UpperCAmelCase_ : Optional[Any] = tokenizer('''COVID-19 is''' , return_tensors='''pt''' ).to(__magic_name__ )
UpperCAmelCase_ : Optional[int] = model.generate(
**__magic_name__ , min_length=1_00 , max_length=10_24 , num_beams=5 , early_stopping=__magic_name__ , )
UpperCAmelCase_ : int = tokenizer.decode(output_ids[0] , skip_special_tokens=__magic_name__ )
UpperCAmelCase_ : Optional[Any] = (
'''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the'''
''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and'''
''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),'''
''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and'''
''' more than 800,000 deaths.'''
)
self.assertEqual(__magic_name__ , __magic_name__ )
| 644
| 0
|
'''simple docstring'''
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : str ) -> str:
return " ".join(input_str.split()[::-1] )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 707
|
'''simple docstring'''
import json
import os
import unittest
from transformers.models.blenderbot_small.tokenization_blenderbot_small import (
VOCAB_FILES_NAMES,
BlenderbotSmallTokenizer,
)
from ...test_tokenization_common import TokenizerTesterMixin
class __a (lowerCamelCase , unittest.TestCase ):
__a : List[str] = BlenderbotSmallTokenizer
__a : List[Any] = False
def UpperCAmelCase__ ( self : str ) -> str:
"""simple docstring"""
super().setUp()
UpperCAmelCase_ : Tuple = ['''__start__''', '''adapt''', '''act''', '''ap@@''', '''te''', '''__end__''', '''__unk__''']
UpperCAmelCase_ : Optional[Any] = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) )
UpperCAmelCase_ : int = ['''#version: 0.2''', '''a p''', '''t e</w>''', '''ap t</w>''', '''a d''', '''ad apt</w>''', '''a c''', '''ac t</w>''', '''''']
UpperCAmelCase_ : Optional[Any] = {'''unk_token''': '''__unk__''', '''bos_token''': '''__start__''', '''eos_token''': '''__end__'''}
UpperCAmelCase_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
UpperCAmelCase_ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(__magic_name__ ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(__magic_name__ ) )
def UpperCAmelCase__ ( self : List[Any] , **__magic_name__ : Dict ) -> Tuple:
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **__magic_name__ )
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : List[str] ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : str = '''adapt act apte'''
UpperCAmelCase_ : Tuple = '''adapt act apte'''
return input_text, output_text
def UpperCAmelCase__ ( self : str ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : str = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map )
UpperCAmelCase_ : List[Any] = '''adapt act apte'''
UpperCAmelCase_ : Dict = ['''adapt''', '''act''', '''ap@@''', '''te''']
UpperCAmelCase_ : Dict = tokenizer.tokenize(__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
UpperCAmelCase_ : Tuple = [tokenizer.bos_token] + tokens + [tokenizer.eos_token]
UpperCAmelCase_ : Dict = [0, 1, 2, 3, 4, 5]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , __magic_name__ )
def UpperCAmelCase__ ( self : int ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' )
assert tok('''sam''' ).input_ids == [13_84]
UpperCAmelCase_ : Optional[int] = '''I am a small frog.'''
UpperCAmelCase_ : List[str] = tok([src_text] , padding=__magic_name__ , truncation=__magic_name__ )['''input_ids''']
UpperCAmelCase_ : Dict = tok.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ , clean_up_tokenization_spaces=__magic_name__ )[0]
assert src_text != decoded # I wish it did!
assert decoded == "i am a small frog ."
def UpperCAmelCase__ ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : int = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' )
UpperCAmelCase_ : List[Any] = '''I am a small frog .'''
UpperCAmelCase_ : Any = '''.'''
UpperCAmelCase_ : List[Any] = tok(__magic_name__ )['''input_ids''']
UpperCAmelCase_ : Optional[int] = tok(__magic_name__ )['''input_ids''']
assert encoded[-1] == encoded_dot[0]
| 644
| 0
|
'''simple docstring'''
from math import factorial
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int = 100 ) -> int:
return sum(int(SCREAMING_SNAKE_CASE__ ) for x in str(factorial(SCREAMING_SNAKE_CASE__ ) ) )
if __name__ == "__main__":
print(solution(int(input("Enter the Number: ").strip())))
| 708
|
'''simple docstring'''
import unittest
import torch
from torch import nn
from diffusers.models.activations import get_activation
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : Dict ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : Dict = get_activation('''swish''' )
self.assertIsInstance(__magic_name__ , nn.SiLU )
self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
def UpperCAmelCase__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = get_activation('''silu''' )
self.assertIsInstance(__magic_name__ , nn.SiLU )
self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
def UpperCAmelCase__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = get_activation('''mish''' )
self.assertIsInstance(__magic_name__ , nn.Mish )
self.assertEqual(act(torch.tensor(-2_00 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
def UpperCAmelCase__ ( self : str ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = get_activation('''gelu''' )
self.assertIsInstance(__magic_name__ , nn.GELU )
self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
| 644
| 0
|
'''simple docstring'''
from typing import List, Optional, Tuple
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_herbert import HerbertTokenizer
snake_case_ : Any = logging.get_logger(__name__)
snake_case_ : Optional[int] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
snake_case_ : Dict = {
"vocab_file": {
"allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json"
},
"merges_file": {
"allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt"
},
}
snake_case_ : Optional[Any] = {"allegro/herbert-base-cased": 5_14}
snake_case_ : Union[str, Any] = {}
class __a (lowerCamelCase ):
__a : Optional[Any] = VOCAB_FILES_NAMES
__a : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP
__a : Dict = PRETRAINED_INIT_CONFIGURATION
__a : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__a : Optional[int] = HerbertTokenizer
def __init__( self : Optional[int] , __magic_name__ : List[Any]=None , __magic_name__ : Optional[int]=None , __magic_name__ : List[str]=None , __magic_name__ : int="<s>" , __magic_name__ : str="<unk>" , __magic_name__ : int="<pad>" , __magic_name__ : Any="<mask>" , __magic_name__ : Optional[Any]="</s>" , **__magic_name__ : Any , ) -> Union[str, Any]:
"""simple docstring"""
super().__init__(
__magic_name__ , __magic_name__ , tokenizer_file=__magic_name__ , cls_token=__magic_name__ , unk_token=__magic_name__ , pad_token=__magic_name__ , mask_token=__magic_name__ , sep_token=__magic_name__ , **__magic_name__ , )
def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = [self.cls_token_id]
UpperCAmelCase_ : List[Any] = [self.sep_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None , __magic_name__ : bool = False ) -> List[int]:
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__magic_name__ , token_ids_a=__magic_name__ , already_has_special_tokens=__magic_name__ )
if token_ids_a is None:
return [1] + ([0] * len(__magic_name__ )) + [1]
return [1] + ([0] * len(__magic_name__ )) + [1] + ([0] * len(__magic_name__ )) + [1]
def UpperCAmelCase__ ( self : str , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
UpperCAmelCase_ : Dict = [self.sep_token_id]
UpperCAmelCase_ : Any = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
UpperCAmelCase_ : int = self._tokenizer.model.save(__magic_name__ , name=__magic_name__ )
return tuple(__magic_name__ )
| 709
|
'''simple docstring'''
from typing import List, Optional, Union
import numpy as np
import PIL.Image
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import rescale, resize, to_channel_dimension_format
from ...image_utils import (
ChannelDimension,
PILImageResampling,
get_image_size,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
snake_case_ : Union[str, Any] = logging.get_logger(__name__)
class __a (lowerCamelCase ):
__a : Tuple = ["pixel_values"]
def __init__( self : List[Any] , __magic_name__ : bool = True , __magic_name__ : int = 32 , __magic_name__ : Union[str, Any]=PILImageResampling.BILINEAR , __magic_name__ : bool = True , **__magic_name__ : List[str] , ) -> None:
"""simple docstring"""
UpperCAmelCase_ : int = do_resize
UpperCAmelCase_ : Tuple = do_rescale
UpperCAmelCase_ : List[Any] = size_divisor
UpperCAmelCase_ : Any = resample
super().__init__(**__magic_name__ )
def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : np.ndarray , __magic_name__ : int , __magic_name__ : str , __magic_name__ : Optional[ChannelDimension] = None , **__magic_name__ : Tuple ) -> np.ndarray:
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : List[str] = get_image_size(__magic_name__ )
# Rounds the height and width down to the closest multiple of size_divisor
UpperCAmelCase_ : Dict = height // size_divisor * size_divisor
UpperCAmelCase_ : Dict = width // size_divisor * size_divisor
UpperCAmelCase_ : Any = resize(__magic_name__ , (new_h, new_w) , resample=__magic_name__ , data_format=__magic_name__ , **__magic_name__ )
return image
def UpperCAmelCase__ ( self : int , __magic_name__ : np.ndarray , __magic_name__ : float , __magic_name__ : Optional[ChannelDimension] = None , **__magic_name__ : Optional[Any] ) -> np.ndarray:
"""simple docstring"""
return rescale(image=__magic_name__ , scale=__magic_name__ , data_format=__magic_name__ , **__magic_name__ )
def UpperCAmelCase__ ( self : str , __magic_name__ : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[int] = None , __magic_name__ : Any=None , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[Union[TensorType, str]] = None , __magic_name__ : ChannelDimension = ChannelDimension.FIRST , **__magic_name__ : Tuple , ) -> BatchFeature:
"""simple docstring"""
UpperCAmelCase_ : Dict = do_resize if do_resize is not None else self.do_resize
UpperCAmelCase_ : str = do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase_ : Any = size_divisor if size_divisor is not None else self.size_divisor
UpperCAmelCase_ : Dict = resample if resample is not None else self.resample
if do_resize and size_divisor is None:
raise ValueError('''size_divisor is required for resizing''' )
UpperCAmelCase_ : Optional[int] = make_list_of_images(__magic_name__ )
if not valid_images(__magic_name__ ):
raise ValueError('''Invalid image(s)''' )
# All transformations expect numpy arrays.
UpperCAmelCase_ : List[str] = [to_numpy_array(__magic_name__ ) for img in images]
if do_resize:
UpperCAmelCase_ : str = [self.resize(__magic_name__ , size_divisor=__magic_name__ , resample=__magic_name__ ) for image in images]
if do_rescale:
UpperCAmelCase_ : Tuple = [self.rescale(__magic_name__ , scale=1 / 2_55 ) for image in images]
UpperCAmelCase_ : Union[str, Any] = [to_channel_dimension_format(__magic_name__ , __magic_name__ ) for image in images]
UpperCAmelCase_ : int = {'''pixel_values''': images}
return BatchFeature(data=__magic_name__ , tensor_type=__magic_name__ )
| 644
| 0
|
'''simple docstring'''
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : dict ) -> set:
UpperCAmelCase_ : Union[str, Any] = set()
# edges = list of graph's edges
UpperCAmelCase_ : Optional[int] = get_edges(SCREAMING_SNAKE_CASE__ )
# While there are still elements in edges list, take an arbitrary edge
# (from_node, to_node) and add his extremity to chosen_vertices and then
# remove all arcs adjacent to the from_node and to_node
while edges:
UpperCAmelCase_ : Optional[int] = edges.pop()
chosen_vertices.add(SCREAMING_SNAKE_CASE__ )
chosen_vertices.add(SCREAMING_SNAKE_CASE__ )
for edge in edges.copy():
if from_node in edge or to_node in edge:
edges.discard(SCREAMING_SNAKE_CASE__ )
return chosen_vertices
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : dict ) -> set:
UpperCAmelCase_ : int = set()
for from_node, to_nodes in graph.items():
for to_node in to_nodes:
edges.add((from_node, to_node) )
return edges
if __name__ == "__main__":
import doctest
doctest.testmod()
# graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]}
# print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
| 710
|
'''simple docstring'''
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int = 10, SCREAMING_SNAKE_CASE__ : int = 22 ) -> int:
UpperCAmelCase_ : Optional[int] = range(1, SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : List[Any] = range(1, SCREAMING_SNAKE_CASE__ )
return sum(
1 for power in powers for base in bases if len(str(base**power ) ) == power )
if __name__ == "__main__":
print(f'''{solution(10, 22) = }''')
| 644
| 0
|
'''simple docstring'''
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : str, SCREAMING_SNAKE_CASE__ : str ) -> Optional[int]:
assert x is not None
assert y is not None
UpperCAmelCase_ : str = len(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Optional[int] = len(SCREAMING_SNAKE_CASE__ )
# declaring the array for storing the dp values
UpperCAmelCase_ : Optional[int] = [[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741
for i in range(1, m + 1 ):
for j in range(1, n + 1 ):
UpperCAmelCase_ : Union[str, Any] = 1 if x[i - 1] == y[j - 1] else 0
UpperCAmelCase_ : Any = max(l[i - 1][j], l[i][j - 1], l[i - 1][j - 1] + match )
UpperCAmelCase_ : Tuple = ''''''
UpperCAmelCase_ : List[str] = m, n
while i > 0 and j > 0:
UpperCAmelCase_ : List[str] = 1 if x[i - 1] == y[j - 1] else 0
if l[i][j] == l[i - 1][j - 1] + match:
if match == 1:
UpperCAmelCase_ : Dict = x[i - 1] + seq
i -= 1
j -= 1
elif l[i][j] == l[i - 1][j]:
i -= 1
else:
j -= 1
return l[m][n], seq
if __name__ == "__main__":
snake_case_ : Optional[int] = "AGGTAB"
snake_case_ : str = "GXTXAYB"
snake_case_ : Optional[Any] = 4
snake_case_ : Optional[int] = "GTAB"
snake_case_ : List[Any] = longest_common_subsequence(a, b)
print("len =", ln, ", sub-sequence =", subseq)
import doctest
doctest.testmod()
| 711
|
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
import torch
from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor
from ..utils import requires_backends
from .base import PipelineTool
if TYPE_CHECKING:
from PIL import Image
class __a (lowerCamelCase ):
__a : int = "dandelin/vilt-b32-finetuned-vqa"
__a : Any = (
"This is a tool that answers a question about an image. It takes an input named `image` which should be the "
"image containing the information, as well as a `question` which should be the question in English. It "
"returns a text that is the answer to the question."
)
__a : Any = "image_qa"
__a : str = AutoProcessor
__a : Any = AutoModelForVisualQuestionAnswering
__a : List[Any] = ["image", "text"]
__a : int = ["text"]
def __init__( self : Tuple , *__magic_name__ : Any , **__magic_name__ : Any ) -> Tuple:
"""simple docstring"""
requires_backends(self , ['''vision'''] )
super().__init__(*__magic_name__ , **__magic_name__ )
def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : "Image" , __magic_name__ : str ) -> Tuple:
"""simple docstring"""
return self.pre_processor(__magic_name__ , __magic_name__ , return_tensors='''pt''' )
def UpperCAmelCase__ ( self : Any , __magic_name__ : List[str] ) -> Optional[Any]:
"""simple docstring"""
with torch.no_grad():
return self.model(**__magic_name__ ).logits
def UpperCAmelCase__ ( self : int , __magic_name__ : int ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Dict = outputs.argmax(-1 ).item()
return self.model.config.idalabel[idx]
| 644
| 0
|
'''simple docstring'''
import os
def lowerCamelCase_ ( ) -> str:
with open(os.path.dirname(SCREAMING_SNAKE_CASE__ ) + '''/grid.txt''' ) as f:
UpperCAmelCase_ : Tuple = [] # noqa: E741
for _ in range(20 ):
l.append([int(SCREAMING_SNAKE_CASE__ ) for x in f.readline().split()] )
UpperCAmelCase_ : Optional[Any] = 0
# right
for i in range(20 ):
for j in range(17 ):
UpperCAmelCase_ : str = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3]
if temp > maximum:
UpperCAmelCase_ : Optional[Any] = temp
# down
for i in range(17 ):
for j in range(20 ):
UpperCAmelCase_ : Optional[int] = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j]
if temp > maximum:
UpperCAmelCase_ : Dict = temp
# diagonal 1
for i in range(17 ):
for j in range(17 ):
UpperCAmelCase_ : int = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3]
if temp > maximum:
UpperCAmelCase_ : Tuple = temp
# diagonal 2
for i in range(17 ):
for j in range(3, 20 ):
UpperCAmelCase_ : Tuple = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3]
if temp > maximum:
UpperCAmelCase_ : Optional[int] = temp
return maximum
if __name__ == "__main__":
print(solution())
| 712
|
'''simple docstring'''
from collections.abc import Iterable
from typing import Any
class __a :
def __init__( self : Optional[Any] , __magic_name__ : int | None = None ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : List[str] = value
UpperCAmelCase_ : Node | None = None # Added in order to delete a node easier
UpperCAmelCase_ : Node | None = None
UpperCAmelCase_ : Node | None = None
def __repr__( self : List[str] ) -> str:
"""simple docstring"""
from pprint import pformat
if self.left is None and self.right is None:
return str(self.value )
return pformat({F"""{self.value}""": (self.left, self.right)} , indent=1 )
class __a :
def __init__( self : int , __magic_name__ : Node | None = None ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : str = root
def __str__( self : Any ) -> str:
"""simple docstring"""
return str(self.root )
def UpperCAmelCase__ ( self : Any , __magic_name__ : Node , __magic_name__ : Node | None ) -> None:
"""simple docstring"""
if new_children is not None: # reset its kids
UpperCAmelCase_ : Dict = node.parent
if node.parent is not None: # reset its parent
if self.is_right(__magic_name__ ): # If it is the right children
UpperCAmelCase_ : Optional[Any] = new_children
else:
UpperCAmelCase_ : Optional[int] = new_children
else:
UpperCAmelCase_ : List[str] = new_children
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Node ) -> bool:
"""simple docstring"""
if node.parent and node.parent.right:
return node == node.parent.right
return False
def UpperCAmelCase__ ( self : Union[str, Any] ) -> bool:
"""simple docstring"""
return self.root is None
def UpperCAmelCase__ ( self : Any , __magic_name__ : str ) -> None:
"""simple docstring"""
UpperCAmelCase_ : Tuple = Node(__magic_name__ ) # create a new Node
if self.empty(): # if Tree is empty
UpperCAmelCase_ : List[Any] = new_node # set its root
else: # Tree is not empty
UpperCAmelCase_ : str = self.root # from root
if parent_node is None:
return
while True: # While we don't get to a leaf
if value < parent_node.value: # We go left
if parent_node.left is None:
UpperCAmelCase_ : Union[str, Any] = new_node # We insert the new node in a leaf
break
else:
UpperCAmelCase_ : List[Any] = parent_node.left
else:
if parent_node.right is None:
UpperCAmelCase_ : List[Any] = new_node
break
else:
UpperCAmelCase_ : Union[str, Any] = parent_node.right
UpperCAmelCase_ : Union[str, Any] = parent_node
def UpperCAmelCase__ ( self : Optional[Any] , *__magic_name__ : List[str] ) -> None:
"""simple docstring"""
for value in values:
self.__insert(__magic_name__ )
def UpperCAmelCase__ ( self : Dict , __magic_name__ : int ) -> Node | None:
"""simple docstring"""
if self.empty():
raise IndexError('''Warning: Tree is empty! please use another.''' )
else:
UpperCAmelCase_ : str = self.root
# use lazy evaluation here to avoid NoneType Attribute error
while node is not None and node.value is not value:
UpperCAmelCase_ : List[str] = node.left if value < node.value else node.right
return node
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : Node | None = None ) -> Node | None:
"""simple docstring"""
if node is None:
if self.root is None:
return None
UpperCAmelCase_ : Dict = self.root
if not self.empty():
while node.right is not None:
UpperCAmelCase_ : Any = node.right
return node
def UpperCAmelCase__ ( self : Dict , __magic_name__ : Node | None = None ) -> Node | None:
"""simple docstring"""
if node is None:
UpperCAmelCase_ : Optional[int] = self.root
if self.root is None:
return None
if not self.empty():
UpperCAmelCase_ : Union[str, Any] = self.root
while node.left is not None:
UpperCAmelCase_ : Dict = node.left
return node
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : int ) -> None:
"""simple docstring"""
UpperCAmelCase_ : List[str] = self.search(__magic_name__ ) # Look for the node with that label
if node is not None:
if node.left is None and node.right is None: # If it has no children
self.__reassign_nodes(__magic_name__ , __magic_name__ )
elif node.left is None: # Has only right children
self.__reassign_nodes(__magic_name__ , node.right )
elif node.right is None: # Has only left children
self.__reassign_nodes(__magic_name__ , node.left )
else:
UpperCAmelCase_ : List[str] = self.get_max(
node.left ) # Gets the max value of the left branch
self.remove(tmp_node.value ) # type: ignore
UpperCAmelCase_ : Optional[int] = (
tmp_node.value # type: ignore
) # Assigns the value to the node to delete and keep tree structure
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Node | None ) -> Iterable:
"""simple docstring"""
if node is not None:
yield node # Preorder Traversal
yield from self.preorder_traverse(node.left )
yield from self.preorder_traverse(node.right )
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : List[Any]=None ) -> Any:
"""simple docstring"""
if traversal_function is None:
return self.preorder_traverse(self.root )
else:
return traversal_function(self.root )
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : list , __magic_name__ : Node | None ) -> None:
"""simple docstring"""
if node:
self.inorder(__magic_name__ , node.left )
arr.append(node.value )
self.inorder(__magic_name__ , node.right )
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : int , __magic_name__ : Node ) -> int:
"""simple docstring"""
UpperCAmelCase_ : list[int] = []
self.inorder(__magic_name__ , __magic_name__ ) # append all values to list using inorder traversal
return arr[k - 1]
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Node | None ) -> list[Node]:
UpperCAmelCase_ : Any = []
if curr_node is not None:
UpperCAmelCase_ : Any = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node]
return node_list
def lowerCamelCase_ ( ) -> None:
UpperCAmelCase_ : str = (8, 3, 6, 1, 10, 14, 13, 4, 7)
UpperCAmelCase_ : Tuple = BinarySearchTree()
for i in testlist:
t.insert(SCREAMING_SNAKE_CASE__ )
# Prints all the elements of the list in order traversal
print(SCREAMING_SNAKE_CASE__ )
if t.search(6 ) is not None:
print('''The value 6 exists''' )
else:
print('''The value 6 doesn\'t exist''' )
if t.search(-1 ) is not None:
print('''The value -1 exists''' )
else:
print('''The value -1 doesn\'t exist''' )
if not t.empty():
print('''Max Value: ''', t.get_max().value ) # type: ignore
print('''Min Value: ''', t.get_min().value ) # type: ignore
for i in testlist:
t.remove(SCREAMING_SNAKE_CASE__ )
print(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
| 644
| 0
|
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : int ) -> str:
if a < 0 or b < 0:
raise ValueError('''the value of both inputs must be positive''' )
UpperCAmelCase_ : int = str(bin(SCREAMING_SNAKE_CASE__ ) )[2:] # remove the leading "0b"
UpperCAmelCase_ : Optional[Any] = str(bin(SCREAMING_SNAKE_CASE__ ) )[2:] # remove the leading "0b"
UpperCAmelCase_ : int = max(len(SCREAMING_SNAKE_CASE__ ), len(SCREAMING_SNAKE_CASE__ ) )
return "0b" + "".join(
str(int(char_a == '''1''' and char_b == '''1''' ) )
for char_a, char_b in zip(a_binary.zfill(SCREAMING_SNAKE_CASE__ ), b_binary.zfill(SCREAMING_SNAKE_CASE__ ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 713
|
'''simple docstring'''
import sys
import turtle
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : tuple[float, float] ) -> tuple[float, float]:
return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : int, ) -> None:
my_pen.up()
my_pen.goto(vertexa[0], vertexa[1] )
my_pen.down()
my_pen.goto(vertexa[0], vertexa[1] )
my_pen.goto(vertexa[0], vertexa[1] )
my_pen.goto(vertexa[0], vertexa[1] )
if depth == 0:
return
triangle(SCREAMING_SNAKE_CASE__, get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), depth - 1 )
triangle(SCREAMING_SNAKE_CASE__, get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), depth - 1 )
triangle(SCREAMING_SNAKE_CASE__, get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), depth - 1 )
if __name__ == "__main__":
if len(sys.argv) != 2:
raise ValueError(
"Correct format for using this script: "
"python fractals.py <int:depth_for_fractal>"
)
snake_case_ : Any = turtle.Turtle()
my_pen.ht()
my_pen.speed(5)
my_pen.pencolor("red")
snake_case_ : Tuple = [(-1_75, -1_25), (0, 1_75), (1_75, -1_25)] # vertices of triangle
triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
| 644
| 0
|
import argparse
import logging
import os
import sys
import numpy as np
import onnxruntime
import torch
from bart_onnx.generation_onnx import BARTBeamSearchGenerator
from bart_onnx.reduce_onnx_size import remove_dup_initializers
import transformers
from transformers import BartForConditionalGeneration, BartTokenizer
logging.basicConfig(
format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
level=os.environ.get("LOGLEVEL", "INFO").upper(),
stream=sys.stdout,
)
snake_case_ : Any = logging.getLogger(__name__)
snake_case_ : Dict = {"facebook/bart-base": BartForConditionalGeneration}
snake_case_ : Optional[Any] = {"facebook/bart-base": BartTokenizer}
def lowerCamelCase_ ( ) -> Optional[int]:
UpperCAmelCase_ : List[str] = argparse.ArgumentParser(description='''Export Bart model + Beam Search to ONNX graph.''' )
parser.add_argument(
'''--validation_file''', type=SCREAMING_SNAKE_CASE__, default=SCREAMING_SNAKE_CASE__, help='''A csv or a json file containing the validation data.''' )
parser.add_argument(
'''--max_length''', type=SCREAMING_SNAKE_CASE__, default=5, help='''The maximum total input sequence length after tokenization.''', )
parser.add_argument(
'''--num_beams''', type=SCREAMING_SNAKE_CASE__, default=SCREAMING_SNAKE_CASE__, help=(
'''Number of beams to use for evaluation. This argument will be '''
'''passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.'''
), )
parser.add_argument(
'''--model_name_or_path''', type=SCREAMING_SNAKE_CASE__, help='''Path to pretrained model or model identifier from huggingface.co/models.''', required=SCREAMING_SNAKE_CASE__, )
parser.add_argument(
'''--config_name''', type=SCREAMING_SNAKE_CASE__, default=SCREAMING_SNAKE_CASE__, help='''Pretrained config name or path if not the same as model_name''', )
parser.add_argument(
'''--device''', type=SCREAMING_SNAKE_CASE__, default='''cpu''', help='''Device where the model will be run''', )
parser.add_argument('''--output_file_path''', type=SCREAMING_SNAKE_CASE__, default=SCREAMING_SNAKE_CASE__, help='''Where to store the final ONNX file.''' )
UpperCAmelCase_ : Optional[int] = parser.parse_args()
return args
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[Any], SCREAMING_SNAKE_CASE__ : Union[str, Any]="cpu" ) -> Tuple:
UpperCAmelCase_ : Tuple = model_dict[model_name].from_pretrained(SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : List[str] = tokenizer_dict[model_name].from_pretrained(SCREAMING_SNAKE_CASE__ )
if model_name in ["facebook/bart-base"]:
UpperCAmelCase_ : Optional[Any] = 0
UpperCAmelCase_ : Any = None
UpperCAmelCase_ : List[Any] = 0
return huggingface_model, tokenizer
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Optional[Any], SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : str, SCREAMING_SNAKE_CASE__ : Optional[int], SCREAMING_SNAKE_CASE__ : List[Any] ) -> Any:
model.eval()
UpperCAmelCase_ : Optional[Any] = None
UpperCAmelCase_ : Union[str, Any] = torch.jit.script(BARTBeamSearchGenerator(SCREAMING_SNAKE_CASE__ ) )
with torch.no_grad():
UpperCAmelCase_ : Optional[Any] = '''My friends are cool but they eat too many carbs.'''
UpperCAmelCase_ : List[str] = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors='''pt''' ).to(model.device )
UpperCAmelCase_ : Optional[int] = model.generate(
inputs['''input_ids'''], attention_mask=inputs['''attention_mask'''], num_beams=SCREAMING_SNAKE_CASE__, max_length=SCREAMING_SNAKE_CASE__, early_stopping=SCREAMING_SNAKE_CASE__, decoder_start_token_id=model.config.decoder_start_token_id, )
torch.onnx.export(
SCREAMING_SNAKE_CASE__, (
inputs['''input_ids'''],
inputs['''attention_mask'''],
num_beams,
max_length,
model.config.decoder_start_token_id,
), SCREAMING_SNAKE_CASE__, opset_version=14, input_names=['''input_ids''', '''attention_mask''', '''num_beams''', '''max_length''', '''decoder_start_token_id'''], output_names=['''output_ids'''], dynamic_axes={
'''input_ids''': {0: '''batch''', 1: '''seq'''},
'''output_ids''': {0: '''batch''', 1: '''seq_out'''},
}, example_outputs=SCREAMING_SNAKE_CASE__, )
logger.info('''Model exported to {}'''.format(SCREAMING_SNAKE_CASE__ ) )
UpperCAmelCase_ : Union[str, Any] = remove_dup_initializers(os.path.abspath(SCREAMING_SNAKE_CASE__ ) )
logger.info('''Deduplicated and optimized model written to {}'''.format(SCREAMING_SNAKE_CASE__ ) )
UpperCAmelCase_ : Dict = onnxruntime.InferenceSession(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Optional[int] = ort_sess.run(
SCREAMING_SNAKE_CASE__, {
'''input_ids''': inputs['''input_ids'''].cpu().numpy(),
'''attention_mask''': inputs['''attention_mask'''].cpu().numpy(),
'''num_beams''': np.array(SCREAMING_SNAKE_CASE__ ),
'''max_length''': np.array(SCREAMING_SNAKE_CASE__ ),
'''decoder_start_token_id''': np.array(model.config.decoder_start_token_id ),
}, )
np.testing.assert_allclose(summary_ids.cpu().numpy(), ort_out[0], rtol=1E-3, atol=1E-3 )
logger.info('''Model outputs from torch and ONNX Runtime are similar.''' )
logger.info('''Success.''' )
def lowerCamelCase_ ( ) -> Optional[Any]:
UpperCAmelCase_ : List[Any] = parse_args()
UpperCAmelCase_ : List[str] = 5
UpperCAmelCase_ : Optional[Any] = 4
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, )
logger.setLevel(logging.INFO )
transformers.utils.logging.set_verbosity_error()
UpperCAmelCase_ : Dict = torch.device(args.device )
UpperCAmelCase_ : Dict = load_model_tokenizer(args.model_name_or_path, SCREAMING_SNAKE_CASE__ )
if model.config.decoder_start_token_id is None:
raise ValueError('''Make sure that `config.decoder_start_token_id` is correctly defined''' )
model.to(SCREAMING_SNAKE_CASE__ )
if args.max_length:
UpperCAmelCase_ : Tuple = args.max_length
if args.num_beams:
UpperCAmelCase_ : Optional[int] = args.num_beams
if args.output_file_path:
UpperCAmelCase_ : Optional[int] = args.output_file_path
else:
UpperCAmelCase_ : Dict = '''BART.onnx'''
logger.info('''Exporting model to ONNX''' )
export_and_validate_model(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
main()
| 714
|
'''simple docstring'''
import gc
import tempfile
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionPipeline
from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device
snake_case_ : List[str] = False
class __a (unittest.TestCase ):
pass
@nightly
@require_torch_gpu
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : int ) -> str:
"""simple docstring"""
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : List[Any] = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' )
UpperCAmelCase_ : Optional[int] = torch.manual_seed(0 )
UpperCAmelCase_ : Union[str, Any] = pipe.dual_guided(
prompt='''first prompt''' , image=__magic_name__ , text_to_image_strength=0.7_5 , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(__magic_name__ )
UpperCAmelCase_ : Optional[int] = VersatileDiffusionPipeline.from_pretrained(__magic_name__ , torch_dtype=torch.floataa )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : Any = generator.manual_seed(0 )
UpperCAmelCase_ : Dict = pipe.dual_guided(
prompt='''first prompt''' , image=__magic_name__ , text_to_image_strength=0.7_5 , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images
assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass"
def UpperCAmelCase__ ( self : str ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : str = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : Union[str, Any] = '''cyberpunk 2077'''
UpperCAmelCase_ : Union[str, Any] = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' )
UpperCAmelCase_ : Tuple = torch.manual_seed(0 )
UpperCAmelCase_ : Optional[Any] = pipe.dual_guided(
prompt=__magic_name__ , image=__magic_name__ , text_to_image_strength=0.7_5 , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' , ).images
UpperCAmelCase_ : List[str] = image[0, 2_53:2_56, 2_53:2_56, -1]
assert image.shape == (1, 5_12, 5_12, 3)
UpperCAmelCase_ : Union[str, Any] = np.array([0.1_4_4_8, 0.1_6_1_9, 0.1_7_4_1, 0.1_0_8_6, 0.1_1_4_7, 0.1_1_2_8, 0.1_1_9_9, 0.1_1_6_5, 0.1_0_0_1] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
UpperCAmelCase_ : Tuple = '''A painting of a squirrel eating a burger '''
UpperCAmelCase_ : Optional[int] = torch.manual_seed(0 )
UpperCAmelCase_ : List[Any] = pipe.text_to_image(
prompt=__magic_name__ , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' ).images
UpperCAmelCase_ : Tuple = image[0, 2_53:2_56, 2_53:2_56, -1]
assert image.shape == (1, 5_12, 5_12, 3)
UpperCAmelCase_ : Any = np.array([0.3_3_6_7, 0.3_1_6_9, 0.2_6_5_6, 0.3_8_7_0, 0.4_7_9_0, 0.3_7_9_6, 0.4_0_0_9, 0.4_8_7_8, 0.4_7_7_8] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
UpperCAmelCase_ : Tuple = pipe.image_variation(__magic_name__ , generator=__magic_name__ , output_type='''numpy''' ).images
UpperCAmelCase_ : Optional[Any] = image[0, 2_53:2_56, 2_53:2_56, -1]
assert image.shape == (1, 5_12, 5_12, 3)
UpperCAmelCase_ : List[str] = np.array([0.3_0_7_6, 0.3_1_2_3, 0.3_2_8_4, 0.3_7_8_2, 0.3_7_7_0, 0.3_8_9_4, 0.4_2_9_7, 0.4_3_3_1, 0.4_4_5_6] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
| 644
| 0
|
'''simple docstring'''
from __future__ import annotations
from scipy.special import comb # type: ignore
class __a :
def __init__( self : Tuple , __magic_name__ : list[tuple[float, float]] ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : Dict = list_of_points
# Degree determines the flexibility of the curve.
# Degree = 1 will produce a straight line.
UpperCAmelCase_ : List[str] = len(__magic_name__ ) - 1
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : float ) -> list[float]:
"""simple docstring"""
assert 0 <= t <= 1, "Time t must be between 0 and 1."
UpperCAmelCase_ : list[float] = []
for i in range(len(self.list_of_points ) ):
# basis function for each i
output_values.append(
comb(self.degree , __magic_name__ ) * ((1 - t) ** (self.degree - i)) * (t**i) )
# the basis must sum up to 1 for it to produce a valid Bezier curve.
assert round(sum(__magic_name__ ) , 5 ) == 1
return output_values
def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : float ) -> tuple[float, float]:
"""simple docstring"""
assert 0 <= t <= 1, "Time t must be between 0 and 1."
UpperCAmelCase_ : Any = self.basis_function(__magic_name__ )
UpperCAmelCase_ : Union[str, Any] = 0.0
UpperCAmelCase_ : Tuple = 0.0
for i in range(len(self.list_of_points ) ):
# For all points, sum up the product of i-th basis function and i-th point.
x += basis_function[i] * self.list_of_points[i][0]
y += basis_function[i] * self.list_of_points[i][1]
return (x, y)
def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : float = 0.0_1 ) -> List[str]:
"""simple docstring"""
from matplotlib import pyplot as plt # type: ignore
UpperCAmelCase_ : list[float] = [] # x coordinates of points to plot
UpperCAmelCase_ : list[float] = [] # y coordinates of points to plot
UpperCAmelCase_ : int = 0.0
while t <= 1:
UpperCAmelCase_ : str = self.bezier_curve_function(__magic_name__ )
to_plot_x.append(value[0] )
to_plot_y.append(value[1] )
t += step_size
UpperCAmelCase_ : Any = [i[0] for i in self.list_of_points]
UpperCAmelCase_ : Union[str, Any] = [i[1] for i in self.list_of_points]
plt.plot(
__magic_name__ , __magic_name__ , color='''blue''' , label='''Curve of Degree ''' + str(self.degree ) , )
plt.scatter(__magic_name__ , __magic_name__ , color='''red''' , label='''Control Points''' )
plt.legend()
plt.show()
if __name__ == "__main__":
import doctest
doctest.testmod()
BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1
BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2
BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
| 715
|
'''simple docstring'''
snake_case_ : int = {
"Pillow": "Pillow",
"accelerate": "accelerate>=0.11.0",
"compel": "compel==0.1.8",
"black": "black~=23.1",
"datasets": "datasets",
"filelock": "filelock",
"flax": "flax>=0.4.1",
"hf-doc-builder": "hf-doc-builder>=0.3.0",
"huggingface-hub": "huggingface-hub>=0.13.2",
"requests-mock": "requests-mock==1.10.0",
"importlib_metadata": "importlib_metadata",
"invisible-watermark": "invisible-watermark",
"isort": "isort>=5.5.4",
"jax": "jax>=0.2.8,!=0.3.2",
"jaxlib": "jaxlib>=0.1.65",
"Jinja2": "Jinja2",
"k-diffusion": "k-diffusion>=0.0.12",
"torchsde": "torchsde",
"note_seq": "note_seq",
"librosa": "librosa",
"numpy": "numpy",
"omegaconf": "omegaconf",
"parameterized": "parameterized",
"protobuf": "protobuf>=3.20.3,<4",
"pytest": "pytest",
"pytest-timeout": "pytest-timeout",
"pytest-xdist": "pytest-xdist",
"ruff": "ruff>=0.0.241",
"safetensors": "safetensors",
"sentencepiece": "sentencepiece>=0.1.91,!=0.1.92",
"scipy": "scipy",
"onnx": "onnx",
"regex": "regex!=2019.12.17",
"requests": "requests",
"tensorboard": "tensorboard",
"torch": "torch>=1.4",
"torchvision": "torchvision",
"transformers": "transformers>=4.25.1",
"urllib3": "urllib3<=2.0.0",
}
| 644
| 0
|
'''simple docstring'''
import math
def lowerCamelCase_ ( ) -> None:
UpperCAmelCase_ : Union[str, Any] = input('''Enter message: ''' )
UpperCAmelCase_ : List[str] = int(input(F"""Enter key [2-{len(SCREAMING_SNAKE_CASE__ ) - 1}]: """ ) )
UpperCAmelCase_ : Any = input('''Encryption/Decryption [e/d]: ''' )
if mode.lower().startswith('''e''' ):
UpperCAmelCase_ : Optional[int] = encrypt_message(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
elif mode.lower().startswith('''d''' ):
UpperCAmelCase_ : int = decrypt_message(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
# Append pipe symbol (vertical bar) to identify spaces at the end.
print(F"""Output:\n{text + "|"}""" )
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : str ) -> str:
UpperCAmelCase_ : Optional[int] = [''''''] * key
for col in range(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase_ : Optional[Any] = col
while pointer < len(SCREAMING_SNAKE_CASE__ ):
cipher_text[col] += message[pointer]
pointer += key
return "".join(SCREAMING_SNAKE_CASE__ )
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : str ) -> str:
UpperCAmelCase_ : Union[str, Any] = math.ceil(len(SCREAMING_SNAKE_CASE__ ) / key )
UpperCAmelCase_ : int = key
UpperCAmelCase_ : Optional[int] = (num_cols * num_rows) - len(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Any = [''''''] * num_cols
UpperCAmelCase_ : str = 0
UpperCAmelCase_ : Optional[int] = 0
for symbol in message:
plain_text[col] += symbol
col += 1
if (
(col == num_cols)
or (col == num_cols - 1)
and (row >= num_rows - num_shaded_boxes)
):
UpperCAmelCase_ : Any = 0
row += 1
return "".join(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 716
|
'''simple docstring'''
import unittest
import numpy as np
import torch
from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class __a (unittest.TestCase ):
@property
def UpperCAmelCase__ ( self : Dict ) -> str:
"""simple docstring"""
torch.manual_seed(0 )
UpperCAmelCase_ : Optional[Any] = UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , )
return model
def UpperCAmelCase__ ( self : Dict ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = self.dummy_uncond_unet
UpperCAmelCase_ : Dict = KarrasVeScheduler()
UpperCAmelCase_ : Union[str, Any] = KarrasVePipeline(unet=__magic_name__ , scheduler=__magic_name__ )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : Dict = torch.manual_seed(0 )
UpperCAmelCase_ : Optional[int] = pipe(num_inference_steps=2 , generator=__magic_name__ , output_type='''numpy''' ).images
UpperCAmelCase_ : Tuple = torch.manual_seed(0 )
UpperCAmelCase_ : str = pipe(num_inference_steps=2 , generator=__magic_name__ , output_type='''numpy''' , return_dict=__magic_name__ )[0]
UpperCAmelCase_ : Union[str, Any] = image[0, -3:, -3:, -1]
UpperCAmelCase_ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
UpperCAmelCase_ : Dict = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : int ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : List[str] = '''google/ncsnpp-celebahq-256'''
UpperCAmelCase_ : List[str] = UNetaDModel.from_pretrained(__magic_name__ )
UpperCAmelCase_ : List[Any] = KarrasVeScheduler()
UpperCAmelCase_ : Any = KarrasVePipeline(unet=__magic_name__ , scheduler=__magic_name__ )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : Dict = torch.manual_seed(0 )
UpperCAmelCase_ : Optional[Any] = pipe(num_inference_steps=20 , generator=__magic_name__ , output_type='''numpy''' ).images
UpperCAmelCase_ : Any = image[0, -3:, -3:, -1]
assert image.shape == (1, 2_56, 2_56, 3)
UpperCAmelCase_ : Optional[Any] = np.array([0.5_7_8, 0.5_8_1_1, 0.5_9_2_4, 0.5_8_0_9, 0.5_8_7, 0.5_8_8_6, 0.5_8_6_1, 0.5_8_0_2, 0.5_8_6] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 644
| 0
|
'''simple docstring'''
from __future__ import annotations
from collections import deque
class __a :
def __init__( self : List[Any] , __magic_name__ : list[str] ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : list[dict] = []
self.adlist.append(
{'''value''': '''''', '''next_states''': [], '''fail_state''': 0, '''output''': []} )
for keyword in keywords:
self.add_keyword(__magic_name__ )
self.set_fail_transitions()
def UpperCAmelCase__ ( self : str , __magic_name__ : int , __magic_name__ : str ) -> int | None:
"""simple docstring"""
for state in self.adlist[current_state]["next_states"]:
if char == self.adlist[state]["value"]:
return state
return None
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : str ) -> None:
"""simple docstring"""
UpperCAmelCase_ : Tuple = 0
for character in keyword:
UpperCAmelCase_ : List[Any] = self.find_next_state(__magic_name__ , __magic_name__ )
if next_state is None:
self.adlist.append(
{
'''value''': character,
'''next_states''': [],
'''fail_state''': 0,
'''output''': [],
} )
self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 )
UpperCAmelCase_ : Optional[Any] = len(self.adlist ) - 1
else:
UpperCAmelCase_ : Optional[Any] = next_state
self.adlist[current_state]["output"].append(__magic_name__ )
def UpperCAmelCase__ ( self : str ) -> None:
"""simple docstring"""
UpperCAmelCase_ : deque = deque()
for node in self.adlist[0]["next_states"]:
q.append(__magic_name__ )
UpperCAmelCase_ : Any = 0
while q:
UpperCAmelCase_ : str = q.popleft()
for child in self.adlist[r]["next_states"]:
q.append(__magic_name__ )
UpperCAmelCase_ : str = self.adlist[r]['''fail_state''']
while (
self.find_next_state(__magic_name__ , self.adlist[child]['''value'''] ) is None
and state != 0
):
UpperCAmelCase_ : Tuple = self.adlist[state]['''fail_state''']
UpperCAmelCase_ : Union[str, Any] = self.find_next_state(
__magic_name__ , self.adlist[child]['''value'''] )
if self.adlist[child]["fail_state"] is None:
UpperCAmelCase_ : List[Any] = 0
UpperCAmelCase_ : Optional[Any] = (
self.adlist[child]['''output''']
+ self.adlist[self.adlist[child]['''fail_state''']]['''output''']
)
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : str ) -> dict[str, list[int]]:
"""simple docstring"""
UpperCAmelCase_ : dict = {} # returns a dict with keywords and list of its occurrences
UpperCAmelCase_ : Optional[Any] = 0
for i in range(len(__magic_name__ ) ):
while (
self.find_next_state(__magic_name__ , string[i] ) is None
and current_state != 0
):
UpperCAmelCase_ : Tuple = self.adlist[current_state]['''fail_state''']
UpperCAmelCase_ : List[Any] = self.find_next_state(__magic_name__ , string[i] )
if next_state is None:
UpperCAmelCase_ : List[Any] = 0
else:
UpperCAmelCase_ : Optional[int] = next_state
for key in self.adlist[current_state]["output"]:
if key not in result:
UpperCAmelCase_ : Any = []
result[key].append(i - len(__magic_name__ ) + 1 )
return result
if __name__ == "__main__":
import doctest
doctest.testmod()
| 717
|
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor
from .base import PipelineTool
class __a (lowerCamelCase ):
__a : List[Any] = "openai/whisper-base"
__a : Optional[Any] = (
"This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the "
"transcribed text."
)
__a : Any = "transcriber"
__a : str = WhisperProcessor
__a : List[Any] = WhisperForConditionalGeneration
__a : int = ["audio"]
__a : Optional[Any] = ["text"]
def UpperCAmelCase__ ( self : Dict , __magic_name__ : List[str] ) -> Optional[int]:
"""simple docstring"""
return self.pre_processor(__magic_name__ , return_tensors='''pt''' ).input_features
def UpperCAmelCase__ ( self : Dict , __magic_name__ : Dict ) -> Tuple:
"""simple docstring"""
return self.model.generate(inputs=__magic_name__ )
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Dict ) -> str:
"""simple docstring"""
return self.pre_processor.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ )[0]
| 644
| 0
|
'''simple docstring'''
import math
import random
from typing import Any
from .hill_climbing import SearchProblem
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[Any], SCREAMING_SNAKE_CASE__ : bool = True, SCREAMING_SNAKE_CASE__ : float = math.inf, SCREAMING_SNAKE_CASE__ : float = -math.inf, SCREAMING_SNAKE_CASE__ : float = math.inf, SCREAMING_SNAKE_CASE__ : float = -math.inf, SCREAMING_SNAKE_CASE__ : bool = False, SCREAMING_SNAKE_CASE__ : float = 100, SCREAMING_SNAKE_CASE__ : float = 0.01, SCREAMING_SNAKE_CASE__ : float = 1, ) -> Any:
UpperCAmelCase_ : Tuple = False
UpperCAmelCase_ : Union[str, Any] = search_prob
UpperCAmelCase_ : int = start_temperate
UpperCAmelCase_ : Optional[Any] = []
UpperCAmelCase_ : Tuple = 0
UpperCAmelCase_ : int = None
while not search_end:
UpperCAmelCase_ : Optional[Any] = current_state.score()
if best_state is None or current_score > best_state.score():
UpperCAmelCase_ : Union[str, Any] = current_state
scores.append(SCREAMING_SNAKE_CASE__ )
iterations += 1
UpperCAmelCase_ : Optional[int] = None
UpperCAmelCase_ : List[Any] = current_state.get_neighbors()
while (
next_state is None and neighbors
): # till we do not find a neighbor that we can move to
UpperCAmelCase_ : Optional[Any] = random.randint(0, len(SCREAMING_SNAKE_CASE__ ) - 1 ) # picking a random neighbor
UpperCAmelCase_ : Optional[int] = neighbors.pop(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : List[Any] = picked_neighbor.score() - current_score
if (
picked_neighbor.x > max_x
or picked_neighbor.x < min_x
or picked_neighbor.y > max_y
or picked_neighbor.y < min_y
):
continue # neighbor outside our bounds
if not find_max:
UpperCAmelCase_ : List[Any] = change * -1 # in case we are finding minimum
if change > 0: # improves the solution
UpperCAmelCase_ : Tuple = picked_neighbor
else:
UpperCAmelCase_ : List[Any] = (math.e) ** (
change / current_temp
) # probability generation function
if random.random() < probability: # random number within probability
UpperCAmelCase_ : str = picked_neighbor
UpperCAmelCase_ : Union[str, Any] = current_temp - (current_temp * rate_of_decrease)
if current_temp < threshold_temp or next_state is None:
# temperature below threshold, or could not find a suitable neighbor
UpperCAmelCase_ : Union[str, Any] = True
else:
UpperCAmelCase_ : Tuple = next_state
if visualization:
from matplotlib import pyplot as plt
plt.plot(range(SCREAMING_SNAKE_CASE__ ), SCREAMING_SNAKE_CASE__ )
plt.xlabel('''Iterations''' )
plt.ylabel('''Function values''' )
plt.show()
return best_state
if __name__ == "__main__":
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : str, SCREAMING_SNAKE_CASE__ : List[str] ) -> Tuple:
return (x**2) + (y**2)
# starting the problem with initial coordinates (12, 47)
snake_case_ : Tuple = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa)
snake_case_ : List[Any] = simulated_annealing(
prob, find_max=False, max_x=1_00, min_x=5, max_y=50, min_y=-5, visualization=True
)
print(
"The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 "
f'''and 50 > y > - 5 found via hill climbing: {local_min.score()}'''
)
# starting the problem with initial coordinates (12, 47)
snake_case_ : List[str] = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa)
snake_case_ : Tuple = simulated_annealing(
prob, find_max=True, max_x=1_00, min_x=5, max_y=50, min_y=-5, visualization=True
)
print(
"The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 "
f'''and 50 > y > - 5 found via hill climbing: {local_min.score()}'''
)
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Dict, SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> List[str]:
return (3 * x**2) - (6 * y)
snake_case_ : Dict = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
snake_case_ : str = simulated_annealing(prob, find_max=False, visualization=True)
print(
"The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: "
f'''{local_min.score()}'''
)
snake_case_ : List[Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
snake_case_ : Optional[int] = simulated_annealing(prob, find_max=True, visualization=True)
print(
"The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: "
f'''{local_min.score()}'''
)
| 718
|
'''simple docstring'''
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : int ) -> int:
return abs(SCREAMING_SNAKE_CASE__ ) if a == 0 else greatest_common_divisor(b % a, SCREAMING_SNAKE_CASE__ )
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : int ) -> int:
while y: # --> when y=0 then loop will terminate and return x as final GCD.
UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = y, x % y
return abs(SCREAMING_SNAKE_CASE__ )
def lowerCamelCase_ ( ) -> Optional[int]:
try:
UpperCAmelCase_ : Optional[Any] = input('''Enter two integers separated by comma (,): ''' ).split(''',''' )
UpperCAmelCase_ : Optional[int] = int(nums[0] )
UpperCAmelCase_ : List[Any] = int(nums[1] )
print(
F"""greatest_common_divisor({num_a}, {num_a}) = """
F"""{greatest_common_divisor(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )}""" )
print(F"""By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )}""" )
except (IndexError, UnboundLocalError, ValueError):
print('''Wrong input''' )
if __name__ == "__main__":
main()
| 644
| 0
|
'''simple docstring'''
import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.layers import LSTM, Dense
from tensorflow.keras.models import Sequential
if __name__ == "__main__":
snake_case_ : List[Any] = pd.read_csv("sample_data.csv", header=None)
snake_case_ : Optional[Any] = df.shape[:1][0]
# If you're using some other dataset input the target column
snake_case_ : Any = df.iloc[:, 1:2]
snake_case_ : str = actual_data.values.reshape(len_data, 1)
snake_case_ : Optional[Any] = MinMaxScaler().fit_transform(actual_data)
snake_case_ : List[str] = 10
snake_case_ : Any = 5
snake_case_ : Any = 20
snake_case_ : Tuple = len_data - periods * look_back
snake_case_ : str = actual_data[:division]
snake_case_ : Optional[int] = actual_data[division - look_back :]
snake_case_ : Any = [], []
snake_case_ : Union[str, Any] = [], []
for i in range(0, len(train_data) - forward_days - look_back + 1):
train_x.append(train_data[i : i + look_back])
train_y.append(train_data[i + look_back : i + look_back + forward_days])
for i in range(0, len(test_data) - forward_days - look_back + 1):
test_x.append(test_data[i : i + look_back])
test_y.append(test_data[i + look_back : i + look_back + forward_days])
snake_case_ : Any = np.array(train_x)
snake_case_ : Optional[Any] = np.array(test_x)
snake_case_ : Optional[Any] = np.array([list(i.ravel()) for i in train_y])
snake_case_ : List[str] = np.array([list(i.ravel()) for i in test_y])
snake_case_ : List[Any] = Sequential()
model.add(LSTM(1_28, input_shape=(look_back, 1), return_sequences=True))
model.add(LSTM(64, input_shape=(1_28, 1)))
model.add(Dense(forward_days))
model.compile(loss="mean_squared_error", optimizer="adam")
snake_case_ : Dict = model.fit(
x_train, y_train, epochs=1_50, verbose=1, shuffle=True, batch_size=4
)
snake_case_ : Optional[Any] = model.predict(x_test)
| 719
|
'''simple docstring'''
import unittest
from transformers import LiltConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
LiltForQuestionAnswering,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltModel,
)
from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST
class __a :
def __init__( self : int , __magic_name__ : Optional[Any] , __magic_name__ : Any=13 , __magic_name__ : Any=7 , __magic_name__ : Union[str, Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : str=True , __magic_name__ : Optional[int]=True , __magic_name__ : List[Any]=99 , __magic_name__ : int=24 , __magic_name__ : Optional[int]=2 , __magic_name__ : Tuple=6 , __magic_name__ : Union[str, Any]=37 , __magic_name__ : Optional[Any]="gelu" , __magic_name__ : Any=0.1 , __magic_name__ : str=0.1 , __magic_name__ : Tuple=5_12 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : Tuple=2 , __magic_name__ : Tuple=0.0_2 , __magic_name__ : Optional[Any]=3 , __magic_name__ : Optional[int]=None , __magic_name__ : Any=10_00 , ) -> str:
"""simple docstring"""
UpperCAmelCase_ : Tuple = parent
UpperCAmelCase_ : Optional[int] = batch_size
UpperCAmelCase_ : List[str] = seq_length
UpperCAmelCase_ : Dict = is_training
UpperCAmelCase_ : List[str] = use_input_mask
UpperCAmelCase_ : Any = use_token_type_ids
UpperCAmelCase_ : Any = use_labels
UpperCAmelCase_ : Any = vocab_size
UpperCAmelCase_ : Dict = hidden_size
UpperCAmelCase_ : Tuple = num_hidden_layers
UpperCAmelCase_ : Tuple = num_attention_heads
UpperCAmelCase_ : int = intermediate_size
UpperCAmelCase_ : Union[str, Any] = hidden_act
UpperCAmelCase_ : Optional[int] = hidden_dropout_prob
UpperCAmelCase_ : Optional[Any] = attention_probs_dropout_prob
UpperCAmelCase_ : Union[str, Any] = max_position_embeddings
UpperCAmelCase_ : int = type_vocab_size
UpperCAmelCase_ : List[Any] = type_sequence_label_size
UpperCAmelCase_ : int = initializer_range
UpperCAmelCase_ : Dict = num_labels
UpperCAmelCase_ : List[str] = scope
UpperCAmelCase_ : List[str] = range_bbox
def UpperCAmelCase__ ( self : Optional[int] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
UpperCAmelCase_ : List[str] = bbox[i, j, 3]
UpperCAmelCase_ : Dict = bbox[i, j, 1]
UpperCAmelCase_ : Optional[Any] = t
if bbox[i, j, 2] < bbox[i, j, 0]:
UpperCAmelCase_ : List[str] = bbox[i, j, 2]
UpperCAmelCase_ : Tuple = bbox[i, j, 0]
UpperCAmelCase_ : Union[str, Any] = t
UpperCAmelCase_ : int = None
if self.use_input_mask:
UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
UpperCAmelCase_ : Optional[int] = None
if self.use_token_type_ids:
UpperCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase_ : Dict = None
UpperCAmelCase_ : Tuple = None
if self.use_labels:
UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase_ : int = self.get_config()
return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels
def UpperCAmelCase__ ( self : Any ) -> List[Any]:
"""simple docstring"""
return LiltConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : str , __magic_name__ : Optional[Any] , __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : int , ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Any = LiltModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : Optional[Any] = model(__magic_name__ , bbox=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ )
UpperCAmelCase_ : List[Any] = model(__magic_name__ , bbox=__magic_name__ , token_type_ids=__magic_name__ )
UpperCAmelCase_ : Optional[int] = model(__magic_name__ , bbox=__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def UpperCAmelCase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[int] , __magic_name__ : List[Any] , ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : Any = self.num_labels
UpperCAmelCase_ : List[Any] = LiltForTokenClassification(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : List[Any] = model(
__magic_name__ , bbox=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCAmelCase__ ( self : Any , __magic_name__ : Optional[Any] , __magic_name__ : Dict , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : Any , ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : str = LiltForQuestionAnswering(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : Optional[Any] = model(
__magic_name__ , bbox=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = self.prepare_config_and_inputs()
(
(
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) ,
) : Optional[int] = config_and_inputs
UpperCAmelCase_ : Tuple = {
'''input_ids''': input_ids,
'''bbox''': bbox,
'''token_type_ids''': token_type_ids,
'''attention_mask''': input_mask,
}
return config, inputs_dict
@require_torch
class __a (lowerCamelCase , lowerCamelCase , lowerCamelCase , unittest.TestCase ):
__a : Tuple = (
(
LiltModel,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltForQuestionAnswering,
)
if is_torch_available()
else ()
)
__a : Any = (
{
"feature-extraction": LiltModel,
"question-answering": LiltForQuestionAnswering,
"text-classification": LiltForSequenceClassification,
"token-classification": LiltForTokenClassification,
"zero-shot": LiltForSequenceClassification,
}
if is_torch_available()
else {}
)
__a : Union[str, Any] = False
__a : int = False
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : int ) -> str:
"""simple docstring"""
return True
def UpperCAmelCase__ ( self : str ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = LiltModelTester(self )
UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 )
def UpperCAmelCase__ ( self : Union[str, Any] ) -> str:
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCAmelCase__ ( self : str ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__magic_name__ )
def UpperCAmelCase__ ( self : str ) -> str:
"""simple docstring"""
UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
UpperCAmelCase_ : Tuple = type
self.model_tester.create_and_check_model(*__magic_name__ )
def UpperCAmelCase__ ( self : Union[str, Any] ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__magic_name__ )
def UpperCAmelCase__ ( self : str ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__magic_name__ )
@slow
def UpperCAmelCase__ ( self : int ) -> Union[str, Any]:
"""simple docstring"""
for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase_ : Optional[int] = LiltModel.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
@require_torch
@slow
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : str = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(__magic_name__ )
UpperCAmelCase_ : Any = torch.tensor([[1, 2]] , device=__magic_name__ )
UpperCAmelCase_ : int = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=__magic_name__ )
# forward pass
with torch.no_grad():
UpperCAmelCase_ : Optional[int] = model(input_ids=__magic_name__ , bbox=__magic_name__ )
UpperCAmelCase_ : int = torch.Size([1, 2, 7_68] )
UpperCAmelCase_ : List[str] = torch.tensor(
[[-0.0_6_5_3, 0.0_9_5_0, -0.0_0_6_1], [-0.0_5_4_5, 0.0_9_2_6, -0.0_3_2_4]] , device=__magic_name__ , )
self.assertTrue(outputs.last_hidden_state.shape , __magic_name__ )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , __magic_name__ , atol=1E-3 ) )
| 644
| 0
|
import argparse
import json
import os
import numpy as np
import PIL
import requests
import tensorflow.keras.applications.efficientnet as efficientnet
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from tensorflow.keras.preprocessing import image
from transformers import (
EfficientNetConfig,
EfficientNetForImageClassification,
EfficientNetImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
snake_case_ : List[str] = logging.get_logger(__name__)
snake_case_ : List[Any] = {
"b0": efficientnet.EfficientNetBa,
"b1": efficientnet.EfficientNetBa,
"b2": efficientnet.EfficientNetBa,
"b3": efficientnet.EfficientNetBa,
"b4": efficientnet.EfficientNetBa,
"b5": efficientnet.EfficientNetBa,
"b6": efficientnet.EfficientNetBa,
"b7": efficientnet.EfficientNetBa,
}
snake_case_ : Optional[Any] = {
"b0": {
"hidden_dim": 12_80,
"width_coef": 1.0,
"depth_coef": 1.0,
"image_size": 2_24,
"dropout_rate": 0.2,
"dw_padding": [],
},
"b1": {
"hidden_dim": 12_80,
"width_coef": 1.0,
"depth_coef": 1.1,
"image_size": 2_40,
"dropout_rate": 0.2,
"dw_padding": [16],
},
"b2": {
"hidden_dim": 14_08,
"width_coef": 1.1,
"depth_coef": 1.2,
"image_size": 2_60,
"dropout_rate": 0.3,
"dw_padding": [5, 8, 16],
},
"b3": {
"hidden_dim": 15_36,
"width_coef": 1.2,
"depth_coef": 1.4,
"image_size": 3_00,
"dropout_rate": 0.3,
"dw_padding": [5, 18],
},
"b4": {
"hidden_dim": 17_92,
"width_coef": 1.4,
"depth_coef": 1.8,
"image_size": 3_80,
"dropout_rate": 0.4,
"dw_padding": [6],
},
"b5": {
"hidden_dim": 20_48,
"width_coef": 1.6,
"depth_coef": 2.2,
"image_size": 4_56,
"dropout_rate": 0.4,
"dw_padding": [13, 27],
},
"b6": {
"hidden_dim": 23_04,
"width_coef": 1.8,
"depth_coef": 2.6,
"image_size": 5_28,
"dropout_rate": 0.5,
"dw_padding": [31],
},
"b7": {
"hidden_dim": 25_60,
"width_coef": 2.0,
"depth_coef": 3.1,
"image_size": 6_00,
"dropout_rate": 0.5,
"dw_padding": [18],
},
}
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : str ) -> Dict:
UpperCAmelCase_ : int = EfficientNetConfig()
UpperCAmelCase_ : str = CONFIG_MAP[model_name]['''hidden_dim''']
UpperCAmelCase_ : Any = CONFIG_MAP[model_name]['''width_coef''']
UpperCAmelCase_ : Tuple = CONFIG_MAP[model_name]['''depth_coef''']
UpperCAmelCase_ : List[Any] = CONFIG_MAP[model_name]['''image_size''']
UpperCAmelCase_ : int = CONFIG_MAP[model_name]['''dropout_rate''']
UpperCAmelCase_ : Optional[int] = CONFIG_MAP[model_name]['''dw_padding''']
UpperCAmelCase_ : int = '''huggingface/label-files'''
UpperCAmelCase_ : Dict = '''imagenet-1k-id2label.json'''
UpperCAmelCase_ : Union[str, Any] = 1000
UpperCAmelCase_ : Tuple = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, repo_type='''dataset''' ), '''r''' ) )
UpperCAmelCase_ : str = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()}
UpperCAmelCase_ : Any = idalabel
UpperCAmelCase_ : List[str] = {v: k for k, v in idalabel.items()}
return config
def lowerCamelCase_ ( ) -> Optional[Any]:
UpperCAmelCase_ : Optional[int] = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
UpperCAmelCase_ : List[Any] = Image.open(requests.get(SCREAMING_SNAKE_CASE__, stream=SCREAMING_SNAKE_CASE__ ).raw )
return im
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[str]:
UpperCAmelCase_ : Optional[Any] = CONFIG_MAP[model_name]['''image_size''']
UpperCAmelCase_ : str = EfficientNetImageProcessor(
size={'''height''': size, '''width''': size}, image_mean=[0.4_85, 0.4_56, 0.4_06], image_std=[0.47_85_39_44, 0.4_73_28_64, 0.47_43_41_63], do_center_crop=SCREAMING_SNAKE_CASE__, )
return preprocessor
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int ) -> Tuple:
UpperCAmelCase_ : Dict = [v.split('''_''' )[0].split('''block''' )[1] for v in original_param_names if v.startswith('''block''' )]
UpperCAmelCase_ : Optional[int] = sorted(set(SCREAMING_SNAKE_CASE__ ) )
UpperCAmelCase_ : Union[str, Any] = len(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : str = {b: str(SCREAMING_SNAKE_CASE__ ) for b, i in zip(SCREAMING_SNAKE_CASE__, range(SCREAMING_SNAKE_CASE__ ) )}
UpperCAmelCase_ : Optional[int] = []
rename_keys.append(('''stem_conv/kernel:0''', '''embeddings.convolution.weight''') )
rename_keys.append(('''stem_bn/gamma:0''', '''embeddings.batchnorm.weight''') )
rename_keys.append(('''stem_bn/beta:0''', '''embeddings.batchnorm.bias''') )
rename_keys.append(('''stem_bn/moving_mean:0''', '''embeddings.batchnorm.running_mean''') )
rename_keys.append(('''stem_bn/moving_variance:0''', '''embeddings.batchnorm.running_var''') )
for b in block_names:
UpperCAmelCase_ : Union[str, Any] = block_name_mapping[b]
rename_keys.append((F"""block{b}_expand_conv/kernel:0""", F"""encoder.blocks.{hf_b}.expansion.expand_conv.weight""") )
rename_keys.append((F"""block{b}_expand_bn/gamma:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.weight""") )
rename_keys.append((F"""block{b}_expand_bn/beta:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.bias""") )
rename_keys.append(
(F"""block{b}_expand_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_mean""") )
rename_keys.append(
(F"""block{b}_expand_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_var""") )
rename_keys.append(
(F"""block{b}_dwconv/depthwise_kernel:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight""") )
rename_keys.append((F"""block{b}_bn/gamma:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight""") )
rename_keys.append((F"""block{b}_bn/beta:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias""") )
rename_keys.append(
(F"""block{b}_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean""") )
rename_keys.append(
(F"""block{b}_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var""") )
rename_keys.append((F"""block{b}_se_reduce/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.weight""") )
rename_keys.append((F"""block{b}_se_reduce/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.bias""") )
rename_keys.append((F"""block{b}_se_expand/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.weight""") )
rename_keys.append((F"""block{b}_se_expand/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.bias""") )
rename_keys.append(
(F"""block{b}_project_conv/kernel:0""", F"""encoder.blocks.{hf_b}.projection.project_conv.weight""") )
rename_keys.append((F"""block{b}_project_bn/gamma:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.weight""") )
rename_keys.append((F"""block{b}_project_bn/beta:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.bias""") )
rename_keys.append(
(F"""block{b}_project_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_mean""") )
rename_keys.append(
(F"""block{b}_project_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_var""") )
rename_keys.append(('''top_conv/kernel:0''', '''encoder.top_conv.weight''') )
rename_keys.append(('''top_bn/gamma:0''', '''encoder.top_bn.weight''') )
rename_keys.append(('''top_bn/beta:0''', '''encoder.top_bn.bias''') )
rename_keys.append(('''top_bn/moving_mean:0''', '''encoder.top_bn.running_mean''') )
rename_keys.append(('''top_bn/moving_variance:0''', '''encoder.top_bn.running_var''') )
UpperCAmelCase_ : Optional[int] = {}
for item in rename_keys:
if item[0] in original_param_names:
UpperCAmelCase_ : Optional[int] = '''efficientnet.''' + item[1]
UpperCAmelCase_ : Any = '''classifier.weight'''
UpperCAmelCase_ : Dict = '''classifier.bias'''
return key_mapping
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Optional[Any], SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Optional[int]:
for key, value in tf_params.items():
if "normalization" in key:
continue
UpperCAmelCase_ : List[str] = key_mapping[key]
if "_conv" in key and "kernel" in key:
UpperCAmelCase_ : Union[str, Any] = torch.from_numpy(SCREAMING_SNAKE_CASE__ ).permute(3, 2, 0, 1 )
elif "depthwise_kernel" in key:
UpperCAmelCase_ : Tuple = torch.from_numpy(SCREAMING_SNAKE_CASE__ ).permute(2, 3, 0, 1 )
elif "kernel" in key:
UpperCAmelCase_ : str = torch.from_numpy(np.transpose(SCREAMING_SNAKE_CASE__ ) )
else:
UpperCAmelCase_ : Tuple = torch.from_numpy(SCREAMING_SNAKE_CASE__ )
# Replace HF parameters with original TF model parameters
assert hf_params[hf_key].shape == new_hf_value.shape
hf_params[hf_key].copy_(SCREAMING_SNAKE_CASE__ )
@torch.no_grad()
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[Any], SCREAMING_SNAKE_CASE__ : Dict, SCREAMING_SNAKE_CASE__ : Any, SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Any:
UpperCAmelCase_ : Optional[Any] = model_classes[model_name](
include_top=SCREAMING_SNAKE_CASE__, weights='''imagenet''', input_tensor=SCREAMING_SNAKE_CASE__, input_shape=SCREAMING_SNAKE_CASE__, pooling=SCREAMING_SNAKE_CASE__, classes=1000, classifier_activation='''softmax''', )
UpperCAmelCase_ : int = original_model.trainable_variables
UpperCAmelCase_ : List[Any] = original_model.non_trainable_variables
UpperCAmelCase_ : Tuple = {param.name: param.numpy() for param in tf_params}
for param in tf_non_train_params:
UpperCAmelCase_ : Dict = param.numpy()
UpperCAmelCase_ : Dict = list(tf_params.keys() )
# Load HuggingFace model
UpperCAmelCase_ : str = get_efficientnet_config(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Optional[int] = EfficientNetForImageClassification(SCREAMING_SNAKE_CASE__ ).eval()
UpperCAmelCase_ : Optional[int] = hf_model.state_dict()
# Create src-to-dst parameter name mapping dictionary
print('''Converting parameters...''' )
UpperCAmelCase_ : List[Any] = rename_keys(SCREAMING_SNAKE_CASE__ )
replace_params(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
# Initialize preprocessor and preprocess input image
UpperCAmelCase_ : Optional[Any] = convert_image_processor(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Union[str, Any] = preprocessor(images=prepare_img(), return_tensors='''pt''' )
# HF model inference
hf_model.eval()
with torch.no_grad():
UpperCAmelCase_ : str = hf_model(**SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Dict = outputs.logits.detach().numpy()
# Original model inference
UpperCAmelCase_ : List[str] = False
UpperCAmelCase_ : Union[str, Any] = CONFIG_MAP[model_name]['''image_size''']
UpperCAmelCase_ : str = prepare_img().resize((image_size, image_size), resample=PIL.Image.NEAREST )
UpperCAmelCase_ : Union[str, Any] = image.img_to_array(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Optional[Any] = np.expand_dims(SCREAMING_SNAKE_CASE__, axis=0 )
UpperCAmelCase_ : Optional[int] = original_model.predict(SCREAMING_SNAKE_CASE__ )
# Check whether original and HF model outputs match -> np.allclose
assert np.allclose(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, atol=1E-3 ), "The predicted logits are not the same."
print('''Model outputs match!''' )
if save_model:
# Create folder to save model
if not os.path.isdir(SCREAMING_SNAKE_CASE__ ):
os.mkdir(SCREAMING_SNAKE_CASE__ )
# Save converted model and image processor
hf_model.save_pretrained(SCREAMING_SNAKE_CASE__ )
preprocessor.save_pretrained(SCREAMING_SNAKE_CASE__ )
if push_to_hub:
# Push model and image processor to hub
print(F"""Pushing converted {model_name} to the hub...""" )
UpperCAmelCase_ : List[str] = F"""efficientnet-{model_name}"""
preprocessor.push_to_hub(SCREAMING_SNAKE_CASE__ )
hf_model.push_to_hub(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
snake_case_ : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="b0",
type=str,
help="Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].",
)
parser.add_argument(
"--pytorch_dump_folder_path",
default="hf_model",
type=str,
help="Path to the output PyTorch model directory.",
)
parser.add_argument("--save_model", action="store_true", help="Save model to local")
parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub")
snake_case_ : List[Any] = parser.parse_args()
convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
| 720
|
'''simple docstring'''
import io
import os
import unicodedata
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
snake_case_ : str = logging.get_logger(__name__)
snake_case_ : int = "▁"
snake_case_ : str = {"vocab_file": "vocab.txt", "sentencepiece_model_ckpt": "sentencepiece.bpe.model"}
snake_case_ : int = {
"sentencepiece_model_file": "sentencepiece.bpe.model",
"vocab_file": "vocab.txt",
}
snake_case_ : Optional[Any] = {
"vocab_file": {
"ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt",
"ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt",
},
"sentencepiece_model_file": {
"ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model",
"ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model",
},
}
snake_case_ : Dict = {
"ernie-m-base": 5_14,
"ernie-m-large": 5_14,
}
snake_case_ : Any = {
"ernie-m-base": {"do_lower_case": False},
"ernie-m-large": {"do_lower_case": False},
}
class __a (lowerCamelCase ):
__a : List[str] = ["input_ids"]
__a : Union[str, Any] = VOCAB_FILES_NAMES
__a : Tuple = PRETRAINED_INIT_CONFIGURATION
__a : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__a : Optional[int] = PRETRAINED_VOCAB_FILES_MAP
__a : Union[str, Any] = RESOURCE_FILES_NAMES
def __init__( self : Union[str, Any] , __magic_name__ : Dict , __magic_name__ : int=None , __magic_name__ : str=False , __magic_name__ : int="utf8" , __magic_name__ : Optional[int]="[UNK]" , __magic_name__ : Dict="[SEP]" , __magic_name__ : List[Any]="[PAD]" , __magic_name__ : str="[CLS]" , __magic_name__ : Optional[int]="[MASK]" , __magic_name__ : Optional[Dict[str, Any]] = None , **__magic_name__ : Union[str, Any] , ) -> None:
"""simple docstring"""
# Mask token behave like a normal word, i.e. include the space before it and
# is included in the raw text, there should be a match in a non-normalized sentence.
UpperCAmelCase_ : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=__magic_name__ , unk_token=__magic_name__ , sep_token=__magic_name__ , pad_token=__magic_name__ , cls_token=__magic_name__ , mask_token=__magic_name__ , vocab_file=__magic_name__ , encoding=__magic_name__ , sp_model_kwargs=self.sp_model_kwargs , **__magic_name__ , )
UpperCAmelCase_ : Optional[Any] = do_lower_case
UpperCAmelCase_ : List[str] = sentencepiece_model_ckpt
UpperCAmelCase_ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(__magic_name__ )
# to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning
if vocab_file is not None:
UpperCAmelCase_ : List[Any] = self.load_vocab(filepath=__magic_name__ )
else:
UpperCAmelCase_ : str = {self.sp_model.id_to_piece(__magic_name__ ): id for id in range(self.sp_model.get_piece_size() )}
UpperCAmelCase_ : int = {v: k for k, v in self.vocab.items()}
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Any ) -> Any:
"""simple docstring"""
if text is None:
return None
UpperCAmelCase_ : str = self.tokenize(__magic_name__ )
UpperCAmelCase_ , UpperCAmelCase_ : str = '''''', []
for i, ch in enumerate(__magic_name__ ):
if ch in self.SP_CHAR_MAPPING:
UpperCAmelCase_ : Optional[int] = self.SP_CHAR_MAPPING.get(__magic_name__ )
else:
UpperCAmelCase_ : Union[str, Any] = unicodedata.normalize('''NFKC''' , __magic_name__ )
if self.is_whitespace(__magic_name__ ):
continue
normalized_text += ch
char_mapping.extend([i] * len(__magic_name__ ) )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = normalized_text, [], 0
if self.do_lower_case:
UpperCAmelCase_ : Optional[int] = text.lower()
for token in split_tokens:
if token[:1] == "▁":
UpperCAmelCase_ : Tuple = token[1:]
UpperCAmelCase_ : int = text[offset:].index(__magic_name__ ) + offset
UpperCAmelCase_ : Optional[int] = start + len(__magic_name__ )
token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) )
UpperCAmelCase_ : int = end
return token_mapping
@property
def UpperCAmelCase__ ( self : Any ) -> Any:
"""simple docstring"""
return len(self.vocab )
def UpperCAmelCase__ ( self : List[Any] ) -> int:
"""simple docstring"""
return dict(self.vocab , **self.added_tokens_encoder )
def __getstate__( self : str ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = self.__dict__.copy()
UpperCAmelCase_ : Optional[Any] = None
return state
def __setstate__( self : str , __magic_name__ : Any ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : Dict = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
UpperCAmelCase_ : int = {}
UpperCAmelCase_ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.sentencepiece_model_ckpt )
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : Any ) -> List[str]:
"""simple docstring"""
return "".join((self.SP_CHAR_MAPPING.get(__magic_name__ , __magic_name__ ) for c in text) )
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Tuple , __magic_name__ : Any=False , __magic_name__ : List[str]=64 , __magic_name__ : List[str]=0.1 ) -> List[str]:
"""simple docstring"""
if self.sp_model_kwargs.get('''enable_sampling''' ) is True:
UpperCAmelCase_ : Dict = True
if self.sp_model_kwargs.get('''alpha''' ) is not None:
UpperCAmelCase_ : Union[str, Any] = self.sp_model_kwargs.get('''alpha''' )
if self.sp_model_kwargs.get('''nbest_size''' ) is not None:
UpperCAmelCase_ : Any = self.sp_model_kwargs.get('''nbest_size''' )
if not enable_sampling:
UpperCAmelCase_ : Dict = self.sp_model.EncodeAsPieces(__magic_name__ )
else:
UpperCAmelCase_ : Dict = self.sp_model.SampleEncodeAsPieces(__magic_name__ , __magic_name__ , __magic_name__ )
UpperCAmelCase_ : List[Any] = []
for pi, piece in enumerate(__magic_name__ ):
if piece == SPIECE_UNDERLINE:
if not pieces[pi + 1].startswith(__magic_name__ ) and pi != 0:
new_pieces.append(__magic_name__ )
continue
else:
continue
UpperCAmelCase_ : List[str] = 0
for i, chunk in enumerate(__magic_name__ ):
if chunk == SPIECE_UNDERLINE:
continue
if self.is_ch_char(__magic_name__ ) or self.is_punct(__magic_name__ ):
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
new_pieces.append(__magic_name__ )
UpperCAmelCase_ : List[Any] = i + 1
elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
UpperCAmelCase_ : List[str] = i
elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
UpperCAmelCase_ : str = i
if len(__magic_name__ ) > lst_i:
new_pieces.append(piece[lst_i:] )
return new_pieces
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Optional[int] ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = ''''''.join(__magic_name__ ).replace(__magic_name__ , ''' ''' ).strip()
return out_string
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Union[str, Any] ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : str = self.convert_ids_to_tokens(__magic_name__ )
UpperCAmelCase_ : Optional[Any] = ''''''.join(__magic_name__ ).replace(__magic_name__ , ''' ''' ).strip()
return out_string
def UpperCAmelCase__ ( self : str , __magic_name__ : Optional[Any] ) -> List[Any]:
"""simple docstring"""
return self.vocab.get(__magic_name__ , self.vocab.get(self.unk_token ) )
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
return self.reverse_vocab.get(__magic_name__ , self.unk_token )
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Any , __magic_name__ : Union[str, Any]=None ) -> Any:
"""simple docstring"""
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
UpperCAmelCase_ : Union[str, Any] = [self.cls_token_id]
UpperCAmelCase_ : List[Any] = [self.sep_token_id]
return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep
def UpperCAmelCase__ ( self : Any , __magic_name__ : Optional[Any] , __magic_name__ : List[str]=None ) -> int:
"""simple docstring"""
if offset_mapping_a is None:
return [(0, 0)] + offset_mapping_a + [(0, 0)]
return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)]
def UpperCAmelCase__ ( self : Dict , __magic_name__ : Optional[Any] , __magic_name__ : List[str]=None , __magic_name__ : Optional[Any]=False ) -> Optional[int]:
"""simple docstring"""
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(__magic_name__ )) + [1, 1] + ([0] * len(__magic_name__ )) + [1]
return [1] + ([0] * len(__magic_name__ )) + [1]
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
# called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method
if token_ids_a is None:
# [CLS] X [SEP]
return (len(__magic_name__ ) + 2) * [0]
# [CLS] A [SEP] [SEP] B [SEP]
return [0] * (len(__magic_name__ ) + 1) + [1] * (len(__magic_name__ ) + 3)
def UpperCAmelCase__ ( self : Dict , __magic_name__ : str ) -> Tuple:
"""simple docstring"""
if "\u4e00" <= char <= "\u9fff":
return True
return False
def UpperCAmelCase__ ( self : int , __magic_name__ : Optional[int] ) -> str:
"""simple docstring"""
if ("a" <= char <= "z") or ("A" <= char <= "Z"):
return True
return False
def UpperCAmelCase__ ( self : int , __magic_name__ : Optional[Any] ) -> Dict:
"""simple docstring"""
if char in ",;:.?!~,;:。?!《》【】":
return True
return False
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Any ) -> Union[str, Any]:
"""simple docstring"""
if char == " " or char == "\t" or char == "\n" or char == "\r":
return True
if len(__magic_name__ ) == 1:
UpperCAmelCase_ : Optional[Any] = unicodedata.category(__magic_name__ )
if cat == "Zs":
return True
return False
def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : Tuple ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = {}
with io.open(__magic_name__ , '''r''' , encoding='''utf-8''' ) as f:
for index, line in enumerate(__magic_name__ ):
UpperCAmelCase_ : List[Any] = line.rstrip('''\n''' )
UpperCAmelCase_ : Dict = int(__magic_name__ )
return token_to_idx
def UpperCAmelCase__ ( self : Dict , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = 0
if os.path.isdir(__magic_name__ ):
UpperCAmelCase_ : Any = os.path.join(
__magic_name__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
else:
UpperCAmelCase_ : List[str] = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory
with open(__magic_name__ , '''w''' , encoding='''utf-8''' ) as writer:
for token, token_index in sorted(self.vocab.items() , key=lambda __magic_name__ : kv[1] ):
if index != token_index:
logger.warning(
F"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."""
''' Please check that the vocabulary is not corrupted!''' )
UpperCAmelCase_ : Dict = token_index
writer.write(token + '''\n''' )
index += 1
UpperCAmelCase_ : Union[str, Any] = os.path.join(__magic_name__ , '''sentencepiece.bpe.model''' )
with open(__magic_name__ , '''wb''' ) as fi:
UpperCAmelCase_ : Optional[int] = self.sp_model.serialized_model_proto()
fi.write(__magic_name__ )
return (vocab_file,)
| 644
| 0
|
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import cached_download, hf_hub_download, hf_hub_url
from PIL import Image
from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig
from transformers.utils import logging
logging.set_verbosity_info()
snake_case_ : List[Any] = logging.get_logger(__name__)
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Dict ) -> Any:
UpperCAmelCase_ : Optional[int] = SwinConfig(
embed_dim=192, depths=(2, 2, 18, 2), num_heads=(6, 12, 24, 48), window_size=12, out_features=['''stage2''', '''stage3''', '''stage4'''], )
UpperCAmelCase_ : Optional[int] = DetaConfig(
backbone_config=SCREAMING_SNAKE_CASE__, num_queries=900, encoder_ffn_dim=2048, decoder_ffn_dim=2048, num_feature_levels=5, assign_first_stage=SCREAMING_SNAKE_CASE__, with_box_refine=SCREAMING_SNAKE_CASE__, two_stage=SCREAMING_SNAKE_CASE__, )
# set labels
UpperCAmelCase_ : Any = '''huggingface/label-files'''
if "o365" in model_name:
UpperCAmelCase_ : List[Any] = 366
UpperCAmelCase_ : Any = '''object365-id2label.json'''
else:
UpperCAmelCase_ : List[Any] = 91
UpperCAmelCase_ : List[str] = '''coco-detection-id2label.json'''
UpperCAmelCase_ : Dict = num_labels
UpperCAmelCase_ : Optional[Any] = json.load(open(cached_download(hf_hub_url(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, repo_type='''dataset''' ) ), '''r''' ) )
UpperCAmelCase_ : int = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()}
UpperCAmelCase_ : Any = idalabel
UpperCAmelCase_ : Tuple = {v: k for k, v in idalabel.items()}
return config
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Dict ) -> Optional[int]:
UpperCAmelCase_ : List[Any] = []
# stem
# fmt: off
rename_keys.append(('''backbone.0.body.patch_embed.proj.weight''', '''model.backbone.model.embeddings.patch_embeddings.projection.weight''') )
rename_keys.append(('''backbone.0.body.patch_embed.proj.bias''', '''model.backbone.model.embeddings.patch_embeddings.projection.bias''') )
rename_keys.append(('''backbone.0.body.patch_embed.norm.weight''', '''model.backbone.model.embeddings.norm.weight''') )
rename_keys.append(('''backbone.0.body.patch_embed.norm.bias''', '''model.backbone.model.embeddings.norm.bias''') )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.norm1.weight""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") )
rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.norm1.bias""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") )
rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") )
rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") )
rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") )
rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") )
rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.norm2.weight""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") )
rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.norm2.bias""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") )
rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") )
rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") )
rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") )
rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") )
if i < 3:
rename_keys.append((F"""backbone.0.body.layers.{i}.downsample.reduction.weight""", F"""model.backbone.model.encoder.layers.{i}.downsample.reduction.weight""") )
rename_keys.append((F"""backbone.0.body.layers.{i}.downsample.norm.weight""", F"""model.backbone.model.encoder.layers.{i}.downsample.norm.weight""") )
rename_keys.append((F"""backbone.0.body.layers.{i}.downsample.norm.bias""", F"""model.backbone.model.encoder.layers.{i}.downsample.norm.bias""") )
rename_keys.append(('''backbone.0.body.norm1.weight''', '''model.backbone.model.hidden_states_norms.stage2.weight''') )
rename_keys.append(('''backbone.0.body.norm1.bias''', '''model.backbone.model.hidden_states_norms.stage2.bias''') )
rename_keys.append(('''backbone.0.body.norm2.weight''', '''model.backbone.model.hidden_states_norms.stage3.weight''') )
rename_keys.append(('''backbone.0.body.norm2.bias''', '''model.backbone.model.hidden_states_norms.stage3.bias''') )
rename_keys.append(('''backbone.0.body.norm3.weight''', '''model.backbone.model.hidden_states_norms.stage4.weight''') )
rename_keys.append(('''backbone.0.body.norm3.bias''', '''model.backbone.model.hidden_states_norms.stage4.bias''') )
# transformer encoder
for i in range(config.encoder_layers ):
rename_keys.append((F"""transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight""", F"""model.encoder.layers.{i}.self_attn.sampling_offsets.weight""") )
rename_keys.append((F"""transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias""", F"""model.encoder.layers.{i}.self_attn.sampling_offsets.bias""") )
rename_keys.append((F"""transformer.encoder.layers.{i}.self_attn.attention_weights.weight""", F"""model.encoder.layers.{i}.self_attn.attention_weights.weight""") )
rename_keys.append((F"""transformer.encoder.layers.{i}.self_attn.attention_weights.bias""", F"""model.encoder.layers.{i}.self_attn.attention_weights.bias""") )
rename_keys.append((F"""transformer.encoder.layers.{i}.self_attn.value_proj.weight""", F"""model.encoder.layers.{i}.self_attn.value_proj.weight""") )
rename_keys.append((F"""transformer.encoder.layers.{i}.self_attn.value_proj.bias""", F"""model.encoder.layers.{i}.self_attn.value_proj.bias""") )
rename_keys.append((F"""transformer.encoder.layers.{i}.self_attn.output_proj.weight""", F"""model.encoder.layers.{i}.self_attn.output_proj.weight""") )
rename_keys.append((F"""transformer.encoder.layers.{i}.self_attn.output_proj.bias""", F"""model.encoder.layers.{i}.self_attn.output_proj.bias""") )
rename_keys.append((F"""transformer.encoder.layers.{i}.norm1.weight""", F"""model.encoder.layers.{i}.self_attn_layer_norm.weight""") )
rename_keys.append((F"""transformer.encoder.layers.{i}.norm1.bias""", F"""model.encoder.layers.{i}.self_attn_layer_norm.bias""") )
rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.weight""", F"""model.encoder.layers.{i}.fc1.weight""") )
rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.bias""", F"""model.encoder.layers.{i}.fc1.bias""") )
rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.weight""", F"""model.encoder.layers.{i}.fc2.weight""") )
rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.bias""", F"""model.encoder.layers.{i}.fc2.bias""") )
rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.weight""", F"""model.encoder.layers.{i}.final_layer_norm.weight""") )
rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.bias""", F"""model.encoder.layers.{i}.final_layer_norm.bias""") )
# transformer decoder
for i in range(config.decoder_layers ):
rename_keys.append((F"""transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight""", F"""model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight""") )
rename_keys.append((F"""transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias""", F"""model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias""") )
rename_keys.append((F"""transformer.decoder.layers.{i}.cross_attn.attention_weights.weight""", F"""model.decoder.layers.{i}.encoder_attn.attention_weights.weight""") )
rename_keys.append((F"""transformer.decoder.layers.{i}.cross_attn.attention_weights.bias""", F"""model.decoder.layers.{i}.encoder_attn.attention_weights.bias""") )
rename_keys.append((F"""transformer.decoder.layers.{i}.cross_attn.value_proj.weight""", F"""model.decoder.layers.{i}.encoder_attn.value_proj.weight""") )
rename_keys.append((F"""transformer.decoder.layers.{i}.cross_attn.value_proj.bias""", F"""model.decoder.layers.{i}.encoder_attn.value_proj.bias""") )
rename_keys.append((F"""transformer.decoder.layers.{i}.cross_attn.output_proj.weight""", F"""model.decoder.layers.{i}.encoder_attn.output_proj.weight""") )
rename_keys.append((F"""transformer.decoder.layers.{i}.cross_attn.output_proj.bias""", F"""model.decoder.layers.{i}.encoder_attn.output_proj.bias""") )
rename_keys.append((F"""transformer.decoder.layers.{i}.norm1.weight""", F"""model.decoder.layers.{i}.encoder_attn_layer_norm.weight""") )
rename_keys.append((F"""transformer.decoder.layers.{i}.norm1.bias""", F"""model.decoder.layers.{i}.encoder_attn_layer_norm.bias""") )
rename_keys.append((F"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", F"""model.decoder.layers.{i}.self_attn.out_proj.weight""") )
rename_keys.append((F"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", F"""model.decoder.layers.{i}.self_attn.out_proj.bias""") )
rename_keys.append((F"""transformer.decoder.layers.{i}.norm2.weight""", F"""model.decoder.layers.{i}.self_attn_layer_norm.weight""") )
rename_keys.append((F"""transformer.decoder.layers.{i}.norm2.bias""", F"""model.decoder.layers.{i}.self_attn_layer_norm.bias""") )
rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.weight""", F"""model.decoder.layers.{i}.fc1.weight""") )
rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.bias""", F"""model.decoder.layers.{i}.fc1.bias""") )
rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.weight""", F"""model.decoder.layers.{i}.fc2.weight""") )
rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.bias""", F"""model.decoder.layers.{i}.fc2.bias""") )
rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.weight""", F"""model.decoder.layers.{i}.final_layer_norm.weight""") )
rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.bias""", F"""model.decoder.layers.{i}.final_layer_norm.bias""") )
# fmt: on
return rename_keys
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Any, SCREAMING_SNAKE_CASE__ : List[Any], SCREAMING_SNAKE_CASE__ : int ) -> Dict:
UpperCAmelCase_ : str = dct.pop(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : int = val
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : Tuple ) -> List[Any]:
UpperCAmelCase_ : List[Any] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )]
for i in range(len(backbone_config.depths ) ):
UpperCAmelCase_ : str = num_features[i]
for j in range(backbone_config.depths[i] ):
# fmt: off
# read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias)
UpperCAmelCase_ : Union[str, Any] = state_dict.pop(F"""backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight""" )
UpperCAmelCase_ : str = state_dict.pop(F"""backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase_ : Optional[int] = in_proj_weight[:dim, :]
UpperCAmelCase_ : List[str] = in_proj_bias[: dim]
UpperCAmelCase_ : int = in_proj_weight[
dim : dim * 2, :
]
UpperCAmelCase_ : Optional[Any] = in_proj_bias[
dim : dim * 2
]
UpperCAmelCase_ : List[str] = in_proj_weight[
-dim :, :
]
UpperCAmelCase_ : Dict = in_proj_bias[-dim :]
# fmt: on
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : List[Any] ) -> Any:
# transformer decoder self-attention layers
UpperCAmelCase_ : List[Any] = config.d_model
for i in range(config.decoder_layers ):
# read in weights + bias of input projection layer of self-attention
UpperCAmelCase_ : List[str] = state_dict.pop(F"""transformer.decoder.layers.{i}.self_attn.in_proj_weight""" )
UpperCAmelCase_ : List[str] = state_dict.pop(F"""transformer.decoder.layers.{i}.self_attn.in_proj_bias""" )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase_ : str = in_proj_weight[:hidden_size, :]
UpperCAmelCase_ : Tuple = in_proj_bias[:hidden_size]
UpperCAmelCase_ : Any = in_proj_weight[
hidden_size : hidden_size * 2, :
]
UpperCAmelCase_ : Optional[int] = in_proj_bias[hidden_size : hidden_size * 2]
UpperCAmelCase_ : Optional[Any] = in_proj_weight[-hidden_size:, :]
UpperCAmelCase_ : List[Any] = in_proj_bias[-hidden_size:]
def lowerCamelCase_ ( ) -> Any:
UpperCAmelCase_ : Any = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
UpperCAmelCase_ : Any = Image.open(requests.get(SCREAMING_SNAKE_CASE__, stream=SCREAMING_SNAKE_CASE__ ).raw )
return im
@torch.no_grad()
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : Union[str, Any], SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Any:
UpperCAmelCase_ : List[str] = get_deta_config(SCREAMING_SNAKE_CASE__ )
# load original state dict
if model_name == "deta-swin-large":
UpperCAmelCase_ : int = hf_hub_download(repo_id='''nielsr/deta-checkpoints''', filename='''adet_swin_ft.pth''' )
elif model_name == "deta-swin-large-o365":
UpperCAmelCase_ : Dict = hf_hub_download(repo_id='''jozhang97/deta-swin-l-o365''', filename='''deta_swin_pt_o365.pth''' )
else:
raise ValueError(F"""Model name {model_name} not supported""" )
UpperCAmelCase_ : Any = torch.load(SCREAMING_SNAKE_CASE__, map_location='''cpu''' )['''model''']
# original state dict
for name, param in state_dict.items():
print(SCREAMING_SNAKE_CASE__, param.shape )
# rename keys
UpperCAmelCase_ : Dict = create_rename_keys(SCREAMING_SNAKE_CASE__ )
for src, dest in rename_keys:
rename_key(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
read_in_swin_q_k_v(SCREAMING_SNAKE_CASE__, config.backbone_config )
read_in_decoder_q_k_v(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
# fix some prefixes
for key in state_dict.copy().keys():
if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key:
UpperCAmelCase_ : Union[str, Any] = state_dict.pop(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Tuple = val
if "input_proj" in key:
UpperCAmelCase_ : List[str] = state_dict.pop(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Tuple = val
if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key:
UpperCAmelCase_ : Union[str, Any] = state_dict.pop(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : List[str] = val
# finally, create HuggingFace model and load state dict
UpperCAmelCase_ : int = DetaForObjectDetection(SCREAMING_SNAKE_CASE__ )
model.load_state_dict(SCREAMING_SNAKE_CASE__ )
model.eval()
UpperCAmelCase_ : int = '''cuda''' if torch.cuda.is_available() else '''cpu'''
model.to(SCREAMING_SNAKE_CASE__ )
# load image processor
UpperCAmelCase_ : Union[str, Any] = DetaImageProcessor(format='''coco_detection''' )
# verify our conversion on image
UpperCAmelCase_ : str = prepare_img()
UpperCAmelCase_ : str = processor(images=SCREAMING_SNAKE_CASE__, return_tensors='''pt''' )
UpperCAmelCase_ : Union[str, Any] = encoding['''pixel_values''']
UpperCAmelCase_ : str = model(pixel_values.to(SCREAMING_SNAKE_CASE__ ) )
# verify logits
print('''Logits:''', outputs.logits[0, :3, :3] )
print('''Boxes:''', outputs.pred_boxes[0, :3, :3] )
if model_name == "deta-swin-large":
UpperCAmelCase_ : List[str] = torch.tensor(
[[-7.63_08, -2.84_85, -5.37_37], [-7.20_37, -4.55_05, -4.80_27], [-7.29_43, -4.26_11, -4.66_17]] )
UpperCAmelCase_ : int = torch.tensor([[0.49_87, 0.49_69, 0.99_99], [0.25_49, 0.54_98, 0.48_05], [0.54_98, 0.27_57, 0.05_69]] )
elif model_name == "deta-swin-large-o365":
UpperCAmelCase_ : Optional[int] = torch.tensor(
[[-8.01_22, -3.57_20, -4.97_17], [-8.15_47, -3.68_86, -4.63_89], [-7.66_10, -3.61_94, -5.01_34]] )
UpperCAmelCase_ : Optional[int] = torch.tensor([[0.25_23, 0.55_49, 0.48_81], [0.77_15, 0.41_49, 0.46_01], [0.55_03, 0.27_53, 0.05_75]] )
assert torch.allclose(outputs.logits[0, :3, :3], expected_logits.to(SCREAMING_SNAKE_CASE__ ), atol=1E-4 )
assert torch.allclose(outputs.pred_boxes[0, :3, :3], expected_boxes.to(SCREAMING_SNAKE_CASE__ ), atol=1E-4 )
print('''Everything ok!''' )
if pytorch_dump_folder_path:
# Save model and processor
logger.info(F"""Saving PyTorch model and processor to {pytorch_dump_folder_path}...""" )
Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ )
model.save_pretrained(SCREAMING_SNAKE_CASE__ )
processor.save_pretrained(SCREAMING_SNAKE_CASE__ )
# Push to hub
if push_to_hub:
print('''Pushing model and processor to hub...''' )
model.push_to_hub(F"""jozhang97/{model_name}""" )
processor.push_to_hub(F"""jozhang97/{model_name}""" )
if __name__ == "__main__":
snake_case_ : Any = argparse.ArgumentParser()
parser.add_argument(
"--model_name",
type=str,
default="deta-swin-large",
choices=["deta-swin-large", "deta-swin-large-o365"],
help="Name of the model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path",
default=None,
type=str,
help="Path to the folder to output PyTorch model.",
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
snake_case_ : List[str] = parser.parse_args()
convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 721
|
'''simple docstring'''
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int ) -> str:
if number > 0:
raise ValueError('''input must be a negative integer''' )
UpperCAmelCase_ : Union[str, Any] = len(bin(SCREAMING_SNAKE_CASE__ )[3:] )
UpperCAmelCase_ : Union[str, Any] = bin(abs(SCREAMING_SNAKE_CASE__ ) - (1 << binary_number_length) )[3:]
UpperCAmelCase_ : Optional[Any] = (
(
'''1'''
+ '''0''' * (binary_number_length - len(SCREAMING_SNAKE_CASE__ ))
+ twos_complement_number
)
if number < 0
else '''0'''
)
return "0b" + twos_complement_number
if __name__ == "__main__":
import doctest
doctest.testmod()
| 644
| 0
|
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : list[int] ) -> list[list[int]]:
UpperCAmelCase_ : int = []
if len(SCREAMING_SNAKE_CASE__ ) == 1:
return [nums.copy()]
for _ in range(len(SCREAMING_SNAKE_CASE__ ) ):
UpperCAmelCase_ : List[Any] = nums.pop(0 )
UpperCAmelCase_ : Optional[Any] = permute(SCREAMING_SNAKE_CASE__ )
for perm in permutations:
perm.append(SCREAMING_SNAKE_CASE__ )
result.extend(SCREAMING_SNAKE_CASE__ )
nums.append(SCREAMING_SNAKE_CASE__ )
return result
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[str] ) -> Any:
def backtrack(SCREAMING_SNAKE_CASE__ : Union[str, Any] ):
if start == len(SCREAMING_SNAKE_CASE__ ) - 1:
output.append(nums[:] )
else:
for i in range(SCREAMING_SNAKE_CASE__, len(SCREAMING_SNAKE_CASE__ ) ):
UpperCAmelCase_ : Tuple = nums[i], nums[start]
backtrack(start + 1 )
UpperCAmelCase_ : int = nums[i], nums[start] # backtrack
UpperCAmelCase_ : Optional[int] = []
backtrack(0 )
return output
if __name__ == "__main__":
import doctest
# use res to print the data in permute2 function
snake_case_ : Tuple = permutea([1, 2, 3])
print(res)
doctest.testmod()
| 700
|
'''simple docstring'''
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from transformers.generation import DisjunctiveConstraint
@require_torch
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
# For consistency across different places the DisjunctiveConstraint is called,
# dc.token_ids is a list of integers. It is also initialized only by integers.
UpperCAmelCase_ : List[str] = [[1, 2, 4], [1, 2, 3, 4]]
UpperCAmelCase_ : List[str] = DisjunctiveConstraint(__magic_name__ )
self.assertTrue(isinstance(dc.token_ids , __magic_name__ ) )
with self.assertRaises(__magic_name__ ):
DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) )
with self.assertRaises(__magic_name__ ):
DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] )
def UpperCAmelCase__ ( self : List[str] ) -> Dict:
"""simple docstring"""
# We can't have constraints that are complete subsets of another. This leads to a preverse
# interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint?
# It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially
# fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm
# will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it).
UpperCAmelCase_ : Tuple = [[1, 2], [1, 2, 3, 4]]
with self.assertRaises(__magic_name__ ):
DisjunctiveConstraint(__magic_name__ ) # fails here
def UpperCAmelCase__ ( self : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = [[1, 2, 3], [1, 2, 4]]
UpperCAmelCase_ : List[str] = DisjunctiveConstraint(__magic_name__ )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = dc.update(1 )
UpperCAmelCase_ : Dict = stepped is True and completed is False and reset is False
self.assertTrue(__magic_name__ )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = dc.update(2 )
UpperCAmelCase_ : Optional[Any] = stepped is True and completed is False and reset is False
self.assertTrue(__magic_name__ )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = dc.update(3 )
UpperCAmelCase_ : Dict = stepped is True and completed is True and reset is False
self.assertTrue(__magic_name__ )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 3] )
def UpperCAmelCase__ ( self : int ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : Any = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]]
UpperCAmelCase_ : Tuple = DisjunctiveConstraint(__magic_name__ )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = dc.update(4 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2, 4] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 4, 5] )
dc.reset()
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 3 )
self.assertTrue(dc.current_seq == [1] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 2 )
self.assertTrue(dc.current_seq == [1, 2] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.remaining() == 0 )
self.assertTrue(dc.current_seq == [1, 2, 5] )
| 644
| 0
|
'''simple docstring'''
import argparse
import torch
from transformers import (
WavaVecaConfig,
WavaVecaFeatureExtractor,
WavaVecaForAudioFrameClassification,
WavaVecaForSequenceClassification,
WavaVecaForXVector,
logging,
)
logging.set_verbosity_info()
snake_case_ : str = logging.get_logger(__name__)
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Union[str, Any], SCREAMING_SNAKE_CASE__ : List[str], SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[Any]:
UpperCAmelCase_ : Union[str, Any] = WavaVecaForSequenceClassification.from_pretrained(SCREAMING_SNAKE_CASE__, config=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Dict = downstream_dict['''projector.weight''']
UpperCAmelCase_ : int = downstream_dict['''projector.bias''']
UpperCAmelCase_ : List[Any] = downstream_dict['''model.post_net.linear.weight''']
UpperCAmelCase_ : Any = downstream_dict['''model.post_net.linear.bias''']
return model
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Dict, SCREAMING_SNAKE_CASE__ : Optional[Any], SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> List[Any]:
UpperCAmelCase_ : Dict = WavaVecaForAudioFrameClassification.from_pretrained(SCREAMING_SNAKE_CASE__, config=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : str = downstream_dict['''model.linear.weight''']
UpperCAmelCase_ : Optional[int] = downstream_dict['''model.linear.bias''']
return model
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Any, SCREAMING_SNAKE_CASE__ : Union[str, Any], SCREAMING_SNAKE_CASE__ : int ) -> Any:
UpperCAmelCase_ : int = WavaVecaForXVector.from_pretrained(SCREAMING_SNAKE_CASE__, config=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : List[Any] = downstream_dict['''connector.weight''']
UpperCAmelCase_ : Any = downstream_dict['''connector.bias''']
for i, kernel_size in enumerate(hf_config.tdnn_kernel ):
UpperCAmelCase_ : List[Any] = downstream_dict[
F"""model.framelevel_feature_extractor.module.{i}.kernel.weight"""
]
UpperCAmelCase_ : Optional[Any] = downstream_dict[F"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""]
UpperCAmelCase_ : Union[str, Any] = downstream_dict['''model.utterancelevel_feature_extractor.linear1.weight''']
UpperCAmelCase_ : int = downstream_dict['''model.utterancelevel_feature_extractor.linear1.bias''']
UpperCAmelCase_ : Dict = downstream_dict['''model.utterancelevel_feature_extractor.linear2.weight''']
UpperCAmelCase_ : Dict = downstream_dict['''model.utterancelevel_feature_extractor.linear2.bias''']
UpperCAmelCase_ : Optional[Any] = downstream_dict['''objective.W''']
return model
@torch.no_grad()
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : Optional[Any], SCREAMING_SNAKE_CASE__ : Any, SCREAMING_SNAKE_CASE__ : int ) -> Union[str, Any]:
UpperCAmelCase_ : Optional[int] = torch.load(SCREAMING_SNAKE_CASE__, map_location='''cpu''' )
UpperCAmelCase_ : List[str] = checkpoint['''Downstream''']
UpperCAmelCase_ : List[str] = WavaVecaConfig.from_pretrained(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Any = WavaVecaFeatureExtractor.from_pretrained(
SCREAMING_SNAKE_CASE__, return_attention_mask=SCREAMING_SNAKE_CASE__, do_normalize=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Tuple = hf_config.architectures[0]
if arch.endswith('''ForSequenceClassification''' ):
UpperCAmelCase_ : List[Any] = convert_classification(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
elif arch.endswith('''ForAudioFrameClassification''' ):
UpperCAmelCase_ : int = convert_diarization(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
elif arch.endswith('''ForXVector''' ):
UpperCAmelCase_ : Tuple = convert_xvector(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
else:
raise NotImplementedError(F"""S3PRL weights conversion is not supported for {arch}""" )
if hf_config.use_weighted_layer_sum:
UpperCAmelCase_ : str = checkpoint['''Featurizer''']['''weights''']
hf_feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE__ )
hf_model.save_pretrained(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
snake_case_ : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument(
"--base_model_name", default=None, type=str, help="Name of the huggingface pretrained base model."
)
parser.add_argument("--config_path", default=None, type=str, help="Path to the huggingface classifier config.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to the s3prl checkpoint.")
parser.add_argument("--model_dump_path", default=None, type=str, help="Path to the final converted model.")
snake_case_ : Any = parser.parse_args()
convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
| 701
|
'''simple docstring'''
import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.layers import LSTM, Dense
from tensorflow.keras.models import Sequential
if __name__ == "__main__":
snake_case_ : List[Any] = pd.read_csv("sample_data.csv", header=None)
snake_case_ : Optional[Any] = df.shape[:1][0]
# If you're using some other dataset input the target column
snake_case_ : Any = df.iloc[:, 1:2]
snake_case_ : str = actual_data.values.reshape(len_data, 1)
snake_case_ : Optional[Any] = MinMaxScaler().fit_transform(actual_data)
snake_case_ : List[str] = 10
snake_case_ : Any = 5
snake_case_ : Any = 20
snake_case_ : Tuple = len_data - periods * look_back
snake_case_ : str = actual_data[:division]
snake_case_ : Optional[int] = actual_data[division - look_back :]
snake_case_ ,snake_case_ : Any = [], []
snake_case_ ,snake_case_ : Union[str, Any] = [], []
for i in range(0, len(train_data) - forward_days - look_back + 1):
train_x.append(train_data[i : i + look_back])
train_y.append(train_data[i + look_back : i + look_back + forward_days])
for i in range(0, len(test_data) - forward_days - look_back + 1):
test_x.append(test_data[i : i + look_back])
test_y.append(test_data[i + look_back : i + look_back + forward_days])
snake_case_ : Any = np.array(train_x)
snake_case_ : Optional[Any] = np.array(test_x)
snake_case_ : Optional[Any] = np.array([list(i.ravel()) for i in train_y])
snake_case_ : List[str] = np.array([list(i.ravel()) for i in test_y])
snake_case_ : List[Any] = Sequential()
model.add(LSTM(1_28, input_shape=(look_back, 1), return_sequences=True))
model.add(LSTM(64, input_shape=(1_28, 1)))
model.add(Dense(forward_days))
model.compile(loss="mean_squared_error", optimizer="adam")
snake_case_ : Dict = model.fit(
x_train, y_train, epochs=1_50, verbose=1, shuffle=True, batch_size=4
)
snake_case_ : Optional[Any] = model.predict(x_test)
| 644
| 0
|
'''simple docstring'''
import flax.linen as nn
import jax.numpy as jnp
from .attention_flax import FlaxTransformeraDModel
from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD
class __a (nn.Module ):
__a : int
__a : int
__a : float = 0.0
__a : int = 1
__a : int = 1
__a : bool = True
__a : bool = False
__a : bool = False
__a : bool = False
__a : jnp.dtype = jnp.floataa
def UpperCAmelCase__ ( self : int ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : List[str] = []
UpperCAmelCase_ : List[Any] = []
for i in range(self.num_layers ):
UpperCAmelCase_ : Union[str, Any] = self.in_channels if i == 0 else self.out_channels
UpperCAmelCase_ : List[Any] = FlaxResnetBlockaD(
in_channels=__magic_name__ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(__magic_name__ )
UpperCAmelCase_ : List[str] = FlaxTransformeraDModel(
in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
attentions.append(__magic_name__ )
UpperCAmelCase_ : int = resnets
UpperCAmelCase_ : Optional[Any] = attentions
if self.add_downsample:
UpperCAmelCase_ : Tuple = FlaxDownsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self : Tuple , __magic_name__ : str , __magic_name__ : int , __magic_name__ : Optional[int] , __magic_name__ : Dict=True ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : int = ()
for resnet, attn in zip(self.resnets , self.attentions ):
UpperCAmelCase_ : Union[str, Any] = resnet(__magic_name__ , __magic_name__ , deterministic=__magic_name__ )
UpperCAmelCase_ : Tuple = attn(__magic_name__ , __magic_name__ , deterministic=__magic_name__ )
output_states += (hidden_states,)
if self.add_downsample:
UpperCAmelCase_ : int = self.downsamplers_a(__magic_name__ )
output_states += (hidden_states,)
return hidden_states, output_states
class __a (nn.Module ):
__a : int
__a : int
__a : float = 0.0
__a : int = 1
__a : bool = True
__a : jnp.dtype = jnp.floataa
def UpperCAmelCase__ ( self : str ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = []
for i in range(self.num_layers ):
UpperCAmelCase_ : List[Any] = self.in_channels if i == 0 else self.out_channels
UpperCAmelCase_ : Dict = FlaxResnetBlockaD(
in_channels=__magic_name__ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(__magic_name__ )
UpperCAmelCase_ : Optional[int] = resnets
if self.add_downsample:
UpperCAmelCase_ : Union[str, Any] = FlaxDownsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self : int , __magic_name__ : Any , __magic_name__ : int , __magic_name__ : Optional[Any]=True ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = ()
for resnet in self.resnets:
UpperCAmelCase_ : Optional[Any] = resnet(__magic_name__ , __magic_name__ , deterministic=__magic_name__ )
output_states += (hidden_states,)
if self.add_downsample:
UpperCAmelCase_ : Dict = self.downsamplers_a(__magic_name__ )
output_states += (hidden_states,)
return hidden_states, output_states
class __a (nn.Module ):
__a : int
__a : int
__a : int
__a : float = 0.0
__a : int = 1
__a : int = 1
__a : bool = True
__a : bool = False
__a : bool = False
__a : bool = False
__a : jnp.dtype = jnp.floataa
def UpperCAmelCase__ ( self : int ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = []
UpperCAmelCase_ : Dict = []
for i in range(self.num_layers ):
UpperCAmelCase_ : List[Any] = self.in_channels if (i == self.num_layers - 1) else self.out_channels
UpperCAmelCase_ : str = self.prev_output_channel if i == 0 else self.out_channels
UpperCAmelCase_ : Any = FlaxResnetBlockaD(
in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(__magic_name__ )
UpperCAmelCase_ : str = FlaxTransformeraDModel(
in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
attentions.append(__magic_name__ )
UpperCAmelCase_ : Dict = resnets
UpperCAmelCase_ : Any = attentions
if self.add_upsample:
UpperCAmelCase_ : Tuple = FlaxUpsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self : int , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] , __magic_name__ : str , __magic_name__ : List[Any]=True ) -> List[Any]:
"""simple docstring"""
for resnet, attn in zip(self.resnets , self.attentions ):
# pop res hidden states
UpperCAmelCase_ : List[str] = res_hidden_states_tuple[-1]
UpperCAmelCase_ : int = res_hidden_states_tuple[:-1]
UpperCAmelCase_ : Optional[int] = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 )
UpperCAmelCase_ : str = resnet(__magic_name__ , __magic_name__ , deterministic=__magic_name__ )
UpperCAmelCase_ : Optional[int] = attn(__magic_name__ , __magic_name__ , deterministic=__magic_name__ )
if self.add_upsample:
UpperCAmelCase_ : int = self.upsamplers_a(__magic_name__ )
return hidden_states
class __a (nn.Module ):
__a : int
__a : int
__a : int
__a : float = 0.0
__a : int = 1
__a : bool = True
__a : jnp.dtype = jnp.floataa
def UpperCAmelCase__ ( self : List[str] ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Any = []
for i in range(self.num_layers ):
UpperCAmelCase_ : int = self.in_channels if (i == self.num_layers - 1) else self.out_channels
UpperCAmelCase_ : Any = self.prev_output_channel if i == 0 else self.out_channels
UpperCAmelCase_ : List[Any] = FlaxResnetBlockaD(
in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(__magic_name__ )
UpperCAmelCase_ : Optional[int] = resnets
if self.add_upsample:
UpperCAmelCase_ : int = FlaxUpsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self : List[Any] , __magic_name__ : int , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : str=True ) -> Optional[Any]:
"""simple docstring"""
for resnet in self.resnets:
# pop res hidden states
UpperCAmelCase_ : Tuple = res_hidden_states_tuple[-1]
UpperCAmelCase_ : Optional[Any] = res_hidden_states_tuple[:-1]
UpperCAmelCase_ : Tuple = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 )
UpperCAmelCase_ : Dict = resnet(__magic_name__ , __magic_name__ , deterministic=__magic_name__ )
if self.add_upsample:
UpperCAmelCase_ : Union[str, Any] = self.upsamplers_a(__magic_name__ )
return hidden_states
class __a (nn.Module ):
__a : int
__a : float = 0.0
__a : int = 1
__a : int = 1
__a : bool = False
__a : bool = False
__a : jnp.dtype = jnp.floataa
def UpperCAmelCase__ ( self : str ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : int = [
FlaxResnetBlockaD(
in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , )
]
UpperCAmelCase_ : List[Any] = []
for _ in range(self.num_layers ):
UpperCAmelCase_ : Optional[Any] = FlaxTransformeraDModel(
in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
attentions.append(__magic_name__ )
UpperCAmelCase_ : List[str] = FlaxResnetBlockaD(
in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(__magic_name__ )
UpperCAmelCase_ : Any = resnets
UpperCAmelCase_ : Optional[int] = attentions
def __call__( self : str , __magic_name__ : int , __magic_name__ : Optional[int] , __magic_name__ : List[str] , __magic_name__ : List[Any]=True ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : Dict = self.resnets[0](__magic_name__ , __magic_name__ )
for attn, resnet in zip(self.attentions , self.resnets[1:] ):
UpperCAmelCase_ : Any = attn(__magic_name__ , __magic_name__ , deterministic=__magic_name__ )
UpperCAmelCase_ : Optional[Any] = resnet(__magic_name__ , __magic_name__ , deterministic=__magic_name__ )
return hidden_states
| 702
|
'''simple docstring'''
from typing import Any, Callable, Dict, List, Optional, Union
import torch
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
snake_case_ : Union[str, Any] = "CompVis/stable-diffusion-v1-1"
snake_case_ : Dict = "CompVis/stable-diffusion-v1-2"
snake_case_ : Any = "CompVis/stable-diffusion-v1-3"
snake_case_ : str = "CompVis/stable-diffusion-v1-4"
class __a (lowerCamelCase ):
def __init__( self : Any , __magic_name__ : AutoencoderKL , __magic_name__ : CLIPTextModel , __magic_name__ : CLIPTokenizer , __magic_name__ : UNetaDConditionModel , __magic_name__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __magic_name__ : StableDiffusionSafetyChecker , __magic_name__ : CLIPImageProcessor , __magic_name__ : bool = True , ) -> str:
"""simple docstring"""
super()._init_()
UpperCAmelCase_ : Any = StableDiffusionPipeline.from_pretrained(__magic_name__ )
UpperCAmelCase_ : Dict = StableDiffusionPipeline.from_pretrained(__magic_name__ )
UpperCAmelCase_ : List[Any] = StableDiffusionPipeline.from_pretrained(__magic_name__ )
UpperCAmelCase_ : Tuple = StableDiffusionPipeline(
vae=__magic_name__ , text_encoder=__magic_name__ , tokenizer=__magic_name__ , unet=__magic_name__ , scheduler=__magic_name__ , safety_checker=__magic_name__ , feature_extractor=__magic_name__ , requires_safety_checker=__magic_name__ , )
self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea )
@property
def UpperCAmelCase__ ( self : Tuple ) -> Dict[str, Any]:
"""simple docstring"""
return {k: getattr(self , __magic_name__ ) for k in self.config.keys() if not k.startswith('''_''' )}
def UpperCAmelCase__ ( self : Dict , __magic_name__ : Optional[Union[str, int]] = "auto" ) -> int:
"""simple docstring"""
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
UpperCAmelCase_ : List[str] = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(__magic_name__ )
def UpperCAmelCase__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
self.enable_attention_slicing(__magic_name__ )
@torch.no_grad()
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Tuple , ) -> Optional[int]:
"""simple docstring"""
return self.pipea(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
@torch.no_grad()
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Any , ) -> Any:
"""simple docstring"""
return self.pipea(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
@torch.no_grad()
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Dict , ) -> List[str]:
"""simple docstring"""
return self.pipea(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
@torch.no_grad()
def UpperCAmelCase__ ( self : int , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Optional[int] , ) -> str:
"""simple docstring"""
return self.pipea(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
@torch.no_grad()
def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Optional[int] , ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : int = '''cuda''' if torch.cuda.is_available() else '''cpu'''
self.to(__magic_name__ )
# Checks if the height and width are divisible by 8 or not
if height % 8 != 0 or width % 8 != 0:
raise ValueError(F"""`height` and `width` must be divisible by 8 but are {height} and {width}.""" )
# Get first result from Stable Diffusion Checkpoint v1.1
UpperCAmelCase_ : Optional[int] = self.textaimg_sda_a(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
# Get first result from Stable Diffusion Checkpoint v1.2
UpperCAmelCase_ : int = self.textaimg_sda_a(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
# Get first result from Stable Diffusion Checkpoint v1.3
UpperCAmelCase_ : str = self.textaimg_sda_a(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
# Get first result from Stable Diffusion Checkpoint v1.4
UpperCAmelCase_ : str = self.textaimg_sda_a(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
# Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result
return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
| 644
| 0
|
'''simple docstring'''
from typing import Any, Callable, Dict, List, Optional, Union
import torch
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
snake_case_ : Union[str, Any] = "CompVis/stable-diffusion-v1-1"
snake_case_ : Dict = "CompVis/stable-diffusion-v1-2"
snake_case_ : Any = "CompVis/stable-diffusion-v1-3"
snake_case_ : str = "CompVis/stable-diffusion-v1-4"
class __a (lowerCamelCase ):
def __init__( self : Any , __magic_name__ : AutoencoderKL , __magic_name__ : CLIPTextModel , __magic_name__ : CLIPTokenizer , __magic_name__ : UNetaDConditionModel , __magic_name__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __magic_name__ : StableDiffusionSafetyChecker , __magic_name__ : CLIPImageProcessor , __magic_name__ : bool = True , ) -> str:
"""simple docstring"""
super()._init_()
UpperCAmelCase_ : Any = StableDiffusionPipeline.from_pretrained(__magic_name__ )
UpperCAmelCase_ : Dict = StableDiffusionPipeline.from_pretrained(__magic_name__ )
UpperCAmelCase_ : List[Any] = StableDiffusionPipeline.from_pretrained(__magic_name__ )
UpperCAmelCase_ : Tuple = StableDiffusionPipeline(
vae=__magic_name__ , text_encoder=__magic_name__ , tokenizer=__magic_name__ , unet=__magic_name__ , scheduler=__magic_name__ , safety_checker=__magic_name__ , feature_extractor=__magic_name__ , requires_safety_checker=__magic_name__ , )
self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea )
@property
def UpperCAmelCase__ ( self : Tuple ) -> Dict[str, Any]:
"""simple docstring"""
return {k: getattr(self , __magic_name__ ) for k in self.config.keys() if not k.startswith('''_''' )}
def UpperCAmelCase__ ( self : Dict , __magic_name__ : Optional[Union[str, int]] = "auto" ) -> int:
"""simple docstring"""
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
UpperCAmelCase_ : List[str] = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(__magic_name__ )
def UpperCAmelCase__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
self.enable_attention_slicing(__magic_name__ )
@torch.no_grad()
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Tuple , ) -> Optional[int]:
"""simple docstring"""
return self.pipea(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
@torch.no_grad()
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Any , ) -> Any:
"""simple docstring"""
return self.pipea(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
@torch.no_grad()
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Dict , ) -> List[str]:
"""simple docstring"""
return self.pipea(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
@torch.no_grad()
def UpperCAmelCase__ ( self : int , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Optional[int] , ) -> str:
"""simple docstring"""
return self.pipea(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
@torch.no_grad()
def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Optional[int] , ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : int = '''cuda''' if torch.cuda.is_available() else '''cpu'''
self.to(__magic_name__ )
# Checks if the height and width are divisible by 8 or not
if height % 8 != 0 or width % 8 != 0:
raise ValueError(F"""`height` and `width` must be divisible by 8 but are {height} and {width}.""" )
# Get first result from Stable Diffusion Checkpoint v1.1
UpperCAmelCase_ : Optional[int] = self.textaimg_sda_a(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
# Get first result from Stable Diffusion Checkpoint v1.2
UpperCAmelCase_ : int = self.textaimg_sda_a(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
# Get first result from Stable Diffusion Checkpoint v1.3
UpperCAmelCase_ : str = self.textaimg_sda_a(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
# Get first result from Stable Diffusion Checkpoint v1.4
UpperCAmelCase_ : str = self.textaimg_sda_a(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
# Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result
return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
| 703
|
'''simple docstring'''
import argparse
import json
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
snake_case_ : Optional[int] = 16
snake_case_ : Tuple = 32
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Accelerator, SCREAMING_SNAKE_CASE__ : int = 16, SCREAMING_SNAKE_CASE__ : str = "bert-base-cased" ) -> Dict:
UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : int = load_dataset('''glue''', '''mrpc''' )
def tokenize_function(SCREAMING_SNAKE_CASE__ : Optional[int] ):
# max_length=None => use the model max length (it's actually the default)
UpperCAmelCase_ : Union[str, Any] = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=SCREAMING_SNAKE_CASE__, max_length=SCREAMING_SNAKE_CASE__ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
UpperCAmelCase_ : Tuple = datasets.map(
SCREAMING_SNAKE_CASE__, batched=SCREAMING_SNAKE_CASE__, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], load_from_cache_file=SCREAMING_SNAKE_CASE__ )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
UpperCAmelCase_ : Optional[Any] = tokenized_datasets.rename_column('''label''', '''labels''' )
def collate_fn(SCREAMING_SNAKE_CASE__ : str ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(SCREAMING_SNAKE_CASE__, padding='''max_length''', max_length=128, return_tensors='''pt''' )
return tokenizer.pad(SCREAMING_SNAKE_CASE__, padding='''longest''', return_tensors='''pt''' )
# Instantiate dataloaders.
UpperCAmelCase_ : str = DataLoader(
tokenized_datasets['''train'''], shuffle=SCREAMING_SNAKE_CASE__, collate_fn=SCREAMING_SNAKE_CASE__, batch_size=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : int = DataLoader(
tokenized_datasets['''validation'''], shuffle=SCREAMING_SNAKE_CASE__, collate_fn=SCREAMING_SNAKE_CASE__, batch_size=SCREAMING_SNAKE_CASE__ )
return train_dataloader, eval_dataloader
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Optional[Any], SCREAMING_SNAKE_CASE__ : Optional[int], SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : Any ) -> Any:
model.eval()
UpperCAmelCase_ : List[str] = 0
for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
UpperCAmelCase_ : Dict = model(**SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : str = outputs.logits.argmax(dim=-1 )
# It is slightly faster to call this once, than multiple times
UpperCAmelCase_ , UpperCAmelCase_ : List[str] = accelerator.gather(
(predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates
if accelerator.use_distributed:
if step == len(SCREAMING_SNAKE_CASE__ ) - 1:
UpperCAmelCase_ : Tuple = predictions[: len(eval_dataloader.dataset ) - samples_seen]
UpperCAmelCase_ : int = references[: len(eval_dataloader.dataset ) - samples_seen]
else:
samples_seen += references.shape[0]
metric.add_batch(
predictions=SCREAMING_SNAKE_CASE__, references=SCREAMING_SNAKE_CASE__, )
UpperCAmelCase_ : List[str] = metric.compute()
return eval_metric["accuracy"]
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : int ) -> Tuple:
# Initialize accelerator
UpperCAmelCase_ : Union[str, Any] = Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
UpperCAmelCase_ : int = config['''lr''']
UpperCAmelCase_ : Optional[int] = int(config['''num_epochs'''] )
UpperCAmelCase_ : Optional[int] = int(config['''seed'''] )
UpperCAmelCase_ : List[str] = int(config['''batch_size'''] )
UpperCAmelCase_ : Optional[int] = args.model_name_or_path
set_seed(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = get_dataloaders(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
UpperCAmelCase_ : List[Any] = AutoModelForSequenceClassification.from_pretrained(SCREAMING_SNAKE_CASE__, return_dict=SCREAMING_SNAKE_CASE__ )
# Instantiate optimizer
UpperCAmelCase_ : str = (
AdamW
if accelerator.state.deepspeed_plugin is None
or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
UpperCAmelCase_ : List[str] = optimizer_cls(params=model.parameters(), lr=SCREAMING_SNAKE_CASE__ )
if accelerator.state.deepspeed_plugin is not None:
UpperCAmelCase_ : List[Any] = accelerator.state.deepspeed_plugin.deepspeed_config[
'''gradient_accumulation_steps'''
]
else:
UpperCAmelCase_ : Tuple = 1
UpperCAmelCase_ : int = (len(SCREAMING_SNAKE_CASE__ ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
UpperCAmelCase_ : Tuple = get_linear_schedule_with_warmup(
optimizer=SCREAMING_SNAKE_CASE__, num_warmup_steps=0, num_training_steps=SCREAMING_SNAKE_CASE__, )
else:
UpperCAmelCase_ : Any = DummyScheduler(SCREAMING_SNAKE_CASE__, total_num_steps=SCREAMING_SNAKE_CASE__, warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = accelerator.prepare(
SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
# We need to keep track of how many total steps we have iterated over
UpperCAmelCase_ : Union[str, Any] = 0
# We also need to keep track of the stating epoch so files are named properly
UpperCAmelCase_ : Dict = 0
UpperCAmelCase_ : int = evaluate.load('''glue''', '''mrpc''' )
UpperCAmelCase_ : Optional[Any] = num_epochs
if args.partial_train_epoch is not None:
UpperCAmelCase_ : List[Any] = args.partial_train_epoch
if args.resume_from_checkpoint:
accelerator.load_state(args.resume_from_checkpoint )
UpperCAmelCase_ : Tuple = args.resume_from_checkpoint.split('''epoch_''' )[1]
UpperCAmelCase_ : int = ''''''
for char in epoch_string:
if char.isdigit():
state_epoch_num += char
else:
break
UpperCAmelCase_ : Union[str, Any] = int(SCREAMING_SNAKE_CASE__ ) + 1
UpperCAmelCase_ : Dict = evaluation_loop(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
accelerator.print('''resumed checkpoint performance:''', SCREAMING_SNAKE_CASE__ )
accelerator.print('''resumed checkpoint\'s scheduler\'s lr:''', lr_scheduler.get_lr()[0] )
accelerator.print('''resumed optimizers\'s lr:''', optimizer.param_groups[0]['''lr'''] )
with open(os.path.join(args.output_dir, F"""state_{starting_epoch-1}.json""" ), '''r''' ) as f:
UpperCAmelCase_ : Optional[int] = json.load(SCREAMING_SNAKE_CASE__ )
assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed"
assert (
resumed_state["lr"] == lr_scheduler.get_lr()[0]
), "Scheduler learning rate mismatch, loading from checkpoint failed"
assert (
resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"]
), "Optimizer learning rate mismatch, loading from checkpoint failed"
assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed"
return
# Now we train the model
UpperCAmelCase_ : int = {}
for epoch in range(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ):
model.train()
for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase_ : Optional[int] = model(**SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Any = outputs.loss
UpperCAmelCase_ : Tuple = loss / gradient_accumulation_steps
accelerator.backward(SCREAMING_SNAKE_CASE__ )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
UpperCAmelCase_ : Tuple = F"""epoch_{epoch}"""
UpperCAmelCase_ : Optional[int] = os.path.join(args.output_dir, SCREAMING_SNAKE_CASE__ )
accelerator.save_state(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : int = evaluation_loop(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Optional[Any] = accuracy
UpperCAmelCase_ : Any = lr_scheduler.get_lr()[0]
UpperCAmelCase_ : List[str] = optimizer.param_groups[0]['''lr''']
UpperCAmelCase_ : Tuple = epoch
UpperCAmelCase_ : Dict = overall_step
accelerator.print(F"""epoch {epoch}:""", SCREAMING_SNAKE_CASE__ )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir, F"""state_{epoch}.json""" ), '''w''' ) as f:
json.dump(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
def lowerCamelCase_ ( ) -> List[str]:
UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' )
parser.add_argument(
'''--model_name_or_path''', type=SCREAMING_SNAKE_CASE__, default='''bert-base-cased''', help='''Path to pretrained model or model identifier from huggingface.co/models.''', required=SCREAMING_SNAKE_CASE__, )
parser.add_argument(
'''--output_dir''', type=SCREAMING_SNAKE_CASE__, default='''.''', help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''', )
parser.add_argument(
'''--resume_from_checkpoint''', type=SCREAMING_SNAKE_CASE__, default=SCREAMING_SNAKE_CASE__, help='''If the training should continue from a checkpoint folder.''', )
parser.add_argument(
'''--partial_train_epoch''', type=SCREAMING_SNAKE_CASE__, default=SCREAMING_SNAKE_CASE__, help='''If passed, the training will stop after this number of epochs.''', )
parser.add_argument(
'''--num_epochs''', type=SCREAMING_SNAKE_CASE__, default=2, help='''Number of train epochs.''', )
UpperCAmelCase_ : Optional[int] = parser.parse_args()
UpperCAmelCase_ : List[Any] = {'''lr''': 2E-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16}
training_function(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
main()
| 644
| 0
|
import argparse
import torch
from transformers import (
UniSpeechSatConfig,
UniSpeechSatForAudioFrameClassification,
UniSpeechSatForSequenceClassification,
UniSpeechSatForXVector,
WavaVecaFeatureExtractor,
logging,
)
logging.set_verbosity_info()
snake_case_ : List[Any] = logging.get_logger(__name__)
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : str, SCREAMING_SNAKE_CASE__ : List[str], SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[int]:
UpperCAmelCase_ : Optional[int] = UniSpeechSatForSequenceClassification.from_pretrained(SCREAMING_SNAKE_CASE__, config=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Optional[Any] = downstream_dict['''projector.weight''']
UpperCAmelCase_ : List[Any] = downstream_dict['''projector.bias''']
UpperCAmelCase_ : Any = downstream_dict['''model.post_net.linear.weight''']
UpperCAmelCase_ : str = downstream_dict['''model.post_net.linear.bias''']
return model
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Any, SCREAMING_SNAKE_CASE__ : Optional[Any], SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Optional[int]:
UpperCAmelCase_ : Optional[Any] = UniSpeechSatForAudioFrameClassification.from_pretrained(SCREAMING_SNAKE_CASE__, config=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Any = downstream_dict['''model.linear.weight''']
UpperCAmelCase_ : Dict = downstream_dict['''model.linear.bias''']
return model
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[str], SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Union[str, Any]:
UpperCAmelCase_ : Tuple = UniSpeechSatForXVector.from_pretrained(SCREAMING_SNAKE_CASE__, config=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : int = downstream_dict['''connector.weight''']
UpperCAmelCase_ : List[Any] = downstream_dict['''connector.bias''']
for i, kernel_size in enumerate(hf_config.tdnn_kernel ):
UpperCAmelCase_ : Any = downstream_dict[
F"""model.framelevel_feature_extractor.module.{i}.kernel.weight"""
]
UpperCAmelCase_ : Dict = downstream_dict[F"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""]
UpperCAmelCase_ : Any = downstream_dict['''model.utterancelevel_feature_extractor.linear1.weight''']
UpperCAmelCase_ : Dict = downstream_dict['''model.utterancelevel_feature_extractor.linear1.bias''']
UpperCAmelCase_ : Optional[int] = downstream_dict['''model.utterancelevel_feature_extractor.linear2.weight''']
UpperCAmelCase_ : List[Any] = downstream_dict['''model.utterancelevel_feature_extractor.linear2.bias''']
UpperCAmelCase_ : int = downstream_dict['''objective.W''']
return model
@torch.no_grad()
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : Optional[int], SCREAMING_SNAKE_CASE__ : List[str], SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Union[str, Any]:
UpperCAmelCase_ : Dict = torch.load(SCREAMING_SNAKE_CASE__, map_location='''cpu''' )
UpperCAmelCase_ : int = checkpoint['''Downstream''']
UpperCAmelCase_ : List[Any] = UniSpeechSatConfig.from_pretrained(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Tuple = WavaVecaFeatureExtractor.from_pretrained(
SCREAMING_SNAKE_CASE__, return_attention_mask=SCREAMING_SNAKE_CASE__, do_normalize=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Union[str, Any] = hf_config.architectures[0]
if arch.endswith('''ForSequenceClassification''' ):
UpperCAmelCase_ : Any = convert_classification(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
elif arch.endswith('''ForAudioFrameClassification''' ):
UpperCAmelCase_ : Tuple = convert_diarization(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
elif arch.endswith('''ForXVector''' ):
UpperCAmelCase_ : Optional[int] = convert_xvector(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
else:
raise NotImplementedError(F"""S3PRL weights conversion is not supported for {arch}""" )
if hf_config.use_weighted_layer_sum:
UpperCAmelCase_ : Tuple = checkpoint['''Featurizer''']['''weights''']
hf_feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE__ )
hf_model.save_pretrained(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
snake_case_ : Dict = argparse.ArgumentParser()
parser.add_argument(
"--base_model_name", default=None, type=str, help="Name of the huggingface pretrained base model."
)
parser.add_argument("--config_path", default=None, type=str, help="Path to the huggingface classifier config.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to the s3prl checkpoint.")
parser.add_argument("--model_dump_path", default=None, type=str, help="Path to the final converted model.")
snake_case_ : str = parser.parse_args()
convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
| 704
|
'''simple docstring'''
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : list[int] ) -> list[list[int]]:
UpperCAmelCase_ : int = []
if len(SCREAMING_SNAKE_CASE__ ) == 1:
return [nums.copy()]
for _ in range(len(SCREAMING_SNAKE_CASE__ ) ):
UpperCAmelCase_ : List[Any] = nums.pop(0 )
UpperCAmelCase_ : Optional[Any] = permute(SCREAMING_SNAKE_CASE__ )
for perm in permutations:
perm.append(SCREAMING_SNAKE_CASE__ )
result.extend(SCREAMING_SNAKE_CASE__ )
nums.append(SCREAMING_SNAKE_CASE__ )
return result
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[str] ) -> Any:
def backtrack(SCREAMING_SNAKE_CASE__ : Union[str, Any] ):
if start == len(SCREAMING_SNAKE_CASE__ ) - 1:
output.append(nums[:] )
else:
for i in range(SCREAMING_SNAKE_CASE__, len(SCREAMING_SNAKE_CASE__ ) ):
UpperCAmelCase_ , UpperCAmelCase_ : Tuple = nums[i], nums[start]
backtrack(start + 1 )
UpperCAmelCase_ , UpperCAmelCase_ : int = nums[i], nums[start] # backtrack
UpperCAmelCase_ : Optional[int] = []
backtrack(0 )
return output
if __name__ == "__main__":
import doctest
# use res to print the data in permute2 function
snake_case_ : Tuple = permutea([1, 2, 3])
print(res)
doctest.testmod()
| 644
| 0
|
'''simple docstring'''
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
ControlNetModel,
DDIMScheduler,
StableDiffusionControlNetImgaImgPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel
from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
)
enable_full_determinism()
class __a (lowerCamelCase , lowerCamelCase , lowerCamelCase , unittest.TestCase ):
__a : Dict = StableDiffusionControlNetImgaImgPipeline
__a : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"}
__a : str = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
__a : Union[str, Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({"control_image"} )
__a : str = IMAGE_TO_IMAGE_IMAGE_PARAMS
def UpperCAmelCase__ ( self : Tuple ) -> int:
"""simple docstring"""
torch.manual_seed(0 )
UpperCAmelCase_ : Union[str, Any] = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , )
torch.manual_seed(0 )
UpperCAmelCase_ : str = ControlNetModel(
block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , )
torch.manual_seed(0 )
UpperCAmelCase_ : str = DDIMScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=__magic_name__ , set_alpha_to_one=__magic_name__ , )
torch.manual_seed(0 )
UpperCAmelCase_ : str = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
torch.manual_seed(0 )
UpperCAmelCase_ : Any = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , )
UpperCAmelCase_ : List[Any] = CLIPTextModel(__magic_name__ )
UpperCAmelCase_ : Any = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
UpperCAmelCase_ : int = {
'''unet''': unet,
'''controlnet''': controlnet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''safety_checker''': None,
'''feature_extractor''': None,
}
return components
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : int , __magic_name__ : Union[str, Any]=0 ) -> List[str]:
"""simple docstring"""
if str(__magic_name__ ).startswith('''mps''' ):
UpperCAmelCase_ : str = torch.manual_seed(__magic_name__ )
else:
UpperCAmelCase_ : Optional[int] = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ )
UpperCAmelCase_ : List[Any] = 2
UpperCAmelCase_ : Tuple = randn_tensor(
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=__magic_name__ , device=torch.device(__magic_name__ ) , )
UpperCAmelCase_ : List[str] = floats_tensor(control_image.shape , rng=random.Random(__magic_name__ ) ).to(__magic_name__ )
UpperCAmelCase_ : Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0]
UpperCAmelCase_ : Optional[int] = Image.fromarray(np.uinta(__magic_name__ ) ).convert('''RGB''' ).resize((64, 64) )
UpperCAmelCase_ : int = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
'''image''': image,
'''control_image''': control_image,
}
return inputs
def UpperCAmelCase__ ( self : List[str] ) -> List[str]:
"""simple docstring"""
return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 )
@unittest.skipIf(
torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , )
def UpperCAmelCase__ ( self : Optional[Any] ) -> str:
"""simple docstring"""
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 )
def UpperCAmelCase__ ( self : int ) -> Dict:
"""simple docstring"""
self._test_inference_batch_single_identical(expected_max_diff=2E-3 )
class __a (lowerCamelCase , lowerCamelCase , unittest.TestCase ):
__a : str = StableDiffusionControlNetImgaImgPipeline
__a : Tuple = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"}
__a : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
__a : List[Any] = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess
def UpperCAmelCase__ ( self : int ) -> int:
"""simple docstring"""
torch.manual_seed(0 )
UpperCAmelCase_ : Optional[int] = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , )
torch.manual_seed(0 )
def init_weights(__magic_name__ : str ):
if isinstance(__magic_name__ , torch.nn.Convad ):
torch.nn.init.normal(m.weight )
m.bias.data.fill_(1.0 )
UpperCAmelCase_ : Optional[Any] = ControlNetModel(
block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , )
controlneta.controlnet_down_blocks.apply(__magic_name__ )
torch.manual_seed(0 )
UpperCAmelCase_ : Optional[int] = ControlNetModel(
block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , )
controlneta.controlnet_down_blocks.apply(__magic_name__ )
torch.manual_seed(0 )
UpperCAmelCase_ : Optional[Any] = DDIMScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=__magic_name__ , set_alpha_to_one=__magic_name__ , )
torch.manual_seed(0 )
UpperCAmelCase_ : Optional[int] = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
torch.manual_seed(0 )
UpperCAmelCase_ : Optional[Any] = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , )
UpperCAmelCase_ : Any = CLIPTextModel(__magic_name__ )
UpperCAmelCase_ : Tuple = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
UpperCAmelCase_ : Tuple = MultiControlNetModel([controlneta, controlneta] )
UpperCAmelCase_ : Union[str, Any] = {
'''unet''': unet,
'''controlnet''': controlnet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''safety_checker''': None,
'''feature_extractor''': None,
}
return components
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : List[Any] , __magic_name__ : Optional[int]=0 ) -> List[Any]:
"""simple docstring"""
if str(__magic_name__ ).startswith('''mps''' ):
UpperCAmelCase_ : Any = torch.manual_seed(__magic_name__ )
else:
UpperCAmelCase_ : Optional[Any] = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ )
UpperCAmelCase_ : Union[str, Any] = 2
UpperCAmelCase_ : Tuple = [
randn_tensor(
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=__magic_name__ , device=torch.device(__magic_name__ ) , ),
randn_tensor(
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=__magic_name__ , device=torch.device(__magic_name__ ) , ),
]
UpperCAmelCase_ : Any = floats_tensor(control_image[0].shape , rng=random.Random(__magic_name__ ) ).to(__magic_name__ )
UpperCAmelCase_ : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0]
UpperCAmelCase_ : List[Any] = Image.fromarray(np.uinta(__magic_name__ ) ).convert('''RGB''' ).resize((64, 64) )
UpperCAmelCase_ : List[Any] = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
'''image''': image,
'''control_image''': control_image,
}
return inputs
def UpperCAmelCase__ ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = self.get_dummy_components()
UpperCAmelCase_ : List[str] = self.pipeline_class(**__magic_name__ )
pipe.to(__magic_name__ )
UpperCAmelCase_ : List[Any] = 10.0
UpperCAmelCase_ : Optional[int] = 4
UpperCAmelCase_ : Optional[Any] = self.get_dummy_inputs(__magic_name__ )
UpperCAmelCase_ : Tuple = steps
UpperCAmelCase_ : List[Any] = scale
UpperCAmelCase_ : str = pipe(**__magic_name__ )[0]
UpperCAmelCase_ : Any = self.get_dummy_inputs(__magic_name__ )
UpperCAmelCase_ : Dict = steps
UpperCAmelCase_ : Dict = scale
UpperCAmelCase_ : str = pipe(**__magic_name__ , control_guidance_start=0.1 , control_guidance_end=0.2 )[0]
UpperCAmelCase_ : Any = self.get_dummy_inputs(__magic_name__ )
UpperCAmelCase_ : int = steps
UpperCAmelCase_ : Union[str, Any] = scale
UpperCAmelCase_ : Optional[int] = pipe(**__magic_name__ , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0]
UpperCAmelCase_ : Union[str, Any] = self.get_dummy_inputs(__magic_name__ )
UpperCAmelCase_ : Optional[int] = steps
UpperCAmelCase_ : List[Any] = scale
UpperCAmelCase_ : Union[str, Any] = pipe(**__magic_name__ , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0]
# make sure that all outputs are different
assert np.sum(np.abs(output_a - output_a ) ) > 1E-3
assert np.sum(np.abs(output_a - output_a ) ) > 1E-3
assert np.sum(np.abs(output_a - output_a ) ) > 1E-3
def UpperCAmelCase__ ( self : int ) -> Tuple:
"""simple docstring"""
return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 )
@unittest.skipIf(
torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , )
def UpperCAmelCase__ ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 )
def UpperCAmelCase__ ( self : List[Any] ) -> Dict:
"""simple docstring"""
self._test_inference_batch_single_identical(expected_max_diff=2E-3 )
def UpperCAmelCase__ ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = self.get_dummy_components()
UpperCAmelCase_ : str = self.pipeline_class(**__magic_name__ )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
with tempfile.TemporaryDirectory() as tmpdir:
try:
# save_pretrained is not implemented for Multi-ControlNet
pipe.save_pretrained(__magic_name__ )
except NotImplementedError:
pass
@slow
@require_torch_gpu
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ ( self : int ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = ControlNetModel.from_pretrained('''lllyasviel/sd-controlnet-canny''' )
UpperCAmelCase_ : Any = StableDiffusionControlNetImgaImgPipeline.from_pretrained(
'''runwayml/stable-diffusion-v1-5''' , safety_checker=__magic_name__ , controlnet=__magic_name__ )
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : Dict = torch.Generator(device='''cpu''' ).manual_seed(0 )
UpperCAmelCase_ : Dict = '''evil space-punk bird'''
UpperCAmelCase_ : str = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png''' ).resize((5_12, 5_12) )
UpperCAmelCase_ : List[Any] = load_image(
'''https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png''' ).resize((5_12, 5_12) )
UpperCAmelCase_ : List[Any] = pipe(
__magic_name__ , __magic_name__ , control_image=__magic_name__ , generator=__magic_name__ , output_type='''np''' , num_inference_steps=50 , strength=0.6 , )
UpperCAmelCase_ : Tuple = output.images[0]
assert image.shape == (5_12, 5_12, 3)
UpperCAmelCase_ : Optional[int] = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy''' )
assert np.abs(expected_image - image ).max() < 9E-2
| 705
|
'''simple docstring'''
class __a :
def __init__( self : List[Any] , __magic_name__ : int ) -> None:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = size
UpperCAmelCase_ : Tuple = [0] * size
UpperCAmelCase_ : Optional[Any] = [0] * size
@staticmethod
def UpperCAmelCase__ ( __magic_name__ : int ) -> int:
"""simple docstring"""
return index | (index + 1)
@staticmethod
def UpperCAmelCase__ ( __magic_name__ : int ) -> int:
"""simple docstring"""
return (index & (index + 1)) - 1
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : int , __magic_name__ : int ) -> None:
"""simple docstring"""
UpperCAmelCase_ : int = value
while index < self.size:
UpperCAmelCase_ : str = self.get_prev(__magic_name__ ) + 1
if current_left_border == index:
UpperCAmelCase_ : List[str] = value
else:
UpperCAmelCase_ : Optional[int] = max(__magic_name__ , __magic_name__ , __magic_name__ )
UpperCAmelCase_ : Tuple = self.get_next(__magic_name__ )
def UpperCAmelCase__ ( self : Any , __magic_name__ : int , __magic_name__ : int ) -> int:
"""simple docstring"""
right -= 1 # Because of right is exclusive
UpperCAmelCase_ : List[str] = 0
while left <= right:
UpperCAmelCase_ : Optional[Any] = self.get_prev(__magic_name__ )
if left <= current_left:
UpperCAmelCase_ : Dict = max(__magic_name__ , self.tree[right] )
UpperCAmelCase_ : Optional[Any] = current_left
else:
UpperCAmelCase_ : str = max(__magic_name__ , self.arr[right] )
right -= 1
return result
if __name__ == "__main__":
import doctest
doctest.testmod()
| 644
| 0
|
'''simple docstring'''
import unittest
import numpy as np
import torch
from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class __a (unittest.TestCase ):
@property
def UpperCAmelCase__ ( self : Dict ) -> str:
"""simple docstring"""
torch.manual_seed(0 )
UpperCAmelCase_ : Optional[Any] = UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , )
return model
def UpperCAmelCase__ ( self : Dict ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = self.dummy_uncond_unet
UpperCAmelCase_ : Dict = KarrasVeScheduler()
UpperCAmelCase_ : Union[str, Any] = KarrasVePipeline(unet=__magic_name__ , scheduler=__magic_name__ )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : Dict = torch.manual_seed(0 )
UpperCAmelCase_ : Optional[int] = pipe(num_inference_steps=2 , generator=__magic_name__ , output_type='''numpy''' ).images
UpperCAmelCase_ : Tuple = torch.manual_seed(0 )
UpperCAmelCase_ : str = pipe(num_inference_steps=2 , generator=__magic_name__ , output_type='''numpy''' , return_dict=__magic_name__ )[0]
UpperCAmelCase_ : Union[str, Any] = image[0, -3:, -3:, -1]
UpperCAmelCase_ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
UpperCAmelCase_ : Dict = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : int ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : List[str] = '''google/ncsnpp-celebahq-256'''
UpperCAmelCase_ : List[str] = UNetaDModel.from_pretrained(__magic_name__ )
UpperCAmelCase_ : List[Any] = KarrasVeScheduler()
UpperCAmelCase_ : Any = KarrasVePipeline(unet=__magic_name__ , scheduler=__magic_name__ )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : Dict = torch.manual_seed(0 )
UpperCAmelCase_ : Optional[Any] = pipe(num_inference_steps=20 , generator=__magic_name__ , output_type='''numpy''' ).images
UpperCAmelCase_ : Any = image[0, -3:, -3:, -1]
assert image.shape == (1, 2_56, 2_56, 3)
UpperCAmelCase_ : Optional[Any] = np.array([0.5_7_8, 0.5_8_1_1, 0.5_9_2_4, 0.5_8_0_9, 0.5_8_7, 0.5_8_8_6, 0.5_8_6_1, 0.5_8_0_2, 0.5_8_6] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 706
|
'''simple docstring'''
import math
import unittest
from transformers import BioGptConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptTokenizer,
)
from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST
class __a :
def __init__( self : List[str] , __magic_name__ : List[str] , __magic_name__ : str=13 , __magic_name__ : Union[str, Any]=7 , __magic_name__ : Union[str, Any]=True , __magic_name__ : Any=True , __magic_name__ : List[str]=False , __magic_name__ : Optional[int]=True , __magic_name__ : Dict=99 , __magic_name__ : Tuple=32 , __magic_name__ : int=5 , __magic_name__ : Dict=4 , __magic_name__ : Tuple=37 , __magic_name__ : Optional[int]="gelu" , __magic_name__ : List[str]=0.1 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : str=5_12 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : int=2 , __magic_name__ : List[Any]=0.0_2 , __magic_name__ : Tuple=3 , __magic_name__ : Union[str, Any]=4 , __magic_name__ : Optional[int]=None , ) -> str:
"""simple docstring"""
UpperCAmelCase_ : Any = parent
UpperCAmelCase_ : Union[str, Any] = batch_size
UpperCAmelCase_ : List[Any] = seq_length
UpperCAmelCase_ : str = is_training
UpperCAmelCase_ : Any = use_input_mask
UpperCAmelCase_ : List[str] = use_token_type_ids
UpperCAmelCase_ : Union[str, Any] = use_labels
UpperCAmelCase_ : Dict = vocab_size
UpperCAmelCase_ : Optional[Any] = hidden_size
UpperCAmelCase_ : Dict = num_hidden_layers
UpperCAmelCase_ : List[Any] = num_attention_heads
UpperCAmelCase_ : Optional[int] = intermediate_size
UpperCAmelCase_ : Union[str, Any] = hidden_act
UpperCAmelCase_ : str = hidden_dropout_prob
UpperCAmelCase_ : Optional[Any] = attention_probs_dropout_prob
UpperCAmelCase_ : Any = max_position_embeddings
UpperCAmelCase_ : str = type_vocab_size
UpperCAmelCase_ : Optional[Any] = type_sequence_label_size
UpperCAmelCase_ : List[Any] = initializer_range
UpperCAmelCase_ : int = num_labels
UpperCAmelCase_ : Optional[int] = num_choices
UpperCAmelCase_ : Tuple = scope
def UpperCAmelCase__ ( self : Union[str, Any] ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase_ : Union[str, Any] = None
if self.use_input_mask:
UpperCAmelCase_ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase_ : str = None
if self.use_token_type_ids:
UpperCAmelCase_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase_ : Tuple = None
UpperCAmelCase_ : List[str] = None
UpperCAmelCase_ : Union[str, Any] = None
if self.use_labels:
UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase_ : int = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCAmelCase__ ( self : Any ) -> List[Any]:
"""simple docstring"""
return BioGptConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__magic_name__ , initializer_range=self.initializer_range , )
def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : Tuple , __magic_name__ : str , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = BioGptModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : Dict = model(__magic_name__ , attention_mask=__magic_name__ )
UpperCAmelCase_ : Optional[Any] = model(__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : Dict , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Any , __magic_name__ : Tuple , __magic_name__ : List[str] , __magic_name__ : Optional[int] , ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Dict = BioGptForCausalLM(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : List[Any] = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCAmelCase__ ( self : str , __magic_name__ : Optional[int] , __magic_name__ : Tuple , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : str , *__magic_name__ : Any ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Dict = BioGptModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
# create attention mask
UpperCAmelCase_ : Optional[Any] = torch.ones(input_ids.shape , dtype=torch.long , device=__magic_name__ )
UpperCAmelCase_ : Any = self.seq_length // 2
UpperCAmelCase_ : Tuple = 0
# first forward pass
UpperCAmelCase_ , UpperCAmelCase_ : Dict = model(__magic_name__ , attention_mask=__magic_name__ ).to_tuple()
# create hypothetical next token and extent to next_input_ids
UpperCAmelCase_ : Tuple = ids_tensor((self.batch_size, 1) , config.vocab_size )
# change a random masked slice from input_ids
UpperCAmelCase_ : List[str] = ids_tensor((1,) , __magic_name__ ).item() + 1
UpperCAmelCase_ : Tuple = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 )
UpperCAmelCase_ : str = random_other_next_tokens
# append to next input_ids and attn_mask
UpperCAmelCase_ : Tuple = torch.cat([input_ids, next_tokens] , dim=-1 )
UpperCAmelCase_ : int = torch.cat(
[attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=__magic_name__ )] , dim=1 , )
# get two different outputs
UpperCAmelCase_ : Any = model(__magic_name__ , attention_mask=__magic_name__ )['''last_hidden_state''']
UpperCAmelCase_ : int = model(__magic_name__ , past_key_values=__magic_name__ , attention_mask=__magic_name__ )['''last_hidden_state''']
# select random slice
UpperCAmelCase_ : Optional[int] = ids_tensor((1,) , output_from_past.shape[-1] ).item()
UpperCAmelCase_ : Union[str, Any] = output_from_no_past[:, -1, random_slice_idx].detach()
UpperCAmelCase_ : Dict = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) )
def UpperCAmelCase__ ( self : Dict , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : Dict , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , *__magic_name__ : str ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Dict = BioGptModel(config=__magic_name__ ).to(__magic_name__ ).eval()
UpperCAmelCase_ : Optional[int] = torch.ones(input_ids.shape , dtype=torch.long , device=__magic_name__ )
# first forward pass
UpperCAmelCase_ : Union[str, Any] = model(__magic_name__ , attention_mask=__magic_name__ , use_cache=__magic_name__ )
UpperCAmelCase_ , UpperCAmelCase_ : int = outputs.to_tuple()
# create hypothetical multiple next token and extent to next_input_ids
UpperCAmelCase_ : Any = ids_tensor((self.batch_size, 3) , config.vocab_size )
UpperCAmelCase_ : Any = ids_tensor((self.batch_size, 3) , 2 )
# append to next input_ids and
UpperCAmelCase_ : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1 )
UpperCAmelCase_ : List[str] = torch.cat([attention_mask, next_attn_mask] , dim=-1 )
UpperCAmelCase_ : Any = model(__magic_name__ , attention_mask=__magic_name__ )['''last_hidden_state''']
UpperCAmelCase_ : Optional[Any] = model(__magic_name__ , attention_mask=__magic_name__ , past_key_values=__magic_name__ )[
'''last_hidden_state'''
]
# select random slice
UpperCAmelCase_ : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item()
UpperCAmelCase_ : str = output_from_no_past[:, -3:, random_slice_idx].detach()
UpperCAmelCase_ : Optional[int] = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) )
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : str , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , *__magic_name__ : Any , __magic_name__ : List[Any]=False ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Any = BioGptForCausalLM(__magic_name__ )
model.to(__magic_name__ )
if gradient_checkpointing:
model.gradient_checkpointing_enable()
UpperCAmelCase_ : List[str] = model(__magic_name__ , labels=__magic_name__ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
result.loss.backward()
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Optional[int] , *__magic_name__ : List[str] ) -> str:
"""simple docstring"""
UpperCAmelCase_ : int = BioGptModel(__magic_name__ )
UpperCAmelCase_ : Dict = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers )
for key in model.state_dict().keys():
if "c_proj" in key and "weight" in key:
self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.0_0_1 )
self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.0_1 )
def UpperCAmelCase__ ( self : int , __magic_name__ : Tuple , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] , *__magic_name__ : Any ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : str = self.num_labels
UpperCAmelCase_ : Any = BioGptForTokenClassification(__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : Any = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCAmelCase__ ( self : Optional[Any] ) -> str:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = self.prepare_config_and_inputs()
(
(
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) ,
) : int = config_and_inputs
UpperCAmelCase_ : Any = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class __a (lowerCamelCase , lowerCamelCase , lowerCamelCase , unittest.TestCase ):
__a : str = (
(BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification)
if is_torch_available()
else ()
)
__a : List[Any] = (BioGptForCausalLM,) if is_torch_available() else ()
__a : Union[str, Any] = (
{
"feature-extraction": BioGptModel,
"text-classification": BioGptForSequenceClassification,
"text-generation": BioGptForCausalLM,
"token-classification": BioGptForTokenClassification,
"zero-shot": BioGptForSequenceClassification,
}
if is_torch_available()
else {}
)
__a : List[str] = False
def UpperCAmelCase__ ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : List[str] = BioGptModelTester(self )
UpperCAmelCase_ : Optional[Any] = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 )
def UpperCAmelCase__ ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCAmelCase__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__magic_name__ )
def UpperCAmelCase__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
UpperCAmelCase_ : str = type
self.model_tester.create_and_check_model(*__magic_name__ )
def UpperCAmelCase__ ( self : Optional[int] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_attention_mask_past(*__magic_name__ )
def UpperCAmelCase__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_forward_and_backwards(*__magic_name__ , gradient_checkpointing=__magic_name__ )
def UpperCAmelCase__ ( self : str ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_past_large_inputs(*__magic_name__ )
def UpperCAmelCase__ ( self : Dict ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_weight_initialization(*__magic_name__ )
def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_for_token_classification(*__magic_name__ )
@slow
def UpperCAmelCase__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' )
model.to(__magic_name__ )
UpperCAmelCase_ : List[str] = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' )
UpperCAmelCase_ : Tuple = '''left'''
# Define PAD Token = EOS Token = 50256
UpperCAmelCase_ : List[Any] = tokenizer.eos_token
UpperCAmelCase_ : List[Any] = model.config.eos_token_id
# use different length sentences to test batching
UpperCAmelCase_ : Tuple = [
'''Hello, my dog is a little''',
'''Today, I''',
]
UpperCAmelCase_ : Optional[Any] = tokenizer(__magic_name__ , return_tensors='''pt''' , padding=__magic_name__ )
UpperCAmelCase_ : Optional[Any] = inputs['''input_ids'''].to(__magic_name__ )
UpperCAmelCase_ : Any = model.generate(
input_ids=__magic_name__ , attention_mask=inputs['''attention_mask'''].to(__magic_name__ ) , )
UpperCAmelCase_ : Union[str, Any] = tokenizer(sentences[0] , return_tensors='''pt''' ).input_ids.to(__magic_name__ )
UpperCAmelCase_ : Tuple = model.generate(input_ids=__magic_name__ )
UpperCAmelCase_ : List[str] = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item()
UpperCAmelCase_ : List[Any] = tokenizer(sentences[1] , return_tensors='''pt''' ).input_ids.to(__magic_name__ )
UpperCAmelCase_ : Tuple = model.generate(input_ids=__magic_name__ , max_length=model.config.max_length - num_paddings )
UpperCAmelCase_ : int = tokenizer.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ )
UpperCAmelCase_ : Dict = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__magic_name__ )
UpperCAmelCase_ : Union[str, Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=__magic_name__ )
UpperCAmelCase_ : Optional[Any] = [
'''Hello, my dog is a little bit bigger than a little bit.''',
'''Today, I have a good idea of how to use the information''',
]
self.assertListEqual(__magic_name__ , __magic_name__ )
self.assertListEqual(__magic_name__ , [non_padded_sentence, padded_sentence] )
@slow
def UpperCAmelCase__ ( self : str ) -> Optional[Any]:
"""simple docstring"""
for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase_ : List[Any] = BioGptModel.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
def UpperCAmelCase__ ( self : Tuple ) -> str:
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase_ : List[str] = 3
UpperCAmelCase_ : Tuple = input_dict['''input_ids''']
UpperCAmelCase_ : Dict = input_ids.ne(1 ).to(__magic_name__ )
UpperCAmelCase_ : List[str] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
UpperCAmelCase_ : Dict = BioGptForSequenceClassification(__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : int = model(__magic_name__ , attention_mask=__magic_name__ , labels=__magic_name__ )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase_ : List[Any] = 3
UpperCAmelCase_ : Optional[int] = '''multi_label_classification'''
UpperCAmelCase_ : int = input_dict['''input_ids''']
UpperCAmelCase_ : str = input_ids.ne(1 ).to(__magic_name__ )
UpperCAmelCase_ : Any = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
UpperCAmelCase_ : Union[str, Any] = BioGptForSequenceClassification(__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : str = model(__magic_name__ , attention_mask=__magic_name__ , labels=__magic_name__ )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
@require_torch
class __a (unittest.TestCase ):
@slow
def UpperCAmelCase__ ( self : List[Any] ) -> str:
"""simple docstring"""
UpperCAmelCase_ : str = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' )
UpperCAmelCase_ : List[str] = torch.tensor([[2, 48_05, 9, 6_56, 21]] )
UpperCAmelCase_ : str = model(__magic_name__ )[0]
UpperCAmelCase_ : Optional[int] = 4_23_84
UpperCAmelCase_ : Tuple = torch.Size((1, 5, vocab_size) )
self.assertEqual(output.shape , __magic_name__ )
UpperCAmelCase_ : List[Any] = torch.tensor(
[[[-9.5_2_3_6, -9.8_9_1_8, 1_0.4_5_5_7], [-1_1.0_4_6_9, -9.6_4_2_3, 8.1_0_2_2], [-8.8_6_6_4, -7.8_8_2_6, 5.5_3_2_5]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __magic_name__ , atol=1E-4 ) )
@slow
def UpperCAmelCase__ ( self : Any ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Any = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' )
UpperCAmelCase_ : str = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' )
model.to(__magic_name__ )
torch.manual_seed(0 )
UpperCAmelCase_ : Optional[Any] = tokenizer('''COVID-19 is''' , return_tensors='''pt''' ).to(__magic_name__ )
UpperCAmelCase_ : Optional[int] = model.generate(
**__magic_name__ , min_length=1_00 , max_length=10_24 , num_beams=5 , early_stopping=__magic_name__ , )
UpperCAmelCase_ : int = tokenizer.decode(output_ids[0] , skip_special_tokens=__magic_name__ )
UpperCAmelCase_ : Optional[Any] = (
'''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the'''
''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and'''
''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),'''
''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and'''
''' more than 800,000 deaths.'''
)
self.assertEqual(__magic_name__ , __magic_name__ )
| 644
| 0
|
'''simple docstring'''
import random
import unittest
import numpy as np
import torch
from diffusers import (
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
OnnxStableDiffusionUpscalePipeline,
PNDMScheduler,
)
from diffusers.utils import floats_tensor
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
nightly,
require_onnxruntime,
require_torch_gpu,
)
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class __a (lowerCamelCase , unittest.TestCase ):
# TODO: is there an appropriate internal test set?
__a : Optional[Any] = "ssube/stable-diffusion-x4-upscaler-onnx"
def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : Union[str, Any]=0 ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = floats_tensor((1, 3, 1_28, 1_28) , rng=random.Random(__magic_name__ ) )
UpperCAmelCase_ : List[str] = torch.manual_seed(__magic_name__ )
UpperCAmelCase_ : int = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''image''': image,
'''generator''': generator,
'''num_inference_steps''': 3,
'''guidance_scale''': 7.5,
'''output_type''': '''numpy''',
}
return inputs
def UpperCAmelCase__ ( self : Dict ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : Dict = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : List[str] = self.get_dummy_inputs()
UpperCAmelCase_ : List[Any] = pipe(**__magic_name__ ).images
UpperCAmelCase_ : str = image[0, -3:, -3:, -1].flatten()
# started as 128, should now be 512
assert image.shape == (1, 5_12, 5_12, 3)
UpperCAmelCase_ : Optional[Any] = np.array(
[0.6_9_7_4_7_8_2, 0.6_8_9_0_2_0_9_3, 0.7_0_1_3_5_8_8_5, 0.7_5_8_3_6_1_8, 0.7_8_0_4_5_4_5, 0.7_8_5_4_9_1_2, 0.7_8_6_6_7_4_2_6, 0.7_8_7_4_3_8_6_3, 0.7_8_0_7_0_2_2_3] )
assert np.abs(image_slice - expected_slice ).max() < 1E-1
def UpperCAmelCase__ ( self : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' )
UpperCAmelCase_ : Any = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : int = self.get_dummy_inputs()
UpperCAmelCase_ : Union[str, Any] = pipe(**__magic_name__ ).images
UpperCAmelCase_ : List[Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
UpperCAmelCase_ : Any = np.array(
[0.6_8_9_8_8_9_2, 0.5_9_2_4_0_5_5_6, 0.5_2_4_9_9_5_2_7, 0.5_8_8_6_6_2_1_5, 0.5_2_2_5_8_2_3_5, 0.5_2_5_7_2_7_1_5, 0.6_2_4_1_4_4_7_3, 0.6_1_7_4_3_8_7, 0.6_2_1_4_9_6_4] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
def UpperCAmelCase__ ( self : Dict ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : str = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' )
UpperCAmelCase_ : int = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : Union[str, Any] = self.get_dummy_inputs()
UpperCAmelCase_ : str = pipe(**__magic_name__ ).images
UpperCAmelCase_ : List[Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
UpperCAmelCase_ : Dict = np.array(
[0.7_6_5_9_2_7_8, 0.7_6_4_3_7_6_6_4, 0.7_5_5_7_9_1_0_7, 0.7_6_9_1_1_1_6, 0.7_7_6_6_6_9_8_6, 0.7_7_2_7_6_7_2, 0.7_7_5_8_6_6_4, 0.7_8_1_2_2_2_6, 0.7_6_9_4_2_5_1_5] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
def UpperCAmelCase__ ( self : int ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' )
UpperCAmelCase_ : Optional[Any] = EulerDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : List[str] = self.get_dummy_inputs()
UpperCAmelCase_ : Optional[int] = pipe(**__magic_name__ ).images
UpperCAmelCase_ : Any = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
UpperCAmelCase_ : Optional[Any] = np.array(
[0.6_9_7_4_7_8_2, 0.6_8_9_0_2_0_9_3, 0.7_0_1_3_5_8_8_5, 0.7_5_8_3_6_1_8, 0.7_8_0_4_5_4_5, 0.7_8_5_4_9_1_2, 0.7_8_6_6_7_4_2_6, 0.7_8_7_4_3_8_6_3, 0.7_8_0_7_0_2_2_3] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
def UpperCAmelCase__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' )
UpperCAmelCase_ : Dict = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : List[Any] = self.get_dummy_inputs()
UpperCAmelCase_ : int = pipe(**__magic_name__ ).images
UpperCAmelCase_ : Union[str, Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
UpperCAmelCase_ : Union[str, Any] = np.array(
[0.7_7_4_2_4_4_9_6, 0.7_7_3_6_0_1, 0.7_6_4_5_2_8_8, 0.7_7_6_9_5_9_8, 0.7_7_7_2_7_3_9, 0.7_7_3_8_6_8_8, 0.7_8_1_8_7_2_3_3, 0.7_7_8_7_9_5_8_4, 0.7_6_7_0_4_3] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
@nightly
@require_onnxruntime
@require_torch_gpu
class __a (unittest.TestCase ):
@property
def UpperCAmelCase__ ( self : Any ) -> int:
"""simple docstring"""
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def UpperCAmelCase__ ( self : str ) -> str:
"""simple docstring"""
UpperCAmelCase_ : Dict = ort.SessionOptions()
UpperCAmelCase_ : Optional[int] = False
return options
def UpperCAmelCase__ ( self : Any ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/img2img/sketch-mountains-input.jpg''' )
UpperCAmelCase_ : int = init_image.resize((1_28, 1_28) )
# using the PNDM scheduler by default
UpperCAmelCase_ : Any = OnnxStableDiffusionUpscalePipeline.from_pretrained(
'''ssube/stable-diffusion-x4-upscaler-onnx''' , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : List[Any] = '''A fantasy landscape, trending on artstation'''
UpperCAmelCase_ : str = torch.manual_seed(0 )
UpperCAmelCase_ : List[Any] = pipe(
prompt=__magic_name__ , image=__magic_name__ , guidance_scale=7.5 , num_inference_steps=10 , generator=__magic_name__ , output_type='''np''' , )
UpperCAmelCase_ : List[str] = output.images
UpperCAmelCase_ : Dict = images[0, 2_55:2_58, 3_83:3_86, -1]
assert images.shape == (1, 5_12, 5_12, 3)
UpperCAmelCase_ : int = np.array([0.4_8_8_3, 0.4_9_4_7, 0.4_9_8_0, 0.4_9_7_5, 0.4_9_8_2, 0.4_9_8_0, 0.5_0_0_0, 0.5_0_0_6, 0.4_9_7_2] )
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
def UpperCAmelCase__ ( self : int ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/img2img/sketch-mountains-input.jpg''' )
UpperCAmelCase_ : int = init_image.resize((1_28, 1_28) )
UpperCAmelCase_ : Optional[int] = LMSDiscreteScheduler.from_pretrained(
'''ssube/stable-diffusion-x4-upscaler-onnx''' , subfolder='''scheduler''' )
UpperCAmelCase_ : int = OnnxStableDiffusionUpscalePipeline.from_pretrained(
'''ssube/stable-diffusion-x4-upscaler-onnx''' , scheduler=__magic_name__ , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : List[Any] = '''A fantasy landscape, trending on artstation'''
UpperCAmelCase_ : Any = torch.manual_seed(0 )
UpperCAmelCase_ : Dict = pipe(
prompt=__magic_name__ , image=__magic_name__ , guidance_scale=7.5 , num_inference_steps=20 , generator=__magic_name__ , output_type='''np''' , )
UpperCAmelCase_ : int = output.images
UpperCAmelCase_ : List[str] = images[0, 2_55:2_58, 3_83:3_86, -1]
assert images.shape == (1, 5_12, 5_12, 3)
UpperCAmelCase_ : Optional[Any] = np.array(
[0.5_0_1_7_3_7_5_3, 0.5_0_2_2_3_3_5_6, 0.5_0_2_0_3_9, 0.5_0_2_3_3_0_3_6, 0.5_0_2_3_7_2_5, 0.5_0_2_2_6_0_1, 0.5_0_1_8_7_5_8, 0.5_0_2_3_4_0_8_5, 0.5_0_2_4_1_5_6_6] )
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
| 707
|
'''simple docstring'''
import json
import os
import unittest
from transformers.models.blenderbot_small.tokenization_blenderbot_small import (
VOCAB_FILES_NAMES,
BlenderbotSmallTokenizer,
)
from ...test_tokenization_common import TokenizerTesterMixin
class __a (lowerCamelCase , unittest.TestCase ):
__a : List[str] = BlenderbotSmallTokenizer
__a : List[Any] = False
def UpperCAmelCase__ ( self : str ) -> str:
"""simple docstring"""
super().setUp()
UpperCAmelCase_ : Tuple = ['''__start__''', '''adapt''', '''act''', '''ap@@''', '''te''', '''__end__''', '''__unk__''']
UpperCAmelCase_ : Optional[Any] = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) )
UpperCAmelCase_ : int = ['''#version: 0.2''', '''a p''', '''t e</w>''', '''ap t</w>''', '''a d''', '''ad apt</w>''', '''a c''', '''ac t</w>''', '''''']
UpperCAmelCase_ : Optional[Any] = {'''unk_token''': '''__unk__''', '''bos_token''': '''__start__''', '''eos_token''': '''__end__'''}
UpperCAmelCase_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
UpperCAmelCase_ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(__magic_name__ ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(__magic_name__ ) )
def UpperCAmelCase__ ( self : List[Any] , **__magic_name__ : Dict ) -> Tuple:
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **__magic_name__ )
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : List[str] ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : str = '''adapt act apte'''
UpperCAmelCase_ : Tuple = '''adapt act apte'''
return input_text, output_text
def UpperCAmelCase__ ( self : str ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : str = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map )
UpperCAmelCase_ : List[Any] = '''adapt act apte'''
UpperCAmelCase_ : Dict = ['''adapt''', '''act''', '''ap@@''', '''te''']
UpperCAmelCase_ : Dict = tokenizer.tokenize(__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
UpperCAmelCase_ : Tuple = [tokenizer.bos_token] + tokens + [tokenizer.eos_token]
UpperCAmelCase_ : Dict = [0, 1, 2, 3, 4, 5]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , __magic_name__ )
def UpperCAmelCase__ ( self : int ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' )
assert tok('''sam''' ).input_ids == [13_84]
UpperCAmelCase_ : Optional[int] = '''I am a small frog.'''
UpperCAmelCase_ : List[str] = tok([src_text] , padding=__magic_name__ , truncation=__magic_name__ )['''input_ids''']
UpperCAmelCase_ : Dict = tok.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ , clean_up_tokenization_spaces=__magic_name__ )[0]
assert src_text != decoded # I wish it did!
assert decoded == "i am a small frog ."
def UpperCAmelCase__ ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : int = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' )
UpperCAmelCase_ : List[Any] = '''I am a small frog .'''
UpperCAmelCase_ : Any = '''.'''
UpperCAmelCase_ : List[Any] = tok(__magic_name__ )['''input_ids''']
UpperCAmelCase_ : Optional[int] = tok(__magic_name__ )['''input_ids''']
assert encoded[-1] == encoded_dot[0]
| 644
| 0
|
'''simple docstring'''
import os
import unittest
from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer
from transformers.testing_utils import get_tests_dir
from ...test_tokenization_common import TokenizerTesterMixin
snake_case_ : int = get_tests_dir("fixtures/test_sentencepiece_bpe.model")
class __a (lowerCamelCase , unittest.TestCase ):
__a : str = BartphoTokenizer
__a : Any = False
__a : Dict = True
def UpperCAmelCase__ ( self : str ) -> Optional[Any]:
"""simple docstring"""
super().setUp()
UpperCAmelCase_ : Tuple = ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']
UpperCAmelCase_ : Optional[int] = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) )
UpperCAmelCase_ : Optional[int] = {'''unk_token''': '''<unk>'''}
UpperCAmelCase_ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''monolingual_vocab_file'''] )
with open(self.monolingual_vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
for token in vocab_tokens:
fp.write(F"""{token} {vocab_tokens[token]}\n""" )
UpperCAmelCase_ : int = BartphoTokenizer(__magic_name__ , self.monolingual_vocab_file , **self.special_tokens_map )
tokenizer.save_pretrained(self.tmpdirname )
def UpperCAmelCase__ ( self : str , **__magic_name__ : Dict ) -> Optional[Any]:
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return BartphoTokenizer.from_pretrained(self.tmpdirname , **__magic_name__ )
def UpperCAmelCase__ ( self : Dict , __magic_name__ : Tuple ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = '''This is a là test'''
UpperCAmelCase_ : List[Any] = '''This is a<unk><unk> test'''
return input_text, output_text
def UpperCAmelCase__ ( self : List[Any] ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : str = BartphoTokenizer(__magic_name__ , self.monolingual_vocab_file , **self.special_tokens_map )
UpperCAmelCase_ : str = '''This is a là test'''
UpperCAmelCase_ : int = '''▁This ▁is ▁a ▁l à ▁t est'''.split()
UpperCAmelCase_ : str = tokenizer.tokenize(__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
UpperCAmelCase_ : Dict = tokens + [tokenizer.unk_token]
UpperCAmelCase_ : Dict = [4, 5, 6, 3, 3, 7, 8, 3]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , __magic_name__ )
| 708
|
'''simple docstring'''
import unittest
import torch
from torch import nn
from diffusers.models.activations import get_activation
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : Dict ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : Dict = get_activation('''swish''' )
self.assertIsInstance(__magic_name__ , nn.SiLU )
self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
def UpperCAmelCase__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = get_activation('''silu''' )
self.assertIsInstance(__magic_name__ , nn.SiLU )
self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
def UpperCAmelCase__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = get_activation('''mish''' )
self.assertIsInstance(__magic_name__ , nn.Mish )
self.assertEqual(act(torch.tensor(-2_00 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
def UpperCAmelCase__ ( self : str ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = get_activation('''gelu''' )
self.assertIsInstance(__magic_name__ , nn.GELU )
self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
| 644
| 0
|
'''simple docstring'''
import argparse
import json
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
snake_case_ : Optional[int] = 16
snake_case_ : Tuple = 32
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Accelerator, SCREAMING_SNAKE_CASE__ : int = 16, SCREAMING_SNAKE_CASE__ : str = "bert-base-cased" ) -> Dict:
UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : int = load_dataset('''glue''', '''mrpc''' )
def tokenize_function(SCREAMING_SNAKE_CASE__ : Optional[int] ):
# max_length=None => use the model max length (it's actually the default)
UpperCAmelCase_ : Union[str, Any] = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=SCREAMING_SNAKE_CASE__, max_length=SCREAMING_SNAKE_CASE__ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
UpperCAmelCase_ : Tuple = datasets.map(
SCREAMING_SNAKE_CASE__, batched=SCREAMING_SNAKE_CASE__, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], load_from_cache_file=SCREAMING_SNAKE_CASE__ )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
UpperCAmelCase_ : Optional[Any] = tokenized_datasets.rename_column('''label''', '''labels''' )
def collate_fn(SCREAMING_SNAKE_CASE__ : str ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(SCREAMING_SNAKE_CASE__, padding='''max_length''', max_length=128, return_tensors='''pt''' )
return tokenizer.pad(SCREAMING_SNAKE_CASE__, padding='''longest''', return_tensors='''pt''' )
# Instantiate dataloaders.
UpperCAmelCase_ : str = DataLoader(
tokenized_datasets['''train'''], shuffle=SCREAMING_SNAKE_CASE__, collate_fn=SCREAMING_SNAKE_CASE__, batch_size=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : int = DataLoader(
tokenized_datasets['''validation'''], shuffle=SCREAMING_SNAKE_CASE__, collate_fn=SCREAMING_SNAKE_CASE__, batch_size=SCREAMING_SNAKE_CASE__ )
return train_dataloader, eval_dataloader
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Optional[Any], SCREAMING_SNAKE_CASE__ : Optional[int], SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : Any ) -> Any:
model.eval()
UpperCAmelCase_ : List[str] = 0
for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
UpperCAmelCase_ : Dict = model(**SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : str = outputs.logits.argmax(dim=-1 )
# It is slightly faster to call this once, than multiple times
UpperCAmelCase_ : List[str] = accelerator.gather(
(predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates
if accelerator.use_distributed:
if step == len(SCREAMING_SNAKE_CASE__ ) - 1:
UpperCAmelCase_ : Tuple = predictions[: len(eval_dataloader.dataset ) - samples_seen]
UpperCAmelCase_ : int = references[: len(eval_dataloader.dataset ) - samples_seen]
else:
samples_seen += references.shape[0]
metric.add_batch(
predictions=SCREAMING_SNAKE_CASE__, references=SCREAMING_SNAKE_CASE__, )
UpperCAmelCase_ : List[str] = metric.compute()
return eval_metric["accuracy"]
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : int ) -> Tuple:
# Initialize accelerator
UpperCAmelCase_ : Union[str, Any] = Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
UpperCAmelCase_ : int = config['''lr''']
UpperCAmelCase_ : Optional[int] = int(config['''num_epochs'''] )
UpperCAmelCase_ : Optional[int] = int(config['''seed'''] )
UpperCAmelCase_ : List[str] = int(config['''batch_size'''] )
UpperCAmelCase_ : Optional[int] = args.model_name_or_path
set_seed(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Union[str, Any] = get_dataloaders(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
UpperCAmelCase_ : List[Any] = AutoModelForSequenceClassification.from_pretrained(SCREAMING_SNAKE_CASE__, return_dict=SCREAMING_SNAKE_CASE__ )
# Instantiate optimizer
UpperCAmelCase_ : str = (
AdamW
if accelerator.state.deepspeed_plugin is None
or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
UpperCAmelCase_ : List[str] = optimizer_cls(params=model.parameters(), lr=SCREAMING_SNAKE_CASE__ )
if accelerator.state.deepspeed_plugin is not None:
UpperCAmelCase_ : List[Any] = accelerator.state.deepspeed_plugin.deepspeed_config[
'''gradient_accumulation_steps'''
]
else:
UpperCAmelCase_ : Tuple = 1
UpperCAmelCase_ : int = (len(SCREAMING_SNAKE_CASE__ ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
UpperCAmelCase_ : Tuple = get_linear_schedule_with_warmup(
optimizer=SCREAMING_SNAKE_CASE__, num_warmup_steps=0, num_training_steps=SCREAMING_SNAKE_CASE__, )
else:
UpperCAmelCase_ : Any = DummyScheduler(SCREAMING_SNAKE_CASE__, total_num_steps=SCREAMING_SNAKE_CASE__, warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
UpperCAmelCase_ : Union[str, Any] = accelerator.prepare(
SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
# We need to keep track of how many total steps we have iterated over
UpperCAmelCase_ : Union[str, Any] = 0
# We also need to keep track of the stating epoch so files are named properly
UpperCAmelCase_ : Dict = 0
UpperCAmelCase_ : int = evaluate.load('''glue''', '''mrpc''' )
UpperCAmelCase_ : Optional[Any] = num_epochs
if args.partial_train_epoch is not None:
UpperCAmelCase_ : List[Any] = args.partial_train_epoch
if args.resume_from_checkpoint:
accelerator.load_state(args.resume_from_checkpoint )
UpperCAmelCase_ : Tuple = args.resume_from_checkpoint.split('''epoch_''' )[1]
UpperCAmelCase_ : int = ''''''
for char in epoch_string:
if char.isdigit():
state_epoch_num += char
else:
break
UpperCAmelCase_ : Union[str, Any] = int(SCREAMING_SNAKE_CASE__ ) + 1
UpperCAmelCase_ : Dict = evaluation_loop(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
accelerator.print('''resumed checkpoint performance:''', SCREAMING_SNAKE_CASE__ )
accelerator.print('''resumed checkpoint\'s scheduler\'s lr:''', lr_scheduler.get_lr()[0] )
accelerator.print('''resumed optimizers\'s lr:''', optimizer.param_groups[0]['''lr'''] )
with open(os.path.join(args.output_dir, F"""state_{starting_epoch-1}.json""" ), '''r''' ) as f:
UpperCAmelCase_ : Optional[int] = json.load(SCREAMING_SNAKE_CASE__ )
assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed"
assert (
resumed_state["lr"] == lr_scheduler.get_lr()[0]
), "Scheduler learning rate mismatch, loading from checkpoint failed"
assert (
resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"]
), "Optimizer learning rate mismatch, loading from checkpoint failed"
assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed"
return
# Now we train the model
UpperCAmelCase_ : int = {}
for epoch in range(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ):
model.train()
for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase_ : Optional[int] = model(**SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Any = outputs.loss
UpperCAmelCase_ : Tuple = loss / gradient_accumulation_steps
accelerator.backward(SCREAMING_SNAKE_CASE__ )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
UpperCAmelCase_ : Tuple = F"""epoch_{epoch}"""
UpperCAmelCase_ : Optional[int] = os.path.join(args.output_dir, SCREAMING_SNAKE_CASE__ )
accelerator.save_state(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : int = evaluation_loop(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Optional[Any] = accuracy
UpperCAmelCase_ : Any = lr_scheduler.get_lr()[0]
UpperCAmelCase_ : List[str] = optimizer.param_groups[0]['''lr''']
UpperCAmelCase_ : Tuple = epoch
UpperCAmelCase_ : Dict = overall_step
accelerator.print(F"""epoch {epoch}:""", SCREAMING_SNAKE_CASE__ )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir, F"""state_{epoch}.json""" ), '''w''' ) as f:
json.dump(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
def lowerCamelCase_ ( ) -> List[str]:
UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' )
parser.add_argument(
'''--model_name_or_path''', type=SCREAMING_SNAKE_CASE__, default='''bert-base-cased''', help='''Path to pretrained model or model identifier from huggingface.co/models.''', required=SCREAMING_SNAKE_CASE__, )
parser.add_argument(
'''--output_dir''', type=SCREAMING_SNAKE_CASE__, default='''.''', help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''', )
parser.add_argument(
'''--resume_from_checkpoint''', type=SCREAMING_SNAKE_CASE__, default=SCREAMING_SNAKE_CASE__, help='''If the training should continue from a checkpoint folder.''', )
parser.add_argument(
'''--partial_train_epoch''', type=SCREAMING_SNAKE_CASE__, default=SCREAMING_SNAKE_CASE__, help='''If passed, the training will stop after this number of epochs.''', )
parser.add_argument(
'''--num_epochs''', type=SCREAMING_SNAKE_CASE__, default=2, help='''Number of train epochs.''', )
UpperCAmelCase_ : Optional[int] = parser.parse_args()
UpperCAmelCase_ : List[Any] = {'''lr''': 2E-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16}
training_function(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
main()
| 709
|
'''simple docstring'''
from typing import List, Optional, Union
import numpy as np
import PIL.Image
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import rescale, resize, to_channel_dimension_format
from ...image_utils import (
ChannelDimension,
PILImageResampling,
get_image_size,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
snake_case_ : Union[str, Any] = logging.get_logger(__name__)
class __a (lowerCamelCase ):
__a : Tuple = ["pixel_values"]
def __init__( self : List[Any] , __magic_name__ : bool = True , __magic_name__ : int = 32 , __magic_name__ : Union[str, Any]=PILImageResampling.BILINEAR , __magic_name__ : bool = True , **__magic_name__ : List[str] , ) -> None:
"""simple docstring"""
UpperCAmelCase_ : int = do_resize
UpperCAmelCase_ : Tuple = do_rescale
UpperCAmelCase_ : List[Any] = size_divisor
UpperCAmelCase_ : Any = resample
super().__init__(**__magic_name__ )
def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : np.ndarray , __magic_name__ : int , __magic_name__ : str , __magic_name__ : Optional[ChannelDimension] = None , **__magic_name__ : Tuple ) -> np.ndarray:
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : List[str] = get_image_size(__magic_name__ )
# Rounds the height and width down to the closest multiple of size_divisor
UpperCAmelCase_ : Dict = height // size_divisor * size_divisor
UpperCAmelCase_ : Dict = width // size_divisor * size_divisor
UpperCAmelCase_ : Any = resize(__magic_name__ , (new_h, new_w) , resample=__magic_name__ , data_format=__magic_name__ , **__magic_name__ )
return image
def UpperCAmelCase__ ( self : int , __magic_name__ : np.ndarray , __magic_name__ : float , __magic_name__ : Optional[ChannelDimension] = None , **__magic_name__ : Optional[Any] ) -> np.ndarray:
"""simple docstring"""
return rescale(image=__magic_name__ , scale=__magic_name__ , data_format=__magic_name__ , **__magic_name__ )
def UpperCAmelCase__ ( self : str , __magic_name__ : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[int] = None , __magic_name__ : Any=None , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[Union[TensorType, str]] = None , __magic_name__ : ChannelDimension = ChannelDimension.FIRST , **__magic_name__ : Tuple , ) -> BatchFeature:
"""simple docstring"""
UpperCAmelCase_ : Dict = do_resize if do_resize is not None else self.do_resize
UpperCAmelCase_ : str = do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase_ : Any = size_divisor if size_divisor is not None else self.size_divisor
UpperCAmelCase_ : Dict = resample if resample is not None else self.resample
if do_resize and size_divisor is None:
raise ValueError('''size_divisor is required for resizing''' )
UpperCAmelCase_ : Optional[int] = make_list_of_images(__magic_name__ )
if not valid_images(__magic_name__ ):
raise ValueError('''Invalid image(s)''' )
# All transformations expect numpy arrays.
UpperCAmelCase_ : List[str] = [to_numpy_array(__magic_name__ ) for img in images]
if do_resize:
UpperCAmelCase_ : str = [self.resize(__magic_name__ , size_divisor=__magic_name__ , resample=__magic_name__ ) for image in images]
if do_rescale:
UpperCAmelCase_ : Tuple = [self.rescale(__magic_name__ , scale=1 / 2_55 ) for image in images]
UpperCAmelCase_ : Union[str, Any] = [to_channel_dimension_format(__magic_name__ , __magic_name__ ) for image in images]
UpperCAmelCase_ : int = {'''pixel_values''': images}
return BatchFeature(data=__magic_name__ , tensor_type=__magic_name__ )
| 644
| 0
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
snake_case_ = {"configuration_plbart": ["PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP", "PLBartConfig"]}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ = ["PLBartTokenizer"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ = [
"PLBART_PRETRAINED_MODEL_ARCHIVE_LIST",
"PLBartForCausalLM",
"PLBartForConditionalGeneration",
"PLBartForSequenceClassification",
"PLBartModel",
"PLBartPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_plbart import PLBartTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_plbart import (
PLBART_PRETRAINED_MODEL_ARCHIVE_LIST,
PLBartForCausalLM,
PLBartForConditionalGeneration,
PLBartForSequenceClassification,
PLBartModel,
PLBartPreTrainedModel,
)
else:
import sys
snake_case_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
| 710
|
'''simple docstring'''
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int = 10, SCREAMING_SNAKE_CASE__ : int = 22 ) -> int:
UpperCAmelCase_ : Optional[int] = range(1, SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : List[Any] = range(1, SCREAMING_SNAKE_CASE__ )
return sum(
1 for power in powers for base in bases if len(str(base**power ) ) == power )
if __name__ == "__main__":
print(f'''{solution(10, 22) = }''')
| 644
| 0
|
'''simple docstring'''
import torch
from diffusers import StableDiffusionPipeline
snake_case_ : int = "path-to-your-trained-model"
snake_case_ : Optional[Any] = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to("cuda")
snake_case_ : int = "A photo of sks dog in a bucket"
snake_case_ : Optional[Any] = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0]
image.save("dog-bucket.png")
| 711
|
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
import torch
from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor
from ..utils import requires_backends
from .base import PipelineTool
if TYPE_CHECKING:
from PIL import Image
class __a (lowerCamelCase ):
__a : int = "dandelin/vilt-b32-finetuned-vqa"
__a : Any = (
"This is a tool that answers a question about an image. It takes an input named `image` which should be the "
"image containing the information, as well as a `question` which should be the question in English. It "
"returns a text that is the answer to the question."
)
__a : Any = "image_qa"
__a : str = AutoProcessor
__a : Any = AutoModelForVisualQuestionAnswering
__a : List[Any] = ["image", "text"]
__a : int = ["text"]
def __init__( self : Tuple , *__magic_name__ : Any , **__magic_name__ : Any ) -> Tuple:
"""simple docstring"""
requires_backends(self , ['''vision'''] )
super().__init__(*__magic_name__ , **__magic_name__ )
def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : "Image" , __magic_name__ : str ) -> Tuple:
"""simple docstring"""
return self.pre_processor(__magic_name__ , __magic_name__ , return_tensors='''pt''' )
def UpperCAmelCase__ ( self : Any , __magic_name__ : List[str] ) -> Optional[Any]:
"""simple docstring"""
with torch.no_grad():
return self.model(**__magic_name__ ).logits
def UpperCAmelCase__ ( self : int , __magic_name__ : int ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Dict = outputs.argmax(-1 ).item()
return self.model.config.idalabel[idx]
| 644
| 0
|
'''simple docstring'''
import json
import os
from functools import lru_cache
from typing import TYPE_CHECKING, List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
snake_case_ : Optional[Any] = logging.get_logger(__name__)
snake_case_ : str = {
"vocab_file": "vocab.json",
"merges_file": "merges.txt",
"tokenizer_config_file": "tokenizer_config.json",
}
snake_case_ : Any = {
"vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"},
"merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"},
"tokenizer_config_file": {
"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json"
},
}
snake_case_ : List[Any] = {"facebook/blenderbot-3B": 1_28}
@lru_cache()
# Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode
def lowerCamelCase_ ( ) -> List[Any]:
UpperCAmelCase_ : Any = (
list(range(ord('''!''' ), ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ), ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ), ord('''ÿ''' ) + 1 ) )
)
UpperCAmelCase_ : Optional[int] = bs[:]
UpperCAmelCase_ : List[Any] = 0
for b in range(2**8 ):
if b not in bs:
bs.append(SCREAMING_SNAKE_CASE__ )
cs.append(2**8 + n )
n += 1
UpperCAmelCase_ : Dict = [chr(SCREAMING_SNAKE_CASE__ ) for n in cs]
return dict(zip(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) )
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Any ) -> str:
UpperCAmelCase_ : List[Any] = set()
UpperCAmelCase_ : Any = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
UpperCAmelCase_ : Optional[int] = char
return pairs
class __a (lowerCamelCase ):
__a : List[Any] = VOCAB_FILES_NAMES
__a : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP
__a : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__a : List[Any] = ["input_ids", "attention_mask"]
def __init__( self : int , __magic_name__ : List[str] , __magic_name__ : Any , __magic_name__ : str="replace" , __magic_name__ : Optional[Any]="<s>" , __magic_name__ : List[Any]="</s>" , __magic_name__ : Any="</s>" , __magic_name__ : List[str]="<s>" , __magic_name__ : Union[str, Any]="<unk>" , __magic_name__ : List[str]="<pad>" , __magic_name__ : str="<mask>" , __magic_name__ : Any=False , **__magic_name__ : Tuple , ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : int = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else bos_token
UpperCAmelCase_ : int = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else eos_token
UpperCAmelCase_ : str = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else sep_token
UpperCAmelCase_ : Tuple = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else cls_token
UpperCAmelCase_ : Optional[int] = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else unk_token
UpperCAmelCase_ : Dict = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
UpperCAmelCase_ : Dict = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else mask_token
super().__init__(
errors=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , unk_token=__magic_name__ , sep_token=__magic_name__ , cls_token=__magic_name__ , pad_token=__magic_name__ , mask_token=__magic_name__ , add_prefix_space=__magic_name__ , **__magic_name__ , )
with open(__magic_name__ , encoding='''utf-8''' ) as vocab_handle:
UpperCAmelCase_ : Dict = json.load(__magic_name__ )
UpperCAmelCase_ : List[Any] = {v: k for k, v in self.encoder.items()}
UpperCAmelCase_ : Any = errors # how to handle errors in decoding
UpperCAmelCase_ : Optional[int] = bytes_to_unicode()
UpperCAmelCase_ : List[Any] = {v: k for k, v in self.byte_encoder.items()}
with open(__magic_name__ , encoding='''utf-8''' ) as merges_handle:
UpperCAmelCase_ : str = merges_handle.read().split('''\n''' )[1:-1]
UpperCAmelCase_ : List[Any] = [tuple(merge.split() ) for merge in bpe_merges]
UpperCAmelCase_ : Tuple = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) )
UpperCAmelCase_ : List[str] = {}
UpperCAmelCase_ : Union[str, Any] = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
UpperCAmelCase_ : Any = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' )
@property
# Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot
def UpperCAmelCase__ ( self : Optional[Any] ) -> str:
"""simple docstring"""
return len(self.encoder )
def UpperCAmelCase__ ( self : Dict ) -> Dict:
"""simple docstring"""
return dict(self.encoder , **self.added_tokens_encoder )
def UpperCAmelCase__ ( self : int , __magic_name__ : List[str] ) -> str:
"""simple docstring"""
if token in self.cache:
return self.cache[token]
UpperCAmelCase_ : List[Any] = tuple(__magic_name__ )
UpperCAmelCase_ : int = get_pairs(__magic_name__ )
if not pairs:
return token
while True:
UpperCAmelCase_ : Any = min(__magic_name__ , key=lambda __magic_name__ : self.bpe_ranks.get(__magic_name__ , float('''inf''' ) ) )
if bigram not in self.bpe_ranks:
break
UpperCAmelCase_ : Optional[int] = bigram
UpperCAmelCase_ : int = []
UpperCAmelCase_ : List[str] = 0
while i < len(__magic_name__ ):
try:
UpperCAmelCase_ : Any = word.index(__magic_name__ , __magic_name__ )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
UpperCAmelCase_ : Optional[int] = j
if word[i] == first and i < len(__magic_name__ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
UpperCAmelCase_ : Union[str, Any] = tuple(__magic_name__ )
UpperCAmelCase_ : List[Any] = new_word
if len(__magic_name__ ) == 1:
break
else:
UpperCAmelCase_ : Any = get_pairs(__magic_name__ )
UpperCAmelCase_ : Optional[int] = ''' '''.join(__magic_name__ )
UpperCAmelCase_ : Union[str, Any] = word
return word
def UpperCAmelCase__ ( self : int , __magic_name__ : List[Any] ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Any = []
for token in re.findall(self.pat , __magic_name__ ):
UpperCAmelCase_ : Tuple = ''''''.join(
self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__magic_name__ ).split(''' ''' ) )
return bpe_tokens
def UpperCAmelCase__ ( self : str , __magic_name__ : str ) -> str:
"""simple docstring"""
return self.encoder.get(__magic_name__ , self.encoder.get(self.unk_token ) )
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : List[Any] ) -> List[Any]:
"""simple docstring"""
return self.decoder.get(__magic_name__ )
def UpperCAmelCase__ ( self : int , __magic_name__ : Tuple ) -> str:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = ''''''.join(__magic_name__ )
UpperCAmelCase_ : Tuple = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors )
return text
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
if not os.path.isdir(__magic_name__ ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
UpperCAmelCase_ : List[Any] = os.path.join(
__magic_name__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
UpperCAmelCase_ : Tuple = os.path.join(
__magic_name__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] )
with open(__magic_name__ , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=__magic_name__ , ensure_ascii=__magic_name__ ) + '''\n''' )
UpperCAmelCase_ : int = 0
with open(__magic_name__ , '''w''' , encoding='''utf-8''' ) as writer:
writer.write('''#version: 0.2\n''' )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __magic_name__ : kv[1] ):
if index != token_index:
logger.warning(
F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."""
''' Please check that the tokenizer is not corrupted!''' )
UpperCAmelCase_ : Optional[int] = token_index
writer.write(''' '''.join(__magic_name__ ) + '''\n''' )
index += 1
return vocab_file, merge_file
def UpperCAmelCase__ ( self : str , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None , __magic_name__ : bool = False ) -> List[int]:
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__magic_name__ , token_ids_a=__magic_name__ , already_has_special_tokens=__magic_name__ )
if token_ids_a is None:
return [1] + ([0] * len(__magic_name__ )) + [1]
return [1] + ([0] * len(__magic_name__ )) + [1, 1] + ([0] * len(__magic_name__ )) + [1]
def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
UpperCAmelCase_ : Any = [self.sep_token_id]
UpperCAmelCase_ : Optional[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : List[Any] , __magic_name__ : str=False , **__magic_name__ : Optional[Any] ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = kwargs.pop('''add_prefix_space''' , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(__magic_name__ ) > 0 and not text[0].isspace()):
UpperCAmelCase_ : List[str] = ''' ''' + text
return (text, kwargs)
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[Any]:
"""simple docstring"""
return token_ids_a + [self.eos_token_id]
def UpperCAmelCase__ ( self : Dict , __magic_name__ : "Conversation" ) -> List[int]:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = []
for is_user, text in conversation.iter_texts():
if is_user:
# We need to space prefix as it's being done within blenderbot
inputs.append(''' ''' + text )
else:
# Generated responses should contain them already.
inputs.append(__magic_name__ )
UpperCAmelCase_ : Optional[int] = ''' '''.join(__magic_name__ )
UpperCAmelCase_ : Union[str, Any] = self.encode(__magic_name__ )
if len(__magic_name__ ) > self.model_max_length:
UpperCAmelCase_ : Tuple = input_ids[-self.model_max_length :]
logger.warning(F"""Trimmed input from conversation as it was longer than {self.model_max_length} tokens.""" )
return input_ids
| 712
|
'''simple docstring'''
from collections.abc import Iterable
from typing import Any
class __a :
def __init__( self : Optional[Any] , __magic_name__ : int | None = None ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : List[str] = value
UpperCAmelCase_ : Node | None = None # Added in order to delete a node easier
UpperCAmelCase_ : Node | None = None
UpperCAmelCase_ : Node | None = None
def __repr__( self : List[str] ) -> str:
"""simple docstring"""
from pprint import pformat
if self.left is None and self.right is None:
return str(self.value )
return pformat({F"""{self.value}""": (self.left, self.right)} , indent=1 )
class __a :
def __init__( self : int , __magic_name__ : Node | None = None ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : str = root
def __str__( self : Any ) -> str:
"""simple docstring"""
return str(self.root )
def UpperCAmelCase__ ( self : Any , __magic_name__ : Node , __magic_name__ : Node | None ) -> None:
"""simple docstring"""
if new_children is not None: # reset its kids
UpperCAmelCase_ : Dict = node.parent
if node.parent is not None: # reset its parent
if self.is_right(__magic_name__ ): # If it is the right children
UpperCAmelCase_ : Optional[Any] = new_children
else:
UpperCAmelCase_ : Optional[int] = new_children
else:
UpperCAmelCase_ : List[str] = new_children
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Node ) -> bool:
"""simple docstring"""
if node.parent and node.parent.right:
return node == node.parent.right
return False
def UpperCAmelCase__ ( self : Union[str, Any] ) -> bool:
"""simple docstring"""
return self.root is None
def UpperCAmelCase__ ( self : Any , __magic_name__ : str ) -> None:
"""simple docstring"""
UpperCAmelCase_ : Tuple = Node(__magic_name__ ) # create a new Node
if self.empty(): # if Tree is empty
UpperCAmelCase_ : List[Any] = new_node # set its root
else: # Tree is not empty
UpperCAmelCase_ : str = self.root # from root
if parent_node is None:
return
while True: # While we don't get to a leaf
if value < parent_node.value: # We go left
if parent_node.left is None:
UpperCAmelCase_ : Union[str, Any] = new_node # We insert the new node in a leaf
break
else:
UpperCAmelCase_ : List[Any] = parent_node.left
else:
if parent_node.right is None:
UpperCAmelCase_ : List[Any] = new_node
break
else:
UpperCAmelCase_ : Union[str, Any] = parent_node.right
UpperCAmelCase_ : Union[str, Any] = parent_node
def UpperCAmelCase__ ( self : Optional[Any] , *__magic_name__ : List[str] ) -> None:
"""simple docstring"""
for value in values:
self.__insert(__magic_name__ )
def UpperCAmelCase__ ( self : Dict , __magic_name__ : int ) -> Node | None:
"""simple docstring"""
if self.empty():
raise IndexError('''Warning: Tree is empty! please use another.''' )
else:
UpperCAmelCase_ : str = self.root
# use lazy evaluation here to avoid NoneType Attribute error
while node is not None and node.value is not value:
UpperCAmelCase_ : List[str] = node.left if value < node.value else node.right
return node
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : Node | None = None ) -> Node | None:
"""simple docstring"""
if node is None:
if self.root is None:
return None
UpperCAmelCase_ : Dict = self.root
if not self.empty():
while node.right is not None:
UpperCAmelCase_ : Any = node.right
return node
def UpperCAmelCase__ ( self : Dict , __magic_name__ : Node | None = None ) -> Node | None:
"""simple docstring"""
if node is None:
UpperCAmelCase_ : Optional[int] = self.root
if self.root is None:
return None
if not self.empty():
UpperCAmelCase_ : Union[str, Any] = self.root
while node.left is not None:
UpperCAmelCase_ : Dict = node.left
return node
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : int ) -> None:
"""simple docstring"""
UpperCAmelCase_ : List[str] = self.search(__magic_name__ ) # Look for the node with that label
if node is not None:
if node.left is None and node.right is None: # If it has no children
self.__reassign_nodes(__magic_name__ , __magic_name__ )
elif node.left is None: # Has only right children
self.__reassign_nodes(__magic_name__ , node.right )
elif node.right is None: # Has only left children
self.__reassign_nodes(__magic_name__ , node.left )
else:
UpperCAmelCase_ : List[str] = self.get_max(
node.left ) # Gets the max value of the left branch
self.remove(tmp_node.value ) # type: ignore
UpperCAmelCase_ : Optional[int] = (
tmp_node.value # type: ignore
) # Assigns the value to the node to delete and keep tree structure
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Node | None ) -> Iterable:
"""simple docstring"""
if node is not None:
yield node # Preorder Traversal
yield from self.preorder_traverse(node.left )
yield from self.preorder_traverse(node.right )
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : List[Any]=None ) -> Any:
"""simple docstring"""
if traversal_function is None:
return self.preorder_traverse(self.root )
else:
return traversal_function(self.root )
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : list , __magic_name__ : Node | None ) -> None:
"""simple docstring"""
if node:
self.inorder(__magic_name__ , node.left )
arr.append(node.value )
self.inorder(__magic_name__ , node.right )
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : int , __magic_name__ : Node ) -> int:
"""simple docstring"""
UpperCAmelCase_ : list[int] = []
self.inorder(__magic_name__ , __magic_name__ ) # append all values to list using inorder traversal
return arr[k - 1]
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Node | None ) -> list[Node]:
UpperCAmelCase_ : Any = []
if curr_node is not None:
UpperCAmelCase_ : Any = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node]
return node_list
def lowerCamelCase_ ( ) -> None:
UpperCAmelCase_ : str = (8, 3, 6, 1, 10, 14, 13, 4, 7)
UpperCAmelCase_ : Tuple = BinarySearchTree()
for i in testlist:
t.insert(SCREAMING_SNAKE_CASE__ )
# Prints all the elements of the list in order traversal
print(SCREAMING_SNAKE_CASE__ )
if t.search(6 ) is not None:
print('''The value 6 exists''' )
else:
print('''The value 6 doesn\'t exist''' )
if t.search(-1 ) is not None:
print('''The value -1 exists''' )
else:
print('''The value -1 doesn\'t exist''' )
if not t.empty():
print('''Max Value: ''', t.get_max().value ) # type: ignore
print('''Min Value: ''', t.get_min().value ) # type: ignore
for i in testlist:
t.remove(SCREAMING_SNAKE_CASE__ )
print(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
| 644
| 0
|
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from transformers.generation import DisjunctiveConstraint
@require_torch
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : List[str] = [[1, 2, 4], [1, 2, 3, 4]]
UpperCAmelCase_ : List[str] = DisjunctiveConstraint(__magic_name__ )
self.assertTrue(isinstance(dc.token_ids , __magic_name__ ) )
with self.assertRaises(__magic_name__ ):
DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) )
with self.assertRaises(__magic_name__ ):
DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] )
def UpperCAmelCase__ ( self : List[str] ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : Tuple = [[1, 2], [1, 2, 3, 4]]
with self.assertRaises(__magic_name__ ):
DisjunctiveConstraint(__magic_name__ ) # fails here
def UpperCAmelCase__ ( self : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = [[1, 2, 3], [1, 2, 4]]
UpperCAmelCase_ : List[str] = DisjunctiveConstraint(__magic_name__ )
UpperCAmelCase_ : List[Any] = dc.update(1 )
UpperCAmelCase_ : Dict = stepped is True and completed is False and reset is False
self.assertTrue(__magic_name__ )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
UpperCAmelCase_ : str = dc.update(2 )
UpperCAmelCase_ : Optional[Any] = stepped is True and completed is False and reset is False
self.assertTrue(__magic_name__ )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
UpperCAmelCase_ : List[Any] = dc.update(3 )
UpperCAmelCase_ : Dict = stepped is True and completed is True and reset is False
self.assertTrue(__magic_name__ )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 3] )
def UpperCAmelCase__ ( self : int ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : Any = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]]
UpperCAmelCase_ : Tuple = DisjunctiveConstraint(__magic_name__ )
UpperCAmelCase_ : List[Any] = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
UpperCAmelCase_ : Optional[int] = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
UpperCAmelCase_ : int = dc.update(4 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2, 4] )
UpperCAmelCase_ : int = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 4, 5] )
dc.reset()
UpperCAmelCase_ : List[Any] = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 3 )
self.assertTrue(dc.current_seq == [1] )
UpperCAmelCase_ : Optional[Any] = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 2 )
self.assertTrue(dc.current_seq == [1, 2] )
UpperCAmelCase_ : Optional[int] = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.remaining() == 0 )
self.assertTrue(dc.current_seq == [1, 2, 5] )
| 713
|
'''simple docstring'''
import sys
import turtle
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : tuple[float, float] ) -> tuple[float, float]:
return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : int, ) -> None:
my_pen.up()
my_pen.goto(vertexa[0], vertexa[1] )
my_pen.down()
my_pen.goto(vertexa[0], vertexa[1] )
my_pen.goto(vertexa[0], vertexa[1] )
my_pen.goto(vertexa[0], vertexa[1] )
if depth == 0:
return
triangle(SCREAMING_SNAKE_CASE__, get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), depth - 1 )
triangle(SCREAMING_SNAKE_CASE__, get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), depth - 1 )
triangle(SCREAMING_SNAKE_CASE__, get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), depth - 1 )
if __name__ == "__main__":
if len(sys.argv) != 2:
raise ValueError(
"Correct format for using this script: "
"python fractals.py <int:depth_for_fractal>"
)
snake_case_ : Any = turtle.Turtle()
my_pen.ht()
my_pen.speed(5)
my_pen.pencolor("red")
snake_case_ : Tuple = [(-1_75, -1_25), (0, 1_75), (1_75, -1_25)] # vertices of triangle
triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
| 644
| 0
|
import copy
import os
import cva
import numpy as np
from matplotlib import pyplot as plt
class __a :
def __init__( self : int ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = ''''''
UpperCAmelCase_ : Tuple = ''''''
UpperCAmelCase_ : int = []
UpperCAmelCase_ : str = 0
UpperCAmelCase_ : str = 2_56
UpperCAmelCase_ : Any = 0
UpperCAmelCase_ : List[str] = 0
UpperCAmelCase_ : Dict = 0
UpperCAmelCase_ : Tuple = 0
def UpperCAmelCase__ ( self : Any , __magic_name__ : Tuple ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : int = cva.imread(__magic_name__ , 0 )
UpperCAmelCase_ : str = copy.deepcopy(self.img )
UpperCAmelCase_ : int = plt.hist(self.img.ravel() , 2_56 , [0, 2_56] , label='''x''' )
UpperCAmelCase_ : Union[str, Any] = np.sum(__magic_name__ )
for i in range(len(__magic_name__ ) ):
UpperCAmelCase_ : Dict = x[i] / self.k
self.sk += prk
UpperCAmelCase_ : List[Any] = (self.L - 1) * self.sk
if self.rem != 0:
UpperCAmelCase_ : str = int(last % last )
UpperCAmelCase_ : Tuple = int(last + 1 if self.rem >= 0.5 else last )
self.last_list.append(__magic_name__ )
UpperCAmelCase_ : List[Any] = int(np.ma.count(self.img ) / self.img[1].size )
UpperCAmelCase_ : str = self.img[1].size
for i in range(self.number_of_cols ):
for j in range(self.number_of_rows ):
UpperCAmelCase_ : List[str] = self.img[j][i]
if num != self.last_list[num]:
UpperCAmelCase_ : Any = self.last_list[num]
cva.imwrite('''output_data/output.jpg''' , self.img )
def UpperCAmelCase__ ( self : List[Any] ) -> Optional[Any]:
"""simple docstring"""
plt.hist(self.img.ravel() , 2_56 , [0, 2_56] )
def UpperCAmelCase__ ( self : List[str] ) -> Any:
"""simple docstring"""
cva.imshow('''Output-Image''' , self.img )
cva.imshow('''Input-Image''' , self.original_image )
cva.waitKey(50_00 )
cva.destroyAllWindows()
if __name__ == "__main__":
snake_case_ : Dict = os.path.join(os.path.basename(__file__), "image_data/input.jpg")
snake_case_ : Tuple = ConstantStretch()
stretcher.stretch(file_path)
stretcher.plot_histogram()
stretcher.show_image()
| 714
|
'''simple docstring'''
import gc
import tempfile
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionPipeline
from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device
snake_case_ : List[str] = False
class __a (unittest.TestCase ):
pass
@nightly
@require_torch_gpu
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : int ) -> str:
"""simple docstring"""
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : List[Any] = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' )
UpperCAmelCase_ : Optional[int] = torch.manual_seed(0 )
UpperCAmelCase_ : Union[str, Any] = pipe.dual_guided(
prompt='''first prompt''' , image=__magic_name__ , text_to_image_strength=0.7_5 , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(__magic_name__ )
UpperCAmelCase_ : Optional[int] = VersatileDiffusionPipeline.from_pretrained(__magic_name__ , torch_dtype=torch.floataa )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : Any = generator.manual_seed(0 )
UpperCAmelCase_ : Dict = pipe.dual_guided(
prompt='''first prompt''' , image=__magic_name__ , text_to_image_strength=0.7_5 , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images
assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass"
def UpperCAmelCase__ ( self : str ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : str = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : Union[str, Any] = '''cyberpunk 2077'''
UpperCAmelCase_ : Union[str, Any] = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' )
UpperCAmelCase_ : Tuple = torch.manual_seed(0 )
UpperCAmelCase_ : Optional[Any] = pipe.dual_guided(
prompt=__magic_name__ , image=__magic_name__ , text_to_image_strength=0.7_5 , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' , ).images
UpperCAmelCase_ : List[str] = image[0, 2_53:2_56, 2_53:2_56, -1]
assert image.shape == (1, 5_12, 5_12, 3)
UpperCAmelCase_ : Union[str, Any] = np.array([0.1_4_4_8, 0.1_6_1_9, 0.1_7_4_1, 0.1_0_8_6, 0.1_1_4_7, 0.1_1_2_8, 0.1_1_9_9, 0.1_1_6_5, 0.1_0_0_1] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
UpperCAmelCase_ : Tuple = '''A painting of a squirrel eating a burger '''
UpperCAmelCase_ : Optional[int] = torch.manual_seed(0 )
UpperCAmelCase_ : List[Any] = pipe.text_to_image(
prompt=__magic_name__ , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' ).images
UpperCAmelCase_ : Tuple = image[0, 2_53:2_56, 2_53:2_56, -1]
assert image.shape == (1, 5_12, 5_12, 3)
UpperCAmelCase_ : Any = np.array([0.3_3_6_7, 0.3_1_6_9, 0.2_6_5_6, 0.3_8_7_0, 0.4_7_9_0, 0.3_7_9_6, 0.4_0_0_9, 0.4_8_7_8, 0.4_7_7_8] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
UpperCAmelCase_ : Tuple = pipe.image_variation(__magic_name__ , generator=__magic_name__ , output_type='''numpy''' ).images
UpperCAmelCase_ : Optional[Any] = image[0, 2_53:2_56, 2_53:2_56, -1]
assert image.shape == (1, 5_12, 5_12, 3)
UpperCAmelCase_ : List[str] = np.array([0.3_0_7_6, 0.3_1_2_3, 0.3_2_8_4, 0.3_7_8_2, 0.3_7_7_0, 0.3_8_9_4, 0.4_2_9_7, 0.4_3_3_1, 0.4_4_5_6] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
| 644
| 0
|
'''simple docstring'''
import unittest
from transformers import LiltConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
LiltForQuestionAnswering,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltModel,
)
from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST
class __a :
def __init__( self : int , __magic_name__ : Optional[Any] , __magic_name__ : Any=13 , __magic_name__ : Any=7 , __magic_name__ : Union[str, Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : str=True , __magic_name__ : Optional[int]=True , __magic_name__ : List[Any]=99 , __magic_name__ : int=24 , __magic_name__ : Optional[int]=2 , __magic_name__ : Tuple=6 , __magic_name__ : Union[str, Any]=37 , __magic_name__ : Optional[Any]="gelu" , __magic_name__ : Any=0.1 , __magic_name__ : str=0.1 , __magic_name__ : Tuple=5_12 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : Tuple=2 , __magic_name__ : Tuple=0.0_2 , __magic_name__ : Optional[Any]=3 , __magic_name__ : Optional[int]=None , __magic_name__ : Any=10_00 , ) -> str:
"""simple docstring"""
UpperCAmelCase_ : Tuple = parent
UpperCAmelCase_ : Optional[int] = batch_size
UpperCAmelCase_ : List[str] = seq_length
UpperCAmelCase_ : Dict = is_training
UpperCAmelCase_ : List[str] = use_input_mask
UpperCAmelCase_ : Any = use_token_type_ids
UpperCAmelCase_ : Any = use_labels
UpperCAmelCase_ : Any = vocab_size
UpperCAmelCase_ : Dict = hidden_size
UpperCAmelCase_ : Tuple = num_hidden_layers
UpperCAmelCase_ : Tuple = num_attention_heads
UpperCAmelCase_ : int = intermediate_size
UpperCAmelCase_ : Union[str, Any] = hidden_act
UpperCAmelCase_ : Optional[int] = hidden_dropout_prob
UpperCAmelCase_ : Optional[Any] = attention_probs_dropout_prob
UpperCAmelCase_ : Union[str, Any] = max_position_embeddings
UpperCAmelCase_ : int = type_vocab_size
UpperCAmelCase_ : List[Any] = type_sequence_label_size
UpperCAmelCase_ : int = initializer_range
UpperCAmelCase_ : Dict = num_labels
UpperCAmelCase_ : List[str] = scope
UpperCAmelCase_ : List[str] = range_bbox
def UpperCAmelCase__ ( self : Optional[int] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
UpperCAmelCase_ : List[str] = bbox[i, j, 3]
UpperCAmelCase_ : Dict = bbox[i, j, 1]
UpperCAmelCase_ : Optional[Any] = t
if bbox[i, j, 2] < bbox[i, j, 0]:
UpperCAmelCase_ : List[str] = bbox[i, j, 2]
UpperCAmelCase_ : Tuple = bbox[i, j, 0]
UpperCAmelCase_ : Union[str, Any] = t
UpperCAmelCase_ : int = None
if self.use_input_mask:
UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
UpperCAmelCase_ : Optional[int] = None
if self.use_token_type_ids:
UpperCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase_ : Dict = None
UpperCAmelCase_ : Tuple = None
if self.use_labels:
UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase_ : int = self.get_config()
return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels
def UpperCAmelCase__ ( self : Any ) -> List[Any]:
"""simple docstring"""
return LiltConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : str , __magic_name__ : Optional[Any] , __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : int , ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Any = LiltModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : Optional[Any] = model(__magic_name__ , bbox=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ )
UpperCAmelCase_ : List[Any] = model(__magic_name__ , bbox=__magic_name__ , token_type_ids=__magic_name__ )
UpperCAmelCase_ : Optional[int] = model(__magic_name__ , bbox=__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def UpperCAmelCase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[int] , __magic_name__ : List[Any] , ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : Any = self.num_labels
UpperCAmelCase_ : List[Any] = LiltForTokenClassification(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : List[Any] = model(
__magic_name__ , bbox=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCAmelCase__ ( self : Any , __magic_name__ : Optional[Any] , __magic_name__ : Dict , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : Any , ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : str = LiltForQuestionAnswering(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : Optional[Any] = model(
__magic_name__ , bbox=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = self.prepare_config_and_inputs()
(
UpperCAmelCase_
) : Optional[int] = config_and_inputs
UpperCAmelCase_ : Tuple = {
'''input_ids''': input_ids,
'''bbox''': bbox,
'''token_type_ids''': token_type_ids,
'''attention_mask''': input_mask,
}
return config, inputs_dict
@require_torch
class __a (lowerCamelCase , lowerCamelCase , lowerCamelCase , unittest.TestCase ):
__a : Tuple = (
(
LiltModel,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltForQuestionAnswering,
)
if is_torch_available()
else ()
)
__a : Any = (
{
"feature-extraction": LiltModel,
"question-answering": LiltForQuestionAnswering,
"text-classification": LiltForSequenceClassification,
"token-classification": LiltForTokenClassification,
"zero-shot": LiltForSequenceClassification,
}
if is_torch_available()
else {}
)
__a : Union[str, Any] = False
__a : int = False
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : int ) -> str:
"""simple docstring"""
return True
def UpperCAmelCase__ ( self : str ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = LiltModelTester(self )
UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 )
def UpperCAmelCase__ ( self : Union[str, Any] ) -> str:
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCAmelCase__ ( self : str ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__magic_name__ )
def UpperCAmelCase__ ( self : str ) -> str:
"""simple docstring"""
UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
UpperCAmelCase_ : Tuple = type
self.model_tester.create_and_check_model(*__magic_name__ )
def UpperCAmelCase__ ( self : Union[str, Any] ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__magic_name__ )
def UpperCAmelCase__ ( self : str ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__magic_name__ )
@slow
def UpperCAmelCase__ ( self : int ) -> Union[str, Any]:
"""simple docstring"""
for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase_ : Optional[int] = LiltModel.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
@require_torch
@slow
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : str = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(__magic_name__ )
UpperCAmelCase_ : Any = torch.tensor([[1, 2]] , device=__magic_name__ )
UpperCAmelCase_ : int = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=__magic_name__ )
# forward pass
with torch.no_grad():
UpperCAmelCase_ : Optional[int] = model(input_ids=__magic_name__ , bbox=__magic_name__ )
UpperCAmelCase_ : int = torch.Size([1, 2, 7_68] )
UpperCAmelCase_ : List[str] = torch.tensor(
[[-0.0_6_5_3, 0.0_9_5_0, -0.0_0_6_1], [-0.0_5_4_5, 0.0_9_2_6, -0.0_3_2_4]] , device=__magic_name__ , )
self.assertTrue(outputs.last_hidden_state.shape , __magic_name__ )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , __magic_name__ , atol=1E-3 ) )
| 715
|
'''simple docstring'''
snake_case_ : int = {
"Pillow": "Pillow",
"accelerate": "accelerate>=0.11.0",
"compel": "compel==0.1.8",
"black": "black~=23.1",
"datasets": "datasets",
"filelock": "filelock",
"flax": "flax>=0.4.1",
"hf-doc-builder": "hf-doc-builder>=0.3.0",
"huggingface-hub": "huggingface-hub>=0.13.2",
"requests-mock": "requests-mock==1.10.0",
"importlib_metadata": "importlib_metadata",
"invisible-watermark": "invisible-watermark",
"isort": "isort>=5.5.4",
"jax": "jax>=0.2.8,!=0.3.2",
"jaxlib": "jaxlib>=0.1.65",
"Jinja2": "Jinja2",
"k-diffusion": "k-diffusion>=0.0.12",
"torchsde": "torchsde",
"note_seq": "note_seq",
"librosa": "librosa",
"numpy": "numpy",
"omegaconf": "omegaconf",
"parameterized": "parameterized",
"protobuf": "protobuf>=3.20.3,<4",
"pytest": "pytest",
"pytest-timeout": "pytest-timeout",
"pytest-xdist": "pytest-xdist",
"ruff": "ruff>=0.0.241",
"safetensors": "safetensors",
"sentencepiece": "sentencepiece>=0.1.91,!=0.1.92",
"scipy": "scipy",
"onnx": "onnx",
"regex": "regex!=2019.12.17",
"requests": "requests",
"tensorboard": "tensorboard",
"torch": "torch>=1.4",
"torchvision": "torchvision",
"transformers": "transformers>=4.25.1",
"urllib3": "urllib3<=2.0.0",
}
| 644
| 0
|
'''simple docstring'''
import argparse
import gc
import json
import os
import shutil
import warnings
import torch
from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer
try:
from transformers import LlamaTokenizerFast
except ImportError as e:
warnings.warn(e)
warnings.warn(
"The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion"
)
snake_case_ : List[Any] = None
snake_case_ : Union[str, Any] = {
"7B": 1_10_08,
"13B": 1_38_24,
"30B": 1_79_20,
"65B": 2_20_16,
"70B": 2_86_72,
}
snake_case_ : Dict = {
"7B": 1,
"7Bf": 1,
"13B": 2,
"13Bf": 2,
"30B": 4,
"65B": 8,
"70B": 8,
"70Bf": 8,
}
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[str], SCREAMING_SNAKE_CASE__ : Tuple=1, SCREAMING_SNAKE_CASE__ : List[str]=256 ) -> Dict:
return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of)
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Any ) -> Union[str, Any]:
with open(SCREAMING_SNAKE_CASE__, '''r''' ) as f:
return json.load(SCREAMING_SNAKE_CASE__ )
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : Tuple ) -> List[Any]:
with open(SCREAMING_SNAKE_CASE__, '''w''' ) as f:
json.dump(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Dict, SCREAMING_SNAKE_CASE__ : Optional[Any], SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : List[Any]=True ) -> Dict:
os.makedirs(SCREAMING_SNAKE_CASE__, exist_ok=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : int = os.path.join(SCREAMING_SNAKE_CASE__, '''tmp''' )
os.makedirs(SCREAMING_SNAKE_CASE__, exist_ok=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Any = read_json(os.path.join(SCREAMING_SNAKE_CASE__, '''params.json''' ) )
UpperCAmelCase_ : Dict = NUM_SHARDS[model_size]
UpperCAmelCase_ : Any = params['''n_layers''']
UpperCAmelCase_ : Union[str, Any] = params['''n_heads''']
UpperCAmelCase_ : Optional[int] = n_heads // num_shards
UpperCAmelCase_ : List[str] = params['''dim''']
UpperCAmelCase_ : Tuple = dim // n_heads
UpperCAmelCase_ : Optional[Any] = 10000.0
UpperCAmelCase_ : Optional[int] = 1.0 / (base ** (torch.arange(0, SCREAMING_SNAKE_CASE__, 2 ).float() / dims_per_head))
if "n_kv_heads" in params:
UpperCAmelCase_ : Tuple = params['''n_kv_heads'''] # for GQA / MQA
UpperCAmelCase_ : str = n_heads_per_shard // num_key_value_heads
UpperCAmelCase_ : str = dim // num_key_value_heads
else: # compatibility with other checkpoints
UpperCAmelCase_ : List[Any] = n_heads
UpperCAmelCase_ : List[Any] = n_heads_per_shard
UpperCAmelCase_ : Tuple = dim
# permute for sliced rotary
def permute(SCREAMING_SNAKE_CASE__ : str, SCREAMING_SNAKE_CASE__ : int=n_heads, SCREAMING_SNAKE_CASE__ : List[Any]=dim, SCREAMING_SNAKE_CASE__ : Dict=dim ):
return w.view(SCREAMING_SNAKE_CASE__, dima // n_heads // 2, 2, SCREAMING_SNAKE_CASE__ ).transpose(1, 2 ).reshape(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
print(F"""Fetching all parameters from the checkpoint at {input_base_path}.""" )
# Load weights
if model_size == "7B":
# Not sharded
# (The sharded implementation would also work, but this is simpler.)
UpperCAmelCase_ : int = torch.load(os.path.join(SCREAMING_SNAKE_CASE__, '''consolidated.00.pth''' ), map_location='''cpu''' )
else:
# Sharded
UpperCAmelCase_ : List[str] = [
torch.load(os.path.join(SCREAMING_SNAKE_CASE__, F"""consolidated.{i:02d}.pth""" ), map_location='''cpu''' )
for i in range(SCREAMING_SNAKE_CASE__ )
]
UpperCAmelCase_ : Dict = 0
UpperCAmelCase_ : str = {'''weight_map''': {}}
for layer_i in range(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase_ : Any = F"""pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin"""
if model_size == "7B":
# Unsharded
UpperCAmelCase_ : Optional[int] = {
F"""model.layers.{layer_i}.self_attn.q_proj.weight""": permute(
loaded[F"""layers.{layer_i}.attention.wq.weight"""] ),
F"""model.layers.{layer_i}.self_attn.k_proj.weight""": permute(
loaded[F"""layers.{layer_i}.attention.wk.weight"""] ),
F"""model.layers.{layer_i}.self_attn.v_proj.weight""": loaded[F"""layers.{layer_i}.attention.wv.weight"""],
F"""model.layers.{layer_i}.self_attn.o_proj.weight""": loaded[F"""layers.{layer_i}.attention.wo.weight"""],
F"""model.layers.{layer_i}.mlp.gate_proj.weight""": loaded[F"""layers.{layer_i}.feed_forward.w1.weight"""],
F"""model.layers.{layer_i}.mlp.down_proj.weight""": loaded[F"""layers.{layer_i}.feed_forward.w2.weight"""],
F"""model.layers.{layer_i}.mlp.up_proj.weight""": loaded[F"""layers.{layer_i}.feed_forward.w3.weight"""],
F"""model.layers.{layer_i}.input_layernorm.weight""": loaded[F"""layers.{layer_i}.attention_norm.weight"""],
F"""model.layers.{layer_i}.post_attention_layernorm.weight""": loaded[F"""layers.{layer_i}.ffn_norm.weight"""],
}
else:
# Sharded
# Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share
# the same storage object, saving attention_norm and ffn_norm will save other weights too, which is
# redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned.
UpperCAmelCase_ : Optional[int] = {
F"""model.layers.{layer_i}.input_layernorm.weight""": loaded[0][
F"""layers.{layer_i}.attention_norm.weight"""
].clone(),
F"""model.layers.{layer_i}.post_attention_layernorm.weight""": loaded[0][
F"""layers.{layer_i}.ffn_norm.weight"""
].clone(),
}
UpperCAmelCase_ : Optional[int] = permute(
torch.cat(
[
loaded[i][F"""layers.{layer_i}.attention.wq.weight"""].view(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
for i in range(SCREAMING_SNAKE_CASE__ )
], dim=0, ).reshape(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) )
UpperCAmelCase_ : Any = permute(
torch.cat(
[
loaded[i][F"""layers.{layer_i}.attention.wk.weight"""].view(
SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
for i in range(SCREAMING_SNAKE_CASE__ )
], dim=0, ).reshape(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, )
UpperCAmelCase_ : Any = torch.cat(
[
loaded[i][F"""layers.{layer_i}.attention.wv.weight"""].view(
SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
for i in range(SCREAMING_SNAKE_CASE__ )
], dim=0, ).reshape(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Optional[Any] = torch.cat(
[loaded[i][F"""layers.{layer_i}.attention.wo.weight"""] for i in range(SCREAMING_SNAKE_CASE__ )], dim=1 )
UpperCAmelCase_ : str = torch.cat(
[loaded[i][F"""layers.{layer_i}.feed_forward.w1.weight"""] for i in range(SCREAMING_SNAKE_CASE__ )], dim=0 )
UpperCAmelCase_ : Tuple = torch.cat(
[loaded[i][F"""layers.{layer_i}.feed_forward.w2.weight"""] for i in range(SCREAMING_SNAKE_CASE__ )], dim=1 )
UpperCAmelCase_ : Tuple = torch.cat(
[loaded[i][F"""layers.{layer_i}.feed_forward.w3.weight"""] for i in range(SCREAMING_SNAKE_CASE__ )], dim=0 )
UpperCAmelCase_ : Optional[int] = inv_freq
for k, v in state_dict.items():
UpperCAmelCase_ : Dict = filename
param_count += v.numel()
torch.save(SCREAMING_SNAKE_CASE__, os.path.join(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) )
UpperCAmelCase_ : str = F"""pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin"""
if model_size == "7B":
# Unsharded
UpperCAmelCase_ : Optional[Any] = {
'''model.embed_tokens.weight''': loaded['''tok_embeddings.weight'''],
'''model.norm.weight''': loaded['''norm.weight'''],
'''lm_head.weight''': loaded['''output.weight'''],
}
else:
UpperCAmelCase_ : str = {
'''model.norm.weight''': loaded[0]['''norm.weight'''],
'''model.embed_tokens.weight''': torch.cat(
[loaded[i]['''tok_embeddings.weight'''] for i in range(SCREAMING_SNAKE_CASE__ )], dim=1 ),
'''lm_head.weight''': torch.cat([loaded[i]['''output.weight'''] for i in range(SCREAMING_SNAKE_CASE__ )], dim=0 ),
}
for k, v in state_dict.items():
UpperCAmelCase_ : List[str] = filename
param_count += v.numel()
torch.save(SCREAMING_SNAKE_CASE__, os.path.join(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) )
# Write configs
UpperCAmelCase_ : Any = {'''total_size''': param_count * 2}
write_json(SCREAMING_SNAKE_CASE__, os.path.join(SCREAMING_SNAKE_CASE__, '''pytorch_model.bin.index.json''' ) )
UpperCAmelCase_ : str = params['''ffn_dim_multiplier'''] if '''ffn_dim_multiplier''' in params else 1
UpperCAmelCase_ : List[Any] = params['''multiple_of'''] if '''multiple_of''' in params else 256
UpperCAmelCase_ : str = LlamaConfig(
hidden_size=SCREAMING_SNAKE_CASE__, intermediate_size=compute_intermediate_size(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), num_attention_heads=params['''n_heads'''], num_hidden_layers=params['''n_layers'''], rms_norm_eps=params['''norm_eps'''], num_key_value_heads=SCREAMING_SNAKE_CASE__, )
config.save_pretrained(SCREAMING_SNAKE_CASE__ )
# Make space so we can load the model properly now.
del state_dict
del loaded
gc.collect()
print('''Loading the checkpoint in a Llama model.''' )
UpperCAmelCase_ : int = LlamaForCausalLM.from_pretrained(SCREAMING_SNAKE_CASE__, torch_dtype=torch.floataa, low_cpu_mem_usage=SCREAMING_SNAKE_CASE__ )
# Avoid saving this as part of the config.
del model.config._name_or_path
print('''Saving in the Transformers format.''' )
model.save_pretrained(SCREAMING_SNAKE_CASE__, safe_serialization=SCREAMING_SNAKE_CASE__ )
shutil.rmtree(SCREAMING_SNAKE_CASE__ )
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Dict, SCREAMING_SNAKE_CASE__ : Any ) -> Optional[Any]:
# Initialize the tokenizer based on the `spm` model
UpperCAmelCase_ : Optional[int] = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast
print(F"""Saving a {tokenizer_class.__name__} to {tokenizer_path}.""" )
UpperCAmelCase_ : List[str] = tokenizer_class(SCREAMING_SNAKE_CASE__ )
tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ )
def lowerCamelCase_ ( ) -> str:
UpperCAmelCase_ : Optional[Any] = argparse.ArgumentParser()
parser.add_argument(
'''--input_dir''', help='''Location of LLaMA weights, which contains tokenizer.model and model folders''', )
parser.add_argument(
'''--model_size''', choices=['''7B''', '''7Bf''', '''13B''', '''13Bf''', '''30B''', '''65B''', '''70B''', '''70Bf''', '''tokenizer_only'''], )
parser.add_argument(
'''--output_dir''', help='''Location to write HF model and tokenizer''', )
parser.add_argument('''--safe_serialization''', type=SCREAMING_SNAKE_CASE__, help='''Whether or not to save using `safetensors`.''' )
UpperCAmelCase_ : Union[str, Any] = parser.parse_args()
if args.model_size != "tokenizer_only":
write_model(
model_path=args.output_dir, input_base_path=os.path.join(args.input_dir, args.model_size ), model_size=args.model_size, safe_serialization=args.safe_serialization, )
UpperCAmelCase_ : Any = os.path.join(args.input_dir, '''tokenizer.model''' )
write_tokenizer(args.output_dir, SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
main()
| 716
|
'''simple docstring'''
import unittest
import numpy as np
import torch
from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class __a (unittest.TestCase ):
@property
def UpperCAmelCase__ ( self : Dict ) -> str:
"""simple docstring"""
torch.manual_seed(0 )
UpperCAmelCase_ : Optional[Any] = UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , )
return model
def UpperCAmelCase__ ( self : Dict ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = self.dummy_uncond_unet
UpperCAmelCase_ : Dict = KarrasVeScheduler()
UpperCAmelCase_ : Union[str, Any] = KarrasVePipeline(unet=__magic_name__ , scheduler=__magic_name__ )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : Dict = torch.manual_seed(0 )
UpperCAmelCase_ : Optional[int] = pipe(num_inference_steps=2 , generator=__magic_name__ , output_type='''numpy''' ).images
UpperCAmelCase_ : Tuple = torch.manual_seed(0 )
UpperCAmelCase_ : str = pipe(num_inference_steps=2 , generator=__magic_name__ , output_type='''numpy''' , return_dict=__magic_name__ )[0]
UpperCAmelCase_ : Union[str, Any] = image[0, -3:, -3:, -1]
UpperCAmelCase_ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
UpperCAmelCase_ : Dict = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : int ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : List[str] = '''google/ncsnpp-celebahq-256'''
UpperCAmelCase_ : List[str] = UNetaDModel.from_pretrained(__magic_name__ )
UpperCAmelCase_ : List[Any] = KarrasVeScheduler()
UpperCAmelCase_ : Any = KarrasVePipeline(unet=__magic_name__ , scheduler=__magic_name__ )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : Dict = torch.manual_seed(0 )
UpperCAmelCase_ : Optional[Any] = pipe(num_inference_steps=20 , generator=__magic_name__ , output_type='''numpy''' ).images
UpperCAmelCase_ : Any = image[0, -3:, -3:, -1]
assert image.shape == (1, 2_56, 2_56, 3)
UpperCAmelCase_ : Optional[Any] = np.array([0.5_7_8, 0.5_8_1_1, 0.5_9_2_4, 0.5_8_0_9, 0.5_8_7, 0.5_8_8_6, 0.5_8_6_1, 0.5_8_0_2, 0.5_8_6] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 644
| 0
|
'''simple docstring'''
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : int ) -> int:
'''simple docstring'''
while b:
UpperCAmelCase_ : List[str] = b, a % b
return a
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : int ) -> int:
'''simple docstring'''
return a if b == 0 else euclidean_gcd_recursive(SCREAMING_SNAKE_CASE__, a % b )
def lowerCamelCase_ ( ) -> List[Any]:
'''simple docstring'''
print(F"""euclidean_gcd(3, 5) = {euclidean_gcd(3, 5 )}""" )
print(F"""euclidean_gcd(5, 3) = {euclidean_gcd(5, 3 )}""" )
print(F"""euclidean_gcd(1, 3) = {euclidean_gcd(1, 3 )}""" )
print(F"""euclidean_gcd(3, 6) = {euclidean_gcd(3, 6 )}""" )
print(F"""euclidean_gcd(6, 3) = {euclidean_gcd(6, 3 )}""" )
print(F"""euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3, 5 )}""" )
print(F"""euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5, 3 )}""" )
print(F"""euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1, 3 )}""" )
print(F"""euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3, 6 )}""" )
print(F"""euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6, 3 )}""" )
if __name__ == "__main__":
main()
| 717
|
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor
from .base import PipelineTool
class __a (lowerCamelCase ):
__a : List[Any] = "openai/whisper-base"
__a : Optional[Any] = (
"This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the "
"transcribed text."
)
__a : Any = "transcriber"
__a : str = WhisperProcessor
__a : List[Any] = WhisperForConditionalGeneration
__a : int = ["audio"]
__a : Optional[Any] = ["text"]
def UpperCAmelCase__ ( self : Dict , __magic_name__ : List[str] ) -> Optional[int]:
"""simple docstring"""
return self.pre_processor(__magic_name__ , return_tensors='''pt''' ).input_features
def UpperCAmelCase__ ( self : Dict , __magic_name__ : Dict ) -> Tuple:
"""simple docstring"""
return self.model.generate(inputs=__magic_name__ )
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Dict ) -> str:
"""simple docstring"""
return self.pre_processor.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ )[0]
| 644
| 0
|
'''simple docstring'''
from typing import List, Optional, Union
import numpy as np
import PIL.Image
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import rescale, resize, to_channel_dimension_format
from ...image_utils import (
ChannelDimension,
PILImageResampling,
get_image_size,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
snake_case_ : Union[str, Any] = logging.get_logger(__name__)
class __a (lowerCamelCase ):
__a : Tuple = ["pixel_values"]
def __init__( self : List[Any] , __magic_name__ : bool = True , __magic_name__ : int = 32 , __magic_name__ : Union[str, Any]=PILImageResampling.BILINEAR , __magic_name__ : bool = True , **__magic_name__ : List[str] , ) -> None:
"""simple docstring"""
UpperCAmelCase_ : int = do_resize
UpperCAmelCase_ : Tuple = do_rescale
UpperCAmelCase_ : List[Any] = size_divisor
UpperCAmelCase_ : Any = resample
super().__init__(**__magic_name__ )
def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : np.ndarray , __magic_name__ : int , __magic_name__ : str , __magic_name__ : Optional[ChannelDimension] = None , **__magic_name__ : Tuple ) -> np.ndarray:
"""simple docstring"""
UpperCAmelCase_ : List[str] = get_image_size(__magic_name__ )
# Rounds the height and width down to the closest multiple of size_divisor
UpperCAmelCase_ : Dict = height // size_divisor * size_divisor
UpperCAmelCase_ : Dict = width // size_divisor * size_divisor
UpperCAmelCase_ : Any = resize(__magic_name__ , (new_h, new_w) , resample=__magic_name__ , data_format=__magic_name__ , **__magic_name__ )
return image
def UpperCAmelCase__ ( self : int , __magic_name__ : np.ndarray , __magic_name__ : float , __magic_name__ : Optional[ChannelDimension] = None , **__magic_name__ : Optional[Any] ) -> np.ndarray:
"""simple docstring"""
return rescale(image=__magic_name__ , scale=__magic_name__ , data_format=__magic_name__ , **__magic_name__ )
def UpperCAmelCase__ ( self : str , __magic_name__ : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[int] = None , __magic_name__ : Any=None , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[Union[TensorType, str]] = None , __magic_name__ : ChannelDimension = ChannelDimension.FIRST , **__magic_name__ : Tuple , ) -> BatchFeature:
"""simple docstring"""
UpperCAmelCase_ : Dict = do_resize if do_resize is not None else self.do_resize
UpperCAmelCase_ : str = do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase_ : Any = size_divisor if size_divisor is not None else self.size_divisor
UpperCAmelCase_ : Dict = resample if resample is not None else self.resample
if do_resize and size_divisor is None:
raise ValueError('''size_divisor is required for resizing''' )
UpperCAmelCase_ : Optional[int] = make_list_of_images(__magic_name__ )
if not valid_images(__magic_name__ ):
raise ValueError('''Invalid image(s)''' )
# All transformations expect numpy arrays.
UpperCAmelCase_ : List[str] = [to_numpy_array(__magic_name__ ) for img in images]
if do_resize:
UpperCAmelCase_ : str = [self.resize(__magic_name__ , size_divisor=__magic_name__ , resample=__magic_name__ ) for image in images]
if do_rescale:
UpperCAmelCase_ : Tuple = [self.rescale(__magic_name__ , scale=1 / 2_55 ) for image in images]
UpperCAmelCase_ : Union[str, Any] = [to_channel_dimension_format(__magic_name__ , __magic_name__ ) for image in images]
UpperCAmelCase_ : int = {'''pixel_values''': images}
return BatchFeature(data=__magic_name__ , tensor_type=__magic_name__ )
| 718
|
'''simple docstring'''
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : int ) -> int:
return abs(SCREAMING_SNAKE_CASE__ ) if a == 0 else greatest_common_divisor(b % a, SCREAMING_SNAKE_CASE__ )
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : int ) -> int:
while y: # --> when y=0 then loop will terminate and return x as final GCD.
UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = y, x % y
return abs(SCREAMING_SNAKE_CASE__ )
def lowerCamelCase_ ( ) -> Optional[int]:
try:
UpperCAmelCase_ : Optional[Any] = input('''Enter two integers separated by comma (,): ''' ).split(''',''' )
UpperCAmelCase_ : Optional[int] = int(nums[0] )
UpperCAmelCase_ : List[Any] = int(nums[1] )
print(
F"""greatest_common_divisor({num_a}, {num_a}) = """
F"""{greatest_common_divisor(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )}""" )
print(F"""By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )}""" )
except (IndexError, UnboundLocalError, ValueError):
print('''Wrong input''' )
if __name__ == "__main__":
main()
| 644
| 0
|
'''simple docstring'''
from scipy.stats import pearsonr, spearmanr
from sklearn.metrics import fa_score, matthews_corrcoef
import datasets
snake_case_ : List[str] = "\\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n"
snake_case_ : Optional[Any] = "\\nGLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n"
snake_case_ : List[str] = "\nCompute GLUE evaluation metric associated to each GLUE dataset.\nArgs:\n predictions: list of predictions to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\nReturns: depending on the GLUE subset, one or several of:\n \"accuracy\": Accuracy\n \"f1\": F1 score\n \"pearson\": Pearson Correlation\n \"spearmanr\": Spearman Correlation\n \"matthews_correlation\": Matthew Correlation\nExamples:\n\n >>> glue_metric = datasets.load_metric('glue', 'sst2') # 'sst2' or any of [\"mnli\", \"mnli_mismatched\", \"mnli_matched\", \"qnli\", \"rte\", \"wnli\", \"hans\"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'mrpc') # 'mrpc' or 'qqp'\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0, 'f1': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'stsb')\n >>> references = [0., 1., 2., 3., 4., 5.]\n >>> predictions = [0., 1., 2., 3., 4., 5.]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print({\"pearson\": round(results[\"pearson\"], 2), \"spearmanr\": round(results[\"spearmanr\"], 2)})\n {'pearson': 1.0, 'spearmanr': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'cola')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'matthews_correlation': 1.0}\n"
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Dict, SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Optional[Any]:
return float((preds == labels).mean() )
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Union[str, Any], SCREAMING_SNAKE_CASE__ : Dict ) -> Optional[int]:
UpperCAmelCase_ : Union[str, Any] = simple_accuracy(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Union[str, Any] = float(fa_score(y_true=SCREAMING_SNAKE_CASE__, y_pred=SCREAMING_SNAKE_CASE__ ) )
return {
"accuracy": acc,
"f1": fa,
}
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[str], SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Tuple:
UpperCAmelCase_ : Optional[Any] = float(pearsonr(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )[0] )
UpperCAmelCase_ : Any = float(spearmanr(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )[0] )
return {
"pearson": pearson_corr,
"spearmanr": spearman_corr,
}
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __a (datasets.Metric ):
def UpperCAmelCase__ ( self : Optional[int] ) -> int:
"""simple docstring"""
if self.config_name not in [
"sst2",
"mnli",
"mnli_mismatched",
"mnli_matched",
"cola",
"stsb",
"mrpc",
"qqp",
"qnli",
"rte",
"wnli",
"hans",
]:
raise KeyError(
'''You should supply a configuration name selected in '''
'''["sst2", "mnli", "mnli_mismatched", "mnli_matched", '''
'''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' )
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ),
'''references''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ),
} ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' , )
def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] ) -> Any:
"""simple docstring"""
if self.config_name == "cola":
return {"matthews_correlation": matthews_corrcoef(__magic_name__ , __magic_name__ )}
elif self.config_name == "stsb":
return pearson_and_spearman(__magic_name__ , __magic_name__ )
elif self.config_name in ["mrpc", "qqp"]:
return acc_and_fa(__magic_name__ , __magic_name__ )
elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]:
return {"accuracy": simple_accuracy(__magic_name__ , __magic_name__ )}
else:
raise KeyError(
'''You should supply a configuration name selected in '''
'''["sst2", "mnli", "mnli_mismatched", "mnli_matched", '''
'''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' )
| 719
|
'''simple docstring'''
import unittest
from transformers import LiltConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
LiltForQuestionAnswering,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltModel,
)
from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST
class __a :
def __init__( self : int , __magic_name__ : Optional[Any] , __magic_name__ : Any=13 , __magic_name__ : Any=7 , __magic_name__ : Union[str, Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : str=True , __magic_name__ : Optional[int]=True , __magic_name__ : List[Any]=99 , __magic_name__ : int=24 , __magic_name__ : Optional[int]=2 , __magic_name__ : Tuple=6 , __magic_name__ : Union[str, Any]=37 , __magic_name__ : Optional[Any]="gelu" , __magic_name__ : Any=0.1 , __magic_name__ : str=0.1 , __magic_name__ : Tuple=5_12 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : Tuple=2 , __magic_name__ : Tuple=0.0_2 , __magic_name__ : Optional[Any]=3 , __magic_name__ : Optional[int]=None , __magic_name__ : Any=10_00 , ) -> str:
"""simple docstring"""
UpperCAmelCase_ : Tuple = parent
UpperCAmelCase_ : Optional[int] = batch_size
UpperCAmelCase_ : List[str] = seq_length
UpperCAmelCase_ : Dict = is_training
UpperCAmelCase_ : List[str] = use_input_mask
UpperCAmelCase_ : Any = use_token_type_ids
UpperCAmelCase_ : Any = use_labels
UpperCAmelCase_ : Any = vocab_size
UpperCAmelCase_ : Dict = hidden_size
UpperCAmelCase_ : Tuple = num_hidden_layers
UpperCAmelCase_ : Tuple = num_attention_heads
UpperCAmelCase_ : int = intermediate_size
UpperCAmelCase_ : Union[str, Any] = hidden_act
UpperCAmelCase_ : Optional[int] = hidden_dropout_prob
UpperCAmelCase_ : Optional[Any] = attention_probs_dropout_prob
UpperCAmelCase_ : Union[str, Any] = max_position_embeddings
UpperCAmelCase_ : int = type_vocab_size
UpperCAmelCase_ : List[Any] = type_sequence_label_size
UpperCAmelCase_ : int = initializer_range
UpperCAmelCase_ : Dict = num_labels
UpperCAmelCase_ : List[str] = scope
UpperCAmelCase_ : List[str] = range_bbox
def UpperCAmelCase__ ( self : Optional[int] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
UpperCAmelCase_ : List[str] = bbox[i, j, 3]
UpperCAmelCase_ : Dict = bbox[i, j, 1]
UpperCAmelCase_ : Optional[Any] = t
if bbox[i, j, 2] < bbox[i, j, 0]:
UpperCAmelCase_ : List[str] = bbox[i, j, 2]
UpperCAmelCase_ : Tuple = bbox[i, j, 0]
UpperCAmelCase_ : Union[str, Any] = t
UpperCAmelCase_ : int = None
if self.use_input_mask:
UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
UpperCAmelCase_ : Optional[int] = None
if self.use_token_type_ids:
UpperCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase_ : Dict = None
UpperCAmelCase_ : Tuple = None
if self.use_labels:
UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase_ : int = self.get_config()
return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels
def UpperCAmelCase__ ( self : Any ) -> List[Any]:
"""simple docstring"""
return LiltConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : str , __magic_name__ : Optional[Any] , __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : int , ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Any = LiltModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : Optional[Any] = model(__magic_name__ , bbox=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ )
UpperCAmelCase_ : List[Any] = model(__magic_name__ , bbox=__magic_name__ , token_type_ids=__magic_name__ )
UpperCAmelCase_ : Optional[int] = model(__magic_name__ , bbox=__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def UpperCAmelCase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[int] , __magic_name__ : List[Any] , ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : Any = self.num_labels
UpperCAmelCase_ : List[Any] = LiltForTokenClassification(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : List[Any] = model(
__magic_name__ , bbox=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCAmelCase__ ( self : Any , __magic_name__ : Optional[Any] , __magic_name__ : Dict , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : Any , ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : str = LiltForQuestionAnswering(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : Optional[Any] = model(
__magic_name__ , bbox=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = self.prepare_config_and_inputs()
(
(
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) ,
) : Optional[int] = config_and_inputs
UpperCAmelCase_ : Tuple = {
'''input_ids''': input_ids,
'''bbox''': bbox,
'''token_type_ids''': token_type_ids,
'''attention_mask''': input_mask,
}
return config, inputs_dict
@require_torch
class __a (lowerCamelCase , lowerCamelCase , lowerCamelCase , unittest.TestCase ):
__a : Tuple = (
(
LiltModel,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltForQuestionAnswering,
)
if is_torch_available()
else ()
)
__a : Any = (
{
"feature-extraction": LiltModel,
"question-answering": LiltForQuestionAnswering,
"text-classification": LiltForSequenceClassification,
"token-classification": LiltForTokenClassification,
"zero-shot": LiltForSequenceClassification,
}
if is_torch_available()
else {}
)
__a : Union[str, Any] = False
__a : int = False
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : int ) -> str:
"""simple docstring"""
return True
def UpperCAmelCase__ ( self : str ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = LiltModelTester(self )
UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 )
def UpperCAmelCase__ ( self : Union[str, Any] ) -> str:
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCAmelCase__ ( self : str ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__magic_name__ )
def UpperCAmelCase__ ( self : str ) -> str:
"""simple docstring"""
UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
UpperCAmelCase_ : Tuple = type
self.model_tester.create_and_check_model(*__magic_name__ )
def UpperCAmelCase__ ( self : Union[str, Any] ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__magic_name__ )
def UpperCAmelCase__ ( self : str ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__magic_name__ )
@slow
def UpperCAmelCase__ ( self : int ) -> Union[str, Any]:
"""simple docstring"""
for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase_ : Optional[int] = LiltModel.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
@require_torch
@slow
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : str = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(__magic_name__ )
UpperCAmelCase_ : Any = torch.tensor([[1, 2]] , device=__magic_name__ )
UpperCAmelCase_ : int = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=__magic_name__ )
# forward pass
with torch.no_grad():
UpperCAmelCase_ : Optional[int] = model(input_ids=__magic_name__ , bbox=__magic_name__ )
UpperCAmelCase_ : int = torch.Size([1, 2, 7_68] )
UpperCAmelCase_ : List[str] = torch.tensor(
[[-0.0_6_5_3, 0.0_9_5_0, -0.0_0_6_1], [-0.0_5_4_5, 0.0_9_2_6, -0.0_3_2_4]] , device=__magic_name__ , )
self.assertTrue(outputs.last_hidden_state.shape , __magic_name__ )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , __magic_name__ , atol=1E-3 ) )
| 644
| 0
|
import math
class __a :
def __init__( self : Any , __magic_name__ : str=0 ) -> Union[str, Any]: # a graph with Node 0,1,...,N-1
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = n
UpperCAmelCase_ : int = [
[math.inf for j in range(0 , __magic_name__ )] for i in range(0 , __magic_name__ )
] # adjacency matrix for weight
UpperCAmelCase_ : Dict = [
[math.inf for j in range(0 , __magic_name__ )] for i in range(0 , __magic_name__ )
] # dp[i][j] stores minimum distance from i to j
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : Tuple , __magic_name__ : List[str] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = w
def UpperCAmelCase__ ( self : str ) -> List[Any]:
"""simple docstring"""
for k in range(0 , self.n ):
for i in range(0 , self.n ):
for j in range(0 , self.n ):
UpperCAmelCase_ : Optional[Any] = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] )
def UpperCAmelCase__ ( self : Any , __magic_name__ : List[str] , __magic_name__ : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
return self.dp[u][v]
if __name__ == "__main__":
snake_case_ : Any = Graph(5)
graph.add_edge(0, 2, 9)
graph.add_edge(0, 4, 10)
graph.add_edge(1, 3, 5)
graph.add_edge(2, 3, 7)
graph.add_edge(3, 0, 10)
graph.add_edge(3, 1, 2)
graph.add_edge(3, 2, 1)
graph.add_edge(3, 4, 6)
graph.add_edge(4, 1, 3)
graph.add_edge(4, 2, 4)
graph.add_edge(4, 3, 9)
graph.floyd_warshall()
graph.show_min(1, 4)
graph.show_min(0, 3)
| 720
|
'''simple docstring'''
import io
import os
import unicodedata
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
snake_case_ : str = logging.get_logger(__name__)
snake_case_ : int = "▁"
snake_case_ : str = {"vocab_file": "vocab.txt", "sentencepiece_model_ckpt": "sentencepiece.bpe.model"}
snake_case_ : int = {
"sentencepiece_model_file": "sentencepiece.bpe.model",
"vocab_file": "vocab.txt",
}
snake_case_ : Optional[Any] = {
"vocab_file": {
"ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt",
"ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt",
},
"sentencepiece_model_file": {
"ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model",
"ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model",
},
}
snake_case_ : Dict = {
"ernie-m-base": 5_14,
"ernie-m-large": 5_14,
}
snake_case_ : Any = {
"ernie-m-base": {"do_lower_case": False},
"ernie-m-large": {"do_lower_case": False},
}
class __a (lowerCamelCase ):
__a : List[str] = ["input_ids"]
__a : Union[str, Any] = VOCAB_FILES_NAMES
__a : Tuple = PRETRAINED_INIT_CONFIGURATION
__a : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__a : Optional[int] = PRETRAINED_VOCAB_FILES_MAP
__a : Union[str, Any] = RESOURCE_FILES_NAMES
def __init__( self : Union[str, Any] , __magic_name__ : Dict , __magic_name__ : int=None , __magic_name__ : str=False , __magic_name__ : int="utf8" , __magic_name__ : Optional[int]="[UNK]" , __magic_name__ : Dict="[SEP]" , __magic_name__ : List[Any]="[PAD]" , __magic_name__ : str="[CLS]" , __magic_name__ : Optional[int]="[MASK]" , __magic_name__ : Optional[Dict[str, Any]] = None , **__magic_name__ : Union[str, Any] , ) -> None:
"""simple docstring"""
# Mask token behave like a normal word, i.e. include the space before it and
# is included in the raw text, there should be a match in a non-normalized sentence.
UpperCAmelCase_ : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=__magic_name__ , unk_token=__magic_name__ , sep_token=__magic_name__ , pad_token=__magic_name__ , cls_token=__magic_name__ , mask_token=__magic_name__ , vocab_file=__magic_name__ , encoding=__magic_name__ , sp_model_kwargs=self.sp_model_kwargs , **__magic_name__ , )
UpperCAmelCase_ : Optional[Any] = do_lower_case
UpperCAmelCase_ : List[str] = sentencepiece_model_ckpt
UpperCAmelCase_ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(__magic_name__ )
# to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning
if vocab_file is not None:
UpperCAmelCase_ : List[Any] = self.load_vocab(filepath=__magic_name__ )
else:
UpperCAmelCase_ : str = {self.sp_model.id_to_piece(__magic_name__ ): id for id in range(self.sp_model.get_piece_size() )}
UpperCAmelCase_ : int = {v: k for k, v in self.vocab.items()}
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Any ) -> Any:
"""simple docstring"""
if text is None:
return None
UpperCAmelCase_ : str = self.tokenize(__magic_name__ )
UpperCAmelCase_ , UpperCAmelCase_ : str = '''''', []
for i, ch in enumerate(__magic_name__ ):
if ch in self.SP_CHAR_MAPPING:
UpperCAmelCase_ : Optional[int] = self.SP_CHAR_MAPPING.get(__magic_name__ )
else:
UpperCAmelCase_ : Union[str, Any] = unicodedata.normalize('''NFKC''' , __magic_name__ )
if self.is_whitespace(__magic_name__ ):
continue
normalized_text += ch
char_mapping.extend([i] * len(__magic_name__ ) )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = normalized_text, [], 0
if self.do_lower_case:
UpperCAmelCase_ : Optional[int] = text.lower()
for token in split_tokens:
if token[:1] == "▁":
UpperCAmelCase_ : Tuple = token[1:]
UpperCAmelCase_ : int = text[offset:].index(__magic_name__ ) + offset
UpperCAmelCase_ : Optional[int] = start + len(__magic_name__ )
token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) )
UpperCAmelCase_ : int = end
return token_mapping
@property
def UpperCAmelCase__ ( self : Any ) -> Any:
"""simple docstring"""
return len(self.vocab )
def UpperCAmelCase__ ( self : List[Any] ) -> int:
"""simple docstring"""
return dict(self.vocab , **self.added_tokens_encoder )
def __getstate__( self : str ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = self.__dict__.copy()
UpperCAmelCase_ : Optional[Any] = None
return state
def __setstate__( self : str , __magic_name__ : Any ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : Dict = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
UpperCAmelCase_ : int = {}
UpperCAmelCase_ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.sentencepiece_model_ckpt )
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : Any ) -> List[str]:
"""simple docstring"""
return "".join((self.SP_CHAR_MAPPING.get(__magic_name__ , __magic_name__ ) for c in text) )
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Tuple , __magic_name__ : Any=False , __magic_name__ : List[str]=64 , __magic_name__ : List[str]=0.1 ) -> List[str]:
"""simple docstring"""
if self.sp_model_kwargs.get('''enable_sampling''' ) is True:
UpperCAmelCase_ : Dict = True
if self.sp_model_kwargs.get('''alpha''' ) is not None:
UpperCAmelCase_ : Union[str, Any] = self.sp_model_kwargs.get('''alpha''' )
if self.sp_model_kwargs.get('''nbest_size''' ) is not None:
UpperCAmelCase_ : Any = self.sp_model_kwargs.get('''nbest_size''' )
if not enable_sampling:
UpperCAmelCase_ : Dict = self.sp_model.EncodeAsPieces(__magic_name__ )
else:
UpperCAmelCase_ : Dict = self.sp_model.SampleEncodeAsPieces(__magic_name__ , __magic_name__ , __magic_name__ )
UpperCAmelCase_ : List[Any] = []
for pi, piece in enumerate(__magic_name__ ):
if piece == SPIECE_UNDERLINE:
if not pieces[pi + 1].startswith(__magic_name__ ) and pi != 0:
new_pieces.append(__magic_name__ )
continue
else:
continue
UpperCAmelCase_ : List[str] = 0
for i, chunk in enumerate(__magic_name__ ):
if chunk == SPIECE_UNDERLINE:
continue
if self.is_ch_char(__magic_name__ ) or self.is_punct(__magic_name__ ):
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
new_pieces.append(__magic_name__ )
UpperCAmelCase_ : List[Any] = i + 1
elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
UpperCAmelCase_ : List[str] = i
elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
UpperCAmelCase_ : str = i
if len(__magic_name__ ) > lst_i:
new_pieces.append(piece[lst_i:] )
return new_pieces
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Optional[int] ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = ''''''.join(__magic_name__ ).replace(__magic_name__ , ''' ''' ).strip()
return out_string
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Union[str, Any] ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : str = self.convert_ids_to_tokens(__magic_name__ )
UpperCAmelCase_ : Optional[Any] = ''''''.join(__magic_name__ ).replace(__magic_name__ , ''' ''' ).strip()
return out_string
def UpperCAmelCase__ ( self : str , __magic_name__ : Optional[Any] ) -> List[Any]:
"""simple docstring"""
return self.vocab.get(__magic_name__ , self.vocab.get(self.unk_token ) )
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
return self.reverse_vocab.get(__magic_name__ , self.unk_token )
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Any , __magic_name__ : Union[str, Any]=None ) -> Any:
"""simple docstring"""
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
UpperCAmelCase_ : Union[str, Any] = [self.cls_token_id]
UpperCAmelCase_ : List[Any] = [self.sep_token_id]
return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep
def UpperCAmelCase__ ( self : Any , __magic_name__ : Optional[Any] , __magic_name__ : List[str]=None ) -> int:
"""simple docstring"""
if offset_mapping_a is None:
return [(0, 0)] + offset_mapping_a + [(0, 0)]
return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)]
def UpperCAmelCase__ ( self : Dict , __magic_name__ : Optional[Any] , __magic_name__ : List[str]=None , __magic_name__ : Optional[Any]=False ) -> Optional[int]:
"""simple docstring"""
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(__magic_name__ )) + [1, 1] + ([0] * len(__magic_name__ )) + [1]
return [1] + ([0] * len(__magic_name__ )) + [1]
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
# called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method
if token_ids_a is None:
# [CLS] X [SEP]
return (len(__magic_name__ ) + 2) * [0]
# [CLS] A [SEP] [SEP] B [SEP]
return [0] * (len(__magic_name__ ) + 1) + [1] * (len(__magic_name__ ) + 3)
def UpperCAmelCase__ ( self : Dict , __magic_name__ : str ) -> Tuple:
"""simple docstring"""
if "\u4e00" <= char <= "\u9fff":
return True
return False
def UpperCAmelCase__ ( self : int , __magic_name__ : Optional[int] ) -> str:
"""simple docstring"""
if ("a" <= char <= "z") or ("A" <= char <= "Z"):
return True
return False
def UpperCAmelCase__ ( self : int , __magic_name__ : Optional[Any] ) -> Dict:
"""simple docstring"""
if char in ",;:.?!~,;:。?!《》【】":
return True
return False
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Any ) -> Union[str, Any]:
"""simple docstring"""
if char == " " or char == "\t" or char == "\n" or char == "\r":
return True
if len(__magic_name__ ) == 1:
UpperCAmelCase_ : Optional[Any] = unicodedata.category(__magic_name__ )
if cat == "Zs":
return True
return False
def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : Tuple ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = {}
with io.open(__magic_name__ , '''r''' , encoding='''utf-8''' ) as f:
for index, line in enumerate(__magic_name__ ):
UpperCAmelCase_ : List[Any] = line.rstrip('''\n''' )
UpperCAmelCase_ : Dict = int(__magic_name__ )
return token_to_idx
def UpperCAmelCase__ ( self : Dict , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = 0
if os.path.isdir(__magic_name__ ):
UpperCAmelCase_ : Any = os.path.join(
__magic_name__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
else:
UpperCAmelCase_ : List[str] = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory
with open(__magic_name__ , '''w''' , encoding='''utf-8''' ) as writer:
for token, token_index in sorted(self.vocab.items() , key=lambda __magic_name__ : kv[1] ):
if index != token_index:
logger.warning(
F"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."""
''' Please check that the vocabulary is not corrupted!''' )
UpperCAmelCase_ : Dict = token_index
writer.write(token + '''\n''' )
index += 1
UpperCAmelCase_ : Union[str, Any] = os.path.join(__magic_name__ , '''sentencepiece.bpe.model''' )
with open(__magic_name__ , '''wb''' ) as fi:
UpperCAmelCase_ : Optional[int] = self.sp_model.serialized_model_proto()
fi.write(__magic_name__ )
return (vocab_file,)
| 644
| 0
|
'''simple docstring'''
import os
import re
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
snake_case_ : Dict = logging.get_logger(__name__)
snake_case_ : Optional[Any] = {"vocab_file": "spiece.model"}
snake_case_ : Union[str, Any] = {
"vocab_file": {
"google/bigbird-roberta-base": "https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model",
"google/bigbird-roberta-large": (
"https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model"
),
"google/bigbird-base-trivia-itc": (
"https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model"
),
}
}
snake_case_ : Any = {
"google/bigbird-roberta-base": 40_96,
"google/bigbird-roberta-large": 40_96,
"google/bigbird-base-trivia-itc": 40_96,
}
class __a (lowerCamelCase ):
__a : int = VOCAB_FILES_NAMES
__a : Any = PRETRAINED_VOCAB_FILES_MAP
__a : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__a : Any = ["input_ids", "attention_mask"]
__a : List[int] = []
def __init__( self : Optional[int] , __magic_name__ : Optional[int] , __magic_name__ : List[Any]="<unk>" , __magic_name__ : int="<s>" , __magic_name__ : int="</s>" , __magic_name__ : Dict="<pad>" , __magic_name__ : Dict="[SEP]" , __magic_name__ : Dict="[MASK]" , __magic_name__ : List[str]="[CLS]" , __magic_name__ : Optional[Dict[str, Any]] = None , **__magic_name__ : Optional[int] , ) -> None:
"""simple docstring"""
UpperCAmelCase_ : Dict = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else bos_token
UpperCAmelCase_ : Optional[Any] = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else eos_token
UpperCAmelCase_ : int = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else unk_token
UpperCAmelCase_ : Any = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else pad_token
UpperCAmelCase_ : List[Any] = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else cls_token
UpperCAmelCase_ : Any = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else sep_token
# Mask token behave like a normal word, i.e. include the space before it
UpperCAmelCase_ : List[Any] = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else mask_token
UpperCAmelCase_ : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=__magic_name__ , eos_token=__magic_name__ , unk_token=__magic_name__ , pad_token=__magic_name__ , sep_token=__magic_name__ , mask_token=__magic_name__ , cls_token=__magic_name__ , sp_model_kwargs=self.sp_model_kwargs , **__magic_name__ , )
UpperCAmelCase_ : Optional[Any] = vocab_file
UpperCAmelCase_ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(__magic_name__ )
@property
def UpperCAmelCase__ ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
return self.sp_model.get_piece_size()
def UpperCAmelCase__ ( self : List[Any] ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = {self.convert_ids_to_tokens(__magic_name__ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Any ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : List[str] = self.__dict__.copy()
UpperCAmelCase_ : Optional[Any] = None
return state
def __setstate__( self : int , __magic_name__ : List[str] ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : int = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
UpperCAmelCase_ : Any = {}
UpperCAmelCase_ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def UpperCAmelCase__ ( self : Any , __magic_name__ : str ) -> List[str]:
"""simple docstring"""
return self.sp_model.encode(__magic_name__ , out_type=__magic_name__ )
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : List[str] ) -> Optional[int]:
"""simple docstring"""
return self.sp_model.piece_to_id(__magic_name__ )
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Optional[int] ) -> str:
"""simple docstring"""
UpperCAmelCase_ : str = self.sp_model.IdToPiece(__magic_name__ )
return token
def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : str ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : Any = []
UpperCAmelCase_ : List[str] = ''''''
UpperCAmelCase_ : Optional[int] = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(__magic_name__ ) + token
UpperCAmelCase_ : Tuple = True
UpperCAmelCase_ : List[str] = []
else:
current_sub_tokens.append(__magic_name__ )
UpperCAmelCase_ : Any = False
out_string += self.sp_model.decode(__magic_name__ )
return out_string.strip()
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : List[int] , __magic_name__ : bool = False , __magic_name__ : bool = None , __magic_name__ : bool = True , **__magic_name__ : List[Any] , ) -> str:
"""simple docstring"""
UpperCAmelCase_ : Tuple = kwargs.pop('''use_source_tokenizer''' , __magic_name__ )
UpperCAmelCase_ : str = self.convert_ids_to_tokens(__magic_name__ , skip_special_tokens=__magic_name__ )
# To avoid mixing byte-level and unicode for byte-level BPT
# we need to build string separately for added tokens and byte-level tokens
# cf. https://github.com/huggingface/transformers/issues/1133
UpperCAmelCase_ : int = []
UpperCAmelCase_ : Dict = []
for token in filtered_tokens:
if skip_special_tokens and token in self.all_special_ids:
continue
if token in self.added_tokens_encoder:
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(__magic_name__ ) )
UpperCAmelCase_ : List[Any] = []
sub_texts.append(__magic_name__ )
else:
current_sub_text.append(__magic_name__ )
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(__magic_name__ ) )
# Mimic the behavior of the Rust tokenizer:
# No space before [MASK] and [SEP]
if spaces_between_special_tokens:
UpperCAmelCase_ : List[str] = re.sub(R''' (\[(MASK|SEP)\])''' , R'''\1''' , ''' '''.join(__magic_name__ ) )
else:
UpperCAmelCase_ : Union[str, Any] = ''''''.join(__magic_name__ )
UpperCAmelCase_ : Optional[int] = (
clean_up_tokenization_spaces
if clean_up_tokenization_spaces is not None
else self.clean_up_tokenization_spaces
)
if clean_up_tokenization_spaces:
UpperCAmelCase_ : Any = self.clean_up_tokenization(__magic_name__ )
return clean_text
else:
return text
def UpperCAmelCase__ ( self : str , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
if not os.path.isdir(__magic_name__ ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
UpperCAmelCase_ : Tuple = os.path.join(
__magic_name__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__magic_name__ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __magic_name__ )
elif not os.path.isfile(self.vocab_file ):
with open(__magic_name__ , '''wb''' ) as fi:
UpperCAmelCase_ : int = self.sp_model.serialized_model_proto()
fi.write(__magic_name__ )
return (out_vocab_file,)
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
UpperCAmelCase_ : List[Any] = [self.cls_token_id]
UpperCAmelCase_ : List[str] = [self.sep_token_id]
return cls + token_ids_a + sep + token_ids_a + sep
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None , __magic_name__ : bool = False ) -> List[int]:
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__magic_name__ , token_ids_a=__magic_name__ , already_has_special_tokens=__magic_name__ )
if token_ids_a is None:
return [1] + ([0] * len(__magic_name__ )) + [1]
return [1] + ([0] * len(__magic_name__ )) + [1] + ([0] * len(__magic_name__ )) + [1]
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = [self.sep_token_id]
UpperCAmelCase_ : Dict = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
| 721
|
'''simple docstring'''
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int ) -> str:
if number > 0:
raise ValueError('''input must be a negative integer''' )
UpperCAmelCase_ : Union[str, Any] = len(bin(SCREAMING_SNAKE_CASE__ )[3:] )
UpperCAmelCase_ : Union[str, Any] = bin(abs(SCREAMING_SNAKE_CASE__ ) - (1 << binary_number_length) )[3:]
UpperCAmelCase_ : Optional[Any] = (
(
'''1'''
+ '''0''' * (binary_number_length - len(SCREAMING_SNAKE_CASE__ ))
+ twos_complement_number
)
if number < 0
else '''0'''
)
return "0b" + twos_complement_number
if __name__ == "__main__":
import doctest
doctest.testmod()
| 644
| 0
|
import argparse
import fairseq
import torch
from torch import nn
from transformers import (
MBartaaTokenizer,
MBartConfig,
MBartForCausalLM,
SpeechEncoderDecoderConfig,
SpeechEncoderDecoderModel,
WavaVecaConfig,
WavaVecaFeatureExtractor,
WavaVecaModel,
logging,
)
logging.set_verbosity_info()
snake_case_ : Optional[int] = logging.get_logger(__name__)
snake_case_ : Dict = {
"post_extract_proj": "feature_projection.projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.k_proj": "encoder.layers.*.attention.k_proj",
"self_attn.v_proj": "encoder.layers.*.attention.v_proj",
"self_attn.q_proj": "encoder.layers.*.attention.q_proj",
"self_attn.out_proj": "encoder.layers.*.attention.out_proj",
"self_attn_layer_norm": "encoder.layers.*.layer_norm",
"fc1": "encoder.layers.*.feed_forward.intermediate_dense",
"fc2": "encoder.layers.*.feed_forward.output_dense",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.layer_norm": "encoder.layer_norm",
"w2v_model.layer_norm": "feature_projection.layer_norm",
"quantizer.weight_proj": "quantizer.weight_proj",
"quantizer.vars": "quantizer.codevectors",
"project_q": "project_q",
"final_proj": "project_hid",
"w2v_encoder.proj": "lm_head",
"mask_emb": "masked_spec_embed",
}
snake_case_ : int = [
"lm_head",
"quantizer.weight_proj",
"quantizer.codevectors",
"project_q",
"project_hid",
]
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Union[str, Any], SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : Dict, SCREAMING_SNAKE_CASE__ : Optional[int], SCREAMING_SNAKE_CASE__ : List[Any] ) -> int:
for attribute in key.split('''.''' ):
UpperCAmelCase_ : str = getattr(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
if weight_type is not None:
UpperCAmelCase_ : List[str] = getattr(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ).shape
else:
UpperCAmelCase_ : str = hf_pointer.shape
assert hf_shape == value.shape, (
F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be"""
F""" {value.shape} for {full_name}"""
)
if weight_type == "weight":
UpperCAmelCase_ : List[Any] = value
elif weight_type == "weight_g":
UpperCAmelCase_ : str = value
elif weight_type == "weight_v":
UpperCAmelCase_ : Tuple = value
elif weight_type == "bias":
UpperCAmelCase_ : str = value
else:
UpperCAmelCase_ : Optional[int] = value
logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" )
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : str, SCREAMING_SNAKE_CASE__ : Tuple ) -> List[Any]:
UpperCAmelCase_ : List[Any] = []
UpperCAmelCase_ : Tuple = fairseq_model.state_dict()
UpperCAmelCase_ : Tuple = hf_model.feature_extractor
UpperCAmelCase_ : Union[str, Any] = hf_model.adapter
for name, value in fairseq_dict.items():
UpperCAmelCase_ : Union[str, Any] = False
if "conv_layers" in name:
load_conv_layer(
SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, hf_model.config.feat_extract_norm == '''group''', )
UpperCAmelCase_ : List[str] = True
elif any(x in name for x in ['''adaptor''', '''w2v_encoder.proj.''', '''w2v_proj_ln.'''] ):
load_adapter(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : List[Any] = True
else:
for key, mapped_key in MAPPING.items():
if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]:
UpperCAmelCase_ : Union[str, Any] = True
if "*" in mapped_key:
UpperCAmelCase_ : List[str] = name.split(SCREAMING_SNAKE_CASE__ )[0].split('''.''' )[-2]
UpperCAmelCase_ : Any = mapped_key.replace('''*''', SCREAMING_SNAKE_CASE__ )
if "weight_g" in name:
UpperCAmelCase_ : Dict = '''weight_g'''
elif "weight_v" in name:
UpperCAmelCase_ : List[Any] = '''weight_v'''
elif "bias" in name:
UpperCAmelCase_ : Dict = '''bias'''
elif "weight" in name:
UpperCAmelCase_ : Dict = '''weight'''
else:
UpperCAmelCase_ : Optional[int] = None
set_recursively(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
continue
if not is_used:
unused_weights.append(SCREAMING_SNAKE_CASE__ )
logger.warning(F"""Unused weights: {unused_weights}""" )
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Optional[Any], SCREAMING_SNAKE_CASE__ : Dict, SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : Optional[int], SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Dict:
UpperCAmelCase_ : Any = full_name.split('''conv_layers.''' )[-1]
UpperCAmelCase_ : Union[str, Any] = name.split('''.''' )
UpperCAmelCase_ : int = int(items[0] )
UpperCAmelCase_ : List[Any] = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found."""
)
UpperCAmelCase_ : Dict = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found."""
)
UpperCAmelCase_ : Dict = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was"""
" found."
)
UpperCAmelCase_ : List[Any] = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found."""
)
UpperCAmelCase_ : Dict = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(SCREAMING_SNAKE_CASE__ )
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Optional[Any], SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : Optional[Any], SCREAMING_SNAKE_CASE__ : Any ) -> Union[str, Any]:
UpperCAmelCase_ : Dict = full_name.split('''adaptor.''' )[-1]
UpperCAmelCase_ : Union[str, Any] = name.split('''.''' )
if items[1].isdigit():
UpperCAmelCase_ : Union[str, Any] = int(items[1] )
else:
UpperCAmelCase_ : Tuple = None
if "adaptor" not in full_name:
if "proj_ln" in full_name:
# has to be layer norm
if "bias" in name:
assert (
value.shape == adapter.proj_layer_norm.bias.data.shape
), F"""{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found."""
UpperCAmelCase_ : int = value
logger.info(F"""Adapter proj layer norm bias was initialized from {full_name}.""" )
if "weight" in name:
assert (
value.shape == adapter.proj_layer_norm.weight.data.shape
), F"""{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found."""
UpperCAmelCase_ : Optional[Any] = value
else:
# has to be projection layer
if "bias" in name:
assert (
value.shape == adapter.proj.bias.data.shape
), F"""{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found."""
UpperCAmelCase_ : List[str] = value
logger.info(F"""Adapter proj layer bias was initialized from {full_name}.""" )
if "weight" in name:
assert (
value.shape == adapter.proj.weight.data.shape
), F"""{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found."""
UpperCAmelCase_ : int = value
logger.info(F"""Adapter proj layer weight was initialized from {full_name}.""" )
elif isinstance(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ):
if "bias" in name:
assert (
value.shape == adapter.layers[layer_id].conv.bias.data.shape
), F"""{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found."""
UpperCAmelCase_ : Tuple = value
logger.info(F"""Adapter layer {layer_id} bias was initialized from {full_name}.""" )
elif "weight" in name:
assert (
value.shape == adapter.layers[layer_id].conv.weight.data.shape
), F"""{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found."""
UpperCAmelCase_ : List[Any] = value
logger.info(F"""Adapter layer {layer_id} bias was initialized from {full_name}.""" )
else:
unused_weights.append(SCREAMING_SNAKE_CASE__ )
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : str ) -> Dict:
UpperCAmelCase_ : Dict = emb.weight.shape
UpperCAmelCase_ : Any = nn.Linear(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, bias=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Optional[int] = emb.weight.data
return lin_layer
@torch.no_grad()
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : List[Any], SCREAMING_SNAKE_CASE__ : Union[str, Any], SCREAMING_SNAKE_CASE__ : Any, SCREAMING_SNAKE_CASE__ : Optional[Any], SCREAMING_SNAKE_CASE__ : Optional[Any], SCREAMING_SNAKE_CASE__ : Optional[Any], SCREAMING_SNAKE_CASE__ : List[str], SCREAMING_SNAKE_CASE__ : List[Any], SCREAMING_SNAKE_CASE__ : str, SCREAMING_SNAKE_CASE__ : int, ) -> Any:
UpperCAmelCase_ : Optional[Any] = WavaVecaConfig.from_pretrained(
SCREAMING_SNAKE_CASE__, add_adapter=SCREAMING_SNAKE_CASE__, adapter_stride=SCREAMING_SNAKE_CASE__, adapter_kernel_size=SCREAMING_SNAKE_CASE__, use_auth_token=SCREAMING_SNAKE_CASE__, output_hidden_size=SCREAMING_SNAKE_CASE__, )
UpperCAmelCase_ : Optional[Any] = MBartConfig.from_pretrained(SCREAMING_SNAKE_CASE__ )
# load model
UpperCAmelCase_ : int = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path], arg_overrides={
'''config_yaml''': config_yaml_path,
'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ),
'''w2v_path''': checkpoint_path,
'''load_pretrained_decoder_from''': None,
}, )
UpperCAmelCase_ : Any = model[0].eval()
# load feature extractor
UpperCAmelCase_ : List[str] = WavaVecaFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE__, use_auth_token=SCREAMING_SNAKE_CASE__ )
# set weights for wav2vec2 encoder
UpperCAmelCase_ : int = WavaVecaModel(SCREAMING_SNAKE_CASE__ )
recursively_load_weights_wavaveca(model.encoder, SCREAMING_SNAKE_CASE__ )
# load decoder weights
UpperCAmelCase_ : Union[str, Any] = MBartForCausalLM(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : List[Any] = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict(), strict=SCREAMING_SNAKE_CASE__ )
logger.warning(F"""The following keys are missing when loading the decoder weights: {missing_keys}""" )
logger.warning(F"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" )
UpperCAmelCase_ : int = SpeechEncoderDecoderModel(encoder=SCREAMING_SNAKE_CASE__, decoder=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : List[str] = False
UpperCAmelCase_ : int = MBartaaTokenizer(SCREAMING_SNAKE_CASE__ )
tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : List[str] = hf_wavavec.config.to_dict()
UpperCAmelCase_ : Tuple = tokenizer.pad_token_id
UpperCAmelCase_ : Optional[int] = tokenizer.bos_token_id
UpperCAmelCase_ : Optional[int] = tokenizer.eos_token_id
UpperCAmelCase_ : int = '''mbart50'''
UpperCAmelCase_ : List[str] = '''wav2vec2'''
UpperCAmelCase_ : Dict = tokenizer.eos_token_id
UpperCAmelCase_ : List[str] = 250004
UpperCAmelCase_ : List[str] = tokenizer.eos_token_id
UpperCAmelCase_ : Dict = SpeechEncoderDecoderConfig.from_dict(SCREAMING_SNAKE_CASE__ )
hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE__ )
feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
snake_case_ : int = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
parser.add_argument("--config_yaml_path", default=None, type=str, help="Path to yaml file of fine-tuned model")
parser.add_argument(
"--encoder_config_path",
default="facebook/wav2vec2-xls-r-1b",
type=str,
help="Path to hf encoder wav2vec2 checkpoint config",
)
parser.add_argument(
"--decoder_config_path",
default="facebook/mbart-large-50-one-to-many-mmt",
type=str,
help="Path to hf decoder checkpoint config",
)
parser.add_argument("--add_adapter", default=True, type=bool, help="whethere to add model adapter layers")
parser.add_argument("--adapter_stride", default=2, type=int, help="stride of adapter layers")
parser.add_argument("--adapter_kernel_size", default=3, type=int, help="kernel size of adapter layers")
parser.add_argument("--encoder_output_dim", default=10_24, type=int, help="encoder output dim")
parser.add_argument("--start_token_id", default=25_00_04, type=int, help="`decoder_start_token_id` of model config")
snake_case_ : int = parser.parse_args()
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.dict_path,
args.config_yaml_path,
encoder_config_path=args.encoder_config_path,
decoder_config_path=args.decoder_config_path,
add_adapter=args.add_adapter,
adapter_kernel_size=args.adapter_kernel_size,
adapter_stride=args.adapter_stride,
decoder_start_token_id=args.start_token_id,
encoder_output_dim=args.encoder_output_dim,
)
| 700
|
'''simple docstring'''
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from transformers.generation import DisjunctiveConstraint
@require_torch
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
# For consistency across different places the DisjunctiveConstraint is called,
# dc.token_ids is a list of integers. It is also initialized only by integers.
UpperCAmelCase_ : List[str] = [[1, 2, 4], [1, 2, 3, 4]]
UpperCAmelCase_ : List[str] = DisjunctiveConstraint(__magic_name__ )
self.assertTrue(isinstance(dc.token_ids , __magic_name__ ) )
with self.assertRaises(__magic_name__ ):
DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) )
with self.assertRaises(__magic_name__ ):
DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] )
def UpperCAmelCase__ ( self : List[str] ) -> Dict:
"""simple docstring"""
# We can't have constraints that are complete subsets of another. This leads to a preverse
# interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint?
# It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially
# fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm
# will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it).
UpperCAmelCase_ : Tuple = [[1, 2], [1, 2, 3, 4]]
with self.assertRaises(__magic_name__ ):
DisjunctiveConstraint(__magic_name__ ) # fails here
def UpperCAmelCase__ ( self : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = [[1, 2, 3], [1, 2, 4]]
UpperCAmelCase_ : List[str] = DisjunctiveConstraint(__magic_name__ )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = dc.update(1 )
UpperCAmelCase_ : Dict = stepped is True and completed is False and reset is False
self.assertTrue(__magic_name__ )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = dc.update(2 )
UpperCAmelCase_ : Optional[Any] = stepped is True and completed is False and reset is False
self.assertTrue(__magic_name__ )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = dc.update(3 )
UpperCAmelCase_ : Dict = stepped is True and completed is True and reset is False
self.assertTrue(__magic_name__ )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 3] )
def UpperCAmelCase__ ( self : int ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : Any = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]]
UpperCAmelCase_ : Tuple = DisjunctiveConstraint(__magic_name__ )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = dc.update(4 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2, 4] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 4, 5] )
dc.reset()
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 3 )
self.assertTrue(dc.current_seq == [1] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 2 )
self.assertTrue(dc.current_seq == [1, 2] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.remaining() == 0 )
self.assertTrue(dc.current_seq == [1, 2, 5] )
| 644
| 0
|
'''simple docstring'''
import os
from collections import deque
import torch
from torch.utils.data import Dataset
class __a (lowerCamelCase ):
def __init__( self : List[Any] , __magic_name__ : Any="" , __magic_name__ : Tuple="train" ) -> int:
"""simple docstring"""
assert os.path.isdir(__magic_name__ )
UpperCAmelCase_ : List[Any] = []
UpperCAmelCase_ : Union[str, Any] = os.listdir(__magic_name__ )
for story_filename in story_filenames_list:
if "summary" in story_filename:
continue
UpperCAmelCase_ : Dict = os.path.join(__magic_name__ , __magic_name__ )
if not os.path.isfile(__magic_name__ ):
continue
self.documents.append(__magic_name__ )
def __len__( self : List[str] ) -> Optional[Any]:
"""simple docstring"""
return len(self.documents )
def __getitem__( self : Union[str, Any] , __magic_name__ : Dict ) -> str:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = self.documents[idx]
UpperCAmelCase_ : str = document_path.split('''/''' )[-1]
with open(__magic_name__ , encoding='''utf-8''' ) as source:
UpperCAmelCase_ : str = source.read()
UpperCAmelCase_ : List[Any] = process_story(__magic_name__ )
return document_name, story_lines, summary_lines
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[Any]:
UpperCAmelCase_ : Tuple = list(filter(lambda SCREAMING_SNAKE_CASE__ : len(SCREAMING_SNAKE_CASE__ ) != 0, [line.strip() for line in raw_story.split('''\n''' )] ) )
# for some unknown reason some lines miss a period, add it
UpperCAmelCase_ : int = [_add_missing_period(SCREAMING_SNAKE_CASE__ ) for line in nonempty_lines]
# gather article lines
UpperCAmelCase_ : List[Any] = []
UpperCAmelCase_ : Union[str, Any] = deque(SCREAMING_SNAKE_CASE__ )
while True:
try:
UpperCAmelCase_ : List[Any] = lines.popleft()
if element.startswith('''@highlight''' ):
break
story_lines.append(SCREAMING_SNAKE_CASE__ )
except IndexError:
# if "@highlight" is absent from the file we pop
# all elements until there is None, raising an exception.
return story_lines, []
# gather summary lines
UpperCAmelCase_ : Optional[int] = list(filter(lambda SCREAMING_SNAKE_CASE__ : not t.startswith('''@highlight''' ), SCREAMING_SNAKE_CASE__ ) )
return story_lines, summary_lines
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> int:
UpperCAmelCase_ : Union[str, Any] = ['''.''', '''!''', '''?''', '''...''', '''\'''', '''`''', '''"''', '''\u2019''', '''\u2019''', ''')''']
if line.startswith('''@highlight''' ):
return line
if line[-1] in END_TOKENS:
return line
return line + "."
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Any, SCREAMING_SNAKE_CASE__ : Any, SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[Any]:
if len(SCREAMING_SNAKE_CASE__ ) > block_size:
return sequence[:block_size]
else:
sequence.extend([pad_token_id] * (block_size - len(SCREAMING_SNAKE_CASE__ )) )
return sequence
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : List[str] ) -> Optional[Any]:
UpperCAmelCase_ : Optional[Any] = torch.ones_like(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : str = sequence == pad_token_id
UpperCAmelCase_ : Tuple = 0
return mask
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Dict, SCREAMING_SNAKE_CASE__ : Dict, SCREAMING_SNAKE_CASE__ : str ) -> Dict:
UpperCAmelCase_ : Tuple = [tokenizer.encode(SCREAMING_SNAKE_CASE__ ) for line in story_lines]
UpperCAmelCase_ : Any = [token for sentence in story_lines_token_ids for token in sentence]
UpperCAmelCase_ : List[str] = [tokenizer.encode(SCREAMING_SNAKE_CASE__ ) for line in summary_lines]
UpperCAmelCase_ : str = [token for sentence in summary_lines_token_ids for token in sentence]
return story_token_ids, summary_token_ids
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> List[Any]:
UpperCAmelCase_ : Tuple = []
for sequence in batch:
UpperCAmelCase_ : Optional[int] = -1
UpperCAmelCase_ : Tuple = []
for s in sequence:
if s == separator_token_id:
sentence_num += 1
embeddings.append(sentence_num % 2 )
batch_embeddings.append(SCREAMING_SNAKE_CASE__ )
return torch.tensor(SCREAMING_SNAKE_CASE__ )
| 701
|
'''simple docstring'''
import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.layers import LSTM, Dense
from tensorflow.keras.models import Sequential
if __name__ == "__main__":
snake_case_ : List[Any] = pd.read_csv("sample_data.csv", header=None)
snake_case_ : Optional[Any] = df.shape[:1][0]
# If you're using some other dataset input the target column
snake_case_ : Any = df.iloc[:, 1:2]
snake_case_ : str = actual_data.values.reshape(len_data, 1)
snake_case_ : Optional[Any] = MinMaxScaler().fit_transform(actual_data)
snake_case_ : List[str] = 10
snake_case_ : Any = 5
snake_case_ : Any = 20
snake_case_ : Tuple = len_data - periods * look_back
snake_case_ : str = actual_data[:division]
snake_case_ : Optional[int] = actual_data[division - look_back :]
snake_case_ ,snake_case_ : Any = [], []
snake_case_ ,snake_case_ : Union[str, Any] = [], []
for i in range(0, len(train_data) - forward_days - look_back + 1):
train_x.append(train_data[i : i + look_back])
train_y.append(train_data[i + look_back : i + look_back + forward_days])
for i in range(0, len(test_data) - forward_days - look_back + 1):
test_x.append(test_data[i : i + look_back])
test_y.append(test_data[i + look_back : i + look_back + forward_days])
snake_case_ : Any = np.array(train_x)
snake_case_ : Optional[Any] = np.array(test_x)
snake_case_ : Optional[Any] = np.array([list(i.ravel()) for i in train_y])
snake_case_ : List[str] = np.array([list(i.ravel()) for i in test_y])
snake_case_ : List[Any] = Sequential()
model.add(LSTM(1_28, input_shape=(look_back, 1), return_sequences=True))
model.add(LSTM(64, input_shape=(1_28, 1)))
model.add(Dense(forward_days))
model.compile(loss="mean_squared_error", optimizer="adam")
snake_case_ : Dict = model.fit(
x_train, y_train, epochs=1_50, verbose=1, shuffle=True, batch_size=4
)
snake_case_ : Optional[Any] = model.predict(x_test)
| 644
| 0
|
'''simple docstring'''
import numpy as np
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Union[str, Any], SCREAMING_SNAKE_CASE__ : str, SCREAMING_SNAKE_CASE__ : List[Any], SCREAMING_SNAKE_CASE__ : Dict, SCREAMING_SNAKE_CASE__ : Any ) -> Optional[Any]:
UpperCAmelCase_ : str = int(np.ceil((x_end - xa) / h ) )
UpperCAmelCase_ : str = np.zeros((n + 1,) )
UpperCAmelCase_ : Tuple = ya
UpperCAmelCase_ : Optional[int] = xa
for k in range(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase_ : int = f(SCREAMING_SNAKE_CASE__, y[k] )
UpperCAmelCase_ : Optional[int] = f(x + 0.5 * h, y[k] + 0.5 * h * ka )
UpperCAmelCase_ : Optional[Any] = f(x + 0.5 * h, y[k] + 0.5 * h * ka )
UpperCAmelCase_ : int = f(x + h, y[k] + h * ka )
UpperCAmelCase_ : str = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka)
x += h
return y
if __name__ == "__main__":
import doctest
doctest.testmod()
| 702
|
'''simple docstring'''
from typing import Any, Callable, Dict, List, Optional, Union
import torch
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
snake_case_ : Union[str, Any] = "CompVis/stable-diffusion-v1-1"
snake_case_ : Dict = "CompVis/stable-diffusion-v1-2"
snake_case_ : Any = "CompVis/stable-diffusion-v1-3"
snake_case_ : str = "CompVis/stable-diffusion-v1-4"
class __a (lowerCamelCase ):
def __init__( self : Any , __magic_name__ : AutoencoderKL , __magic_name__ : CLIPTextModel , __magic_name__ : CLIPTokenizer , __magic_name__ : UNetaDConditionModel , __magic_name__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __magic_name__ : StableDiffusionSafetyChecker , __magic_name__ : CLIPImageProcessor , __magic_name__ : bool = True , ) -> str:
"""simple docstring"""
super()._init_()
UpperCAmelCase_ : Any = StableDiffusionPipeline.from_pretrained(__magic_name__ )
UpperCAmelCase_ : Dict = StableDiffusionPipeline.from_pretrained(__magic_name__ )
UpperCAmelCase_ : List[Any] = StableDiffusionPipeline.from_pretrained(__magic_name__ )
UpperCAmelCase_ : Tuple = StableDiffusionPipeline(
vae=__magic_name__ , text_encoder=__magic_name__ , tokenizer=__magic_name__ , unet=__magic_name__ , scheduler=__magic_name__ , safety_checker=__magic_name__ , feature_extractor=__magic_name__ , requires_safety_checker=__magic_name__ , )
self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea )
@property
def UpperCAmelCase__ ( self : Tuple ) -> Dict[str, Any]:
"""simple docstring"""
return {k: getattr(self , __magic_name__ ) for k in self.config.keys() if not k.startswith('''_''' )}
def UpperCAmelCase__ ( self : Dict , __magic_name__ : Optional[Union[str, int]] = "auto" ) -> int:
"""simple docstring"""
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
UpperCAmelCase_ : List[str] = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(__magic_name__ )
def UpperCAmelCase__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
self.enable_attention_slicing(__magic_name__ )
@torch.no_grad()
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Tuple , ) -> Optional[int]:
"""simple docstring"""
return self.pipea(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
@torch.no_grad()
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Any , ) -> Any:
"""simple docstring"""
return self.pipea(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
@torch.no_grad()
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Dict , ) -> List[str]:
"""simple docstring"""
return self.pipea(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
@torch.no_grad()
def UpperCAmelCase__ ( self : int , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Optional[int] , ) -> str:
"""simple docstring"""
return self.pipea(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
@torch.no_grad()
def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Optional[int] , ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : int = '''cuda''' if torch.cuda.is_available() else '''cpu'''
self.to(__magic_name__ )
# Checks if the height and width are divisible by 8 or not
if height % 8 != 0 or width % 8 != 0:
raise ValueError(F"""`height` and `width` must be divisible by 8 but are {height} and {width}.""" )
# Get first result from Stable Diffusion Checkpoint v1.1
UpperCAmelCase_ : Optional[int] = self.textaimg_sda_a(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
# Get first result from Stable Diffusion Checkpoint v1.2
UpperCAmelCase_ : int = self.textaimg_sda_a(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
# Get first result from Stable Diffusion Checkpoint v1.3
UpperCAmelCase_ : str = self.textaimg_sda_a(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
# Get first result from Stable Diffusion Checkpoint v1.4
UpperCAmelCase_ : str = self.textaimg_sda_a(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
# Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result
return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
| 644
| 0
|
'''simple docstring'''
from __future__ import annotations
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : list[int], SCREAMING_SNAKE_CASE__ : int ) -> list[list[int]]:
UpperCAmelCase_ : list[list[int]] = []
UpperCAmelCase_ : list[int] = []
UpperCAmelCase_ : Any = 0
UpperCAmelCase_ : Tuple = sum(SCREAMING_SNAKE_CASE__ )
create_state_space_tree(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
return result
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : list[int], SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : list[int], SCREAMING_SNAKE_CASE__ : list[list[int]], SCREAMING_SNAKE_CASE__ : int, ) -> None:
if sum(SCREAMING_SNAKE_CASE__ ) > max_sum or (remaining_nums_sum + sum(SCREAMING_SNAKE_CASE__ )) < max_sum:
return
if sum(SCREAMING_SNAKE_CASE__ ) == max_sum:
result.append(SCREAMING_SNAKE_CASE__ )
return
for index in range(SCREAMING_SNAKE_CASE__, len(SCREAMING_SNAKE_CASE__ ) ):
create_state_space_tree(
SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, index + 1, [*path, nums[index]], SCREAMING_SNAKE_CASE__, remaining_nums_sum - nums[index], )
snake_case_ : Optional[int] = [3, 34, 4, 12, 5, 2]
snake_case_ : int = 9
snake_case_ : List[Any] = generate_sum_of_subsets_soln(nums, max_sum)
print(*result)
| 703
|
'''simple docstring'''
import argparse
import json
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
snake_case_ : Optional[int] = 16
snake_case_ : Tuple = 32
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Accelerator, SCREAMING_SNAKE_CASE__ : int = 16, SCREAMING_SNAKE_CASE__ : str = "bert-base-cased" ) -> Dict:
UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : int = load_dataset('''glue''', '''mrpc''' )
def tokenize_function(SCREAMING_SNAKE_CASE__ : Optional[int] ):
# max_length=None => use the model max length (it's actually the default)
UpperCAmelCase_ : Union[str, Any] = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=SCREAMING_SNAKE_CASE__, max_length=SCREAMING_SNAKE_CASE__ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
UpperCAmelCase_ : Tuple = datasets.map(
SCREAMING_SNAKE_CASE__, batched=SCREAMING_SNAKE_CASE__, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], load_from_cache_file=SCREAMING_SNAKE_CASE__ )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
UpperCAmelCase_ : Optional[Any] = tokenized_datasets.rename_column('''label''', '''labels''' )
def collate_fn(SCREAMING_SNAKE_CASE__ : str ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(SCREAMING_SNAKE_CASE__, padding='''max_length''', max_length=128, return_tensors='''pt''' )
return tokenizer.pad(SCREAMING_SNAKE_CASE__, padding='''longest''', return_tensors='''pt''' )
# Instantiate dataloaders.
UpperCAmelCase_ : str = DataLoader(
tokenized_datasets['''train'''], shuffle=SCREAMING_SNAKE_CASE__, collate_fn=SCREAMING_SNAKE_CASE__, batch_size=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : int = DataLoader(
tokenized_datasets['''validation'''], shuffle=SCREAMING_SNAKE_CASE__, collate_fn=SCREAMING_SNAKE_CASE__, batch_size=SCREAMING_SNAKE_CASE__ )
return train_dataloader, eval_dataloader
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Optional[Any], SCREAMING_SNAKE_CASE__ : Optional[int], SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : Any ) -> Any:
model.eval()
UpperCAmelCase_ : List[str] = 0
for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
UpperCAmelCase_ : Dict = model(**SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : str = outputs.logits.argmax(dim=-1 )
# It is slightly faster to call this once, than multiple times
UpperCAmelCase_ , UpperCAmelCase_ : List[str] = accelerator.gather(
(predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates
if accelerator.use_distributed:
if step == len(SCREAMING_SNAKE_CASE__ ) - 1:
UpperCAmelCase_ : Tuple = predictions[: len(eval_dataloader.dataset ) - samples_seen]
UpperCAmelCase_ : int = references[: len(eval_dataloader.dataset ) - samples_seen]
else:
samples_seen += references.shape[0]
metric.add_batch(
predictions=SCREAMING_SNAKE_CASE__, references=SCREAMING_SNAKE_CASE__, )
UpperCAmelCase_ : List[str] = metric.compute()
return eval_metric["accuracy"]
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : int ) -> Tuple:
# Initialize accelerator
UpperCAmelCase_ : Union[str, Any] = Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
UpperCAmelCase_ : int = config['''lr''']
UpperCAmelCase_ : Optional[int] = int(config['''num_epochs'''] )
UpperCAmelCase_ : Optional[int] = int(config['''seed'''] )
UpperCAmelCase_ : List[str] = int(config['''batch_size'''] )
UpperCAmelCase_ : Optional[int] = args.model_name_or_path
set_seed(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = get_dataloaders(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
UpperCAmelCase_ : List[Any] = AutoModelForSequenceClassification.from_pretrained(SCREAMING_SNAKE_CASE__, return_dict=SCREAMING_SNAKE_CASE__ )
# Instantiate optimizer
UpperCAmelCase_ : str = (
AdamW
if accelerator.state.deepspeed_plugin is None
or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
UpperCAmelCase_ : List[str] = optimizer_cls(params=model.parameters(), lr=SCREAMING_SNAKE_CASE__ )
if accelerator.state.deepspeed_plugin is not None:
UpperCAmelCase_ : List[Any] = accelerator.state.deepspeed_plugin.deepspeed_config[
'''gradient_accumulation_steps'''
]
else:
UpperCAmelCase_ : Tuple = 1
UpperCAmelCase_ : int = (len(SCREAMING_SNAKE_CASE__ ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
UpperCAmelCase_ : Tuple = get_linear_schedule_with_warmup(
optimizer=SCREAMING_SNAKE_CASE__, num_warmup_steps=0, num_training_steps=SCREAMING_SNAKE_CASE__, )
else:
UpperCAmelCase_ : Any = DummyScheduler(SCREAMING_SNAKE_CASE__, total_num_steps=SCREAMING_SNAKE_CASE__, warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = accelerator.prepare(
SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
# We need to keep track of how many total steps we have iterated over
UpperCAmelCase_ : Union[str, Any] = 0
# We also need to keep track of the stating epoch so files are named properly
UpperCAmelCase_ : Dict = 0
UpperCAmelCase_ : int = evaluate.load('''glue''', '''mrpc''' )
UpperCAmelCase_ : Optional[Any] = num_epochs
if args.partial_train_epoch is not None:
UpperCAmelCase_ : List[Any] = args.partial_train_epoch
if args.resume_from_checkpoint:
accelerator.load_state(args.resume_from_checkpoint )
UpperCAmelCase_ : Tuple = args.resume_from_checkpoint.split('''epoch_''' )[1]
UpperCAmelCase_ : int = ''''''
for char in epoch_string:
if char.isdigit():
state_epoch_num += char
else:
break
UpperCAmelCase_ : Union[str, Any] = int(SCREAMING_SNAKE_CASE__ ) + 1
UpperCAmelCase_ : Dict = evaluation_loop(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
accelerator.print('''resumed checkpoint performance:''', SCREAMING_SNAKE_CASE__ )
accelerator.print('''resumed checkpoint\'s scheduler\'s lr:''', lr_scheduler.get_lr()[0] )
accelerator.print('''resumed optimizers\'s lr:''', optimizer.param_groups[0]['''lr'''] )
with open(os.path.join(args.output_dir, F"""state_{starting_epoch-1}.json""" ), '''r''' ) as f:
UpperCAmelCase_ : Optional[int] = json.load(SCREAMING_SNAKE_CASE__ )
assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed"
assert (
resumed_state["lr"] == lr_scheduler.get_lr()[0]
), "Scheduler learning rate mismatch, loading from checkpoint failed"
assert (
resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"]
), "Optimizer learning rate mismatch, loading from checkpoint failed"
assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed"
return
# Now we train the model
UpperCAmelCase_ : int = {}
for epoch in range(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ):
model.train()
for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase_ : Optional[int] = model(**SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Any = outputs.loss
UpperCAmelCase_ : Tuple = loss / gradient_accumulation_steps
accelerator.backward(SCREAMING_SNAKE_CASE__ )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
UpperCAmelCase_ : Tuple = F"""epoch_{epoch}"""
UpperCAmelCase_ : Optional[int] = os.path.join(args.output_dir, SCREAMING_SNAKE_CASE__ )
accelerator.save_state(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : int = evaluation_loop(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Optional[Any] = accuracy
UpperCAmelCase_ : Any = lr_scheduler.get_lr()[0]
UpperCAmelCase_ : List[str] = optimizer.param_groups[0]['''lr''']
UpperCAmelCase_ : Tuple = epoch
UpperCAmelCase_ : Dict = overall_step
accelerator.print(F"""epoch {epoch}:""", SCREAMING_SNAKE_CASE__ )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir, F"""state_{epoch}.json""" ), '''w''' ) as f:
json.dump(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
def lowerCamelCase_ ( ) -> List[str]:
UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' )
parser.add_argument(
'''--model_name_or_path''', type=SCREAMING_SNAKE_CASE__, default='''bert-base-cased''', help='''Path to pretrained model or model identifier from huggingface.co/models.''', required=SCREAMING_SNAKE_CASE__, )
parser.add_argument(
'''--output_dir''', type=SCREAMING_SNAKE_CASE__, default='''.''', help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''', )
parser.add_argument(
'''--resume_from_checkpoint''', type=SCREAMING_SNAKE_CASE__, default=SCREAMING_SNAKE_CASE__, help='''If the training should continue from a checkpoint folder.''', )
parser.add_argument(
'''--partial_train_epoch''', type=SCREAMING_SNAKE_CASE__, default=SCREAMING_SNAKE_CASE__, help='''If passed, the training will stop after this number of epochs.''', )
parser.add_argument(
'''--num_epochs''', type=SCREAMING_SNAKE_CASE__, default=2, help='''Number of train epochs.''', )
UpperCAmelCase_ : Optional[int] = parser.parse_args()
UpperCAmelCase_ : List[Any] = {'''lr''': 2E-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16}
training_function(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
main()
| 644
| 0
|
snake_case_ : int = {
"Pillow": "Pillow",
"accelerate": "accelerate>=0.11.0",
"compel": "compel==0.1.8",
"black": "black~=23.1",
"datasets": "datasets",
"filelock": "filelock",
"flax": "flax>=0.4.1",
"hf-doc-builder": "hf-doc-builder>=0.3.0",
"huggingface-hub": "huggingface-hub>=0.13.2",
"requests-mock": "requests-mock==1.10.0",
"importlib_metadata": "importlib_metadata",
"invisible-watermark": "invisible-watermark",
"isort": "isort>=5.5.4",
"jax": "jax>=0.2.8,!=0.3.2",
"jaxlib": "jaxlib>=0.1.65",
"Jinja2": "Jinja2",
"k-diffusion": "k-diffusion>=0.0.12",
"torchsde": "torchsde",
"note_seq": "note_seq",
"librosa": "librosa",
"numpy": "numpy",
"omegaconf": "omegaconf",
"parameterized": "parameterized",
"protobuf": "protobuf>=3.20.3,<4",
"pytest": "pytest",
"pytest-timeout": "pytest-timeout",
"pytest-xdist": "pytest-xdist",
"ruff": "ruff>=0.0.241",
"safetensors": "safetensors",
"sentencepiece": "sentencepiece>=0.1.91,!=0.1.92",
"scipy": "scipy",
"onnx": "onnx",
"regex": "regex!=2019.12.17",
"requests": "requests",
"tensorboard": "tensorboard",
"torch": "torch>=1.4",
"torchvision": "torchvision",
"transformers": "transformers>=4.25.1",
"urllib3": "urllib3<=2.0.0",
}
| 704
|
'''simple docstring'''
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : list[int] ) -> list[list[int]]:
UpperCAmelCase_ : int = []
if len(SCREAMING_SNAKE_CASE__ ) == 1:
return [nums.copy()]
for _ in range(len(SCREAMING_SNAKE_CASE__ ) ):
UpperCAmelCase_ : List[Any] = nums.pop(0 )
UpperCAmelCase_ : Optional[Any] = permute(SCREAMING_SNAKE_CASE__ )
for perm in permutations:
perm.append(SCREAMING_SNAKE_CASE__ )
result.extend(SCREAMING_SNAKE_CASE__ )
nums.append(SCREAMING_SNAKE_CASE__ )
return result
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[str] ) -> Any:
def backtrack(SCREAMING_SNAKE_CASE__ : Union[str, Any] ):
if start == len(SCREAMING_SNAKE_CASE__ ) - 1:
output.append(nums[:] )
else:
for i in range(SCREAMING_SNAKE_CASE__, len(SCREAMING_SNAKE_CASE__ ) ):
UpperCAmelCase_ , UpperCAmelCase_ : Tuple = nums[i], nums[start]
backtrack(start + 1 )
UpperCAmelCase_ , UpperCAmelCase_ : int = nums[i], nums[start] # backtrack
UpperCAmelCase_ : Optional[int] = []
backtrack(0 )
return output
if __name__ == "__main__":
import doctest
# use res to print the data in permute2 function
snake_case_ : Tuple = permutea([1, 2, 3])
print(res)
doctest.testmod()
| 644
| 0
|
'''simple docstring'''
from typing import Optional
from torch import nn
from .transformer_ad import TransformeraDModel, TransformeraDModelOutput
class __a (nn.Module ):
def __init__( self : Any , __magic_name__ : int = 16 , __magic_name__ : int = 88 , __magic_name__ : Optional[int] = None , __magic_name__ : int = 1 , __magic_name__ : float = 0.0 , __magic_name__ : int = 32 , __magic_name__ : Optional[int] = None , __magic_name__ : bool = False , __magic_name__ : Optional[int] = None , __magic_name__ : Optional[int] = None , __magic_name__ : str = "geglu" , __magic_name__ : Optional[int] = None , ) -> List[Any]:
"""simple docstring"""
super().__init__()
UpperCAmelCase_ : List[Any] = nn.ModuleList(
[
TransformeraDModel(
num_attention_heads=__magic_name__ , attention_head_dim=__magic_name__ , in_channels=__magic_name__ , num_layers=__magic_name__ , dropout=__magic_name__ , norm_num_groups=__magic_name__ , cross_attention_dim=__magic_name__ , attention_bias=__magic_name__ , sample_size=__magic_name__ , num_vector_embeds=__magic_name__ , activation_fn=__magic_name__ , num_embeds_ada_norm=__magic_name__ , )
for _ in range(2 )
] )
# Variables that can be set by a pipeline:
# The ratio of transformer1 to transformer2's output states to be combined during inference
UpperCAmelCase_ : List[str] = 0.5
# The shape of `encoder_hidden_states` is expected to be
# `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)`
UpperCAmelCase_ : Optional[int] = [77, 2_57]
# Which transformer to use to encode which condition.
# E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])`
UpperCAmelCase_ : Tuple = [1, 0]
def UpperCAmelCase__ ( self : str , __magic_name__ : Optional[int] , __magic_name__ : Any , __magic_name__ : Optional[int]=None , __magic_name__ : Optional[int]=None , __magic_name__ : List[str]=None , __magic_name__ : bool = True , ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = hidden_states
UpperCAmelCase_ : Dict = []
UpperCAmelCase_ : Any = 0
# attention_mask is not used yet
for i in range(2 ):
# for each of the two transformers, pass the corresponding condition tokens
UpperCAmelCase_ : Optional[Any] = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]]
UpperCAmelCase_ : Any = self.transformer_index_for_condition[i]
UpperCAmelCase_ : str = self.transformers[transformer_index](
__magic_name__ , encoder_hidden_states=__magic_name__ , timestep=__magic_name__ , cross_attention_kwargs=__magic_name__ , return_dict=__magic_name__ , )[0]
encoded_states.append(encoded_state - input_states )
tokens_start += self.condition_lengths[i]
UpperCAmelCase_ : Any = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio)
UpperCAmelCase_ : Any = output_states + input_states
if not return_dict:
return (output_states,)
return TransformeraDModelOutput(sample=__magic_name__ )
| 705
|
'''simple docstring'''
class __a :
def __init__( self : List[Any] , __magic_name__ : int ) -> None:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = size
UpperCAmelCase_ : Tuple = [0] * size
UpperCAmelCase_ : Optional[Any] = [0] * size
@staticmethod
def UpperCAmelCase__ ( __magic_name__ : int ) -> int:
"""simple docstring"""
return index | (index + 1)
@staticmethod
def UpperCAmelCase__ ( __magic_name__ : int ) -> int:
"""simple docstring"""
return (index & (index + 1)) - 1
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : int , __magic_name__ : int ) -> None:
"""simple docstring"""
UpperCAmelCase_ : int = value
while index < self.size:
UpperCAmelCase_ : str = self.get_prev(__magic_name__ ) + 1
if current_left_border == index:
UpperCAmelCase_ : List[str] = value
else:
UpperCAmelCase_ : Optional[int] = max(__magic_name__ , __magic_name__ , __magic_name__ )
UpperCAmelCase_ : Tuple = self.get_next(__magic_name__ )
def UpperCAmelCase__ ( self : Any , __magic_name__ : int , __magic_name__ : int ) -> int:
"""simple docstring"""
right -= 1 # Because of right is exclusive
UpperCAmelCase_ : List[str] = 0
while left <= right:
UpperCAmelCase_ : Optional[Any] = self.get_prev(__magic_name__ )
if left <= current_left:
UpperCAmelCase_ : Dict = max(__magic_name__ , self.tree[right] )
UpperCAmelCase_ : Optional[Any] = current_left
else:
UpperCAmelCase_ : str = max(__magic_name__ , self.arr[right] )
right -= 1
return result
if __name__ == "__main__":
import doctest
doctest.testmod()
| 644
| 0
|
'''simple docstring'''
import numpy as np
from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : int ) -> np.ndarray:
# prepare kernel
# the kernel size have to be odd
if (ksize % 2) == 0:
UpperCAmelCase_ : Any = ksize + 1
UpperCAmelCase_ : Tuple = np.zeros((ksize, ksize), dtype=np.floataa )
# each value
for y in range(SCREAMING_SNAKE_CASE__ ):
for x in range(SCREAMING_SNAKE_CASE__ ):
# distance from center
UpperCAmelCase_ : Dict = x - ksize // 2
UpperCAmelCase_ : str = y - ksize // 2
# degree to radiant
UpperCAmelCase_ : List[Any] = theta / 180 * np.pi
UpperCAmelCase_ : Optional[Any] = np.cos(_theta )
UpperCAmelCase_ : int = np.sin(_theta )
# get kernel x
UpperCAmelCase_ : int = cos_theta * px + sin_theta * py
# get kernel y
UpperCAmelCase_ : Any = -sin_theta * px + cos_theta * py
# fill kernel
UpperCAmelCase_ : str = np.exp(
-(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi )
return gabor
if __name__ == "__main__":
import doctest
doctest.testmod()
# read original image
snake_case_ : Tuple = imread("../image_data/lena.jpg")
# turn image in gray scale value
snake_case_ : Optional[int] = cvtColor(img, COLOR_BGR2GRAY)
# Apply multiple Kernel to detect edges
snake_case_ : Tuple = np.zeros(gray.shape[:2])
for theta in [0, 30, 60, 90, 1_20, 1_50]:
snake_case_ : List[str] = gabor_filter_kernel(10, 8, theta, 10, 0, 0)
out += filteraD(gray, CV_8UC3, kernel_aa)
snake_case_ : Optional[Any] = out / out.max() * 2_55
snake_case_ : int = out.astype(np.uinta)
imshow("Original", gray)
imshow("Gabor filter with 20x20 mask and 6 directions", out)
waitKey(0)
| 706
|
'''simple docstring'''
import math
import unittest
from transformers import BioGptConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptTokenizer,
)
from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST
class __a :
def __init__( self : List[str] , __magic_name__ : List[str] , __magic_name__ : str=13 , __magic_name__ : Union[str, Any]=7 , __magic_name__ : Union[str, Any]=True , __magic_name__ : Any=True , __magic_name__ : List[str]=False , __magic_name__ : Optional[int]=True , __magic_name__ : Dict=99 , __magic_name__ : Tuple=32 , __magic_name__ : int=5 , __magic_name__ : Dict=4 , __magic_name__ : Tuple=37 , __magic_name__ : Optional[int]="gelu" , __magic_name__ : List[str]=0.1 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : str=5_12 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : int=2 , __magic_name__ : List[Any]=0.0_2 , __magic_name__ : Tuple=3 , __magic_name__ : Union[str, Any]=4 , __magic_name__ : Optional[int]=None , ) -> str:
"""simple docstring"""
UpperCAmelCase_ : Any = parent
UpperCAmelCase_ : Union[str, Any] = batch_size
UpperCAmelCase_ : List[Any] = seq_length
UpperCAmelCase_ : str = is_training
UpperCAmelCase_ : Any = use_input_mask
UpperCAmelCase_ : List[str] = use_token_type_ids
UpperCAmelCase_ : Union[str, Any] = use_labels
UpperCAmelCase_ : Dict = vocab_size
UpperCAmelCase_ : Optional[Any] = hidden_size
UpperCAmelCase_ : Dict = num_hidden_layers
UpperCAmelCase_ : List[Any] = num_attention_heads
UpperCAmelCase_ : Optional[int] = intermediate_size
UpperCAmelCase_ : Union[str, Any] = hidden_act
UpperCAmelCase_ : str = hidden_dropout_prob
UpperCAmelCase_ : Optional[Any] = attention_probs_dropout_prob
UpperCAmelCase_ : Any = max_position_embeddings
UpperCAmelCase_ : str = type_vocab_size
UpperCAmelCase_ : Optional[Any] = type_sequence_label_size
UpperCAmelCase_ : List[Any] = initializer_range
UpperCAmelCase_ : int = num_labels
UpperCAmelCase_ : Optional[int] = num_choices
UpperCAmelCase_ : Tuple = scope
def UpperCAmelCase__ ( self : Union[str, Any] ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase_ : Union[str, Any] = None
if self.use_input_mask:
UpperCAmelCase_ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase_ : str = None
if self.use_token_type_ids:
UpperCAmelCase_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase_ : Tuple = None
UpperCAmelCase_ : List[str] = None
UpperCAmelCase_ : Union[str, Any] = None
if self.use_labels:
UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase_ : int = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCAmelCase__ ( self : Any ) -> List[Any]:
"""simple docstring"""
return BioGptConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__magic_name__ , initializer_range=self.initializer_range , )
def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : Tuple , __magic_name__ : str , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = BioGptModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : Dict = model(__magic_name__ , attention_mask=__magic_name__ )
UpperCAmelCase_ : Optional[Any] = model(__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : Dict , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Any , __magic_name__ : Tuple , __magic_name__ : List[str] , __magic_name__ : Optional[int] , ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Dict = BioGptForCausalLM(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : List[Any] = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCAmelCase__ ( self : str , __magic_name__ : Optional[int] , __magic_name__ : Tuple , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : str , *__magic_name__ : Any ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Dict = BioGptModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
# create attention mask
UpperCAmelCase_ : Optional[Any] = torch.ones(input_ids.shape , dtype=torch.long , device=__magic_name__ )
UpperCAmelCase_ : Any = self.seq_length // 2
UpperCAmelCase_ : Tuple = 0
# first forward pass
UpperCAmelCase_ , UpperCAmelCase_ : Dict = model(__magic_name__ , attention_mask=__magic_name__ ).to_tuple()
# create hypothetical next token and extent to next_input_ids
UpperCAmelCase_ : Tuple = ids_tensor((self.batch_size, 1) , config.vocab_size )
# change a random masked slice from input_ids
UpperCAmelCase_ : List[str] = ids_tensor((1,) , __magic_name__ ).item() + 1
UpperCAmelCase_ : Tuple = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 )
UpperCAmelCase_ : str = random_other_next_tokens
# append to next input_ids and attn_mask
UpperCAmelCase_ : Tuple = torch.cat([input_ids, next_tokens] , dim=-1 )
UpperCAmelCase_ : int = torch.cat(
[attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=__magic_name__ )] , dim=1 , )
# get two different outputs
UpperCAmelCase_ : Any = model(__magic_name__ , attention_mask=__magic_name__ )['''last_hidden_state''']
UpperCAmelCase_ : int = model(__magic_name__ , past_key_values=__magic_name__ , attention_mask=__magic_name__ )['''last_hidden_state''']
# select random slice
UpperCAmelCase_ : Optional[int] = ids_tensor((1,) , output_from_past.shape[-1] ).item()
UpperCAmelCase_ : Union[str, Any] = output_from_no_past[:, -1, random_slice_idx].detach()
UpperCAmelCase_ : Dict = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) )
def UpperCAmelCase__ ( self : Dict , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : Dict , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , *__magic_name__ : str ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Dict = BioGptModel(config=__magic_name__ ).to(__magic_name__ ).eval()
UpperCAmelCase_ : Optional[int] = torch.ones(input_ids.shape , dtype=torch.long , device=__magic_name__ )
# first forward pass
UpperCAmelCase_ : Union[str, Any] = model(__magic_name__ , attention_mask=__magic_name__ , use_cache=__magic_name__ )
UpperCAmelCase_ , UpperCAmelCase_ : int = outputs.to_tuple()
# create hypothetical multiple next token and extent to next_input_ids
UpperCAmelCase_ : Any = ids_tensor((self.batch_size, 3) , config.vocab_size )
UpperCAmelCase_ : Any = ids_tensor((self.batch_size, 3) , 2 )
# append to next input_ids and
UpperCAmelCase_ : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1 )
UpperCAmelCase_ : List[str] = torch.cat([attention_mask, next_attn_mask] , dim=-1 )
UpperCAmelCase_ : Any = model(__magic_name__ , attention_mask=__magic_name__ )['''last_hidden_state''']
UpperCAmelCase_ : Optional[Any] = model(__magic_name__ , attention_mask=__magic_name__ , past_key_values=__magic_name__ )[
'''last_hidden_state'''
]
# select random slice
UpperCAmelCase_ : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item()
UpperCAmelCase_ : str = output_from_no_past[:, -3:, random_slice_idx].detach()
UpperCAmelCase_ : Optional[int] = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) )
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : str , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , *__magic_name__ : Any , __magic_name__ : List[Any]=False ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Any = BioGptForCausalLM(__magic_name__ )
model.to(__magic_name__ )
if gradient_checkpointing:
model.gradient_checkpointing_enable()
UpperCAmelCase_ : List[str] = model(__magic_name__ , labels=__magic_name__ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
result.loss.backward()
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Optional[int] , *__magic_name__ : List[str] ) -> str:
"""simple docstring"""
UpperCAmelCase_ : int = BioGptModel(__magic_name__ )
UpperCAmelCase_ : Dict = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers )
for key in model.state_dict().keys():
if "c_proj" in key and "weight" in key:
self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.0_0_1 )
self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.0_1 )
def UpperCAmelCase__ ( self : int , __magic_name__ : Tuple , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] , *__magic_name__ : Any ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : str = self.num_labels
UpperCAmelCase_ : Any = BioGptForTokenClassification(__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : Any = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCAmelCase__ ( self : Optional[Any] ) -> str:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = self.prepare_config_and_inputs()
(
(
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) ,
) : int = config_and_inputs
UpperCAmelCase_ : Any = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class __a (lowerCamelCase , lowerCamelCase , lowerCamelCase , unittest.TestCase ):
__a : str = (
(BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification)
if is_torch_available()
else ()
)
__a : List[Any] = (BioGptForCausalLM,) if is_torch_available() else ()
__a : Union[str, Any] = (
{
"feature-extraction": BioGptModel,
"text-classification": BioGptForSequenceClassification,
"text-generation": BioGptForCausalLM,
"token-classification": BioGptForTokenClassification,
"zero-shot": BioGptForSequenceClassification,
}
if is_torch_available()
else {}
)
__a : List[str] = False
def UpperCAmelCase__ ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : List[str] = BioGptModelTester(self )
UpperCAmelCase_ : Optional[Any] = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 )
def UpperCAmelCase__ ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCAmelCase__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__magic_name__ )
def UpperCAmelCase__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
UpperCAmelCase_ : str = type
self.model_tester.create_and_check_model(*__magic_name__ )
def UpperCAmelCase__ ( self : Optional[int] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_attention_mask_past(*__magic_name__ )
def UpperCAmelCase__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_forward_and_backwards(*__magic_name__ , gradient_checkpointing=__magic_name__ )
def UpperCAmelCase__ ( self : str ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_past_large_inputs(*__magic_name__ )
def UpperCAmelCase__ ( self : Dict ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_weight_initialization(*__magic_name__ )
def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_for_token_classification(*__magic_name__ )
@slow
def UpperCAmelCase__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' )
model.to(__magic_name__ )
UpperCAmelCase_ : List[str] = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' )
UpperCAmelCase_ : Tuple = '''left'''
# Define PAD Token = EOS Token = 50256
UpperCAmelCase_ : List[Any] = tokenizer.eos_token
UpperCAmelCase_ : List[Any] = model.config.eos_token_id
# use different length sentences to test batching
UpperCAmelCase_ : Tuple = [
'''Hello, my dog is a little''',
'''Today, I''',
]
UpperCAmelCase_ : Optional[Any] = tokenizer(__magic_name__ , return_tensors='''pt''' , padding=__magic_name__ )
UpperCAmelCase_ : Optional[Any] = inputs['''input_ids'''].to(__magic_name__ )
UpperCAmelCase_ : Any = model.generate(
input_ids=__magic_name__ , attention_mask=inputs['''attention_mask'''].to(__magic_name__ ) , )
UpperCAmelCase_ : Union[str, Any] = tokenizer(sentences[0] , return_tensors='''pt''' ).input_ids.to(__magic_name__ )
UpperCAmelCase_ : Tuple = model.generate(input_ids=__magic_name__ )
UpperCAmelCase_ : List[str] = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item()
UpperCAmelCase_ : List[Any] = tokenizer(sentences[1] , return_tensors='''pt''' ).input_ids.to(__magic_name__ )
UpperCAmelCase_ : Tuple = model.generate(input_ids=__magic_name__ , max_length=model.config.max_length - num_paddings )
UpperCAmelCase_ : int = tokenizer.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ )
UpperCAmelCase_ : Dict = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__magic_name__ )
UpperCAmelCase_ : Union[str, Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=__magic_name__ )
UpperCAmelCase_ : Optional[Any] = [
'''Hello, my dog is a little bit bigger than a little bit.''',
'''Today, I have a good idea of how to use the information''',
]
self.assertListEqual(__magic_name__ , __magic_name__ )
self.assertListEqual(__magic_name__ , [non_padded_sentence, padded_sentence] )
@slow
def UpperCAmelCase__ ( self : str ) -> Optional[Any]:
"""simple docstring"""
for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase_ : List[Any] = BioGptModel.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
def UpperCAmelCase__ ( self : Tuple ) -> str:
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase_ : List[str] = 3
UpperCAmelCase_ : Tuple = input_dict['''input_ids''']
UpperCAmelCase_ : Dict = input_ids.ne(1 ).to(__magic_name__ )
UpperCAmelCase_ : List[str] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
UpperCAmelCase_ : Dict = BioGptForSequenceClassification(__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : int = model(__magic_name__ , attention_mask=__magic_name__ , labels=__magic_name__ )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase_ : List[Any] = 3
UpperCAmelCase_ : Optional[int] = '''multi_label_classification'''
UpperCAmelCase_ : int = input_dict['''input_ids''']
UpperCAmelCase_ : str = input_ids.ne(1 ).to(__magic_name__ )
UpperCAmelCase_ : Any = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
UpperCAmelCase_ : Union[str, Any] = BioGptForSequenceClassification(__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : str = model(__magic_name__ , attention_mask=__magic_name__ , labels=__magic_name__ )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
@require_torch
class __a (unittest.TestCase ):
@slow
def UpperCAmelCase__ ( self : List[Any] ) -> str:
"""simple docstring"""
UpperCAmelCase_ : str = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' )
UpperCAmelCase_ : List[str] = torch.tensor([[2, 48_05, 9, 6_56, 21]] )
UpperCAmelCase_ : str = model(__magic_name__ )[0]
UpperCAmelCase_ : Optional[int] = 4_23_84
UpperCAmelCase_ : Tuple = torch.Size((1, 5, vocab_size) )
self.assertEqual(output.shape , __magic_name__ )
UpperCAmelCase_ : List[Any] = torch.tensor(
[[[-9.5_2_3_6, -9.8_9_1_8, 1_0.4_5_5_7], [-1_1.0_4_6_9, -9.6_4_2_3, 8.1_0_2_2], [-8.8_6_6_4, -7.8_8_2_6, 5.5_3_2_5]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __magic_name__ , atol=1E-4 ) )
@slow
def UpperCAmelCase__ ( self : Any ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Any = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' )
UpperCAmelCase_ : str = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' )
model.to(__magic_name__ )
torch.manual_seed(0 )
UpperCAmelCase_ : Optional[Any] = tokenizer('''COVID-19 is''' , return_tensors='''pt''' ).to(__magic_name__ )
UpperCAmelCase_ : Optional[int] = model.generate(
**__magic_name__ , min_length=1_00 , max_length=10_24 , num_beams=5 , early_stopping=__magic_name__ , )
UpperCAmelCase_ : int = tokenizer.decode(output_ids[0] , skip_special_tokens=__magic_name__ )
UpperCAmelCase_ : Optional[Any] = (
'''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the'''
''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and'''
''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),'''
''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and'''
''' more than 800,000 deaths.'''
)
self.assertEqual(__magic_name__ , __magic_name__ )
| 644
| 0
|
'''simple docstring'''
import sys
import turtle
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : tuple[float, float] ) -> tuple[float, float]:
return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : int, ) -> None:
my_pen.up()
my_pen.goto(vertexa[0], vertexa[1] )
my_pen.down()
my_pen.goto(vertexa[0], vertexa[1] )
my_pen.goto(vertexa[0], vertexa[1] )
my_pen.goto(vertexa[0], vertexa[1] )
if depth == 0:
return
triangle(SCREAMING_SNAKE_CASE__, get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), depth - 1 )
triangle(SCREAMING_SNAKE_CASE__, get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), depth - 1 )
triangle(SCREAMING_SNAKE_CASE__, get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), depth - 1 )
if __name__ == "__main__":
if len(sys.argv) != 2:
raise ValueError(
"Correct format for using this script: "
"python fractals.py <int:depth_for_fractal>"
)
lowerCamelCase : Any = turtle.Turtle()
my_pen.ht()
my_pen.speed(5)
my_pen.pencolor("red")
lowerCamelCase : Tuple = [(-1_75, -1_25), (0, 1_75), (1_75, -1_25)] # vertices of triangle
triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
| 707
|
'''simple docstring'''
import json
import os
import unittest
from transformers.models.blenderbot_small.tokenization_blenderbot_small import (
VOCAB_FILES_NAMES,
BlenderbotSmallTokenizer,
)
from ...test_tokenization_common import TokenizerTesterMixin
class __a (lowerCamelCase , unittest.TestCase ):
__a : List[str] = BlenderbotSmallTokenizer
__a : List[Any] = False
def UpperCAmelCase__ ( self : str ) -> str:
"""simple docstring"""
super().setUp()
UpperCAmelCase_ : Tuple = ['''__start__''', '''adapt''', '''act''', '''ap@@''', '''te''', '''__end__''', '''__unk__''']
UpperCAmelCase_ : Optional[Any] = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) )
UpperCAmelCase_ : int = ['''#version: 0.2''', '''a p''', '''t e</w>''', '''ap t</w>''', '''a d''', '''ad apt</w>''', '''a c''', '''ac t</w>''', '''''']
UpperCAmelCase_ : Optional[Any] = {'''unk_token''': '''__unk__''', '''bos_token''': '''__start__''', '''eos_token''': '''__end__'''}
UpperCAmelCase_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
UpperCAmelCase_ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(__magic_name__ ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(__magic_name__ ) )
def UpperCAmelCase__ ( self : List[Any] , **__magic_name__ : Dict ) -> Tuple:
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **__magic_name__ )
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : List[str] ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : str = '''adapt act apte'''
UpperCAmelCase_ : Tuple = '''adapt act apte'''
return input_text, output_text
def UpperCAmelCase__ ( self : str ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : str = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map )
UpperCAmelCase_ : List[Any] = '''adapt act apte'''
UpperCAmelCase_ : Dict = ['''adapt''', '''act''', '''ap@@''', '''te''']
UpperCAmelCase_ : Dict = tokenizer.tokenize(__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
UpperCAmelCase_ : Tuple = [tokenizer.bos_token] + tokens + [tokenizer.eos_token]
UpperCAmelCase_ : Dict = [0, 1, 2, 3, 4, 5]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , __magic_name__ )
def UpperCAmelCase__ ( self : int ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' )
assert tok('''sam''' ).input_ids == [13_84]
UpperCAmelCase_ : Optional[int] = '''I am a small frog.'''
UpperCAmelCase_ : List[str] = tok([src_text] , padding=__magic_name__ , truncation=__magic_name__ )['''input_ids''']
UpperCAmelCase_ : Dict = tok.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ , clean_up_tokenization_spaces=__magic_name__ )[0]
assert src_text != decoded # I wish it did!
assert decoded == "i am a small frog ."
def UpperCAmelCase__ ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : int = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' )
UpperCAmelCase_ : List[Any] = '''I am a small frog .'''
UpperCAmelCase_ : Any = '''.'''
UpperCAmelCase_ : List[Any] = tok(__magic_name__ )['''input_ids''']
UpperCAmelCase_ : Optional[int] = tok(__magic_name__ )['''input_ids''']
assert encoded[-1] == encoded_dot[0]
| 644
| 0
|
'''simple docstring'''
import json
import multiprocessing
import os
import re
from collections import defaultdict
import torch
from accelerate import Accelerator
from accelerate.utils import set_seed
from arguments import HumanEvalArguments
from datasets import load_dataset, load_metric
from torch.utils.data import IterableDataset
from torch.utils.data.dataloader import DataLoader
from tqdm import tqdm
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList
snake_case_ : Optional[Any] = ["\nclass", "\ndef", "\n#", "\n@", "\nprint", "\nif"]
class __a (lowerCamelCase ):
def __init__( self : int , __magic_name__ : Any , __magic_name__ : Optional[Any] , __magic_name__ : int=None , __magic_name__ : List[str]=1 ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = tokenizer
UpperCAmelCase_ : str = dataset
UpperCAmelCase_ : str = len(__magic_name__ ) if n_tasks is None else n_tasks
UpperCAmelCase_ : List[Any] = n_copies
def __iter__( self : str ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = []
for task in range(self.n_tasks ):
# without strip, the model generate commented codes ...
prompts.append(self.tokenizer.eos_token + self.dataset[task]['''prompt'''].strip() )
UpperCAmelCase_ : Any = self.tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors='''pt''' )
for task in range(self.n_tasks ):
for _ in range(self.n_copies ):
yield {
"ids": outputs.input_ids[task],
"task_id": task,
"input_len": outputs.attention_mask[task].sum(),
}
class __a (lowerCamelCase ):
def __init__( self : int , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : Tuple ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = start_length
UpperCAmelCase_ : Dict = eof_strings
UpperCAmelCase_ : List[str] = tokenizer
def __call__( self : str , __magic_name__ : Tuple , __magic_name__ : Any , **__magic_name__ : Optional[int] ) -> str:
"""simple docstring"""
UpperCAmelCase_ : Any = self.tokenizer.batch_decode(input_ids[:, self.start_length :] )
UpperCAmelCase_ : List[str] = []
for decoded_generation in decoded_generations:
done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) )
return all(__magic_name__ )
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[Any]:
UpperCAmelCase_ : str = re.split('''(%s)''' % '''|'''.join(SCREAMING_SNAKE_CASE__ ), SCREAMING_SNAKE_CASE__ )
# last string should be ""
return "".join(string_list[:-2] )
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[str], SCREAMING_SNAKE_CASE__ : Any, SCREAMING_SNAKE_CASE__ : Optional[Any], SCREAMING_SNAKE_CASE__ : Any, SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : Tuple=20, **SCREAMING_SNAKE_CASE__ : Any ) -> List[str]:
UpperCAmelCase_ : Dict = defaultdict(SCREAMING_SNAKE_CASE__ ) # dict of list of generated tokens
for step, batch in tqdm(enumerate(SCREAMING_SNAKE_CASE__ ) ):
with torch.no_grad():
UpperCAmelCase_ : Optional[Any] = batch['''ids'''].shape[-1]
UpperCAmelCase_ : Optional[int] = accelerator.unwrap_model(SCREAMING_SNAKE_CASE__ ).generate(
input_ids=batch['''ids'''][:, : batch['''input_len''']], num_return_sequences=SCREAMING_SNAKE_CASE__, **SCREAMING_SNAKE_CASE__ )
# each task is generated batch_size times
UpperCAmelCase_ : Any = batch['''task_id'''].repeat(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Optional[Any] = accelerator.pad_across_processes(
SCREAMING_SNAKE_CASE__, dim=1, pad_index=tokenizer.pad_token_id )
UpperCAmelCase_ : str = accelerator.gather((generated_tokens, generated_tasks) )
UpperCAmelCase_ : Any = generated_tokens.cpu().numpy()
UpperCAmelCase_ : Union[str, Any] = generated_tasks.cpu().numpy()
for task, generated_tokens in zip(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ):
gen_token_dict[task].append(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : List[Any] = [[] for _ in range(SCREAMING_SNAKE_CASE__ )]
for task, generated_tokens in gen_token_dict.items():
for s in generated_tokens:
UpperCAmelCase_ : int = tokenizer.decode(SCREAMING_SNAKE_CASE__, skip_special_tokens=SCREAMING_SNAKE_CASE__, clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ )
code_gens[task].append(remove_last_block(SCREAMING_SNAKE_CASE__ ) )
return code_gens
def lowerCamelCase_ ( ) -> Tuple:
# Setup configuration
UpperCAmelCase_ : Optional[Any] = HfArgumentParser(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : List[str] = parser.parse_args()
transformers.logging.set_verbosity_error()
# enables code execution in code_eval metric
UpperCAmelCase_ : Union[str, Any] = args.HF_ALLOW_CODE_EVAL
# make sure tokenizer plays nice with multiprocessing
UpperCAmelCase_ : Any = '''false'''
if args.num_workers is None:
UpperCAmelCase_ : Optional[Any] = multiprocessing.cpu_count()
# Use dataset load to feed to accelerate
UpperCAmelCase_ : Optional[Any] = Accelerator()
set_seed(args.seed, device_specific=SCREAMING_SNAKE_CASE__ )
# Load model and tokenizer
UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained(args.model_ckpt )
UpperCAmelCase_ : int = tokenizer.eos_token
UpperCAmelCase_ : List[Any] = AutoModelForCausalLM.from_pretrained(args.model_ckpt )
# Generation settings
UpperCAmelCase_ : Any = {
'''do_sample''': args.do_sample,
'''temperature''': args.temperature,
'''max_new_tokens''': args.max_new_tokens,
'''top_p''': args.top_p,
'''top_k''': args.top_k,
'''stopping_criteria''': StoppingCriteriaList([EndOfFunctionCriteria(0, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )] ),
}
# Load evaluation dataset and metric
UpperCAmelCase_ : Optional[Any] = load_dataset('''openai_humaneval''' )
UpperCAmelCase_ : List[Any] = load_metric('''code_eval''' )
UpperCAmelCase_ : Tuple = args.num_tasks if args.num_tasks is not None else len(human_eval['''test'''] )
UpperCAmelCase_ : Union[str, Any] = args.n_samples // args.batch_size
UpperCAmelCase_ : Any = TokenizedDataset(SCREAMING_SNAKE_CASE__, human_eval['''test'''], n_copies=SCREAMING_SNAKE_CASE__, n_tasks=SCREAMING_SNAKE_CASE__ )
# do not confuse args.batch_size, which is actually the num_return_sequences
UpperCAmelCase_ : List[str] = DataLoader(SCREAMING_SNAKE_CASE__, batch_size=1 )
# Run a quick test to see if code evaluation is enabled
try:
UpperCAmelCase_ : Tuple = code_eval_metric.compute(references=[''''''], predictions=[['''''']] )
except ValueError as exception:
print(
'''Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`'''
''' flag to enable code evaluation.''' )
raise exception
UpperCAmelCase_ : List[str] = accelerator.prepare(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Optional[int] = complete_code(
SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, n_tasks=SCREAMING_SNAKE_CASE__, batch_size=args.batch_size, **SCREAMING_SNAKE_CASE__, )
if accelerator.is_main_process:
UpperCAmelCase_ : Optional[Any] = []
for task in tqdm(range(SCREAMING_SNAKE_CASE__ ) ):
UpperCAmelCase_ : Any = human_eval['''test'''][task]['''test''']
UpperCAmelCase_ : List[Any] = F"""check({human_eval["test"][task]["entry_point"]})"""
references.append('''\n''' + test_func + '''\n''' + entry_point )
# Evaluate completions with "code_eval" metric
UpperCAmelCase_ : Union[str, Any] = code_eval_metric.compute(
references=SCREAMING_SNAKE_CASE__, predictions=SCREAMING_SNAKE_CASE__, num_workers=args.num_workers )
print(F"""Results: {pass_at_k}""" )
# Save results to json file
with open(args.output_file, '''w''' ) as fp:
json.dump(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
# For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing
# https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script
if __name__ == "__main__":
main()
| 708
|
'''simple docstring'''
import unittest
import torch
from torch import nn
from diffusers.models.activations import get_activation
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : Dict ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : Dict = get_activation('''swish''' )
self.assertIsInstance(__magic_name__ , nn.SiLU )
self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
def UpperCAmelCase__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = get_activation('''silu''' )
self.assertIsInstance(__magic_name__ , nn.SiLU )
self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
def UpperCAmelCase__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = get_activation('''mish''' )
self.assertIsInstance(__magic_name__ , nn.Mish )
self.assertEqual(act(torch.tensor(-2_00 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
def UpperCAmelCase__ ( self : str ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = get_activation('''gelu''' )
self.assertIsInstance(__magic_name__ , nn.GELU )
self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
| 644
| 0
|
'''simple docstring'''
import sys
snake_case_ : Optional[int] = (
"73167176531330624919225119674426574742355349194934"
"96983520312774506326239578318016984801869478851843"
"85861560789112949495459501737958331952853208805511"
"12540698747158523863050715693290963295227443043557"
"66896648950445244523161731856403098711121722383113"
"62229893423380308135336276614282806444486645238749"
"30358907296290491560440772390713810515859307960866"
"70172427121883998797908792274921901699720888093776"
"65727333001053367881220235421809751254540594752243"
"52584907711670556013604839586446706324415722155397"
"53697817977846174064955149290862569321978468622482"
"83972241375657056057490261407972968652414535100474"
"82166370484403199890008895243450658541227588666881"
"16427171479924442928230863465674813919123162824586"
"17866458359124566529476545682848912883142607690042"
"24219022671055626321111109370544217506941658960408"
"07198403850962455444362981230987879927244284909188"
"84580156166097919133875499200524063689912560717606"
"05886116467109405077541002256983155200055935729725"
"71636269561882670428252483600823257530420752963450"
)
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : str = N ) -> int:
UpperCAmelCase_ : str = -sys.maxsize - 1
for i in range(len(SCREAMING_SNAKE_CASE__ ) - 12 ):
UpperCAmelCase_ : Union[str, Any] = 1
for j in range(13 ):
product *= int(n[i + j] )
if product > largest_product:
UpperCAmelCase_ : List[Any] = product
return largest_product
if __name__ == "__main__":
print(f'''{solution() = }''')
| 709
|
'''simple docstring'''
from typing import List, Optional, Union
import numpy as np
import PIL.Image
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import rescale, resize, to_channel_dimension_format
from ...image_utils import (
ChannelDimension,
PILImageResampling,
get_image_size,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
snake_case_ : Union[str, Any] = logging.get_logger(__name__)
class __a (lowerCamelCase ):
__a : Tuple = ["pixel_values"]
def __init__( self : List[Any] , __magic_name__ : bool = True , __magic_name__ : int = 32 , __magic_name__ : Union[str, Any]=PILImageResampling.BILINEAR , __magic_name__ : bool = True , **__magic_name__ : List[str] , ) -> None:
"""simple docstring"""
UpperCAmelCase_ : int = do_resize
UpperCAmelCase_ : Tuple = do_rescale
UpperCAmelCase_ : List[Any] = size_divisor
UpperCAmelCase_ : Any = resample
super().__init__(**__magic_name__ )
def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : np.ndarray , __magic_name__ : int , __magic_name__ : str , __magic_name__ : Optional[ChannelDimension] = None , **__magic_name__ : Tuple ) -> np.ndarray:
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : List[str] = get_image_size(__magic_name__ )
# Rounds the height and width down to the closest multiple of size_divisor
UpperCAmelCase_ : Dict = height // size_divisor * size_divisor
UpperCAmelCase_ : Dict = width // size_divisor * size_divisor
UpperCAmelCase_ : Any = resize(__magic_name__ , (new_h, new_w) , resample=__magic_name__ , data_format=__magic_name__ , **__magic_name__ )
return image
def UpperCAmelCase__ ( self : int , __magic_name__ : np.ndarray , __magic_name__ : float , __magic_name__ : Optional[ChannelDimension] = None , **__magic_name__ : Optional[Any] ) -> np.ndarray:
"""simple docstring"""
return rescale(image=__magic_name__ , scale=__magic_name__ , data_format=__magic_name__ , **__magic_name__ )
def UpperCAmelCase__ ( self : str , __magic_name__ : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[int] = None , __magic_name__ : Any=None , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[Union[TensorType, str]] = None , __magic_name__ : ChannelDimension = ChannelDimension.FIRST , **__magic_name__ : Tuple , ) -> BatchFeature:
"""simple docstring"""
UpperCAmelCase_ : Dict = do_resize if do_resize is not None else self.do_resize
UpperCAmelCase_ : str = do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase_ : Any = size_divisor if size_divisor is not None else self.size_divisor
UpperCAmelCase_ : Dict = resample if resample is not None else self.resample
if do_resize and size_divisor is None:
raise ValueError('''size_divisor is required for resizing''' )
UpperCAmelCase_ : Optional[int] = make_list_of_images(__magic_name__ )
if not valid_images(__magic_name__ ):
raise ValueError('''Invalid image(s)''' )
# All transformations expect numpy arrays.
UpperCAmelCase_ : List[str] = [to_numpy_array(__magic_name__ ) for img in images]
if do_resize:
UpperCAmelCase_ : str = [self.resize(__magic_name__ , size_divisor=__magic_name__ , resample=__magic_name__ ) for image in images]
if do_rescale:
UpperCAmelCase_ : Tuple = [self.rescale(__magic_name__ , scale=1 / 2_55 ) for image in images]
UpperCAmelCase_ : Union[str, Any] = [to_channel_dimension_format(__magic_name__ , __magic_name__ ) for image in images]
UpperCAmelCase_ : int = {'''pixel_values''': images}
return BatchFeature(data=__magic_name__ , tensor_type=__magic_name__ )
| 644
| 0
|
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class __a (metaclass=lowerCamelCase ):
__a : List[str] = ["flax", "transformers"]
def __init__( self : List[str] , *__magic_name__ : int , **__magic_name__ : str ) -> str:
"""simple docstring"""
requires_backends(self , ['''flax''', '''transformers'''] )
@classmethod
def UpperCAmelCase__ ( cls : Optional[int] , *__magic_name__ : Optional[int] , **__magic_name__ : Optional[int] ) -> List[str]:
"""simple docstring"""
requires_backends(cls , ['''flax''', '''transformers'''] )
@classmethod
def UpperCAmelCase__ ( cls : List[str] , *__magic_name__ : List[Any] , **__magic_name__ : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ['''flax''', '''transformers'''] )
class __a (metaclass=lowerCamelCase ):
__a : List[str] = ["flax", "transformers"]
def __init__( self : List[Any] , *__magic_name__ : Optional[Any] , **__magic_name__ : str ) -> int:
"""simple docstring"""
requires_backends(self , ['''flax''', '''transformers'''] )
@classmethod
def UpperCAmelCase__ ( cls : Any , *__magic_name__ : str , **__magic_name__ : List[str] ) -> List[Any]:
"""simple docstring"""
requires_backends(cls , ['''flax''', '''transformers'''] )
@classmethod
def UpperCAmelCase__ ( cls : Tuple , *__magic_name__ : Dict , **__magic_name__ : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ['''flax''', '''transformers'''] )
class __a (metaclass=lowerCamelCase ):
__a : Any = ["flax", "transformers"]
def __init__( self : List[str] , *__magic_name__ : List[str] , **__magic_name__ : Optional[int] ) -> Tuple:
"""simple docstring"""
requires_backends(self , ['''flax''', '''transformers'''] )
@classmethod
def UpperCAmelCase__ ( cls : Tuple , *__magic_name__ : Any , **__magic_name__ : List[str] ) -> List[str]:
"""simple docstring"""
requires_backends(cls , ['''flax''', '''transformers'''] )
@classmethod
def UpperCAmelCase__ ( cls : Optional[Any] , *__magic_name__ : Optional[int] , **__magic_name__ : Any ) -> Optional[int]:
"""simple docstring"""
requires_backends(cls , ['''flax''', '''transformers'''] )
class __a (metaclass=lowerCamelCase ):
__a : Dict = ["flax", "transformers"]
def __init__( self : List[str] , *__magic_name__ : List[str] , **__magic_name__ : Tuple ) -> Optional[Any]:
"""simple docstring"""
requires_backends(self , ['''flax''', '''transformers'''] )
@classmethod
def UpperCAmelCase__ ( cls : Union[str, Any] , *__magic_name__ : List[Any] , **__magic_name__ : Any ) -> str:
"""simple docstring"""
requires_backends(cls , ['''flax''', '''transformers'''] )
@classmethod
def UpperCAmelCase__ ( cls : int , *__magic_name__ : Optional[Any] , **__magic_name__ : Union[str, Any] ) -> Any:
"""simple docstring"""
requires_backends(cls , ['''flax''', '''transformers'''] )
| 710
|
'''simple docstring'''
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int = 10, SCREAMING_SNAKE_CASE__ : int = 22 ) -> int:
UpperCAmelCase_ : Optional[int] = range(1, SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : List[Any] = range(1, SCREAMING_SNAKE_CASE__ )
return sum(
1 for power in powers for base in bases if len(str(base**power ) ) == power )
if __name__ == "__main__":
print(f'''{solution(10, 22) = }''')
| 644
| 0
|
'''simple docstring'''
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : str = "The quick brown fox jumps over the lazy dog", ) -> bool:
UpperCAmelCase_ : List[str] = set()
# Replace all the whitespace in our sentence
UpperCAmelCase_ : Union[str, Any] = input_str.replace(''' ''', '''''' )
for alpha in input_str:
if "a" <= alpha.lower() <= "z":
frequency.add(alpha.lower() )
return len(SCREAMING_SNAKE_CASE__ ) == 26
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : str = "The quick brown fox jumps over the lazy dog", ) -> bool:
UpperCAmelCase_ : int = [False] * 26
for char in input_str:
if char.islower():
UpperCAmelCase_ : Dict = True
elif char.isupper():
UpperCAmelCase_ : List[Any] = True
return all(SCREAMING_SNAKE_CASE__ )
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : str = "The quick brown fox jumps over the lazy dog", ) -> bool:
return len({char for char in input_str.lower() if char.isalpha()} ) == 26
def lowerCamelCase_ ( ) -> None:
from timeit import timeit
UpperCAmelCase_ : Any = '''from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest'''
print(timeit('''is_pangram()''', setup=SCREAMING_SNAKE_CASE__ ) )
print(timeit('''is_pangram_faster()''', setup=SCREAMING_SNAKE_CASE__ ) )
print(timeit('''is_pangram_fastest()''', setup=SCREAMING_SNAKE_CASE__ ) )
# 5.348480500048026, 2.6477354579837993, 1.8470395830227062
# 5.036091582966037, 2.644472333951853, 1.8869528750656173
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 711
|
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
import torch
from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor
from ..utils import requires_backends
from .base import PipelineTool
if TYPE_CHECKING:
from PIL import Image
class __a (lowerCamelCase ):
__a : int = "dandelin/vilt-b32-finetuned-vqa"
__a : Any = (
"This is a tool that answers a question about an image. It takes an input named `image` which should be the "
"image containing the information, as well as a `question` which should be the question in English. It "
"returns a text that is the answer to the question."
)
__a : Any = "image_qa"
__a : str = AutoProcessor
__a : Any = AutoModelForVisualQuestionAnswering
__a : List[Any] = ["image", "text"]
__a : int = ["text"]
def __init__( self : Tuple , *__magic_name__ : Any , **__magic_name__ : Any ) -> Tuple:
"""simple docstring"""
requires_backends(self , ['''vision'''] )
super().__init__(*__magic_name__ , **__magic_name__ )
def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : "Image" , __magic_name__ : str ) -> Tuple:
"""simple docstring"""
return self.pre_processor(__magic_name__ , __magic_name__ , return_tensors='''pt''' )
def UpperCAmelCase__ ( self : Any , __magic_name__ : List[str] ) -> Optional[Any]:
"""simple docstring"""
with torch.no_grad():
return self.model(**__magic_name__ ).logits
def UpperCAmelCase__ ( self : int , __magic_name__ : int ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Dict = outputs.argmax(-1 ).item()
return self.model.config.idalabel[idx]
| 644
| 0
|
'''simple docstring'''
import json
import os
from functools import lru_cache
from typing import Dict, List, Optional, Tuple, Union
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...tokenization_utils_base import BatchEncoding, EncodedInput
from ...utils import PaddingStrategy, logging
snake_case_ : Optional[Any] = logging.get_logger(__name__)
snake_case_ : List[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt"}
# See all LED models at https://huggingface.co/models?filter=LED
snake_case_ : Optional[Any] = {
"vocab_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json",
},
"merges_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt",
},
"tokenizer_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json",
},
}
snake_case_ : Union[str, Any] = {
"allenai/led-base-16384": 1_63_84,
}
@lru_cache()
# Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode
def lowerCamelCase_ ( ) -> List[Any]:
UpperCAmelCase_ : List[str] = (
list(range(ord('''!''' ), ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ), ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ), ord('''ÿ''' ) + 1 ) )
)
UpperCAmelCase_ : List[Any] = bs[:]
UpperCAmelCase_ : List[Any] = 0
for b in range(2**8 ):
if b not in bs:
bs.append(SCREAMING_SNAKE_CASE__ )
cs.append(2**8 + n )
n += 1
UpperCAmelCase_ : Dict = [chr(SCREAMING_SNAKE_CASE__ ) for n in cs]
return dict(zip(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) )
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[int]:
UpperCAmelCase_ : Optional[int] = set()
UpperCAmelCase_ : Any = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
UpperCAmelCase_ : List[str] = char
return pairs
class __a (lowerCamelCase ):
__a : Tuple = VOCAB_FILES_NAMES
__a : int = PRETRAINED_VOCAB_FILES_MAP
__a : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__a : str = ["input_ids", "attention_mask"]
def __init__( self : Dict , __magic_name__ : Any , __magic_name__ : int , __magic_name__ : str="replace" , __magic_name__ : Any="<s>" , __magic_name__ : int="</s>" , __magic_name__ : Tuple="</s>" , __magic_name__ : List[str]="<s>" , __magic_name__ : List[Any]="<unk>" , __magic_name__ : Tuple="<pad>" , __magic_name__ : str="<mask>" , __magic_name__ : Optional[Any]=False , **__magic_name__ : int , ) -> int:
"""simple docstring"""
UpperCAmelCase_ : int = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else bos_token
UpperCAmelCase_ : int = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else eos_token
UpperCAmelCase_ : List[Any] = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else sep_token
UpperCAmelCase_ : Dict = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else cls_token
UpperCAmelCase_ : Optional[int] = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else unk_token
UpperCAmelCase_ : Dict = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
UpperCAmelCase_ : List[str] = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else mask_token
super().__init__(
errors=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , unk_token=__magic_name__ , sep_token=__magic_name__ , cls_token=__magic_name__ , pad_token=__magic_name__ , mask_token=__magic_name__ , add_prefix_space=__magic_name__ , **__magic_name__ , )
with open(__magic_name__ , encoding='''utf-8''' ) as vocab_handle:
UpperCAmelCase_ : Optional[Any] = json.load(__magic_name__ )
UpperCAmelCase_ : int = {v: k for k, v in self.encoder.items()}
UpperCAmelCase_ : int = errors # how to handle errors in decoding
UpperCAmelCase_ : Tuple = bytes_to_unicode()
UpperCAmelCase_ : Optional[Any] = {v: k for k, v in self.byte_encoder.items()}
with open(__magic_name__ , encoding='''utf-8''' ) as merges_handle:
UpperCAmelCase_ : Any = merges_handle.read().split('''\n''' )[1:-1]
UpperCAmelCase_ : str = [tuple(merge.split() ) for merge in bpe_merges]
UpperCAmelCase_ : int = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) )
UpperCAmelCase_ : List[Any] = {}
UpperCAmelCase_ : Tuple = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
UpperCAmelCase_ : Dict = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' )
@property
# Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size
def UpperCAmelCase__ ( self : List[Any] ) -> Tuple:
"""simple docstring"""
return len(self.encoder )
def UpperCAmelCase__ ( self : List[Any] ) -> Dict:
"""simple docstring"""
return dict(self.encoder , **self.added_tokens_encoder )
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : List[str] ) -> Tuple:
"""simple docstring"""
if token in self.cache:
return self.cache[token]
UpperCAmelCase_ : List[str] = tuple(__magic_name__ )
UpperCAmelCase_ : Optional[Any] = get_pairs(__magic_name__ )
if not pairs:
return token
while True:
UpperCAmelCase_ : str = min(__magic_name__ , key=lambda __magic_name__ : self.bpe_ranks.get(__magic_name__ , float('''inf''' ) ) )
if bigram not in self.bpe_ranks:
break
UpperCAmelCase_ : Union[str, Any] = bigram
UpperCAmelCase_ : List[str] = []
UpperCAmelCase_ : List[str] = 0
while i < len(__magic_name__ ):
try:
UpperCAmelCase_ : Tuple = word.index(__magic_name__ , __magic_name__ )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
UpperCAmelCase_ : List[str] = j
if word[i] == first and i < len(__magic_name__ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
UpperCAmelCase_ : Tuple = tuple(__magic_name__ )
UpperCAmelCase_ : Any = new_word
if len(__magic_name__ ) == 1:
break
else:
UpperCAmelCase_ : Union[str, Any] = get_pairs(__magic_name__ )
UpperCAmelCase_ : List[Any] = ''' '''.join(__magic_name__ )
UpperCAmelCase_ : Tuple = word
return word
def UpperCAmelCase__ ( self : int , __magic_name__ : List[str] ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = []
for token in re.findall(self.pat , __magic_name__ ):
UpperCAmelCase_ : Union[str, Any] = ''''''.join(
self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__magic_name__ ).split(''' ''' ) )
return bpe_tokens
def UpperCAmelCase__ ( self : Any , __magic_name__ : Optional[int] ) -> List[str]:
"""simple docstring"""
return self.encoder.get(__magic_name__ , self.encoder.get(self.unk_token ) )
def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : int ) -> Any:
"""simple docstring"""
return self.decoder.get(__magic_name__ )
def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : Union[str, Any] ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : Any = ''''''.join(__magic_name__ )
UpperCAmelCase_ : str = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors )
return text
def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
if not os.path.isdir(__magic_name__ ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
UpperCAmelCase_ : Union[str, Any] = os.path.join(
__magic_name__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
UpperCAmelCase_ : Optional[int] = os.path.join(
__magic_name__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] )
with open(__magic_name__ , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=__magic_name__ , ensure_ascii=__magic_name__ ) + '''\n''' )
UpperCAmelCase_ : Tuple = 0
with open(__magic_name__ , '''w''' , encoding='''utf-8''' ) as writer:
writer.write('''#version: 0.2\n''' )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __magic_name__ : kv[1] ):
if index != token_index:
logger.warning(
F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."""
''' Please check that the tokenizer is not corrupted!''' )
UpperCAmelCase_ : int = token_index
writer.write(''' '''.join(__magic_name__ ) + '''\n''' )
index += 1
return vocab_file, merge_file
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
UpperCAmelCase_ : Any = [self.cls_token_id]
UpperCAmelCase_ : int = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def UpperCAmelCase__ ( self : Any , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None , __magic_name__ : bool = False ) -> List[int]:
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__magic_name__ , token_ids_a=__magic_name__ , already_has_special_tokens=__magic_name__ )
if token_ids_a is None:
return [1] + ([0] * len(__magic_name__ )) + [1]
return [1] + ([0] * len(__magic_name__ )) + [1, 1] + ([0] * len(__magic_name__ )) + [1]
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = [self.sep_token_id]
UpperCAmelCase_ : int = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def UpperCAmelCase__ ( self : str , __magic_name__ : Union[str, Any] , __magic_name__ : str=False , **__magic_name__ : Any ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = kwargs.pop('''add_prefix_space''' , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(__magic_name__ ) > 0 and not text[0].isspace()):
UpperCAmelCase_ : Tuple = ''' ''' + text
return (text, kwargs)
def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : Union[Dict[str, EncodedInput], BatchEncoding] , __magic_name__ : Optional[int] = None , __magic_name__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __magic_name__ : Optional[int] = None , __magic_name__ : Optional[bool] = None , ) -> dict:
"""simple docstring"""
UpperCAmelCase_ : Any = super()._pad(
encoded_inputs=__magic_name__ , max_length=__magic_name__ , padding_strategy=__magic_name__ , pad_to_multiple_of=__magic_name__ , return_attention_mask=__magic_name__ , )
# Load from model defaults
if return_attention_mask is None:
UpperCAmelCase_ : int = '''attention_mask''' in self.model_input_names
if return_attention_mask and "global_attention_mask" in encoded_inputs:
UpperCAmelCase_ : int = encoded_inputs[self.model_input_names[0]]
# `global_attention_mask` need to have the same length as other (sequential) inputs.
UpperCAmelCase_ : List[str] = len(encoded_inputs['''global_attention_mask'''] ) != len(__magic_name__ )
if needs_to_be_padded:
UpperCAmelCase_ : Union[str, Any] = len(__magic_name__ ) - len(encoded_inputs['''global_attention_mask'''] )
if self.padding_side == "right":
# Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend`
UpperCAmelCase_ : Union[str, Any] = (
encoded_inputs['''global_attention_mask'''] + [-1] * difference
)
elif self.padding_side == "left":
UpperCAmelCase_ : Any = [-1] * difference + encoded_inputs[
'''global_attention_mask'''
]
else:
raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) )
return encoded_inputs
| 712
|
'''simple docstring'''
from collections.abc import Iterable
from typing import Any
class __a :
def __init__( self : Optional[Any] , __magic_name__ : int | None = None ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : List[str] = value
UpperCAmelCase_ : Node | None = None # Added in order to delete a node easier
UpperCAmelCase_ : Node | None = None
UpperCAmelCase_ : Node | None = None
def __repr__( self : List[str] ) -> str:
"""simple docstring"""
from pprint import pformat
if self.left is None and self.right is None:
return str(self.value )
return pformat({F"""{self.value}""": (self.left, self.right)} , indent=1 )
class __a :
def __init__( self : int , __magic_name__ : Node | None = None ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : str = root
def __str__( self : Any ) -> str:
"""simple docstring"""
return str(self.root )
def UpperCAmelCase__ ( self : Any , __magic_name__ : Node , __magic_name__ : Node | None ) -> None:
"""simple docstring"""
if new_children is not None: # reset its kids
UpperCAmelCase_ : Dict = node.parent
if node.parent is not None: # reset its parent
if self.is_right(__magic_name__ ): # If it is the right children
UpperCAmelCase_ : Optional[Any] = new_children
else:
UpperCAmelCase_ : Optional[int] = new_children
else:
UpperCAmelCase_ : List[str] = new_children
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Node ) -> bool:
"""simple docstring"""
if node.parent and node.parent.right:
return node == node.parent.right
return False
def UpperCAmelCase__ ( self : Union[str, Any] ) -> bool:
"""simple docstring"""
return self.root is None
def UpperCAmelCase__ ( self : Any , __magic_name__ : str ) -> None:
"""simple docstring"""
UpperCAmelCase_ : Tuple = Node(__magic_name__ ) # create a new Node
if self.empty(): # if Tree is empty
UpperCAmelCase_ : List[Any] = new_node # set its root
else: # Tree is not empty
UpperCAmelCase_ : str = self.root # from root
if parent_node is None:
return
while True: # While we don't get to a leaf
if value < parent_node.value: # We go left
if parent_node.left is None:
UpperCAmelCase_ : Union[str, Any] = new_node # We insert the new node in a leaf
break
else:
UpperCAmelCase_ : List[Any] = parent_node.left
else:
if parent_node.right is None:
UpperCAmelCase_ : List[Any] = new_node
break
else:
UpperCAmelCase_ : Union[str, Any] = parent_node.right
UpperCAmelCase_ : Union[str, Any] = parent_node
def UpperCAmelCase__ ( self : Optional[Any] , *__magic_name__ : List[str] ) -> None:
"""simple docstring"""
for value in values:
self.__insert(__magic_name__ )
def UpperCAmelCase__ ( self : Dict , __magic_name__ : int ) -> Node | None:
"""simple docstring"""
if self.empty():
raise IndexError('''Warning: Tree is empty! please use another.''' )
else:
UpperCAmelCase_ : str = self.root
# use lazy evaluation here to avoid NoneType Attribute error
while node is not None and node.value is not value:
UpperCAmelCase_ : List[str] = node.left if value < node.value else node.right
return node
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : Node | None = None ) -> Node | None:
"""simple docstring"""
if node is None:
if self.root is None:
return None
UpperCAmelCase_ : Dict = self.root
if not self.empty():
while node.right is not None:
UpperCAmelCase_ : Any = node.right
return node
def UpperCAmelCase__ ( self : Dict , __magic_name__ : Node | None = None ) -> Node | None:
"""simple docstring"""
if node is None:
UpperCAmelCase_ : Optional[int] = self.root
if self.root is None:
return None
if not self.empty():
UpperCAmelCase_ : Union[str, Any] = self.root
while node.left is not None:
UpperCAmelCase_ : Dict = node.left
return node
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : int ) -> None:
"""simple docstring"""
UpperCAmelCase_ : List[str] = self.search(__magic_name__ ) # Look for the node with that label
if node is not None:
if node.left is None and node.right is None: # If it has no children
self.__reassign_nodes(__magic_name__ , __magic_name__ )
elif node.left is None: # Has only right children
self.__reassign_nodes(__magic_name__ , node.right )
elif node.right is None: # Has only left children
self.__reassign_nodes(__magic_name__ , node.left )
else:
UpperCAmelCase_ : List[str] = self.get_max(
node.left ) # Gets the max value of the left branch
self.remove(tmp_node.value ) # type: ignore
UpperCAmelCase_ : Optional[int] = (
tmp_node.value # type: ignore
) # Assigns the value to the node to delete and keep tree structure
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Node | None ) -> Iterable:
"""simple docstring"""
if node is not None:
yield node # Preorder Traversal
yield from self.preorder_traverse(node.left )
yield from self.preorder_traverse(node.right )
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : List[Any]=None ) -> Any:
"""simple docstring"""
if traversal_function is None:
return self.preorder_traverse(self.root )
else:
return traversal_function(self.root )
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : list , __magic_name__ : Node | None ) -> None:
"""simple docstring"""
if node:
self.inorder(__magic_name__ , node.left )
arr.append(node.value )
self.inorder(__magic_name__ , node.right )
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : int , __magic_name__ : Node ) -> int:
"""simple docstring"""
UpperCAmelCase_ : list[int] = []
self.inorder(__magic_name__ , __magic_name__ ) # append all values to list using inorder traversal
return arr[k - 1]
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Node | None ) -> list[Node]:
UpperCAmelCase_ : Any = []
if curr_node is not None:
UpperCAmelCase_ : Any = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node]
return node_list
def lowerCamelCase_ ( ) -> None:
UpperCAmelCase_ : str = (8, 3, 6, 1, 10, 14, 13, 4, 7)
UpperCAmelCase_ : Tuple = BinarySearchTree()
for i in testlist:
t.insert(SCREAMING_SNAKE_CASE__ )
# Prints all the elements of the list in order traversal
print(SCREAMING_SNAKE_CASE__ )
if t.search(6 ) is not None:
print('''The value 6 exists''' )
else:
print('''The value 6 doesn\'t exist''' )
if t.search(-1 ) is not None:
print('''The value -1 exists''' )
else:
print('''The value -1 doesn\'t exist''' )
if not t.empty():
print('''Max Value: ''', t.get_max().value ) # type: ignore
print('''Min Value: ''', t.get_min().value ) # type: ignore
for i in testlist:
t.remove(SCREAMING_SNAKE_CASE__ )
print(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
| 644
| 0
|
import argparse
from torch import nn
# transformers_old should correspond to branch `save_old_prophetnet_model_structure` here
# original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively
from transformers_old.modeling_prophetnet import (
ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld,
)
from transformers_old.modeling_xlm_prophetnet import (
XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld,
)
from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging
snake_case_ : Optional[Any] = logging.get_logger(__name__)
logging.set_verbosity_info()
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : str, SCREAMING_SNAKE_CASE__ : str ) -> Tuple:
if "xprophetnet" in prophetnet_checkpoint_path:
UpperCAmelCase_ : str = XLMProphetNetForConditionalGenerationOld.from_pretrained(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : List[str] = XLMProphetNetForConditionalGeneration.from_pretrained(
SCREAMING_SNAKE_CASE__, output_loading_info=SCREAMING_SNAKE_CASE__ )
else:
UpperCAmelCase_ : Tuple = ProphetNetForConditionalGenerationOld.from_pretrained(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Optional[int] = ProphetNetForConditionalGeneration.from_pretrained(
SCREAMING_SNAKE_CASE__, output_loading_info=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Any = ['''key_proj''', '''value_proj''', '''query_proj''']
UpperCAmelCase_ : Dict = {
'''self_attn''': '''ngram_self_attn''',
'''cross_attn''': '''encoder_attn''',
'''cross_attn_layer_norm''': '''encoder_attn_layer_norm''',
'''feed_forward_layer_norm''': '''final_layer_norm''',
'''feed_forward''': '''''',
'''intermediate''': '''fc1''',
'''output''': '''fc2''',
'''key_proj''': '''k_proj''',
'''query_proj''': '''q_proj''',
'''value_proj''': '''v_proj''',
'''word_embeddings''': '''embed_tokens''',
'''embeddings_layer_norm''': '''emb_layer_norm''',
'''relative_pos_embeddings''': '''relative_linear''',
'''ngram_embeddings''': '''ngram_input_embed''',
'''position_embeddings''': '''embed_positions''',
}
for key in loading_info["missing_keys"]:
UpperCAmelCase_ : Union[str, Any] = key.split('''.''' )
if attributes[0] == "lm_head":
UpperCAmelCase_ : Tuple = prophet
UpperCAmelCase_ : Optional[int] = prophet_old
else:
UpperCAmelCase_ : Optional[int] = prophet.prophetnet
UpperCAmelCase_ : Optional[Any] = prophet_old.model
UpperCAmelCase_ : Any = False
for attribute in attributes:
if attribute in mapping:
UpperCAmelCase_ : Union[str, Any] = mapping[attribute]
if not hasattr(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) and len(SCREAMING_SNAKE_CASE__ ) > 0:
UpperCAmelCase_ : str = attribute
elif hasattr(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase_ : Dict = attribute
if attribute == "weight":
assert old_model.weight.shape == model.weight.shape, "Shapes have to match!"
UpperCAmelCase_ : Union[str, Any] = old_model.weight
logger.info(F"""{attribute} is initialized.""" )
UpperCAmelCase_ : Optional[int] = True
break
elif attribute == "bias":
assert old_model.bias.shape == model.bias.shape, "Shapes have to match!"
UpperCAmelCase_ : int = old_model.bias
logger.info(F"""{attribute} is initialized""" )
UpperCAmelCase_ : Optional[int] = True
break
elif attribute in special_keys and hasattr(SCREAMING_SNAKE_CASE__, '''in_proj_weight''' ):
UpperCAmelCase_ : Union[str, Any] = old_model.in_proj_weight.shape[0] // 3
UpperCAmelCase_ : int = getattr(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match"
param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match"
if attribute == "query_proj":
UpperCAmelCase_ : List[Any] = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] )
UpperCAmelCase_ : Optional[int] = nn.Parameter(old_model.in_proj_bias[:embed_dim] )
elif attribute == "key_proj":
UpperCAmelCase_ : str = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] )
UpperCAmelCase_ : List[Any] = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] )
elif attribute == "value_proj":
UpperCAmelCase_ : Any = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] )
UpperCAmelCase_ : str = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] )
UpperCAmelCase_ : Union[str, Any] = True
break
elif attribute == "position_embeddings":
assert (
model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1]
), "Hidden size has to match"
assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings."
UpperCAmelCase_ : List[str] = nn.Parameter(old_model.embed_positions.weight[:512, :] )
UpperCAmelCase_ : Optional[int] = True
break
if attribute.isdigit():
UpperCAmelCase_ : Any = model[int(SCREAMING_SNAKE_CASE__ )]
UpperCAmelCase_ : Optional[Any] = old_model[int(SCREAMING_SNAKE_CASE__ )]
else:
UpperCAmelCase_ : Tuple = getattr(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
if old_attribute == "":
UpperCAmelCase_ : Dict = old_model
else:
if not hasattr(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ):
raise ValueError(F"""{old_model} does not have {old_attribute}""" )
UpperCAmelCase_ : Union[str, Any] = getattr(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
if not is_key_init:
raise ValueError(F"""{key} was not correctly initialized!""" )
print(F"""Saving model to {pytorch_dump_folder_path}""" )
prophet.save_pretrained(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
snake_case_ : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--prophetnet_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
snake_case_ : Union[str, Any] = parser.parse_args()
convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
| 713
|
'''simple docstring'''
import sys
import turtle
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : tuple[float, float] ) -> tuple[float, float]:
return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : int, ) -> None:
my_pen.up()
my_pen.goto(vertexa[0], vertexa[1] )
my_pen.down()
my_pen.goto(vertexa[0], vertexa[1] )
my_pen.goto(vertexa[0], vertexa[1] )
my_pen.goto(vertexa[0], vertexa[1] )
if depth == 0:
return
triangle(SCREAMING_SNAKE_CASE__, get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), depth - 1 )
triangle(SCREAMING_SNAKE_CASE__, get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), depth - 1 )
triangle(SCREAMING_SNAKE_CASE__, get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), depth - 1 )
if __name__ == "__main__":
if len(sys.argv) != 2:
raise ValueError(
"Correct format for using this script: "
"python fractals.py <int:depth_for_fractal>"
)
snake_case_ : Any = turtle.Turtle()
my_pen.ht()
my_pen.speed(5)
my_pen.pencolor("red")
snake_case_ : Tuple = [(-1_75, -1_25), (0, 1_75), (1_75, -1_25)] # vertices of triangle
triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
| 644
| 0
|
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import AutoTokenizer, BarkProcessor
from transformers.testing_utils import require_torch, slow
@require_torch
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = '''ylacombe/bark-small'''
UpperCAmelCase_ : Any = tempfile.mkdtemp()
UpperCAmelCase_ : Dict = '''en_speaker_1'''
UpperCAmelCase_ : Dict = '''This is a test string'''
UpperCAmelCase_ : List[Any] = '''speaker_embeddings_path.json'''
UpperCAmelCase_ : Union[str, Any] = '''speaker_embeddings'''
def UpperCAmelCase__ ( self : int , **__magic_name__ : List[Any] ) -> Any:
"""simple docstring"""
return AutoTokenizer.from_pretrained(self.checkpoint , **__magic_name__ )
def UpperCAmelCase__ ( self : str ) -> Union[str, Any]:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def UpperCAmelCase__ ( self : int ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : str = self.get_tokenizer()
UpperCAmelCase_ : Tuple = BarkProcessor(tokenizer=__magic_name__ )
processor.save_pretrained(self.tmpdirname )
UpperCAmelCase_ : str = BarkProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
@slow
def UpperCAmelCase__ ( self : Dict ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : int = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
processor.save_pretrained(
self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , )
UpperCAmelCase_ : Dict = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' )
UpperCAmelCase_ : Tuple = BarkProcessor.from_pretrained(
self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='''(BOS)''' , eos_token='''(EOS)''' , )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
def UpperCAmelCase__ ( self : List[Any] ) -> int:
"""simple docstring"""
UpperCAmelCase_ : str = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
UpperCAmelCase_ : Union[str, Any] = 35
UpperCAmelCase_ : Optional[Any] = 2
UpperCAmelCase_ : Tuple = 8
UpperCAmelCase_ : str = {
'''semantic_prompt''': np.ones(__magic_name__ ),
'''coarse_prompt''': np.ones((nb_codebooks_coarse, seq_len) ),
'''fine_prompt''': np.ones((nb_codebooks_total, seq_len) ),
}
# test providing already loaded voice_preset
UpperCAmelCase_ : Optional[int] = processor(text=self.input_string , voice_preset=__magic_name__ )
UpperCAmelCase_ : Tuple = inputs['''history_prompt''']
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(__magic_name__ , np.array([] ) ).tolist() )
# test loading voice preset from npz file
UpperCAmelCase_ : List[str] = os.path.join(self.tmpdirname , '''file.npz''' )
np.savez(__magic_name__ , **__magic_name__ )
UpperCAmelCase_ : Tuple = processor(text=self.input_string , voice_preset=__magic_name__ )
UpperCAmelCase_ : List[str] = inputs['''history_prompt''']
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(__magic_name__ , np.array([] ) ).tolist() )
# test loading voice preset from the hub
UpperCAmelCase_ : int = processor(text=self.input_string , voice_preset=self.voice_preset )
def UpperCAmelCase__ ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : Any = self.get_tokenizer()
UpperCAmelCase_ : str = BarkProcessor(tokenizer=__magic_name__ )
UpperCAmelCase_ : Dict = processor(text=self.input_string )
UpperCAmelCase_ : Optional[int] = tokenizer(
self.input_string , padding='''max_length''' , max_length=2_56 , add_special_tokens=__magic_name__ , return_attention_mask=__magic_name__ , return_token_type_ids=__magic_name__ , )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
| 714
|
'''simple docstring'''
import gc
import tempfile
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionPipeline
from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device
snake_case_ : List[str] = False
class __a (unittest.TestCase ):
pass
@nightly
@require_torch_gpu
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : int ) -> str:
"""simple docstring"""
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : List[Any] = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' )
UpperCAmelCase_ : Optional[int] = torch.manual_seed(0 )
UpperCAmelCase_ : Union[str, Any] = pipe.dual_guided(
prompt='''first prompt''' , image=__magic_name__ , text_to_image_strength=0.7_5 , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(__magic_name__ )
UpperCAmelCase_ : Optional[int] = VersatileDiffusionPipeline.from_pretrained(__magic_name__ , torch_dtype=torch.floataa )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : Any = generator.manual_seed(0 )
UpperCAmelCase_ : Dict = pipe.dual_guided(
prompt='''first prompt''' , image=__magic_name__ , text_to_image_strength=0.7_5 , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images
assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass"
def UpperCAmelCase__ ( self : str ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : str = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : Union[str, Any] = '''cyberpunk 2077'''
UpperCAmelCase_ : Union[str, Any] = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' )
UpperCAmelCase_ : Tuple = torch.manual_seed(0 )
UpperCAmelCase_ : Optional[Any] = pipe.dual_guided(
prompt=__magic_name__ , image=__magic_name__ , text_to_image_strength=0.7_5 , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' , ).images
UpperCAmelCase_ : List[str] = image[0, 2_53:2_56, 2_53:2_56, -1]
assert image.shape == (1, 5_12, 5_12, 3)
UpperCAmelCase_ : Union[str, Any] = np.array([0.1_4_4_8, 0.1_6_1_9, 0.1_7_4_1, 0.1_0_8_6, 0.1_1_4_7, 0.1_1_2_8, 0.1_1_9_9, 0.1_1_6_5, 0.1_0_0_1] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
UpperCAmelCase_ : Tuple = '''A painting of a squirrel eating a burger '''
UpperCAmelCase_ : Optional[int] = torch.manual_seed(0 )
UpperCAmelCase_ : List[Any] = pipe.text_to_image(
prompt=__magic_name__ , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' ).images
UpperCAmelCase_ : Tuple = image[0, 2_53:2_56, 2_53:2_56, -1]
assert image.shape == (1, 5_12, 5_12, 3)
UpperCAmelCase_ : Any = np.array([0.3_3_6_7, 0.3_1_6_9, 0.2_6_5_6, 0.3_8_7_0, 0.4_7_9_0, 0.3_7_9_6, 0.4_0_0_9, 0.4_8_7_8, 0.4_7_7_8] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
UpperCAmelCase_ : Tuple = pipe.image_variation(__magic_name__ , generator=__magic_name__ , output_type='''numpy''' ).images
UpperCAmelCase_ : Optional[Any] = image[0, 2_53:2_56, 2_53:2_56, -1]
assert image.shape == (1, 5_12, 5_12, 3)
UpperCAmelCase_ : List[str] = np.array([0.3_0_7_6, 0.3_1_2_3, 0.3_2_8_4, 0.3_7_8_2, 0.3_7_7_0, 0.3_8_9_4, 0.4_2_9_7, 0.4_3_3_1, 0.4_4_5_6] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
| 644
| 0
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
snake_case_ : Dict = {
"configuration_nllb_moe": [
"NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP",
"NllbMoeConfig",
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ : Dict = [
"NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST",
"NllbMoeForConditionalGeneration",
"NllbMoeModel",
"NllbMoePreTrainedModel",
"NllbMoeTop2Router",
"NllbMoeSparseMLP",
]
if TYPE_CHECKING:
from .configuration_nllb_moe import (
NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP,
NllbMoeConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_nllb_moe import (
NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST,
NllbMoeForConditionalGeneration,
NllbMoeModel,
NllbMoePreTrainedModel,
NllbMoeSparseMLP,
NllbMoeTopaRouter,
)
else:
import sys
snake_case_ : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 715
|
'''simple docstring'''
snake_case_ : int = {
"Pillow": "Pillow",
"accelerate": "accelerate>=0.11.0",
"compel": "compel==0.1.8",
"black": "black~=23.1",
"datasets": "datasets",
"filelock": "filelock",
"flax": "flax>=0.4.1",
"hf-doc-builder": "hf-doc-builder>=0.3.0",
"huggingface-hub": "huggingface-hub>=0.13.2",
"requests-mock": "requests-mock==1.10.0",
"importlib_metadata": "importlib_metadata",
"invisible-watermark": "invisible-watermark",
"isort": "isort>=5.5.4",
"jax": "jax>=0.2.8,!=0.3.2",
"jaxlib": "jaxlib>=0.1.65",
"Jinja2": "Jinja2",
"k-diffusion": "k-diffusion>=0.0.12",
"torchsde": "torchsde",
"note_seq": "note_seq",
"librosa": "librosa",
"numpy": "numpy",
"omegaconf": "omegaconf",
"parameterized": "parameterized",
"protobuf": "protobuf>=3.20.3,<4",
"pytest": "pytest",
"pytest-timeout": "pytest-timeout",
"pytest-xdist": "pytest-xdist",
"ruff": "ruff>=0.0.241",
"safetensors": "safetensors",
"sentencepiece": "sentencepiece>=0.1.91,!=0.1.92",
"scipy": "scipy",
"onnx": "onnx",
"regex": "regex!=2019.12.17",
"requests": "requests",
"tensorboard": "tensorboard",
"torch": "torch>=1.4",
"torchvision": "torchvision",
"transformers": "transformers>=4.25.1",
"urllib3": "urllib3<=2.0.0",
}
| 644
| 0
|
'''simple docstring'''
from __future__ import annotations
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : float, SCREAMING_SNAKE_CASE__ : float, SCREAMING_SNAKE_CASE__ : float, ) -> tuple:
if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1:
raise ValueError('''You cannot supply more or less than 2 values''' )
elif electron_conc < 0:
raise ValueError('''Electron concentration cannot be negative in a semiconductor''' )
elif hole_conc < 0:
raise ValueError('''Hole concentration cannot be negative in a semiconductor''' )
elif intrinsic_conc < 0:
raise ValueError(
'''Intrinsic concentration cannot be negative in a semiconductor''' )
elif electron_conc == 0:
return (
"electron_conc",
intrinsic_conc**2 / hole_conc,
)
elif hole_conc == 0:
return (
"hole_conc",
intrinsic_conc**2 / electron_conc,
)
elif intrinsic_conc == 0:
return (
"intrinsic_conc",
(electron_conc * hole_conc) ** 0.5,
)
else:
return (-1, -1)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 716
|
'''simple docstring'''
import unittest
import numpy as np
import torch
from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class __a (unittest.TestCase ):
@property
def UpperCAmelCase__ ( self : Dict ) -> str:
"""simple docstring"""
torch.manual_seed(0 )
UpperCAmelCase_ : Optional[Any] = UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , )
return model
def UpperCAmelCase__ ( self : Dict ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = self.dummy_uncond_unet
UpperCAmelCase_ : Dict = KarrasVeScheduler()
UpperCAmelCase_ : Union[str, Any] = KarrasVePipeline(unet=__magic_name__ , scheduler=__magic_name__ )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : Dict = torch.manual_seed(0 )
UpperCAmelCase_ : Optional[int] = pipe(num_inference_steps=2 , generator=__magic_name__ , output_type='''numpy''' ).images
UpperCAmelCase_ : Tuple = torch.manual_seed(0 )
UpperCAmelCase_ : str = pipe(num_inference_steps=2 , generator=__magic_name__ , output_type='''numpy''' , return_dict=__magic_name__ )[0]
UpperCAmelCase_ : Union[str, Any] = image[0, -3:, -3:, -1]
UpperCAmelCase_ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
UpperCAmelCase_ : Dict = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : int ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : List[str] = '''google/ncsnpp-celebahq-256'''
UpperCAmelCase_ : List[str] = UNetaDModel.from_pretrained(__magic_name__ )
UpperCAmelCase_ : List[Any] = KarrasVeScheduler()
UpperCAmelCase_ : Any = KarrasVePipeline(unet=__magic_name__ , scheduler=__magic_name__ )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : Dict = torch.manual_seed(0 )
UpperCAmelCase_ : Optional[Any] = pipe(num_inference_steps=20 , generator=__magic_name__ , output_type='''numpy''' ).images
UpperCAmelCase_ : Any = image[0, -3:, -3:, -1]
assert image.shape == (1, 2_56, 2_56, 3)
UpperCAmelCase_ : Optional[Any] = np.array([0.5_7_8, 0.5_8_1_1, 0.5_9_2_4, 0.5_8_0_9, 0.5_8_7, 0.5_8_8_6, 0.5_8_6_1, 0.5_8_0_2, 0.5_8_6] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 644
| 0
|
'''simple docstring'''
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int = 50 ) -> int:
'''simple docstring'''
UpperCAmelCase_ : Tuple = [1] * (length + 1)
for row_length in range(3, length + 1 ):
for block_length in range(3, row_length + 1 ):
for block_start in range(row_length - block_length ):
ways_number[row_length] += ways_number[
row_length - block_start - block_length - 1
]
ways_number[row_length] += 1
return ways_number[length]
if __name__ == "__main__":
print(f'''{solution() = }''')
| 717
|
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor
from .base import PipelineTool
class __a (lowerCamelCase ):
__a : List[Any] = "openai/whisper-base"
__a : Optional[Any] = (
"This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the "
"transcribed text."
)
__a : Any = "transcriber"
__a : str = WhisperProcessor
__a : List[Any] = WhisperForConditionalGeneration
__a : int = ["audio"]
__a : Optional[Any] = ["text"]
def UpperCAmelCase__ ( self : Dict , __magic_name__ : List[str] ) -> Optional[int]:
"""simple docstring"""
return self.pre_processor(__magic_name__ , return_tensors='''pt''' ).input_features
def UpperCAmelCase__ ( self : Dict , __magic_name__ : Dict ) -> Tuple:
"""simple docstring"""
return self.model.generate(inputs=__magic_name__ )
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Dict ) -> str:
"""simple docstring"""
return self.pre_processor.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ )[0]
| 644
| 0
|
'''simple docstring'''
import unittest
from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class __a :
@staticmethod
def UpperCAmelCase__ ( *__magic_name__ : Optional[Any] , **__magic_name__ : Tuple ) -> int:
"""simple docstring"""
pass
@is_pipeline_test
@require_vision
@require_torch
class __a (unittest.TestCase ):
__a : Union[str, Any] = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING
def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : Tuple , __magic_name__ : str ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : Dict = pipeline(
'''zero-shot-object-detection''' , model='''hf-internal-testing/tiny-random-owlvit-object-detection''' )
UpperCAmelCase_ : int = [
{
'''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''',
'''candidate_labels''': ['''cat''', '''remote''', '''couch'''],
}
]
return object_detector, examples
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : str = object_detector(examples[0] , threshold=0.0 )
UpperCAmelCase_ : int = len(__magic_name__ )
self.assertGreater(__magic_name__ , 0 )
self.assertEqual(
__magic_name__ , [
{
'''score''': ANY(__magic_name__ ),
'''label''': ANY(__magic_name__ ),
'''box''': {'''xmin''': ANY(__magic_name__ ), '''ymin''': ANY(__magic_name__ ), '''xmax''': ANY(__magic_name__ ), '''ymax''': ANY(__magic_name__ )},
}
for i in range(__magic_name__ )
] , )
@require_tf
@unittest.skip('''Zero Shot Object Detection not implemented in TF''' )
def UpperCAmelCase__ ( self : str ) -> Optional[int]:
"""simple docstring"""
pass
@require_torch
def UpperCAmelCase__ ( self : str ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : Tuple = pipeline(
'''zero-shot-object-detection''' , model='''hf-internal-testing/tiny-random-owlvit-object-detection''' )
UpperCAmelCase_ : List[Any] = object_detector(
'''./tests/fixtures/tests_samples/COCO/000000039769.png''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , threshold=0.6_4 , )
self.assertEqual(
nested_simplify(__magic_name__ , decimals=4 ) , [
{'''score''': 0.7_2_3_5, '''label''': '''cat''', '''box''': {'''xmin''': 2_04, '''ymin''': 1_67, '''xmax''': 2_32, '''ymax''': 1_90}},
{'''score''': 0.7_2_1_8, '''label''': '''remote''', '''box''': {'''xmin''': 2_04, '''ymin''': 1_67, '''xmax''': 2_32, '''ymax''': 1_90}},
{'''score''': 0.7_1_8_4, '''label''': '''couch''', '''box''': {'''xmin''': 2_04, '''ymin''': 1_67, '''xmax''': 2_32, '''ymax''': 1_90}},
{'''score''': 0.6_7_4_8, '''label''': '''remote''', '''box''': {'''xmin''': 5_71, '''ymin''': 83, '''xmax''': 5_98, '''ymax''': 1_03}},
{'''score''': 0.6_6_5_6, '''label''': '''cat''', '''box''': {'''xmin''': 5_71, '''ymin''': 83, '''xmax''': 5_98, '''ymax''': 1_03}},
{'''score''': 0.6_6_1_4, '''label''': '''couch''', '''box''': {'''xmin''': 5_71, '''ymin''': 83, '''xmax''': 5_98, '''ymax''': 1_03}},
{'''score''': 0.6_4_5_6, '''label''': '''remote''', '''box''': {'''xmin''': 4_94, '''ymin''': 1_05, '''xmax''': 5_21, '''ymax''': 1_27}},
{'''score''': 0.6_4_2, '''label''': '''remote''', '''box''': {'''xmin''': 67, '''ymin''': 2_74, '''xmax''': 93, '''ymax''': 2_97}},
{'''score''': 0.6_4_1_9, '''label''': '''cat''', '''box''': {'''xmin''': 4_94, '''ymin''': 1_05, '''xmax''': 5_21, '''ymax''': 1_27}},
] , )
UpperCAmelCase_ : int = object_detector(
[
{
'''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''',
'''candidate_labels''': ['''cat''', '''remote''', '''couch'''],
}
] , threshold=0.6_4 , )
self.assertEqual(
nested_simplify(__magic_name__ , decimals=4 ) , [
[
{'''score''': 0.7_2_3_5, '''label''': '''cat''', '''box''': {'''xmin''': 2_04, '''ymin''': 1_67, '''xmax''': 2_32, '''ymax''': 1_90}},
{'''score''': 0.7_2_1_8, '''label''': '''remote''', '''box''': {'''xmin''': 2_04, '''ymin''': 1_67, '''xmax''': 2_32, '''ymax''': 1_90}},
{'''score''': 0.7_1_8_4, '''label''': '''couch''', '''box''': {'''xmin''': 2_04, '''ymin''': 1_67, '''xmax''': 2_32, '''ymax''': 1_90}},
{'''score''': 0.6_7_4_8, '''label''': '''remote''', '''box''': {'''xmin''': 5_71, '''ymin''': 83, '''xmax''': 5_98, '''ymax''': 1_03}},
{'''score''': 0.6_6_5_6, '''label''': '''cat''', '''box''': {'''xmin''': 5_71, '''ymin''': 83, '''xmax''': 5_98, '''ymax''': 1_03}},
{'''score''': 0.6_6_1_4, '''label''': '''couch''', '''box''': {'''xmin''': 5_71, '''ymin''': 83, '''xmax''': 5_98, '''ymax''': 1_03}},
{'''score''': 0.6_4_5_6, '''label''': '''remote''', '''box''': {'''xmin''': 4_94, '''ymin''': 1_05, '''xmax''': 5_21, '''ymax''': 1_27}},
{'''score''': 0.6_4_2, '''label''': '''remote''', '''box''': {'''xmin''': 67, '''ymin''': 2_74, '''xmax''': 93, '''ymax''': 2_97}},
{'''score''': 0.6_4_1_9, '''label''': '''cat''', '''box''': {'''xmin''': 4_94, '''ymin''': 1_05, '''xmax''': 5_21, '''ymax''': 1_27}},
]
] , )
@require_torch
@slow
def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = pipeline('''zero-shot-object-detection''' )
UpperCAmelCase_ : Any = object_detector(
'''http://images.cocodataset.org/val2017/000000039769.jpg''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , )
self.assertEqual(
nested_simplify(__magic_name__ , decimals=4 ) , [
{'''score''': 0.2_8_6_8, '''label''': '''cat''', '''box''': {'''xmin''': 3_24, '''ymin''': 20, '''xmax''': 6_40, '''ymax''': 3_73}},
{'''score''': 0.2_7_7, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 1_77, '''ymax''': 1_15}},
{'''score''': 0.2_5_3_7, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 3_15, '''ymax''': 4_72}},
{'''score''': 0.1_4_7_4, '''label''': '''remote''', '''box''': {'''xmin''': 3_35, '''ymin''': 74, '''xmax''': 3_71, '''ymax''': 1_87}},
{'''score''': 0.1_2_0_8, '''label''': '''couch''', '''box''': {'''xmin''': 4, '''ymin''': 0, '''xmax''': 6_42, '''ymax''': 4_76}},
] , )
UpperCAmelCase_ : Any = object_detector(
[
{
'''image''': '''http://images.cocodataset.org/val2017/000000039769.jpg''',
'''candidate_labels''': ['''cat''', '''remote''', '''couch'''],
},
{
'''image''': '''http://images.cocodataset.org/val2017/000000039769.jpg''',
'''candidate_labels''': ['''cat''', '''remote''', '''couch'''],
},
] , )
self.assertEqual(
nested_simplify(__magic_name__ , decimals=4 ) , [
[
{'''score''': 0.2_8_6_8, '''label''': '''cat''', '''box''': {'''xmin''': 3_24, '''ymin''': 20, '''xmax''': 6_40, '''ymax''': 3_73}},
{'''score''': 0.2_7_7, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 1_77, '''ymax''': 1_15}},
{'''score''': 0.2_5_3_7, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 3_15, '''ymax''': 4_72}},
{'''score''': 0.1_4_7_4, '''label''': '''remote''', '''box''': {'''xmin''': 3_35, '''ymin''': 74, '''xmax''': 3_71, '''ymax''': 1_87}},
{'''score''': 0.1_2_0_8, '''label''': '''couch''', '''box''': {'''xmin''': 4, '''ymin''': 0, '''xmax''': 6_42, '''ymax''': 4_76}},
],
[
{'''score''': 0.2_8_6_8, '''label''': '''cat''', '''box''': {'''xmin''': 3_24, '''ymin''': 20, '''xmax''': 6_40, '''ymax''': 3_73}},
{'''score''': 0.2_7_7, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 1_77, '''ymax''': 1_15}},
{'''score''': 0.2_5_3_7, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 3_15, '''ymax''': 4_72}},
{'''score''': 0.1_4_7_4, '''label''': '''remote''', '''box''': {'''xmin''': 3_35, '''ymin''': 74, '''xmax''': 3_71, '''ymax''': 1_87}},
{'''score''': 0.1_2_0_8, '''label''': '''couch''', '''box''': {'''xmin''': 4, '''ymin''': 0, '''xmax''': 6_42, '''ymax''': 4_76}},
],
] , )
@require_tf
@unittest.skip('''Zero Shot Object Detection not implemented in TF''' )
def UpperCAmelCase__ ( self : Any ) -> Dict:
"""simple docstring"""
pass
@require_torch
@slow
def UpperCAmelCase__ ( self : Any ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : str = 0.2
UpperCAmelCase_ : Union[str, Any] = pipeline('''zero-shot-object-detection''' )
UpperCAmelCase_ : Optional[int] = object_detector(
'''http://images.cocodataset.org/val2017/000000039769.jpg''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , threshold=__magic_name__ , )
self.assertEqual(
nested_simplify(__magic_name__ , decimals=4 ) , [
{'''score''': 0.2_8_6_8, '''label''': '''cat''', '''box''': {'''xmin''': 3_24, '''ymin''': 20, '''xmax''': 6_40, '''ymax''': 3_73}},
{'''score''': 0.2_7_7, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 1_77, '''ymax''': 1_15}},
{'''score''': 0.2_5_3_7, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 3_15, '''ymax''': 4_72}},
] , )
@require_torch
@slow
def UpperCAmelCase__ ( self : Any ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = 2
UpperCAmelCase_ : Any = pipeline('''zero-shot-object-detection''' )
UpperCAmelCase_ : List[Any] = object_detector(
'''http://images.cocodataset.org/val2017/000000039769.jpg''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , top_k=__magic_name__ , )
self.assertEqual(
nested_simplify(__magic_name__ , decimals=4 ) , [
{'''score''': 0.2_8_6_8, '''label''': '''cat''', '''box''': {'''xmin''': 3_24, '''ymin''': 20, '''xmax''': 6_40, '''ymax''': 3_73}},
{'''score''': 0.2_7_7, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 1_77, '''ymax''': 1_15}},
] , )
| 718
|
'''simple docstring'''
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : int ) -> int:
return abs(SCREAMING_SNAKE_CASE__ ) if a == 0 else greatest_common_divisor(b % a, SCREAMING_SNAKE_CASE__ )
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : int ) -> int:
while y: # --> when y=0 then loop will terminate and return x as final GCD.
UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = y, x % y
return abs(SCREAMING_SNAKE_CASE__ )
def lowerCamelCase_ ( ) -> Optional[int]:
try:
UpperCAmelCase_ : Optional[Any] = input('''Enter two integers separated by comma (,): ''' ).split(''',''' )
UpperCAmelCase_ : Optional[int] = int(nums[0] )
UpperCAmelCase_ : List[Any] = int(nums[1] )
print(
F"""greatest_common_divisor({num_a}, {num_a}) = """
F"""{greatest_common_divisor(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )}""" )
print(F"""By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )}""" )
except (IndexError, UnboundLocalError, ValueError):
print('''Wrong input''' )
if __name__ == "__main__":
main()
| 644
| 0
|
'''simple docstring'''
import numpy
# List of input, output pairs
snake_case_ : Dict = (
((5, 2, 3), 15),
((6, 5, 9), 25),
((11, 12, 13), 41),
((1, 1, 1), 8),
((11, 12, 13), 41),
)
snake_case_ : Optional[int] = (((5_15, 22, 13), 5_55), ((61, 35, 49), 1_50))
snake_case_ : Union[str, Any] = [2, 4, 1, 5]
snake_case_ : Optional[Any] = len(train_data)
snake_case_ : Tuple = 0.009
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Dict, SCREAMING_SNAKE_CASE__ : str="train" ) -> Optional[int]:
return calculate_hypothesis_value(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) - output(
SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Tuple ) -> List[Any]:
UpperCAmelCase_ : Any = 0
for i in range(len(SCREAMING_SNAKE_CASE__ ) - 1 ):
hyp_val += data_input_tuple[i] * parameter_vector[i + 1]
hyp_val += parameter_vector[0]
return hyp_val
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Union[str, Any], SCREAMING_SNAKE_CASE__ : int ) -> Tuple:
if data_set == "train":
return train_data[example_no][1]
elif data_set == "test":
return test_data[example_no][1]
return None
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Union[str, Any], SCREAMING_SNAKE_CASE__ : str ) -> Union[str, Any]:
if data_set == "train":
return _hypothesis_value(train_data[example_no][0] )
elif data_set == "test":
return _hypothesis_value(test_data[example_no][0] )
return None
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : Dict=m ) -> Optional[int]:
UpperCAmelCase_ : Dict = 0
for i in range(SCREAMING_SNAKE_CASE__ ):
if index == -1:
summation_value += _error(SCREAMING_SNAKE_CASE__ )
else:
summation_value += _error(SCREAMING_SNAKE_CASE__ ) * train_data[i][0][index]
return summation_value
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int ) -> Any:
UpperCAmelCase_ : List[Any] = summation_of_cost_derivative(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) / m
return cost_derivative_value
def lowerCamelCase_ ( ) -> List[str]:
global parameter_vector
# Tune these values to set a tolerance value for predicted output
UpperCAmelCase_ : Optional[Any] = 0.00_00_02
UpperCAmelCase_ : Optional[int] = 0
UpperCAmelCase_ : Tuple = 0
while True:
j += 1
UpperCAmelCase_ : List[Any] = [0, 0, 0, 0]
for i in range(0, len(SCREAMING_SNAKE_CASE__ ) ):
UpperCAmelCase_ : int = get_cost_derivative(i - 1 )
UpperCAmelCase_ : List[Any] = (
parameter_vector[i] - LEARNING_RATE * cost_derivative
)
if numpy.allclose(
SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, atol=SCREAMING_SNAKE_CASE__, rtol=SCREAMING_SNAKE_CASE__, ):
break
UpperCAmelCase_ : Any = temp_parameter_vector
print(('''Number of iterations:''', j) )
def lowerCamelCase_ ( ) -> Optional[Any]:
for i in range(len(SCREAMING_SNAKE_CASE__ ) ):
print(('''Actual output value:''', output(SCREAMING_SNAKE_CASE__, '''test''' )) )
print(('''Hypothesis output:''', calculate_hypothesis_value(SCREAMING_SNAKE_CASE__, '''test''' )) )
if __name__ == "__main__":
run_gradient_descent()
print("\nTesting gradient descent for a linear hypothesis function.\n")
test_gradient_descent()
| 719
|
'''simple docstring'''
import unittest
from transformers import LiltConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
LiltForQuestionAnswering,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltModel,
)
from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST
class __a :
def __init__( self : int , __magic_name__ : Optional[Any] , __magic_name__ : Any=13 , __magic_name__ : Any=7 , __magic_name__ : Union[str, Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : str=True , __magic_name__ : Optional[int]=True , __magic_name__ : List[Any]=99 , __magic_name__ : int=24 , __magic_name__ : Optional[int]=2 , __magic_name__ : Tuple=6 , __magic_name__ : Union[str, Any]=37 , __magic_name__ : Optional[Any]="gelu" , __magic_name__ : Any=0.1 , __magic_name__ : str=0.1 , __magic_name__ : Tuple=5_12 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : Tuple=2 , __magic_name__ : Tuple=0.0_2 , __magic_name__ : Optional[Any]=3 , __magic_name__ : Optional[int]=None , __magic_name__ : Any=10_00 , ) -> str:
"""simple docstring"""
UpperCAmelCase_ : Tuple = parent
UpperCAmelCase_ : Optional[int] = batch_size
UpperCAmelCase_ : List[str] = seq_length
UpperCAmelCase_ : Dict = is_training
UpperCAmelCase_ : List[str] = use_input_mask
UpperCAmelCase_ : Any = use_token_type_ids
UpperCAmelCase_ : Any = use_labels
UpperCAmelCase_ : Any = vocab_size
UpperCAmelCase_ : Dict = hidden_size
UpperCAmelCase_ : Tuple = num_hidden_layers
UpperCAmelCase_ : Tuple = num_attention_heads
UpperCAmelCase_ : int = intermediate_size
UpperCAmelCase_ : Union[str, Any] = hidden_act
UpperCAmelCase_ : Optional[int] = hidden_dropout_prob
UpperCAmelCase_ : Optional[Any] = attention_probs_dropout_prob
UpperCAmelCase_ : Union[str, Any] = max_position_embeddings
UpperCAmelCase_ : int = type_vocab_size
UpperCAmelCase_ : List[Any] = type_sequence_label_size
UpperCAmelCase_ : int = initializer_range
UpperCAmelCase_ : Dict = num_labels
UpperCAmelCase_ : List[str] = scope
UpperCAmelCase_ : List[str] = range_bbox
def UpperCAmelCase__ ( self : Optional[int] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
UpperCAmelCase_ : List[str] = bbox[i, j, 3]
UpperCAmelCase_ : Dict = bbox[i, j, 1]
UpperCAmelCase_ : Optional[Any] = t
if bbox[i, j, 2] < bbox[i, j, 0]:
UpperCAmelCase_ : List[str] = bbox[i, j, 2]
UpperCAmelCase_ : Tuple = bbox[i, j, 0]
UpperCAmelCase_ : Union[str, Any] = t
UpperCAmelCase_ : int = None
if self.use_input_mask:
UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
UpperCAmelCase_ : Optional[int] = None
if self.use_token_type_ids:
UpperCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase_ : Dict = None
UpperCAmelCase_ : Tuple = None
if self.use_labels:
UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase_ : int = self.get_config()
return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels
def UpperCAmelCase__ ( self : Any ) -> List[Any]:
"""simple docstring"""
return LiltConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : str , __magic_name__ : Optional[Any] , __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : int , ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Any = LiltModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : Optional[Any] = model(__magic_name__ , bbox=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ )
UpperCAmelCase_ : List[Any] = model(__magic_name__ , bbox=__magic_name__ , token_type_ids=__magic_name__ )
UpperCAmelCase_ : Optional[int] = model(__magic_name__ , bbox=__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def UpperCAmelCase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[int] , __magic_name__ : List[Any] , ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : Any = self.num_labels
UpperCAmelCase_ : List[Any] = LiltForTokenClassification(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : List[Any] = model(
__magic_name__ , bbox=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCAmelCase__ ( self : Any , __magic_name__ : Optional[Any] , __magic_name__ : Dict , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : Any , ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : str = LiltForQuestionAnswering(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : Optional[Any] = model(
__magic_name__ , bbox=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = self.prepare_config_and_inputs()
(
(
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) ,
) : Optional[int] = config_and_inputs
UpperCAmelCase_ : Tuple = {
'''input_ids''': input_ids,
'''bbox''': bbox,
'''token_type_ids''': token_type_ids,
'''attention_mask''': input_mask,
}
return config, inputs_dict
@require_torch
class __a (lowerCamelCase , lowerCamelCase , lowerCamelCase , unittest.TestCase ):
__a : Tuple = (
(
LiltModel,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltForQuestionAnswering,
)
if is_torch_available()
else ()
)
__a : Any = (
{
"feature-extraction": LiltModel,
"question-answering": LiltForQuestionAnswering,
"text-classification": LiltForSequenceClassification,
"token-classification": LiltForTokenClassification,
"zero-shot": LiltForSequenceClassification,
}
if is_torch_available()
else {}
)
__a : Union[str, Any] = False
__a : int = False
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : int ) -> str:
"""simple docstring"""
return True
def UpperCAmelCase__ ( self : str ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = LiltModelTester(self )
UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 )
def UpperCAmelCase__ ( self : Union[str, Any] ) -> str:
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCAmelCase__ ( self : str ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__magic_name__ )
def UpperCAmelCase__ ( self : str ) -> str:
"""simple docstring"""
UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
UpperCAmelCase_ : Tuple = type
self.model_tester.create_and_check_model(*__magic_name__ )
def UpperCAmelCase__ ( self : Union[str, Any] ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__magic_name__ )
def UpperCAmelCase__ ( self : str ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__magic_name__ )
@slow
def UpperCAmelCase__ ( self : int ) -> Union[str, Any]:
"""simple docstring"""
for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase_ : Optional[int] = LiltModel.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
@require_torch
@slow
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : str = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(__magic_name__ )
UpperCAmelCase_ : Any = torch.tensor([[1, 2]] , device=__magic_name__ )
UpperCAmelCase_ : int = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=__magic_name__ )
# forward pass
with torch.no_grad():
UpperCAmelCase_ : Optional[int] = model(input_ids=__magic_name__ , bbox=__magic_name__ )
UpperCAmelCase_ : int = torch.Size([1, 2, 7_68] )
UpperCAmelCase_ : List[str] = torch.tensor(
[[-0.0_6_5_3, 0.0_9_5_0, -0.0_0_6_1], [-0.0_5_4_5, 0.0_9_2_6, -0.0_3_2_4]] , device=__magic_name__ , )
self.assertTrue(outputs.last_hidden_state.shape , __magic_name__ )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , __magic_name__ , atol=1E-3 ) )
| 644
| 0
|
from __future__ import annotations
import numpy as np
from numpy import floataa
from numpy.typing import NDArray
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : NDArray[floataa], SCREAMING_SNAKE_CASE__ : NDArray[floataa], SCREAMING_SNAKE_CASE__ : list[int], SCREAMING_SNAKE_CASE__ : int, ) -> list[float]:
UpperCAmelCase_ : Any = coefficient_matrix.shape
UpperCAmelCase_ : Dict = constant_matrix.shape
if rowsa != colsa:
UpperCAmelCase_ : Tuple = F"""Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}"""
raise ValueError(SCREAMING_SNAKE_CASE__ )
if colsa != 1:
UpperCAmelCase_ : Union[str, Any] = F"""Constant matrix must be nx1 but received {rowsa}x{colsa}"""
raise ValueError(SCREAMING_SNAKE_CASE__ )
if rowsa != rowsa:
UpperCAmelCase_ : int = (
'''Coefficient and constant matrices dimensions must be nxn and nx1 but '''
F"""received {rowsa}x{colsa} and {rowsa}x{colsa}"""
)
raise ValueError(SCREAMING_SNAKE_CASE__ )
if len(SCREAMING_SNAKE_CASE__ ) != rowsa:
UpperCAmelCase_ : List[Any] = (
'''Number of initial values must be equal to number of rows in coefficient '''
F"""matrix but received {len(SCREAMING_SNAKE_CASE__ )} and {rowsa}"""
)
raise ValueError(SCREAMING_SNAKE_CASE__ )
if iterations <= 0:
raise ValueError('''Iterations must be at least 1''' )
UpperCAmelCase_ : NDArray[floataa] = np.concatenate(
(coefficient_matrix, constant_matrix), axis=1 )
UpperCAmelCase_ : Optional[int] = table.shape
strictly_diagonally_dominant(SCREAMING_SNAKE_CASE__ )
# Iterates the whole matrix for given number of times
for _ in range(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase_ : Tuple = []
for row in range(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase_ : List[str] = 0
for col in range(SCREAMING_SNAKE_CASE__ ):
if col == row:
UpperCAmelCase_ : Union[str, Any] = table[row][col]
elif col == cols - 1:
UpperCAmelCase_ : str = table[row][col]
else:
temp += (-1) * table[row][col] * init_val[col]
UpperCAmelCase_ : List[Any] = (temp + val) / denom
new_val.append(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Dict = new_val
return [float(SCREAMING_SNAKE_CASE__ ) for i in new_val]
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : NDArray[floataa] ) -> bool:
UpperCAmelCase_ : Tuple = table.shape
UpperCAmelCase_ : Tuple = True
for i in range(0, SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase_ : Tuple = 0
for j in range(0, cols - 1 ):
if i == j:
continue
else:
total += table[i][j]
if table[i][i] <= total:
raise ValueError('''Coefficient matrix is not strictly diagonally dominant''' )
return is_diagonally_dominant
# Test Cases
if __name__ == "__main__":
import doctest
doctest.testmod()
| 720
|
'''simple docstring'''
import io
import os
import unicodedata
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
snake_case_ : str = logging.get_logger(__name__)
snake_case_ : int = "▁"
snake_case_ : str = {"vocab_file": "vocab.txt", "sentencepiece_model_ckpt": "sentencepiece.bpe.model"}
snake_case_ : int = {
"sentencepiece_model_file": "sentencepiece.bpe.model",
"vocab_file": "vocab.txt",
}
snake_case_ : Optional[Any] = {
"vocab_file": {
"ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt",
"ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt",
},
"sentencepiece_model_file": {
"ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model",
"ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model",
},
}
snake_case_ : Dict = {
"ernie-m-base": 5_14,
"ernie-m-large": 5_14,
}
snake_case_ : Any = {
"ernie-m-base": {"do_lower_case": False},
"ernie-m-large": {"do_lower_case": False},
}
class __a (lowerCamelCase ):
__a : List[str] = ["input_ids"]
__a : Union[str, Any] = VOCAB_FILES_NAMES
__a : Tuple = PRETRAINED_INIT_CONFIGURATION
__a : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__a : Optional[int] = PRETRAINED_VOCAB_FILES_MAP
__a : Union[str, Any] = RESOURCE_FILES_NAMES
def __init__( self : Union[str, Any] , __magic_name__ : Dict , __magic_name__ : int=None , __magic_name__ : str=False , __magic_name__ : int="utf8" , __magic_name__ : Optional[int]="[UNK]" , __magic_name__ : Dict="[SEP]" , __magic_name__ : List[Any]="[PAD]" , __magic_name__ : str="[CLS]" , __magic_name__ : Optional[int]="[MASK]" , __magic_name__ : Optional[Dict[str, Any]] = None , **__magic_name__ : Union[str, Any] , ) -> None:
"""simple docstring"""
# Mask token behave like a normal word, i.e. include the space before it and
# is included in the raw text, there should be a match in a non-normalized sentence.
UpperCAmelCase_ : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=__magic_name__ , unk_token=__magic_name__ , sep_token=__magic_name__ , pad_token=__magic_name__ , cls_token=__magic_name__ , mask_token=__magic_name__ , vocab_file=__magic_name__ , encoding=__magic_name__ , sp_model_kwargs=self.sp_model_kwargs , **__magic_name__ , )
UpperCAmelCase_ : Optional[Any] = do_lower_case
UpperCAmelCase_ : List[str] = sentencepiece_model_ckpt
UpperCAmelCase_ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(__magic_name__ )
# to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning
if vocab_file is not None:
UpperCAmelCase_ : List[Any] = self.load_vocab(filepath=__magic_name__ )
else:
UpperCAmelCase_ : str = {self.sp_model.id_to_piece(__magic_name__ ): id for id in range(self.sp_model.get_piece_size() )}
UpperCAmelCase_ : int = {v: k for k, v in self.vocab.items()}
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Any ) -> Any:
"""simple docstring"""
if text is None:
return None
UpperCAmelCase_ : str = self.tokenize(__magic_name__ )
UpperCAmelCase_ , UpperCAmelCase_ : str = '''''', []
for i, ch in enumerate(__magic_name__ ):
if ch in self.SP_CHAR_MAPPING:
UpperCAmelCase_ : Optional[int] = self.SP_CHAR_MAPPING.get(__magic_name__ )
else:
UpperCAmelCase_ : Union[str, Any] = unicodedata.normalize('''NFKC''' , __magic_name__ )
if self.is_whitespace(__magic_name__ ):
continue
normalized_text += ch
char_mapping.extend([i] * len(__magic_name__ ) )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = normalized_text, [], 0
if self.do_lower_case:
UpperCAmelCase_ : Optional[int] = text.lower()
for token in split_tokens:
if token[:1] == "▁":
UpperCAmelCase_ : Tuple = token[1:]
UpperCAmelCase_ : int = text[offset:].index(__magic_name__ ) + offset
UpperCAmelCase_ : Optional[int] = start + len(__magic_name__ )
token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) )
UpperCAmelCase_ : int = end
return token_mapping
@property
def UpperCAmelCase__ ( self : Any ) -> Any:
"""simple docstring"""
return len(self.vocab )
def UpperCAmelCase__ ( self : List[Any] ) -> int:
"""simple docstring"""
return dict(self.vocab , **self.added_tokens_encoder )
def __getstate__( self : str ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = self.__dict__.copy()
UpperCAmelCase_ : Optional[Any] = None
return state
def __setstate__( self : str , __magic_name__ : Any ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : Dict = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
UpperCAmelCase_ : int = {}
UpperCAmelCase_ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.sentencepiece_model_ckpt )
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : Any ) -> List[str]:
"""simple docstring"""
return "".join((self.SP_CHAR_MAPPING.get(__magic_name__ , __magic_name__ ) for c in text) )
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Tuple , __magic_name__ : Any=False , __magic_name__ : List[str]=64 , __magic_name__ : List[str]=0.1 ) -> List[str]:
"""simple docstring"""
if self.sp_model_kwargs.get('''enable_sampling''' ) is True:
UpperCAmelCase_ : Dict = True
if self.sp_model_kwargs.get('''alpha''' ) is not None:
UpperCAmelCase_ : Union[str, Any] = self.sp_model_kwargs.get('''alpha''' )
if self.sp_model_kwargs.get('''nbest_size''' ) is not None:
UpperCAmelCase_ : Any = self.sp_model_kwargs.get('''nbest_size''' )
if not enable_sampling:
UpperCAmelCase_ : Dict = self.sp_model.EncodeAsPieces(__magic_name__ )
else:
UpperCAmelCase_ : Dict = self.sp_model.SampleEncodeAsPieces(__magic_name__ , __magic_name__ , __magic_name__ )
UpperCAmelCase_ : List[Any] = []
for pi, piece in enumerate(__magic_name__ ):
if piece == SPIECE_UNDERLINE:
if not pieces[pi + 1].startswith(__magic_name__ ) and pi != 0:
new_pieces.append(__magic_name__ )
continue
else:
continue
UpperCAmelCase_ : List[str] = 0
for i, chunk in enumerate(__magic_name__ ):
if chunk == SPIECE_UNDERLINE:
continue
if self.is_ch_char(__magic_name__ ) or self.is_punct(__magic_name__ ):
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
new_pieces.append(__magic_name__ )
UpperCAmelCase_ : List[Any] = i + 1
elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
UpperCAmelCase_ : List[str] = i
elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
UpperCAmelCase_ : str = i
if len(__magic_name__ ) > lst_i:
new_pieces.append(piece[lst_i:] )
return new_pieces
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Optional[int] ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = ''''''.join(__magic_name__ ).replace(__magic_name__ , ''' ''' ).strip()
return out_string
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Union[str, Any] ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : str = self.convert_ids_to_tokens(__magic_name__ )
UpperCAmelCase_ : Optional[Any] = ''''''.join(__magic_name__ ).replace(__magic_name__ , ''' ''' ).strip()
return out_string
def UpperCAmelCase__ ( self : str , __magic_name__ : Optional[Any] ) -> List[Any]:
"""simple docstring"""
return self.vocab.get(__magic_name__ , self.vocab.get(self.unk_token ) )
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
return self.reverse_vocab.get(__magic_name__ , self.unk_token )
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Any , __magic_name__ : Union[str, Any]=None ) -> Any:
"""simple docstring"""
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
UpperCAmelCase_ : Union[str, Any] = [self.cls_token_id]
UpperCAmelCase_ : List[Any] = [self.sep_token_id]
return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep
def UpperCAmelCase__ ( self : Any , __magic_name__ : Optional[Any] , __magic_name__ : List[str]=None ) -> int:
"""simple docstring"""
if offset_mapping_a is None:
return [(0, 0)] + offset_mapping_a + [(0, 0)]
return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)]
def UpperCAmelCase__ ( self : Dict , __magic_name__ : Optional[Any] , __magic_name__ : List[str]=None , __magic_name__ : Optional[Any]=False ) -> Optional[int]:
"""simple docstring"""
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(__magic_name__ )) + [1, 1] + ([0] * len(__magic_name__ )) + [1]
return [1] + ([0] * len(__magic_name__ )) + [1]
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
# called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method
if token_ids_a is None:
# [CLS] X [SEP]
return (len(__magic_name__ ) + 2) * [0]
# [CLS] A [SEP] [SEP] B [SEP]
return [0] * (len(__magic_name__ ) + 1) + [1] * (len(__magic_name__ ) + 3)
def UpperCAmelCase__ ( self : Dict , __magic_name__ : str ) -> Tuple:
"""simple docstring"""
if "\u4e00" <= char <= "\u9fff":
return True
return False
def UpperCAmelCase__ ( self : int , __magic_name__ : Optional[int] ) -> str:
"""simple docstring"""
if ("a" <= char <= "z") or ("A" <= char <= "Z"):
return True
return False
def UpperCAmelCase__ ( self : int , __magic_name__ : Optional[Any] ) -> Dict:
"""simple docstring"""
if char in ",;:.?!~,;:。?!《》【】":
return True
return False
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Any ) -> Union[str, Any]:
"""simple docstring"""
if char == " " or char == "\t" or char == "\n" or char == "\r":
return True
if len(__magic_name__ ) == 1:
UpperCAmelCase_ : Optional[Any] = unicodedata.category(__magic_name__ )
if cat == "Zs":
return True
return False
def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : Tuple ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = {}
with io.open(__magic_name__ , '''r''' , encoding='''utf-8''' ) as f:
for index, line in enumerate(__magic_name__ ):
UpperCAmelCase_ : List[Any] = line.rstrip('''\n''' )
UpperCAmelCase_ : Dict = int(__magic_name__ )
return token_to_idx
def UpperCAmelCase__ ( self : Dict , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = 0
if os.path.isdir(__magic_name__ ):
UpperCAmelCase_ : Any = os.path.join(
__magic_name__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
else:
UpperCAmelCase_ : List[str] = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory
with open(__magic_name__ , '''w''' , encoding='''utf-8''' ) as writer:
for token, token_index in sorted(self.vocab.items() , key=lambda __magic_name__ : kv[1] ):
if index != token_index:
logger.warning(
F"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."""
''' Please check that the vocabulary is not corrupted!''' )
UpperCAmelCase_ : Dict = token_index
writer.write(token + '''\n''' )
index += 1
UpperCAmelCase_ : Union[str, Any] = os.path.join(__magic_name__ , '''sentencepiece.bpe.model''' )
with open(__magic_name__ , '''wb''' ) as fi:
UpperCAmelCase_ : Optional[int] = self.sp_model.serialized_model_proto()
fi.write(__magic_name__ )
return (vocab_file,)
| 644
| 0
|
'''simple docstring'''
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int = 10, SCREAMING_SNAKE_CASE__ : int = 22 ) -> int:
UpperCAmelCase_ : Optional[int] = range(1, SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : List[Any] = range(1, SCREAMING_SNAKE_CASE__ )
return sum(
1 for power in powers for base in bases if len(str(base**power ) ) == power )
if __name__ == "__main__":
print(f'''{solution(10, 22) = }''')
| 721
|
'''simple docstring'''
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int ) -> str:
if number > 0:
raise ValueError('''input must be a negative integer''' )
UpperCAmelCase_ : Union[str, Any] = len(bin(SCREAMING_SNAKE_CASE__ )[3:] )
UpperCAmelCase_ : Union[str, Any] = bin(abs(SCREAMING_SNAKE_CASE__ ) - (1 << binary_number_length) )[3:]
UpperCAmelCase_ : Optional[Any] = (
(
'''1'''
+ '''0''' * (binary_number_length - len(SCREAMING_SNAKE_CASE__ ))
+ twos_complement_number
)
if number < 0
else '''0'''
)
return "0b" + twos_complement_number
if __name__ == "__main__":
import doctest
doctest.testmod()
| 644
| 0
|
"""simple docstring"""
import logging
import torch
from accelerate import Accelerator
from arguments import EvaluationArguments
from datasets import load_dataset
from torch.utils.data import IterableDataset
from torch.utils.data.dataloader import DataLoader
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed
class UpperCAmelCase_ ( _a):
def __init__( self , a , a , a=1_0_2_4 , a=1_0_2_4 , a=3.6 ) -> Any:
lowercase__ : List[Any] = tokenizer
lowercase__ : Dict = tokenizer.bos_token_id
lowercase__ : Optional[Any] = dataset
lowercase__ : str = seq_length
lowercase__ : int = seq_length * chars_per_token * num_of_sequences
def __iter__( self ) -> List[str]:
lowercase__ : List[Any] = iter(self.dataset )
lowercase__ : Tuple = True
while more_examples:
lowercase__ , lowercase__ : Optional[Any] = [], 0
while True:
if buffer_len >= self.input_characters:
break
try:
buffer.append(next(a )['content'] )
buffer_len += len(buffer[-1] )
except StopIteration:
lowercase__ : List[Any] = False
break
lowercase__ : Optional[int] = tokenizer(a , truncation=a )['input_ids']
lowercase__ : Any = []
for tokenized_input in tokenized_inputs:
all_token_ids.extend(tokenized_input + [self.concat_token_id] )
for i in range(0 , len(a ) , self.seq_length ):
lowercase__ : Optional[int] = all_token_ids[i : i + self.seq_length]
if len(a ) == self.seq_length:
yield torch.tensor(a )
def a_ ( _lowerCAmelCase : Optional[Any] ):
'''simple docstring'''
lowercase__ : int = {'streaming': True}
lowercase__ : List[str] = load_dataset(args.dataset_name , split='train' , **_lowerCAmelCase )
lowercase__ : Any = ConstantLengthDataset(_lowerCAmelCase , _lowerCAmelCase , seq_length=args.seq_length )
lowercase__ : Union[str, Any] = DataLoader(_lowerCAmelCase , batch_size=args.batch_size )
return eval_dataloader
def a_ ( _lowerCAmelCase : Union[str, Any] ):
'''simple docstring'''
model.eval()
lowercase__ : List[Any] = []
for step, batch in enumerate(_lowerCAmelCase ):
with torch.no_grad():
lowercase__ : Any = model(_lowerCAmelCase , labels=_lowerCAmelCase )
lowercase__ : List[str] = outputs.loss.repeat(args.batch_size )
losses.append(accelerator.gather(_lowerCAmelCase ) )
if args.max_eval_steps > 0 and step >= args.max_eval_steps:
break
lowercase__ : int = torch.mean(torch.cat(_lowerCAmelCase ) )
try:
lowercase__ : Optional[Any] = torch.exp(_lowerCAmelCase )
except OverflowError:
lowercase__ : Tuple = float('inf' )
return loss.item(), perplexity.item()
# Setup Accelerator
_UpperCamelCase : Optional[int] = Accelerator()
# Parse configuration
_UpperCamelCase : int = HfArgumentParser(EvaluationArguments)
_UpperCamelCase : Dict = parser.parse_args()
set_seed(args.seed)
# Logging
_UpperCamelCase : List[str] = logging.getLogger(__name__)
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO
)
# Load model and tokenizer
_UpperCamelCase : Dict = AutoModelForCausalLM.from_pretrained(args.model_ckpt)
_UpperCamelCase : Tuple = AutoTokenizer.from_pretrained(args.model_ckpt)
# Load dataset and dataloader
_UpperCamelCase : Union[str, Any] = create_dataloader(args)
# Prepare everything with our `accelerator`.
_UpperCamelCase , _UpperCamelCase : int = accelerator.prepare(model, eval_dataloader)
# Evaluate and save the last checkpoint
logger.info("Evaluating and saving model after training")
_UpperCamelCase , _UpperCamelCase : Optional[int] = evaluate(args)
logger.info(f'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
| 645
|
"""simple docstring"""
import numpy as np
from sklearn.datasets import fetch_california_housing
from sklearn.metrics import mean_absolute_error, mean_squared_error
from sklearn.model_selection import train_test_split
from xgboost import XGBRegressor
def a_ ( _lowerCAmelCase : dict ):
'''simple docstring'''
return (data["data"], data["target"])
def a_ ( _lowerCAmelCase : np.ndarray , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : np.ndarray ):
'''simple docstring'''
lowercase__ : Any = XGBRegressor(verbosity=0 , random_state=42 )
xgb.fit(_lowerCAmelCase , _lowerCAmelCase )
# Predict target for test data
lowercase__ : str = xgb.predict(_lowerCAmelCase )
lowercase__ : Union[str, Any] = predictions.reshape(len(_lowerCAmelCase ) , 1 )
return predictions
def a_ ( ):
'''simple docstring'''
lowercase__ : Optional[Any] = fetch_california_housing()
lowercase__ , lowercase__ : str = data_handling(_lowerCAmelCase )
lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = train_test_split(
_lowerCAmelCase , _lowerCAmelCase , test_size=0.2_5 , random_state=1 )
lowercase__ : Any = xgboost(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
# Error printing
print(f"""Mean Absolute Error : {mean_absolute_error(_lowerCAmelCase , _lowerCAmelCase )}""" )
print(f"""Mean Square Error : {mean_squared_error(_lowerCAmelCase , _lowerCAmelCase )}""" )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
main()
| 645
| 1
|
"""simple docstring"""
import json
import logging
import os
import socket
import git
import numpy as np
import torch
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
_UpperCamelCase : str = logging.getLogger(__name__)
def a_ ( _lowerCAmelCase : str ):
'''simple docstring'''
lowercase__ : Any = git.Repo(search_parent_directories=_lowerCAmelCase )
lowercase__ : Any = {
'repo_id': str(_lowerCAmelCase ),
'repo_sha': str(repo.head.object.hexsha ),
'repo_branch': str(repo.active_branch ),
}
with open(os.path.join(_lowerCAmelCase , 'git_log.json' ) , 'w' ) as f:
json.dump(_lowerCAmelCase , _lowerCAmelCase , indent=4 )
def a_ ( _lowerCAmelCase : List[Any] ):
'''simple docstring'''
if params.n_gpu <= 0:
lowercase__ : Dict = 0
lowercase__ : List[Any] = -1
lowercase__ : List[str] = True
lowercase__ : Union[str, Any] = False
return
assert torch.cuda.is_available()
logger.info('Initializing GPUs' )
if params.n_gpu > 1:
assert params.local_rank != -1
lowercase__ : Optional[int] = int(os.environ['WORLD_SIZE'] )
lowercase__ : Union[str, Any] = int(os.environ['N_GPU_NODE'] )
lowercase__ : List[Any] = int(os.environ['RANK'] )
# number of nodes / node ID
lowercase__ : int = params.world_size // params.n_gpu_per_node
lowercase__ : List[Any] = params.global_rank // params.n_gpu_per_node
lowercase__ : List[str] = True
assert params.n_nodes == int(os.environ['N_NODES'] )
assert params.node_id == int(os.environ['NODE_RANK'] )
# local job (single GPU)
else:
assert params.local_rank == -1
lowercase__ : List[str] = 1
lowercase__ : Tuple = 0
lowercase__ : int = 0
lowercase__ : List[Any] = 0
lowercase__ : int = 1
lowercase__ : List[Any] = 1
lowercase__ : Tuple = False
# sanity checks
assert params.n_nodes >= 1
assert 0 <= params.node_id < params.n_nodes
assert 0 <= params.local_rank <= params.global_rank < params.world_size
assert params.world_size == params.n_nodes * params.n_gpu_per_node
# define whether this is the master process / if we are in multi-node distributed mode
lowercase__ : Tuple = params.node_id == 0 and params.local_rank == 0
lowercase__ : Optional[int] = params.n_nodes > 1
# summary
lowercase__ : Union[str, Any] = f"""--- Global rank: {params.global_rank} - """
logger.info(PREFIX + 'Number of nodes: %i' % params.n_nodes )
logger.info(PREFIX + 'Node ID : %i' % params.node_id )
logger.info(PREFIX + 'Local rank : %i' % params.local_rank )
logger.info(PREFIX + 'World size : %i' % params.world_size )
logger.info(PREFIX + 'GPUs per node : %i' % params.n_gpu_per_node )
logger.info(PREFIX + 'Master : %s' % str(params.is_master ) )
logger.info(PREFIX + 'Multi-node : %s' % str(params.multi_node ) )
logger.info(PREFIX + 'Multi-GPU : %s' % str(params.multi_gpu ) )
logger.info(PREFIX + 'Hostname : %s' % socket.gethostname() )
# set GPU device
torch.cuda.set_device(params.local_rank )
# initialize multi-GPU
if params.multi_gpu:
logger.info('Initializing PyTorch distributed' )
torch.distributed.init_process_group(
init_method='env://' , backend='nccl' , )
def a_ ( _lowerCAmelCase : List[Any] ):
'''simple docstring'''
np.random.seed(args.seed )
torch.manual_seed(args.seed )
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed )
| 645
|
"""simple docstring"""
import copy
import inspect
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import VideoMAEConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING,
VideoMAEForPreTraining,
VideoMAEForVideoClassification,
VideoMAEModel,
)
from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from transformers import VideoMAEImageProcessor
class UpperCAmelCase_ :
def __init__( self , a , a=1_3 , a=1_0 , a=3 , a=2 , a=2 , a=2 , a=True , a=True , a=3_2 , a=5 , a=4 , a=3_7 , a="gelu" , a=0.1 , a=0.1 , a=1_0 , a=0.02 , a=0.9 , a=None , ) -> Optional[Any]:
lowercase__ : str = parent
lowercase__ : int = batch_size
lowercase__ : Union[str, Any] = image_size
lowercase__ : Optional[Any] = num_channels
lowercase__ : Dict = patch_size
lowercase__ : Tuple = tubelet_size
lowercase__ : Optional[int] = num_frames
lowercase__ : Optional[int] = is_training
lowercase__ : int = use_labels
lowercase__ : Optional[int] = hidden_size
lowercase__ : Union[str, Any] = num_hidden_layers
lowercase__ : Optional[int] = num_attention_heads
lowercase__ : Any = intermediate_size
lowercase__ : str = hidden_act
lowercase__ : List[Any] = hidden_dropout_prob
lowercase__ : str = attention_probs_dropout_prob
lowercase__ : Union[str, Any] = type_sequence_label_size
lowercase__ : List[Any] = initializer_range
lowercase__ : str = mask_ratio
lowercase__ : Optional[Any] = scope
# in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame
lowercase__ : Optional[Any] = (image_size // patch_size) ** 2
lowercase__ : str = (num_frames // tubelet_size) * self.num_patches_per_frame
# use this variable to define bool_masked_pos
lowercase__ : str = int(mask_ratio * self.seq_length )
def _UpperCAmelCase ( self ) -> Tuple:
lowercase__ : int = floats_tensor(
[self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] )
lowercase__ : int = None
if self.use_labels:
lowercase__ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowercase__ : Dict = self.get_config()
return config, pixel_values, labels
def _UpperCAmelCase ( self ) -> Tuple:
return VideoMAEConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a , initializer_range=self.initializer_range , )
def _UpperCAmelCase ( self , a , a , a ) -> Optional[int]:
lowercase__ : Dict = VideoMAEModel(config=a )
model.to(a )
model.eval()
lowercase__ : Tuple = model(a )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _UpperCAmelCase ( self , a , a , a ) -> Union[str, Any]:
lowercase__ : str = VideoMAEForPreTraining(a )
model.to(a )
model.eval()
# important: each video needs to have the same number of masked patches
# hence we define a single mask, which we then repeat for each example in the batch
lowercase__ : Any = torch.ones((self.num_masks,) )
lowercase__ : str = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] )
lowercase__ : Optional[int] = mask.expand(self.batch_size , -1 ).bool()
lowercase__ : str = model(a , a )
# model only returns predictions for masked patches
lowercase__ : str = mask.sum().item()
lowercase__ : int = 3 * self.tubelet_size * self.patch_size**2
self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) )
def _UpperCAmelCase ( self ) -> str:
lowercase__ : Dict = self.prepare_config_and_inputs()
lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = config_and_inputs
lowercase__ : List[str] = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class UpperCAmelCase_ ( _a , _a , unittest.TestCase):
lowerCamelCase__ : Tuple = (
(VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else ()
)
lowerCamelCase__ : Optional[int] = (
{"feature-extraction": VideoMAEModel, "video-classification": VideoMAEForVideoClassification}
if is_torch_available()
else {}
)
lowerCamelCase__ : Any = False
lowerCamelCase__ : Any = False
lowerCamelCase__ : Union[str, Any] = False
lowerCamelCase__ : str = False
def _UpperCAmelCase ( self ) -> Tuple:
lowercase__ : Optional[Any] = VideoMAEModelTester(self )
lowercase__ : Optional[Any] = ConfigTester(self , config_class=a , has_text_modality=a , hidden_size=3_7 )
def _UpperCAmelCase ( self , a , a , a=False ) -> Optional[int]:
lowercase__ : Union[str, Any] = copy.deepcopy(a )
if model_class == VideoMAEForPreTraining:
# important: each video needs to have the same number of masked patches
# hence we define a single mask, which we then repeat for each example in the batch
lowercase__ : Optional[Any] = torch.ones((self.model_tester.num_masks,) )
lowercase__ : Any = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] )
lowercase__ : Any = mask.expand(self.model_tester.batch_size , -1 ).bool()
lowercase__ : Union[str, Any] = bool_masked_pos.to(a )
if return_labels:
if model_class in [
*get_values(a ),
]:
lowercase__ : Dict = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=a )
return inputs_dict
def _UpperCAmelCase ( self ) -> Tuple:
self.config_tester.run_common_tests()
@unittest.skip(reason='VideoMAE does not use inputs_embeds' )
def _UpperCAmelCase ( self ) -> Dict:
pass
def _UpperCAmelCase ( self ) -> List[Any]:
lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase__ : int = model_class(a )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
lowercase__ : int = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(a , nn.Linear ) )
def _UpperCAmelCase ( self ) -> Optional[int]:
lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase__ : List[str] = model_class(a )
lowercase__ : int = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowercase__ : Optional[Any] = [*signature.parameters.keys()]
lowercase__ : int = ['pixel_values']
self.assertListEqual(arg_names[:1] , a )
def _UpperCAmelCase ( self ) -> Optional[Any]:
lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*a )
def _UpperCAmelCase ( self ) -> Tuple:
lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*a )
@slow
def _UpperCAmelCase ( self ) -> str:
for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase__ : List[Any] = VideoMAEModel.from_pretrained(a )
self.assertIsNotNone(a )
def _UpperCAmelCase ( self ) -> Optional[Any]:
if not self.has_attentions:
pass
else:
lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
lowercase__ : str = True
for model_class in self.all_model_classes:
lowercase__ : Union[str, Any] = self.model_tester.seq_length - self.model_tester.num_masks
lowercase__ : Any = (
num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length
)
lowercase__ : Optional[Any] = True
lowercase__ : int = False
lowercase__ : Any = True
lowercase__ : List[str] = model_class(a )
model.to(a )
model.eval()
with torch.no_grad():
lowercase__ : Optional[int] = model(**self._prepare_for_class(a , a ) )
lowercase__ : Dict = outputs.attentions
self.assertEqual(len(a ) , self.model_tester.num_hidden_layers )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
lowercase__ : str = True
lowercase__ : List[str] = model_class(a )
model.to(a )
model.eval()
with torch.no_grad():
lowercase__ : List[Any] = model(**self._prepare_for_class(a , a ) )
lowercase__ : Optional[Any] = outputs.attentions
self.assertEqual(len(a ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , )
lowercase__ : List[str] = len(a )
# Check attention is always last and order is fine
lowercase__ : Optional[int] = True
lowercase__ : List[str] = True
lowercase__ : int = model_class(a )
model.to(a )
model.eval()
with torch.no_grad():
lowercase__ : List[str] = model(**self._prepare_for_class(a , a ) )
self.assertEqual(out_len + 1 , len(a ) )
lowercase__ : int = outputs.attentions
self.assertEqual(len(a ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , )
def _UpperCAmelCase ( self ) -> Optional[int]:
def check_hidden_states_output(a , a , a ):
lowercase__ : Optional[int] = model_class(a )
model.to(a )
model.eval()
with torch.no_grad():
lowercase__ : Optional[Any] = model(**self._prepare_for_class(a , a ) )
lowercase__ : Optional[int] = outputs.hidden_states
lowercase__ : List[Any] = self.model_tester.num_hidden_layers + 1
self.assertEqual(len(a ) , a )
lowercase__ : Optional[Any] = self.model_tester.seq_length - self.model_tester.num_masks
lowercase__ : Union[str, Any] = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , )
lowercase__ , lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase__ : Tuple = True
check_hidden_states_output(a , a , a )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowercase__ : Union[str, Any] = True
check_hidden_states_output(a , a , a )
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' )
def _UpperCAmelCase ( self ) -> List[Any]:
pass
def a_ ( ):
'''simple docstring'''
lowercase__ : int = hf_hub_download(
repo_id='hf-internal-testing/spaghetti-video' , filename='eating_spaghetti.npy' , repo_type='dataset' )
lowercase__ : str = np.load(_lowerCAmelCase )
return list(_lowerCAmelCase )
@require_torch
@require_vision
class UpperCAmelCase_ ( unittest.TestCase):
@cached_property
def _UpperCAmelCase ( self ) -> Optional[Any]:
# logits were tested with a different mean and std, so we use the same here
return (
VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] )
if is_vision_available()
else None
)
@slow
def _UpperCAmelCase ( self ) -> int:
lowercase__ : Dict = VideoMAEForVideoClassification.from_pretrained('MCG-NJU/videomae-base-finetuned-kinetics' ).to(
a )
lowercase__ : str = self.default_image_processor
lowercase__ : List[str] = prepare_video()
lowercase__ : int = image_processor(a , return_tensors='pt' ).to(a )
# forward pass
with torch.no_grad():
lowercase__ : Union[str, Any] = model(**a )
# verify the logits
lowercase__ : str = torch.Size((1, 4_0_0) )
self.assertEqual(outputs.logits.shape , a )
lowercase__ : List[Any] = torch.tensor([0.3_669, -0.0_688, -0.2_421] ).to(a )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , a , atol=1e-4 ) )
@slow
def _UpperCAmelCase ( self ) -> List[str]:
lowercase__ : Optional[int] = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short' ).to(a )
lowercase__ : Optional[Any] = self.default_image_processor
lowercase__ : List[str] = prepare_video()
lowercase__ : str = image_processor(a , return_tensors='pt' ).to(a )
# add boolean mask, indicating which patches to mask
lowercase__ : Union[str, Any] = hf_hub_download(repo_id='hf-internal-testing/bool-masked-pos' , filename='bool_masked_pos.pt' )
lowercase__ : str = torch.load(a )
# forward pass
with torch.no_grad():
lowercase__ : List[Any] = model(**a )
# verify the logits
lowercase__ : Dict = torch.Size([1, 1_4_0_8, 1_5_3_6] )
lowercase__ : List[str] = torch.tensor(
[[0.7_994, 0.9_612, 0.8_508], [0.7_401, 0.8_958, 0.8_302], [0.5_862, 0.7_468, 0.7_325]] , device=a )
self.assertEqual(outputs.logits.shape , a )
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , a , atol=1e-4 ) )
# verify the loss (`config.norm_pix_loss` = `True`)
lowercase__ : List[Any] = torch.tensor([0.5_142] , device=a )
self.assertTrue(torch.allclose(outputs.loss , a , atol=1e-4 ) )
# verify the loss (`config.norm_pix_loss` = `False`)
lowercase__ : Tuple = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short' , norm_pix_loss=a ).to(
a )
with torch.no_grad():
lowercase__ : Any = model(**a )
lowercase__ : List[Any] = torch.tensor(torch.tensor([0.6_469] ) , device=a )
self.assertTrue(torch.allclose(outputs.loss , a , atol=1e-4 ) )
| 645
| 1
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
_UpperCamelCase : Optional[int] = {
"configuration_rag": ["RagConfig"],
"retrieval_rag": ["RagRetriever"],
"tokenization_rag": ["RagTokenizer"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase : List[Any] = [
"RagModel",
"RagPreTrainedModel",
"RagSequenceForGeneration",
"RagTokenForGeneration",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase : str = [
"TFRagModel",
"TFRagPreTrainedModel",
"TFRagSequenceForGeneration",
"TFRagTokenForGeneration",
]
if TYPE_CHECKING:
from .configuration_rag import RagConfig
from .retrieval_rag import RagRetriever
from .tokenization_rag import RagTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_rag import (
TFRagModel,
TFRagPreTrainedModel,
TFRagSequenceForGeneration,
TFRagTokenForGeneration,
)
else:
import sys
_UpperCamelCase : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 645
|
"""simple docstring"""
import argparse
import fairseq
import torch
from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging
logging.set_verbosity_info()
_UpperCamelCase : Dict = logging.get_logger(__name__)
_UpperCamelCase : List[Any] = {
"post_extract_proj": "feature_projection.projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.k_proj": "encoder.layers.*.attention.k_proj",
"self_attn.v_proj": "encoder.layers.*.attention.v_proj",
"self_attn.q_proj": "encoder.layers.*.attention.q_proj",
"self_attn.out_proj": "encoder.layers.*.attention.out_proj",
"self_attn_layer_norm": "encoder.layers.*.layer_norm",
"fc1": "encoder.layers.*.feed_forward.intermediate_dense",
"fc2": "encoder.layers.*.feed_forward.output_dense",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.layer_norm": "encoder.layer_norm",
"encoder.layer_norm_for_extract": "layer_norm_for_extract",
"w2v_model.layer_norm": "feature_projection.layer_norm",
"quantizer.weight_proj": "quantizer.weight_proj",
"quantizer.vars": "quantizer.codevectors",
"project_q": "project_q",
"final_proj": "project_hid",
"w2v_encoder.proj": "lm_head",
"label_embs_concat": "label_embeddings_concat",
"mask_emb": "masked_spec_embed",
"spk_proj": "speaker_proj",
}
_UpperCamelCase : List[str] = [
"lm_head",
"quantizer.weight_proj",
"quantizer.codevectors",
"project_q",
"project_hid",
"label_embeddings_concat",
"speaker_proj",
"layer_norm_for_extract",
]
def a_ ( _lowerCAmelCase : Any , _lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple ):
'''simple docstring'''
for attribute in key.split('.' ):
lowercase__ : Dict = getattr(_lowerCAmelCase , _lowerCAmelCase )
if weight_type is not None:
lowercase__ : Optional[int] = getattr(_lowerCAmelCase , _lowerCAmelCase ).shape
else:
lowercase__ : Optional[int] = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be"""
f""" {value.shape} for {full_name}""" )
if weight_type == "weight":
lowercase__ : Optional[Any] = value
elif weight_type == "weight_g":
lowercase__ : Dict = value
elif weight_type == "weight_v":
lowercase__ : List[str] = value
elif weight_type == "bias":
lowercase__ : Optional[Any] = value
else:
lowercase__ : List[str] = value
logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" )
def a_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] ):
'''simple docstring'''
lowercase__ : Tuple = []
lowercase__ : List[str] = fairseq_model.state_dict()
lowercase__ : Union[str, Any] = hf_model.unispeech_sat.feature_extractor
for name, value in fairseq_dict.items():
lowercase__ : Optional[int] = False
if "conv_layers" in name:
load_conv_layer(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , hf_model.config.feat_extract_norm == 'group' , )
lowercase__ : Optional[Any] = True
else:
for key, mapped_key in MAPPING.items():
lowercase__ : List[Any] = 'unispeech_sat.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]:
if "layer_norm_for_extract" in name and (".".join(name.split('.' )[:-1] ) != key):
# special case since naming is very similar
continue
lowercase__ : int = True
if "*" in mapped_key:
lowercase__ : Optional[int] = name.split(_lowerCAmelCase )[0].split('.' )[-2]
lowercase__ : List[str] = mapped_key.replace('*' , _lowerCAmelCase )
if "weight_g" in name:
lowercase__ : List[Any] = 'weight_g'
elif "weight_v" in name:
lowercase__ : int = 'weight_v'
elif "bias" in name:
lowercase__ : Dict = 'bias'
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
lowercase__ : Union[str, Any] = 'weight'
else:
lowercase__ : int = None
set_recursively(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
continue
if not is_used:
unused_weights.append(_lowerCAmelCase )
logger.warning(f"""Unused weights: {unused_weights}""" )
def a_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : Dict ):
'''simple docstring'''
lowercase__ : int = full_name.split('conv_layers.' )[-1]
lowercase__ : int = name.split('.' )
lowercase__ : int = int(items[0] )
lowercase__ : Dict = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" )
lowercase__ : Union[str, Any] = value
logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" )
lowercase__ : Optional[int] = value
logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" )
lowercase__ : List[Any] = value
logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" )
lowercase__ : int = value
logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(_lowerCAmelCase )
@torch.no_grad()
def a_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : str=None , _lowerCAmelCase : Tuple=True ):
'''simple docstring'''
if config_path is not None:
lowercase__ : Any = UniSpeechSatConfig.from_pretrained(_lowerCAmelCase )
else:
lowercase__ : Any = UniSpeechSatConfig()
lowercase__ : Union[str, Any] = ''
if is_finetuned:
lowercase__ : Optional[Any] = UniSpeechSatForCTC(_lowerCAmelCase )
else:
lowercase__ : List[Any] = UniSpeechSatForPreTraining(_lowerCAmelCase )
lowercase__ , lowercase__ , lowercase__ : int = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} )
lowercase__ : Union[str, Any] = model[0].eval()
recursively_load_weights(_lowerCAmelCase , _lowerCAmelCase )
hf_wavavec.save_pretrained(_lowerCAmelCase )
if __name__ == "__main__":
_UpperCamelCase : Tuple = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not"
)
_UpperCamelCase : str = parser.parse_args()
convert_unispeech_sat_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 645
| 1
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available
_UpperCamelCase : str = {
"configuration_gpt_neo": ["GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoConfig", "GPTNeoOnnxConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase : Tuple = [
"GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST",
"GPTNeoForCausalLM",
"GPTNeoForQuestionAnswering",
"GPTNeoForSequenceClassification",
"GPTNeoForTokenClassification",
"GPTNeoModel",
"GPTNeoPreTrainedModel",
"load_tf_weights_in_gpt_neo",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase : Dict = [
"FlaxGPTNeoForCausalLM",
"FlaxGPTNeoModel",
"FlaxGPTNeoPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_gpt_neo import (
GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST,
GPTNeoForCausalLM,
GPTNeoForQuestionAnswering,
GPTNeoForSequenceClassification,
GPTNeoForTokenClassification,
GPTNeoModel,
GPTNeoPreTrainedModel,
load_tf_weights_in_gpt_neo,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel
else:
import sys
_UpperCamelCase : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 645
|
"""simple docstring"""
import collections
import inspect
import unittest
from typing import Dict, List, Tuple
from transformers import MaskFormerSwinConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device
from transformers.utils import is_torch_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import MaskFormerSwinBackbone
from transformers.models.maskformer import MaskFormerSwinModel
class UpperCAmelCase_ :
def __init__( self , a , a=1_3 , a=3_2 , a=2 , a=3 , a=1_6 , a=[1, 2, 1] , a=[2, 2, 4] , a=2 , a=2.0 , a=True , a=0.0 , a=0.0 , a=0.1 , a="gelu" , a=False , a=True , a=0.02 , a=1e-5 , a=True , a=None , a=True , a=1_0 , a=8 , a=["stage1", "stage2", "stage3"] , a=[1, 2, 3] , ) -> int:
lowercase__ : int = parent
lowercase__ : Union[str, Any] = batch_size
lowercase__ : Dict = image_size
lowercase__ : str = patch_size
lowercase__ : Optional[Any] = num_channels
lowercase__ : List[str] = embed_dim
lowercase__ : Any = depths
lowercase__ : Dict = num_heads
lowercase__ : List[str] = window_size
lowercase__ : int = mlp_ratio
lowercase__ : Tuple = qkv_bias
lowercase__ : Union[str, Any] = hidden_dropout_prob
lowercase__ : str = attention_probs_dropout_prob
lowercase__ : Tuple = drop_path_rate
lowercase__ : List[str] = hidden_act
lowercase__ : Optional[Any] = use_absolute_embeddings
lowercase__ : Optional[Any] = patch_norm
lowercase__ : Any = layer_norm_eps
lowercase__ : List[Any] = initializer_range
lowercase__ : List[str] = is_training
lowercase__ : int = scope
lowercase__ : Optional[int] = use_labels
lowercase__ : List[Any] = type_sequence_label_size
lowercase__ : List[str] = encoder_stride
lowercase__ : Optional[Any] = out_features
lowercase__ : Dict = out_indices
def _UpperCAmelCase ( self ) -> Tuple:
lowercase__ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowercase__ : Optional[Any] = None
if self.use_labels:
lowercase__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowercase__ : Tuple = self.get_config()
return config, pixel_values, labels
def _UpperCAmelCase ( self ) -> Union[str, Any]:
return MaskFormerSwinConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , )
def _UpperCAmelCase ( self , a , a , a ) -> Dict:
lowercase__ : Tuple = MaskFormerSwinModel(config=a )
model.to(a )
model.eval()
lowercase__ : str = model(a )
lowercase__ : str = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
lowercase__ : Dict = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def _UpperCAmelCase ( self , a , a , a ) -> Optional[int]:
lowercase__ : List[Any] = MaskFormerSwinBackbone(config=a )
model.to(a )
model.eval()
lowercase__ : int = model(a )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [1_3, 1_6, 1_6, 1_6] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , [1_6, 3_2, 6_4] )
# verify ValueError
with self.parent.assertRaises(a ):
lowercase__ : Dict = ['stem']
lowercase__ : List[str] = MaskFormerSwinBackbone(config=a )
def _UpperCAmelCase ( self ) -> str:
lowercase__ : int = self.prepare_config_and_inputs()
lowercase__ , lowercase__ , lowercase__ : Tuple = config_and_inputs
lowercase__ : Union[str, Any] = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class UpperCAmelCase_ ( _a , _a , unittest.TestCase):
lowerCamelCase__ : Optional[int] = (
(
MaskFormerSwinModel,
MaskFormerSwinBackbone,
)
if is_torch_available()
else ()
)
lowerCamelCase__ : List[str] = {"feature-extraction": MaskFormerSwinModel} if is_torch_available() else {}
lowerCamelCase__ : str = False
lowerCamelCase__ : Dict = False
lowerCamelCase__ : Any = False
lowerCamelCase__ : Dict = False
lowerCamelCase__ : int = False
def _UpperCAmelCase ( self ) -> List[Any]:
lowercase__ : str = MaskFormerSwinModelTester(self )
lowercase__ : Tuple = ConfigTester(self , config_class=a , embed_dim=3_7 )
@require_torch_multi_gpu
@unittest.skip(
reason=(
'`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with'
' `nn.DataParallel`'
) )
def _UpperCAmelCase ( self ) -> Optional[int]:
pass
def _UpperCAmelCase ( self ) -> Tuple:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def _UpperCAmelCase ( self ) -> str:
return
def _UpperCAmelCase ( self ) -> List[Any]:
lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*a )
def _UpperCAmelCase ( self ) -> List[Any]:
lowercase__ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*a )
@unittest.skip('Swin does not use inputs_embeds' )
def _UpperCAmelCase ( self ) -> Tuple:
pass
@unittest.skip('Swin does not support feedforward chunking' )
def _UpperCAmelCase ( self ) -> Tuple:
pass
def _UpperCAmelCase ( self ) -> Optional[Any]:
lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase__ : List[str] = model_class(a )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
lowercase__ : Union[str, Any] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(a , nn.Linear ) )
def _UpperCAmelCase ( self ) -> str:
lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase__ : Any = model_class(a )
lowercase__ : Tuple = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowercase__ : Optional[Any] = [*signature.parameters.keys()]
lowercase__ : List[Any] = ['pixel_values']
self.assertListEqual(arg_names[:1] , a )
@unittest.skip(reason='MaskFormerSwin is only used as backbone and doesn\'t support output_attentions' )
def _UpperCAmelCase ( self ) -> List[Any]:
pass
@unittest.skip(reason='MaskFormerSwin is only used as an internal backbone' )
def _UpperCAmelCase ( self ) -> int:
pass
def _UpperCAmelCase ( self , a , a , a , a ) -> Tuple:
lowercase__ : Dict = model_class(a )
model.to(a )
model.eval()
with torch.no_grad():
lowercase__ : str = model(**self._prepare_for_class(a , a ) )
lowercase__ : List[Any] = outputs.hidden_states
lowercase__ : str = getattr(
self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(a ) , a )
# Swin has a different seq_length
lowercase__ : Dict = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
lowercase__ : Tuple = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def _UpperCAmelCase ( self ) -> Optional[Any]:
lowercase__ , lowercase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common()
lowercase__ : List[Any] = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes:
lowercase__ : List[str] = True
self.check_hidden_states_output(a , a , a , a )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowercase__ : List[str] = True
self.check_hidden_states_output(a , a , a , a )
def _UpperCAmelCase ( self ) -> Optional[int]:
lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common()
lowercase__ : Union[str, Any] = 3
lowercase__ : str = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
lowercase__ : Tuple = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
lowercase__ : Optional[int] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
lowercase__ : List[str] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes:
lowercase__ : List[str] = True
self.check_hidden_states_output(a , a , a , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowercase__ : int = True
self.check_hidden_states_output(a , a , a , (padded_height, padded_width) )
@unittest.skip(reason='MaskFormerSwin doesn\'t have pretrained checkpoints' )
def _UpperCAmelCase ( self ) -> Optional[int]:
pass
@unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' )
def _UpperCAmelCase ( self ) -> Any:
pass
@unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' )
def _UpperCAmelCase ( self ) -> Any:
pass
def _UpperCAmelCase ( self ) -> Any:
lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common()
def set_nan_tensor_to_zero(a ):
lowercase__ : Union[str, Any] = 0
return t
def check_equivalence(a , a , a , a={} ):
with torch.no_grad():
lowercase__ : Optional[Any] = model(**a , return_dict=a , **a )
lowercase__ : Optional[int] = model(**a , return_dict=a , **a ).to_tuple()
def recursive_check(a , a ):
if isinstance(a , (List, Tuple) ):
for tuple_iterable_value, dict_iterable_value in zip(a , a ):
recursive_check(a , a )
elif isinstance(a , a ):
for tuple_iterable_value, dict_iterable_value in zip(
tuple_object.values() , dict_object.values() ):
recursive_check(a , a )
elif tuple_object is None:
return
else:
self.assertTrue(
torch.allclose(
set_nan_tensor_to_zero(a ) , set_nan_tensor_to_zero(a ) , atol=1e-5 ) , msg=(
'Tuple and dict output are not equal. Difference:'
f""" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:"""
f""" {torch.isnan(a ).any()} and `inf`: {torch.isinf(a )}. Dict has"""
f""" `nan`: {torch.isnan(a ).any()} and `inf`: {torch.isinf(a )}."""
) , )
recursive_check(a , a )
for model_class in self.all_model_classes:
lowercase__ : Any = model_class(a )
model.to(a )
model.eval()
lowercase__ : Tuple = self._prepare_for_class(a , a )
lowercase__ : Optional[Any] = self._prepare_for_class(a , a )
check_equivalence(a , a , a )
lowercase__ : Any = self._prepare_for_class(a , a , return_labels=a )
lowercase__ : List[Any] = self._prepare_for_class(a , a , return_labels=a )
check_equivalence(a , a , a )
lowercase__ : Any = self._prepare_for_class(a , a )
lowercase__ : int = self._prepare_for_class(a , a )
check_equivalence(a , a , a , {'output_hidden_states': True} )
lowercase__ : Dict = self._prepare_for_class(a , a , return_labels=a )
lowercase__ : Optional[int] = self._prepare_for_class(a , a , return_labels=a )
check_equivalence(a , a , a , {'output_hidden_states': True} )
@require_torch
class UpperCAmelCase_ ( unittest.TestCase , _a):
lowerCamelCase__ : Dict = (MaskFormerSwinBackbone,) if is_torch_available() else ()
lowerCamelCase__ : Optional[int] = MaskFormerSwinConfig
def _UpperCAmelCase ( self ) -> Dict:
lowercase__ : Optional[int] = MaskFormerSwinModelTester(self )
def _UpperCAmelCase ( self ) -> Optional[Any]:
lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common()
lowercase__ : int = inputs_dict['pixel_values'].shape[0]
for backbone_class in self.all_model_classes:
lowercase__ : Optional[Any] = backbone_class(a )
backbone.to(a )
backbone.eval()
lowercase__ : Union[str, Any] = backbone(**a )
# Test default outputs and verify feature maps
self.assertIsInstance(outputs.feature_maps , a )
self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) )
for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ):
self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) )
self.assertIsNone(outputs.hidden_states )
self.assertIsNone(outputs.attentions )
# Test output_hidden_states=True
lowercase__ : List[str] = backbone(**a , output_hidden_states=a )
self.assertIsNotNone(outputs.hidden_states )
self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) )
# We skip the stem layer
for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ):
for hidden_state in hidden_states:
# Hidden states are in the format (batch_size, (height * width), n_channels)
lowercase__ , lowercase__ , lowercase__ : int = hidden_state.shape
self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) )
# Test output_attentions=True
if self.has_attentions:
lowercase__ : List[Any] = backbone(**a , output_attentions=a )
self.assertIsNotNone(outputs.attentions )
| 645
| 1
|
"""simple docstring"""
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import AutoTokenizer, BarkProcessor
from transformers.testing_utils import require_torch, slow
@require_torch
class UpperCAmelCase_ ( unittest.TestCase):
def _UpperCAmelCase ( self ) -> List[str]:
lowercase__ : Optional[Any] = 'ylacombe/bark-small'
lowercase__ : Optional[int] = tempfile.mkdtemp()
lowercase__ : int = 'en_speaker_1'
lowercase__ : Union[str, Any] = 'This is a test string'
lowercase__ : Any = 'speaker_embeddings_path.json'
lowercase__ : str = 'speaker_embeddings'
def _UpperCAmelCase ( self , **a ) -> List[Any]:
return AutoTokenizer.from_pretrained(self.checkpoint , **a )
def _UpperCAmelCase ( self ) -> Optional[Any]:
shutil.rmtree(self.tmpdirname )
def _UpperCAmelCase ( self ) -> str:
lowercase__ : List[str] = self.get_tokenizer()
lowercase__ : Dict = BarkProcessor(tokenizer=a )
processor.save_pretrained(self.tmpdirname )
lowercase__ : List[Any] = BarkProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
@slow
def _UpperCAmelCase ( self ) -> Dict:
lowercase__ : str = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
processor.save_pretrained(
self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , )
lowercase__ : Dict = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' )
lowercase__ : int = BarkProcessor.from_pretrained(
self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='(BOS)' , eos_token='(EOS)' , )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
def _UpperCAmelCase ( self ) -> Any:
lowercase__ : List[Any] = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
lowercase__ : List[Any] = 3_5
lowercase__ : Tuple = 2
lowercase__ : Dict = 8
lowercase__ : Dict = {
'semantic_prompt': np.ones(a ),
'coarse_prompt': np.ones((nb_codebooks_coarse, seq_len) ),
'fine_prompt': np.ones((nb_codebooks_total, seq_len) ),
}
# test providing already loaded voice_preset
lowercase__ : int = processor(text=self.input_string , voice_preset=a )
lowercase__ : Any = inputs['history_prompt']
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(a , np.array([] ) ).tolist() )
# test loading voice preset from npz file
lowercase__ : Dict = os.path.join(self.tmpdirname , 'file.npz' )
np.savez(a , **a )
lowercase__ : Any = processor(text=self.input_string , voice_preset=a )
lowercase__ : Optional[Any] = inputs['history_prompt']
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(a , np.array([] ) ).tolist() )
# test loading voice preset from the hub
lowercase__ : Tuple = processor(text=self.input_string , voice_preset=self.voice_preset )
def _UpperCAmelCase ( self ) -> int:
lowercase__ : int = self.get_tokenizer()
lowercase__ : Union[str, Any] = BarkProcessor(tokenizer=a )
lowercase__ : Any = processor(text=self.input_string )
lowercase__ : Union[str, Any] = tokenizer(
self.input_string , padding='max_length' , max_length=2_5_6 , add_special_tokens=a , return_attention_mask=a , return_token_type_ids=a , )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
| 645
|
"""simple docstring"""
import math
def a_ ( _lowerCAmelCase : int = 100 ):
'''simple docstring'''
lowercase__ : Union[str, Any] = sum(i * i for i in range(1 , n + 1 ) )
lowercase__ : str = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) )
return square_of_sum - sum_of_squares
if __name__ == "__main__":
print(f'''{solution() = }''')
| 645
| 1
|
"""simple docstring"""
import logging
import random
import ray
from transformers import RagConfig, RagRetriever, RagTokenizer
from transformers.models.rag.retrieval_rag import CustomHFIndex
_UpperCamelCase : Optional[Any] = logging.getLogger(__name__)
class UpperCAmelCase_ :
def __init__( self ) -> List[str]:
lowercase__ : List[Any] = False
def _UpperCAmelCase ( self , a , a , a , a ) -> List[str]:
if not self.initialized:
lowercase__ : str = RagRetriever(
a , question_encoder_tokenizer=a , generator_tokenizer=a , index=a , init_retrieval=a , )
lowercase__ : int = True
def _UpperCAmelCase ( self ) -> Optional[Any]:
self.retriever.index.init_index()
def _UpperCAmelCase ( self , a , a ) -> List[str]:
lowercase__ , lowercase__ : Union[str, Any] = self.retriever._main_retrieve(a , a )
return doc_ids, retrieved_doc_embeds
class UpperCAmelCase_ ( _a):
def __init__( self , a , a , a , a , a=None ) -> Dict:
if index is not None and index.is_initialized() and len(a ) > 0:
raise ValueError(
'When using Ray for distributed fine-tuning, '
'you\'ll need to provide the paths instead, '
'as the dataset and the index are loaded '
'separately. More info in examples/rag/use_own_knowledge_dataset.py ' )
super().__init__(
a , question_encoder_tokenizer=a , generator_tokenizer=a , index=a , init_retrieval=a , )
lowercase__ : int = retrieval_workers
if len(self.retrieval_workers ) > 0:
ray.get(
[
worker.create_rag_retriever.remote(a , a , a , a )
for worker in self.retrieval_workers
] )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
logger.info('initializing retrieval' )
if len(self.retrieval_workers ) > 0:
ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] )
else:
# Non-distributed training. Load index into this same process.
self.index.init_index()
def _UpperCAmelCase ( self , a , a ) -> Optional[int]:
if len(self.retrieval_workers ) > 0:
# Select a random retrieval actor.
lowercase__ : List[str] = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )]
lowercase__ , lowercase__ : int = ray.get(random_worker.retrieve.remote(a , a ) )
else:
lowercase__ , lowercase__ : List[str] = self._main_retrieve(a , a )
return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(a )
@classmethod
def _UpperCAmelCase ( cls , a , a=None , **a ) -> Optional[int]:
return super(a , cls ).get_tokenizers(a , a , **a )
@classmethod
def _UpperCAmelCase ( cls , a , a , a=None , **a ) -> int:
lowercase__ : List[str] = kwargs.pop('config' , a ) or RagConfig.from_pretrained(a , **a )
lowercase__ : Any = RagTokenizer.from_pretrained(a , config=a )
lowercase__ : List[str] = rag_tokenizer.question_encoder
lowercase__ : str = rag_tokenizer.generator
if indexed_dataset is not None:
lowercase__ : Tuple = 'custom'
lowercase__ : List[Any] = CustomHFIndex(config.retrieval_vector_size , a )
else:
lowercase__ : List[Any] = cls._build_index(a )
return cls(
a , question_encoder_tokenizer=a , generator_tokenizer=a , retrieval_workers=a , index=a , )
| 645
|
"""simple docstring"""
import gc
import unittest
from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline
from diffusers.utils import is_flax_available, load_image, slow
from diffusers.utils.testing_utils import require_flax
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
@slow
@require_flax
class UpperCAmelCase_ ( unittest.TestCase):
def _UpperCAmelCase ( self ) -> List[Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
def _UpperCAmelCase ( self ) -> Tuple:
lowercase__ , lowercase__ : str = FlaxControlNetModel.from_pretrained(
'lllyasviel/sd-controlnet-canny' , from_pt=a , dtype=jnp.bfloataa )
lowercase__ , lowercase__ : List[str] = FlaxStableDiffusionControlNetPipeline.from_pretrained(
'runwayml/stable-diffusion-v1-5' , controlnet=a , from_pt=a , dtype=jnp.bfloataa )
lowercase__ : List[Any] = controlnet_params
lowercase__ : int = 'bird'
lowercase__ : List[Any] = jax.device_count()
lowercase__ : Dict = pipe.prepare_text_inputs([prompts] * num_samples )
lowercase__ : Union[str, Any] = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png' )
lowercase__ : Optional[int] = pipe.prepare_image_inputs([canny_image] * num_samples )
lowercase__ : List[Any] = jax.random.PRNGKey(0 )
lowercase__ : Tuple = jax.random.split(a , jax.device_count() )
lowercase__ : str = replicate(a )
lowercase__ : List[str] = shard(a )
lowercase__ : Dict = shard(a )
lowercase__ : List[Any] = pipe(
prompt_ids=a , image=a , params=a , prng_seed=a , num_inference_steps=5_0 , jit=a , ).images
assert images.shape == (jax.device_count(), 1, 7_6_8, 5_1_2, 3)
lowercase__ : Any = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] )
lowercase__ : Tuple = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1]
lowercase__ : int = jnp.asarray(jax.device_get(image_slice.flatten() ) )
lowercase__ : Optional[Any] = jnp.array(
[0.167_969, 0.116_699, 0.081_543, 0.154_297, 0.132_812, 0.108_887, 0.169_922, 0.169_922, 0.205_078] )
print(f"""output_slice: {output_slice}""" )
assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
def _UpperCAmelCase ( self ) -> List[str]:
lowercase__ , lowercase__ : int = FlaxControlNetModel.from_pretrained(
'lllyasviel/sd-controlnet-openpose' , from_pt=a , dtype=jnp.bfloataa )
lowercase__ , lowercase__ : Optional[Any] = FlaxStableDiffusionControlNetPipeline.from_pretrained(
'runwayml/stable-diffusion-v1-5' , controlnet=a , from_pt=a , dtype=jnp.bfloataa )
lowercase__ : Optional[Any] = controlnet_params
lowercase__ : List[Any] = 'Chef in the kitchen'
lowercase__ : List[str] = jax.device_count()
lowercase__ : Dict = pipe.prepare_text_inputs([prompts] * num_samples )
lowercase__ : Optional[Any] = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png' )
lowercase__ : Optional[int] = pipe.prepare_image_inputs([pose_image] * num_samples )
lowercase__ : List[str] = jax.random.PRNGKey(0 )
lowercase__ : str = jax.random.split(a , jax.device_count() )
lowercase__ : Optional[Any] = replicate(a )
lowercase__ : Optional[Any] = shard(a )
lowercase__ : List[Any] = shard(a )
lowercase__ : List[Any] = pipe(
prompt_ids=a , image=a , params=a , prng_seed=a , num_inference_steps=5_0 , jit=a , ).images
assert images.shape == (jax.device_count(), 1, 7_6_8, 5_1_2, 3)
lowercase__ : Union[str, Any] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] )
lowercase__ : List[str] = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1]
lowercase__ : Optional[int] = jnp.asarray(jax.device_get(image_slice.flatten() ) )
lowercase__ : str = jnp.array(
[[0.271_484, 0.261_719, 0.275_391, 0.277_344, 0.279_297, 0.291_016, 0.294_922, 0.302_734, 0.302_734]] )
print(f"""output_slice: {output_slice}""" )
assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
| 645
| 1
|
"""simple docstring"""
from ..utils import DummyObject, requires_backends
class UpperCAmelCase_ ( metaclass=_a):
lowerCamelCase__ : Optional[int] = ["speech"]
def __init__( self , *a , **a ) -> Dict:
requires_backends(self , ['speech'] )
class UpperCAmelCase_ ( metaclass=_a):
lowerCamelCase__ : Any = ["speech"]
def __init__( self , *a , **a ) -> int:
requires_backends(self , ['speech'] )
| 645
|
"""simple docstring"""
from .glue import GlueDataset, GlueDataTrainingArguments
from .language_modeling import (
LineByLineTextDataset,
LineByLineWithRefDataset,
LineByLineWithSOPTextDataset,
TextDataset,
TextDatasetForNextSentencePrediction,
)
from .squad import SquadDataset, SquadDataTrainingArguments
| 645
| 1
|
"""simple docstring"""
from sklearn.metrics import fa_score, matthews_corrcoef
import datasets
from .record_evaluation import evaluate as evaluate_record
_UpperCamelCase : Any = "\\n@article{wang2019superglue,\n title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},\n author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},\n journal={arXiv preprint arXiv:1905.00537},\n year={2019}\n}\n"
_UpperCamelCase : Any = "\\nSuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after\nGLUE with a new set of more difficult language understanding tasks, improved\nresources, and a new public leaderboard.\n"
_UpperCamelCase : Any = "\nCompute SuperGLUE evaluation metric associated to each SuperGLUE dataset.\nArgs:\n predictions: list of predictions to score. Depending on the SuperGlUE subset:\n - for 'record': list of question-answer dictionaries with the following keys:\n - 'idx': index of the question as specified by the dataset\n - 'prediction_text': the predicted answer text\n - for 'multirc': list of question-answer dictionaries with the following keys:\n - 'idx': index of the question-answer pair as specified by the dataset\n - 'prediction': the predicted answer label\n - otherwise: list of predicted labels\n references: list of reference labels. Depending on the SuperGLUE subset:\n - for 'record': list of question-answers dictionaries with the following keys:\n - 'idx': index of the question as specified by the dataset\n - 'answers': list of possible answers\n - otherwise: list of reference labels\nReturns: depending on the SuperGLUE subset:\n - for 'record':\n - 'exact_match': Exact match between answer and gold answer\n - 'f1': F1 score\n - for 'multirc':\n - 'exact_match': Exact match between answer and gold answer\n - 'f1_m': Per-question macro-F1 score\n - 'f1_a': Average F1 score over all answers\n - for 'axb':\n 'matthews_correlation': Matthew Correlation\n - for 'cb':\n - 'accuracy': Accuracy\n - 'f1': F1 score\n - for all others:\n - 'accuracy': Accuracy\nExamples:\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'copa') # any of [\"copa\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"boolq\", \"axg\"]\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'cb')\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0, 'f1': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'record')\n >>> predictions = [{'idx': {'passage': 0, 'query': 0}, 'prediction_text': 'answer'}]\n >>> references = [{'idx': {'passage': 0, 'query': 0}, 'answers': ['answer', 'another_answer']}]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 1.0, 'f1': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'multirc')\n >>> predictions = [{'idx': {'answer': 0, 'paragraph': 0, 'question': 0}, 'prediction': 0}, {'idx': {'answer': 1, 'paragraph': 2, 'question': 3}, 'prediction': 1}]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 1.0, 'f1_m': 1.0, 'f1_a': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'axb')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'matthews_correlation': 1.0}\n"
def a_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[Any] ):
'''simple docstring'''
return float((preds == labels).mean() )
def a_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : str , _lowerCAmelCase : Union[str, Any]="binary" ):
'''simple docstring'''
lowercase__ : Any = simple_accuracy(_lowerCAmelCase , _lowerCAmelCase )
lowercase__ : str = float(fa_score(y_true=_lowerCAmelCase , y_pred=_lowerCAmelCase , average=_lowerCAmelCase ) )
return {
"accuracy": acc,
"f1": fa,
}
def a_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict ):
'''simple docstring'''
lowercase__ : List[Any] = {}
for id_pred, label in zip(_lowerCAmelCase , _lowerCAmelCase ):
lowercase__ : str = f"""{id_pred["idx"]["paragraph"]}-{id_pred["idx"]["question"]}"""
lowercase__ : Optional[Any] = id_pred['prediction']
if question_id in question_map:
question_map[question_id].append((pred, label) )
else:
lowercase__ : Optional[Any] = [(pred, label)]
lowercase__ , lowercase__ : List[Any] = [], []
for question, preds_labels in question_map.items():
lowercase__ , lowercase__ : Dict = zip(*_lowerCAmelCase )
lowercase__ : Optional[Any] = fa_score(y_true=_lowerCAmelCase , y_pred=_lowerCAmelCase , average='macro' )
fas.append(_lowerCAmelCase )
lowercase__ : Any = int(sum(pred == label for pred, label in preds_labels ) == len(_lowerCAmelCase ) )
ems.append(_lowerCAmelCase )
lowercase__ : Union[str, Any] = float(sum(_lowerCAmelCase ) / len(_lowerCAmelCase ) )
lowercase__ : Dict = sum(_lowerCAmelCase ) / len(_lowerCAmelCase )
lowercase__ : Tuple = float(fa_score(y_true=_lowerCAmelCase , y_pred=[id_pred['prediction'] for id_pred in ids_preds] ) )
return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a}
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION)
class UpperCAmelCase_ ( datasets.Metric):
def _UpperCAmelCase ( self ) -> Union[str, Any]:
if self.config_name not in [
"boolq",
"cb",
"copa",
"multirc",
"record",
"rte",
"wic",
"wsc",
"wsc.fixed",
"axb",
"axg",
]:
raise KeyError(
'You should supply a configuration name selected in '
'["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]' )
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format='numpy' if not self.config_name == 'record' and not self.config_name == 'multirc' else None , )
def _UpperCAmelCase ( self ) -> Dict:
if self.config_name == "record":
return {
"predictions": {
"idx": {
"passage": datasets.Value('int64' ),
"query": datasets.Value('int64' ),
},
"prediction_text": datasets.Value('string' ),
},
"references": {
"idx": {
"passage": datasets.Value('int64' ),
"query": datasets.Value('int64' ),
},
"answers": datasets.Sequence(datasets.Value('string' ) ),
},
}
elif self.config_name == "multirc":
return {
"predictions": {
"idx": {
"answer": datasets.Value('int64' ),
"paragraph": datasets.Value('int64' ),
"question": datasets.Value('int64' ),
},
"prediction": datasets.Value('int64' ),
},
"references": datasets.Value('int64' ),
}
else:
return {
"predictions": datasets.Value('int64' ),
"references": datasets.Value('int64' ),
}
def _UpperCAmelCase ( self , a , a ) -> Union[str, Any]:
if self.config_name == "axb":
return {"matthews_correlation": matthews_corrcoef(a , a )}
elif self.config_name == "cb":
return acc_and_fa(a , a , fa_avg='macro' )
elif self.config_name == "record":
lowercase__ : str = [
{
'qas': [
{'id': ref['idx']['query'], 'answers': [{'text': ans} for ans in ref['answers']]}
for ref in references
]
}
]
lowercase__ : str = {pred['idx']['query']: pred['prediction_text'] for pred in predictions}
return evaluate_record(a , a )[0]
elif self.config_name == "multirc":
return evaluate_multirc(a , a )
elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]:
return {"accuracy": simple_accuracy(a , a )}
else:
raise KeyError(
'You should supply a configuration name selected in '
'["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]' )
| 645
|
"""simple docstring"""
import unittest
from transformers import is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
if is_torch_available():
import torch
from transformers import AutoModelForImageClassification
if is_vision_available():
from transformers import AutoImageProcessor
@require_torch
@require_vision
class UpperCAmelCase_ ( unittest.TestCase):
@slow
def _UpperCAmelCase ( self ) -> str:
lowercase__ : Optional[Any] = AutoImageProcessor.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' )
lowercase__ : Union[str, Any] = AutoModelForImageClassification.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' )
model.to(a )
from datasets import load_dataset
lowercase__ : str = load_dataset('nielsr/rvlcdip-demo' )
lowercase__ : Tuple = dataset['train'][0]['image'].convert('RGB' )
lowercase__ : int = image_processor(a , return_tensors='pt' ).to(a )
# forward pass
with torch.no_grad():
lowercase__ : List[str] = model(**a )
lowercase__ : List[Any] = outputs.logits
lowercase__ : Union[str, Any] = torch.Size((1, 1_6) )
self.assertEqual(logits.shape , a )
lowercase__ : Tuple = torch.tensor(
[-0.4_158, -0.4_092, -0.4_347] , device=a , dtype=torch.float , )
self.assertTrue(torch.allclose(logits[0, :3] , a , atol=1e-4 ) )
| 645
| 1
|
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_UpperCamelCase : str = logging.get_logger(__name__)
_UpperCamelCase : List[Any] = {
"caidas/swin2sr-classicalsr-x2-64": (
"https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json"
),
}
class UpperCAmelCase_ ( _a):
lowerCamelCase__ : Dict = "swin2sr"
lowerCamelCase__ : Any = {
"hidden_size": "embed_dim",
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self , a=6_4 , a=1 , a=3 , a=1_8_0 , a=[6, 6, 6, 6, 6, 6] , a=[6, 6, 6, 6, 6, 6] , a=8 , a=2.0 , a=True , a=0.0 , a=0.0 , a=0.1 , a="gelu" , a=False , a=0.02 , a=1e-5 , a=2 , a=1.0 , a="1conv" , a="pixelshuffle" , **a , ) -> Optional[Any]:
super().__init__(**a )
lowercase__ : str = image_size
lowercase__ : Tuple = patch_size
lowercase__ : List[Any] = num_channels
lowercase__ : Tuple = embed_dim
lowercase__ : int = depths
lowercase__ : int = len(a )
lowercase__ : Dict = num_heads
lowercase__ : List[str] = window_size
lowercase__ : Dict = mlp_ratio
lowercase__ : List[Any] = qkv_bias
lowercase__ : Dict = hidden_dropout_prob
lowercase__ : str = attention_probs_dropout_prob
lowercase__ : Optional[int] = drop_path_rate
lowercase__ : int = hidden_act
lowercase__ : Any = use_absolute_embeddings
lowercase__ : Optional[Any] = layer_norm_eps
lowercase__ : str = initializer_range
lowercase__ : List[Any] = upscale
lowercase__ : List[Any] = img_range
lowercase__ : str = resi_connection
lowercase__ : Any = upsampler
| 645
|
"""simple docstring"""
import hashlib
import unittest
from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available
from transformers.pipelines import DepthEstimationPipeline, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_timm,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
else:
class UpperCAmelCase_ :
@staticmethod
def _UpperCAmelCase ( *a , **a ) -> int:
pass
def a_ ( _lowerCAmelCase : Image ):
'''simple docstring'''
lowercase__ : List[str] = hashlib.mda(image.tobytes() )
return m.hexdigest()
@is_pipeline_test
@require_vision
@require_timm
@require_torch
class UpperCAmelCase_ ( unittest.TestCase):
lowerCamelCase__ : Union[str, Any] = MODEL_FOR_DEPTH_ESTIMATION_MAPPING
def _UpperCAmelCase ( self , a , a , a ) -> Dict:
lowercase__ : Union[str, Any] = DepthEstimationPipeline(model=a , image_processor=a )
return depth_estimator, [
"./tests/fixtures/tests_samples/COCO/000000039769.png",
"./tests/fixtures/tests_samples/COCO/000000039769.png",
]
def _UpperCAmelCase ( self , a , a ) -> Optional[int]:
lowercase__ : Tuple = depth_estimator('./tests/fixtures/tests_samples/COCO/000000039769.png' )
self.assertEqual({'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )} , a )
import datasets
lowercase__ : Tuple = datasets.load_dataset('hf-internal-testing/fixtures_image_utils' , 'image' , split='test' )
lowercase__ : List[Any] = depth_estimator(
[
Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ),
'http://images.cocodataset.org/val2017/000000039769.jpg',
# RGBA
dataset[0]['file'],
# LA
dataset[1]['file'],
# L
dataset[2]['file'],
] )
self.assertEqual(
[
{'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )},
{'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )},
{'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )},
{'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )},
{'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )},
] , a , )
@require_tf
@unittest.skip('Depth estimation is not implemented in TF' )
def _UpperCAmelCase ( self ) -> Optional[int]:
pass
@slow
@require_torch
def _UpperCAmelCase ( self ) -> Tuple:
lowercase__ : Tuple = 'Intel/dpt-large'
lowercase__ : Optional[int] = pipeline('depth-estimation' , model=a )
lowercase__ : List[Any] = depth_estimator('http://images.cocodataset.org/val2017/000000039769.jpg' )
lowercase__ : Optional[Any] = hashimage(outputs['depth'] )
# This seems flaky.
# self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977")
self.assertEqual(nested_simplify(outputs['predicted_depth'].max().item() ) , 29.304 )
self.assertEqual(nested_simplify(outputs['predicted_depth'].min().item() ) , 2.662 )
@require_torch
def _UpperCAmelCase ( self ) -> Optional[int]:
# This is highly irregular to have no small tests.
self.skipTest('There is not hf-internal-testing tiny model for either GLPN nor DPT' )
| 645
| 1
|
"""simple docstring"""
from __future__ import annotations
def a_ ( _lowerCAmelCase : list ):
'''simple docstring'''
if len(_lowerCAmelCase ) == 0:
return []
lowercase__ , lowercase__ : List[str] = min(_lowerCAmelCase ), max(_lowerCAmelCase )
lowercase__ : Any = int(max_value - min_value ) + 1
lowercase__ : list[list] = [[] for _ in range(_lowerCAmelCase )]
for i in my_list:
buckets[int(i - min_value )].append(_lowerCAmelCase )
return [v for bucket in buckets for v in sorted(_lowerCAmelCase )]
if __name__ == "__main__":
from doctest import testmod
testmod()
assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5]
assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
| 645
|
"""simple docstring"""
import shutil
import tempfile
import unittest
from unittest.mock import patch
from transformers import (
DefaultFlowCallback,
IntervalStrategy,
PrinterCallback,
ProgressCallback,
Trainer,
TrainerCallback,
TrainingArguments,
is_torch_available,
)
from transformers.testing_utils import require_torch
if is_torch_available():
from transformers.trainer import DEFAULT_CALLBACKS
from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel
class UpperCAmelCase_ ( _a):
def __init__( self ) -> Any:
lowercase__ : Tuple = []
def _UpperCAmelCase ( self , a , a , a , **a ) -> Any:
self.events.append('on_init_end' )
def _UpperCAmelCase ( self , a , a , a , **a ) -> Optional[int]:
self.events.append('on_train_begin' )
def _UpperCAmelCase ( self , a , a , a , **a ) -> List[str]:
self.events.append('on_train_end' )
def _UpperCAmelCase ( self , a , a , a , **a ) -> int:
self.events.append('on_epoch_begin' )
def _UpperCAmelCase ( self , a , a , a , **a ) -> Optional[Any]:
self.events.append('on_epoch_end' )
def _UpperCAmelCase ( self , a , a , a , **a ) -> int:
self.events.append('on_step_begin' )
def _UpperCAmelCase ( self , a , a , a , **a ) -> str:
self.events.append('on_step_end' )
def _UpperCAmelCase ( self , a , a , a , **a ) -> int:
self.events.append('on_evaluate' )
def _UpperCAmelCase ( self , a , a , a , **a ) -> Tuple:
self.events.append('on_predict' )
def _UpperCAmelCase ( self , a , a , a , **a ) -> Union[str, Any]:
self.events.append('on_save' )
def _UpperCAmelCase ( self , a , a , a , **a ) -> List[str]:
self.events.append('on_log' )
def _UpperCAmelCase ( self , a , a , a , **a ) -> Any:
self.events.append('on_prediction_step' )
@require_torch
class UpperCAmelCase_ ( unittest.TestCase):
def _UpperCAmelCase ( self ) -> str:
lowercase__ : str = tempfile.mkdtemp()
def _UpperCAmelCase ( self ) -> Dict:
shutil.rmtree(self.output_dir )
def _UpperCAmelCase ( self , a=0 , a=0 , a=6_4 , a=6_4 , a=None , a=False , **a ) -> int:
# disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure
# its set to False since the tests later on depend on its value.
lowercase__ : str = RegressionDataset(length=a )
lowercase__ : Any = RegressionDataset(length=a )
lowercase__ : Optional[Any] = RegressionModelConfig(a=a , b=a )
lowercase__ : Union[str, Any] = RegressionPreTrainedModel(a )
lowercase__ : Tuple = TrainingArguments(self.output_dir , disable_tqdm=a , report_to=[] , **a )
return Trainer(
a , a , train_dataset=a , eval_dataset=a , callbacks=a , )
def _UpperCAmelCase ( self , a , a ) -> Union[str, Any]:
self.assertEqual(len(a ) , len(a ) )
# Order doesn't matter
lowercase__ : Optional[int] = sorted(a , key=lambda a : cb.__name__ if isinstance(a , a ) else cb.__class__.__name__ )
lowercase__ : Tuple = sorted(a , key=lambda a : cb.__name__ if isinstance(a , a ) else cb.__class__.__name__ )
for cba, cba in zip(a , a ):
if isinstance(a , a ) and isinstance(a , a ):
self.assertEqual(a , a )
elif isinstance(a , a ) and not isinstance(a , a ):
self.assertEqual(a , cba.__class__ )
elif not isinstance(a , a ) and isinstance(a , a ):
self.assertEqual(cba.__class__ , a )
else:
self.assertEqual(a , a )
def _UpperCAmelCase ( self , a ) -> Optional[Any]:
lowercase__ : Dict = ['on_init_end', 'on_train_begin']
lowercase__ : List[Any] = 0
lowercase__ : Optional[int] = len(trainer.get_eval_dataloader() )
lowercase__ : Tuple = ['on_prediction_step'] * len(trainer.get_eval_dataloader() ) + ['on_log', 'on_evaluate']
for _ in range(trainer.state.num_train_epochs ):
expected_events.append('on_epoch_begin' )
for _ in range(a ):
step += 1
expected_events += ["on_step_begin", "on_step_end"]
if step % trainer.args.logging_steps == 0:
expected_events.append('on_log' )
if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0:
expected_events += evaluation_events.copy()
if step % trainer.args.save_steps == 0:
expected_events.append('on_save' )
expected_events.append('on_epoch_end' )
if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH:
expected_events += evaluation_events.copy()
expected_events += ["on_log", "on_train_end"]
return expected_events
def _UpperCAmelCase ( self ) -> Union[str, Any]:
lowercase__ : int = self.get_trainer()
lowercase__ : str = DEFAULT_CALLBACKS.copy() + [ProgressCallback]
self.check_callbacks_equality(trainer.callback_handler.callbacks , a )
# Callbacks passed at init are added to the default callbacks
lowercase__ : str = self.get_trainer(callbacks=[MyTestTrainerCallback] )
expected_callbacks.append(a )
self.check_callbacks_equality(trainer.callback_handler.callbacks , a )
# TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback
lowercase__ : List[Any] = self.get_trainer(disable_tqdm=a )
lowercase__ : Optional[Any] = DEFAULT_CALLBACKS.copy() + [PrinterCallback]
self.check_callbacks_equality(trainer.callback_handler.callbacks , a )
def _UpperCAmelCase ( self ) -> Any:
lowercase__ : int = DEFAULT_CALLBACKS.copy() + [ProgressCallback]
lowercase__ : List[str] = self.get_trainer()
# We can add, pop, or remove by class name
trainer.remove_callback(a )
expected_callbacks.remove(a )
self.check_callbacks_equality(trainer.callback_handler.callbacks , a )
lowercase__ : Optional[Any] = self.get_trainer()
lowercase__ : List[Any] = trainer.pop_callback(a )
self.assertEqual(cb.__class__ , a )
self.check_callbacks_equality(trainer.callback_handler.callbacks , a )
trainer.add_callback(a )
expected_callbacks.insert(0 , a )
self.check_callbacks_equality(trainer.callback_handler.callbacks , a )
# We can also add, pop, or remove by instance
lowercase__ : int = self.get_trainer()
lowercase__ : List[str] = trainer.callback_handler.callbacks[0]
trainer.remove_callback(a )
expected_callbacks.remove(a )
self.check_callbacks_equality(trainer.callback_handler.callbacks , a )
lowercase__ : Tuple = self.get_trainer()
lowercase__ : Dict = trainer.callback_handler.callbacks[0]
lowercase__ : Union[str, Any] = trainer.pop_callback(a )
self.assertEqual(a , a )
self.check_callbacks_equality(trainer.callback_handler.callbacks , a )
trainer.add_callback(a )
expected_callbacks.insert(0 , a )
self.check_callbacks_equality(trainer.callback_handler.callbacks , a )
def _UpperCAmelCase ( self ) -> Tuple:
import warnings
# XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested
warnings.simplefilter(action='ignore' , category=a )
lowercase__ : Optional[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] )
trainer.train()
lowercase__ : Any = trainer.callback_handler.callbacks[-2].events
self.assertEqual(a , self.get_expected_events(a ) )
# Independent log/save/eval
lowercase__ : List[str] = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 )
trainer.train()
lowercase__ : int = trainer.callback_handler.callbacks[-2].events
self.assertEqual(a , self.get_expected_events(a ) )
lowercase__ : Union[str, Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 )
trainer.train()
lowercase__ : Union[str, Any] = trainer.callback_handler.callbacks[-2].events
self.assertEqual(a , self.get_expected_events(a ) )
lowercase__ : List[str] = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy='steps' )
trainer.train()
lowercase__ : Optional[int] = trainer.callback_handler.callbacks[-2].events
self.assertEqual(a , self.get_expected_events(a ) )
lowercase__ : int = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy='epoch' )
trainer.train()
lowercase__ : str = trainer.callback_handler.callbacks[-2].events
self.assertEqual(a , self.get_expected_events(a ) )
# A bit of everything
lowercase__ : Any = self.get_trainer(
callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=1_0 , eval_steps=5 , evaluation_strategy='steps' , )
trainer.train()
lowercase__ : Any = trainer.callback_handler.callbacks[-2].events
self.assertEqual(a , self.get_expected_events(a ) )
# warning should be emitted for duplicated callbacks
with patch('transformers.trainer_callback.logger.warning' ) as warn_mock:
lowercase__ : str = self.get_trainer(
callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , )
assert str(a ) in warn_mock.call_args[0][0]
| 645
| 1
|
"""simple docstring"""
from __future__ import annotations
import typing
from collections.abc import Iterable
import numpy as np
_UpperCamelCase : Any = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007
_UpperCamelCase : str = typing.Union[np.floataa, int, float] # noqa: UP007
def a_ ( _lowerCAmelCase : Vector , _lowerCAmelCase : Vector ):
'''simple docstring'''
return np.sqrt(np.sum((np.asarray(_lowerCAmelCase ) - np.asarray(_lowerCAmelCase )) ** 2 ) )
def a_ ( _lowerCAmelCase : Vector , _lowerCAmelCase : Vector ):
'''simple docstring'''
return sum((va - va) ** 2 for va, va in zip(_lowerCAmelCase , _lowerCAmelCase ) ) ** (1 / 2)
if __name__ == "__main__":
def a_ ( ):
'''simple docstring'''
from timeit import timeit
print('Without Numpy' )
print(
timeit(
'euclidean_distance_no_np([1, 2, 3], [4, 5, 6])' , number=1_0000 , globals=globals() , ) )
print('With Numpy' )
print(
timeit(
'euclidean_distance([1, 2, 3], [4, 5, 6])' , number=1_0000 , globals=globals() , ) )
benchmark()
| 645
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available
_UpperCamelCase : str = {
"configuration_gpt_neo": ["GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoConfig", "GPTNeoOnnxConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase : Tuple = [
"GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST",
"GPTNeoForCausalLM",
"GPTNeoForQuestionAnswering",
"GPTNeoForSequenceClassification",
"GPTNeoForTokenClassification",
"GPTNeoModel",
"GPTNeoPreTrainedModel",
"load_tf_weights_in_gpt_neo",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase : Dict = [
"FlaxGPTNeoForCausalLM",
"FlaxGPTNeoModel",
"FlaxGPTNeoPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_gpt_neo import (
GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST,
GPTNeoForCausalLM,
GPTNeoForQuestionAnswering,
GPTNeoForSequenceClassification,
GPTNeoForTokenClassification,
GPTNeoModel,
GPTNeoPreTrainedModel,
load_tf_weights_in_gpt_neo,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel
else:
import sys
_UpperCamelCase : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 645
| 1
|
"""simple docstring"""
import collections
import inspect
import unittest
from typing import Dict, List, Tuple
from transformers import MaskFormerSwinConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device
from transformers.utils import is_torch_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import MaskFormerSwinBackbone
from transformers.models.maskformer import MaskFormerSwinModel
class UpperCAmelCase_ :
def __init__( self , a , a=1_3 , a=3_2 , a=2 , a=3 , a=1_6 , a=[1, 2, 1] , a=[2, 2, 4] , a=2 , a=2.0 , a=True , a=0.0 , a=0.0 , a=0.1 , a="gelu" , a=False , a=True , a=0.02 , a=1e-5 , a=True , a=None , a=True , a=1_0 , a=8 , a=["stage1", "stage2", "stage3"] , a=[1, 2, 3] , ) -> int:
lowercase__ : int = parent
lowercase__ : Union[str, Any] = batch_size
lowercase__ : Dict = image_size
lowercase__ : str = patch_size
lowercase__ : Optional[Any] = num_channels
lowercase__ : List[str] = embed_dim
lowercase__ : Any = depths
lowercase__ : Dict = num_heads
lowercase__ : List[str] = window_size
lowercase__ : int = mlp_ratio
lowercase__ : Tuple = qkv_bias
lowercase__ : Union[str, Any] = hidden_dropout_prob
lowercase__ : str = attention_probs_dropout_prob
lowercase__ : Tuple = drop_path_rate
lowercase__ : List[str] = hidden_act
lowercase__ : Optional[Any] = use_absolute_embeddings
lowercase__ : Optional[Any] = patch_norm
lowercase__ : Any = layer_norm_eps
lowercase__ : List[Any] = initializer_range
lowercase__ : List[str] = is_training
lowercase__ : int = scope
lowercase__ : Optional[int] = use_labels
lowercase__ : List[Any] = type_sequence_label_size
lowercase__ : List[str] = encoder_stride
lowercase__ : Optional[Any] = out_features
lowercase__ : Dict = out_indices
def _UpperCAmelCase ( self ) -> Tuple:
lowercase__ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowercase__ : Optional[Any] = None
if self.use_labels:
lowercase__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowercase__ : Tuple = self.get_config()
return config, pixel_values, labels
def _UpperCAmelCase ( self ) -> Union[str, Any]:
return MaskFormerSwinConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , )
def _UpperCAmelCase ( self , a , a , a ) -> Dict:
lowercase__ : Tuple = MaskFormerSwinModel(config=a )
model.to(a )
model.eval()
lowercase__ : str = model(a )
lowercase__ : str = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
lowercase__ : Dict = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def _UpperCAmelCase ( self , a , a , a ) -> Optional[int]:
lowercase__ : List[Any] = MaskFormerSwinBackbone(config=a )
model.to(a )
model.eval()
lowercase__ : int = model(a )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [1_3, 1_6, 1_6, 1_6] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , [1_6, 3_2, 6_4] )
# verify ValueError
with self.parent.assertRaises(a ):
lowercase__ : Dict = ['stem']
lowercase__ : List[str] = MaskFormerSwinBackbone(config=a )
def _UpperCAmelCase ( self ) -> str:
lowercase__ : int = self.prepare_config_and_inputs()
lowercase__ , lowercase__ , lowercase__ : Tuple = config_and_inputs
lowercase__ : Union[str, Any] = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class UpperCAmelCase_ ( _a , _a , unittest.TestCase):
lowerCamelCase__ : Optional[int] = (
(
MaskFormerSwinModel,
MaskFormerSwinBackbone,
)
if is_torch_available()
else ()
)
lowerCamelCase__ : List[str] = {"feature-extraction": MaskFormerSwinModel} if is_torch_available() else {}
lowerCamelCase__ : str = False
lowerCamelCase__ : Dict = False
lowerCamelCase__ : Any = False
lowerCamelCase__ : Dict = False
lowerCamelCase__ : int = False
def _UpperCAmelCase ( self ) -> List[Any]:
lowercase__ : str = MaskFormerSwinModelTester(self )
lowercase__ : Tuple = ConfigTester(self , config_class=a , embed_dim=3_7 )
@require_torch_multi_gpu
@unittest.skip(
reason=(
'`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with'
' `nn.DataParallel`'
) )
def _UpperCAmelCase ( self ) -> Optional[int]:
pass
def _UpperCAmelCase ( self ) -> Tuple:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def _UpperCAmelCase ( self ) -> str:
return
def _UpperCAmelCase ( self ) -> List[Any]:
lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*a )
def _UpperCAmelCase ( self ) -> List[Any]:
lowercase__ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*a )
@unittest.skip('Swin does not use inputs_embeds' )
def _UpperCAmelCase ( self ) -> Tuple:
pass
@unittest.skip('Swin does not support feedforward chunking' )
def _UpperCAmelCase ( self ) -> Tuple:
pass
def _UpperCAmelCase ( self ) -> Optional[Any]:
lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase__ : List[str] = model_class(a )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
lowercase__ : Union[str, Any] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(a , nn.Linear ) )
def _UpperCAmelCase ( self ) -> str:
lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase__ : Any = model_class(a )
lowercase__ : Tuple = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowercase__ : Optional[Any] = [*signature.parameters.keys()]
lowercase__ : List[Any] = ['pixel_values']
self.assertListEqual(arg_names[:1] , a )
@unittest.skip(reason='MaskFormerSwin is only used as backbone and doesn\'t support output_attentions' )
def _UpperCAmelCase ( self ) -> List[Any]:
pass
@unittest.skip(reason='MaskFormerSwin is only used as an internal backbone' )
def _UpperCAmelCase ( self ) -> int:
pass
def _UpperCAmelCase ( self , a , a , a , a ) -> Tuple:
lowercase__ : Dict = model_class(a )
model.to(a )
model.eval()
with torch.no_grad():
lowercase__ : str = model(**self._prepare_for_class(a , a ) )
lowercase__ : List[Any] = outputs.hidden_states
lowercase__ : str = getattr(
self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(a ) , a )
# Swin has a different seq_length
lowercase__ : Dict = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
lowercase__ : Tuple = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def _UpperCAmelCase ( self ) -> Optional[Any]:
lowercase__ , lowercase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common()
lowercase__ : List[Any] = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes:
lowercase__ : List[str] = True
self.check_hidden_states_output(a , a , a , a )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowercase__ : List[str] = True
self.check_hidden_states_output(a , a , a , a )
def _UpperCAmelCase ( self ) -> Optional[int]:
lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common()
lowercase__ : Union[str, Any] = 3
lowercase__ : str = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
lowercase__ : Tuple = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
lowercase__ : Optional[int] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
lowercase__ : List[str] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes:
lowercase__ : List[str] = True
self.check_hidden_states_output(a , a , a , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowercase__ : int = True
self.check_hidden_states_output(a , a , a , (padded_height, padded_width) )
@unittest.skip(reason='MaskFormerSwin doesn\'t have pretrained checkpoints' )
def _UpperCAmelCase ( self ) -> Optional[int]:
pass
@unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' )
def _UpperCAmelCase ( self ) -> Any:
pass
@unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' )
def _UpperCAmelCase ( self ) -> Any:
pass
def _UpperCAmelCase ( self ) -> Any:
lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common()
def set_nan_tensor_to_zero(a ):
lowercase__ : Union[str, Any] = 0
return t
def check_equivalence(a , a , a , a={} ):
with torch.no_grad():
lowercase__ : Optional[Any] = model(**a , return_dict=a , **a )
lowercase__ : Optional[int] = model(**a , return_dict=a , **a ).to_tuple()
def recursive_check(a , a ):
if isinstance(a , (List, Tuple) ):
for tuple_iterable_value, dict_iterable_value in zip(a , a ):
recursive_check(a , a )
elif isinstance(a , a ):
for tuple_iterable_value, dict_iterable_value in zip(
tuple_object.values() , dict_object.values() ):
recursive_check(a , a )
elif tuple_object is None:
return
else:
self.assertTrue(
torch.allclose(
set_nan_tensor_to_zero(a ) , set_nan_tensor_to_zero(a ) , atol=1e-5 ) , msg=(
'Tuple and dict output are not equal. Difference:'
f""" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:"""
f""" {torch.isnan(a ).any()} and `inf`: {torch.isinf(a )}. Dict has"""
f""" `nan`: {torch.isnan(a ).any()} and `inf`: {torch.isinf(a )}."""
) , )
recursive_check(a , a )
for model_class in self.all_model_classes:
lowercase__ : Any = model_class(a )
model.to(a )
model.eval()
lowercase__ : Tuple = self._prepare_for_class(a , a )
lowercase__ : Optional[Any] = self._prepare_for_class(a , a )
check_equivalence(a , a , a )
lowercase__ : Any = self._prepare_for_class(a , a , return_labels=a )
lowercase__ : List[Any] = self._prepare_for_class(a , a , return_labels=a )
check_equivalence(a , a , a )
lowercase__ : Any = self._prepare_for_class(a , a )
lowercase__ : int = self._prepare_for_class(a , a )
check_equivalence(a , a , a , {'output_hidden_states': True} )
lowercase__ : Dict = self._prepare_for_class(a , a , return_labels=a )
lowercase__ : Optional[int] = self._prepare_for_class(a , a , return_labels=a )
check_equivalence(a , a , a , {'output_hidden_states': True} )
@require_torch
class UpperCAmelCase_ ( unittest.TestCase , _a):
lowerCamelCase__ : Dict = (MaskFormerSwinBackbone,) if is_torch_available() else ()
lowerCamelCase__ : Optional[int] = MaskFormerSwinConfig
def _UpperCAmelCase ( self ) -> Dict:
lowercase__ : Optional[int] = MaskFormerSwinModelTester(self )
def _UpperCAmelCase ( self ) -> Optional[Any]:
lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common()
lowercase__ : int = inputs_dict['pixel_values'].shape[0]
for backbone_class in self.all_model_classes:
lowercase__ : Optional[Any] = backbone_class(a )
backbone.to(a )
backbone.eval()
lowercase__ : Union[str, Any] = backbone(**a )
# Test default outputs and verify feature maps
self.assertIsInstance(outputs.feature_maps , a )
self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) )
for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ):
self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) )
self.assertIsNone(outputs.hidden_states )
self.assertIsNone(outputs.attentions )
# Test output_hidden_states=True
lowercase__ : List[str] = backbone(**a , output_hidden_states=a )
self.assertIsNotNone(outputs.hidden_states )
self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) )
# We skip the stem layer
for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ):
for hidden_state in hidden_states:
# Hidden states are in the format (batch_size, (height * width), n_channels)
lowercase__ , lowercase__ , lowercase__ : int = hidden_state.shape
self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) )
# Test output_attentions=True
if self.has_attentions:
lowercase__ : List[Any] = backbone(**a , output_attentions=a )
self.assertIsNotNone(outputs.attentions )
| 645
|
"""simple docstring"""
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_tf_available
from transformers.testing_utils import require_tf
if is_tf_available():
import tensorflow as tf
from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments
@require_tf
class UpperCAmelCase_ ( unittest.TestCase):
def _UpperCAmelCase ( self , a ) -> str:
for model_result in results.values():
for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss'] ):
lowercase__ : str = model_result['result'][batch_size][sequence_length]
self.assertIsNotNone(a )
def _UpperCAmelCase ( self ) -> int:
lowercase__ : Dict = 'sshleifer/tiny-gpt2'
lowercase__ : int = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=a , multi_process=a , )
lowercase__ : str = TensorFlowBenchmark(a )
lowercase__ : Optional[int] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _UpperCAmelCase ( self ) -> int:
lowercase__ : List[str] = 'sgugger/tiny-distilbert-classification'
lowercase__ : int = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , only_pretrain_model=a , )
lowercase__ : Optional[Any] = TensorFlowBenchmark(a )
lowercase__ : Optional[int] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
lowercase__ : Optional[int] = 'sshleifer/tiny-gpt2'
lowercase__ : Union[str, Any] = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , )
lowercase__ : Optional[Any] = TensorFlowBenchmark(a )
lowercase__ : List[str] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _UpperCAmelCase ( self ) -> Optional[Any]:
lowercase__ : Any = 'sshleifer/tiny-gpt2'
lowercase__ : List[Any] = AutoConfig.from_pretrained(a )
lowercase__ : Any = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=a , multi_process=a , )
lowercase__ : Tuple = TensorFlowBenchmark(a , [config] )
lowercase__ : Dict = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _UpperCAmelCase ( self ) -> int:
lowercase__ : Optional[Any] = 'sshleifer/tiny-gpt2'
lowercase__ : List[str] = AutoConfig.from_pretrained(a )
lowercase__ : Any = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , )
lowercase__ : List[str] = TensorFlowBenchmark(a , [config] )
lowercase__ : Any = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _UpperCAmelCase ( self ) -> Tuple:
lowercase__ : Optional[Any] = 'sshleifer/tiny-gpt2'
lowercase__ : Any = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , )
lowercase__ : Optional[Any] = TensorFlowBenchmark(a )
lowercase__ : Tuple = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def _UpperCAmelCase ( self ) -> str:
lowercase__ : Optional[Any] = 'sshleifer/tiny-gpt2'
lowercase__ : Optional[int] = AutoConfig.from_pretrained(a )
lowercase__ : str = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , )
lowercase__ : str = TensorFlowBenchmark(a , [config] )
lowercase__ : Optional[int] = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def _UpperCAmelCase ( self ) -> Optional[Any]:
lowercase__ : List[str] = 'patrickvonplaten/t5-tiny-random'
lowercase__ : Any = AutoConfig.from_pretrained(a )
lowercase__ : List[str] = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , )
lowercase__ : int = TensorFlowBenchmark(a , configs=[config] )
lowercase__ : Union[str, Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU' ) ) == 0 , 'Cannot do xla on CPU.' )
def _UpperCAmelCase ( self ) -> Any:
lowercase__ : Any = 'sshleifer/tiny-gpt2'
lowercase__ : Optional[Any] = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , use_xla=a , multi_process=a , )
lowercase__ : Any = TensorFlowBenchmark(a )
lowercase__ : Dict = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _UpperCAmelCase ( self ) -> List[str]:
lowercase__ : Any = 'sshleifer/tiny-gpt2'
with tempfile.TemporaryDirectory() as tmp_dir:
lowercase__ : List[Any] = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , inference=a , save_to_csv=a , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(a , 'inf_time.csv' ) , inference_memory_csv_file=os.path.join(a , 'inf_mem.csv' ) , env_info_csv_file=os.path.join(a , 'env.csv' ) , multi_process=a , )
lowercase__ : Union[str, Any] = TensorFlowBenchmark(a )
benchmark.run()
self.assertTrue(Path(os.path.join(a , 'inf_time.csv' ) ).exists() )
self.assertTrue(Path(os.path.join(a , 'inf_mem.csv' ) ).exists() )
self.assertTrue(Path(os.path.join(a , 'env.csv' ) ).exists() )
def _UpperCAmelCase ( self ) -> Dict:
lowercase__ : Tuple = 'sshleifer/tiny-gpt2'
def _check_summary_is_not_empty(a ):
self.assertTrue(hasattr(a , 'sequential' ) )
self.assertTrue(hasattr(a , 'cumulative' ) )
self.assertTrue(hasattr(a , 'current' ) )
self.assertTrue(hasattr(a , 'total' ) )
with tempfile.TemporaryDirectory() as tmp_dir:
lowercase__ : Optional[Any] = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , inference=a , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(a , 'log.txt' ) , log_print=a , trace_memory_line_by_line=a , eager_mode=a , multi_process=a , )
lowercase__ : Optional[int] = TensorFlowBenchmark(a )
lowercase__ : Optional[Any] = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
self.assertTrue(Path(os.path.join(a , 'log.txt' ) ).exists() )
| 645
| 1
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.