code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCAmelCase__ ) class __a (UpperCAmelCase__ ): __a : int = field(default="language-modeling" , metadata={"include_in_asdict_even_if_is_default": True} ) __a : str = Features({"text": Value("string" )} ) __a : Union[str, Any] = Features({} ) __a : Any = "text" @property def UpperCAmelCase__ ( self : int ) -> Dict[str, str]: """simple docstring""" return {self.text_column: "text"}
710
'''simple docstring''' def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int = 10, SCREAMING_SNAKE_CASE__ : int = 22 ) -> int: UpperCAmelCase_ : Optional[int] = range(1, SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : List[Any] = range(1, SCREAMING_SNAKE_CASE__ ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(f'''{solution(10, 22) = }''')
644
0
'''simple docstring''' class __a : def __init__( self : List[Any] ) -> Tuple: """simple docstring""" UpperCAmelCase_ : List[str] = {} # Mapping from char to TrieNode UpperCAmelCase_ : Optional[int] = False def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : List[Any] ) -> List[Any]: """simple docstring""" for word in words: self.insert(UpperCAmelCase_ ) def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : str ) -> Dict: """simple docstring""" UpperCAmelCase_ : List[str] = self for char in word: if char not in curr.nodes: UpperCAmelCase_ : List[Any] = TrieNode() UpperCAmelCase_ : List[Any] = curr.nodes[char] UpperCAmelCase_ : List[str] = True def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Union[str, Any] ) -> List[str]: """simple docstring""" UpperCAmelCase_ : List[Any] = self for char in word: if char not in curr.nodes: return False UpperCAmelCase_ : str = curr.nodes[char] return curr.is_leaf def UpperCAmelCase__ ( self : Tuple , __magic_name__ : int ) -> Tuple: """simple docstring""" def _delete(__magic_name__ : str , __magic_name__ : Any , __magic_name__ : Optional[Any] ) -> bool: if index == len(UpperCAmelCase_ ): # If word does not exist if not curr.is_leaf: return False UpperCAmelCase_ : List[Any] = False return len(curr.nodes ) == 0 UpperCAmelCase_ : Tuple = word[index] UpperCAmelCase_ : Tuple = curr.nodes.get(UpperCAmelCase_ ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted UpperCAmelCase_ : Optional[Any] = _delete(UpperCAmelCase_ , UpperCAmelCase_ , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , UpperCAmelCase_ , 0 ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Optional[int], SCREAMING_SNAKE_CASE__ : Optional[int] ) -> str: if node.is_leaf: print(_snake_case, end=''' ''' ) for key, value in node.nodes.items(): print_words(_snake_case, word + key ) def lowerCamelCase_ ( ) -> Optional[Any]: UpperCAmelCase_ : Optional[Any] = '''banana bananas bandana band apple all beast'''.split() UpperCAmelCase_ : int = TrieNode() root.insert_many(_snake_case ) # print_words(root, "") assert all(root.find(_snake_case ) for word in words ) assert root.find('''banana''' ) assert not root.find('''bandanas''' ) assert not root.find('''apps''' ) assert root.find('''apple''' ) assert root.find('''all''' ) root.delete('''all''' ) assert not root.find('''all''' ) root.delete('''banana''' ) assert not root.find('''banana''' ) assert root.find('''bananas''' ) return True def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : str, SCREAMING_SNAKE_CASE__ : List[str] ) -> Any: print(str(_snake_case ), '''works!''' if passes else '''doesn\'t work :(''' ) def lowerCamelCase_ ( ) -> Optional[int]: assert test_trie() def lowerCamelCase_ ( ) -> Optional[int]: print_results('''Testing trie functionality''', test_trie() ) if __name__ == "__main__": main()
711
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class __a (lowerCamelCase ): __a : int = "dandelin/vilt-b32-finetuned-vqa" __a : Any = ( "This is a tool that answers a question about an image. It takes an input named `image` which should be the " "image containing the information, as well as a `question` which should be the question in English. It " "returns a text that is the answer to the question." ) __a : Any = "image_qa" __a : str = AutoProcessor __a : Any = AutoModelForVisualQuestionAnswering __a : List[Any] = ["image", "text"] __a : int = ["text"] def __init__( self : Tuple , *__magic_name__ : Any , **__magic_name__ : Any ) -> Tuple: """simple docstring""" requires_backends(self , ['''vision'''] ) super().__init__(*__magic_name__ , **__magic_name__ ) def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : "Image" , __magic_name__ : str ) -> Tuple: """simple docstring""" return self.pre_processor(__magic_name__ , __magic_name__ , return_tensors='''pt''' ) def UpperCAmelCase__ ( self : Any , __magic_name__ : List[str] ) -> Optional[Any]: """simple docstring""" with torch.no_grad(): return self.model(**__magic_name__ ).logits def UpperCAmelCase__ ( self : int , __magic_name__ : int ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : Dict = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
644
0
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType snake_case_ : str = logging.get_logger(__name__) snake_case_ : str = { 'microsoft/layoutlmv3-base': 'https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json', } class __a (UpperCamelCase_ ): __a : List[Any] = "layoutlmv3" def __init__( self : Optional[int] , __magic_name__ : Union[str, Any]=5_02_65 , __magic_name__ : List[Any]=7_68 , __magic_name__ : Union[str, Any]=12 , __magic_name__ : Union[str, Any]=12 , __magic_name__ : Tuple=30_72 , __magic_name__ : List[Any]="gelu" , __magic_name__ : List[Any]=0.1 , __magic_name__ : List[str]=0.1 , __magic_name__ : Any=5_12 , __magic_name__ : List[Any]=2 , __magic_name__ : List[Any]=0.0_2 , __magic_name__ : Optional[Any]=1E-5 , __magic_name__ : List[str]=1 , __magic_name__ : int=0 , __magic_name__ : str=2 , __magic_name__ : List[str]=10_24 , __magic_name__ : str=1_28 , __magic_name__ : str=1_28 , __magic_name__ : Tuple=True , __magic_name__ : Optional[int]=32 , __magic_name__ : Any=1_28 , __magic_name__ : Optional[Any]=64 , __magic_name__ : Dict=2_56 , __magic_name__ : List[Any]=True , __magic_name__ : str=True , __magic_name__ : Dict=True , __magic_name__ : Dict=2_24 , __magic_name__ : Optional[Any]=3 , __magic_name__ : Any=16 , __magic_name__ : Any=None , **__magic_name__ : Optional[Any] , ) -> int: """simple docstring""" super().__init__( vocab_size=UpperCamelCase__ , hidden_size=UpperCamelCase__ , num_hidden_layers=UpperCamelCase__ , num_attention_heads=UpperCamelCase__ , intermediate_size=UpperCamelCase__ , hidden_act=UpperCamelCase__ , hidden_dropout_prob=UpperCamelCase__ , attention_probs_dropout_prob=UpperCamelCase__ , max_position_embeddings=UpperCamelCase__ , type_vocab_size=UpperCamelCase__ , initializer_range=UpperCamelCase__ , layer_norm_eps=UpperCamelCase__ , pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ , ) UpperCAmelCase_ : Union[str, Any] = max_ad_position_embeddings UpperCAmelCase_ : List[Any] = coordinate_size UpperCAmelCase_ : List[str] = shape_size UpperCAmelCase_ : Optional[int] = has_relative_attention_bias UpperCAmelCase_ : List[Any] = rel_pos_bins UpperCAmelCase_ : str = max_rel_pos UpperCAmelCase_ : Any = has_spatial_attention_bias UpperCAmelCase_ : Union[str, Any] = rel_ad_pos_bins UpperCAmelCase_ : Union[str, Any] = max_rel_ad_pos UpperCAmelCase_ : Union[str, Any] = text_embed UpperCAmelCase_ : List[str] = visual_embed UpperCAmelCase_ : Optional[Any] = input_size UpperCAmelCase_ : Optional[Any] = num_channels UpperCAmelCase_ : List[Any] = patch_size UpperCAmelCase_ : List[Any] = classifier_dropout class __a (UpperCamelCase_ ): __a : List[Any] = version.parse("1.12" ) @property def UpperCAmelCase__ ( self : str ) -> Tuple: """simple docstring""" if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ('''bbox''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) else: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''bbox''', {0: '''batch''', 1: '''sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels'''}), ] ) @property def UpperCAmelCase__ ( self : int ) -> Any: """simple docstring""" return 1E-5 @property def UpperCAmelCase__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" return 12 def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : "ProcessorMixin" , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : bool = False , __magic_name__ : Optional["TensorType"] = None , __magic_name__ : int = 3 , __magic_name__ : int = 40 , __magic_name__ : int = 40 , ) -> Optional[Any]: """simple docstring""" setattr(processor.image_processor , '''apply_ocr''' , UpperCamelCase__ ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCAmelCase_ : Any = compute_effective_axis_dimension( UpperCamelCase__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCAmelCase_ : List[Any] = processor.tokenizer.num_special_tokens_to_add(UpperCamelCase__ ) UpperCAmelCase_ : Tuple = compute_effective_axis_dimension( UpperCamelCase__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=UpperCamelCase__ ) # Generate dummy inputs according to compute batch and sequence UpperCAmelCase_ : Union[str, Any] = [[''' '''.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes UpperCAmelCase_ : Any = [[[48, 84, 73, 1_28]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) UpperCAmelCase_ : List[Any] = self._generate_dummy_images(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase_ : Optional[int] = dict( processor( UpperCamelCase__ , text=UpperCamelCase__ , boxes=UpperCamelCase__ , return_tensors=UpperCamelCase__ , ) ) return inputs
712
'''simple docstring''' from collections.abc import Iterable from typing import Any class __a : def __init__( self : Optional[Any] , __magic_name__ : int | None = None ) -> Tuple: """simple docstring""" UpperCAmelCase_ : List[str] = value UpperCAmelCase_ : Node | None = None # Added in order to delete a node easier UpperCAmelCase_ : Node | None = None UpperCAmelCase_ : Node | None = None def __repr__( self : List[str] ) -> str: """simple docstring""" from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({F"""{self.value}""": (self.left, self.right)} , indent=1 ) class __a : def __init__( self : int , __magic_name__ : Node | None = None ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : str = root def __str__( self : Any ) -> str: """simple docstring""" return str(self.root ) def UpperCAmelCase__ ( self : Any , __magic_name__ : Node , __magic_name__ : Node | None ) -> None: """simple docstring""" if new_children is not None: # reset its kids UpperCAmelCase_ : Dict = node.parent if node.parent is not None: # reset its parent if self.is_right(__magic_name__ ): # If it is the right children UpperCAmelCase_ : Optional[Any] = new_children else: UpperCAmelCase_ : Optional[int] = new_children else: UpperCAmelCase_ : List[str] = new_children def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Node ) -> bool: """simple docstring""" if node.parent and node.parent.right: return node == node.parent.right return False def UpperCAmelCase__ ( self : Union[str, Any] ) -> bool: """simple docstring""" return self.root is None def UpperCAmelCase__ ( self : Any , __magic_name__ : str ) -> None: """simple docstring""" UpperCAmelCase_ : Tuple = Node(__magic_name__ ) # create a new Node if self.empty(): # if Tree is empty UpperCAmelCase_ : List[Any] = new_node # set its root else: # Tree is not empty UpperCAmelCase_ : str = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: UpperCAmelCase_ : Union[str, Any] = new_node # We insert the new node in a leaf break else: UpperCAmelCase_ : List[Any] = parent_node.left else: if parent_node.right is None: UpperCAmelCase_ : List[Any] = new_node break else: UpperCAmelCase_ : Union[str, Any] = parent_node.right UpperCAmelCase_ : Union[str, Any] = parent_node def UpperCAmelCase__ ( self : Optional[Any] , *__magic_name__ : List[str] ) -> None: """simple docstring""" for value in values: self.__insert(__magic_name__ ) def UpperCAmelCase__ ( self : Dict , __magic_name__ : int ) -> Node | None: """simple docstring""" if self.empty(): raise IndexError('''Warning: Tree is empty! please use another.''' ) else: UpperCAmelCase_ : str = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: UpperCAmelCase_ : List[str] = node.left if value < node.value else node.right return node def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : Node | None = None ) -> Node | None: """simple docstring""" if node is None: if self.root is None: return None UpperCAmelCase_ : Dict = self.root if not self.empty(): while node.right is not None: UpperCAmelCase_ : Any = node.right return node def UpperCAmelCase__ ( self : Dict , __magic_name__ : Node | None = None ) -> Node | None: """simple docstring""" if node is None: UpperCAmelCase_ : Optional[int] = self.root if self.root is None: return None if not self.empty(): UpperCAmelCase_ : Union[str, Any] = self.root while node.left is not None: UpperCAmelCase_ : Dict = node.left return node def UpperCAmelCase__ ( self : Tuple , __magic_name__ : int ) -> None: """simple docstring""" UpperCAmelCase_ : List[str] = self.search(__magic_name__ ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(__magic_name__ , __magic_name__ ) elif node.left is None: # Has only right children self.__reassign_nodes(__magic_name__ , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(__magic_name__ , node.left ) else: UpperCAmelCase_ : List[str] = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore UpperCAmelCase_ : Optional[int] = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Node | None ) -> Iterable: """simple docstring""" if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : List[Any]=None ) -> Any: """simple docstring""" if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : list , __magic_name__ : Node | None ) -> None: """simple docstring""" if node: self.inorder(__magic_name__ , node.left ) arr.append(node.value ) self.inorder(__magic_name__ , node.right ) def UpperCAmelCase__ ( self : Tuple , __magic_name__ : int , __magic_name__ : Node ) -> int: """simple docstring""" UpperCAmelCase_ : list[int] = [] self.inorder(__magic_name__ , __magic_name__ ) # append all values to list using inorder traversal return arr[k - 1] def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Node | None ) -> list[Node]: UpperCAmelCase_ : Any = [] if curr_node is not None: UpperCAmelCase_ : Any = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def lowerCamelCase_ ( ) -> None: UpperCAmelCase_ : str = (8, 3, 6, 1, 10, 14, 13, 4, 7) UpperCAmelCase_ : Tuple = BinarySearchTree() for i in testlist: t.insert(SCREAMING_SNAKE_CASE__ ) # Prints all the elements of the list in order traversal print(SCREAMING_SNAKE_CASE__ ) if t.search(6 ) is not None: print('''The value 6 exists''' ) else: print('''The value 6 doesn\'t exist''' ) if t.search(-1 ) is not None: print('''The value -1 exists''' ) else: print('''The value -1 doesn\'t exist''' ) if not t.empty(): print('''Max Value: ''', t.get_max().value ) # type: ignore print('''Min Value: ''', t.get_min().value ) # type: ignore for i in testlist: t.remove(SCREAMING_SNAKE_CASE__ ) print(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
644
0
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Optional[int], SCREAMING_SNAKE_CASE__ : List[Any], SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Dict: # Initialise PyTorch model UpperCAmelCase_ : List[str] = RemBertConfig.from_json_file(__UpperCamelCase ) print('''Building PyTorch model from configuration: {}'''.format(str(__UpperCamelCase ) ) ) UpperCAmelCase_ : int = RemBertModel(__UpperCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_rembert(__UpperCamelCase, __UpperCamelCase, __UpperCamelCase ) # Save pytorch-model print('''Save PyTorch model to {}'''.format(__UpperCamelCase ) ) torch.save(model.state_dict(), __UpperCamelCase ) if __name__ == "__main__": snake_case_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--rembert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained RemBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) snake_case_ : Optional[int] = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
713
'''simple docstring''' import sys import turtle def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : tuple[float, float] ) -> tuple[float, float]: return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : int, ) -> None: my_pen.up() my_pen.goto(vertexa[0], vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0], vertexa[1] ) my_pen.goto(vertexa[0], vertexa[1] ) my_pen.goto(vertexa[0], vertexa[1] ) if depth == 0: return triangle(SCREAMING_SNAKE_CASE__, get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), depth - 1 ) triangle(SCREAMING_SNAKE_CASE__, get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), depth - 1 ) triangle(SCREAMING_SNAKE_CASE__, get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( "Correct format for using this script: " "python fractals.py <int:depth_for_fractal>" ) snake_case_ : Any = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor("red") snake_case_ : Tuple = [(-1_75, -1_25), (0, 1_75), (1_75, -1_25)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
644
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() snake_case_ : List[Any] = logging.get_logger(__name__) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Tuple ) -> List[Any]: UpperCAmelCase_ : Optional[Any] = """huggingface/label-files""" UpperCAmelCase_ : Optional[Any] = """imagenet-1k-id2label.json""" UpperCAmelCase_ : str = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, repo_type='''dataset''' ), '''r''' ) ) UpperCAmelCase_ : Tuple = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} UpperCAmelCase_ : Optional[Any] = {v: k for k, v in idalabel.items()} UpperCAmelCase_ : List[str] = """std_conv""" if """bit""" in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" UpperCAmelCase_ : Optional[int] = BitConfig( conv_layer=SCREAMING_SNAKE_CASE__, num_labels=1000, idalabel=SCREAMING_SNAKE_CASE__, labelaid=SCREAMING_SNAKE_CASE__, ) return config def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[Any] ) -> int: if "stem.conv" in name: UpperCAmelCase_ : int = name.replace('''stem.conv''', '''bit.embedder.convolution''' ) if "blocks" in name: UpperCAmelCase_ : Optional[int] = name.replace('''blocks''', '''layers''' ) if "head.fc" in name: UpperCAmelCase_ : Union[str, Any] = name.replace('''head.fc''', '''classifier.1''' ) if name.startswith('''norm''' ): UpperCAmelCase_ : Optional[int] = """bit.""" + name if "bit" not in name and "classifier" not in name: UpperCAmelCase_ : Any = """bit.encoder.""" + name return name def lowerCamelCase_ ( ) -> Any: UpperCAmelCase_ : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCAmelCase_ : List[Any] = Image.open(requests.get(SCREAMING_SNAKE_CASE__, stream=SCREAMING_SNAKE_CASE__ ).raw ) return im @torch.no_grad() def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : str, SCREAMING_SNAKE_CASE__ : List[str], SCREAMING_SNAKE_CASE__ : Optional[Any]=False ) -> Any: UpperCAmelCase_ : List[Any] = get_config(SCREAMING_SNAKE_CASE__ ) # load original model from timm UpperCAmelCase_ : str = create_model(SCREAMING_SNAKE_CASE__, pretrained=SCREAMING_SNAKE_CASE__ ) timm_model.eval() # load state_dict of original model UpperCAmelCase_ : int = timm_model.state_dict() for key in state_dict.copy().keys(): UpperCAmelCase_ : Tuple = state_dict.pop(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Any = val.squeeze() if """head""" in key else val # load HuggingFace model UpperCAmelCase_ : int = BitForImageClassification(SCREAMING_SNAKE_CASE__ ) model.eval() model.load_state_dict(SCREAMING_SNAKE_CASE__ ) # create image processor UpperCAmelCase_ : Optional[Any] = create_transform(**resolve_data_config({}, model=SCREAMING_SNAKE_CASE__ ) ) UpperCAmelCase_ : Tuple = transform.transforms UpperCAmelCase_ : List[str] = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } UpperCAmelCase_ : int = BitImageProcessor( do_resize=SCREAMING_SNAKE_CASE__, size={'''shortest_edge''': timm_transforms[0].size}, resample=pillow_resamplings[timm_transforms[0].interpolation.value], do_center_crop=SCREAMING_SNAKE_CASE__, crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]}, do_normalize=SCREAMING_SNAKE_CASE__, image_mean=timm_transforms[-1].mean.tolist(), image_std=timm_transforms[-1].std.tolist(), ) UpperCAmelCase_ : Optional[int] = prepare_img() UpperCAmelCase_ : List[str] = transform(SCREAMING_SNAKE_CASE__ ).unsqueeze(0 ) UpperCAmelCase_ : List[Any] = processor(SCREAMING_SNAKE_CASE__, return_tensors='''pt''' ).pixel_values # verify pixel values assert torch.allclose(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) # verify logits with torch.no_grad(): UpperCAmelCase_ : str = model(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : List[str] = outputs.logits print('''Logits:''', logits[0, :3] ) print('''Predicted class:''', model.config.idalabel[logits.argmax(-1 ).item()] ) UpperCAmelCase_ : str = timm_model(SCREAMING_SNAKE_CASE__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(SCREAMING_SNAKE_CASE__, outputs.logits, atol=1E-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) print(F"""Saving model {model_name} and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if push_to_hub: print(F"""Pushing model {model_name} and processor to the hub""" ) model.push_to_hub(F"""ybelkada/{model_name}""" ) processor.push_to_hub(F"""ybelkada/{model_name}""" ) if __name__ == "__main__": snake_case_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="resnetv2_50x1_bitm", type=str, help="Name of the BiT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model to the hub.", ) snake_case_ : Dict = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
714
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device snake_case_ : List[str] = False class __a (unittest.TestCase ): pass @nightly @require_torch_gpu class __a (unittest.TestCase ): def UpperCAmelCase__ ( self : int ) -> str: """simple docstring""" # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self : List[str] ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Tuple = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) UpperCAmelCase_ : List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) UpperCAmelCase_ : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase_ : Union[str, Any] = pipe.dual_guided( prompt='''first prompt''' , image=__magic_name__ , text_to_image_strength=0.7_5 , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__magic_name__ ) UpperCAmelCase_ : Optional[int] = VersatileDiffusionPipeline.from_pretrained(__magic_name__ , torch_dtype=torch.floataa ) pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) UpperCAmelCase_ : Any = generator.manual_seed(0 ) UpperCAmelCase_ : Dict = pipe.dual_guided( prompt='''first prompt''' , image=__magic_name__ , text_to_image_strength=0.7_5 , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def UpperCAmelCase__ ( self : str ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : str = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) UpperCAmelCase_ : Union[str, Any] = '''cyberpunk 2077''' UpperCAmelCase_ : Union[str, Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) UpperCAmelCase_ : Tuple = torch.manual_seed(0 ) UpperCAmelCase_ : Optional[Any] = pipe.dual_guided( prompt=__magic_name__ , image=__magic_name__ , text_to_image_strength=0.7_5 , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' , ).images UpperCAmelCase_ : List[str] = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCAmelCase_ : Union[str, Any] = np.array([0.1_4_4_8, 0.1_6_1_9, 0.1_7_4_1, 0.1_0_8_6, 0.1_1_4_7, 0.1_1_2_8, 0.1_1_9_9, 0.1_1_6_5, 0.1_0_0_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 UpperCAmelCase_ : Tuple = '''A painting of a squirrel eating a burger ''' UpperCAmelCase_ : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase_ : List[Any] = pipe.text_to_image( prompt=__magic_name__ , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' ).images UpperCAmelCase_ : Tuple = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCAmelCase_ : Any = np.array([0.3_3_6_7, 0.3_1_6_9, 0.2_6_5_6, 0.3_8_7_0, 0.4_7_9_0, 0.3_7_9_6, 0.4_0_0_9, 0.4_8_7_8, 0.4_7_7_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 UpperCAmelCase_ : Tuple = pipe.image_variation(__magic_name__ , generator=__magic_name__ , output_type='''numpy''' ).images UpperCAmelCase_ : Optional[Any] = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCAmelCase_ : List[str] = np.array([0.3_0_7_6, 0.3_1_2_3, 0.3_2_8_4, 0.3_7_8_2, 0.3_7_7_0, 0.3_8_9_4, 0.4_2_9_7, 0.4_3_3_1, 0.4_4_5_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
644
0
'''simple docstring''' from __future__ import annotations import numpy as np def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[Any] ) -> int: return np.maximum(0, SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
715
'''simple docstring''' snake_case_ : int = { "Pillow": "Pillow", "accelerate": "accelerate>=0.11.0", "compel": "compel==0.1.8", "black": "black~=23.1", "datasets": "datasets", "filelock": "filelock", "flax": "flax>=0.4.1", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.13.2", "requests-mock": "requests-mock==1.10.0", "importlib_metadata": "importlib_metadata", "invisible-watermark": "invisible-watermark", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2", "jaxlib": "jaxlib>=0.1.65", "Jinja2": "Jinja2", "k-diffusion": "k-diffusion>=0.0.12", "torchsde": "torchsde", "note_seq": "note_seq", "librosa": "librosa", "numpy": "numpy", "omegaconf": "omegaconf", "parameterized": "parameterized", "protobuf": "protobuf>=3.20.3,<4", "pytest": "pytest", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "ruff": "ruff>=0.0.241", "safetensors": "safetensors", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "scipy": "scipy", "onnx": "onnx", "regex": "regex!=2019.12.17", "requests": "requests", "tensorboard": "tensorboard", "torch": "torch>=1.4", "torchvision": "torchvision", "transformers": "transformers>=4.25.1", "urllib3": "urllib3<=2.0.0", }
644
0
'''simple docstring''' import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) snake_case_ : Optional[Any] = logging.getLogger(__name__) @dataclass(frozen=__snake_case ) class __a : __a : str __a : str __a : Optional[str] = None __a : Optional[str] = None __a : Optional[str] = None @dataclass(frozen=__snake_case ) class __a : __a : List[int] __a : Optional[List[int]] = None __a : Optional[List[int]] = None __a : Optional[Union[int, float]] = None __a : Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class __a (__snake_case ): __a : List[InputFeatures] def __init__( self : Any , __magic_name__ : str , __magic_name__ : int , __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] = None , __magic_name__ : int=False , __magic_name__ : List[Any] = False , ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ : Optional[Any] = hans_processors[task]() UpperCAmelCase_ : Optional[Any] = os.path.join( A_ , '''cached_{}_{}_{}_{}'''.format( '''dev''' if evaluate else '''train''' , tokenizer.__class__.__name__ , str(A_ ) , A_ , ) , ) UpperCAmelCase_ : List[str] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase_ : int = label_list[2], label_list[1] UpperCAmelCase_ : Dict = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCAmelCase_ : int = cached_features_file + ".lock" with FileLock(A_ ): if os.path.exists(A_ ) and not overwrite_cache: logger.info(F"""Loading features from cached file {cached_features_file}""" ) UpperCAmelCase_ : List[str] = torch.load(A_ ) else: logger.info(F"""Creating features from dataset file at {data_dir}""" ) UpperCAmelCase_ : List[Any] = ( processor.get_dev_examples(A_ ) if evaluate else processor.get_train_examples(A_ ) ) logger.info('''Training examples: %s''' , len(A_ ) ) UpperCAmelCase_ : Tuple = hans_convert_examples_to_features(A_ , A_ , A_ , A_ ) logger.info('''Saving features into cached file %s''' , A_ ) torch.save(self.features , A_ ) def __len__( self : Dict ) -> Union[str, Any]: """simple docstring""" return len(self.features ) def __getitem__( self : str , __magic_name__ : Tuple ) -> Dict: """simple docstring""" return self.features[i] def UpperCAmelCase__ ( self : int ) -> Tuple: """simple docstring""" return self.label_list if is_tf_available(): import tensorflow as tf class __a : __a : List[InputFeatures] def __init__( self : Tuple , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int] , __magic_name__ : int = 1_28 , __magic_name__ : List[Any]=False , __magic_name__ : Union[str, Any] = False , ) -> Dict: """simple docstring""" UpperCAmelCase_ : Optional[Any] = hans_processors[task]() UpperCAmelCase_ : Optional[int] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase_ : Any = label_list[2], label_list[1] UpperCAmelCase_ : Tuple = label_list UpperCAmelCase_ : Optional[Any] = processor.get_dev_examples(A_ ) if evaluate else processor.get_train_examples(A_ ) UpperCAmelCase_ : str = hans_convert_examples_to_features(A_ , A_ , A_ , A_ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='''convert examples to features''' ): if ex_index % 1_00_00 == 0: logger.info('''Writing example %d of %d''' % (ex_index, len(A_ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) UpperCAmelCase_ : str = tf.data.Dataset.from_generator( A_ , ( { '''example_id''': tf.intaa, '''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa, }, tf.intaa, ) , ( { '''example_id''': tf.TensorShape([] ), '''input_ids''': tf.TensorShape([None, None] ), '''attention_mask''': tf.TensorShape([None, None] ), '''token_type_ids''': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def UpperCAmelCase__ ( self : Tuple ) -> Tuple: """simple docstring""" return self.dataset def __len__( self : Optional[int] ) -> Tuple: """simple docstring""" return len(self.features ) def __getitem__( self : Union[str, Any] , __magic_name__ : Union[str, Any] ) -> List[str]: """simple docstring""" return self.features[i] def UpperCAmelCase__ ( self : List[str] ) -> Any: """simple docstring""" return self.label_list class __a (__snake_case ): def UpperCAmelCase__ ( self : Dict , __magic_name__ : Tuple ) -> Optional[Any]: """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(A_ , '''heuristics_train_set.txt''' ) ) , '''train''' ) def UpperCAmelCase__ ( self : int , __magic_name__ : str ) -> Optional[Any]: """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(A_ , '''heuristics_evaluation_set.txt''' ) ) , '''dev''' ) def UpperCAmelCase__ ( self : Tuple ) -> int: """simple docstring""" return ["contradiction", "entailment", "neutral"] def UpperCAmelCase__ ( self : int , __magic_name__ : Dict , __magic_name__ : Any ) -> Tuple: """simple docstring""" UpperCAmelCase_ : Optional[Any] = [] for i, line in enumerate(A_ ): if i == 0: continue UpperCAmelCase_ : Union[str, Any] = "%s-%s" % (set_type, line[0]) UpperCAmelCase_ : Optional[int] = line[5] UpperCAmelCase_ : Tuple = line[6] UpperCAmelCase_ : int = line[7][2:] if line[7].startswith('''ex''' ) else line[7] UpperCAmelCase_ : Optional[Any] = line[0] examples.append(InputExample(guid=A_ , text_a=A_ , text_b=A_ , label=A_ , pairID=A_ ) ) return examples def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Any, SCREAMING_SNAKE_CASE__ : Any, SCREAMING_SNAKE_CASE__ : Union[str, Any], SCREAMING_SNAKE_CASE__ : List[Any], ) -> int: UpperCAmelCase_ : Optional[int] = {label: i for i, label in enumerate(_lowerCAmelCase )} UpperCAmelCase_ : List[str] = [] for ex_index, example in tqdm.tqdm(enumerate(_lowerCAmelCase ), desc='''convert examples to features''' ): if ex_index % 10000 == 0: logger.info('''Writing example %d''' % (ex_index) ) UpperCAmelCase_ : List[str] = tokenizer( example.text_a, example.text_b, add_special_tokens=_lowerCAmelCase, max_length=_lowerCAmelCase, padding='''max_length''', truncation=_lowerCAmelCase, return_overflowing_tokens=_lowerCAmelCase, ) UpperCAmelCase_ : str = label_map[example.label] if example.label in label_map else 0 UpperCAmelCase_ : Tuple = int(example.pairID ) features.append(InputFeatures(**_lowerCAmelCase, label=_lowerCAmelCase, pairID=_lowerCAmelCase ) ) for i, example in enumerate(examples[:5] ): logger.info('''*** Example ***''' ) logger.info(F"""guid: {example}""" ) logger.info(F"""features: {features[i]}""" ) return features snake_case_ : Tuple = { """hans""": 3, } snake_case_ : List[Any] = { """hans""": HansProcessor, }
716
'''simple docstring''' import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __a (unittest.TestCase ): @property def UpperCAmelCase__ ( self : Dict ) -> str: """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase_ : Optional[Any] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def UpperCAmelCase__ ( self : Dict ) -> Tuple: """simple docstring""" UpperCAmelCase_ : List[Any] = self.dummy_uncond_unet UpperCAmelCase_ : Dict = KarrasVeScheduler() UpperCAmelCase_ : Union[str, Any] = KarrasVePipeline(unet=__magic_name__ , scheduler=__magic_name__ ) pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) UpperCAmelCase_ : Dict = torch.manual_seed(0 ) UpperCAmelCase_ : Optional[int] = pipe(num_inference_steps=2 , generator=__magic_name__ , output_type='''numpy''' ).images UpperCAmelCase_ : Tuple = torch.manual_seed(0 ) UpperCAmelCase_ : str = pipe(num_inference_steps=2 , generator=__magic_name__ , output_type='''numpy''' , return_dict=__magic_name__ )[0] UpperCAmelCase_ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCAmelCase_ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase_ : Dict = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class __a (unittest.TestCase ): def UpperCAmelCase__ ( self : int ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : List[str] = '''google/ncsnpp-celebahq-256''' UpperCAmelCase_ : List[str] = UNetaDModel.from_pretrained(__magic_name__ ) UpperCAmelCase_ : List[Any] = KarrasVeScheduler() UpperCAmelCase_ : Any = KarrasVePipeline(unet=__magic_name__ , scheduler=__magic_name__ ) pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) UpperCAmelCase_ : Dict = torch.manual_seed(0 ) UpperCAmelCase_ : Optional[Any] = pipe(num_inference_steps=20 , generator=__magic_name__ , output_type='''numpy''' ).images UpperCAmelCase_ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) UpperCAmelCase_ : Optional[Any] = np.array([0.5_7_8, 0.5_8_1_1, 0.5_9_2_4, 0.5_8_0_9, 0.5_8_7, 0.5_8_8_6, 0.5_8_6_1, 0.5_8_0_2, 0.5_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
644
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor snake_case_ : List[Any] = logging.get_logger(__name__) class __a (UpperCamelCase__ ): def __init__( self : Dict , *__magic_name__ : Any , **__magic_name__ : int ) -> None: """simple docstring""" warnings.warn( '''The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DonutImageProcessor instead.''' , __magic_name__ , ) super().__init__(*__magic_name__ , **__magic_name__ )
717
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class __a (lowerCamelCase ): __a : List[Any] = "openai/whisper-base" __a : Optional[Any] = ( "This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the " "transcribed text." ) __a : Any = "transcriber" __a : str = WhisperProcessor __a : List[Any] = WhisperForConditionalGeneration __a : int = ["audio"] __a : Optional[Any] = ["text"] def UpperCAmelCase__ ( self : Dict , __magic_name__ : List[str] ) -> Optional[int]: """simple docstring""" return self.pre_processor(__magic_name__ , return_tensors='''pt''' ).input_features def UpperCAmelCase__ ( self : Dict , __magic_name__ : Dict ) -> Tuple: """simple docstring""" return self.model.generate(inputs=__magic_name__ ) def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Dict ) -> str: """simple docstring""" return self.pre_processor.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ )[0]
644
0
'''simple docstring''' class __a : def __init__( self : Dict , __magic_name__ : int ) -> List[str]: """simple docstring""" UpperCAmelCase_ : Tuple = n UpperCAmelCase_ : List[str] = [None] * self.n UpperCAmelCase_ : List[str] = 0 # index of the first element UpperCAmelCase_ : Dict = 0 UpperCAmelCase_ : List[Any] = 0 def __len__( self : Optional[int] ) -> int: """simple docstring""" return self.size def UpperCAmelCase__ ( self : Any ) -> bool: """simple docstring""" return self.size == 0 def UpperCAmelCase__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" return False if self.is_empty() else self.array[self.front] def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : Optional[Any] ) -> Union[str, Any]: """simple docstring""" if self.size >= self.n: raise Exception('''QUEUE IS FULL''' ) UpperCAmelCase_ : List[str] = data UpperCAmelCase_ : Dict = (self.rear + 1) % self.n self.size += 1 return self def UpperCAmelCase__ ( self : Any ) -> int: """simple docstring""" if self.size == 0: raise Exception('''UNDERFLOW''' ) UpperCAmelCase_ : Dict = self.array[self.front] UpperCAmelCase_ : str = None UpperCAmelCase_ : List[Any] = (self.front + 1) % self.n self.size -= 1 return temp
718
'''simple docstring''' def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : int ) -> int: return abs(SCREAMING_SNAKE_CASE__ ) if a == 0 else greatest_common_divisor(b % a, SCREAMING_SNAKE_CASE__ ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : int ) -> int: while y: # --> when y=0 then loop will terminate and return x as final GCD. UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = y, x % y return abs(SCREAMING_SNAKE_CASE__ ) def lowerCamelCase_ ( ) -> Optional[int]: try: UpperCAmelCase_ : Optional[Any] = input('''Enter two integers separated by comma (,): ''' ).split(''',''' ) UpperCAmelCase_ : Optional[int] = int(nums[0] ) UpperCAmelCase_ : List[Any] = int(nums[1] ) print( F"""greatest_common_divisor({num_a}, {num_a}) = """ F"""{greatest_common_divisor(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )}""" ) print(F"""By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )}""" ) except (IndexError, UnboundLocalError, ValueError): print('''Wrong input''' ) if __name__ == "__main__": main()
644
0
'''simple docstring''' import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging snake_case_ : List[Any] = logging.get_logger(__name__) snake_case_ : List[str] = {"vocab_file": "spiece.model"} snake_case_ : Union[str, Any] = { "vocab_file": { "google/bigbird-roberta-base": "https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model", "google/bigbird-roberta-large": ( "https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model" ), "google/bigbird-base-trivia-itc": ( "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model" ), } } snake_case_ : Any = { "google/bigbird-roberta-base": 40_96, "google/bigbird-roberta-large": 40_96, "google/bigbird-base-trivia-itc": 40_96, } class __a (__a ): __a : int = VOCAB_FILES_NAMES __a : Any = PRETRAINED_VOCAB_FILES_MAP __a : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a : int = ["input_ids", "attention_mask"] __a : List[int] = [] def __init__( self : List[str] , __magic_name__ : int , __magic_name__ : List[Any]="<unk>" , __magic_name__ : int="<s>" , __magic_name__ : Union[str, Any]="</s>" , __magic_name__ : Any="<pad>" , __magic_name__ : Any="[SEP]" , __magic_name__ : Any="[MASK]" , __magic_name__ : Any="[CLS]" , __magic_name__ : Any = None , **__magic_name__ : str , ) -> None: """simple docstring""" UpperCAmelCase_ : List[Any] = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else bos_token UpperCAmelCase_ : List[str] = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else eos_token UpperCAmelCase_ : int = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else unk_token UpperCAmelCase_ : str = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else pad_token UpperCAmelCase_ : int = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else cls_token UpperCAmelCase_ : str = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase_ : str = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else mask_token UpperCAmelCase_ : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase_ , ) UpperCAmelCase_ : Any = vocab_file UpperCAmelCase_ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCAmelCase_ ) @property def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]: """simple docstring""" return self.sp_model.get_piece_size() def UpperCAmelCase__ ( self : str ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ : Optional[int] = {self.convert_ids_to_tokens(lowerCAmelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ : Optional[int] = self.__dict__.copy() UpperCAmelCase_ : Dict = None return state def __setstate__( self : Any , __magic_name__ : Tuple ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : int = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCAmelCase_ : int = {} UpperCAmelCase_ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Any ) -> List[str]: """simple docstring""" return self.sp_model.encode(lowerCAmelCase_ , out_type=lowerCAmelCase_ ) def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : str ) -> Any: """simple docstring""" return self.sp_model.piece_to_id(lowerCAmelCase_ ) def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : List[Any] ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ : Optional[Any] = self.sp_model.IdToPiece(lowerCAmelCase_ ) return token def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : int ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = [] UpperCAmelCase_ : Union[str, Any] = '''''' UpperCAmelCase_ : Optional[Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCAmelCase_ ) + token UpperCAmelCase_ : str = True UpperCAmelCase_ : Tuple = [] else: current_sub_tokens.append(lowerCAmelCase_ ) UpperCAmelCase_ : Any = False out_string += self.sp_model.decode(lowerCAmelCase_ ) return out_string.strip() def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] = False , __magic_name__ : List[Any] = None , __magic_name__ : Any = True , **__magic_name__ : str , ) -> str: """simple docstring""" UpperCAmelCase_ : int = kwargs.pop('''use_source_tokenizer''' , lowerCAmelCase_ ) UpperCAmelCase_ : List[Any] = self.convert_ids_to_tokens(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : str = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCAmelCase_ ) ) UpperCAmelCase_ : List[Any] = [] sub_texts.append(lowerCAmelCase_ ) else: current_sub_text.append(lowerCAmelCase_ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCAmelCase_ ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: UpperCAmelCase_ : Tuple = re.sub(R''' (\[(MASK|SEP)\])''' , R'''\1''' , ''' '''.join(lowerCAmelCase_ ) ) else: UpperCAmelCase_ : Dict = ''''''.join(lowerCAmelCase_ ) UpperCAmelCase_ : str = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: UpperCAmelCase_ : Optional[Any] = self.clean_up_tokenization(lowerCAmelCase_ ) return clean_text else: return text def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : Tuple , __magic_name__ : Tuple = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCAmelCase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase_ : int = os.path.join( lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase_ , '''wb''' ) as fi: UpperCAmelCase_ : str = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase_ ) return (out_vocab_file,) def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : int , __magic_name__ : Union[str, Any] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase_ : Any = [self.cls_token_id] UpperCAmelCase_ : Optional[int] = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def UpperCAmelCase__ ( self : Any , __magic_name__ : List[Any] , __magic_name__ : Optional[int] = None , __magic_name__ : Union[str, Any] = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase_ , token_ids_a=lowerCAmelCase_ , already_has_special_tokens=lowerCAmelCase_ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase_ )) + [1] return [1] + ([0] * len(lowerCAmelCase_ )) + [1] + ([0] * len(lowerCAmelCase_ )) + [1] def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : Dict , __magic_name__ : Tuple = None ) -> List[int]: """simple docstring""" UpperCAmelCase_ : Any = [self.sep_token_id] UpperCAmelCase_ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
719
'''simple docstring''' import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class __a : def __init__( self : int , __magic_name__ : Optional[Any] , __magic_name__ : Any=13 , __magic_name__ : Any=7 , __magic_name__ : Union[str, Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : str=True , __magic_name__ : Optional[int]=True , __magic_name__ : List[Any]=99 , __magic_name__ : int=24 , __magic_name__ : Optional[int]=2 , __magic_name__ : Tuple=6 , __magic_name__ : Union[str, Any]=37 , __magic_name__ : Optional[Any]="gelu" , __magic_name__ : Any=0.1 , __magic_name__ : str=0.1 , __magic_name__ : Tuple=5_12 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : Tuple=2 , __magic_name__ : Tuple=0.0_2 , __magic_name__ : Optional[Any]=3 , __magic_name__ : Optional[int]=None , __magic_name__ : Any=10_00 , ) -> str: """simple docstring""" UpperCAmelCase_ : Tuple = parent UpperCAmelCase_ : Optional[int] = batch_size UpperCAmelCase_ : List[str] = seq_length UpperCAmelCase_ : Dict = is_training UpperCAmelCase_ : List[str] = use_input_mask UpperCAmelCase_ : Any = use_token_type_ids UpperCAmelCase_ : Any = use_labels UpperCAmelCase_ : Any = vocab_size UpperCAmelCase_ : Dict = hidden_size UpperCAmelCase_ : Tuple = num_hidden_layers UpperCAmelCase_ : Tuple = num_attention_heads UpperCAmelCase_ : int = intermediate_size UpperCAmelCase_ : Union[str, Any] = hidden_act UpperCAmelCase_ : Optional[int] = hidden_dropout_prob UpperCAmelCase_ : Optional[Any] = attention_probs_dropout_prob UpperCAmelCase_ : Union[str, Any] = max_position_embeddings UpperCAmelCase_ : int = type_vocab_size UpperCAmelCase_ : List[Any] = type_sequence_label_size UpperCAmelCase_ : int = initializer_range UpperCAmelCase_ : Dict = num_labels UpperCAmelCase_ : List[str] = scope UpperCAmelCase_ : List[str] = range_bbox def UpperCAmelCase__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: UpperCAmelCase_ : List[str] = bbox[i, j, 3] UpperCAmelCase_ : Dict = bbox[i, j, 1] UpperCAmelCase_ : Optional[Any] = t if bbox[i, j, 2] < bbox[i, j, 0]: UpperCAmelCase_ : List[str] = bbox[i, j, 2] UpperCAmelCase_ : Tuple = bbox[i, j, 0] UpperCAmelCase_ : Union[str, Any] = t UpperCAmelCase_ : int = None if self.use_input_mask: UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) UpperCAmelCase_ : Optional[int] = None if self.use_token_type_ids: UpperCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Tuple = None if self.use_labels: UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : int = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def UpperCAmelCase__ ( self : Any ) -> List[Any]: """simple docstring""" return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : str , __magic_name__ : Optional[Any] , __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : int , ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : Any = LiltModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() UpperCAmelCase_ : Optional[Any] = model(__magic_name__ , bbox=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ ) UpperCAmelCase_ : List[Any] = model(__magic_name__ , bbox=__magic_name__ , token_type_ids=__magic_name__ ) UpperCAmelCase_ : Optional[int] = model(__magic_name__ , bbox=__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCAmelCase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[int] , __magic_name__ : List[Any] , ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ : Any = self.num_labels UpperCAmelCase_ : List[Any] = LiltForTokenClassification(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() UpperCAmelCase_ : List[Any] = model( __magic_name__ , bbox=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase__ ( self : Any , __magic_name__ : Optional[Any] , __magic_name__ : Dict , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : Any , ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ : str = LiltForQuestionAnswering(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() UpperCAmelCase_ : Optional[Any] = model( __magic_name__ , bbox=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Tuple = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Optional[int] = config_and_inputs UpperCAmelCase_ : Tuple = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class __a (lowerCamelCase , lowerCamelCase , lowerCamelCase , unittest.TestCase ): __a : Tuple = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) __a : Any = ( { "feature-extraction": LiltModel, "question-answering": LiltForQuestionAnswering, "text-classification": LiltForSequenceClassification, "token-classification": LiltForTokenClassification, "zero-shot": LiltForSequenceClassification, } if is_torch_available() else {} ) __a : Union[str, Any] = False __a : int = False def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : int ) -> str: """simple docstring""" return True def UpperCAmelCase__ ( self : str ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : List[Any] = LiltModelTester(self ) UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> str: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : str ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def UpperCAmelCase__ ( self : str ) -> str: """simple docstring""" UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase_ : Tuple = type self.model_tester.create_and_check_model(*__magic_name__ ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> int: """simple docstring""" UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__magic_name__ ) def UpperCAmelCase__ ( self : str ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__magic_name__ ) @slow def UpperCAmelCase__ ( self : int ) -> Union[str, Any]: """simple docstring""" for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Optional[int] = LiltModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) @require_torch @slow class __a (unittest.TestCase ): def UpperCAmelCase__ ( self : Tuple ) -> Tuple: """simple docstring""" UpperCAmelCase_ : str = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(__magic_name__ ) UpperCAmelCase_ : Any = torch.tensor([[1, 2]] , device=__magic_name__ ) UpperCAmelCase_ : int = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=__magic_name__ ) # forward pass with torch.no_grad(): UpperCAmelCase_ : Optional[int] = model(input_ids=__magic_name__ , bbox=__magic_name__ ) UpperCAmelCase_ : int = torch.Size([1, 2, 7_68] ) UpperCAmelCase_ : List[str] = torch.tensor( [[-0.0_6_5_3, 0.0_9_5_0, -0.0_0_6_1], [-0.0_5_4_5, 0.0_9_2_6, -0.0_3_2_4]] , device=__magic_name__ , ) self.assertTrue(outputs.last_hidden_state.shape , __magic_name__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , __magic_name__ , atol=1E-3 ) )
644
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case_ : List[str] = {'configuration_xlnet': ['XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Optional[Any] = ['XLNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : List[Any] = ['XLNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : List[str] = [ 'XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLNetForMultipleChoice', 'XLNetForQuestionAnswering', 'XLNetForQuestionAnsweringSimple', 'XLNetForSequenceClassification', 'XLNetForTokenClassification', 'XLNetLMHeadModel', 'XLNetModel', 'XLNetPreTrainedModel', 'load_tf_weights_in_xlnet', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : str = [ 'TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLNetForMultipleChoice', 'TFXLNetForQuestionAnsweringSimple', 'TFXLNetForSequenceClassification', 'TFXLNetForTokenClassification', 'TFXLNetLMHeadModel', 'TFXLNetMainLayer', 'TFXLNetModel', 'TFXLNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys snake_case_ : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
720
'''simple docstring''' import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case_ : str = logging.get_logger(__name__) snake_case_ : int = "▁" snake_case_ : str = {"vocab_file": "vocab.txt", "sentencepiece_model_ckpt": "sentencepiece.bpe.model"} snake_case_ : int = { "sentencepiece_model_file": "sentencepiece.bpe.model", "vocab_file": "vocab.txt", } snake_case_ : Optional[Any] = { "vocab_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", }, "sentencepiece_model_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", }, } snake_case_ : Dict = { "ernie-m-base": 5_14, "ernie-m-large": 5_14, } snake_case_ : Any = { "ernie-m-base": {"do_lower_case": False}, "ernie-m-large": {"do_lower_case": False}, } class __a (lowerCamelCase ): __a : List[str] = ["input_ids"] __a : Union[str, Any] = VOCAB_FILES_NAMES __a : Tuple = PRETRAINED_INIT_CONFIGURATION __a : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __a : Union[str, Any] = RESOURCE_FILES_NAMES def __init__( self : Union[str, Any] , __magic_name__ : Dict , __magic_name__ : int=None , __magic_name__ : str=False , __magic_name__ : int="utf8" , __magic_name__ : Optional[int]="[UNK]" , __magic_name__ : Dict="[SEP]" , __magic_name__ : List[Any]="[PAD]" , __magic_name__ : str="[CLS]" , __magic_name__ : Optional[int]="[MASK]" , __magic_name__ : Optional[Dict[str, Any]] = None , **__magic_name__ : Union[str, Any] , ) -> None: """simple docstring""" # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. UpperCAmelCase_ : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__magic_name__ , unk_token=__magic_name__ , sep_token=__magic_name__ , pad_token=__magic_name__ , cls_token=__magic_name__ , mask_token=__magic_name__ , vocab_file=__magic_name__ , encoding=__magic_name__ , sp_model_kwargs=self.sp_model_kwargs , **__magic_name__ , ) UpperCAmelCase_ : Optional[Any] = do_lower_case UpperCAmelCase_ : List[str] = sentencepiece_model_ckpt UpperCAmelCase_ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__magic_name__ ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: UpperCAmelCase_ : List[Any] = self.load_vocab(filepath=__magic_name__ ) else: UpperCAmelCase_ : str = {self.sp_model.id_to_piece(__magic_name__ ): id for id in range(self.sp_model.get_piece_size() )} UpperCAmelCase_ : int = {v: k for k, v in self.vocab.items()} def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Any ) -> Any: """simple docstring""" if text is None: return None UpperCAmelCase_ : str = self.tokenize(__magic_name__ ) UpperCAmelCase_ , UpperCAmelCase_ : str = '''''', [] for i, ch in enumerate(__magic_name__ ): if ch in self.SP_CHAR_MAPPING: UpperCAmelCase_ : Optional[int] = self.SP_CHAR_MAPPING.get(__magic_name__ ) else: UpperCAmelCase_ : Union[str, Any] = unicodedata.normalize('''NFKC''' , __magic_name__ ) if self.is_whitespace(__magic_name__ ): continue normalized_text += ch char_mapping.extend([i] * len(__magic_name__ ) ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = normalized_text, [], 0 if self.do_lower_case: UpperCAmelCase_ : Optional[int] = text.lower() for token in split_tokens: if token[:1] == "▁": UpperCAmelCase_ : Tuple = token[1:] UpperCAmelCase_ : int = text[offset:].index(__magic_name__ ) + offset UpperCAmelCase_ : Optional[int] = start + len(__magic_name__ ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) UpperCAmelCase_ : int = end return token_mapping @property def UpperCAmelCase__ ( self : Any ) -> Any: """simple docstring""" return len(self.vocab ) def UpperCAmelCase__ ( self : List[Any] ) -> int: """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self : str ) -> Any: """simple docstring""" UpperCAmelCase_ : Optional[Any] = self.__dict__.copy() UpperCAmelCase_ : Optional[Any] = None return state def __setstate__( self : str , __magic_name__ : Any ) -> Dict: """simple docstring""" UpperCAmelCase_ : Dict = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCAmelCase_ : int = {} UpperCAmelCase_ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : Any ) -> List[str]: """simple docstring""" return "".join((self.SP_CHAR_MAPPING.get(__magic_name__ , __magic_name__ ) for c in text) ) def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Tuple , __magic_name__ : Any=False , __magic_name__ : List[str]=64 , __magic_name__ : List[str]=0.1 ) -> List[str]: """simple docstring""" if self.sp_model_kwargs.get('''enable_sampling''' ) is True: UpperCAmelCase_ : Dict = True if self.sp_model_kwargs.get('''alpha''' ) is not None: UpperCAmelCase_ : Union[str, Any] = self.sp_model_kwargs.get('''alpha''' ) if self.sp_model_kwargs.get('''nbest_size''' ) is not None: UpperCAmelCase_ : Any = self.sp_model_kwargs.get('''nbest_size''' ) if not enable_sampling: UpperCAmelCase_ : Dict = self.sp_model.EncodeAsPieces(__magic_name__ ) else: UpperCAmelCase_ : Dict = self.sp_model.SampleEncodeAsPieces(__magic_name__ , __magic_name__ , __magic_name__ ) UpperCAmelCase_ : List[Any] = [] for pi, piece in enumerate(__magic_name__ ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(__magic_name__ ) and pi != 0: new_pieces.append(__magic_name__ ) continue else: continue UpperCAmelCase_ : List[str] = 0 for i, chunk in enumerate(__magic_name__ ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(__magic_name__ ) or self.is_punct(__magic_name__ ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(__magic_name__ ) UpperCAmelCase_ : List[Any] = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) UpperCAmelCase_ : List[str] = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) UpperCAmelCase_ : str = i if len(__magic_name__ ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Optional[int] ) -> List[str]: """simple docstring""" UpperCAmelCase_ : Optional[Any] = ''''''.join(__magic_name__ ).replace(__magic_name__ , ''' ''' ).strip() return out_string def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Union[str, Any] ) -> List[str]: """simple docstring""" UpperCAmelCase_ : str = self.convert_ids_to_tokens(__magic_name__ ) UpperCAmelCase_ : Optional[Any] = ''''''.join(__magic_name__ ).replace(__magic_name__ , ''' ''' ).strip() return out_string def UpperCAmelCase__ ( self : str , __magic_name__ : Optional[Any] ) -> List[Any]: """simple docstring""" return self.vocab.get(__magic_name__ , self.vocab.get(self.unk_token ) ) def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return self.reverse_vocab.get(__magic_name__ , self.unk_token ) def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Any , __magic_name__ : Union[str, Any]=None ) -> Any: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase_ : Union[str, Any] = [self.cls_token_id] UpperCAmelCase_ : List[Any] = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def UpperCAmelCase__ ( self : Any , __magic_name__ : Optional[Any] , __magic_name__ : List[str]=None ) -> int: """simple docstring""" if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def UpperCAmelCase__ ( self : Dict , __magic_name__ : Optional[Any] , __magic_name__ : List[str]=None , __magic_name__ : Optional[Any]=False ) -> Optional[int]: """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__magic_name__ )) + [1, 1] + ([0] * len(__magic_name__ )) + [1] return [1] + ([0] * len(__magic_name__ )) + [1] def UpperCAmelCase__ ( self : List[str] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" # called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method if token_ids_a is None: # [CLS] X [SEP] return (len(__magic_name__ ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(__magic_name__ ) + 1) + [1] * (len(__magic_name__ ) + 3) def UpperCAmelCase__ ( self : Dict , __magic_name__ : str ) -> Tuple: """simple docstring""" if "\u4e00" <= char <= "\u9fff": return True return False def UpperCAmelCase__ ( self : int , __magic_name__ : Optional[int] ) -> str: """simple docstring""" if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def UpperCAmelCase__ ( self : int , __magic_name__ : Optional[Any] ) -> Dict: """simple docstring""" if char in ",;:.?!~,;:。?!《》【】": return True return False def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Any ) -> Union[str, Any]: """simple docstring""" if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(__magic_name__ ) == 1: UpperCAmelCase_ : Optional[Any] = unicodedata.category(__magic_name__ ) if cat == "Zs": return True return False def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : Tuple ) -> Any: """simple docstring""" UpperCAmelCase_ : Optional[Any] = {} with io.open(__magic_name__ , '''r''' , encoding='''utf-8''' ) as f: for index, line in enumerate(__magic_name__ ): UpperCAmelCase_ : List[Any] = line.rstrip('''\n''' ) UpperCAmelCase_ : Dict = int(__magic_name__ ) return token_to_idx def UpperCAmelCase__ ( self : Dict , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = 0 if os.path.isdir(__magic_name__ ): UpperCAmelCase_ : Any = os.path.join( __magic_name__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: UpperCAmelCase_ : List[str] = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory with open(__magic_name__ , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda __magic_name__ : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ''' Please check that the vocabulary is not corrupted!''' ) UpperCAmelCase_ : Dict = token_index writer.write(token + '''\n''' ) index += 1 UpperCAmelCase_ : Union[str, Any] = os.path.join(__magic_name__ , '''sentencepiece.bpe.model''' ) with open(__magic_name__ , '''wb''' ) as fi: UpperCAmelCase_ : Optional[int] = self.sp_model.serialized_model_proto() fi.write(__magic_name__ ) return (vocab_file,)
644
0
'''simple docstring''' from __future__ import annotations def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : list[int] ) -> Tuple: return len(set(_UpperCamelCase ) ) == len(_UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
721
'''simple docstring''' def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int ) -> str: if number > 0: raise ValueError('''input must be a negative integer''' ) UpperCAmelCase_ : Union[str, Any] = len(bin(SCREAMING_SNAKE_CASE__ )[3:] ) UpperCAmelCase_ : Union[str, Any] = bin(abs(SCREAMING_SNAKE_CASE__ ) - (1 << binary_number_length) )[3:] UpperCAmelCase_ : Optional[Any] = ( ( '''1''' + '''0''' * (binary_number_length - len(SCREAMING_SNAKE_CASE__ )) + twos_complement_number ) if number < 0 else '''0''' ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
644
0
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: snake_case_ : Dict = None snake_case_ : Any = logging.get_logger(__name__) snake_case_ : List[str] = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} snake_case_ : Dict = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json" ), }, } snake_case_ : List[Any] = { "facebook/nllb-large-en-ro": 10_24, "facebook/nllb-200-distilled-600M": 10_24, } # fmt: off snake_case_ : Dict = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class __a (__a ): __a : List[Any] = VOCAB_FILES_NAMES __a : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a : List[str] = PRETRAINED_VOCAB_FILES_MAP __a : List[Any] = ["input_ids", "attention_mask"] __a : Tuple = NllbTokenizer __a : str = [] __a : Any = [] def __init__( self : Union[str, Any] , __magic_name__ : Tuple=None , __magic_name__ : Dict=None , __magic_name__ : Any="<s>" , __magic_name__ : Any="</s>" , __magic_name__ : List[Any]="</s>" , __magic_name__ : Union[str, Any]="<s>" , __magic_name__ : Optional[Any]="<unk>" , __magic_name__ : Optional[int]="<pad>" , __magic_name__ : str="<mask>" , __magic_name__ : str=None , __magic_name__ : List[str]=None , __magic_name__ : Optional[Any]=None , __magic_name__ : List[str]=False , **__magic_name__ : int , ) -> List[Any]: """simple docstring""" # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase_ : Optional[int] = AddedToken(A__ , lstrip=A__ , rstrip=A__ ) if isinstance(A__ , A__ ) else mask_token UpperCAmelCase_ : int = legacy_behaviour super().__init__( vocab_file=A__ , tokenizer_file=A__ , bos_token=A__ , eos_token=A__ , sep_token=A__ , cls_token=A__ , unk_token=A__ , pad_token=A__ , mask_token=A__ , src_lang=A__ , tgt_lang=A__ , additional_special_tokens=A__ , legacy_behaviour=A__ , **A__ , ) UpperCAmelCase_ : Optional[int] = vocab_file UpperCAmelCase_ : List[Any] = False if not self.vocab_file else True UpperCAmelCase_ : List[Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) UpperCAmelCase_ : Union[str, Any] = { lang_code: self.convert_tokens_to_ids(A__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } UpperCAmelCase_ : Any = src_lang if src_lang is not None else '''eng_Latn''' UpperCAmelCase_ : List[Any] = self.convert_tokens_to_ids(self._src_lang ) UpperCAmelCase_ : Optional[Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def UpperCAmelCase__ ( self : int ) -> str: """simple docstring""" return self._src_lang @src_lang.setter def UpperCAmelCase__ ( self : int , __magic_name__ : Dict ) -> None: """simple docstring""" UpperCAmelCase_ : int = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : List[str] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : Dict , __magic_name__ : List[str] = None ) -> List[int]: """simple docstring""" UpperCAmelCase_ : Dict = [self.sep_token_id] UpperCAmelCase_ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase__ ( self : str , __magic_name__ : Optional[int] , __magic_name__ : Dict , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , **__magic_name__ : List[Any] ) -> Union[str, Any]: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) UpperCAmelCase_ : Optional[int] = src_lang UpperCAmelCase_ : Any = self(A__ , add_special_tokens=A__ , return_tensors=A__ , **A__ ) UpperCAmelCase_ : Union[str, Any] = self.convert_tokens_to_ids(A__ ) UpperCAmelCase_ : Union[str, Any] = tgt_lang_id return inputs def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : str , __magic_name__ : Tuple = "eng_Latn" , __magic_name__ : Any = None , __magic_name__ : Optional[int] = "fra_Latn" , **__magic_name__ : Optional[int] , ) -> BatchEncoding: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = src_lang UpperCAmelCase_ : Optional[Any] = tgt_lang return super().prepare_seqaseq_batch(A__ , A__ , **A__ ) def UpperCAmelCase__ ( self : str ) -> List[Any]: """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCAmelCase__ ( self : int , __magic_name__ : Tuple ) -> None: """simple docstring""" UpperCAmelCase_ : List[Any] = self.convert_tokens_to_ids(A__ ) if self.legacy_behaviour: UpperCAmelCase_ : Optional[int] = [] UpperCAmelCase_ : List[str] = [self.eos_token_id, self.cur_lang_code] else: UpperCAmelCase_ : Dict = [self.cur_lang_code] UpperCAmelCase_ : str = [self.eos_token_id] UpperCAmelCase_ : Any = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCAmelCase_ : List[str] = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCAmelCase_ : Dict = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def UpperCAmelCase__ ( self : Any , __magic_name__ : str ) -> None: """simple docstring""" UpperCAmelCase_ : int = self.convert_tokens_to_ids(A__ ) if self.legacy_behaviour: UpperCAmelCase_ : Any = [] UpperCAmelCase_ : Any = [self.eos_token_id, self.cur_lang_code] else: UpperCAmelCase_ : Tuple = [self.cur_lang_code] UpperCAmelCase_ : Union[str, Any] = [self.eos_token_id] UpperCAmelCase_ : Dict = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCAmelCase_ : Tuple = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCAmelCase_ : Optional[Any] = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(A__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory.""" ) return UpperCAmelCase_ : List[Any] = os.path.join( A__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A__ ): copyfile(self.vocab_file , A__ ) return (out_vocab_file,)
700
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class __a (unittest.TestCase ): def UpperCAmelCase__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. UpperCAmelCase_ : List[str] = [[1, 2, 4], [1, 2, 3, 4]] UpperCAmelCase_ : List[str] = DisjunctiveConstraint(__magic_name__ ) self.assertTrue(isinstance(dc.token_ids , __magic_name__ ) ) with self.assertRaises(__magic_name__ ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(__magic_name__ ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def UpperCAmelCase__ ( self : List[str] ) -> Dict: """simple docstring""" # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). UpperCAmelCase_ : Tuple = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(__magic_name__ ): DisjunctiveConstraint(__magic_name__ ) # fails here def UpperCAmelCase__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : Optional[int] = [[1, 2, 3], [1, 2, 4]] UpperCAmelCase_ : List[str] = DisjunctiveConstraint(__magic_name__ ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = dc.update(1 ) UpperCAmelCase_ : Dict = stepped is True and completed is False and reset is False self.assertTrue(__magic_name__ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = dc.update(2 ) UpperCAmelCase_ : Optional[Any] = stepped is True and completed is False and reset is False self.assertTrue(__magic_name__ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = dc.update(3 ) UpperCAmelCase_ : Dict = stepped is True and completed is True and reset is False self.assertTrue(__magic_name__ ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def UpperCAmelCase__ ( self : int ) -> Dict: """simple docstring""" UpperCAmelCase_ : Any = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] UpperCAmelCase_ : Tuple = DisjunctiveConstraint(__magic_name__ ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
644
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case_ : Union[str, Any] = logging.get_logger(__name__) snake_case_ : Dict = { "andreasmadsen/efficient_mlm_m0.40": ( "https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json" ), } class __a (lowerCamelCase ): __a : Optional[int] = 'roberta-prelayernorm' def __init__( self : List[Any] , __magic_name__ : int=5_02_65 , __magic_name__ : Any=7_68 , __magic_name__ : str=12 , __magic_name__ : List[str]=12 , __magic_name__ : Any=30_72 , __magic_name__ : List[Any]="gelu" , __magic_name__ : Tuple=0.1 , __magic_name__ : int=0.1 , __magic_name__ : Dict=5_12 , __magic_name__ : List[Any]=2 , __magic_name__ : str=0.0_2 , __magic_name__ : str=1E-12 , __magic_name__ : List[Any]=1 , __magic_name__ : Optional[int]=0 , __magic_name__ : Optional[Any]=2 , __magic_name__ : Any="absolute" , __magic_name__ : Optional[Any]=True , __magic_name__ : Any=None , **__magic_name__ : Union[str, Any] , ) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=__magic_name__ , bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ ) UpperCAmelCase_ : Dict = vocab_size UpperCAmelCase_ : List[str] = hidden_size UpperCAmelCase_ : Dict = num_hidden_layers UpperCAmelCase_ : Dict = num_attention_heads UpperCAmelCase_ : Tuple = hidden_act UpperCAmelCase_ : int = intermediate_size UpperCAmelCase_ : int = hidden_dropout_prob UpperCAmelCase_ : int = attention_probs_dropout_prob UpperCAmelCase_ : Optional[int] = max_position_embeddings UpperCAmelCase_ : Optional[int] = type_vocab_size UpperCAmelCase_ : int = initializer_range UpperCAmelCase_ : Optional[Any] = layer_norm_eps UpperCAmelCase_ : List[str] = position_embedding_type UpperCAmelCase_ : Dict = use_cache UpperCAmelCase_ : Any = classifier_dropout class __a (lowerCamelCase ): @property def UpperCAmelCase__ ( self : Dict ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": UpperCAmelCase_ : List[str] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCAmelCase_ : Dict = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
701
'''simple docstring''' import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": snake_case_ : List[Any] = pd.read_csv("sample_data.csv", header=None) snake_case_ : Optional[Any] = df.shape[:1][0] # If you're using some other dataset input the target column snake_case_ : Any = df.iloc[:, 1:2] snake_case_ : str = actual_data.values.reshape(len_data, 1) snake_case_ : Optional[Any] = MinMaxScaler().fit_transform(actual_data) snake_case_ : List[str] = 10 snake_case_ : Any = 5 snake_case_ : Any = 20 snake_case_ : Tuple = len_data - periods * look_back snake_case_ : str = actual_data[:division] snake_case_ : Optional[int] = actual_data[division - look_back :] snake_case_ ,snake_case_ : Any = [], [] snake_case_ ,snake_case_ : Union[str, Any] = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) snake_case_ : Any = np.array(train_x) snake_case_ : Optional[Any] = np.array(test_x) snake_case_ : Optional[Any] = np.array([list(i.ravel()) for i in train_y]) snake_case_ : List[str] = np.array([list(i.ravel()) for i in test_y]) snake_case_ : List[Any] = Sequential() model.add(LSTM(1_28, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(1_28, 1))) model.add(Dense(forward_days)) model.compile(loss="mean_squared_error", optimizer="adam") snake_case_ : Dict = model.fit( x_train, y_train, epochs=1_50, verbose=1, shuffle=True, batch_size=4 ) snake_case_ : Optional[Any] = model.predict(x_test)
644
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() snake_case_ : Optional[int] = logging.get_logger(__name__) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Dict, SCREAMING_SNAKE_CASE__ : Union[str, Any]=False, SCREAMING_SNAKE_CASE__ : Any=False, SCREAMING_SNAKE_CASE__ : str=False ) -> Optional[int]: UpperCAmelCase_ : Any = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""transformer.blocks.{i}.norm1.weight""", F"""vilt.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.norm1.bias""", F"""vilt.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""transformer.blocks.{i}.attn.proj.weight""", F"""vilt.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (F"""transformer.blocks.{i}.attn.proj.bias""", F"""vilt.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""transformer.blocks.{i}.norm2.weight""", F"""vilt.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.norm2.bias""", F"""vilt.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (F"""transformer.blocks.{i}.mlp.fc1.weight""", F"""vilt.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc1.bias""", F"""vilt.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.weight""", F"""vilt.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.bias""", F"""vilt.encoder.layer.{i}.output.dense.bias""") ) # embeddings rename_keys.extend( [ # text embeddings ('''text_embeddings.word_embeddings.weight''', '''vilt.embeddings.text_embeddings.word_embeddings.weight'''), ( '''text_embeddings.position_embeddings.weight''', '''vilt.embeddings.text_embeddings.position_embeddings.weight''', ), ('''text_embeddings.position_ids''', '''vilt.embeddings.text_embeddings.position_ids'''), ( '''text_embeddings.token_type_embeddings.weight''', '''vilt.embeddings.text_embeddings.token_type_embeddings.weight''', ), ('''text_embeddings.LayerNorm.weight''', '''vilt.embeddings.text_embeddings.LayerNorm.weight'''), ('''text_embeddings.LayerNorm.bias''', '''vilt.embeddings.text_embeddings.LayerNorm.bias'''), # patch embeddings ('''transformer.cls_token''', '''vilt.embeddings.cls_token'''), ('''transformer.patch_embed.proj.weight''', '''vilt.embeddings.patch_embeddings.projection.weight'''), ('''transformer.patch_embed.proj.bias''', '''vilt.embeddings.patch_embeddings.projection.bias'''), ('''transformer.pos_embed''', '''vilt.embeddings.position_embeddings'''), # token type embeddings ('''token_type_embeddings.weight''', '''vilt.embeddings.token_type_embeddings.weight'''), ] ) # final layernorm + pooler rename_keys.extend( [ ('''transformer.norm.weight''', '''vilt.layernorm.weight'''), ('''transformer.norm.bias''', '''vilt.layernorm.bias'''), ('''pooler.dense.weight''', '''vilt.pooler.dense.weight'''), ('''pooler.dense.bias''', '''vilt.pooler.dense.bias'''), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ('''vqa_classifier.0.weight''', '''classifier.0.weight'''), ('''vqa_classifier.0.bias''', '''classifier.0.bias'''), ('''vqa_classifier.1.weight''', '''classifier.1.weight'''), ('''vqa_classifier.1.bias''', '''classifier.1.bias'''), ('''vqa_classifier.3.weight''', '''classifier.3.weight'''), ('''vqa_classifier.3.bias''', '''classifier.3.bias'''), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ('''nlvr2_classifier.0.weight''', '''classifier.0.weight'''), ('''nlvr2_classifier.0.bias''', '''classifier.0.bias'''), ('''nlvr2_classifier.1.weight''', '''classifier.1.weight'''), ('''nlvr2_classifier.1.bias''', '''classifier.1.bias'''), ('''nlvr2_classifier.3.weight''', '''classifier.3.weight'''), ('''nlvr2_classifier.3.bias''', '''classifier.3.bias'''), ] ) else: pass return rename_keys def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[str]: for i in range(config.num_hidden_layers ): UpperCAmelCase_ : int = '''vilt.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase_ : Union[str, Any] = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.weight""" ) UpperCAmelCase_ : Optional[Any] = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ : Optional[Any] = in_proj_weight[ : config.hidden_size, : ] UpperCAmelCase_ : List[Any] = in_proj_bias[: config.hidden_size] UpperCAmelCase_ : str = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase_ : Dict = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase_ : Tuple = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase_ : List[Any] = in_proj_bias[-config.hidden_size :] def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[Any] ) -> int: UpperCAmelCase_ : Union[str, Any] = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(lowercase__, lowercase__ ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Union[str, Any], SCREAMING_SNAKE_CASE__ : Union[str, Any], SCREAMING_SNAKE_CASE__ : str ) -> Union[str, Any]: UpperCAmelCase_ : Dict = dct.pop(lowercase__ ) UpperCAmelCase_ : Any = val @torch.no_grad() def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Any, SCREAMING_SNAKE_CASE__ : List[Any] ) -> Any: UpperCAmelCase_ : str = ViltConfig(image_size=384, patch_size=32, tie_word_embeddings=lowercase__ ) UpperCAmelCase_ : Optional[int] = False UpperCAmelCase_ : Optional[Any] = False UpperCAmelCase_ : List[str] = False UpperCAmelCase_ : List[str] = False if "vqa" in checkpoint_url: UpperCAmelCase_ : Optional[int] = True UpperCAmelCase_ : Any = 3129 UpperCAmelCase_ : Dict = '''huggingface/label-files''' UpperCAmelCase_ : Tuple = '''vqa2-id2label.json''' UpperCAmelCase_ : Optional[Any] = json.load(open(hf_hub_download(lowercase__, lowercase__, repo_type='''dataset''' ), '''r''' ) ) UpperCAmelCase_ : str = {int(lowercase__ ): v for k, v in idalabel.items()} UpperCAmelCase_ : Tuple = idalabel UpperCAmelCase_ : str = {v: k for k, v in idalabel.items()} UpperCAmelCase_ : Tuple = ViltForQuestionAnswering(lowercase__ ) elif "nlvr" in checkpoint_url: UpperCAmelCase_ : List[Any] = True UpperCAmelCase_ : str = 2 UpperCAmelCase_ : Optional[Any] = {0: '''False''', 1: '''True'''} UpperCAmelCase_ : int = {v: k for k, v in config.idalabel.items()} UpperCAmelCase_ : str = 3 UpperCAmelCase_ : Optional[Any] = ViltForImagesAndTextClassification(lowercase__ ) elif "irtr" in checkpoint_url: UpperCAmelCase_ : Optional[Any] = True UpperCAmelCase_ : Optional[int] = ViltForImageAndTextRetrieval(lowercase__ ) elif "mlm_itm" in checkpoint_url: UpperCAmelCase_ : Union[str, Any] = True UpperCAmelCase_ : Dict = ViltForMaskedLM(lowercase__ ) else: raise ValueError('''Unknown model type''' ) # load state_dict of original model, remove and rename some keys UpperCAmelCase_ : str = torch.hub.load_state_dict_from_url(lowercase__, map_location='''cpu''' )['''state_dict'''] UpperCAmelCase_ : str = create_rename_keys(lowercase__, lowercase__, lowercase__, lowercase__ ) for src, dest in rename_keys: rename_key(lowercase__, lowercase__, lowercase__ ) read_in_q_k_v(lowercase__, lowercase__ ) if mlm_model or irtr_model: UpperCAmelCase_ : int = ['''itm_score.fc.weight''', '''itm_score.fc.bias'''] for k in ignore_keys: state_dict.pop(lowercase__, lowercase__ ) # load state dict into HuggingFace model model.eval() if mlm_model: UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = model.load_state_dict(lowercase__, strict=lowercase__ ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(lowercase__ ) # Define processor UpperCAmelCase_ : List[str] = ViltImageProcessor(size=384 ) UpperCAmelCase_ : List[Any] = BertTokenizer.from_pretrained('''bert-base-uncased''' ) UpperCAmelCase_ : List[str] = ViltProcessor(lowercase__, lowercase__ ) # Forward pass on example inputs (image + text) if nlvr_model: UpperCAmelCase_ : str = Image.open(requests.get('''https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg''', stream=lowercase__ ).raw ) UpperCAmelCase_ : Tuple = Image.open(requests.get('''https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg''', stream=lowercase__ ).raw ) UpperCAmelCase_ : Optional[Any] = ( '''The left image contains twice the number of dogs as the right image, and at least two dogs in total are''' ''' standing.''' ) UpperCAmelCase_ : str = processor(lowercase__, lowercase__, return_tensors='''pt''' ) UpperCAmelCase_ : Tuple = processor(lowercase__, lowercase__, return_tensors='''pt''' ) UpperCAmelCase_ : List[str] = model( input_ids=encoding_a.input_ids, pixel_values=encoding_a.pixel_values, pixel_values_a=encoding_a.pixel_values, ) else: UpperCAmelCase_ : int = Image.open(requests.get('''http://images.cocodataset.org/val2017/000000039769.jpg''', stream=lowercase__ ).raw ) if mlm_model: UpperCAmelCase_ : Union[str, Any] = '''a bunch of [MASK] laying on a [MASK].''' else: UpperCAmelCase_ : Union[str, Any] = '''How many cats are there?''' UpperCAmelCase_ : Union[str, Any] = processor(lowercase__, lowercase__, return_tensors='''pt''' ) UpperCAmelCase_ : str = model(**lowercase__ ) # Verify outputs if mlm_model: UpperCAmelCase_ : List[Any] = torch.Size([1, 11, 30522] ) UpperCAmelCase_ : Tuple = torch.tensor([-12.50_61, -12.51_23, -12.51_74] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3], lowercase__, atol=1E-4 ) # verify masked token prediction equals "cats" UpperCAmelCase_ : Optional[Any] = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: UpperCAmelCase_ : Dict = torch.Size([1, 3129] ) UpperCAmelCase_ : str = torch.tensor([-15.94_95, -18.14_72, -10.30_41] ) assert torch.allclose(outputs.logits[0, :3], lowercase__, atol=1E-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3], lowercase__, atol=1E-4 ) # verify vqa prediction equals "2" UpperCAmelCase_ : str = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: UpperCAmelCase_ : str = torch.Size([1, 2] ) UpperCAmelCase_ : int = torch.tensor([-2.87_21, 2.12_91] ) assert torch.allclose(outputs.logits[0, :3], lowercase__, atol=1E-4 ) assert outputs.logits.shape == expected_shape Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) print(F"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase__ ) processor.save_pretrained(lowercase__ ) if __name__ == "__main__": snake_case_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt", type=str, help="URL of the checkpoint you\'d like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) snake_case_ : List[str] = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
702
'''simple docstring''' from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker snake_case_ : Union[str, Any] = "CompVis/stable-diffusion-v1-1" snake_case_ : Dict = "CompVis/stable-diffusion-v1-2" snake_case_ : Any = "CompVis/stable-diffusion-v1-3" snake_case_ : str = "CompVis/stable-diffusion-v1-4" class __a (lowerCamelCase ): def __init__( self : Any , __magic_name__ : AutoencoderKL , __magic_name__ : CLIPTextModel , __magic_name__ : CLIPTokenizer , __magic_name__ : UNetaDConditionModel , __magic_name__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __magic_name__ : StableDiffusionSafetyChecker , __magic_name__ : CLIPImageProcessor , __magic_name__ : bool = True , ) -> str: """simple docstring""" super()._init_() UpperCAmelCase_ : Any = StableDiffusionPipeline.from_pretrained(__magic_name__ ) UpperCAmelCase_ : Dict = StableDiffusionPipeline.from_pretrained(__magic_name__ ) UpperCAmelCase_ : List[Any] = StableDiffusionPipeline.from_pretrained(__magic_name__ ) UpperCAmelCase_ : Tuple = StableDiffusionPipeline( vae=__magic_name__ , text_encoder=__magic_name__ , tokenizer=__magic_name__ , unet=__magic_name__ , scheduler=__magic_name__ , safety_checker=__magic_name__ , feature_extractor=__magic_name__ , requires_safety_checker=__magic_name__ , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def UpperCAmelCase__ ( self : Tuple ) -> Dict[str, Any]: """simple docstring""" return {k: getattr(self , __magic_name__ ) for k in self.config.keys() if not k.startswith('''_''' )} def UpperCAmelCase__ ( self : Dict , __magic_name__ : Optional[Union[str, int]] = "auto" ) -> int: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCAmelCase_ : List[str] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__magic_name__ ) def UpperCAmelCase__ ( self : Tuple ) -> List[str]: """simple docstring""" self.enable_attention_slicing(__magic_name__ ) @torch.no_grad() def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Tuple , ) -> Optional[int]: """simple docstring""" return self.pipea( prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , ) @torch.no_grad() def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Any , ) -> Any: """simple docstring""" return self.pipea( prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , ) @torch.no_grad() def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Dict , ) -> List[str]: """simple docstring""" return self.pipea( prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , ) @torch.no_grad() def UpperCAmelCase__ ( self : int , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Optional[int] , ) -> str: """simple docstring""" return self.pipea( prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , ) @torch.no_grad() def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Optional[int] , ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : int = '''cuda''' if torch.cuda.is_available() else '''cpu''' self.to(__magic_name__ ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` must be divisible by 8 but are {height} and {width}.""" ) # Get first result from Stable Diffusion Checkpoint v1.1 UpperCAmelCase_ : Optional[int] = self.textaimg_sda_a( prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , ) # Get first result from Stable Diffusion Checkpoint v1.2 UpperCAmelCase_ : int = self.textaimg_sda_a( prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , ) # Get first result from Stable Diffusion Checkpoint v1.3 UpperCAmelCase_ : str = self.textaimg_sda_a( prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , ) # Get first result from Stable Diffusion Checkpoint v1.4 UpperCAmelCase_ : str = self.textaimg_sda_a( prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
644
0
'''simple docstring''' from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar snake_case_ : List[str] = TypeVar("T") class __a (Generic[T] ): def __init__( self : int , __magic_name__ : str , __magic_name__ : str ) -> None: """simple docstring""" UpperCAmelCase_ : Any | T = None UpperCAmelCase_ : int = len(lowercase__ ) UpperCAmelCase_ : list[T] = [any_type for _ in range(self.N )] + arr UpperCAmelCase_ : Optional[Any] = fnc self.build() def UpperCAmelCase__ ( self : Tuple ) -> None: """simple docstring""" for p in range(self.N - 1 , 0 , -1 ): UpperCAmelCase_ : Optional[int] = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : Tuple , __magic_name__ : List[str] ) -> None: """simple docstring""" p += self.N UpperCAmelCase_ : int = v while p > 1: UpperCAmelCase_ : str = p // 2 UpperCAmelCase_ : str = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def UpperCAmelCase__ ( self : Tuple , __magic_name__ : int , __magic_name__ : List[Any] ) -> T | None: # noqa: E741 """simple docstring""" UpperCAmelCase_ : Optional[Any] = l + self.N, r + self.N UpperCAmelCase_ : T | None = None while l <= r: if l % 2 == 1: UpperCAmelCase_ : Any = self.st[l] if res is None else self.fn(lowercase__ , self.st[l] ) if r % 2 == 0: UpperCAmelCase_ : List[str] = self.st[r] if res is None else self.fn(lowercase__ , self.st[r] ) UpperCAmelCase_ : Any = (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce snake_case_ : Any = [1, 10, -2, 9, -3, 8, 4, -7, 5, 6, 11, -12] snake_case_ : Union[str, Any] = { 0: 7, 1: 2, 2: 6, 3: -14, 4: 5, 5: 4, 6: 7, 7: -10, 8: 9, 9: 10, 10: 12, 11: 1, } snake_case_ : Optional[int] = SegmentTree(test_array, min) snake_case_ : Dict = SegmentTree(test_array, max) snake_case_ : Tuple = SegmentTree(test_array, lambda a, b: a + b) def lowerCamelCase_ ( ) -> Optional[Any]: for i in range(len(lowerCAmelCase_ ) ): for j in range(lowerCAmelCase_, len(lowerCAmelCase_ ) ): UpperCAmelCase_ : List[str] = reduce(lowerCAmelCase_, test_array[i : j + 1] ) UpperCAmelCase_ : Optional[int] = reduce(lowerCAmelCase_, test_array[i : j + 1] ) UpperCAmelCase_ : Dict = reduce(lambda SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : a + b, test_array[i : j + 1] ) assert min_range == min_segment_tree.query(lowerCAmelCase_, lowerCAmelCase_ ) assert max_range == max_segment_tree.query(lowerCAmelCase_, lowerCAmelCase_ ) assert sum_range == sum_segment_tree.query(lowerCAmelCase_, lowerCAmelCase_ ) test_all_segments() for index, value in test_updates.items(): snake_case_ : Tuple = value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
703
'''simple docstring''' import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler snake_case_ : Optional[int] = 16 snake_case_ : Tuple = 32 def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Accelerator, SCREAMING_SNAKE_CASE__ : int = 16, SCREAMING_SNAKE_CASE__ : str = "bert-base-cased" ) -> Dict: UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : int = load_dataset('''glue''', '''mrpc''' ) def tokenize_function(SCREAMING_SNAKE_CASE__ : Optional[int] ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase_ : Union[str, Any] = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=SCREAMING_SNAKE_CASE__, max_length=SCREAMING_SNAKE_CASE__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset UpperCAmelCase_ : Tuple = datasets.map( SCREAMING_SNAKE_CASE__, batched=SCREAMING_SNAKE_CASE__, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], load_from_cache_file=SCREAMING_SNAKE_CASE__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase_ : Optional[Any] = tokenized_datasets.rename_column('''label''', '''labels''' ) def collate_fn(SCREAMING_SNAKE_CASE__ : str ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(SCREAMING_SNAKE_CASE__, padding='''max_length''', max_length=128, return_tensors='''pt''' ) return tokenizer.pad(SCREAMING_SNAKE_CASE__, padding='''longest''', return_tensors='''pt''' ) # Instantiate dataloaders. UpperCAmelCase_ : str = DataLoader( tokenized_datasets['''train'''], shuffle=SCREAMING_SNAKE_CASE__, collate_fn=SCREAMING_SNAKE_CASE__, batch_size=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : int = DataLoader( tokenized_datasets['''validation'''], shuffle=SCREAMING_SNAKE_CASE__, collate_fn=SCREAMING_SNAKE_CASE__, batch_size=SCREAMING_SNAKE_CASE__ ) return train_dataloader, eval_dataloader def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Optional[Any], SCREAMING_SNAKE_CASE__ : Optional[int], SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : Any ) -> Any: model.eval() UpperCAmelCase_ : List[str] = 0 for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase_ : Dict = model(**SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : str = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times UpperCAmelCase_ , UpperCAmelCase_ : List[str] = accelerator.gather( (predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(SCREAMING_SNAKE_CASE__ ) - 1: UpperCAmelCase_ : Tuple = predictions[: len(eval_dataloader.dataset ) - samples_seen] UpperCAmelCase_ : int = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=SCREAMING_SNAKE_CASE__, references=SCREAMING_SNAKE_CASE__, ) UpperCAmelCase_ : List[str] = metric.compute() return eval_metric["accuracy"] def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : int ) -> Tuple: # Initialize accelerator UpperCAmelCase_ : Union[str, Any] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase_ : int = config['''lr'''] UpperCAmelCase_ : Optional[int] = int(config['''num_epochs'''] ) UpperCAmelCase_ : Optional[int] = int(config['''seed'''] ) UpperCAmelCase_ : List[str] = int(config['''batch_size'''] ) UpperCAmelCase_ : Optional[int] = args.model_name_or_path set_seed(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = get_dataloaders(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase_ : List[Any] = AutoModelForSequenceClassification.from_pretrained(SCREAMING_SNAKE_CASE__, return_dict=SCREAMING_SNAKE_CASE__ ) # Instantiate optimizer UpperCAmelCase_ : str = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) UpperCAmelCase_ : List[str] = optimizer_cls(params=model.parameters(), lr=SCREAMING_SNAKE_CASE__ ) if accelerator.state.deepspeed_plugin is not None: UpperCAmelCase_ : List[Any] = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: UpperCAmelCase_ : Tuple = 1 UpperCAmelCase_ : int = (len(SCREAMING_SNAKE_CASE__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): UpperCAmelCase_ : Tuple = get_linear_schedule_with_warmup( optimizer=SCREAMING_SNAKE_CASE__, num_warmup_steps=0, num_training_steps=SCREAMING_SNAKE_CASE__, ) else: UpperCAmelCase_ : Any = DummyScheduler(SCREAMING_SNAKE_CASE__, total_num_steps=SCREAMING_SNAKE_CASE__, warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = accelerator.prepare( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) # We need to keep track of how many total steps we have iterated over UpperCAmelCase_ : Union[str, Any] = 0 # We also need to keep track of the stating epoch so files are named properly UpperCAmelCase_ : Dict = 0 UpperCAmelCase_ : int = evaluate.load('''glue''', '''mrpc''' ) UpperCAmelCase_ : Optional[Any] = num_epochs if args.partial_train_epoch is not None: UpperCAmelCase_ : List[Any] = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) UpperCAmelCase_ : Tuple = args.resume_from_checkpoint.split('''epoch_''' )[1] UpperCAmelCase_ : int = '''''' for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break UpperCAmelCase_ : Union[str, Any] = int(SCREAMING_SNAKE_CASE__ ) + 1 UpperCAmelCase_ : Dict = evaluation_loop(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) accelerator.print('''resumed checkpoint performance:''', SCREAMING_SNAKE_CASE__ ) accelerator.print('''resumed checkpoint\'s scheduler\'s lr:''', lr_scheduler.get_lr()[0] ) accelerator.print('''resumed optimizers\'s lr:''', optimizer.param_groups[0]['''lr'''] ) with open(os.path.join(args.output_dir, F"""state_{starting_epoch-1}.json""" ), '''r''' ) as f: UpperCAmelCase_ : Optional[int] = json.load(SCREAMING_SNAKE_CASE__ ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model UpperCAmelCase_ : int = {} for epoch in range(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ): model.train() for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ): UpperCAmelCase_ : Optional[int] = model(**SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Any = outputs.loss UpperCAmelCase_ : Tuple = loss / gradient_accumulation_steps accelerator.backward(SCREAMING_SNAKE_CASE__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 UpperCAmelCase_ : Tuple = F"""epoch_{epoch}""" UpperCAmelCase_ : Optional[int] = os.path.join(args.output_dir, SCREAMING_SNAKE_CASE__ ) accelerator.save_state(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : int = evaluation_loop(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Optional[Any] = accuracy UpperCAmelCase_ : Any = lr_scheduler.get_lr()[0] UpperCAmelCase_ : List[str] = optimizer.param_groups[0]['''lr'''] UpperCAmelCase_ : Tuple = epoch UpperCAmelCase_ : Dict = overall_step accelerator.print(F"""epoch {epoch}:""", SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir, F"""state_{epoch}.json""" ), '''w''' ) as f: json.dump(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) def lowerCamelCase_ ( ) -> List[str]: UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''', type=SCREAMING_SNAKE_CASE__, default='''bert-base-cased''', help='''Path to pretrained model or model identifier from huggingface.co/models.''', required=SCREAMING_SNAKE_CASE__, ) parser.add_argument( '''--output_dir''', type=SCREAMING_SNAKE_CASE__, default='''.''', help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''', ) parser.add_argument( '''--resume_from_checkpoint''', type=SCREAMING_SNAKE_CASE__, default=SCREAMING_SNAKE_CASE__, help='''If the training should continue from a checkpoint folder.''', ) parser.add_argument( '''--partial_train_epoch''', type=SCREAMING_SNAKE_CASE__, default=SCREAMING_SNAKE_CASE__, help='''If passed, the training will stop after this number of epochs.''', ) parser.add_argument( '''--num_epochs''', type=SCREAMING_SNAKE_CASE__, default=2, help='''Number of train epochs.''', ) UpperCAmelCase_ : Optional[int] = parser.parse_args() UpperCAmelCase_ : List[Any] = {'''lr''': 2E-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
644
0
import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class __a (unittest.TestCase ): __a : int = MODEL_FOR_MASKED_LM_MAPPING __a : Dict = TF_MODEL_FOR_MASKED_LM_MAPPING def UpperCAmelCase__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def UpperCAmelCase__ ( self : Dict ) -> Dict: """simple docstring""" UpperCAmelCase_ : int = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , top_k=2 , framework='''tf''' ) UpperCAmelCase_ : Dict = unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(lowercase__ , decimals=6 ) , [ {'''sequence''': '''My name is grouped''', '''score''': 2.1E-05, '''token''': 3_80_15, '''token_str''': ''' grouped'''}, {'''sequence''': '''My name is accuser''', '''score''': 2.1E-05, '''token''': 2_55_06, '''token_str''': ''' accuser'''}, ] , ) UpperCAmelCase_ : Any = unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(lowercase__ , decimals=6 ) , [ { '''sequence''': '''The largest city in France is grouped''', '''score''': 2.1E-05, '''token''': 3_80_15, '''token_str''': ''' grouped''', }, { '''sequence''': '''The largest city in France is accuser''', '''score''': 2.1E-05, '''token''': 2_55_06, '''token_str''': ''' accuser''', }, ] , ) UpperCAmelCase_ : List[Any] = unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 ) self.assertEqual( nested_simplify(lowercase__ , decimals=6 ) , [ {'''sequence''': '''My name is Clara''', '''score''': 2E-05, '''token''': 1_36_06, '''token_str''': ''' Clara'''}, {'''sequence''': '''My name is Patrick''', '''score''': 2E-05, '''token''': 34_99, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Te''', '''score''': 1.9E-05, '''token''': 29_41, '''token_str''': ''' Te'''}, ] , ) @require_torch def UpperCAmelCase__ ( self : Optional[int] ) -> List[str]: """simple docstring""" UpperCAmelCase_ : int = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , top_k=2 , framework='''pt''' ) UpperCAmelCase_ : str = unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(lowercase__ , decimals=6 ) , [ {'''sequence''': '''My name is Maul''', '''score''': 2.2E-05, '''token''': 3_56_76, '''token_str''': ''' Maul'''}, {'''sequence''': '''My name isELS''', '''score''': 2.2E-05, '''token''': 1_64_16, '''token_str''': '''ELS'''}, ] , ) UpperCAmelCase_ : str = unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(lowercase__ , decimals=6 ) , [ { '''sequence''': '''The largest city in France is Maul''', '''score''': 2.2E-05, '''token''': 3_56_76, '''token_str''': ''' Maul''', }, {'''sequence''': '''The largest city in France isELS''', '''score''': 2.2E-05, '''token''': 1_64_16, '''token_str''': '''ELS'''}, ] , ) UpperCAmelCase_ : Any = unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 ) self.assertEqual( nested_simplify(lowercase__ , decimals=6 ) , [ {'''sequence''': '''My name is Patrick''', '''score''': 2.1E-05, '''token''': 34_99, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Te''', '''score''': 2E-05, '''token''': 29_41, '''token_str''': ''' Te'''}, {'''sequence''': '''My name is Clara''', '''score''': 2E-05, '''token''': 1_36_06, '''token_str''': ''' Clara'''}, ] , ) UpperCAmelCase_ : str = unmasker('''My name is <mask> <mask>''' , top_k=2 ) self.assertEqual( nested_simplify(lowercase__ , decimals=6 ) , [ [ { '''score''': 2.2E-05, '''token''': 3_56_76, '''token_str''': ''' Maul''', '''sequence''': '''<s>My name is Maul<mask></s>''', }, {'''score''': 2.2E-05, '''token''': 1_64_16, '''token_str''': '''ELS''', '''sequence''': '''<s>My name isELS<mask></s>'''}, ], [ { '''score''': 2.2E-05, '''token''': 3_56_76, '''token_str''': ''' Maul''', '''sequence''': '''<s>My name is<mask> Maul</s>''', }, {'''score''': 2.2E-05, '''token''': 1_64_16, '''token_str''': '''ELS''', '''sequence''': '''<s>My name is<mask>ELS</s>'''}, ], ] , ) @require_torch_gpu def UpperCAmelCase__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : List[Any] = pipeline('''fill-mask''' , model='''hf-internal-testing/tiny-random-distilbert''' , device=0 , framework='''pt''' ) # convert model to fp16 pipe.model.half() UpperCAmelCase_ : Any = pipe('''Paris is the [MASK] of France.''' ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(lowercase__ , lowercase__ ) @slow @require_torch def UpperCAmelCase__ ( self : str ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : Tuple = pipeline(task='''fill-mask''' , model='''distilroberta-base''' , top_k=2 , framework='''pt''' ) self.run_large_test(lowercase__ ) @slow @require_tf def UpperCAmelCase__ ( self : Dict ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ : List[Any] = pipeline(task='''fill-mask''' , model='''distilroberta-base''' , top_k=2 , framework='''tf''' ) self.run_large_test(lowercase__ ) def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : int ) -> str: """simple docstring""" UpperCAmelCase_ : Dict = unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(lowercase__ ) , [ {'''sequence''': '''My name is John''', '''score''': 0.0_0_8, '''token''': 6_10, '''token_str''': ''' John'''}, {'''sequence''': '''My name is Chris''', '''score''': 0.0_0_7, '''token''': 15_73, '''token_str''': ''' Chris'''}, ] , ) UpperCAmelCase_ : Optional[int] = unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(lowercase__ ) , [ { '''sequence''': '''The largest city in France is Paris''', '''score''': 0.2_5_1, '''token''': 22_01, '''token_str''': ''' Paris''', }, { '''sequence''': '''The largest city in France is Lyon''', '''score''': 0.2_1_4, '''token''': 1_27_90, '''token_str''': ''' Lyon''', }, ] , ) UpperCAmelCase_ : Dict = unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 ) self.assertEqual( nested_simplify(lowercase__ ) , [ {'''sequence''': '''My name is Patrick''', '''score''': 0.0_0_5, '''token''': 34_99, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Clara''', '''score''': 0.0_0_0, '''token''': 1_36_06, '''token_str''': ''' Clara'''}, {'''sequence''': '''My name is Te''', '''score''': 0.0_0_0, '''token''': 29_41, '''token_str''': ''' Te'''}, ] , ) @require_torch def UpperCAmelCase__ ( self : str ) -> str: """simple docstring""" UpperCAmelCase_ : Tuple = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , framework='''pt''' ) UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None self.run_pipeline_test(lowercase__ , [] ) @require_tf def UpperCAmelCase__ ( self : Any ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ : List[str] = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , framework='''tf''' ) UpperCAmelCase_ : str = None UpperCAmelCase_ : str = None self.run_pipeline_test(lowercase__ , [] ) def UpperCAmelCase__ ( self : Dict , __magic_name__ : Tuple , __magic_name__ : int , __magic_name__ : Dict ) -> Dict: """simple docstring""" if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest('''The provided tokenizer has no mask token, (probably reformer or wav2vec2)''' ) UpperCAmelCase_ : Dict = FillMaskPipeline(model=lowercase__ , tokenizer=lowercase__ ) UpperCAmelCase_ : Tuple = [ F"""This is another {tokenizer.mask_token} test""", ] return fill_masker, examples def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Dict ) -> Tuple: """simple docstring""" UpperCAmelCase_ : Optional[int] = fill_masker.tokenizer UpperCAmelCase_ : Optional[int] = fill_masker.model UpperCAmelCase_ : Any = fill_masker( F"""This is a {tokenizer.mask_token}""" , ) self.assertEqual( lowercase__ , [ {'''sequence''': ANY(lowercase__ ), '''score''': ANY(lowercase__ ), '''token''': ANY(lowercase__ ), '''token_str''': ANY(lowercase__ )}, {'''sequence''': ANY(lowercase__ ), '''score''': ANY(lowercase__ ), '''token''': ANY(lowercase__ ), '''token_str''': ANY(lowercase__ )}, {'''sequence''': ANY(lowercase__ ), '''score''': ANY(lowercase__ ), '''token''': ANY(lowercase__ ), '''token_str''': ANY(lowercase__ )}, {'''sequence''': ANY(lowercase__ ), '''score''': ANY(lowercase__ ), '''token''': ANY(lowercase__ ), '''token_str''': ANY(lowercase__ )}, {'''sequence''': ANY(lowercase__ ), '''score''': ANY(lowercase__ ), '''token''': ANY(lowercase__ ), '''token_str''': ANY(lowercase__ )}, ] , ) UpperCAmelCase_ : Union[str, Any] = fill_masker([F"""This is a {tokenizer.mask_token}"""] ) self.assertEqual( lowercase__ , [ {'''sequence''': ANY(lowercase__ ), '''score''': ANY(lowercase__ ), '''token''': ANY(lowercase__ ), '''token_str''': ANY(lowercase__ )}, {'''sequence''': ANY(lowercase__ ), '''score''': ANY(lowercase__ ), '''token''': ANY(lowercase__ ), '''token_str''': ANY(lowercase__ )}, {'''sequence''': ANY(lowercase__ ), '''score''': ANY(lowercase__ ), '''token''': ANY(lowercase__ ), '''token_str''': ANY(lowercase__ )}, {'''sequence''': ANY(lowercase__ ), '''score''': ANY(lowercase__ ), '''token''': ANY(lowercase__ ), '''token_str''': ANY(lowercase__ )}, {'''sequence''': ANY(lowercase__ ), '''score''': ANY(lowercase__ ), '''token''': ANY(lowercase__ ), '''token_str''': ANY(lowercase__ )}, ] , ) UpperCAmelCase_ : List[Any] = fill_masker([F"""This is a {tokenizer.mask_token}""", F"""Another {tokenizer.mask_token} great test."""] ) self.assertEqual( lowercase__ , [ [ {'''sequence''': ANY(lowercase__ ), '''score''': ANY(lowercase__ ), '''token''': ANY(lowercase__ ), '''token_str''': ANY(lowercase__ )}, {'''sequence''': ANY(lowercase__ ), '''score''': ANY(lowercase__ ), '''token''': ANY(lowercase__ ), '''token_str''': ANY(lowercase__ )}, {'''sequence''': ANY(lowercase__ ), '''score''': ANY(lowercase__ ), '''token''': ANY(lowercase__ ), '''token_str''': ANY(lowercase__ )}, {'''sequence''': ANY(lowercase__ ), '''score''': ANY(lowercase__ ), '''token''': ANY(lowercase__ ), '''token_str''': ANY(lowercase__ )}, {'''sequence''': ANY(lowercase__ ), '''score''': ANY(lowercase__ ), '''token''': ANY(lowercase__ ), '''token_str''': ANY(lowercase__ )}, ], [ {'''sequence''': ANY(lowercase__ ), '''score''': ANY(lowercase__ ), '''token''': ANY(lowercase__ ), '''token_str''': ANY(lowercase__ )}, {'''sequence''': ANY(lowercase__ ), '''score''': ANY(lowercase__ ), '''token''': ANY(lowercase__ ), '''token_str''': ANY(lowercase__ )}, {'''sequence''': ANY(lowercase__ ), '''score''': ANY(lowercase__ ), '''token''': ANY(lowercase__ ), '''token_str''': ANY(lowercase__ )}, {'''sequence''': ANY(lowercase__ ), '''score''': ANY(lowercase__ ), '''token''': ANY(lowercase__ ), '''token_str''': ANY(lowercase__ )}, {'''sequence''': ANY(lowercase__ ), '''score''': ANY(lowercase__ ), '''token''': ANY(lowercase__ ), '''token_str''': ANY(lowercase__ )}, ], ] , ) with self.assertRaises(lowercase__ ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(lowercase__ ): fill_masker('''This is''' ) self.run_test_top_k(lowercase__ , lowercase__ ) self.run_test_targets(lowercase__ , lowercase__ ) self.run_test_top_k_targets(lowercase__ , lowercase__ ) self.fill_mask_with_duplicate_targets_and_top_k(lowercase__ , lowercase__ ) self.fill_mask_with_multiple_masks(lowercase__ , lowercase__ ) def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Dict , __magic_name__ : Dict ) -> Any: """simple docstring""" UpperCAmelCase_ : Tuple = tokenizer.get_vocab() UpperCAmelCase_ : Tuple = sorted(vocab.keys() )[:2] # Pipeline argument UpperCAmelCase_ : Union[str, Any] = FillMaskPipeline(model=lowercase__ , tokenizer=lowercase__ , targets=lowercase__ ) UpperCAmelCase_ : Any = fill_masker(F"""This is a {tokenizer.mask_token}""" ) self.assertEqual( lowercase__ , [ {'''sequence''': ANY(lowercase__ ), '''score''': ANY(lowercase__ ), '''token''': ANY(lowercase__ ), '''token_str''': ANY(lowercase__ )}, {'''sequence''': ANY(lowercase__ ), '''score''': ANY(lowercase__ ), '''token''': ANY(lowercase__ ), '''token_str''': ANY(lowercase__ )}, ] , ) UpperCAmelCase_ : str = {vocab[el] for el in targets} self.assertEqual({el['''token'''] for el in outputs} , lowercase__ ) UpperCAmelCase_ : Union[str, Any] = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['''token_str'''] for el in outputs} , set(lowercase__ ) ) # Call argument UpperCAmelCase_ : Optional[Any] = FillMaskPipeline(model=lowercase__ , tokenizer=lowercase__ ) UpperCAmelCase_ : List[str] = fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=lowercase__ ) self.assertEqual( lowercase__ , [ {'''sequence''': ANY(lowercase__ ), '''score''': ANY(lowercase__ ), '''token''': ANY(lowercase__ ), '''token_str''': ANY(lowercase__ )}, {'''sequence''': ANY(lowercase__ ), '''score''': ANY(lowercase__ ), '''token''': ANY(lowercase__ ), '''token_str''': ANY(lowercase__ )}, ] , ) UpperCAmelCase_ : Tuple = {vocab[el] for el in targets} self.assertEqual({el['''token'''] for el in outputs} , lowercase__ ) UpperCAmelCase_ : Dict = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['''token_str'''] for el in outputs} , set(lowercase__ ) ) # Score equivalence UpperCAmelCase_ : List[Any] = fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=lowercase__ ) UpperCAmelCase_ : List[Any] = [top_mask["""token_str"""] for top_mask in outputs] UpperCAmelCase_ : Dict = [top_mask["""score"""] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(lowercase__ ) == set(lowercase__ ): UpperCAmelCase_ : Optional[Any] = fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=lowercase__ ) UpperCAmelCase_ : Tuple = [top_mask["""score"""] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(lowercase__ ) , nested_simplify(lowercase__ ) ) # Raises with invalid with self.assertRaises(lowercase__ ): UpperCAmelCase_ : Optional[Any] = fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(lowercase__ ): UpperCAmelCase_ : Union[str, Any] = fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=[''''''] ) with self.assertRaises(lowercase__ ): UpperCAmelCase_ : str = fill_masker(F"""This is a {tokenizer.mask_token}""" , targets='''''' ) def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : int , __magic_name__ : Optional[int] ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : List[str] = FillMaskPipeline(model=lowercase__ , tokenizer=lowercase__ , top_k=2 ) UpperCAmelCase_ : Optional[Any] = fill_masker(F"""This is a {tokenizer.mask_token}""" ) self.assertEqual( lowercase__ , [ {'''sequence''': ANY(lowercase__ ), '''score''': ANY(lowercase__ ), '''token''': ANY(lowercase__ ), '''token_str''': ANY(lowercase__ )}, {'''sequence''': ANY(lowercase__ ), '''score''': ANY(lowercase__ ), '''token''': ANY(lowercase__ ), '''token_str''': ANY(lowercase__ )}, ] , ) UpperCAmelCase_ : Optional[Any] = FillMaskPipeline(model=lowercase__ , tokenizer=lowercase__ ) UpperCAmelCase_ : Dict = fill_masker(F"""This is a {tokenizer.mask_token}""" , top_k=2 ) self.assertEqual( lowercase__ , [ {'''sequence''': ANY(lowercase__ ), '''score''': ANY(lowercase__ ), '''token''': ANY(lowercase__ ), '''token_str''': ANY(lowercase__ )}, {'''sequence''': ANY(lowercase__ ), '''score''': ANY(lowercase__ ), '''token''': ANY(lowercase__ ), '''token_str''': ANY(lowercase__ )}, ] , ) self.assertEqual(nested_simplify(lowercase__ ) , nested_simplify(lowercase__ ) ) def UpperCAmelCase__ ( self : int , __magic_name__ : List[str] , __magic_name__ : Optional[int] ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : List[str] = tokenizer.get_vocab() UpperCAmelCase_ : int = FillMaskPipeline(model=lowercase__ , tokenizer=lowercase__ ) # top_k=2, ntargets=3 UpperCAmelCase_ : Optional[int] = sorted(vocab.keys() )[:3] UpperCAmelCase_ : Dict = fill_masker(F"""This is a {tokenizer.mask_token}""" , top_k=2 , targets=lowercase__ ) # If we use the most probably targets, and filter differently, we should still # have the same results UpperCAmelCase_ : Any = [el["""token_str"""] for el in sorted(lowercase__ , key=lambda __magic_name__ : x["score"] , reverse=lowercase__ )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(lowercase__ ).issubset(lowercase__ ): UpperCAmelCase_ : Any = fill_masker(F"""This is a {tokenizer.mask_token}""" , top_k=3 , targets=lowercase__ ) # They should yield exactly the same result self.assertEqual(nested_simplify(lowercase__ ) , nested_simplify(lowercase__ ) ) def UpperCAmelCase__ ( self : Dict , __magic_name__ : List[str] , __magic_name__ : Dict ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : List[str] = FillMaskPipeline(model=lowercase__ , tokenizer=lowercase__ ) UpperCAmelCase_ : Optional[Any] = tokenizer.get_vocab() # String duplicates + id duplicates UpperCAmelCase_ : str = sorted(vocab.keys() )[:3] UpperCAmelCase_ : int = [targets[0], targets[1], targets[0], targets[2], targets[1]] UpperCAmelCase_ : Any = fill_masker(F"""My name is {tokenizer.mask_token}""" , targets=lowercase__ , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(lowercase__ ) , 3 ) def UpperCAmelCase__ ( self : Any , __magic_name__ : int , __magic_name__ : str ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ : List[Any] = FillMaskPipeline(model=lowercase__ , tokenizer=lowercase__ ) UpperCAmelCase_ : List[str] = fill_masker( F"""This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}""" , top_k=2 ) self.assertEqual( lowercase__ , [ [ {'''sequence''': ANY(lowercase__ ), '''score''': ANY(lowercase__ ), '''token''': ANY(lowercase__ ), '''token_str''': ANY(lowercase__ )}, {'''sequence''': ANY(lowercase__ ), '''score''': ANY(lowercase__ ), '''token''': ANY(lowercase__ ), '''token_str''': ANY(lowercase__ )}, ], [ {'''sequence''': ANY(lowercase__ ), '''score''': ANY(lowercase__ ), '''token''': ANY(lowercase__ ), '''token_str''': ANY(lowercase__ )}, {'''sequence''': ANY(lowercase__ ), '''score''': ANY(lowercase__ ), '''token''': ANY(lowercase__ ), '''token_str''': ANY(lowercase__ )}, ], [ {'''sequence''': ANY(lowercase__ ), '''score''': ANY(lowercase__ ), '''token''': ANY(lowercase__ ), '''token_str''': ANY(lowercase__ )}, {'''sequence''': ANY(lowercase__ ), '''score''': ANY(lowercase__ ), '''token''': ANY(lowercase__ ), '''token_str''': ANY(lowercase__ )}, ], ] , )
704
'''simple docstring''' def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : list[int] ) -> list[list[int]]: UpperCAmelCase_ : int = [] if len(SCREAMING_SNAKE_CASE__ ) == 1: return [nums.copy()] for _ in range(len(SCREAMING_SNAKE_CASE__ ) ): UpperCAmelCase_ : List[Any] = nums.pop(0 ) UpperCAmelCase_ : Optional[Any] = permute(SCREAMING_SNAKE_CASE__ ) for perm in permutations: perm.append(SCREAMING_SNAKE_CASE__ ) result.extend(SCREAMING_SNAKE_CASE__ ) nums.append(SCREAMING_SNAKE_CASE__ ) return result def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[str] ) -> Any: def backtrack(SCREAMING_SNAKE_CASE__ : Union[str, Any] ): if start == len(SCREAMING_SNAKE_CASE__ ) - 1: output.append(nums[:] ) else: for i in range(SCREAMING_SNAKE_CASE__, len(SCREAMING_SNAKE_CASE__ ) ): UpperCAmelCase_ , UpperCAmelCase_ : Tuple = nums[i], nums[start] backtrack(start + 1 ) UpperCAmelCase_ , UpperCAmelCase_ : int = nums[i], nums[start] # backtrack UpperCAmelCase_ : Optional[int] = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function snake_case_ : Tuple = permutea([1, 2, 3]) print(res) doctest.testmod()
644
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available snake_case_ : Tuple = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Optional[Any] = ["GPTSw3Tokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys snake_case_ : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
705
'''simple docstring''' class __a : def __init__( self : List[Any] , __magic_name__ : int ) -> None: """simple docstring""" UpperCAmelCase_ : Optional[Any] = size UpperCAmelCase_ : Tuple = [0] * size UpperCAmelCase_ : Optional[Any] = [0] * size @staticmethod def UpperCAmelCase__ ( __magic_name__ : int ) -> int: """simple docstring""" return index | (index + 1) @staticmethod def UpperCAmelCase__ ( __magic_name__ : int ) -> int: """simple docstring""" return (index & (index + 1)) - 1 def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : int , __magic_name__ : int ) -> None: """simple docstring""" UpperCAmelCase_ : int = value while index < self.size: UpperCAmelCase_ : str = self.get_prev(__magic_name__ ) + 1 if current_left_border == index: UpperCAmelCase_ : List[str] = value else: UpperCAmelCase_ : Optional[int] = max(__magic_name__ , __magic_name__ , __magic_name__ ) UpperCAmelCase_ : Tuple = self.get_next(__magic_name__ ) def UpperCAmelCase__ ( self : Any , __magic_name__ : int , __magic_name__ : int ) -> int: """simple docstring""" right -= 1 # Because of right is exclusive UpperCAmelCase_ : List[str] = 0 while left <= right: UpperCAmelCase_ : Optional[Any] = self.get_prev(__magic_name__ ) if left <= current_left: UpperCAmelCase_ : Dict = max(__magic_name__ , self.tree[right] ) UpperCAmelCase_ : Optional[Any] = current_left else: UpperCAmelCase_ : str = max(__magic_name__ , self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
644
0
'''simple docstring''' import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class __a (lowerCamelCase ): __a : str = (UnCLIPScheduler,) def UpperCAmelCase__ ( self : Optional[int] , **__magic_name__ : int ) -> int: """simple docstring""" UpperCAmelCase_ : Tuple = { '''num_train_timesteps''': 10_00, '''variance_type''': '''fixed_small_log''', '''clip_sample''': True, '''clip_sample_range''': 1.0, '''prediction_type''': '''epsilon''', } config.update(**__magic_name__ ) return config def UpperCAmelCase__ ( self : Dict ) -> Optional[Any]: """simple docstring""" for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=__magic_name__ ) def UpperCAmelCase__ ( self : Dict ) -> str: """simple docstring""" for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=__magic_name__ ) def UpperCAmelCase__ ( self : str ) -> Any: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=__magic_name__ ) def UpperCAmelCase__ ( self : List[str] ) -> str: """simple docstring""" for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=__magic_name__ ) def UpperCAmelCase__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=__magic_name__ ) def UpperCAmelCase__ ( self : List[Any] ) -> Dict: """simple docstring""" for time_step in [0, 5_00, 9_99]: for prev_timestep in [None, 5, 1_00, 2_50, 5_00, 7_50]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=__magic_name__ , prev_timestep=__magic_name__ ) def UpperCAmelCase__ ( self : List[Any] ) -> Dict: """simple docstring""" UpperCAmelCase_ : Tuple = self.scheduler_classes[0] UpperCAmelCase_ : Tuple = self.get_scheduler_config(variance_type='''fixed_small_log''' ) UpperCAmelCase_ : Dict = scheduler_class(**__magic_name__ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0_000E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 ) - 0.0_5_4_9_6_2_5 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 ) - 0.9_9_9_4_9_8_7 ) ) < 1E-5 def UpperCAmelCase__ ( self : Any ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : int = self.scheduler_classes[0] UpperCAmelCase_ : Optional[int] = self.get_scheduler_config(variance_type='''learned_range''' ) UpperCAmelCase_ : List[str] = scheduler_class(**__magic_name__ ) UpperCAmelCase_ : Any = 0.5 assert scheduler._get_variance(1 , predicted_variance=__magic_name__ ) - -1_0.1_7_1_2_7_9_0 < 1E-5 assert scheduler._get_variance(4_87 , predicted_variance=__magic_name__ ) - -5.7_9_9_8_0_5_2 < 1E-5 assert scheduler._get_variance(9_99 , predicted_variance=__magic_name__ ) - -0.0_0_1_0_0_1_1 < 1E-5 def UpperCAmelCase__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : int = self.scheduler_classes[0] UpperCAmelCase_ : List[str] = self.get_scheduler_config() UpperCAmelCase_ : int = scheduler_class(**__magic_name__ ) UpperCAmelCase_ : Union[str, Any] = scheduler.timesteps UpperCAmelCase_ : Optional[int] = self.dummy_model() UpperCAmelCase_ : List[str] = self.dummy_sample_deter UpperCAmelCase_ : List[str] = torch.manual_seed(0 ) for i, t in enumerate(__magic_name__ ): # 1. predict noise residual UpperCAmelCase_ : Any = model(__magic_name__ , __magic_name__ ) # 2. predict previous mean of sample x_t-1 UpperCAmelCase_ : Optional[Any] = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , generator=__magic_name__ ).prev_sample UpperCAmelCase_ : Optional[Any] = pred_prev_sample UpperCAmelCase_ : List[str] = torch.sum(torch.abs(__magic_name__ ) ) UpperCAmelCase_ : Union[str, Any] = torch.mean(torch.abs(__magic_name__ ) ) assert abs(result_sum.item() - 2_5_2.2_6_8_2_4_9_5 ) < 1E-2 assert abs(result_mean.item() - 0.3_2_8_4_7_4_3 ) < 1E-3 def UpperCAmelCase__ ( self : List[Any] ) -> List[str]: """simple docstring""" UpperCAmelCase_ : Any = self.scheduler_classes[0] UpperCAmelCase_ : Union[str, Any] = self.get_scheduler_config() UpperCAmelCase_ : Tuple = scheduler_class(**__magic_name__ ) scheduler.set_timesteps(25 ) UpperCAmelCase_ : Tuple = scheduler.timesteps UpperCAmelCase_ : List[str] = self.dummy_model() UpperCAmelCase_ : Optional[Any] = self.dummy_sample_deter UpperCAmelCase_ : str = torch.manual_seed(0 ) for i, t in enumerate(__magic_name__ ): # 1. predict noise residual UpperCAmelCase_ : Optional[int] = model(__magic_name__ , __magic_name__ ) if i + 1 == timesteps.shape[0]: UpperCAmelCase_ : Union[str, Any] = None else: UpperCAmelCase_ : List[str] = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 UpperCAmelCase_ : str = scheduler.step( __magic_name__ , __magic_name__ , __magic_name__ , prev_timestep=__magic_name__ , generator=__magic_name__ ).prev_sample UpperCAmelCase_ : int = pred_prev_sample UpperCAmelCase_ : Dict = torch.sum(torch.abs(__magic_name__ ) ) UpperCAmelCase_ : Tuple = torch.mean(torch.abs(__magic_name__ ) ) assert abs(result_sum.item() - 2_5_8.2_0_4_4_9_8_3 ) < 1E-2 assert abs(result_mean.item() - 0.3_3_6_2_0_3_8 ) < 1E-3 def UpperCAmelCase__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" pass def UpperCAmelCase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" pass
706
'''simple docstring''' import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class __a : def __init__( self : List[str] , __magic_name__ : List[str] , __magic_name__ : str=13 , __magic_name__ : Union[str, Any]=7 , __magic_name__ : Union[str, Any]=True , __magic_name__ : Any=True , __magic_name__ : List[str]=False , __magic_name__ : Optional[int]=True , __magic_name__ : Dict=99 , __magic_name__ : Tuple=32 , __magic_name__ : int=5 , __magic_name__ : Dict=4 , __magic_name__ : Tuple=37 , __magic_name__ : Optional[int]="gelu" , __magic_name__ : List[str]=0.1 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : str=5_12 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : int=2 , __magic_name__ : List[Any]=0.0_2 , __magic_name__ : Tuple=3 , __magic_name__ : Union[str, Any]=4 , __magic_name__ : Optional[int]=None , ) -> str: """simple docstring""" UpperCAmelCase_ : Any = parent UpperCAmelCase_ : Union[str, Any] = batch_size UpperCAmelCase_ : List[Any] = seq_length UpperCAmelCase_ : str = is_training UpperCAmelCase_ : Any = use_input_mask UpperCAmelCase_ : List[str] = use_token_type_ids UpperCAmelCase_ : Union[str, Any] = use_labels UpperCAmelCase_ : Dict = vocab_size UpperCAmelCase_ : Optional[Any] = hidden_size UpperCAmelCase_ : Dict = num_hidden_layers UpperCAmelCase_ : List[Any] = num_attention_heads UpperCAmelCase_ : Optional[int] = intermediate_size UpperCAmelCase_ : Union[str, Any] = hidden_act UpperCAmelCase_ : str = hidden_dropout_prob UpperCAmelCase_ : Optional[Any] = attention_probs_dropout_prob UpperCAmelCase_ : Any = max_position_embeddings UpperCAmelCase_ : str = type_vocab_size UpperCAmelCase_ : Optional[Any] = type_sequence_label_size UpperCAmelCase_ : List[Any] = initializer_range UpperCAmelCase_ : int = num_labels UpperCAmelCase_ : Optional[int] = num_choices UpperCAmelCase_ : Tuple = scope def UpperCAmelCase__ ( self : Union[str, Any] ) -> int: """simple docstring""" UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Union[str, Any] = None if self.use_input_mask: UpperCAmelCase_ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : str = None if self.use_token_type_ids: UpperCAmelCase_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ : Tuple = None UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Union[str, Any] = None if self.use_labels: UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ : int = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self : Any ) -> List[Any]: """simple docstring""" return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__magic_name__ , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : Tuple , __magic_name__ : str , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : Optional[Any] = BioGptModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() UpperCAmelCase_ : Dict = model(__magic_name__ , attention_mask=__magic_name__ ) UpperCAmelCase_ : Optional[Any] = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : Dict , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Any , __magic_name__ : Tuple , __magic_name__ : List[str] , __magic_name__ : Optional[int] , ) -> int: """simple docstring""" UpperCAmelCase_ : Dict = BioGptForCausalLM(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() UpperCAmelCase_ : List[Any] = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self : str , __magic_name__ : Optional[int] , __magic_name__ : Tuple , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : str , *__magic_name__ : Any ) -> int: """simple docstring""" UpperCAmelCase_ : Dict = BioGptModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() # create attention mask UpperCAmelCase_ : Optional[Any] = torch.ones(input_ids.shape , dtype=torch.long , device=__magic_name__ ) UpperCAmelCase_ : Any = self.seq_length // 2 UpperCAmelCase_ : Tuple = 0 # first forward pass UpperCAmelCase_ , UpperCAmelCase_ : Dict = model(__magic_name__ , attention_mask=__magic_name__ ).to_tuple() # create hypothetical next token and extent to next_input_ids UpperCAmelCase_ : Tuple = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids UpperCAmelCase_ : List[str] = ids_tensor((1,) , __magic_name__ ).item() + 1 UpperCAmelCase_ : Tuple = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) UpperCAmelCase_ : str = random_other_next_tokens # append to next input_ids and attn_mask UpperCAmelCase_ : Tuple = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase_ : int = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=__magic_name__ )] , dim=1 , ) # get two different outputs UpperCAmelCase_ : Any = model(__magic_name__ , attention_mask=__magic_name__ )['''last_hidden_state'''] UpperCAmelCase_ : int = model(__magic_name__ , past_key_values=__magic_name__ , attention_mask=__magic_name__ )['''last_hidden_state'''] # select random slice UpperCAmelCase_ : Optional[int] = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase_ : Union[str, Any] = output_from_no_past[:, -1, random_slice_idx].detach() UpperCAmelCase_ : Dict = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) ) def UpperCAmelCase__ ( self : Dict , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : Dict , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , *__magic_name__ : str ) -> int: """simple docstring""" UpperCAmelCase_ : Dict = BioGptModel(config=__magic_name__ ).to(__magic_name__ ).eval() UpperCAmelCase_ : Optional[int] = torch.ones(input_ids.shape , dtype=torch.long , device=__magic_name__ ) # first forward pass UpperCAmelCase_ : Union[str, Any] = model(__magic_name__ , attention_mask=__magic_name__ , use_cache=__magic_name__ ) UpperCAmelCase_ , UpperCAmelCase_ : int = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase_ : Any = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase_ : Any = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and UpperCAmelCase_ : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase_ : List[str] = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) UpperCAmelCase_ : Any = model(__magic_name__ , attention_mask=__magic_name__ )['''last_hidden_state'''] UpperCAmelCase_ : Optional[Any] = model(__magic_name__ , attention_mask=__magic_name__ , past_key_values=__magic_name__ )[ '''last_hidden_state''' ] # select random slice UpperCAmelCase_ : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase_ : str = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase_ : Optional[int] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) ) def UpperCAmelCase__ ( self : List[str] , __magic_name__ : str , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , *__magic_name__ : Any , __magic_name__ : List[Any]=False ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : Any = BioGptForCausalLM(__magic_name__ ) model.to(__magic_name__ ) if gradient_checkpointing: model.gradient_checkpointing_enable() UpperCAmelCase_ : List[str] = model(__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Optional[int] , *__magic_name__ : List[str] ) -> str: """simple docstring""" UpperCAmelCase_ : int = BioGptModel(__magic_name__ ) UpperCAmelCase_ : Dict = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.0_0_1 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.0_1 ) def UpperCAmelCase__ ( self : int , __magic_name__ : Tuple , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] , *__magic_name__ : Any ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : str = self.num_labels UpperCAmelCase_ : Any = BioGptForTokenClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() UpperCAmelCase_ : Any = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase__ ( self : Optional[Any] ) -> str: """simple docstring""" UpperCAmelCase_ : List[Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : int = config_and_inputs UpperCAmelCase_ : Any = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __a (lowerCamelCase , lowerCamelCase , lowerCamelCase , unittest.TestCase ): __a : str = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) __a : List[Any] = (BioGptForCausalLM,) if is_torch_available() else () __a : Union[str, Any] = ( { "feature-extraction": BioGptModel, "text-classification": BioGptForSequenceClassification, "text-generation": BioGptForCausalLM, "token-classification": BioGptForTokenClassification, "zero-shot": BioGptForSequenceClassification, } if is_torch_available() else {} ) __a : List[str] = False def UpperCAmelCase__ ( self : Optional[Any] ) -> Dict: """simple docstring""" UpperCAmelCase_ : List[str] = BioGptModelTester(self ) UpperCAmelCase_ : Optional[Any] = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : List[str] ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def UpperCAmelCase__ ( self : Tuple ) -> List[str]: """simple docstring""" UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase_ : str = type self.model_tester.create_and_check_model(*__magic_name__ ) def UpperCAmelCase__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*__magic_name__ ) def UpperCAmelCase__ ( self : Tuple ) -> List[str]: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*__magic_name__ , gradient_checkpointing=__magic_name__ ) def UpperCAmelCase__ ( self : str ) -> List[str]: """simple docstring""" UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*__magic_name__ ) def UpperCAmelCase__ ( self : Dict ) -> Tuple: """simple docstring""" UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*__magic_name__ ) def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*__magic_name__ ) @slow def UpperCAmelCase__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : Tuple = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) model.to(__magic_name__ ) UpperCAmelCase_ : List[str] = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) UpperCAmelCase_ : Tuple = '''left''' # Define PAD Token = EOS Token = 50256 UpperCAmelCase_ : List[Any] = tokenizer.eos_token UpperCAmelCase_ : List[Any] = model.config.eos_token_id # use different length sentences to test batching UpperCAmelCase_ : Tuple = [ '''Hello, my dog is a little''', '''Today, I''', ] UpperCAmelCase_ : Optional[Any] = tokenizer(__magic_name__ , return_tensors='''pt''' , padding=__magic_name__ ) UpperCAmelCase_ : Optional[Any] = inputs['''input_ids'''].to(__magic_name__ ) UpperCAmelCase_ : Any = model.generate( input_ids=__magic_name__ , attention_mask=inputs['''attention_mask'''].to(__magic_name__ ) , ) UpperCAmelCase_ : Union[str, Any] = tokenizer(sentences[0] , return_tensors='''pt''' ).input_ids.to(__magic_name__ ) UpperCAmelCase_ : Tuple = model.generate(input_ids=__magic_name__ ) UpperCAmelCase_ : List[str] = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item() UpperCAmelCase_ : List[Any] = tokenizer(sentences[1] , return_tensors='''pt''' ).input_ids.to(__magic_name__ ) UpperCAmelCase_ : Tuple = model.generate(input_ids=__magic_name__ , max_length=model.config.max_length - num_paddings ) UpperCAmelCase_ : int = tokenizer.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ ) UpperCAmelCase_ : Dict = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__magic_name__ ) UpperCAmelCase_ : Union[str, Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=__magic_name__ ) UpperCAmelCase_ : Optional[Any] = [ '''Hello, my dog is a little bit bigger than a little bit.''', '''Today, I have a good idea of how to use the information''', ] self.assertListEqual(__magic_name__ , __magic_name__ ) self.assertListEqual(__magic_name__ , [non_padded_sentence, padded_sentence] ) @slow def UpperCAmelCase__ ( self : str ) -> Optional[Any]: """simple docstring""" for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : List[Any] = BioGptModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def UpperCAmelCase__ ( self : Tuple ) -> str: """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : List[str] = 3 UpperCAmelCase_ : Tuple = input_dict['''input_ids'''] UpperCAmelCase_ : Dict = input_ids.ne(1 ).to(__magic_name__ ) UpperCAmelCase_ : List[str] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase_ : Dict = BioGptForSequenceClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() UpperCAmelCase_ : int = model(__magic_name__ , attention_mask=__magic_name__ , labels=__magic_name__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]: """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : List[Any] = 3 UpperCAmelCase_ : Optional[int] = '''multi_label_classification''' UpperCAmelCase_ : int = input_dict['''input_ids'''] UpperCAmelCase_ : str = input_ids.ne(1 ).to(__magic_name__ ) UpperCAmelCase_ : Any = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCAmelCase_ : Union[str, Any] = BioGptForSequenceClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() UpperCAmelCase_ : str = model(__magic_name__ , attention_mask=__magic_name__ , labels=__magic_name__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class __a (unittest.TestCase ): @slow def UpperCAmelCase__ ( self : List[Any] ) -> str: """simple docstring""" UpperCAmelCase_ : str = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) UpperCAmelCase_ : List[str] = torch.tensor([[2, 48_05, 9, 6_56, 21]] ) UpperCAmelCase_ : str = model(__magic_name__ )[0] UpperCAmelCase_ : Optional[int] = 4_23_84 UpperCAmelCase_ : Tuple = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , __magic_name__ ) UpperCAmelCase_ : List[Any] = torch.tensor( [[[-9.5_2_3_6, -9.8_9_1_8, 1_0.4_5_5_7], [-1_1.0_4_6_9, -9.6_4_2_3, 8.1_0_2_2], [-8.8_6_6_4, -7.8_8_2_6, 5.5_3_2_5]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __magic_name__ , atol=1E-4 ) ) @slow def UpperCAmelCase__ ( self : Any ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Any = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) UpperCAmelCase_ : str = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) model.to(__magic_name__ ) torch.manual_seed(0 ) UpperCAmelCase_ : Optional[Any] = tokenizer('''COVID-19 is''' , return_tensors='''pt''' ).to(__magic_name__ ) UpperCAmelCase_ : Optional[int] = model.generate( **__magic_name__ , min_length=1_00 , max_length=10_24 , num_beams=5 , early_stopping=__magic_name__ , ) UpperCAmelCase_ : int = tokenizer.decode(output_ids[0] , skip_special_tokens=__magic_name__ ) UpperCAmelCase_ : Optional[Any] = ( '''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the''' ''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and''' ''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),''' ''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and''' ''' more than 800,000 deaths.''' ) self.assertEqual(__magic_name__ , __magic_name__ )
644
0
'''simple docstring''' from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]: if not is_accelerate_available(): return method UpperCAmelCase_ : str = version.parse(accelerate.__version__ ).base_version if version.parse(lowercase_ ) < version.parse('''0.17.0''' ): return method def wrapper(self : Optional[int], *SCREAMING_SNAKE_CASE__ : Union[str, Any], **SCREAMING_SNAKE_CASE__ : int ): if hasattr(self, '''_hf_hook''' ) and hasattr(self._hf_hook, '''pre_forward''' ): self._hf_hook.pre_forward(self ) return method(self, *lowercase_, **lowercase_ ) return wrapper
707
'''simple docstring''' import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class __a (lowerCamelCase , unittest.TestCase ): __a : List[str] = BlenderbotSmallTokenizer __a : List[Any] = False def UpperCAmelCase__ ( self : str ) -> str: """simple docstring""" super().setUp() UpperCAmelCase_ : Tuple = ['''__start__''', '''adapt''', '''act''', '''ap@@''', '''te''', '''__end__''', '''__unk__'''] UpperCAmelCase_ : Optional[Any] = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) ) UpperCAmelCase_ : int = ['''#version: 0.2''', '''a p''', '''t e</w>''', '''ap t</w>''', '''a d''', '''ad apt</w>''', '''a c''', '''ac t</w>''', ''''''] UpperCAmelCase_ : Optional[Any] = {'''unk_token''': '''__unk__''', '''bos_token''': '''__start__''', '''eos_token''': '''__end__'''} UpperCAmelCase_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase_ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__magic_name__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__magic_name__ ) ) def UpperCAmelCase__ ( self : List[Any] , **__magic_name__ : Dict ) -> Tuple: """simple docstring""" kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **__magic_name__ ) def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : List[str] ) -> List[str]: """simple docstring""" UpperCAmelCase_ : str = '''adapt act apte''' UpperCAmelCase_ : Tuple = '''adapt act apte''' return input_text, output_text def UpperCAmelCase__ ( self : str ) -> Any: """simple docstring""" UpperCAmelCase_ : str = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCAmelCase_ : List[Any] = '''adapt act apte''' UpperCAmelCase_ : Dict = ['''adapt''', '''act''', '''ap@@''', '''te'''] UpperCAmelCase_ : Dict = tokenizer.tokenize(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) UpperCAmelCase_ : Tuple = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] UpperCAmelCase_ : Dict = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , __magic_name__ ) def UpperCAmelCase__ ( self : int ) -> List[str]: """simple docstring""" UpperCAmelCase_ : List[Any] = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) assert tok('''sam''' ).input_ids == [13_84] UpperCAmelCase_ : Optional[int] = '''I am a small frog.''' UpperCAmelCase_ : List[str] = tok([src_text] , padding=__magic_name__ , truncation=__magic_name__ )['''input_ids'''] UpperCAmelCase_ : Dict = tok.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ , clean_up_tokenization_spaces=__magic_name__ )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def UpperCAmelCase__ ( self : Any ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : int = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) UpperCAmelCase_ : List[Any] = '''I am a small frog .''' UpperCAmelCase_ : Any = '''.''' UpperCAmelCase_ : List[Any] = tok(__magic_name__ )['''input_ids'''] UpperCAmelCase_ : Optional[int] = tok(__magic_name__ )['''input_ids'''] assert encoded[-1] == encoded_dot[0]
644
0
'''simple docstring''' def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Dict ) -> int: if not isinstance(__UpperCamelCase, __UpperCamelCase ) or number < 0: raise ValueError('''Input must be a non-negative integer''' ) UpperCAmelCase_ : Optional[Any] = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
708
'''simple docstring''' import unittest import torch from torch import nn from diffusers.models.activations import get_activation class __a (unittest.TestCase ): def UpperCAmelCase__ ( self : Dict ) -> Dict: """simple docstring""" UpperCAmelCase_ : Dict = get_activation('''swish''' ) self.assertIsInstance(__magic_name__ , nn.SiLU ) self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def UpperCAmelCase__ ( self : Tuple ) -> Tuple: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = get_activation('''silu''' ) self.assertIsInstance(__magic_name__ , nn.SiLU ) self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def UpperCAmelCase__ ( self : Tuple ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : Optional[int] = get_activation('''mish''' ) self.assertIsInstance(__magic_name__ , nn.Mish ) self.assertEqual(act(torch.tensor(-2_00 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def UpperCAmelCase__ ( self : str ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ : List[Any] = get_activation('''gelu''' ) self.assertIsInstance(__magic_name__ , nn.GELU ) self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
644
0
'''simple docstring''' from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __a (_lowerCAmelCase ): __a : List[str] = ['image_processor', 'tokenizer'] __a : List[Any] = 'BlipImageProcessor' __a : Tuple = 'AutoTokenizer' def __init__( self : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : int ) -> List[str]: """simple docstring""" UpperCAmelCase_ : List[str] = False super().__init__(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ : Union[str, Any] = self.image_processor def __call__( self : List[str] , __magic_name__ : ImageInput = None , __magic_name__ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __magic_name__ : bool = True , __magic_name__ : Union[bool, str, PaddingStrategy] = False , __magic_name__ : Union[bool, str, TruncationStrategy] = None , __magic_name__ : Optional[int] = None , __magic_name__ : int = 0 , __magic_name__ : Optional[int] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : bool = False , __magic_name__ : bool = False , __magic_name__ : bool = False , __magic_name__ : bool = False , __magic_name__ : bool = False , __magic_name__ : bool = True , __magic_name__ : Optional[Union[str, TensorType]] = None , **__magic_name__ : Tuple , ) -> BatchEncoding: """simple docstring""" if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None: UpperCAmelCase_ : Any = self.tokenizer UpperCAmelCase_ : Tuple = self.tokenizer( text=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase , stride=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , return_overflowing_tokens=_lowerCAmelCase , return_special_tokens_mask=_lowerCAmelCase , return_offsets_mapping=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase , return_length=_lowerCAmelCase , verbose=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase , ) return text_encoding # add pixel_values UpperCAmelCase_ : Tuple = self.image_processor(_lowerCAmelCase , return_tensors=_lowerCAmelCase ) if text is not None: UpperCAmelCase_ : Any = self.tokenizer( text=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase , stride=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , return_overflowing_tokens=_lowerCAmelCase , return_special_tokens_mask=_lowerCAmelCase , return_offsets_mapping=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase , return_length=_lowerCAmelCase , verbose=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase , ) else: UpperCAmelCase_ : Dict = None if text_encoding is not None: encoding_image_processor.update(_lowerCAmelCase ) return encoding_image_processor def UpperCAmelCase__ ( self : Optional[int] , *__magic_name__ : Union[str, Any] , **__magic_name__ : Any ) -> str: """simple docstring""" return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase ) def UpperCAmelCase__ ( self : Union[str, Any] , *__magic_name__ : Any , **__magic_name__ : Dict ) -> Optional[Any]: """simple docstring""" return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def UpperCAmelCase__ ( self : List[str] ) -> Tuple: """simple docstring""" UpperCAmelCase_ : int = self.tokenizer.model_input_names UpperCAmelCase_ : Tuple = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
709
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging snake_case_ : Union[str, Any] = logging.get_logger(__name__) class __a (lowerCamelCase ): __a : Tuple = ["pixel_values"] def __init__( self : List[Any] , __magic_name__ : bool = True , __magic_name__ : int = 32 , __magic_name__ : Union[str, Any]=PILImageResampling.BILINEAR , __magic_name__ : bool = True , **__magic_name__ : List[str] , ) -> None: """simple docstring""" UpperCAmelCase_ : int = do_resize UpperCAmelCase_ : Tuple = do_rescale UpperCAmelCase_ : List[Any] = size_divisor UpperCAmelCase_ : Any = resample super().__init__(**__magic_name__ ) def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : np.ndarray , __magic_name__ : int , __magic_name__ : str , __magic_name__ : Optional[ChannelDimension] = None , **__magic_name__ : Tuple ) -> np.ndarray: """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : List[str] = get_image_size(__magic_name__ ) # Rounds the height and width down to the closest multiple of size_divisor UpperCAmelCase_ : Dict = height // size_divisor * size_divisor UpperCAmelCase_ : Dict = width // size_divisor * size_divisor UpperCAmelCase_ : Any = resize(__magic_name__ , (new_h, new_w) , resample=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) return image def UpperCAmelCase__ ( self : int , __magic_name__ : np.ndarray , __magic_name__ : float , __magic_name__ : Optional[ChannelDimension] = None , **__magic_name__ : Optional[Any] ) -> np.ndarray: """simple docstring""" return rescale(image=__magic_name__ , scale=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def UpperCAmelCase__ ( self : str , __magic_name__ : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[int] = None , __magic_name__ : Any=None , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[Union[TensorType, str]] = None , __magic_name__ : ChannelDimension = ChannelDimension.FIRST , **__magic_name__ : Tuple , ) -> BatchFeature: """simple docstring""" UpperCAmelCase_ : Dict = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ : str = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ : Any = size_divisor if size_divisor is not None else self.size_divisor UpperCAmelCase_ : Dict = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('''size_divisor is required for resizing''' ) UpperCAmelCase_ : Optional[int] = make_list_of_images(__magic_name__ ) if not valid_images(__magic_name__ ): raise ValueError('''Invalid image(s)''' ) # All transformations expect numpy arrays. UpperCAmelCase_ : List[str] = [to_numpy_array(__magic_name__ ) for img in images] if do_resize: UpperCAmelCase_ : str = [self.resize(__magic_name__ , size_divisor=__magic_name__ , resample=__magic_name__ ) for image in images] if do_rescale: UpperCAmelCase_ : Tuple = [self.rescale(__magic_name__ , scale=1 / 2_55 ) for image in images] UpperCAmelCase_ : Union[str, Any] = [to_channel_dimension_format(__magic_name__ , __magic_name__ ) for image in images] UpperCAmelCase_ : int = {'''pixel_values''': images} return BatchFeature(data=__magic_name__ , tensor_type=__magic_name__ )
644
0
'''simple docstring''' import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __a (UpperCamelCase__ , unittest.TestCase ): __a : str = MgpstrTokenizer __a : List[str] = False __a : int = {} __a : Any = False def UpperCAmelCase__ ( self : int ) -> str: """simple docstring""" super().setUp() # fmt: off UpperCAmelCase_ : Optional[Any] = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on UpperCAmelCase_ : List[str] = dict(zip(_a , range(len(_a ) ) ) ) UpperCAmelCase_ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_a ) + '''\n''' ) def UpperCAmelCase__ ( self : List[str] , **__magic_name__ : List[str] ) -> Optional[Any]: """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_a ) def UpperCAmelCase__ ( self : str , __magic_name__ : str ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : str = """tester""" UpperCAmelCase_ : Union[str, Any] = """tester""" return input_text, output_text @unittest.skip('''MGP-STR always lower cases letters.''' ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" pass def UpperCAmelCase__ ( self : str ) -> Tuple: """simple docstring""" UpperCAmelCase_ : Optional[Any] = self.get_tokenizers(do_lower_case=_a ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): UpperCAmelCase_ : int = """[SPECIAL_TOKEN]""" tokenizer.add_special_tokens({'''cls_token''': special_token} ) UpperCAmelCase_ : Union[str, Any] = tokenizer.encode([special_token] , add_special_tokens=_a ) self.assertEqual(len(_a ) , 1 ) UpperCAmelCase_ : Optional[int] = tokenizer.decode(_a , skip_special_tokens=_a ) self.assertTrue(special_token not in decoded ) def UpperCAmelCase__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): UpperCAmelCase_ : Any = self.get_input_output_texts(_a ) UpperCAmelCase_ : str = tokenizer.tokenize(_a ) UpperCAmelCase_ : List[Any] = tokenizer.convert_tokens_to_ids(_a ) UpperCAmelCase_ : Union[str, Any] = tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) UpperCAmelCase_ : List[Any] = tokenizer.convert_ids_to_tokens(_a ) self.assertNotEqual(len(_a ) , 0 ) UpperCAmelCase_ : Optional[Any] = tokenizer.decode(_a ) self.assertIsInstance(_a , _a ) self.assertEqual(text_a.replace(''' ''' , '''''' ) , _a ) @unittest.skip('''MGP-STR tokenizer only handles one sequence.''' ) def UpperCAmelCase__ ( self : str ) -> Optional[int]: """simple docstring""" pass @unittest.skip('''inputs cannot be pretokenized in MgpstrTokenizer''' ) def UpperCAmelCase__ ( self : List[str] ) -> Any: """simple docstring""" pass
710
'''simple docstring''' def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int = 10, SCREAMING_SNAKE_CASE__ : int = 22 ) -> int: UpperCAmelCase_ : Optional[int] = range(1, SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : List[Any] = range(1, SCREAMING_SNAKE_CASE__ ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(f'''{solution(10, 22) = }''')
644
0
'''simple docstring''' snake_case_ : List[str] = range(2, 20 + 1) snake_case_ : Optional[Any] = [10**k for k in range(ks[-1] + 1)] snake_case_ : dict[int, dict[int, list[list[int]]]] = {} def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Any, SCREAMING_SNAKE_CASE__ : Dict, SCREAMING_SNAKE_CASE__ : Any, SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> int: UpperCAmelCase_ : Tuple = sum(a_i[j] for j in range(__UpperCamelCase, len(__UpperCamelCase ) ) ) UpperCAmelCase_ : Tuple = sum(a_i[j] * base[j] for j in range(min(len(__UpperCamelCase ), __UpperCamelCase ) ) ) UpperCAmelCase_ : Optional[int] = 0, 0 UpperCAmelCase_ : List[Any] = n - i UpperCAmelCase_ : Any = memo.get(__UpperCamelCase ) if sub_memo is not None: UpperCAmelCase_ : Optional[int] = sub_memo.get(__UpperCamelCase ) if jumps is not None and len(__UpperCamelCase ) > 0: # find and make the largest jump without going over UpperCAmelCase_ : List[Any] = -1 for _k in range(len(__UpperCamelCase ) - 1, -1, -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: UpperCAmelCase_ : List[str] = _k break if max_jump >= 0: UpperCAmelCase_ : List[Any] = jumps[max_jump] # since the difference between jumps is cached, add c UpperCAmelCase_ : int = diff + c for j in range(min(__UpperCamelCase, len(__UpperCamelCase ) ) ): UpperCAmelCase_ : List[str] = divmod(__UpperCamelCase, 10 ) if new_c > 0: add(__UpperCamelCase, __UpperCamelCase, __UpperCamelCase ) else: UpperCAmelCase_ : List[Any] = [] else: UpperCAmelCase_ : Optional[Any] = {c: []} UpperCAmelCase_ : int = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps UpperCAmelCase_ : str = next_term(__UpperCamelCase, k - 1, i + dn, __UpperCamelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead UpperCAmelCase_ : str = compute(__UpperCamelCase, __UpperCamelCase, i + dn, __UpperCamelCase ) diff += _diff dn += terms_jumped UpperCAmelCase_ : str = sub_memo[c] # keep jumps sorted by # of terms skipped UpperCAmelCase_ : List[Any] = 0 while j < len(__UpperCamelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(__UpperCamelCase, (diff, dn, k) ) return (diff, dn) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : Optional[int], SCREAMING_SNAKE_CASE__ : List[str], SCREAMING_SNAKE_CASE__ : int ) -> Any: if i >= n: return 0, i if k > len(__UpperCamelCase ): a_i.extend([0 for _ in range(k - len(__UpperCamelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) UpperCAmelCase_ : Optional[Any] = i UpperCAmelCase_ : Dict = 0, 0, 0 for j in range(len(__UpperCamelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 UpperCAmelCase_ : int = ds_c + ds_b diff += addend UpperCAmelCase_ : List[Any] = 0 for j in range(__UpperCamelCase ): UpperCAmelCase_ : Optional[Any] = a_i[j] + addend UpperCAmelCase_ : List[str] = divmod(__UpperCamelCase, 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(__UpperCamelCase, __UpperCamelCase, __UpperCamelCase ) return diff, i - start_i def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Dict, SCREAMING_SNAKE_CASE__ : List[Any], SCREAMING_SNAKE_CASE__ : int ) -> Tuple: for j in range(__UpperCamelCase, len(__UpperCamelCase ) ): UpperCAmelCase_ : Any = digits[j] + addend if s >= 10: UpperCAmelCase_ : Union[str, Any] = divmod(__UpperCamelCase, 10 ) UpperCAmelCase_ : Optional[int] = addend // 10 + quotient else: UpperCAmelCase_ : Any = s UpperCAmelCase_ : Dict = addend // 10 if addend == 0: break while addend > 0: UpperCAmelCase_ : Dict = divmod(__UpperCamelCase, 10 ) digits.append(__UpperCamelCase ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int = 10**15 ) -> int: UpperCAmelCase_ : List[Any] = [1] UpperCAmelCase_ : Dict = 1 UpperCAmelCase_ : Tuple = 0 while True: UpperCAmelCase_ : List[str] = next_term(__UpperCamelCase, 20, i + dn, __UpperCamelCase ) dn += terms_jumped if dn == n - i: break UpperCAmelCase_ : List[str] = 0 for j in range(len(__UpperCamelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f'''{solution() = }''')
711
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class __a (lowerCamelCase ): __a : int = "dandelin/vilt-b32-finetuned-vqa" __a : Any = ( "This is a tool that answers a question about an image. It takes an input named `image` which should be the " "image containing the information, as well as a `question` which should be the question in English. It " "returns a text that is the answer to the question." ) __a : Any = "image_qa" __a : str = AutoProcessor __a : Any = AutoModelForVisualQuestionAnswering __a : List[Any] = ["image", "text"] __a : int = ["text"] def __init__( self : Tuple , *__magic_name__ : Any , **__magic_name__ : Any ) -> Tuple: """simple docstring""" requires_backends(self , ['''vision'''] ) super().__init__(*__magic_name__ , **__magic_name__ ) def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : "Image" , __magic_name__ : str ) -> Tuple: """simple docstring""" return self.pre_processor(__magic_name__ , __magic_name__ , return_tensors='''pt''' ) def UpperCAmelCase__ ( self : Any , __magic_name__ : List[str] ) -> Optional[Any]: """simple docstring""" with torch.no_grad(): return self.model(**__magic_name__ ).logits def UpperCAmelCase__ ( self : int , __magic_name__ : int ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : Dict = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
644
0
'''simple docstring''' from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING snake_case_ : Tuple = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase__ ) class __a (lowerCAmelCase__ ): def __init__( self : Optional[int] , *__magic_name__ : Any , **__magic_name__ : Optional[Any] ) -> int: """simple docstring""" super().__init__(*_lowerCamelCase , **_lowerCamelCase ) self.check_model_type(_lowerCamelCase ) def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Tuple=None , __magic_name__ : List[Any]=None , __magic_name__ : Any=None , **__magic_name__ : int ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = {}, {} if padding is not None: UpperCAmelCase_ : List[Any] = padding if truncation is not None: UpperCAmelCase_ : Optional[Any] = truncation if top_k is not None: UpperCAmelCase_ : str = top_k return preprocess_params, {}, postprocess_params def __call__( self : Tuple , __magic_name__ : Dict , __magic_name__ : Any = None , **__magic_name__ : Union[str, Any] ) -> str: """simple docstring""" if isinstance(_lowerCamelCase , (Image.Image, str) ) and isinstance(_lowerCamelCase , _lowerCamelCase ): UpperCAmelCase_ : str = {'''image''': image, '''question''': question} else: UpperCAmelCase_ : Optional[Any] = image UpperCAmelCase_ : List[str] = super().__call__(_lowerCamelCase , **_lowerCamelCase ) return results def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : Optional[int] , __magic_name__ : int=False , __magic_name__ : Any=False ) -> Tuple: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = load_image(inputs['''image'''] ) UpperCAmelCase_ : Tuple = self.tokenizer( inputs['''question'''] , return_tensors=self.framework , padding=_lowerCamelCase , truncation=_lowerCamelCase ) UpperCAmelCase_ : Dict = self.image_processor(images=_lowerCamelCase , return_tensors=self.framework ) model_inputs.update(_lowerCamelCase ) return model_inputs def UpperCAmelCase__ ( self : Dict , __magic_name__ : Optional[Any] ) -> int: """simple docstring""" UpperCAmelCase_ : Optional[Any] = self.model(**_lowerCamelCase ) return model_outputs def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : List[str] , __magic_name__ : Dict=5 ) -> Tuple: """simple docstring""" if top_k > self.model.config.num_labels: UpperCAmelCase_ : Union[str, Any] = self.model.config.num_labels if self.framework == "pt": UpperCAmelCase_ : List[Any] = model_outputs.logits.sigmoid()[0] UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = probs.topk(_lowerCamelCase ) else: raise ValueError(F"""Unsupported framework: {self.framework}""" ) UpperCAmelCase_ : Tuple = scores.tolist() UpperCAmelCase_ : Any = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(_lowerCamelCase , _lowerCamelCase )]
712
'''simple docstring''' from collections.abc import Iterable from typing import Any class __a : def __init__( self : Optional[Any] , __magic_name__ : int | None = None ) -> Tuple: """simple docstring""" UpperCAmelCase_ : List[str] = value UpperCAmelCase_ : Node | None = None # Added in order to delete a node easier UpperCAmelCase_ : Node | None = None UpperCAmelCase_ : Node | None = None def __repr__( self : List[str] ) -> str: """simple docstring""" from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({F"""{self.value}""": (self.left, self.right)} , indent=1 ) class __a : def __init__( self : int , __magic_name__ : Node | None = None ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : str = root def __str__( self : Any ) -> str: """simple docstring""" return str(self.root ) def UpperCAmelCase__ ( self : Any , __magic_name__ : Node , __magic_name__ : Node | None ) -> None: """simple docstring""" if new_children is not None: # reset its kids UpperCAmelCase_ : Dict = node.parent if node.parent is not None: # reset its parent if self.is_right(__magic_name__ ): # If it is the right children UpperCAmelCase_ : Optional[Any] = new_children else: UpperCAmelCase_ : Optional[int] = new_children else: UpperCAmelCase_ : List[str] = new_children def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Node ) -> bool: """simple docstring""" if node.parent and node.parent.right: return node == node.parent.right return False def UpperCAmelCase__ ( self : Union[str, Any] ) -> bool: """simple docstring""" return self.root is None def UpperCAmelCase__ ( self : Any , __magic_name__ : str ) -> None: """simple docstring""" UpperCAmelCase_ : Tuple = Node(__magic_name__ ) # create a new Node if self.empty(): # if Tree is empty UpperCAmelCase_ : List[Any] = new_node # set its root else: # Tree is not empty UpperCAmelCase_ : str = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: UpperCAmelCase_ : Union[str, Any] = new_node # We insert the new node in a leaf break else: UpperCAmelCase_ : List[Any] = parent_node.left else: if parent_node.right is None: UpperCAmelCase_ : List[Any] = new_node break else: UpperCAmelCase_ : Union[str, Any] = parent_node.right UpperCAmelCase_ : Union[str, Any] = parent_node def UpperCAmelCase__ ( self : Optional[Any] , *__magic_name__ : List[str] ) -> None: """simple docstring""" for value in values: self.__insert(__magic_name__ ) def UpperCAmelCase__ ( self : Dict , __magic_name__ : int ) -> Node | None: """simple docstring""" if self.empty(): raise IndexError('''Warning: Tree is empty! please use another.''' ) else: UpperCAmelCase_ : str = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: UpperCAmelCase_ : List[str] = node.left if value < node.value else node.right return node def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : Node | None = None ) -> Node | None: """simple docstring""" if node is None: if self.root is None: return None UpperCAmelCase_ : Dict = self.root if not self.empty(): while node.right is not None: UpperCAmelCase_ : Any = node.right return node def UpperCAmelCase__ ( self : Dict , __magic_name__ : Node | None = None ) -> Node | None: """simple docstring""" if node is None: UpperCAmelCase_ : Optional[int] = self.root if self.root is None: return None if not self.empty(): UpperCAmelCase_ : Union[str, Any] = self.root while node.left is not None: UpperCAmelCase_ : Dict = node.left return node def UpperCAmelCase__ ( self : Tuple , __magic_name__ : int ) -> None: """simple docstring""" UpperCAmelCase_ : List[str] = self.search(__magic_name__ ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(__magic_name__ , __magic_name__ ) elif node.left is None: # Has only right children self.__reassign_nodes(__magic_name__ , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(__magic_name__ , node.left ) else: UpperCAmelCase_ : List[str] = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore UpperCAmelCase_ : Optional[int] = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Node | None ) -> Iterable: """simple docstring""" if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : List[Any]=None ) -> Any: """simple docstring""" if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : list , __magic_name__ : Node | None ) -> None: """simple docstring""" if node: self.inorder(__magic_name__ , node.left ) arr.append(node.value ) self.inorder(__magic_name__ , node.right ) def UpperCAmelCase__ ( self : Tuple , __magic_name__ : int , __magic_name__ : Node ) -> int: """simple docstring""" UpperCAmelCase_ : list[int] = [] self.inorder(__magic_name__ , __magic_name__ ) # append all values to list using inorder traversal return arr[k - 1] def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Node | None ) -> list[Node]: UpperCAmelCase_ : Any = [] if curr_node is not None: UpperCAmelCase_ : Any = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def lowerCamelCase_ ( ) -> None: UpperCAmelCase_ : str = (8, 3, 6, 1, 10, 14, 13, 4, 7) UpperCAmelCase_ : Tuple = BinarySearchTree() for i in testlist: t.insert(SCREAMING_SNAKE_CASE__ ) # Prints all the elements of the list in order traversal print(SCREAMING_SNAKE_CASE__ ) if t.search(6 ) is not None: print('''The value 6 exists''' ) else: print('''The value 6 doesn\'t exist''' ) if t.search(-1 ) is not None: print('''The value -1 exists''' ) else: print('''The value -1 doesn\'t exist''' ) if not t.empty(): print('''Max Value: ''', t.get_max().value ) # type: ignore print('''Min Value: ''', t.get_min().value ) # type: ignore for i in testlist: t.remove(SCREAMING_SNAKE_CASE__ ) print(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
644
0
from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar snake_case_ : List[str] = TypeVar("T") class __a (Generic[T] ): def __init__( self : Optional[int] , __magic_name__ : Optional[int] , __magic_name__ : Tuple ) -> None: """simple docstring""" UpperCAmelCase_ : Any | T = None UpperCAmelCase_ : int = len(__magic_name__ ) UpperCAmelCase_ : list[T] = [any_type for _ in range(self.N )] + arr UpperCAmelCase_ : Optional[Any] = fnc self.build() def UpperCAmelCase__ ( self : str ) -> None: """simple docstring""" for p in range(self.N - 1 , 0 , -1 ): UpperCAmelCase_ : Optional[Any] = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : Dict ) -> None: """simple docstring""" p += self.N UpperCAmelCase_ : Optional[Any] = v while p > 1: UpperCAmelCase_ : List[str] = p // 2 UpperCAmelCase_ : List[Any] = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Dict , __magic_name__ : Optional[int] ) -> T | None: # noqa: E741 """simple docstring""" UpperCAmelCase_ : List[str] = l + self.N, r + self.N UpperCAmelCase_ : T | None = None while l <= r: if l % 2 == 1: UpperCAmelCase_ : List[str] = self.st[l] if res is None else self.fn(__magic_name__ , self.st[l] ) if r % 2 == 0: UpperCAmelCase_ : Union[str, Any] = self.st[r] if res is None else self.fn(__magic_name__ , self.st[r] ) UpperCAmelCase_ : List[str] = (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce snake_case_ : Optional[Any] = [1, 10, -2, 9, -3, 8, 4, -7, 5, 6, 11, -12] snake_case_ : Dict = { 0: 7, 1: 2, 2: 6, 3: -14, 4: 5, 5: 4, 6: 7, 7: -10, 8: 9, 9: 10, 10: 12, 11: 1, } snake_case_ : Optional[int] = SegmentTree(test_array, min) snake_case_ : Dict = SegmentTree(test_array, max) snake_case_ : Dict = SegmentTree(test_array, lambda a, b: a + b) def lowerCamelCase_ ( ) -> None: for i in range(len(__snake_case ) ): for j in range(__snake_case, len(__snake_case ) ): UpperCAmelCase_ : Optional[Any] = reduce(__snake_case, test_array[i : j + 1] ) UpperCAmelCase_ : str = reduce(__snake_case, test_array[i : j + 1] ) UpperCAmelCase_ : List[str] = reduce(lambda SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : a + b, test_array[i : j + 1] ) assert min_range == min_segment_tree.query(__snake_case, __snake_case ) assert max_range == max_segment_tree.query(__snake_case, __snake_case ) assert sum_range == sum_segment_tree.query(__snake_case, __snake_case ) test_all_segments() for index, value in test_updates.items(): snake_case_ : Optional[Any] = value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
713
'''simple docstring''' import sys import turtle def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : tuple[float, float] ) -> tuple[float, float]: return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : int, ) -> None: my_pen.up() my_pen.goto(vertexa[0], vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0], vertexa[1] ) my_pen.goto(vertexa[0], vertexa[1] ) my_pen.goto(vertexa[0], vertexa[1] ) if depth == 0: return triangle(SCREAMING_SNAKE_CASE__, get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), depth - 1 ) triangle(SCREAMING_SNAKE_CASE__, get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), depth - 1 ) triangle(SCREAMING_SNAKE_CASE__, get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( "Correct format for using this script: " "python fractals.py <int:depth_for_fractal>" ) snake_case_ : Any = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor("red") snake_case_ : Tuple = [(-1_75, -1_25), (0, 1_75), (1_75, -1_25)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
644
0
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __a : def __init__( self : Tuple , __magic_name__ : str , __magic_name__ : List[str]=3 , __magic_name__ : Optional[Any]=32 , __magic_name__ : Optional[Any]=3 , __magic_name__ : str=10 , __magic_name__ : Optional[int]=[10, 20, 30, 40] , __magic_name__ : Optional[Any]=[1, 1, 2, 1] , __magic_name__ : List[str]=True , __magic_name__ : Optional[int]=True , __magic_name__ : Any="relu" , __magic_name__ : Any=3 , __magic_name__ : List[str]=None , ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : List[Any] = parent UpperCAmelCase_ : Any = batch_size UpperCAmelCase_ : Optional[int] = image_size UpperCAmelCase_ : Union[str, Any] = num_channels UpperCAmelCase_ : Tuple = embeddings_size UpperCAmelCase_ : Optional[Any] = hidden_sizes UpperCAmelCase_ : Union[str, Any] = depths UpperCAmelCase_ : Optional[Any] = is_training UpperCAmelCase_ : Optional[int] = use_labels UpperCAmelCase_ : Tuple = hidden_act UpperCAmelCase_ : Any = num_labels UpperCAmelCase_ : Dict = scope UpperCAmelCase_ : Union[str, Any] = len(__A ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> str: """simple docstring""" UpperCAmelCase_ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : Optional[int] = None if self.use_labels: UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_ : int = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self : List[str] ) -> int: """simple docstring""" return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : Union[str, Any] , __magic_name__ : Any ) -> Tuple: """simple docstring""" UpperCAmelCase_ : int = TFResNetModel(config=__A ) UpperCAmelCase_ : str = model(__A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : Any , __magic_name__ : Any ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : List[Any] = self.num_labels UpperCAmelCase_ : str = TFResNetForImageClassification(__A ) UpperCAmelCase_ : str = model(__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" UpperCAmelCase_ : Optional[int] = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = config_and_inputs UpperCAmelCase_ : Union[str, Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class __a (__lowercase , __lowercase , unittest.TestCase ): __a : Optional[int] = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () __a : List[Any] = ( {'feature-extraction': TFResNetModel, 'image-classification': TFResNetForImageClassification} if is_tf_available() else {} ) __a : List[str] = False __a : Optional[Any] = False __a : List[str] = False __a : Union[str, Any] = False __a : List[str] = False def UpperCAmelCase__ ( self : List[Any] ) -> Any: """simple docstring""" UpperCAmelCase_ : str = TFResNetModelTester(self ) UpperCAmelCase_ : Dict = ConfigTester(self , config_class=__A , has_text_modality=__A ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> str: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase__ ( self : str ) -> Optional[Any]: """simple docstring""" return @unittest.skip(reason='''ResNet does not use inputs_embeds''' ) def UpperCAmelCase__ ( self : Any ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason='''ResNet does not support input and output embeddings''' ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> str: """simple docstring""" pass def UpperCAmelCase__ ( self : int ) -> Any: """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : List[Any] = model_class(__A ) UpperCAmelCase_ : Tuple = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : List[str] = [*signature.parameters.keys()] UpperCAmelCase_ : Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __A ) def UpperCAmelCase__ ( self : Dict ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def UpperCAmelCase__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" def check_hidden_states_output(__magic_name__ : str , __magic_name__ : Dict , __magic_name__ : Union[str, Any] ): UpperCAmelCase_ : List[Any] = model_class(__A ) UpperCAmelCase_ : str = model(**self._prepare_for_class(__A , __A ) ) UpperCAmelCase_ : Any = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase_ : Union[str, Any] = self.model_tester.num_stages self.assertEqual(len(__A ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Union[str, Any] = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: UpperCAmelCase_ : Union[str, Any] = layer_type UpperCAmelCase_ : Optional[Any] = True check_hidden_states_output(__A , __A , __A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : List[Any] = True check_hidden_states_output(__A , __A , __A ) def UpperCAmelCase__ ( self : List[str] ) -> List[str]: """simple docstring""" UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) @slow def UpperCAmelCase__ ( self : List[Any] ) -> str: """simple docstring""" for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Union[str, Any] = TFResNetModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def lowerCamelCase_ ( ) -> Dict: UpperCAmelCase_ : List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class __a (unittest.TestCase ): @cached_property def UpperCAmelCase__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCAmelCase__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : Any = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) UpperCAmelCase_ : Any = self.default_image_processor UpperCAmelCase_ : Dict = prepare_img() UpperCAmelCase_ : Tuple = image_processor(images=__A , return_tensors='''tf''' ) # forward pass UpperCAmelCase_ : Optional[int] = model(**__A ) # verify the logits UpperCAmelCase_ : int = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , __A ) UpperCAmelCase_ : int = tf.constant([-1_1.1_0_6_9, -9.7_8_7_7, -8.3_7_7_7] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , __A , atol=1E-4 ) )
714
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device snake_case_ : List[str] = False class __a (unittest.TestCase ): pass @nightly @require_torch_gpu class __a (unittest.TestCase ): def UpperCAmelCase__ ( self : int ) -> str: """simple docstring""" # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self : List[str] ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Tuple = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) UpperCAmelCase_ : List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) UpperCAmelCase_ : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase_ : Union[str, Any] = pipe.dual_guided( prompt='''first prompt''' , image=__magic_name__ , text_to_image_strength=0.7_5 , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__magic_name__ ) UpperCAmelCase_ : Optional[int] = VersatileDiffusionPipeline.from_pretrained(__magic_name__ , torch_dtype=torch.floataa ) pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) UpperCAmelCase_ : Any = generator.manual_seed(0 ) UpperCAmelCase_ : Dict = pipe.dual_guided( prompt='''first prompt''' , image=__magic_name__ , text_to_image_strength=0.7_5 , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def UpperCAmelCase__ ( self : str ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : str = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) UpperCAmelCase_ : Union[str, Any] = '''cyberpunk 2077''' UpperCAmelCase_ : Union[str, Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) UpperCAmelCase_ : Tuple = torch.manual_seed(0 ) UpperCAmelCase_ : Optional[Any] = pipe.dual_guided( prompt=__magic_name__ , image=__magic_name__ , text_to_image_strength=0.7_5 , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' , ).images UpperCAmelCase_ : List[str] = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCAmelCase_ : Union[str, Any] = np.array([0.1_4_4_8, 0.1_6_1_9, 0.1_7_4_1, 0.1_0_8_6, 0.1_1_4_7, 0.1_1_2_8, 0.1_1_9_9, 0.1_1_6_5, 0.1_0_0_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 UpperCAmelCase_ : Tuple = '''A painting of a squirrel eating a burger ''' UpperCAmelCase_ : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase_ : List[Any] = pipe.text_to_image( prompt=__magic_name__ , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' ).images UpperCAmelCase_ : Tuple = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCAmelCase_ : Any = np.array([0.3_3_6_7, 0.3_1_6_9, 0.2_6_5_6, 0.3_8_7_0, 0.4_7_9_0, 0.3_7_9_6, 0.4_0_0_9, 0.4_8_7_8, 0.4_7_7_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 UpperCAmelCase_ : Tuple = pipe.image_variation(__magic_name__ , generator=__magic_name__ , output_type='''numpy''' ).images UpperCAmelCase_ : Optional[Any] = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCAmelCase_ : List[str] = np.array([0.3_0_7_6, 0.3_1_2_3, 0.3_2_8_4, 0.3_7_8_2, 0.3_7_7_0, 0.3_8_9_4, 0.4_2_9_7, 0.4_3_3_1, 0.4_4_5_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
644
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available snake_case_ : str = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : List[str] = ["MLukeTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys snake_case_ : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
715
'''simple docstring''' snake_case_ : int = { "Pillow": "Pillow", "accelerate": "accelerate>=0.11.0", "compel": "compel==0.1.8", "black": "black~=23.1", "datasets": "datasets", "filelock": "filelock", "flax": "flax>=0.4.1", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.13.2", "requests-mock": "requests-mock==1.10.0", "importlib_metadata": "importlib_metadata", "invisible-watermark": "invisible-watermark", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2", "jaxlib": "jaxlib>=0.1.65", "Jinja2": "Jinja2", "k-diffusion": "k-diffusion>=0.0.12", "torchsde": "torchsde", "note_seq": "note_seq", "librosa": "librosa", "numpy": "numpy", "omegaconf": "omegaconf", "parameterized": "parameterized", "protobuf": "protobuf>=3.20.3,<4", "pytest": "pytest", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "ruff": "ruff>=0.0.241", "safetensors": "safetensors", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "scipy": "scipy", "onnx": "onnx", "regex": "regex!=2019.12.17", "requests": "requests", "tensorboard": "tensorboard", "torch": "torch>=1.4", "torchvision": "torchvision", "transformers": "transformers>=4.25.1", "urllib3": "urllib3<=2.0.0", }
644
0
'''simple docstring''' from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( "The RoBERTa Model transformer with early exiting (DeeRoBERTa). " , __UpperCAmelCase , ) class __a (__UpperCAmelCase ): __a : Dict = RobertaConfig __a : Optional[Any] = '''roberta''' def __init__( self : Optional[int] , __magic_name__ : str ) -> List[Any]: """simple docstring""" super().__init__(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = RobertaEmbeddings(__SCREAMING_SNAKE_CASE ) self.init_weights() @add_start_docstrings( "RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,\n also takes care of multi-layer training. " , __UpperCAmelCase , ) class __a (__UpperCAmelCase ): __a : Dict = RobertaConfig __a : Tuple = '''roberta''' def __init__( self : Dict , __magic_name__ : Any ) -> int: """simple docstring""" super().__init__(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[Any] = config.num_labels UpperCAmelCase_ : Any = config.num_hidden_layers UpperCAmelCase_ : Dict = DeeRobertaModel(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = nn.Dropout(config.hidden_dropout_prob ) UpperCAmelCase_ : str = nn.Linear(config.hidden_size , self.config.num_labels ) @add_start_docstrings_to_model_forward(__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : int , __magic_name__ : Any=None , __magic_name__ : Optional[int]=None , __magic_name__ : Dict=None , __magic_name__ : Dict=None , __magic_name__ : List[str]=None , __magic_name__ : Dict=None , __magic_name__ : List[Any]=None , __magic_name__ : List[Any]=-1 , __magic_name__ : List[Any]=False , ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : Tuple = self.num_layers try: UpperCAmelCase_ : Dict = self.roberta( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , position_ids=__SCREAMING_SNAKE_CASE , head_mask=__SCREAMING_SNAKE_CASE , inputs_embeds=__SCREAMING_SNAKE_CASE , ) UpperCAmelCase_ : Optional[Any] = outputs[1] UpperCAmelCase_ : Dict = self.dropout(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = self.classifier(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: UpperCAmelCase_ : str = e.message UpperCAmelCase_ : Tuple = e.exit_layer UpperCAmelCase_ : Optional[Any] = outputs[0] if not self.training: UpperCAmelCase_ : Dict = entropy(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = [] UpperCAmelCase_ : Optional[Any] = [] if labels is not None: if self.num_labels == 1: # We are doing regression UpperCAmelCase_ : int = MSELoss() UpperCAmelCase_ : Any = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: UpperCAmelCase_ : int = CrossEntropyLoss() UpperCAmelCase_ : List[Any] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits UpperCAmelCase_ : Dict = [] for highway_exit in outputs[-1]: UpperCAmelCase_ : Tuple = highway_exit[0] if not self.training: highway_logits_all.append(__SCREAMING_SNAKE_CASE ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression UpperCAmelCase_ : List[Any] = MSELoss() UpperCAmelCase_ : int = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: UpperCAmelCase_ : Union[str, Any] = CrossEntropyLoss() UpperCAmelCase_ : List[Any] = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(__SCREAMING_SNAKE_CASE ) if train_highway: UpperCAmelCase_ : Dict = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: UpperCAmelCase_ : str = (loss,) + outputs if not self.training: UpperCAmelCase_ : Optional[int] = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: UpperCAmelCase_ : str = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
716
'''simple docstring''' import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __a (unittest.TestCase ): @property def UpperCAmelCase__ ( self : Dict ) -> str: """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase_ : Optional[Any] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def UpperCAmelCase__ ( self : Dict ) -> Tuple: """simple docstring""" UpperCAmelCase_ : List[Any] = self.dummy_uncond_unet UpperCAmelCase_ : Dict = KarrasVeScheduler() UpperCAmelCase_ : Union[str, Any] = KarrasVePipeline(unet=__magic_name__ , scheduler=__magic_name__ ) pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) UpperCAmelCase_ : Dict = torch.manual_seed(0 ) UpperCAmelCase_ : Optional[int] = pipe(num_inference_steps=2 , generator=__magic_name__ , output_type='''numpy''' ).images UpperCAmelCase_ : Tuple = torch.manual_seed(0 ) UpperCAmelCase_ : str = pipe(num_inference_steps=2 , generator=__magic_name__ , output_type='''numpy''' , return_dict=__magic_name__ )[0] UpperCAmelCase_ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCAmelCase_ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase_ : Dict = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class __a (unittest.TestCase ): def UpperCAmelCase__ ( self : int ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : List[str] = '''google/ncsnpp-celebahq-256''' UpperCAmelCase_ : List[str] = UNetaDModel.from_pretrained(__magic_name__ ) UpperCAmelCase_ : List[Any] = KarrasVeScheduler() UpperCAmelCase_ : Any = KarrasVePipeline(unet=__magic_name__ , scheduler=__magic_name__ ) pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) UpperCAmelCase_ : Dict = torch.manual_seed(0 ) UpperCAmelCase_ : Optional[Any] = pipe(num_inference_steps=20 , generator=__magic_name__ , output_type='''numpy''' ).images UpperCAmelCase_ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) UpperCAmelCase_ : Optional[Any] = np.array([0.5_7_8, 0.5_8_1_1, 0.5_9_2_4, 0.5_8_0_9, 0.5_8_7, 0.5_8_8_6, 0.5_8_6_1, 0.5_8_0_2, 0.5_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
644
0
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process snake_case_ : str = logging.getLogger(__name__) @dataclass class __a : __a : Tuple = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) __a : Any = field( default=UpperCamelCase_ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) __a : Dict = field( default="NER" , metadata={"help": "Task type to fine tune in training (e.g. NER, POS, etc)"} ) __a : Tuple = field( default=UpperCamelCase_ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) __a : Union[str, Any] = field(default=UpperCamelCase_ , metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. __a : List[str] = field( default=UpperCamelCase_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class __a : __a : str = field( metadata={"help": "The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."} ) __a : Union[str, Any] = field( default=UpperCamelCase_ , metadata={"help": "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."} , ) __a : Optional[int] = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __a : Any = field( default=UpperCamelCase_ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def lowerCamelCase_ ( ) -> int: '''simple docstring''' UpperCAmelCase_ : List[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCAmelCase_ : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCAmelCase_ : int = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) UpperCAmelCase_ : List[str] = import_module('''tasks''' ) try: UpperCAmelCase_ : Any = getattr(SCREAMING_SNAKE_CASE__, model_args.task_type ) UpperCAmelCase_ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( F"""Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """ F"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN, ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''', training_args.local_rank, training_args.device, training_args.n_gpu, bool(training_args.local_rank != -1 ), training_args.fpaa, ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''', SCREAMING_SNAKE_CASE__ ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task UpperCAmelCase_ : Optional[Any] = token_classification_task.get_labels(data_args.labels ) UpperCAmelCase_ : Dict[int, str] = dict(enumerate(SCREAMING_SNAKE_CASE__ ) ) UpperCAmelCase_ : Optional[Any] = len(SCREAMING_SNAKE_CASE__ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCAmelCase_ : Any = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=SCREAMING_SNAKE_CASE__, idalabel=SCREAMING_SNAKE_CASE__, labelaid={label: i for i, label in enumerate(SCREAMING_SNAKE_CASE__ )}, cache_dir=model_args.cache_dir, ) UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast, ) UpperCAmelCase_ : Optional[int] = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path, from_tf=bool('''.ckpt''' in model_args.model_name_or_path ), config=SCREAMING_SNAKE_CASE__, cache_dir=model_args.cache_dir, ) # Get datasets UpperCAmelCase_ : List[Any] = ( TokenClassificationDataset( token_classification_task=SCREAMING_SNAKE_CASE__, data_dir=data_args.data_dir, tokenizer=SCREAMING_SNAKE_CASE__, labels=SCREAMING_SNAKE_CASE__, model_type=config.model_type, max_seq_length=data_args.max_seq_length, overwrite_cache=data_args.overwrite_cache, mode=Split.train, ) if training_args.do_train else None ) UpperCAmelCase_ : int = ( TokenClassificationDataset( token_classification_task=SCREAMING_SNAKE_CASE__, data_dir=data_args.data_dir, tokenizer=SCREAMING_SNAKE_CASE__, labels=SCREAMING_SNAKE_CASE__, model_type=config.model_type, max_seq_length=data_args.max_seq_length, overwrite_cache=data_args.overwrite_cache, mode=Split.dev, ) if training_args.do_eval else None ) def align_predictions(SCREAMING_SNAKE_CASE__ : np.ndarray, SCREAMING_SNAKE_CASE__ : np.ndarray ) -> Tuple[List[int], List[int]]: UpperCAmelCase_ : str = np.argmax(SCREAMING_SNAKE_CASE__, axis=2 ) UpperCAmelCase_ : int = preds.shape UpperCAmelCase_ : Dict = [[] for _ in range(SCREAMING_SNAKE_CASE__ )] UpperCAmelCase_ : Union[str, Any] = [[] for _ in range(SCREAMING_SNAKE_CASE__ )] for i in range(SCREAMING_SNAKE_CASE__ ): for j in range(SCREAMING_SNAKE_CASE__ ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(SCREAMING_SNAKE_CASE__ : EvalPrediction ) -> Dict: UpperCAmelCase_ : Any = align_predictions(p.predictions, p.label_ids ) return { "accuracy_score": accuracy_score(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), "precision": precision_score(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), "recall": recall_score(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), "f1": fa_score(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), } # Data collator UpperCAmelCase_ : Optional[int] = DataCollatorWithPadding(SCREAMING_SNAKE_CASE__, pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer UpperCAmelCase_ : Optional[Any] = Trainer( model=SCREAMING_SNAKE_CASE__, args=SCREAMING_SNAKE_CASE__, train_dataset=SCREAMING_SNAKE_CASE__, eval_dataset=SCREAMING_SNAKE_CASE__, compute_metrics=SCREAMING_SNAKE_CASE__, data_collator=SCREAMING_SNAKE_CASE__, ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation UpperCAmelCase_ : List[Any] = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) UpperCAmelCase_ : List[str] = trainer.evaluate() UpperCAmelCase_ : Tuple = os.path.join(training_args.output_dir, '''eval_results.txt''' ) if trainer.is_world_process_zero(): with open(SCREAMING_SNAKE_CASE__, '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''', SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) writer.write('''%s = %s\n''' % (key, value) ) results.update(SCREAMING_SNAKE_CASE__ ) # Predict if training_args.do_predict: UpperCAmelCase_ : str = TokenClassificationDataset( token_classification_task=SCREAMING_SNAKE_CASE__, data_dir=data_args.data_dir, tokenizer=SCREAMING_SNAKE_CASE__, labels=SCREAMING_SNAKE_CASE__, model_type=config.model_type, max_seq_length=data_args.max_seq_length, overwrite_cache=data_args.overwrite_cache, mode=Split.test, ) UpperCAmelCase_ : str = trainer.predict(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : List[str] = align_predictions(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Optional[int] = os.path.join(training_args.output_dir, '''test_results.txt''' ) if trainer.is_world_process_zero(): with open(SCREAMING_SNAKE_CASE__, '''w''' ) as writer: for key, value in metrics.items(): logger.info(''' %s = %s''', SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) writer.write('''%s = %s\n''' % (key, value) ) # Save predictions UpperCAmelCase_ : List[str] = os.path.join(training_args.output_dir, '''test_predictions.txt''' ) if trainer.is_world_process_zero(): with open(SCREAMING_SNAKE_CASE__, '''w''' ) as writer: with open(os.path.join(data_args.data_dir, '''test.txt''' ), '''r''' ) as f: token_classification_task.write_predictions_to_file(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) return results def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int ) -> Any: '''simple docstring''' main() if __name__ == "__main__": main()
717
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class __a (lowerCamelCase ): __a : List[Any] = "openai/whisper-base" __a : Optional[Any] = ( "This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the " "transcribed text." ) __a : Any = "transcriber" __a : str = WhisperProcessor __a : List[Any] = WhisperForConditionalGeneration __a : int = ["audio"] __a : Optional[Any] = ["text"] def UpperCAmelCase__ ( self : Dict , __magic_name__ : List[str] ) -> Optional[int]: """simple docstring""" return self.pre_processor(__magic_name__ , return_tensors='''pt''' ).input_features def UpperCAmelCase__ ( self : Dict , __magic_name__ : Dict ) -> Tuple: """simple docstring""" return self.model.generate(inputs=__magic_name__ ) def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Dict ) -> str: """simple docstring""" return self.pre_processor.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ )[0]
644
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available snake_case_ : Dict = { "configuration_biogpt": ["BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BioGptConfig"], "tokenization_biogpt": ["BioGptTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : str = [ "BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST", "BioGptForCausalLM", "BioGptForTokenClassification", "BioGptForSequenceClassification", "BioGptModel", "BioGptPreTrainedModel", ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys snake_case_ : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
718
'''simple docstring''' def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : int ) -> int: return abs(SCREAMING_SNAKE_CASE__ ) if a == 0 else greatest_common_divisor(b % a, SCREAMING_SNAKE_CASE__ ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : int ) -> int: while y: # --> when y=0 then loop will terminate and return x as final GCD. UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = y, x % y return abs(SCREAMING_SNAKE_CASE__ ) def lowerCamelCase_ ( ) -> Optional[int]: try: UpperCAmelCase_ : Optional[Any] = input('''Enter two integers separated by comma (,): ''' ).split(''',''' ) UpperCAmelCase_ : Optional[int] = int(nums[0] ) UpperCAmelCase_ : List[Any] = int(nums[1] ) print( F"""greatest_common_divisor({num_a}, {num_a}) = """ F"""{greatest_common_divisor(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )}""" ) print(F"""By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )}""" ) except (IndexError, UnboundLocalError, ValueError): print('''Wrong input''' ) if __name__ == "__main__": main()
644
0
'''simple docstring''' from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record snake_case_ : Tuple = "\\n@article{wang2019superglue,\n title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},\n author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},\n journal={arXiv preprint arXiv:1905.00537},\n year={2019}\n}\n" snake_case_ : Optional[Any] = "\\nSuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after\nGLUE with a new set of more difficult language understanding tasks, improved\nresources, and a new public leaderboard.\n" snake_case_ : str = "\nCompute SuperGLUE evaluation metric associated to each SuperGLUE dataset.\nArgs:\n predictions: list of predictions to score. Depending on the SuperGlUE subset:\n - for 'record': list of question-answer dictionaries with the following keys:\n - 'idx': index of the question as specified by the dataset\n - 'prediction_text': the predicted answer text\n - for 'multirc': list of question-answer dictionaries with the following keys:\n - 'idx': index of the question-answer pair as specified by the dataset\n - 'prediction': the predicted answer label\n - otherwise: list of predicted labels\n references: list of reference labels. Depending on the SuperGLUE subset:\n - for 'record': list of question-answers dictionaries with the following keys:\n - 'idx': index of the question as specified by the dataset\n - 'answers': list of possible answers\n - otherwise: list of reference labels\nReturns: depending on the SuperGLUE subset:\n - for 'record':\n - 'exact_match': Exact match between answer and gold answer\n - 'f1': F1 score\n - for 'multirc':\n - 'exact_match': Exact match between answer and gold answer\n - 'f1_m': Per-question macro-F1 score\n - 'f1_a': Average F1 score over all answers\n - for 'axb':\n 'matthews_correlation': Matthew Correlation\n - for 'cb':\n - 'accuracy': Accuracy\n - 'f1': F1 score\n - for all others:\n - 'accuracy': Accuracy\nExamples:\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'copa') # any of [\"copa\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"boolq\", \"axg\"]\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'cb')\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0, 'f1': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'record')\n >>> predictions = [{'idx': {'passage': 0, 'query': 0}, 'prediction_text': 'answer'}]\n >>> references = [{'idx': {'passage': 0, 'query': 0}, 'answers': ['answer', 'another_answer']}]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 1.0, 'f1': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'multirc')\n >>> predictions = [{'idx': {'answer': 0, 'paragraph': 0, 'question': 0}, 'prediction': 0}, {'idx': {'answer': 1, 'paragraph': 2, 'question': 3}, 'prediction': 1}]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 1.0, 'f1_m': 1.0, 'f1_a': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'axb')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'matthews_correlation': 1.0}\n" def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[Any], SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[Any]: return float((preds == labels).mean() ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Union[str, Any], SCREAMING_SNAKE_CASE__ : Optional[int], SCREAMING_SNAKE_CASE__ : Optional[Any]="binary" ) -> Optional[Any]: UpperCAmelCase_ : Optional[Any] = simple_accuracy(_lowerCamelCase, _lowerCamelCase ) UpperCAmelCase_ : Union[str, Any] = float(fa_score(y_true=_lowerCamelCase, y_pred=_lowerCamelCase, average=_lowerCamelCase ) ) return { "accuracy": acc, "f1": fa, } def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[str], SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Tuple: UpperCAmelCase_ : Dict = {} for id_pred, label in zip(_lowerCamelCase, _lowerCamelCase ): UpperCAmelCase_ : Dict = F"""{id_pred["idx"]["paragraph"]}-{id_pred["idx"]["question"]}""" UpperCAmelCase_ : List[Any] = id_pred["""prediction"""] if question_id in question_map: question_map[question_id].append((pred, label) ) else: UpperCAmelCase_ : Optional[int] = [(pred, label)] UpperCAmelCase_ : Optional[int] = [], [] for question, preds_labels in question_map.items(): UpperCAmelCase_ : Dict = zip(*_lowerCamelCase ) UpperCAmelCase_ : str = fa_score(y_true=_lowerCamelCase, y_pred=_lowerCamelCase, average='''macro''' ) fas.append(_lowerCamelCase ) UpperCAmelCase_ : str = int(sum(pred == label for pred, label in preds_labels ) == len(_lowerCamelCase ) ) ems.append(_lowerCamelCase ) UpperCAmelCase_ : Dict = float(sum(_lowerCamelCase ) / len(_lowerCamelCase ) ) UpperCAmelCase_ : Union[str, Any] = sum(_lowerCamelCase ) / len(_lowerCamelCase ) UpperCAmelCase_ : List[Any] = float(fa_score(y_true=_lowerCamelCase, y_pred=[id_pred['''prediction'''] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __a (datasets.Metric ): def UpperCAmelCase__ ( self : Optional[Any] ) -> str: """simple docstring""" if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' if not self.config_name == '''record''' and not self.config_name == '''multirc''' else None , ) def UpperCAmelCase__ ( self : List[str] ) -> Tuple: """simple docstring""" if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "prediction_text": datasets.Value('''string''' ), }, "references": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "answers": datasets.Sequence(datasets.Value('''string''' ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value('''int64''' ), "paragraph": datasets.Value('''int64''' ), "question": datasets.Value('''int64''' ), }, "prediction": datasets.Value('''int64''' ), }, "references": datasets.Value('''int64''' ), } else: return { "predictions": datasets.Value('''int64''' ), "references": datasets.Value('''int64''' ), } def UpperCAmelCase__ ( self : List[str] , __magic_name__ : int , __magic_name__ : Optional[int] ) -> Dict: """simple docstring""" if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(_lowercase , _lowercase )} elif self.config_name == "cb": return acc_and_fa(_lowercase , _lowercase , fa_avg='''macro''' ) elif self.config_name == "record": UpperCAmelCase_ : List[str] = [ { """qas""": [ {"""id""": ref["""idx"""]["""query"""], """answers""": [{"""text""": ans} for ans in ref["""answers"""]]} for ref in references ] } ] UpperCAmelCase_ : List[Any] = {pred["""idx"""]["""query"""]: pred["""prediction_text"""] for pred in predictions} return evaluate_record(_lowercase , _lowercase )[0] elif self.config_name == "multirc": return evaluate_multirc(_lowercase , _lowercase ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(_lowercase , _lowercase )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]''' )
719
'''simple docstring''' import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class __a : def __init__( self : int , __magic_name__ : Optional[Any] , __magic_name__ : Any=13 , __magic_name__ : Any=7 , __magic_name__ : Union[str, Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : str=True , __magic_name__ : Optional[int]=True , __magic_name__ : List[Any]=99 , __magic_name__ : int=24 , __magic_name__ : Optional[int]=2 , __magic_name__ : Tuple=6 , __magic_name__ : Union[str, Any]=37 , __magic_name__ : Optional[Any]="gelu" , __magic_name__ : Any=0.1 , __magic_name__ : str=0.1 , __magic_name__ : Tuple=5_12 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : Tuple=2 , __magic_name__ : Tuple=0.0_2 , __magic_name__ : Optional[Any]=3 , __magic_name__ : Optional[int]=None , __magic_name__ : Any=10_00 , ) -> str: """simple docstring""" UpperCAmelCase_ : Tuple = parent UpperCAmelCase_ : Optional[int] = batch_size UpperCAmelCase_ : List[str] = seq_length UpperCAmelCase_ : Dict = is_training UpperCAmelCase_ : List[str] = use_input_mask UpperCAmelCase_ : Any = use_token_type_ids UpperCAmelCase_ : Any = use_labels UpperCAmelCase_ : Any = vocab_size UpperCAmelCase_ : Dict = hidden_size UpperCAmelCase_ : Tuple = num_hidden_layers UpperCAmelCase_ : Tuple = num_attention_heads UpperCAmelCase_ : int = intermediate_size UpperCAmelCase_ : Union[str, Any] = hidden_act UpperCAmelCase_ : Optional[int] = hidden_dropout_prob UpperCAmelCase_ : Optional[Any] = attention_probs_dropout_prob UpperCAmelCase_ : Union[str, Any] = max_position_embeddings UpperCAmelCase_ : int = type_vocab_size UpperCAmelCase_ : List[Any] = type_sequence_label_size UpperCAmelCase_ : int = initializer_range UpperCAmelCase_ : Dict = num_labels UpperCAmelCase_ : List[str] = scope UpperCAmelCase_ : List[str] = range_bbox def UpperCAmelCase__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: UpperCAmelCase_ : List[str] = bbox[i, j, 3] UpperCAmelCase_ : Dict = bbox[i, j, 1] UpperCAmelCase_ : Optional[Any] = t if bbox[i, j, 2] < bbox[i, j, 0]: UpperCAmelCase_ : List[str] = bbox[i, j, 2] UpperCAmelCase_ : Tuple = bbox[i, j, 0] UpperCAmelCase_ : Union[str, Any] = t UpperCAmelCase_ : int = None if self.use_input_mask: UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) UpperCAmelCase_ : Optional[int] = None if self.use_token_type_ids: UpperCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Tuple = None if self.use_labels: UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : int = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def UpperCAmelCase__ ( self : Any ) -> List[Any]: """simple docstring""" return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : str , __magic_name__ : Optional[Any] , __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : int , ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : Any = LiltModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() UpperCAmelCase_ : Optional[Any] = model(__magic_name__ , bbox=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ ) UpperCAmelCase_ : List[Any] = model(__magic_name__ , bbox=__magic_name__ , token_type_ids=__magic_name__ ) UpperCAmelCase_ : Optional[int] = model(__magic_name__ , bbox=__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCAmelCase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[int] , __magic_name__ : List[Any] , ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ : Any = self.num_labels UpperCAmelCase_ : List[Any] = LiltForTokenClassification(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() UpperCAmelCase_ : List[Any] = model( __magic_name__ , bbox=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase__ ( self : Any , __magic_name__ : Optional[Any] , __magic_name__ : Dict , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : Any , ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ : str = LiltForQuestionAnswering(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() UpperCAmelCase_ : Optional[Any] = model( __magic_name__ , bbox=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Tuple = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Optional[int] = config_and_inputs UpperCAmelCase_ : Tuple = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class __a (lowerCamelCase , lowerCamelCase , lowerCamelCase , unittest.TestCase ): __a : Tuple = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) __a : Any = ( { "feature-extraction": LiltModel, "question-answering": LiltForQuestionAnswering, "text-classification": LiltForSequenceClassification, "token-classification": LiltForTokenClassification, "zero-shot": LiltForSequenceClassification, } if is_torch_available() else {} ) __a : Union[str, Any] = False __a : int = False def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : int ) -> str: """simple docstring""" return True def UpperCAmelCase__ ( self : str ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : List[Any] = LiltModelTester(self ) UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> str: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : str ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def UpperCAmelCase__ ( self : str ) -> str: """simple docstring""" UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase_ : Tuple = type self.model_tester.create_and_check_model(*__magic_name__ ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> int: """simple docstring""" UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__magic_name__ ) def UpperCAmelCase__ ( self : str ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__magic_name__ ) @slow def UpperCAmelCase__ ( self : int ) -> Union[str, Any]: """simple docstring""" for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Optional[int] = LiltModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) @require_torch @slow class __a (unittest.TestCase ): def UpperCAmelCase__ ( self : Tuple ) -> Tuple: """simple docstring""" UpperCAmelCase_ : str = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(__magic_name__ ) UpperCAmelCase_ : Any = torch.tensor([[1, 2]] , device=__magic_name__ ) UpperCAmelCase_ : int = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=__magic_name__ ) # forward pass with torch.no_grad(): UpperCAmelCase_ : Optional[int] = model(input_ids=__magic_name__ , bbox=__magic_name__ ) UpperCAmelCase_ : int = torch.Size([1, 2, 7_68] ) UpperCAmelCase_ : List[str] = torch.tensor( [[-0.0_6_5_3, 0.0_9_5_0, -0.0_0_6_1], [-0.0_5_4_5, 0.0_9_2_6, -0.0_3_2_4]] , device=__magic_name__ , ) self.assertTrue(outputs.last_hidden_state.shape , __magic_name__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , __magic_name__ , atol=1E-3 ) )
644
0
import os import pytest from attr import dataclass snake_case_ : Union[str, Any] = 'us-east-1' # defaults region @dataclass class __a : __a : str __a : Any = '''arn:aws:iam::558105141721:role/sagemaker_execution_role''' __a : Tuple = { '''task_name''': '''mnli''', '''per_device_train_batch_size''': 16, '''per_device_eval_batch_size''': 16, '''do_train''': True, '''do_eval''': True, '''do_predict''': True, '''output_dir''': '''/opt/ml/model''', '''overwrite_output_dir''': True, '''max_steps''': 500, '''save_steps''': 5_500, } __a : str = {**hyperparameters, '''max_steps''': 1_000} @property def UpperCAmelCase__ ( self : List[Any] ) -> Dict: """simple docstring""" if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def UpperCAmelCase__ ( self : Optional[Any] ) -> Any: """simple docstring""" return F"""{self.framework}-transfromers-test""" @property def UpperCAmelCase__ ( self : List[str] ) -> List[Any]: """simple docstring""" return F"""./tests/sagemaker/scripts/{self.framework}""" @property def UpperCAmelCase__ ( self : Optional[Any] ) -> int: """simple docstring""" if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope='''class''' ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Tuple ) -> List[str]: UpperCAmelCase_ : str = SageMakerTestEnvironment(framework=request.cls.framework )
720
'''simple docstring''' import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case_ : str = logging.get_logger(__name__) snake_case_ : int = "▁" snake_case_ : str = {"vocab_file": "vocab.txt", "sentencepiece_model_ckpt": "sentencepiece.bpe.model"} snake_case_ : int = { "sentencepiece_model_file": "sentencepiece.bpe.model", "vocab_file": "vocab.txt", } snake_case_ : Optional[Any] = { "vocab_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", }, "sentencepiece_model_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", }, } snake_case_ : Dict = { "ernie-m-base": 5_14, "ernie-m-large": 5_14, } snake_case_ : Any = { "ernie-m-base": {"do_lower_case": False}, "ernie-m-large": {"do_lower_case": False}, } class __a (lowerCamelCase ): __a : List[str] = ["input_ids"] __a : Union[str, Any] = VOCAB_FILES_NAMES __a : Tuple = PRETRAINED_INIT_CONFIGURATION __a : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __a : Union[str, Any] = RESOURCE_FILES_NAMES def __init__( self : Union[str, Any] , __magic_name__ : Dict , __magic_name__ : int=None , __magic_name__ : str=False , __magic_name__ : int="utf8" , __magic_name__ : Optional[int]="[UNK]" , __magic_name__ : Dict="[SEP]" , __magic_name__ : List[Any]="[PAD]" , __magic_name__ : str="[CLS]" , __magic_name__ : Optional[int]="[MASK]" , __magic_name__ : Optional[Dict[str, Any]] = None , **__magic_name__ : Union[str, Any] , ) -> None: """simple docstring""" # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. UpperCAmelCase_ : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__magic_name__ , unk_token=__magic_name__ , sep_token=__magic_name__ , pad_token=__magic_name__ , cls_token=__magic_name__ , mask_token=__magic_name__ , vocab_file=__magic_name__ , encoding=__magic_name__ , sp_model_kwargs=self.sp_model_kwargs , **__magic_name__ , ) UpperCAmelCase_ : Optional[Any] = do_lower_case UpperCAmelCase_ : List[str] = sentencepiece_model_ckpt UpperCAmelCase_ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__magic_name__ ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: UpperCAmelCase_ : List[Any] = self.load_vocab(filepath=__magic_name__ ) else: UpperCAmelCase_ : str = {self.sp_model.id_to_piece(__magic_name__ ): id for id in range(self.sp_model.get_piece_size() )} UpperCAmelCase_ : int = {v: k for k, v in self.vocab.items()} def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Any ) -> Any: """simple docstring""" if text is None: return None UpperCAmelCase_ : str = self.tokenize(__magic_name__ ) UpperCAmelCase_ , UpperCAmelCase_ : str = '''''', [] for i, ch in enumerate(__magic_name__ ): if ch in self.SP_CHAR_MAPPING: UpperCAmelCase_ : Optional[int] = self.SP_CHAR_MAPPING.get(__magic_name__ ) else: UpperCAmelCase_ : Union[str, Any] = unicodedata.normalize('''NFKC''' , __magic_name__ ) if self.is_whitespace(__magic_name__ ): continue normalized_text += ch char_mapping.extend([i] * len(__magic_name__ ) ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = normalized_text, [], 0 if self.do_lower_case: UpperCAmelCase_ : Optional[int] = text.lower() for token in split_tokens: if token[:1] == "▁": UpperCAmelCase_ : Tuple = token[1:] UpperCAmelCase_ : int = text[offset:].index(__magic_name__ ) + offset UpperCAmelCase_ : Optional[int] = start + len(__magic_name__ ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) UpperCAmelCase_ : int = end return token_mapping @property def UpperCAmelCase__ ( self : Any ) -> Any: """simple docstring""" return len(self.vocab ) def UpperCAmelCase__ ( self : List[Any] ) -> int: """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self : str ) -> Any: """simple docstring""" UpperCAmelCase_ : Optional[Any] = self.__dict__.copy() UpperCAmelCase_ : Optional[Any] = None return state def __setstate__( self : str , __magic_name__ : Any ) -> Dict: """simple docstring""" UpperCAmelCase_ : Dict = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCAmelCase_ : int = {} UpperCAmelCase_ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : Any ) -> List[str]: """simple docstring""" return "".join((self.SP_CHAR_MAPPING.get(__magic_name__ , __magic_name__ ) for c in text) ) def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Tuple , __magic_name__ : Any=False , __magic_name__ : List[str]=64 , __magic_name__ : List[str]=0.1 ) -> List[str]: """simple docstring""" if self.sp_model_kwargs.get('''enable_sampling''' ) is True: UpperCAmelCase_ : Dict = True if self.sp_model_kwargs.get('''alpha''' ) is not None: UpperCAmelCase_ : Union[str, Any] = self.sp_model_kwargs.get('''alpha''' ) if self.sp_model_kwargs.get('''nbest_size''' ) is not None: UpperCAmelCase_ : Any = self.sp_model_kwargs.get('''nbest_size''' ) if not enable_sampling: UpperCAmelCase_ : Dict = self.sp_model.EncodeAsPieces(__magic_name__ ) else: UpperCAmelCase_ : Dict = self.sp_model.SampleEncodeAsPieces(__magic_name__ , __magic_name__ , __magic_name__ ) UpperCAmelCase_ : List[Any] = [] for pi, piece in enumerate(__magic_name__ ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(__magic_name__ ) and pi != 0: new_pieces.append(__magic_name__ ) continue else: continue UpperCAmelCase_ : List[str] = 0 for i, chunk in enumerate(__magic_name__ ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(__magic_name__ ) or self.is_punct(__magic_name__ ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(__magic_name__ ) UpperCAmelCase_ : List[Any] = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) UpperCAmelCase_ : List[str] = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) UpperCAmelCase_ : str = i if len(__magic_name__ ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Optional[int] ) -> List[str]: """simple docstring""" UpperCAmelCase_ : Optional[Any] = ''''''.join(__magic_name__ ).replace(__magic_name__ , ''' ''' ).strip() return out_string def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Union[str, Any] ) -> List[str]: """simple docstring""" UpperCAmelCase_ : str = self.convert_ids_to_tokens(__magic_name__ ) UpperCAmelCase_ : Optional[Any] = ''''''.join(__magic_name__ ).replace(__magic_name__ , ''' ''' ).strip() return out_string def UpperCAmelCase__ ( self : str , __magic_name__ : Optional[Any] ) -> List[Any]: """simple docstring""" return self.vocab.get(__magic_name__ , self.vocab.get(self.unk_token ) ) def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return self.reverse_vocab.get(__magic_name__ , self.unk_token ) def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Any , __magic_name__ : Union[str, Any]=None ) -> Any: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase_ : Union[str, Any] = [self.cls_token_id] UpperCAmelCase_ : List[Any] = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def UpperCAmelCase__ ( self : Any , __magic_name__ : Optional[Any] , __magic_name__ : List[str]=None ) -> int: """simple docstring""" if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def UpperCAmelCase__ ( self : Dict , __magic_name__ : Optional[Any] , __magic_name__ : List[str]=None , __magic_name__ : Optional[Any]=False ) -> Optional[int]: """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__magic_name__ )) + [1, 1] + ([0] * len(__magic_name__ )) + [1] return [1] + ([0] * len(__magic_name__ )) + [1] def UpperCAmelCase__ ( self : List[str] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" # called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method if token_ids_a is None: # [CLS] X [SEP] return (len(__magic_name__ ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(__magic_name__ ) + 1) + [1] * (len(__magic_name__ ) + 3) def UpperCAmelCase__ ( self : Dict , __magic_name__ : str ) -> Tuple: """simple docstring""" if "\u4e00" <= char <= "\u9fff": return True return False def UpperCAmelCase__ ( self : int , __magic_name__ : Optional[int] ) -> str: """simple docstring""" if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def UpperCAmelCase__ ( self : int , __magic_name__ : Optional[Any] ) -> Dict: """simple docstring""" if char in ",;:.?!~,;:。?!《》【】": return True return False def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Any ) -> Union[str, Any]: """simple docstring""" if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(__magic_name__ ) == 1: UpperCAmelCase_ : Optional[Any] = unicodedata.category(__magic_name__ ) if cat == "Zs": return True return False def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : Tuple ) -> Any: """simple docstring""" UpperCAmelCase_ : Optional[Any] = {} with io.open(__magic_name__ , '''r''' , encoding='''utf-8''' ) as f: for index, line in enumerate(__magic_name__ ): UpperCAmelCase_ : List[Any] = line.rstrip('''\n''' ) UpperCAmelCase_ : Dict = int(__magic_name__ ) return token_to_idx def UpperCAmelCase__ ( self : Dict , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = 0 if os.path.isdir(__magic_name__ ): UpperCAmelCase_ : Any = os.path.join( __magic_name__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: UpperCAmelCase_ : List[str] = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory with open(__magic_name__ , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda __magic_name__ : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ''' Please check that the vocabulary is not corrupted!''' ) UpperCAmelCase_ : Dict = token_index writer.write(token + '''\n''' ) index += 1 UpperCAmelCase_ : Union[str, Any] = os.path.join(__magic_name__ , '''sentencepiece.bpe.model''' ) with open(__magic_name__ , '''wb''' ) as fi: UpperCAmelCase_ : Optional[int] = self.sp_model.serialized_model_proto() fi.write(__magic_name__ ) return (vocab_file,)
644
0
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging snake_case_ : int = logging.get_logger(__name__) class __a (__SCREAMING_SNAKE_CASE ): __a : Any = ['input_features', 'attention_mask'] def __init__( self : Union[str, Any] , __magic_name__ : Dict=80 , __magic_name__ : Union[str, Any]=1_60_00 , __magic_name__ : Any=0.0 , __magic_name__ : int=10 , __magic_name__ : Tuple=25 , __magic_name__ : Union[str, Any]="hamming_window" , __magic_name__ : List[str]=3_27_68.0 , __magic_name__ : Dict=0.9_7 , __magic_name__ : Dict=1.0 , __magic_name__ : Dict=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : List[str]=False , **__magic_name__ : Tuple , ) -> Tuple: """simple docstring""" super().__init__(feature_size=_a , sampling_rate=_a , padding_value=_a , **_a ) UpperCAmelCase_ : int = feature_size UpperCAmelCase_ : Any = sampling_rate UpperCAmelCase_ : Optional[Any] = padding_value UpperCAmelCase_ : List[str] = hop_length UpperCAmelCase_ : List[str] = win_length UpperCAmelCase_ : List[Any] = frame_signal_scale UpperCAmelCase_ : Optional[Any] = preemphasis_coeff UpperCAmelCase_ : Optional[int] = mel_floor UpperCAmelCase_ : Any = normalize_means UpperCAmelCase_ : Dict = normalize_vars UpperCAmelCase_ : List[Any] = win_function UpperCAmelCase_ : List[str] = return_attention_mask UpperCAmelCase_ : Union[str, Any] = win_length * sampling_rate // 10_00 UpperCAmelCase_ : List[str] = hop_length * sampling_rate // 10_00 UpperCAmelCase_ : Tuple = optimal_fft_length(self.sample_size ) UpperCAmelCase_ : Dict = (self.n_fft // 2) + 1 def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Optional[int] ) -> Any: """simple docstring""" if self.win_function == "hamming_window": UpperCAmelCase_ : str = window_function(window_length=self.sample_size , name=self.win_function , periodic=_a ) else: UpperCAmelCase_ : Tuple = window_function(window_length=self.sample_size , name=self.win_function ) UpperCAmelCase_ : Optional[Any] = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , ) UpperCAmelCase_ : List[Any] = spectrogram( one_waveform * self.frame_signal_scale , window=_a , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=_a , preemphasis=self.preemphasis_coeff , mel_filters=_a , mel_floor=self.mel_floor , log_mel='''log''' , ) return msfc_features.T def UpperCAmelCase__ ( self : Any , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] , __magic_name__ : Dict ) -> Dict: """simple docstring""" # make sure we normalize float32 arrays if self.normalize_means: UpperCAmelCase_ : Optional[Any] = x[:input_length].mean(axis=0 ) UpperCAmelCase_ : Union[str, Any] = np.subtract(_a , _a ) if self.normalize_vars: UpperCAmelCase_ : Union[str, Any] = x[:input_length].std(axis=0 ) UpperCAmelCase_ : str = np.divide(_a , _a ) if input_length < x.shape[0]: UpperCAmelCase_ : Optional[int] = padding_value # make sure array is in float32 UpperCAmelCase_ : str = x.astype(np.floataa ) return x def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Optional[int] = None ) -> int: """simple docstring""" UpperCAmelCase_ : Optional[Any] = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(_a , _a , self.padding_value ) for x, n in zip(_a , _a )] def __call__( self : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : List[str] = False , __magic_name__ : Dict = None , __magic_name__ : Optional[int] = False , __magic_name__ : Optional[int] = None , __magic_name__ : str = None , __magic_name__ : List[str] = None , __magic_name__ : List[Any] = None , **__magic_name__ : List[str] , ) -> List[Any]: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" F""" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with""" F""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the ``sampling_rate`` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) UpperCAmelCase_ : Optional[Any] = isinstance(_a , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) UpperCAmelCase_ : Optional[int] = is_batched_numpy or ( isinstance(_a , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: UpperCAmelCase_ : Dict = [np.asarray(_a , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_a , np.ndarray ): UpperCAmelCase_ : Union[str, Any] = np.asarray(_a , dtype=np.floataa ) elif isinstance(_a , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): UpperCAmelCase_ : Tuple = raw_speech.astype(np.floataa ) # always return batch if not is_batched: UpperCAmelCase_ : str = [raw_speech] # extract fbank features UpperCAmelCase_ : Dict = [self._extract_mfsc_features(_a ) for one_waveform in raw_speech] # convert into correct format for padding UpperCAmelCase_ : List[str] = BatchFeature({'''input_features''': features} ) UpperCAmelCase_ : List[str] = self.pad( _a , padding=_a , max_length=_a , truncation=_a , pad_to_multiple_of=_a , return_attention_mask=_a , **_a , ) # make sure list is in array format UpperCAmelCase_ : Tuple = padded_inputs.get('''input_features''' ) if isinstance(input_features[0] , _a ): UpperCAmelCase_ : Optional[int] = [np.asarray(_a , dtype=np.floataa ) for feature in input_features] UpperCAmelCase_ : List[Any] = padded_inputs.get('''attention_mask''' ) if attention_mask is not None: UpperCAmelCase_ : List[str] = [np.asarray(_a , dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: UpperCAmelCase_ : Optional[Any] = ( np.array(_a , dtype=np.intaa ) if self._get_padding_strategies(_a , max_length=_a ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) UpperCAmelCase_ : Any = self.normalize( padded_inputs['''input_features'''] , attention_mask=_a ) if return_tensors is not None: UpperCAmelCase_ : Optional[int] = padded_inputs.convert_to_tensors(_a ) return padded_inputs
721
'''simple docstring''' def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int ) -> str: if number > 0: raise ValueError('''input must be a negative integer''' ) UpperCAmelCase_ : Union[str, Any] = len(bin(SCREAMING_SNAKE_CASE__ )[3:] ) UpperCAmelCase_ : Union[str, Any] = bin(abs(SCREAMING_SNAKE_CASE__ ) - (1 << binary_number_length) )[3:] UpperCAmelCase_ : Optional[Any] = ( ( '''1''' + '''0''' * (binary_number_length - len(SCREAMING_SNAKE_CASE__ )) + twos_complement_number ) if number < 0 else '''0''' ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
644
0
import random def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : float, SCREAMING_SNAKE_CASE__ : bool = False ) -> Union[str, Any]: UpperCAmelCase_ : str = {i: [] for i in range(_lowerCamelCase )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(_lowerCamelCase ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(_lowerCamelCase ): for j in range(i + 1, _lowerCamelCase ): if random.random() < probability: graph[i].append(_lowerCamelCase ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(_lowerCamelCase ) return graph def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int ) -> List[str]: return { i: [j for j in range(_lowerCamelCase ) if i != j] for i in range(_lowerCamelCase ) } if __name__ == "__main__": import doctest doctest.testmod()
700
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class __a (unittest.TestCase ): def UpperCAmelCase__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. UpperCAmelCase_ : List[str] = [[1, 2, 4], [1, 2, 3, 4]] UpperCAmelCase_ : List[str] = DisjunctiveConstraint(__magic_name__ ) self.assertTrue(isinstance(dc.token_ids , __magic_name__ ) ) with self.assertRaises(__magic_name__ ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(__magic_name__ ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def UpperCAmelCase__ ( self : List[str] ) -> Dict: """simple docstring""" # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). UpperCAmelCase_ : Tuple = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(__magic_name__ ): DisjunctiveConstraint(__magic_name__ ) # fails here def UpperCAmelCase__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : Optional[int] = [[1, 2, 3], [1, 2, 4]] UpperCAmelCase_ : List[str] = DisjunctiveConstraint(__magic_name__ ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = dc.update(1 ) UpperCAmelCase_ : Dict = stepped is True and completed is False and reset is False self.assertTrue(__magic_name__ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = dc.update(2 ) UpperCAmelCase_ : Optional[Any] = stepped is True and completed is False and reset is False self.assertTrue(__magic_name__ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = dc.update(3 ) UpperCAmelCase_ : Dict = stepped is True and completed is True and reset is False self.assertTrue(__magic_name__ ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def UpperCAmelCase__ ( self : int ) -> Dict: """simple docstring""" UpperCAmelCase_ : Any = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] UpperCAmelCase_ : Tuple = DisjunctiveConstraint(__magic_name__ ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
644
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available snake_case_ : Dict = { """configuration_xlm""": ["""XLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMConfig""", """XLMOnnxConfig"""], """tokenization_xlm""": ["""XLMTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Tuple = [ """XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLMForMultipleChoice""", """XLMForQuestionAnswering""", """XLMForQuestionAnsweringSimple""", """XLMForSequenceClassification""", """XLMForTokenClassification""", """XLMModel""", """XLMPreTrainedModel""", """XLMWithLMHeadModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Dict = [ """TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLMForMultipleChoice""", """TFXLMForQuestionAnsweringSimple""", """TFXLMForSequenceClassification""", """TFXLMForTokenClassification""", """TFXLMMainLayer""", """TFXLMModel""", """TFXLMPreTrainedModel""", """TFXLMWithLMHeadModel""", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys snake_case_ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
701
'''simple docstring''' import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": snake_case_ : List[Any] = pd.read_csv("sample_data.csv", header=None) snake_case_ : Optional[Any] = df.shape[:1][0] # If you're using some other dataset input the target column snake_case_ : Any = df.iloc[:, 1:2] snake_case_ : str = actual_data.values.reshape(len_data, 1) snake_case_ : Optional[Any] = MinMaxScaler().fit_transform(actual_data) snake_case_ : List[str] = 10 snake_case_ : Any = 5 snake_case_ : Any = 20 snake_case_ : Tuple = len_data - periods * look_back snake_case_ : str = actual_data[:division] snake_case_ : Optional[int] = actual_data[division - look_back :] snake_case_ ,snake_case_ : Any = [], [] snake_case_ ,snake_case_ : Union[str, Any] = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) snake_case_ : Any = np.array(train_x) snake_case_ : Optional[Any] = np.array(test_x) snake_case_ : Optional[Any] = np.array([list(i.ravel()) for i in train_y]) snake_case_ : List[str] = np.array([list(i.ravel()) for i in test_y]) snake_case_ : List[Any] = Sequential() model.add(LSTM(1_28, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(1_28, 1))) model.add(Dense(forward_days)) model.compile(loss="mean_squared_error", optimizer="adam") snake_case_ : Dict = model.fit( x_train, y_train, epochs=1_50, verbose=1, shuffle=True, batch_size=4 ) snake_case_ : Optional[Any] = model.predict(x_test)
644
0
'''simple docstring''' def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : float, SCREAMING_SNAKE_CASE__ : float, SCREAMING_SNAKE_CASE__ : float, SCREAMING_SNAKE_CASE__ : float, SCREAMING_SNAKE_CASE__ : float, ) -> float: UpperCAmelCase_ : Any = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError('''All input parameters must be positive''' ) if any(p > 1 for p in parameters[1:4] ): raise ValueError('''Relative densities cannot be greater than one''' ) else: UpperCAmelCase_ : int = 1 - (matter_density + radiation_density + dark_energy) UpperCAmelCase_ : List[Any] = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) UpperCAmelCase_ : Dict = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation snake_case_ : Tuple = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1E-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
702
'''simple docstring''' from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker snake_case_ : Union[str, Any] = "CompVis/stable-diffusion-v1-1" snake_case_ : Dict = "CompVis/stable-diffusion-v1-2" snake_case_ : Any = "CompVis/stable-diffusion-v1-3" snake_case_ : str = "CompVis/stable-diffusion-v1-4" class __a (lowerCamelCase ): def __init__( self : Any , __magic_name__ : AutoencoderKL , __magic_name__ : CLIPTextModel , __magic_name__ : CLIPTokenizer , __magic_name__ : UNetaDConditionModel , __magic_name__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __magic_name__ : StableDiffusionSafetyChecker , __magic_name__ : CLIPImageProcessor , __magic_name__ : bool = True , ) -> str: """simple docstring""" super()._init_() UpperCAmelCase_ : Any = StableDiffusionPipeline.from_pretrained(__magic_name__ ) UpperCAmelCase_ : Dict = StableDiffusionPipeline.from_pretrained(__magic_name__ ) UpperCAmelCase_ : List[Any] = StableDiffusionPipeline.from_pretrained(__magic_name__ ) UpperCAmelCase_ : Tuple = StableDiffusionPipeline( vae=__magic_name__ , text_encoder=__magic_name__ , tokenizer=__magic_name__ , unet=__magic_name__ , scheduler=__magic_name__ , safety_checker=__magic_name__ , feature_extractor=__magic_name__ , requires_safety_checker=__magic_name__ , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def UpperCAmelCase__ ( self : Tuple ) -> Dict[str, Any]: """simple docstring""" return {k: getattr(self , __magic_name__ ) for k in self.config.keys() if not k.startswith('''_''' )} def UpperCAmelCase__ ( self : Dict , __magic_name__ : Optional[Union[str, int]] = "auto" ) -> int: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCAmelCase_ : List[str] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__magic_name__ ) def UpperCAmelCase__ ( self : Tuple ) -> List[str]: """simple docstring""" self.enable_attention_slicing(__magic_name__ ) @torch.no_grad() def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Tuple , ) -> Optional[int]: """simple docstring""" return self.pipea( prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , ) @torch.no_grad() def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Any , ) -> Any: """simple docstring""" return self.pipea( prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , ) @torch.no_grad() def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Dict , ) -> List[str]: """simple docstring""" return self.pipea( prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , ) @torch.no_grad() def UpperCAmelCase__ ( self : int , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Optional[int] , ) -> str: """simple docstring""" return self.pipea( prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , ) @torch.no_grad() def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Optional[int] , ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : int = '''cuda''' if torch.cuda.is_available() else '''cpu''' self.to(__magic_name__ ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` must be divisible by 8 but are {height} and {width}.""" ) # Get first result from Stable Diffusion Checkpoint v1.1 UpperCAmelCase_ : Optional[int] = self.textaimg_sda_a( prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , ) # Get first result from Stable Diffusion Checkpoint v1.2 UpperCAmelCase_ : int = self.textaimg_sda_a( prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , ) # Get first result from Stable Diffusion Checkpoint v1.3 UpperCAmelCase_ : str = self.textaimg_sda_a( prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , ) # Get first result from Stable Diffusion Checkpoint v1.4 UpperCAmelCase_ : str = self.textaimg_sda_a( prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
644
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available snake_case_ : Dict = { "configuration_rag": ["RagConfig"], "retrieval_rag": ["RagRetriever"], "tokenization_rag": ["RagTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Tuple = [ "RagModel", "RagPreTrainedModel", "RagSequenceForGeneration", "RagTokenForGeneration", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : List[Any] = [ "TFRagModel", "TFRagPreTrainedModel", "TFRagSequenceForGeneration", "TFRagTokenForGeneration", ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys snake_case_ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
703
'''simple docstring''' import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler snake_case_ : Optional[int] = 16 snake_case_ : Tuple = 32 def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Accelerator, SCREAMING_SNAKE_CASE__ : int = 16, SCREAMING_SNAKE_CASE__ : str = "bert-base-cased" ) -> Dict: UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : int = load_dataset('''glue''', '''mrpc''' ) def tokenize_function(SCREAMING_SNAKE_CASE__ : Optional[int] ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase_ : Union[str, Any] = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=SCREAMING_SNAKE_CASE__, max_length=SCREAMING_SNAKE_CASE__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset UpperCAmelCase_ : Tuple = datasets.map( SCREAMING_SNAKE_CASE__, batched=SCREAMING_SNAKE_CASE__, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], load_from_cache_file=SCREAMING_SNAKE_CASE__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase_ : Optional[Any] = tokenized_datasets.rename_column('''label''', '''labels''' ) def collate_fn(SCREAMING_SNAKE_CASE__ : str ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(SCREAMING_SNAKE_CASE__, padding='''max_length''', max_length=128, return_tensors='''pt''' ) return tokenizer.pad(SCREAMING_SNAKE_CASE__, padding='''longest''', return_tensors='''pt''' ) # Instantiate dataloaders. UpperCAmelCase_ : str = DataLoader( tokenized_datasets['''train'''], shuffle=SCREAMING_SNAKE_CASE__, collate_fn=SCREAMING_SNAKE_CASE__, batch_size=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : int = DataLoader( tokenized_datasets['''validation'''], shuffle=SCREAMING_SNAKE_CASE__, collate_fn=SCREAMING_SNAKE_CASE__, batch_size=SCREAMING_SNAKE_CASE__ ) return train_dataloader, eval_dataloader def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Optional[Any], SCREAMING_SNAKE_CASE__ : Optional[int], SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : Any ) -> Any: model.eval() UpperCAmelCase_ : List[str] = 0 for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase_ : Dict = model(**SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : str = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times UpperCAmelCase_ , UpperCAmelCase_ : List[str] = accelerator.gather( (predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(SCREAMING_SNAKE_CASE__ ) - 1: UpperCAmelCase_ : Tuple = predictions[: len(eval_dataloader.dataset ) - samples_seen] UpperCAmelCase_ : int = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=SCREAMING_SNAKE_CASE__, references=SCREAMING_SNAKE_CASE__, ) UpperCAmelCase_ : List[str] = metric.compute() return eval_metric["accuracy"] def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : int ) -> Tuple: # Initialize accelerator UpperCAmelCase_ : Union[str, Any] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase_ : int = config['''lr'''] UpperCAmelCase_ : Optional[int] = int(config['''num_epochs'''] ) UpperCAmelCase_ : Optional[int] = int(config['''seed'''] ) UpperCAmelCase_ : List[str] = int(config['''batch_size'''] ) UpperCAmelCase_ : Optional[int] = args.model_name_or_path set_seed(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = get_dataloaders(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase_ : List[Any] = AutoModelForSequenceClassification.from_pretrained(SCREAMING_SNAKE_CASE__, return_dict=SCREAMING_SNAKE_CASE__ ) # Instantiate optimizer UpperCAmelCase_ : str = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) UpperCAmelCase_ : List[str] = optimizer_cls(params=model.parameters(), lr=SCREAMING_SNAKE_CASE__ ) if accelerator.state.deepspeed_plugin is not None: UpperCAmelCase_ : List[Any] = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: UpperCAmelCase_ : Tuple = 1 UpperCAmelCase_ : int = (len(SCREAMING_SNAKE_CASE__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): UpperCAmelCase_ : Tuple = get_linear_schedule_with_warmup( optimizer=SCREAMING_SNAKE_CASE__, num_warmup_steps=0, num_training_steps=SCREAMING_SNAKE_CASE__, ) else: UpperCAmelCase_ : Any = DummyScheduler(SCREAMING_SNAKE_CASE__, total_num_steps=SCREAMING_SNAKE_CASE__, warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = accelerator.prepare( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) # We need to keep track of how many total steps we have iterated over UpperCAmelCase_ : Union[str, Any] = 0 # We also need to keep track of the stating epoch so files are named properly UpperCAmelCase_ : Dict = 0 UpperCAmelCase_ : int = evaluate.load('''glue''', '''mrpc''' ) UpperCAmelCase_ : Optional[Any] = num_epochs if args.partial_train_epoch is not None: UpperCAmelCase_ : List[Any] = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) UpperCAmelCase_ : Tuple = args.resume_from_checkpoint.split('''epoch_''' )[1] UpperCAmelCase_ : int = '''''' for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break UpperCAmelCase_ : Union[str, Any] = int(SCREAMING_SNAKE_CASE__ ) + 1 UpperCAmelCase_ : Dict = evaluation_loop(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) accelerator.print('''resumed checkpoint performance:''', SCREAMING_SNAKE_CASE__ ) accelerator.print('''resumed checkpoint\'s scheduler\'s lr:''', lr_scheduler.get_lr()[0] ) accelerator.print('''resumed optimizers\'s lr:''', optimizer.param_groups[0]['''lr'''] ) with open(os.path.join(args.output_dir, F"""state_{starting_epoch-1}.json""" ), '''r''' ) as f: UpperCAmelCase_ : Optional[int] = json.load(SCREAMING_SNAKE_CASE__ ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model UpperCAmelCase_ : int = {} for epoch in range(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ): model.train() for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ): UpperCAmelCase_ : Optional[int] = model(**SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Any = outputs.loss UpperCAmelCase_ : Tuple = loss / gradient_accumulation_steps accelerator.backward(SCREAMING_SNAKE_CASE__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 UpperCAmelCase_ : Tuple = F"""epoch_{epoch}""" UpperCAmelCase_ : Optional[int] = os.path.join(args.output_dir, SCREAMING_SNAKE_CASE__ ) accelerator.save_state(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : int = evaluation_loop(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Optional[Any] = accuracy UpperCAmelCase_ : Any = lr_scheduler.get_lr()[0] UpperCAmelCase_ : List[str] = optimizer.param_groups[0]['''lr'''] UpperCAmelCase_ : Tuple = epoch UpperCAmelCase_ : Dict = overall_step accelerator.print(F"""epoch {epoch}:""", SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir, F"""state_{epoch}.json""" ), '''w''' ) as f: json.dump(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) def lowerCamelCase_ ( ) -> List[str]: UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''', type=SCREAMING_SNAKE_CASE__, default='''bert-base-cased''', help='''Path to pretrained model or model identifier from huggingface.co/models.''', required=SCREAMING_SNAKE_CASE__, ) parser.add_argument( '''--output_dir''', type=SCREAMING_SNAKE_CASE__, default='''.''', help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''', ) parser.add_argument( '''--resume_from_checkpoint''', type=SCREAMING_SNAKE_CASE__, default=SCREAMING_SNAKE_CASE__, help='''If the training should continue from a checkpoint folder.''', ) parser.add_argument( '''--partial_train_epoch''', type=SCREAMING_SNAKE_CASE__, default=SCREAMING_SNAKE_CASE__, help='''If passed, the training will stop after this number of epochs.''', ) parser.add_argument( '''--num_epochs''', type=SCREAMING_SNAKE_CASE__, default=2, help='''Number of train epochs.''', ) UpperCAmelCase_ : Optional[int] = parser.parse_args() UpperCAmelCase_ : List[Any] = {'''lr''': 2E-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
644
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case_ : Union[str, Any] = { "configuration_blenderbot_small": [ "BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotSmallConfig", "BlenderbotSmallOnnxConfig", ], "tokenization_blenderbot_small": ["BlenderbotSmallTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : List[Any] = ["BlenderbotSmallTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Dict = [ "BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotSmallForCausalLM", "BlenderbotSmallForConditionalGeneration", "BlenderbotSmallModel", "BlenderbotSmallPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : List[str] = [ "TFBlenderbotSmallForConditionalGeneration", "TFBlenderbotSmallModel", "TFBlenderbotSmallPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Tuple = [ "FlaxBlenderbotSmallForConditionalGeneration", "FlaxBlenderbotSmallModel", "FlaxBlenderbotSmallPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys snake_case_ : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
704
'''simple docstring''' def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : list[int] ) -> list[list[int]]: UpperCAmelCase_ : int = [] if len(SCREAMING_SNAKE_CASE__ ) == 1: return [nums.copy()] for _ in range(len(SCREAMING_SNAKE_CASE__ ) ): UpperCAmelCase_ : List[Any] = nums.pop(0 ) UpperCAmelCase_ : Optional[Any] = permute(SCREAMING_SNAKE_CASE__ ) for perm in permutations: perm.append(SCREAMING_SNAKE_CASE__ ) result.extend(SCREAMING_SNAKE_CASE__ ) nums.append(SCREAMING_SNAKE_CASE__ ) return result def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[str] ) -> Any: def backtrack(SCREAMING_SNAKE_CASE__ : Union[str, Any] ): if start == len(SCREAMING_SNAKE_CASE__ ) - 1: output.append(nums[:] ) else: for i in range(SCREAMING_SNAKE_CASE__, len(SCREAMING_SNAKE_CASE__ ) ): UpperCAmelCase_ , UpperCAmelCase_ : Tuple = nums[i], nums[start] backtrack(start + 1 ) UpperCAmelCase_ , UpperCAmelCase_ : int = nums[i], nums[start] # backtrack UpperCAmelCase_ : Optional[int] = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function snake_case_ : Tuple = permutea([1, 2, 3]) print(res) doctest.testmod()
644
0
'''simple docstring''' import argparse from collections import defaultdict import yaml snake_case_ : int = "docs/source/en/_toctree.yml" def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> str: UpperCAmelCase_ : List[Any] = defaultdict(__snake_case ) for doc in model_doc: counts[doc["local"]] += 1 UpperCAmelCase_ : Optional[Any] = [key for key, value in counts.items() if value > 1] UpperCAmelCase_ : Dict = [] for duplicate_key in duplicates: UpperCAmelCase_ : Dict = list({doc['''title'''] for doc in model_doc if doc['''local'''] == duplicate_key} ) if len(__snake_case ) > 1: raise ValueError( F"""{duplicate_key} is present several times in the documentation table of content at """ '''`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ''' '''others.''' ) # Only add this once new_doc.append({'''local''': duplicate_key, '''title''': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['''local''']] == 1] ) # Sort return sorted(__snake_case, key=lambda SCREAMING_SNAKE_CASE__ : s["title"].lower() ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Union[str, Any]=False ) -> List[Any]: with open(__snake_case, encoding='''utf-8''' ) as f: UpperCAmelCase_ : Tuple = yaml.safe_load(f.read() ) # Get to the API doc UpperCAmelCase_ : List[str] = 0 while content[api_idx]["title"] != "API": api_idx += 1 UpperCAmelCase_ : List[Any] = content[api_idx]['''sections'''] # Then to the model doc UpperCAmelCase_ : str = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 UpperCAmelCase_ : Any = api_doc[model_idx]['''sections'''] UpperCAmelCase_ : Union[str, Any] = [(idx, section) for idx, section in enumerate(__snake_case ) if '''sections''' in section] UpperCAmelCase_ : Union[str, Any] = False for idx, modality_doc in modalities_docs: UpperCAmelCase_ : Union[str, Any] = modality_doc['''sections'''] UpperCAmelCase_ : Dict = clean_model_doc_toc(__snake_case ) if old_modality_doc != new_modality_doc: UpperCAmelCase_ : List[str] = True if overwrite: UpperCAmelCase_ : Union[str, Any] = new_modality_doc if diff: if overwrite: UpperCAmelCase_ : Any = model_doc UpperCAmelCase_ : List[Any] = api_doc with open(__snake_case, '''w''', encoding='''utf-8''' ) as f: f.write(yaml.dump(__snake_case, allow_unicode=__snake_case ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) if __name__ == "__main__": snake_case_ : Optional[int] = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") snake_case_ : List[Any] = parser.parse_args() check_model_doc(args.fix_and_overwrite)
705
'''simple docstring''' class __a : def __init__( self : List[Any] , __magic_name__ : int ) -> None: """simple docstring""" UpperCAmelCase_ : Optional[Any] = size UpperCAmelCase_ : Tuple = [0] * size UpperCAmelCase_ : Optional[Any] = [0] * size @staticmethod def UpperCAmelCase__ ( __magic_name__ : int ) -> int: """simple docstring""" return index | (index + 1) @staticmethod def UpperCAmelCase__ ( __magic_name__ : int ) -> int: """simple docstring""" return (index & (index + 1)) - 1 def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : int , __magic_name__ : int ) -> None: """simple docstring""" UpperCAmelCase_ : int = value while index < self.size: UpperCAmelCase_ : str = self.get_prev(__magic_name__ ) + 1 if current_left_border == index: UpperCAmelCase_ : List[str] = value else: UpperCAmelCase_ : Optional[int] = max(__magic_name__ , __magic_name__ , __magic_name__ ) UpperCAmelCase_ : Tuple = self.get_next(__magic_name__ ) def UpperCAmelCase__ ( self : Any , __magic_name__ : int , __magic_name__ : int ) -> int: """simple docstring""" right -= 1 # Because of right is exclusive UpperCAmelCase_ : List[str] = 0 while left <= right: UpperCAmelCase_ : Optional[Any] = self.get_prev(__magic_name__ ) if left <= current_left: UpperCAmelCase_ : Dict = max(__magic_name__ , self.tree[right] ) UpperCAmelCase_ : Optional[Any] = current_left else: UpperCAmelCase_ : str = max(__magic_name__ , self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
644
0
'''simple docstring''' import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) snake_case_ : str = pytest.mark.integration @pytest.mark.parametrize('''path''', ['''paws''', '''csv'''] ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Optional[int], SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Optional[Any]: inspect_dataset(lowerCAmelCase__, lowerCAmelCase__ ) UpperCAmelCase_ : List[Any] = path + '''.py''' assert script_name in os.listdir(lowerCAmelCase__ ) assert "__pycache__" not in os.listdir(lowerCAmelCase__ ) @pytest.mark.filterwarnings('''ignore:inspect_metric is deprecated:FutureWarning''' ) @pytest.mark.filterwarnings('''ignore:metric_module_factory is deprecated:FutureWarning''' ) @pytest.mark.parametrize('''path''', ['''accuracy'''] ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : str, SCREAMING_SNAKE_CASE__ : str ) -> Dict: inspect_metric(lowerCAmelCase__, lowerCAmelCase__ ) UpperCAmelCase_ : List[Any] = path + '''.py''' assert script_name in os.listdir(lowerCAmelCase__ ) assert "__pycache__" not in os.listdir(lowerCAmelCase__ ) @pytest.mark.parametrize( '''path, config_name, expected_splits''', [ ('''squad''', '''plain_text''', ['''train''', '''validation''']), ('''dalle-mini/wit''', '''dalle-mini--wit''', ['''train''']), ('''paws''', '''labeled_final''', ['''train''', '''test''', '''validation''']), ], ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Optional[int], SCREAMING_SNAKE_CASE__ : Optional[int], SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[str]: UpperCAmelCase_ : str = get_dataset_config_info(lowerCAmelCase__, config_name=lowerCAmelCase__ ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( '''path, config_name, expected_exception''', [ ('''paws''', None, ValueError), ], ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[Any], SCREAMING_SNAKE_CASE__ : Any, SCREAMING_SNAKE_CASE__ : int ) -> List[Any]: with pytest.raises(lowerCAmelCase__ ): get_dataset_config_info(lowerCAmelCase__, config_name=lowerCAmelCase__ ) @pytest.mark.parametrize( '''path, expected''', [ ('''squad''', '''plain_text'''), ('''acronym_identification''', '''default'''), ('''lhoestq/squad''', '''plain_text'''), ('''lhoestq/test''', '''default'''), ('''lhoestq/demo1''', '''lhoestq--demo1'''), ('''dalle-mini/wit''', '''dalle-mini--wit'''), ], ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Optional[Any], SCREAMING_SNAKE_CASE__ : int ) -> Optional[int]: UpperCAmelCase_ : List[Any] = get_dataset_config_names(lowerCAmelCase__ ) assert expected in config_names @pytest.mark.parametrize( '''path, expected_configs, expected_splits_in_first_config''', [ ('''squad''', ['''plain_text'''], ['''train''', '''validation''']), ('''dalle-mini/wit''', ['''dalle-mini--wit'''], ['''train''']), ('''paws''', ['''labeled_final''', '''labeled_swap''', '''unlabeled_final'''], ['''train''', '''test''', '''validation''']), ], ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : List[Any], SCREAMING_SNAKE_CASE__ : Dict ) -> Optional[Any]: UpperCAmelCase_ : List[str] = get_dataset_infos(lowerCAmelCase__ ) assert list(infos.keys() ) == expected_configs UpperCAmelCase_ : Dict = expected_configs[0] assert expected_config in infos UpperCAmelCase_ : Dict = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( '''path, expected_config, expected_splits''', [ ('''squad''', '''plain_text''', ['''train''', '''validation''']), ('''dalle-mini/wit''', '''dalle-mini--wit''', ['''train''']), ('''paws''', '''labeled_final''', ['''train''', '''test''', '''validation''']), ], ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[str], SCREAMING_SNAKE_CASE__ : Union[str, Any], SCREAMING_SNAKE_CASE__ : List[str] ) -> List[str]: UpperCAmelCase_ : Tuple = get_dataset_infos(lowerCAmelCase__ ) assert expected_config in infos UpperCAmelCase_ : str = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( '''path, config_name, expected_exception''', [ ('''paws''', None, ValueError), ], ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : Optional[int], SCREAMING_SNAKE_CASE__ : Tuple ) -> Union[str, Any]: with pytest.raises(lowerCAmelCase__ ): get_dataset_split_names(lowerCAmelCase__, config_name=lowerCAmelCase__ )
706
'''simple docstring''' import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class __a : def __init__( self : List[str] , __magic_name__ : List[str] , __magic_name__ : str=13 , __magic_name__ : Union[str, Any]=7 , __magic_name__ : Union[str, Any]=True , __magic_name__ : Any=True , __magic_name__ : List[str]=False , __magic_name__ : Optional[int]=True , __magic_name__ : Dict=99 , __magic_name__ : Tuple=32 , __magic_name__ : int=5 , __magic_name__ : Dict=4 , __magic_name__ : Tuple=37 , __magic_name__ : Optional[int]="gelu" , __magic_name__ : List[str]=0.1 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : str=5_12 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : int=2 , __magic_name__ : List[Any]=0.0_2 , __magic_name__ : Tuple=3 , __magic_name__ : Union[str, Any]=4 , __magic_name__ : Optional[int]=None , ) -> str: """simple docstring""" UpperCAmelCase_ : Any = parent UpperCAmelCase_ : Union[str, Any] = batch_size UpperCAmelCase_ : List[Any] = seq_length UpperCAmelCase_ : str = is_training UpperCAmelCase_ : Any = use_input_mask UpperCAmelCase_ : List[str] = use_token_type_ids UpperCAmelCase_ : Union[str, Any] = use_labels UpperCAmelCase_ : Dict = vocab_size UpperCAmelCase_ : Optional[Any] = hidden_size UpperCAmelCase_ : Dict = num_hidden_layers UpperCAmelCase_ : List[Any] = num_attention_heads UpperCAmelCase_ : Optional[int] = intermediate_size UpperCAmelCase_ : Union[str, Any] = hidden_act UpperCAmelCase_ : str = hidden_dropout_prob UpperCAmelCase_ : Optional[Any] = attention_probs_dropout_prob UpperCAmelCase_ : Any = max_position_embeddings UpperCAmelCase_ : str = type_vocab_size UpperCAmelCase_ : Optional[Any] = type_sequence_label_size UpperCAmelCase_ : List[Any] = initializer_range UpperCAmelCase_ : int = num_labels UpperCAmelCase_ : Optional[int] = num_choices UpperCAmelCase_ : Tuple = scope def UpperCAmelCase__ ( self : Union[str, Any] ) -> int: """simple docstring""" UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Union[str, Any] = None if self.use_input_mask: UpperCAmelCase_ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : str = None if self.use_token_type_ids: UpperCAmelCase_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ : Tuple = None UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Union[str, Any] = None if self.use_labels: UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ : int = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self : Any ) -> List[Any]: """simple docstring""" return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__magic_name__ , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : Tuple , __magic_name__ : str , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : Optional[Any] = BioGptModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() UpperCAmelCase_ : Dict = model(__magic_name__ , attention_mask=__magic_name__ ) UpperCAmelCase_ : Optional[Any] = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : Dict , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Any , __magic_name__ : Tuple , __magic_name__ : List[str] , __magic_name__ : Optional[int] , ) -> int: """simple docstring""" UpperCAmelCase_ : Dict = BioGptForCausalLM(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() UpperCAmelCase_ : List[Any] = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self : str , __magic_name__ : Optional[int] , __magic_name__ : Tuple , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : str , *__magic_name__ : Any ) -> int: """simple docstring""" UpperCAmelCase_ : Dict = BioGptModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() # create attention mask UpperCAmelCase_ : Optional[Any] = torch.ones(input_ids.shape , dtype=torch.long , device=__magic_name__ ) UpperCAmelCase_ : Any = self.seq_length // 2 UpperCAmelCase_ : Tuple = 0 # first forward pass UpperCAmelCase_ , UpperCAmelCase_ : Dict = model(__magic_name__ , attention_mask=__magic_name__ ).to_tuple() # create hypothetical next token and extent to next_input_ids UpperCAmelCase_ : Tuple = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids UpperCAmelCase_ : List[str] = ids_tensor((1,) , __magic_name__ ).item() + 1 UpperCAmelCase_ : Tuple = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) UpperCAmelCase_ : str = random_other_next_tokens # append to next input_ids and attn_mask UpperCAmelCase_ : Tuple = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase_ : int = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=__magic_name__ )] , dim=1 , ) # get two different outputs UpperCAmelCase_ : Any = model(__magic_name__ , attention_mask=__magic_name__ )['''last_hidden_state'''] UpperCAmelCase_ : int = model(__magic_name__ , past_key_values=__magic_name__ , attention_mask=__magic_name__ )['''last_hidden_state'''] # select random slice UpperCAmelCase_ : Optional[int] = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase_ : Union[str, Any] = output_from_no_past[:, -1, random_slice_idx].detach() UpperCAmelCase_ : Dict = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) ) def UpperCAmelCase__ ( self : Dict , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : Dict , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , *__magic_name__ : str ) -> int: """simple docstring""" UpperCAmelCase_ : Dict = BioGptModel(config=__magic_name__ ).to(__magic_name__ ).eval() UpperCAmelCase_ : Optional[int] = torch.ones(input_ids.shape , dtype=torch.long , device=__magic_name__ ) # first forward pass UpperCAmelCase_ : Union[str, Any] = model(__magic_name__ , attention_mask=__magic_name__ , use_cache=__magic_name__ ) UpperCAmelCase_ , UpperCAmelCase_ : int = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase_ : Any = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase_ : Any = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and UpperCAmelCase_ : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase_ : List[str] = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) UpperCAmelCase_ : Any = model(__magic_name__ , attention_mask=__magic_name__ )['''last_hidden_state'''] UpperCAmelCase_ : Optional[Any] = model(__magic_name__ , attention_mask=__magic_name__ , past_key_values=__magic_name__ )[ '''last_hidden_state''' ] # select random slice UpperCAmelCase_ : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase_ : str = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase_ : Optional[int] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) ) def UpperCAmelCase__ ( self : List[str] , __magic_name__ : str , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , *__magic_name__ : Any , __magic_name__ : List[Any]=False ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : Any = BioGptForCausalLM(__magic_name__ ) model.to(__magic_name__ ) if gradient_checkpointing: model.gradient_checkpointing_enable() UpperCAmelCase_ : List[str] = model(__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Optional[int] , *__magic_name__ : List[str] ) -> str: """simple docstring""" UpperCAmelCase_ : int = BioGptModel(__magic_name__ ) UpperCAmelCase_ : Dict = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.0_0_1 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.0_1 ) def UpperCAmelCase__ ( self : int , __magic_name__ : Tuple , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] , *__magic_name__ : Any ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : str = self.num_labels UpperCAmelCase_ : Any = BioGptForTokenClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() UpperCAmelCase_ : Any = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase__ ( self : Optional[Any] ) -> str: """simple docstring""" UpperCAmelCase_ : List[Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : int = config_and_inputs UpperCAmelCase_ : Any = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __a (lowerCamelCase , lowerCamelCase , lowerCamelCase , unittest.TestCase ): __a : str = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) __a : List[Any] = (BioGptForCausalLM,) if is_torch_available() else () __a : Union[str, Any] = ( { "feature-extraction": BioGptModel, "text-classification": BioGptForSequenceClassification, "text-generation": BioGptForCausalLM, "token-classification": BioGptForTokenClassification, "zero-shot": BioGptForSequenceClassification, } if is_torch_available() else {} ) __a : List[str] = False def UpperCAmelCase__ ( self : Optional[Any] ) -> Dict: """simple docstring""" UpperCAmelCase_ : List[str] = BioGptModelTester(self ) UpperCAmelCase_ : Optional[Any] = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : List[str] ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def UpperCAmelCase__ ( self : Tuple ) -> List[str]: """simple docstring""" UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase_ : str = type self.model_tester.create_and_check_model(*__magic_name__ ) def UpperCAmelCase__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*__magic_name__ ) def UpperCAmelCase__ ( self : Tuple ) -> List[str]: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*__magic_name__ , gradient_checkpointing=__magic_name__ ) def UpperCAmelCase__ ( self : str ) -> List[str]: """simple docstring""" UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*__magic_name__ ) def UpperCAmelCase__ ( self : Dict ) -> Tuple: """simple docstring""" UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*__magic_name__ ) def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*__magic_name__ ) @slow def UpperCAmelCase__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : Tuple = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) model.to(__magic_name__ ) UpperCAmelCase_ : List[str] = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) UpperCAmelCase_ : Tuple = '''left''' # Define PAD Token = EOS Token = 50256 UpperCAmelCase_ : List[Any] = tokenizer.eos_token UpperCAmelCase_ : List[Any] = model.config.eos_token_id # use different length sentences to test batching UpperCAmelCase_ : Tuple = [ '''Hello, my dog is a little''', '''Today, I''', ] UpperCAmelCase_ : Optional[Any] = tokenizer(__magic_name__ , return_tensors='''pt''' , padding=__magic_name__ ) UpperCAmelCase_ : Optional[Any] = inputs['''input_ids'''].to(__magic_name__ ) UpperCAmelCase_ : Any = model.generate( input_ids=__magic_name__ , attention_mask=inputs['''attention_mask'''].to(__magic_name__ ) , ) UpperCAmelCase_ : Union[str, Any] = tokenizer(sentences[0] , return_tensors='''pt''' ).input_ids.to(__magic_name__ ) UpperCAmelCase_ : Tuple = model.generate(input_ids=__magic_name__ ) UpperCAmelCase_ : List[str] = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item() UpperCAmelCase_ : List[Any] = tokenizer(sentences[1] , return_tensors='''pt''' ).input_ids.to(__magic_name__ ) UpperCAmelCase_ : Tuple = model.generate(input_ids=__magic_name__ , max_length=model.config.max_length - num_paddings ) UpperCAmelCase_ : int = tokenizer.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ ) UpperCAmelCase_ : Dict = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__magic_name__ ) UpperCAmelCase_ : Union[str, Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=__magic_name__ ) UpperCAmelCase_ : Optional[Any] = [ '''Hello, my dog is a little bit bigger than a little bit.''', '''Today, I have a good idea of how to use the information''', ] self.assertListEqual(__magic_name__ , __magic_name__ ) self.assertListEqual(__magic_name__ , [non_padded_sentence, padded_sentence] ) @slow def UpperCAmelCase__ ( self : str ) -> Optional[Any]: """simple docstring""" for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : List[Any] = BioGptModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def UpperCAmelCase__ ( self : Tuple ) -> str: """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : List[str] = 3 UpperCAmelCase_ : Tuple = input_dict['''input_ids'''] UpperCAmelCase_ : Dict = input_ids.ne(1 ).to(__magic_name__ ) UpperCAmelCase_ : List[str] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase_ : Dict = BioGptForSequenceClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() UpperCAmelCase_ : int = model(__magic_name__ , attention_mask=__magic_name__ , labels=__magic_name__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]: """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : List[Any] = 3 UpperCAmelCase_ : Optional[int] = '''multi_label_classification''' UpperCAmelCase_ : int = input_dict['''input_ids'''] UpperCAmelCase_ : str = input_ids.ne(1 ).to(__magic_name__ ) UpperCAmelCase_ : Any = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCAmelCase_ : Union[str, Any] = BioGptForSequenceClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() UpperCAmelCase_ : str = model(__magic_name__ , attention_mask=__magic_name__ , labels=__magic_name__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class __a (unittest.TestCase ): @slow def UpperCAmelCase__ ( self : List[Any] ) -> str: """simple docstring""" UpperCAmelCase_ : str = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) UpperCAmelCase_ : List[str] = torch.tensor([[2, 48_05, 9, 6_56, 21]] ) UpperCAmelCase_ : str = model(__magic_name__ )[0] UpperCAmelCase_ : Optional[int] = 4_23_84 UpperCAmelCase_ : Tuple = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , __magic_name__ ) UpperCAmelCase_ : List[Any] = torch.tensor( [[[-9.5_2_3_6, -9.8_9_1_8, 1_0.4_5_5_7], [-1_1.0_4_6_9, -9.6_4_2_3, 8.1_0_2_2], [-8.8_6_6_4, -7.8_8_2_6, 5.5_3_2_5]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __magic_name__ , atol=1E-4 ) ) @slow def UpperCAmelCase__ ( self : Any ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Any = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) UpperCAmelCase_ : str = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) model.to(__magic_name__ ) torch.manual_seed(0 ) UpperCAmelCase_ : Optional[Any] = tokenizer('''COVID-19 is''' , return_tensors='''pt''' ).to(__magic_name__ ) UpperCAmelCase_ : Optional[int] = model.generate( **__magic_name__ , min_length=1_00 , max_length=10_24 , num_beams=5 , early_stopping=__magic_name__ , ) UpperCAmelCase_ : int = tokenizer.decode(output_ids[0] , skip_special_tokens=__magic_name__ ) UpperCAmelCase_ : Optional[Any] = ( '''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the''' ''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and''' ''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),''' ''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and''' ''' more than 800,000 deaths.''' ) self.assertEqual(__magic_name__ , __magic_name__ )
644
0
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : List[Any] = logging.get_logger(__name__) lowerCamelCase : Union[str, Any] = { "Salesforce/blip-vqa-base": "https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json", "Salesforce/blip-vqa-capfit-large": ( "https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json" ), "Salesforce/blip-image-captioning-base": ( "https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json" ), "Salesforce/blip-image-captioning-large": ( "https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json" ), "Salesforce/blip-itm-base-coco": "https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json", "Salesforce/blip-itm-large-coco": "https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json", "Salesforce/blip-itm-base-flikr": "https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json", "Salesforce/blip-itm-large-flikr": ( "https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json" ), } class __a (__lowerCamelCase ): __a : List[str] = '''blip_text_model''' def __init__( self : str , __magic_name__ : List[str]=3_05_24 , __magic_name__ : int=7_68 , __magic_name__ : Any=7_68 , __magic_name__ : Optional[Any]=30_72 , __magic_name__ : Tuple=7_68 , __magic_name__ : Dict=12 , __magic_name__ : Union[str, Any]=8 , __magic_name__ : List[str]=5_12 , __magic_name__ : int="gelu" , __magic_name__ : Any=1E-12 , __magic_name__ : Optional[int]=0.0 , __magic_name__ : List[Any]=0.0 , __magic_name__ : Optional[int]=0.0_2 , __magic_name__ : Tuple=3_05_22 , __magic_name__ : Tuple=2 , __magic_name__ : Any=0 , __magic_name__ : Any=1_02 , __magic_name__ : Optional[Any]=True , __magic_name__ : Tuple=True , **__magic_name__ : Union[str, Any] , ) -> Union[str, Any]: """simple docstring""" super().__init__( pad_token_id=a_ , bos_token_id=a_ , eos_token_id=a_ , sep_token_id=a_ , **a_ , ) UpperCAmelCase_ : Dict = vocab_size UpperCAmelCase_ : List[Any] = hidden_size UpperCAmelCase_ : Optional[int] = encoder_hidden_size UpperCAmelCase_ : List[Any] = intermediate_size UpperCAmelCase_ : Optional[Any] = projection_dim UpperCAmelCase_ : List[Any] = hidden_dropout_prob UpperCAmelCase_ : Tuple = num_hidden_layers UpperCAmelCase_ : int = num_attention_heads UpperCAmelCase_ : str = max_position_embeddings UpperCAmelCase_ : Optional[Any] = layer_norm_eps UpperCAmelCase_ : Union[str, Any] = hidden_act UpperCAmelCase_ : Tuple = initializer_range UpperCAmelCase_ : Optional[int] = attention_probs_dropout_prob UpperCAmelCase_ : int = is_decoder UpperCAmelCase_ : Union[str, Any] = use_cache @classmethod def UpperCAmelCase__ ( cls : Tuple , __magic_name__ : Tuple , **__magic_name__ : Optional[Any] ) -> str: """simple docstring""" cls._set_token_in_kwargs(a_ ) UpperCAmelCase_ : Optional[int] = cls.get_config_dict(a_ , **a_ ) # get the text config dict if we are loading from BlipConfig if config_dict.get('''model_type''' ) == "blip": UpperCAmelCase_ : str = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(a_ , **a_ ) class __a (__lowerCamelCase ): __a : Any = '''blip_vision_model''' def __init__( self : Optional[Any] , __magic_name__ : List[Any]=7_68 , __magic_name__ : Union[str, Any]=30_72 , __magic_name__ : Union[str, Any]=5_12 , __magic_name__ : List[str]=12 , __magic_name__ : Dict=12 , __magic_name__ : Any=3_84 , __magic_name__ : Optional[Any]=16 , __magic_name__ : List[str]="gelu" , __magic_name__ : Any=1E-5 , __magic_name__ : Tuple=0.0 , __magic_name__ : Optional[Any]=1E-10 , **__magic_name__ : List[Any] , ) -> List[str]: """simple docstring""" super().__init__(**a_ ) UpperCAmelCase_ : List[Any] = hidden_size UpperCAmelCase_ : int = intermediate_size UpperCAmelCase_ : str = projection_dim UpperCAmelCase_ : List[str] = num_hidden_layers UpperCAmelCase_ : Dict = num_attention_heads UpperCAmelCase_ : Dict = patch_size UpperCAmelCase_ : Optional[int] = image_size UpperCAmelCase_ : Dict = initializer_range UpperCAmelCase_ : int = attention_dropout UpperCAmelCase_ : Tuple = layer_norm_eps UpperCAmelCase_ : Optional[Any] = hidden_act @classmethod def UpperCAmelCase__ ( cls : Union[str, Any] , __magic_name__ : Optional[int] , **__magic_name__ : Dict ) -> Dict: """simple docstring""" cls._set_token_in_kwargs(a_ ) UpperCAmelCase_ : List[Any] = cls.get_config_dict(a_ , **a_ ) # get the vision config dict if we are loading from BlipConfig if config_dict.get('''model_type''' ) == "blip": UpperCAmelCase_ : List[Any] = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(a_ , **a_ ) class __a (__lowerCamelCase ): __a : Optional[int] = '''blip''' __a : Optional[int] = True def __init__( self : int , __magic_name__ : int=None , __magic_name__ : List[str]=None , __magic_name__ : Optional[int]=5_12 , __magic_name__ : Any=2.6_5_9_2 , __magic_name__ : Dict=2_56 , **__magic_name__ : Dict , ) -> Tuple: """simple docstring""" super().__init__(**a_ ) if text_config is None: UpperCAmelCase_ : Tuple = {} logger.info('''`text_config` is `None`. Initializing the `BlipTextConfig` with default values.''' ) if vision_config is None: UpperCAmelCase_ : List[str] = {} logger.info('''`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values.''' ) UpperCAmelCase_ : Dict = BlipTextConfig(**a_ ) UpperCAmelCase_ : str = BlipVisionConfig(**a_ ) UpperCAmelCase_ : int = self.vision_config.hidden_size UpperCAmelCase_ : List[str] = projection_dim UpperCAmelCase_ : Any = logit_scale_init_value UpperCAmelCase_ : int = 1.0 UpperCAmelCase_ : List[Any] = 0.0_2 UpperCAmelCase_ : int = image_text_hidden_size @classmethod def UpperCAmelCase__ ( cls : Optional[Any] , __magic_name__ : Any , __magic_name__ : List[str] , **__magic_name__ : int ) -> int: """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **a_ ) def UpperCAmelCase__ ( self : Dict ) -> Any: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ : Tuple = self.text_config.to_dict() UpperCAmelCase_ : Tuple = self.vision_config.to_dict() UpperCAmelCase_ : int = self.__class__.model_type return output
707
'''simple docstring''' import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class __a (lowerCamelCase , unittest.TestCase ): __a : List[str] = BlenderbotSmallTokenizer __a : List[Any] = False def UpperCAmelCase__ ( self : str ) -> str: """simple docstring""" super().setUp() UpperCAmelCase_ : Tuple = ['''__start__''', '''adapt''', '''act''', '''ap@@''', '''te''', '''__end__''', '''__unk__'''] UpperCAmelCase_ : Optional[Any] = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) ) UpperCAmelCase_ : int = ['''#version: 0.2''', '''a p''', '''t e</w>''', '''ap t</w>''', '''a d''', '''ad apt</w>''', '''a c''', '''ac t</w>''', ''''''] UpperCAmelCase_ : Optional[Any] = {'''unk_token''': '''__unk__''', '''bos_token''': '''__start__''', '''eos_token''': '''__end__'''} UpperCAmelCase_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase_ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__magic_name__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__magic_name__ ) ) def UpperCAmelCase__ ( self : List[Any] , **__magic_name__ : Dict ) -> Tuple: """simple docstring""" kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **__magic_name__ ) def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : List[str] ) -> List[str]: """simple docstring""" UpperCAmelCase_ : str = '''adapt act apte''' UpperCAmelCase_ : Tuple = '''adapt act apte''' return input_text, output_text def UpperCAmelCase__ ( self : str ) -> Any: """simple docstring""" UpperCAmelCase_ : str = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCAmelCase_ : List[Any] = '''adapt act apte''' UpperCAmelCase_ : Dict = ['''adapt''', '''act''', '''ap@@''', '''te'''] UpperCAmelCase_ : Dict = tokenizer.tokenize(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) UpperCAmelCase_ : Tuple = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] UpperCAmelCase_ : Dict = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , __magic_name__ ) def UpperCAmelCase__ ( self : int ) -> List[str]: """simple docstring""" UpperCAmelCase_ : List[Any] = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) assert tok('''sam''' ).input_ids == [13_84] UpperCAmelCase_ : Optional[int] = '''I am a small frog.''' UpperCAmelCase_ : List[str] = tok([src_text] , padding=__magic_name__ , truncation=__magic_name__ )['''input_ids'''] UpperCAmelCase_ : Dict = tok.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ , clean_up_tokenization_spaces=__magic_name__ )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def UpperCAmelCase__ ( self : Any ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : int = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) UpperCAmelCase_ : List[Any] = '''I am a small frog .''' UpperCAmelCase_ : Any = '''.''' UpperCAmelCase_ : List[Any] = tok(__magic_name__ )['''input_ids'''] UpperCAmelCase_ : Optional[int] = tok(__magic_name__ )['''input_ids'''] assert encoded[-1] == encoded_dot[0]
644
0
'''simple docstring''' snake_case_ : str = "2.13.1" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("3.7"): raise ImportWarning( "To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition." ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( "To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n" "If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`." ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip snake_case_ : List[Any] = concatenate_datasets snake_case_ : Optional[int] = DownloadConfig snake_case_ : Union[str, Any] = DownloadManager snake_case_ : Any = DownloadMode snake_case_ : int = DownloadConfig snake_case_ : List[Any] = DownloadMode snake_case_ : Optional[int] = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
708
'''simple docstring''' import unittest import torch from torch import nn from diffusers.models.activations import get_activation class __a (unittest.TestCase ): def UpperCAmelCase__ ( self : Dict ) -> Dict: """simple docstring""" UpperCAmelCase_ : Dict = get_activation('''swish''' ) self.assertIsInstance(__magic_name__ , nn.SiLU ) self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def UpperCAmelCase__ ( self : Tuple ) -> Tuple: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = get_activation('''silu''' ) self.assertIsInstance(__magic_name__ , nn.SiLU ) self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def UpperCAmelCase__ ( self : Tuple ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : Optional[int] = get_activation('''mish''' ) self.assertIsInstance(__magic_name__ , nn.Mish ) self.assertEqual(act(torch.tensor(-2_00 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def UpperCAmelCase__ ( self : str ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ : List[Any] = get_activation('''gelu''' ) self.assertIsInstance(__magic_name__ , nn.GELU ) self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
644
0
'''simple docstring''' import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[str] ) -> str: UpperCAmelCase_ : Union[str, Any] = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(_A, _A ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> str: UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = emb.weight.shape UpperCAmelCase_ : Any = nn.Linear(_A, _A, bias=_A ) UpperCAmelCase_ : str = emb.weight.data return lin_layer def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[Any], SCREAMING_SNAKE_CASE__ : List[Any]=None ) -> Any: UpperCAmelCase_ : List[str] = {} for old_key in state_dict.keys(): UpperCAmelCase_ : Tuple = old_key if "moe_layer.experts." in key: if expert_idx is not None: UpperCAmelCase_ : Union[str, Any] = key.replace('''moe_layer.experts.0''', F"""ffn.experts.expert_{expert_idx}""" ) else: UpperCAmelCase_ : Optional[int] = key.replace('''moe_layer.experts.''', '''ffn.experts.expert_''' ) if "gate" in key: UpperCAmelCase_ : Optional[int] = key.replace('''.moe_layer.gate.wg''', '''.ffn.router.classifier''' ) if "fc2" and "experts" not in key: UpperCAmelCase_ : Dict = key.replace('''.fc2.''', '''.ffn.fc2.''' ) if "fc1" and "experts" not in key: UpperCAmelCase_ : Union[str, Any] = key.replace('''.fc1.''', '''.ffn.fc1.''' ) if ".encoder_attn." in key: UpperCAmelCase_ : Tuple = key.replace('''.encoder_attn.''', '''.cross_attention.''' ) if "encoder_attn_layer_norm" in key: UpperCAmelCase_ : List[str] = key.replace('''encoder_attn_layer_norm''', '''cross_attention_layer_norm''' ) if "final_layer_norm" in key: UpperCAmelCase_ : Dict = key.replace('''final_layer_norm''', '''ff_layer_norm''' ) UpperCAmelCase_ : str = state_dict[old_key] return new_dict def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : Dict, SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : str = WEIGHTS_NAME ) -> Union[str, Any]: UpperCAmelCase_ : int = [] UpperCAmelCase_ : Union[str, Any] = 0 os.makedirs(_A, exist_ok=_A ) for expert in range(_A ): UpperCAmelCase_ : str = switch_checkpoint_path + F"""-rank-{expert}.pt""" if os.path.isfile(_A ): UpperCAmelCase_ : List[str] = torch.load(_A )['''model'''] remove_ignore_keys_(_A ) UpperCAmelCase_ : Dict = rename_fairseq_keys(_A, _A ) UpperCAmelCase_ : Optional[int] = os.path.join( _A, weights_name.replace('''.bin''', F"""-{len(_A )+1:05d}-of-???.bin""" ) ) torch.save(_A, _A ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(_A )[0]].dtype ) # Add the last block UpperCAmelCase_ : Dict = os.path.join(_A, weights_name.replace('''.bin''', F"""-{len(_A )+1:05d}-of-???.bin""" ) ) UpperCAmelCase_ : Union[str, Any] = torch.load(switch_checkpoint_path + '''-shared.pt''' )['''model'''] remove_ignore_keys_(_A ) UpperCAmelCase_ : Tuple = rename_fairseq_keys(_A, _A ) UpperCAmelCase_ : List[Any] = shared_weights['''decoder.embed_tokens.weight'''] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(_A ) == 1: UpperCAmelCase_ : Optional[int] = os.path.join(_A, _A ) torch.save(_A, _A ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(_A, _A ) # Otherwise, let's build the index UpperCAmelCase_ : Tuple = {} for idx, shard in enumerate(_A ): UpperCAmelCase_ : Tuple = weights_name.replace('''.bin''', F"""-{idx+1:05d}-of-{len(_A ):05d}.bin""" ) UpperCAmelCase_ : Optional[int] = os.path.join(_A, weights_name.replace('''.bin''', F"""-{idx+1:05d}-of-???.bin""" ) ) os.rename(_A, os.path.join(_A, _A ) ) for key in shard: UpperCAmelCase_ : Optional[Any] = shard_file # Add the metadata UpperCAmelCase_ : Optional[Any] = {'''total_size''': total_size} UpperCAmelCase_ : Dict = {'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(_A, _A ), '''w''', encoding='''utf-8''' ) as f: UpperCAmelCase_ : Dict = json.dumps(_A, indent=2, sort_keys=_A ) + '''\n''' f.write(_A ) return metadata, index if __name__ == "__main__": snake_case_ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--nllb_moe_checkpoint_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000", type=str, required=False, help="Path to a directory containing a folder per layer. Follows the original Google format.", ) parser.add_argument("--dtype", default="float32", type=str, required=False, help="dtype of the saved model") parser.add_argument( "--pytorch_dump_folder_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b", type=str, required=False, help="Path to the output pytorch model.", ) snake_case_ : Tuple = parser.parse_args() snake_case_ : List[Any] = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 1_28, args.dtype, ) snake_case_ : str = NllbMoeConfig.from_pretrained( "facebook/nllb-200-3.3B", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=1_28 ) config.save_pretrained(args.pytorch_dump_folder_path) snake_case_ : Optional[int] = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("Done") model.save_pretrained(args.pytorch_dump_folder_path)
709
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging snake_case_ : Union[str, Any] = logging.get_logger(__name__) class __a (lowerCamelCase ): __a : Tuple = ["pixel_values"] def __init__( self : List[Any] , __magic_name__ : bool = True , __magic_name__ : int = 32 , __magic_name__ : Union[str, Any]=PILImageResampling.BILINEAR , __magic_name__ : bool = True , **__magic_name__ : List[str] , ) -> None: """simple docstring""" UpperCAmelCase_ : int = do_resize UpperCAmelCase_ : Tuple = do_rescale UpperCAmelCase_ : List[Any] = size_divisor UpperCAmelCase_ : Any = resample super().__init__(**__magic_name__ ) def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : np.ndarray , __magic_name__ : int , __magic_name__ : str , __magic_name__ : Optional[ChannelDimension] = None , **__magic_name__ : Tuple ) -> np.ndarray: """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : List[str] = get_image_size(__magic_name__ ) # Rounds the height and width down to the closest multiple of size_divisor UpperCAmelCase_ : Dict = height // size_divisor * size_divisor UpperCAmelCase_ : Dict = width // size_divisor * size_divisor UpperCAmelCase_ : Any = resize(__magic_name__ , (new_h, new_w) , resample=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) return image def UpperCAmelCase__ ( self : int , __magic_name__ : np.ndarray , __magic_name__ : float , __magic_name__ : Optional[ChannelDimension] = None , **__magic_name__ : Optional[Any] ) -> np.ndarray: """simple docstring""" return rescale(image=__magic_name__ , scale=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def UpperCAmelCase__ ( self : str , __magic_name__ : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[int] = None , __magic_name__ : Any=None , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[Union[TensorType, str]] = None , __magic_name__ : ChannelDimension = ChannelDimension.FIRST , **__magic_name__ : Tuple , ) -> BatchFeature: """simple docstring""" UpperCAmelCase_ : Dict = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ : str = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ : Any = size_divisor if size_divisor is not None else self.size_divisor UpperCAmelCase_ : Dict = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('''size_divisor is required for resizing''' ) UpperCAmelCase_ : Optional[int] = make_list_of_images(__magic_name__ ) if not valid_images(__magic_name__ ): raise ValueError('''Invalid image(s)''' ) # All transformations expect numpy arrays. UpperCAmelCase_ : List[str] = [to_numpy_array(__magic_name__ ) for img in images] if do_resize: UpperCAmelCase_ : str = [self.resize(__magic_name__ , size_divisor=__magic_name__ , resample=__magic_name__ ) for image in images] if do_rescale: UpperCAmelCase_ : Tuple = [self.rescale(__magic_name__ , scale=1 / 2_55 ) for image in images] UpperCAmelCase_ : Union[str, Any] = [to_channel_dimension_format(__magic_name__ , __magic_name__ ) for image in images] UpperCAmelCase_ : int = {'''pixel_values''': images} return BatchFeature(data=__magic_name__ , tensor_type=__magic_name__ )
644
0
'''simple docstring''' import collections import importlib.util import os import re from pathlib import Path snake_case_ = 'src/transformers' # Matches is_xxx_available() snake_case_ = re.compile(r"is\_([a-z_]*)_available()") # Catches a one-line _import_struct = {xxx} snake_case_ = re.compile(r"^_import_structure\s+=\s+\{([^\}]+)\}") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] snake_case_ = re.compile(r"\s+\"\S*\":\s+\[([^\]]*)\]") # Catches a line if not is_foo_available snake_case_ = re.compile(r"^\s*if\s+not\s+is\_[a-z_]*\_available\(\)") # Catches a line _import_struct["bla"].append("foo") snake_case_ = re.compile(r"^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] snake_case_ = re.compile(r"^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]") # Catches a line with an object between quotes and a comma: "MyModel", snake_case_ = re.compile("^\s+\"([^\"]+)\",") # Catches a line with objects between brackets only: ["foo", "bar"], snake_case_ = re.compile("^\s+\[([^\]]+)\]") # Catches a line with from foo import bar, bla, boo snake_case_ = re.compile(r"\s+from\s+\S*\s+import\s+([^\(\s].*)\n") # Catches a line with try: snake_case_ = re.compile(r"^\s*try:") # Catches a line with else: snake_case_ = re.compile(r"^\s*else:") def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> str: if _re_test_backend.search(A_ ) is None: return None UpperCAmelCase_ : str = [b[0] for b in _re_backend.findall(A_ )] backends.sort() return "_and_".join(A_ ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Dict ) -> List[str]: with open(A_, '''r''', encoding='''utf-8''', newline='''\n''' ) as f: UpperCAmelCase_ : Dict = f.readlines() UpperCAmelCase_ : Any = 0 while line_index < len(A_ ) and not lines[line_index].startswith('''_import_structure = {''' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(A_ ): return None # First grab the objects without a specific backend in _import_structure UpperCAmelCase_ : Union[str, Any] = [] while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None: UpperCAmelCase_ : Tuple = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(A_ ): UpperCAmelCase_ : Dict = _re_one_line_import_struct.search(A_ ).groups()[0] UpperCAmelCase_ : List[Any] = re.findall('''\[([^\]]+)\]''', A_ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] ) line_index += 1 continue UpperCAmelCase_ : List[Any] = _re_import_struct_key_value.search(A_ ) if single_line_import_search is not None: UpperCAmelCase_ : Any = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(A_ ) > 0] objects.extend(A_ ) elif line.startswith(''' ''' * 8 + '''\"''' ): objects.append(line[9:-3] ) line_index += 1 UpperCAmelCase_ : str = {'''none''': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('''if TYPE_CHECKING''' ): # If the line is an if not is_backend_available, we grab all objects associated. UpperCAmelCase_ : int = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: UpperCAmelCase_ : Tuple = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 UpperCAmelCase_ : List[str] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ): UpperCAmelCase_ : Dict = lines[line_index] if _re_import_struct_add_one.search(A_ ) is not None: objects.append(_re_import_struct_add_one.search(A_ ).groups()[0] ) elif _re_import_struct_add_many.search(A_ ) is not None: UpperCAmelCase_ : Union[str, Any] = _re_import_struct_add_many.search(A_ ).groups()[0].split(''', ''' ) UpperCAmelCase_ : int = [obj[1:-1] for obj in imports if len(A_ ) > 0] objects.extend(A_ ) elif _re_between_brackets.search(A_ ) is not None: UpperCAmelCase_ : List[Any] = _re_between_brackets.search(A_ ).groups()[0].split(''', ''' ) UpperCAmelCase_ : Union[str, Any] = [obj[1:-1] for obj in imports if len(A_ ) > 0] objects.extend(A_ ) elif _re_quote_object.search(A_ ) is not None: objects.append(_re_quote_object.search(A_ ).groups()[0] ) elif line.startswith(''' ''' * 8 + '''\"''' ): objects.append(line[9:-3] ) elif line.startswith(''' ''' * 12 + '''\"''' ): objects.append(line[13:-3] ) line_index += 1 UpperCAmelCase_ : str = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend UpperCAmelCase_ : str = [] while ( line_index < len(A_ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('''else''' ) ): UpperCAmelCase_ : Optional[Any] = lines[line_index] UpperCAmelCase_ : List[Any] = _re_import.search(A_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 UpperCAmelCase_ : Optional[int] = {'''none''': objects} # Let's continue with backend-specific objects while line_index < len(A_ ): # If the line is an if is_backend_available, we grab all objects associated. UpperCAmelCase_ : Union[str, Any] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: UpperCAmelCase_ : List[str] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 UpperCAmelCase_ : Tuple = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ): UpperCAmelCase_ : Union[str, Any] = lines[line_index] UpperCAmelCase_ : List[str] = _re_import.search(A_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 12 ): objects.append(line[12:-2] ) line_index += 1 UpperCAmelCase_ : Union[str, Any] = objects else: line_index += 1 return import_dict_objects, type_hint_objects def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Optional[Any], SCREAMING_SNAKE_CASE__ : Any ) -> Dict: def find_duplicates(SCREAMING_SNAKE_CASE__ : Dict ): return [k for k, v in collections.Counter(A_ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] UpperCAmelCase_ : Optional[Any] = [] for key in import_dict_objects.keys(): UpperCAmelCase_ : List[str] = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F"""Duplicate _import_structure definitions for: {duplicate_imports}""" ) UpperCAmelCase_ : Dict = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): UpperCAmelCase_ : Tuple = '''base imports''' if key == '''none''' else F"""{key} backend""" errors.append(F"""Differences for {name}:""" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F""" {a} in TYPE_HINT but not in _import_structure.""" ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F""" {a} in _import_structure but not in TYPE_HINT.""" ) return errors def lowerCamelCase_ ( ) -> List[Any]: UpperCAmelCase_ : Union[str, Any] = [] for root, _, files in os.walk(A_ ): if "__init__.py" in files: UpperCAmelCase_ : Union[str, Any] = os.path.join(A_, '''__init__.py''' ) UpperCAmelCase_ : Tuple = parse_init(A_ ) if objects is not None: UpperCAmelCase_ : Any = analyze_results(*A_ ) if len(A_ ) > 0: UpperCAmelCase_ : List[Any] = F"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}""" failures.append('''\n'''.join(A_ ) ) if len(A_ ) > 0: raise ValueError('''\n\n'''.join(A_ ) ) def lowerCamelCase_ ( ) -> int: UpperCAmelCase_ : Any = [] for path, directories, files in os.walk(A_ ): for folder in directories: # Ignore private modules if folder.startswith('''_''' ): directories.remove(A_ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(A_ ) / folder).glob('''*.py''' ) ) ) == 0: continue UpperCAmelCase_ : Dict = str((Path(A_ ) / folder).relative_to(A_ ) ) UpperCAmelCase_ : str = short_path.replace(os.path.sep, '''.''' ) submodules.append(A_ ) for fname in files: if fname == "__init__.py": continue UpperCAmelCase_ : str = str((Path(A_ ) / fname).relative_to(A_ ) ) UpperCAmelCase_ : Tuple = short_path.replace('''.py''', '''''' ).replace(os.path.sep, '''.''' ) if len(submodule.split('''.''' ) ) == 1: submodules.append(A_ ) return submodules snake_case_ = [ 'convert_pytorch_checkpoint_to_tf2', 'modeling_flax_pytorch_utils', ] def lowerCamelCase_ ( ) -> Union[str, Any]: UpperCAmelCase_ : Dict = importlib.util.spec_from_file_location( '''transformers''', os.path.join(A_, '''__init__.py''' ), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) UpperCAmelCase_ : List[Any] = spec.loader.load_module() UpperCAmelCase_ : str = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(A_ ) > 0: UpperCAmelCase_ : Any = '''\n'''.join(F"""- {module}""" for module in module_not_registered ) raise ValueError( '''The following submodules are not properly registered in the main init of Transformers:\n''' F"""{list_of_modules}\n""" '''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' ) if __name__ == "__main__": check_all_inits() check_submodules()
710
'''simple docstring''' def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int = 10, SCREAMING_SNAKE_CASE__ : int = 22 ) -> int: UpperCAmelCase_ : Optional[int] = range(1, SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : List[Any] = range(1, SCREAMING_SNAKE_CASE__ ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(f'''{solution(10, 22) = }''')
644
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ : Union[str, Any] = logging.get_logger(__name__) snake_case_ : List[Any] = { '''tanreinama/GPTSAN-2.8B-spout_is_uniform''': ( '''https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json''' ), } class __a (snake_case__ ): __a : Tuple = '''gptsan-japanese''' __a : Optional[int] = [ '''past_key_values''', ] __a : Dict = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : Any , __magic_name__ : str=3_60_00 , __magic_name__ : List[Any]=12_80 , __magic_name__ : Optional[Any]=10_24 , __magic_name__ : Union[str, Any]=81_92 , __magic_name__ : Any=40_96 , __magic_name__ : Union[str, Any]=1_28 , __magic_name__ : List[Any]=10 , __magic_name__ : List[str]=0 , __magic_name__ : Optional[int]=16 , __magic_name__ : str=16 , __magic_name__ : List[Any]=1_28 , __magic_name__ : Tuple=0.0 , __magic_name__ : int=1E-5 , __magic_name__ : Optional[Any]=False , __magic_name__ : List[str]=0.0 , __magic_name__ : List[Any]="float32" , __magic_name__ : List[str]=False , __magic_name__ : List[Any]=False , __magic_name__ : Optional[Any]=False , __magic_name__ : Tuple=0.0_0_2 , __magic_name__ : List[Any]=False , __magic_name__ : Tuple=True , __magic_name__ : Optional[Any]=3_59_98 , __magic_name__ : Dict=3_59_95 , __magic_name__ : List[str]=3_59_99 , **__magic_name__ : List[Any] , ) -> int: """simple docstring""" UpperCAmelCase_ : int = vocab_size UpperCAmelCase_ : Dict = max_position_embeddings UpperCAmelCase_ : Dict = d_model UpperCAmelCase_ : Optional[int] = d_ff UpperCAmelCase_ : List[str] = d_ext UpperCAmelCase_ : Dict = d_spout UpperCAmelCase_ : Any = num_switch_layers UpperCAmelCase_ : List[str] = num_ext_layers UpperCAmelCase_ : int = num_switch_layers + num_ext_layers UpperCAmelCase_ : Any = num_heads UpperCAmelCase_ : Optional[Any] = num_experts UpperCAmelCase_ : Optional[Any] = expert_capacity UpperCAmelCase_ : str = dropout_rate UpperCAmelCase_ : Tuple = layer_norm_epsilon UpperCAmelCase_ : Tuple = router_bias UpperCAmelCase_ : List[str] = router_jitter_noise UpperCAmelCase_ : List[str] = router_dtype UpperCAmelCase_ : Tuple = router_ignore_padding_tokens UpperCAmelCase_ : int = output_hidden_states UpperCAmelCase_ : Any = output_attentions UpperCAmelCase_ : int = initializer_factor UpperCAmelCase_ : str = output_router_logits UpperCAmelCase_ : Optional[Any] = use_cache super().__init__( separator_token_id=_A , pad_token_id=_A , eos_token_id=_A , **_A , )
711
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class __a (lowerCamelCase ): __a : int = "dandelin/vilt-b32-finetuned-vqa" __a : Any = ( "This is a tool that answers a question about an image. It takes an input named `image` which should be the " "image containing the information, as well as a `question` which should be the question in English. It " "returns a text that is the answer to the question." ) __a : Any = "image_qa" __a : str = AutoProcessor __a : Any = AutoModelForVisualQuestionAnswering __a : List[Any] = ["image", "text"] __a : int = ["text"] def __init__( self : Tuple , *__magic_name__ : Any , **__magic_name__ : Any ) -> Tuple: """simple docstring""" requires_backends(self , ['''vision'''] ) super().__init__(*__magic_name__ , **__magic_name__ ) def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : "Image" , __magic_name__ : str ) -> Tuple: """simple docstring""" return self.pre_processor(__magic_name__ , __magic_name__ , return_tensors='''pt''' ) def UpperCAmelCase__ ( self : Any , __magic_name__ : List[str] ) -> Optional[Any]: """simple docstring""" with torch.no_grad(): return self.model(**__magic_name__ ).logits def UpperCAmelCase__ ( self : int , __magic_name__ : int ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : Dict = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
644
0
'''simple docstring''' import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Any ) -> List[Tuple[int, ...]]: UpperCAmelCase_ : Union[str, Any] = [] if isinstance(__snake_case, __snake_case ): for v in tree.values(): shapes.extend(_fetch_dims(__snake_case ) ) elif isinstance(__snake_case, (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(__snake_case ) ) elif isinstance(__snake_case, torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError('''Not supported''' ) return shapes @torch.jit.ignore def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Dict, SCREAMING_SNAKE_CASE__ : List[Any] ) -> Tuple[int, ...]: UpperCAmelCase_ : Any = [] for d in reversed(__snake_case ): idx.append(flat_idx % d ) UpperCAmelCase_ : Any = flat_idx // d return tuple(reversed(__snake_case ) ) @torch.jit.ignore def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Optional[int], SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : Tuple = None, SCREAMING_SNAKE_CASE__ : Union[str, Any] = None, ) -> List[Tuple[slice, ...]]: def reduce_edge_list(SCREAMING_SNAKE_CASE__ : int ) -> None: UpperCAmelCase_ : str = True for i in range(len(__snake_case ) ): UpperCAmelCase_ : Union[str, Any] = -1 * (i + 1) l[reversed_idx] &= tally UpperCAmelCase_ : Tuple = l[reversed_idx] if start_edges is None: UpperCAmelCase_ : Union[str, Any] = [s == 0 for s in start] reduce_edge_list(__snake_case ) if end_edges is None: UpperCAmelCase_ : Any = [e == (d - 1) for e, d in zip(__snake_case, __snake_case )] reduce_edge_list(__snake_case ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(__snake_case ) == 0: return [()] elif len(__snake_case ) == 1: return [(slice(start[0], end[0] + 1 ),)] UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : Any = [] # Dimensions common to start and end can be selected directly for s, e in zip(__snake_case, __snake_case ): if s == e: path_list.append(slice(__snake_case, s + 1 ) ) else: break UpperCAmelCase_ : Union[str, Any] = tuple(__snake_case ) UpperCAmelCase_ : Dict = len(__snake_case ) # start == end, and we're done if divergence_idx == len(__snake_case ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None UpperCAmelCase_ : Union[str, Any] = start[divergence_idx] return tuple( path + (slice(__snake_case, sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :], [d - 1 for d in dims[divergence_idx + 1 :]], dims[divergence_idx + 1 :], start_edges=start_edges[divergence_idx + 1 :], end_edges=[True for _ in end_edges[divergence_idx + 1 :]], ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None UpperCAmelCase_ : List[Any] = end[divergence_idx] return tuple( path + (slice(__snake_case, edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]], end[divergence_idx + 1 :], dims[divergence_idx + 1 :], start_edges=[True for _ in start_edges[divergence_idx + 1 :]], end_edges=end_edges[divergence_idx + 1 :], ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx], end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx], end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1, end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) UpperCAmelCase_ : str = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1, end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : Any, SCREAMING_SNAKE_CASE__ : Optional[int], SCREAMING_SNAKE_CASE__ : Dict ) -> torch.Tensor: UpperCAmelCase_ : str = t.shape[:no_batch_dims] UpperCAmelCase_ : Union[str, Any] = list(_flat_idx_to_idx(__snake_case, __snake_case ) ) # _get_minimal_slice_set is inclusive UpperCAmelCase_ : Tuple = list(_flat_idx_to_idx(flat_end - 1, __snake_case ) ) # Get an ordered list of slices to perform UpperCAmelCase_ : Optional[int] = _get_minimal_slice_set( __snake_case, __snake_case, __snake_case, ) UpperCAmelCase_ : Union[str, Any] = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : str, SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : str, SCREAMING_SNAKE_CASE__ : Union[str, Any], SCREAMING_SNAKE_CASE__ : Optional[Any] = False, SCREAMING_SNAKE_CASE__ : Union[str, Any] = None, SCREAMING_SNAKE_CASE__ : List[Any] = False, ) -> Any: if not (len(__snake_case ) > 0): raise ValueError('''Must provide at least one input''' ) UpperCAmelCase_ : List[Any] = [shape[:no_batch_dims] for shape in _fetch_dims(__snake_case )] UpperCAmelCase_ : Union[str, Any] = tuple([max(__snake_case ) for s in zip(*__snake_case )] ) def _prep_inputs(SCREAMING_SNAKE_CASE__ : Dict ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: UpperCAmelCase_ : int = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) UpperCAmelCase_ : Optional[Any] = t.reshape(-1, *t.shape[no_batch_dims:] ) else: UpperCAmelCase_ : Optional[Any] = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t UpperCAmelCase_ : str = tensor_tree_map(_prep_inputs, __snake_case ) UpperCAmelCase_ : Optional[int] = None if _out is not None: UpperCAmelCase_ : int = tensor_tree_map(lambda SCREAMING_SNAKE_CASE__ : t.view([-1] + list(t.shape[no_batch_dims:] ) ), _out ) UpperCAmelCase_ : Optional[Any] = 1 for d in orig_batch_dims: flat_batch_dim *= d UpperCAmelCase_ : Dict = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(SCREAMING_SNAKE_CASE__ : str ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t UpperCAmelCase_ : List[Any] = 0 UpperCAmelCase_ : Optional[Any] = prepped_outputs for _ in range(__snake_case ): # Chunk the input if not low_mem: UpperCAmelCase_ : Optional[Any] = _select_chunk else: UpperCAmelCase_ : Union[str, Any] = partial( _chunk_slice, flat_start=__snake_case, flat_end=min(__snake_case, i + chunk_size ), no_batch_dims=len(__snake_case ), ) UpperCAmelCase_ : List[str] = tensor_tree_map(__snake_case, __snake_case ) # Run the layer on the chunk UpperCAmelCase_ : int = layer(**__snake_case ) # Allocate space for the output if out is None: UpperCAmelCase_ : Union[str, Any] = tensor_tree_map(lambda SCREAMING_SNAKE_CASE__ : t.new_zeros((flat_batch_dim,) + t.shape[1:] ), __snake_case ) # Put the chunk in its pre-allocated space if isinstance(__snake_case, __snake_case ): def assign(SCREAMING_SNAKE_CASE__ : Any, SCREAMING_SNAKE_CASE__ : Dict ) -> None: for k, v in da.items(): if isinstance(__snake_case, __snake_case ): assign(__snake_case, da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: UpperCAmelCase_ : List[Any] = da[k] assign(__snake_case, __snake_case ) elif isinstance(__snake_case, __snake_case ): for xa, xa in zip(__snake_case, __snake_case ): if _add_into_out: xa[i : i + chunk_size] += xa else: UpperCAmelCase_ : int = xa elif isinstance(__snake_case, torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: UpperCAmelCase_ : Union[str, Any] = output_chunk else: raise ValueError('''Not supported''' ) i += chunk_size UpperCAmelCase_ : Optional[int] = tensor_tree_map(lambda SCREAMING_SNAKE_CASE__ : t.view(orig_batch_dims + t.shape[1:] ), __snake_case ) return out class __a : def __init__( self : Optional[Any] , __magic_name__ : int = 5_12 , ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : List[str] = max_chunk_size UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : Union[str, Any] = None def UpperCAmelCase__ ( self : Any , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : Optional[int] ) -> int: """simple docstring""" logging.info('''Tuning chunk size...''' ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size UpperCAmelCase_ : Optional[int] = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] UpperCAmelCase_ : Any = [c for c in candidates if c > min_chunk_size] UpperCAmelCase_ : Dict = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(__magic_name__ : Dict ) -> bool: try: with torch.no_grad(): fn(*__a , chunk_size=__a ) return True except RuntimeError: return False UpperCAmelCase_ : Tuple = 0 UpperCAmelCase_ : str = len(__a ) - 1 while i > min_viable_chunk_size_index: UpperCAmelCase_ : Any = test_chunk_size(candidates[i] ) if not viable: UpperCAmelCase_ : str = (min_viable_chunk_size_index + i) // 2 else: UpperCAmelCase_ : Any = i UpperCAmelCase_ : int = (i + len(__a ) - 1) // 2 return candidates[min_viable_chunk_size_index] def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : Union[str, Any] ) -> bool: """simple docstring""" UpperCAmelCase_ : Dict = True for aa, aa in zip(__a , __a ): assert type(__a ) == type(__a ) if isinstance(__a , (list, tuple) ): consistent &= self._compare_arg_caches(__a , __a ) elif isinstance(__a , __a ): UpperCAmelCase_ : List[Any] = [v for _, v in sorted(aa.items() , key=lambda __magic_name__ : x[0] )] UpperCAmelCase_ : Tuple = [v for _, v in sorted(aa.items() , key=lambda __magic_name__ : x[0] )] consistent &= self._compare_arg_caches(__a , __a ) else: consistent &= aa == aa return consistent def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : Optional[int] , __magic_name__ : int , __magic_name__ : Optional[int] , ) -> int: """simple docstring""" UpperCAmelCase_ : Any = True UpperCAmelCase_ : Optional[Any] = tree_map(lambda __magic_name__ : a.shape if isinstance(__a , torch.Tensor ) else a , __a , __a ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(__a ) UpperCAmelCase_ : Optional[Any] = self._compare_arg_caches(self.cached_arg_data , __a ) else: # Otherwise, we can reuse the precomputed value UpperCAmelCase_ : Tuple = False if not consistent: UpperCAmelCase_ : Union[str, Any] = self._determine_favorable_chunk_size( __a , __a , __a , ) UpperCAmelCase_ : Optional[Any] = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
712
'''simple docstring''' from collections.abc import Iterable from typing import Any class __a : def __init__( self : Optional[Any] , __magic_name__ : int | None = None ) -> Tuple: """simple docstring""" UpperCAmelCase_ : List[str] = value UpperCAmelCase_ : Node | None = None # Added in order to delete a node easier UpperCAmelCase_ : Node | None = None UpperCAmelCase_ : Node | None = None def __repr__( self : List[str] ) -> str: """simple docstring""" from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({F"""{self.value}""": (self.left, self.right)} , indent=1 ) class __a : def __init__( self : int , __magic_name__ : Node | None = None ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : str = root def __str__( self : Any ) -> str: """simple docstring""" return str(self.root ) def UpperCAmelCase__ ( self : Any , __magic_name__ : Node , __magic_name__ : Node | None ) -> None: """simple docstring""" if new_children is not None: # reset its kids UpperCAmelCase_ : Dict = node.parent if node.parent is not None: # reset its parent if self.is_right(__magic_name__ ): # If it is the right children UpperCAmelCase_ : Optional[Any] = new_children else: UpperCAmelCase_ : Optional[int] = new_children else: UpperCAmelCase_ : List[str] = new_children def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Node ) -> bool: """simple docstring""" if node.parent and node.parent.right: return node == node.parent.right return False def UpperCAmelCase__ ( self : Union[str, Any] ) -> bool: """simple docstring""" return self.root is None def UpperCAmelCase__ ( self : Any , __magic_name__ : str ) -> None: """simple docstring""" UpperCAmelCase_ : Tuple = Node(__magic_name__ ) # create a new Node if self.empty(): # if Tree is empty UpperCAmelCase_ : List[Any] = new_node # set its root else: # Tree is not empty UpperCAmelCase_ : str = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: UpperCAmelCase_ : Union[str, Any] = new_node # We insert the new node in a leaf break else: UpperCAmelCase_ : List[Any] = parent_node.left else: if parent_node.right is None: UpperCAmelCase_ : List[Any] = new_node break else: UpperCAmelCase_ : Union[str, Any] = parent_node.right UpperCAmelCase_ : Union[str, Any] = parent_node def UpperCAmelCase__ ( self : Optional[Any] , *__magic_name__ : List[str] ) -> None: """simple docstring""" for value in values: self.__insert(__magic_name__ ) def UpperCAmelCase__ ( self : Dict , __magic_name__ : int ) -> Node | None: """simple docstring""" if self.empty(): raise IndexError('''Warning: Tree is empty! please use another.''' ) else: UpperCAmelCase_ : str = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: UpperCAmelCase_ : List[str] = node.left if value < node.value else node.right return node def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : Node | None = None ) -> Node | None: """simple docstring""" if node is None: if self.root is None: return None UpperCAmelCase_ : Dict = self.root if not self.empty(): while node.right is not None: UpperCAmelCase_ : Any = node.right return node def UpperCAmelCase__ ( self : Dict , __magic_name__ : Node | None = None ) -> Node | None: """simple docstring""" if node is None: UpperCAmelCase_ : Optional[int] = self.root if self.root is None: return None if not self.empty(): UpperCAmelCase_ : Union[str, Any] = self.root while node.left is not None: UpperCAmelCase_ : Dict = node.left return node def UpperCAmelCase__ ( self : Tuple , __magic_name__ : int ) -> None: """simple docstring""" UpperCAmelCase_ : List[str] = self.search(__magic_name__ ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(__magic_name__ , __magic_name__ ) elif node.left is None: # Has only right children self.__reassign_nodes(__magic_name__ , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(__magic_name__ , node.left ) else: UpperCAmelCase_ : List[str] = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore UpperCAmelCase_ : Optional[int] = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Node | None ) -> Iterable: """simple docstring""" if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : List[Any]=None ) -> Any: """simple docstring""" if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : list , __magic_name__ : Node | None ) -> None: """simple docstring""" if node: self.inorder(__magic_name__ , node.left ) arr.append(node.value ) self.inorder(__magic_name__ , node.right ) def UpperCAmelCase__ ( self : Tuple , __magic_name__ : int , __magic_name__ : Node ) -> int: """simple docstring""" UpperCAmelCase_ : list[int] = [] self.inorder(__magic_name__ , __magic_name__ ) # append all values to list using inorder traversal return arr[k - 1] def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Node | None ) -> list[Node]: UpperCAmelCase_ : Any = [] if curr_node is not None: UpperCAmelCase_ : Any = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def lowerCamelCase_ ( ) -> None: UpperCAmelCase_ : str = (8, 3, 6, 1, 10, 14, 13, 4, 7) UpperCAmelCase_ : Tuple = BinarySearchTree() for i in testlist: t.insert(SCREAMING_SNAKE_CASE__ ) # Prints all the elements of the list in order traversal print(SCREAMING_SNAKE_CASE__ ) if t.search(6 ) is not None: print('''The value 6 exists''' ) else: print('''The value 6 doesn\'t exist''' ) if t.search(-1 ) is not None: print('''The value -1 exists''' ) else: print('''The value -1 doesn\'t exist''' ) if not t.empty(): print('''Max Value: ''', t.get_max().value ) # type: ignore print('''Min Value: ''', t.get_min().value ) # type: ignore for i in testlist: t.remove(SCREAMING_SNAKE_CASE__ ) print(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
644
0
import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef snake_case_ : Optional[int] = ( "This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate " "library. You can have a look at this example script for pointers: " "https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py" ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Optional[int], SCREAMING_SNAKE_CASE__ : List[str] ) -> Dict: warnings.warn(lowerCamelCase_, lowerCamelCase_ ) requires_backends(lowerCamelCase_, '''sklearn''' ) return (preds == labels).mean() def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Optional[Any], SCREAMING_SNAKE_CASE__ : List[str] ) -> Any: warnings.warn(lowerCamelCase_, lowerCamelCase_ ) requires_backends(lowerCamelCase_, '''sklearn''' ) UpperCAmelCase_ : Any = simple_accuracy(lowerCamelCase_, lowerCamelCase_ ) UpperCAmelCase_ : Any = fa_score(y_true=lowerCamelCase_, y_pred=lowerCamelCase_ ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Optional[int], SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: warnings.warn(lowerCamelCase_, lowerCamelCase_ ) requires_backends(lowerCamelCase_, '''sklearn''' ) UpperCAmelCase_ : Optional[int] = pearsonr(lowerCamelCase_, lowerCamelCase_ )[0] UpperCAmelCase_ : List[str] = spearmanr(lowerCamelCase_, lowerCamelCase_ )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Dict, SCREAMING_SNAKE_CASE__ : Any, SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> List[Any]: warnings.warn(lowerCamelCase_, lowerCamelCase_ ) requires_backends(lowerCamelCase_, '''sklearn''' ) assert len(lowerCamelCase_ ) == len(lowerCamelCase_ ), F"""Predictions and labels have mismatched lengths {len(lowerCamelCase_ )} and {len(lowerCamelCase_ )}""" if task_name == "cola": return {"mcc": matthews_corrcoef(lowerCamelCase_, lowerCamelCase_ )} elif task_name == "sst-2": return {"acc": simple_accuracy(lowerCamelCase_, lowerCamelCase_ )} elif task_name == "mrpc": return acc_and_fa(lowerCamelCase_, lowerCamelCase_ ) elif task_name == "sts-b": return pearson_and_spearman(lowerCamelCase_, lowerCamelCase_ ) elif task_name == "qqp": return acc_and_fa(lowerCamelCase_, lowerCamelCase_ ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(lowerCamelCase_, lowerCamelCase_ )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(lowerCamelCase_, lowerCamelCase_ )} elif task_name == "qnli": return {"acc": simple_accuracy(lowerCamelCase_, lowerCamelCase_ )} elif task_name == "rte": return {"acc": simple_accuracy(lowerCamelCase_, lowerCamelCase_ )} elif task_name == "wnli": return {"acc": simple_accuracy(lowerCamelCase_, lowerCamelCase_ )} elif task_name == "hans": return {"acc": simple_accuracy(lowerCamelCase_, lowerCamelCase_ )} else: raise KeyError(lowerCamelCase_ ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[str], SCREAMING_SNAKE_CASE__ : str, SCREAMING_SNAKE_CASE__ : Tuple ) -> Tuple: warnings.warn(lowerCamelCase_, lowerCamelCase_ ) requires_backends(lowerCamelCase_, '''sklearn''' ) if len(lowerCamelCase_ ) != len(lowerCamelCase_ ): raise ValueError(F"""Predictions and labels have mismatched lengths {len(lowerCamelCase_ )} and {len(lowerCamelCase_ )}""" ) if task_name == "xnli": return {"acc": simple_accuracy(lowerCamelCase_, lowerCamelCase_ )} else: raise KeyError(lowerCamelCase_ )
713
'''simple docstring''' import sys import turtle def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : tuple[float, float] ) -> tuple[float, float]: return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : int, ) -> None: my_pen.up() my_pen.goto(vertexa[0], vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0], vertexa[1] ) my_pen.goto(vertexa[0], vertexa[1] ) my_pen.goto(vertexa[0], vertexa[1] ) if depth == 0: return triangle(SCREAMING_SNAKE_CASE__, get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), depth - 1 ) triangle(SCREAMING_SNAKE_CASE__, get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), depth - 1 ) triangle(SCREAMING_SNAKE_CASE__, get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( "Correct format for using this script: " "python fractals.py <int:depth_for_fractal>" ) snake_case_ : Any = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor("red") snake_case_ : Tuple = [(-1_75, -1_25), (0, 1_75), (1_75, -1_25)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
644
0
import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP snake_case_ : List[str] = False try: snake_case_ : int = _is_package_available("google.colab") except ModuleNotFoundError: pass @input.register class __a : def __init__( self : str , __magic_name__ : str = None , __magic_name__ : list = [] ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : str = 0 UpperCAmelCase_ : Union[str, Any] = choices UpperCAmelCase_ : Union[str, Any] = prompt if sys.platform == "win32": UpperCAmelCase_ : Union[str, Any] = '''*''' else: UpperCAmelCase_ : Optional[int] = '''➔ ''' def UpperCAmelCase__ ( self : int , __magic_name__ : List[Any] , __magic_name__ : str = "" ) -> Optional[int]: """simple docstring""" if sys.platform != "win32": writeColor(self.choices[index] , 32 , UpperCamelCase_ ) else: forceWrite(self.choices[index] , UpperCamelCase_ ) def UpperCAmelCase__ ( self : Any , __magic_name__ : int ) -> Optional[int]: """simple docstring""" if index == self.position: forceWrite(F""" {self.arrow_char} """ ) self.write_choice(UpperCamelCase_ ) else: forceWrite(F""" {self.choices[index]}""" ) reset_cursor() def UpperCAmelCase__ ( self : Dict , __magic_name__ : Direction , __magic_name__ : int = 1 ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Optional[int] = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(UpperCamelCase_ ) move_cursor(UpperCamelCase_ , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP['''up'''] ) def UpperCAmelCase__ ( self : Dict ) -> List[str]: """simple docstring""" self.move_direction(Direction.UP ) @input.mark(KEYMAP['''down'''] ) def UpperCAmelCase__ ( self : str ) -> Optional[Any]: """simple docstring""" self.move_direction(Direction.DOWN ) @input.mark(KEYMAP['''newline'''] ) def UpperCAmelCase__ ( self : int ) -> Any: """simple docstring""" move_cursor(len(self.choices ) - self.position , '''DOWN''' ) return self.position @input.mark(KEYMAP['''interrupt'''] ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" move_cursor(len(self.choices ) - self.position , '''DOWN''' ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(UpperCamelCase_ )] for number in range(10 )] ) def UpperCAmelCase__ ( self : str ) -> List[str]: """simple docstring""" UpperCAmelCase_ : Optional[Any] = int(chr(self.current_selection ) ) UpperCAmelCase_ : Optional[int] = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , UpperCamelCase_ ) else: return else: return def UpperCAmelCase__ ( self : int , __magic_name__ : int = 0 ) -> Any: """simple docstring""" if self.prompt: linebreak() forceWrite(self.prompt , '''\n''' ) if in_colab: forceWrite('''Please input a choice index (starting from 0), and press enter''' , '''\n''' ) else: forceWrite('''Please select a choice using the arrow or number keys, and selecting with enter''' , '''\n''' ) UpperCAmelCase_ : str = default_choice for i in range(len(self.choices ) ): self.print_choice(UpperCamelCase_ ) forceWrite('''\n''' ) move_cursor(len(self.choices ) - self.position , '''UP''' ) with cursor.hide(): while True: if in_colab: try: UpperCAmelCase_ : Optional[int] = int(builtins.input() ) except ValueError: UpperCAmelCase_ : List[str] = default_choice else: UpperCAmelCase_ : int = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , '''UP''' ) clear_line() self.write_choice(UpperCamelCase_ , '''\n''' ) return choice
714
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device snake_case_ : List[str] = False class __a (unittest.TestCase ): pass @nightly @require_torch_gpu class __a (unittest.TestCase ): def UpperCAmelCase__ ( self : int ) -> str: """simple docstring""" # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self : List[str] ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Tuple = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) UpperCAmelCase_ : List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) UpperCAmelCase_ : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase_ : Union[str, Any] = pipe.dual_guided( prompt='''first prompt''' , image=__magic_name__ , text_to_image_strength=0.7_5 , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__magic_name__ ) UpperCAmelCase_ : Optional[int] = VersatileDiffusionPipeline.from_pretrained(__magic_name__ , torch_dtype=torch.floataa ) pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) UpperCAmelCase_ : Any = generator.manual_seed(0 ) UpperCAmelCase_ : Dict = pipe.dual_guided( prompt='''first prompt''' , image=__magic_name__ , text_to_image_strength=0.7_5 , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def UpperCAmelCase__ ( self : str ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : str = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) UpperCAmelCase_ : Union[str, Any] = '''cyberpunk 2077''' UpperCAmelCase_ : Union[str, Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) UpperCAmelCase_ : Tuple = torch.manual_seed(0 ) UpperCAmelCase_ : Optional[Any] = pipe.dual_guided( prompt=__magic_name__ , image=__magic_name__ , text_to_image_strength=0.7_5 , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' , ).images UpperCAmelCase_ : List[str] = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCAmelCase_ : Union[str, Any] = np.array([0.1_4_4_8, 0.1_6_1_9, 0.1_7_4_1, 0.1_0_8_6, 0.1_1_4_7, 0.1_1_2_8, 0.1_1_9_9, 0.1_1_6_5, 0.1_0_0_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 UpperCAmelCase_ : Tuple = '''A painting of a squirrel eating a burger ''' UpperCAmelCase_ : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase_ : List[Any] = pipe.text_to_image( prompt=__magic_name__ , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' ).images UpperCAmelCase_ : Tuple = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCAmelCase_ : Any = np.array([0.3_3_6_7, 0.3_1_6_9, 0.2_6_5_6, 0.3_8_7_0, 0.4_7_9_0, 0.3_7_9_6, 0.4_0_0_9, 0.4_8_7_8, 0.4_7_7_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 UpperCAmelCase_ : Tuple = pipe.image_variation(__magic_name__ , generator=__magic_name__ , output_type='''numpy''' ).images UpperCAmelCase_ : Optional[Any] = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCAmelCase_ : List[str] = np.array([0.3_0_7_6, 0.3_1_2_3, 0.3_2_8_4, 0.3_7_8_2, 0.3_7_7_0, 0.3_8_9_4, 0.4_2_9_7, 0.4_3_3_1, 0.4_4_5_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
644
0
'''simple docstring''' from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging snake_case_ : Any = logging.get_logger(__name__) class __a (_UpperCamelCase ): __a : int = ["pixel_values"] def __init__( self : List[Any] , __magic_name__ : bool = True , __magic_name__ : Union[int, float] = 1 / 2_55 , __magic_name__ : bool = True , __magic_name__ : int = 8 , **__magic_name__ : Dict , ) -> Tuple: """simple docstring""" super().__init__(**__magic_name__ ) UpperCAmelCase_ : str = do_rescale UpperCAmelCase_ : Optional[Any] = rescale_factor UpperCAmelCase_ : Any = do_pad UpperCAmelCase_ : Optional[Any] = pad_size def UpperCAmelCase__ ( self : str , __magic_name__ : np.ndarray , __magic_name__ : float , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : Optional[int] ) -> Any: """simple docstring""" return rescale(__magic_name__ , scale=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def UpperCAmelCase__ ( self : Dict , __magic_name__ : np.ndarray , __magic_name__ : int , __magic_name__ : Optional[Union[str, ChannelDimension]] = None ) -> List[str]: """simple docstring""" UpperCAmelCase_ : str = get_image_size(__magic_name__ ) UpperCAmelCase_ : Union[str, Any] = (old_height // size + 1) * size - old_height UpperCAmelCase_ : List[Any] = (old_width // size + 1) * size - old_width return pad(__magic_name__ , ((0, pad_height), (0, pad_width)) , mode='''symmetric''' , data_format=__magic_name__ ) def UpperCAmelCase__ ( self : List[str] , __magic_name__ : ImageInput , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[float] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[int] = None , __magic_name__ : Optional[Union[str, TensorType]] = None , __magic_name__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__magic_name__ : Dict , ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : int = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ : str = do_pad if do_pad is not None else self.do_pad UpperCAmelCase_ : Optional[int] = pad_size if pad_size is not None else self.pad_size UpperCAmelCase_ : Tuple = make_list_of_images(__magic_name__ ) if not valid_images(__magic_name__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. UpperCAmelCase_ : Any = [to_numpy_array(__magic_name__ ) for image in images] if do_rescale: UpperCAmelCase_ : Any = [self.rescale(image=__magic_name__ , scale=__magic_name__ ) for image in images] if do_pad: UpperCAmelCase_ : Tuple = [self.pad(__magic_name__ , size=__magic_name__ ) for image in images] UpperCAmelCase_ : Union[str, Any] = [to_channel_dimension_format(__magic_name__ , __magic_name__ ) for image in images] UpperCAmelCase_ : Optional[Any] = {"pixel_values": images} return BatchFeature(data=__magic_name__ , tensor_type=__magic_name__ )
715
'''simple docstring''' snake_case_ : int = { "Pillow": "Pillow", "accelerate": "accelerate>=0.11.0", "compel": "compel==0.1.8", "black": "black~=23.1", "datasets": "datasets", "filelock": "filelock", "flax": "flax>=0.4.1", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.13.2", "requests-mock": "requests-mock==1.10.0", "importlib_metadata": "importlib_metadata", "invisible-watermark": "invisible-watermark", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2", "jaxlib": "jaxlib>=0.1.65", "Jinja2": "Jinja2", "k-diffusion": "k-diffusion>=0.0.12", "torchsde": "torchsde", "note_seq": "note_seq", "librosa": "librosa", "numpy": "numpy", "omegaconf": "omegaconf", "parameterized": "parameterized", "protobuf": "protobuf>=3.20.3,<4", "pytest": "pytest", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "ruff": "ruff>=0.0.241", "safetensors": "safetensors", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "scipy": "scipy", "onnx": "onnx", "regex": "regex!=2019.12.17", "requests": "requests", "tensorboard": "tensorboard", "torch": "torch>=1.4", "torchvision": "torchvision", "transformers": "transformers>=4.25.1", "urllib3": "urllib3<=2.0.0", }
644
0
'''simple docstring''' def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int ) -> int: return 1 if digit in (0, 1) else (digit * factorial(digit - 1 )) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Dict ) -> bool: UpperCAmelCase_ : Optional[Any] = 0 UpperCAmelCase_ : Dict = number while duplicate > 0: UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = divmod(a__, 10 ) fact_sum += factorial(a__ ) return fact_sum == number if __name__ == "__main__": print("Program to check whether a number is a Krisnamurthy Number or not.") snake_case_ : Dict = int(input("Enter number: ").strip()) print( f'''{number} is {'' if krishnamurthy(number) else 'not '}a Krishnamurthy Number.''' )
716
'''simple docstring''' import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __a (unittest.TestCase ): @property def UpperCAmelCase__ ( self : Dict ) -> str: """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase_ : Optional[Any] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def UpperCAmelCase__ ( self : Dict ) -> Tuple: """simple docstring""" UpperCAmelCase_ : List[Any] = self.dummy_uncond_unet UpperCAmelCase_ : Dict = KarrasVeScheduler() UpperCAmelCase_ : Union[str, Any] = KarrasVePipeline(unet=__magic_name__ , scheduler=__magic_name__ ) pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) UpperCAmelCase_ : Dict = torch.manual_seed(0 ) UpperCAmelCase_ : Optional[int] = pipe(num_inference_steps=2 , generator=__magic_name__ , output_type='''numpy''' ).images UpperCAmelCase_ : Tuple = torch.manual_seed(0 ) UpperCAmelCase_ : str = pipe(num_inference_steps=2 , generator=__magic_name__ , output_type='''numpy''' , return_dict=__magic_name__ )[0] UpperCAmelCase_ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCAmelCase_ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase_ : Dict = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class __a (unittest.TestCase ): def UpperCAmelCase__ ( self : int ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : List[str] = '''google/ncsnpp-celebahq-256''' UpperCAmelCase_ : List[str] = UNetaDModel.from_pretrained(__magic_name__ ) UpperCAmelCase_ : List[Any] = KarrasVeScheduler() UpperCAmelCase_ : Any = KarrasVePipeline(unet=__magic_name__ , scheduler=__magic_name__ ) pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) UpperCAmelCase_ : Dict = torch.manual_seed(0 ) UpperCAmelCase_ : Optional[Any] = pipe(num_inference_steps=20 , generator=__magic_name__ , output_type='''numpy''' ).images UpperCAmelCase_ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) UpperCAmelCase_ : Optional[Any] = np.array([0.5_7_8, 0.5_8_1_1, 0.5_9_2_4, 0.5_8_0_9, 0.5_8_7, 0.5_8_8_6, 0.5_8_6_1, 0.5_8_0_2, 0.5_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
644
0
'''simple docstring''' from __future__ import annotations from typing import Generic, TypeVar snake_case_ : int = TypeVar("T") class __a (Generic[T] ): def __init__( self : List[str] , __magic_name__ : int ) -> None: """simple docstring""" UpperCAmelCase_ : Any = data UpperCAmelCase_ : Dict = self UpperCAmelCase_ : List[str] = 0 class __a (Generic[T] ): def __init__( self : List[Any] ) -> None: """simple docstring""" # map from node name to the node object UpperCAmelCase_ : Optional[Any] = {} def UpperCAmelCase__ ( self : str , __magic_name__ : Tuple ) -> None: """simple docstring""" # create a new set with x as its member UpperCAmelCase_ : List[Any] = DisjointSetTreeNode(lowerCAmelCase_ ) def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : Any ) -> DisjointSetTreeNode[T]: """simple docstring""" # find the set x belongs to (with path-compression) UpperCAmelCase_ : Optional[Any] = self.map[data] if elem_ref != elem_ref.parent: UpperCAmelCase_ : str = self.find_set(elem_ref.parent.data ) return elem_ref.parent def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : Dict , __magic_name__ : Any ) -> None: """simple docstring""" # helper function for union operation if nodea.rank > nodea.rank: UpperCAmelCase_ : Optional[int] = nodea else: UpperCAmelCase_ : List[str] = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def UpperCAmelCase__ ( self : Tuple , __magic_name__ : int , __magic_name__ : Union[str, Any] ) -> None: """simple docstring""" # merge 2 disjoint sets self.link(self.find_set(lowerCAmelCase_ ) , self.find_set(lowerCAmelCase_ ) ) class __a (Generic[T] ): def __init__( self : int ) -> None: """simple docstring""" # connections: map from the node to the neighbouring nodes (with weights) UpperCAmelCase_ : Optional[Any] = {} def UpperCAmelCase__ ( self : Dict , __magic_name__ : Any ) -> None: """simple docstring""" # add a node ONLY if its not present in the graph if node not in self.connections: UpperCAmelCase_ : Dict = {} def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : int , __magic_name__ : List[str] , __magic_name__ : List[Any] ) -> None: """simple docstring""" # add an edge with the given weight self.add_node(lowerCAmelCase_ ) self.add_node(lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = weight UpperCAmelCase_ : Union[str, Any] = weight def UpperCAmelCase__ ( self : Dict ) -> GraphUndirectedWeighted[T]: """simple docstring""" UpperCAmelCase_ : int = [] UpperCAmelCase_ : Optional[int] = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda __magic_name__ : x[2] ) # creating the disjoint set UpperCAmelCase_ : int = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(lowerCAmelCase_ ) # MST generation UpperCAmelCase_ : Tuple = 0 UpperCAmelCase_ : str = 0 UpperCAmelCase_ : Optional[int] = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Dict = edges[index] index += 1 UpperCAmelCase_ : int = disjoint_set.find_set(lowerCAmelCase_ ) UpperCAmelCase_ : Optional[int] = disjoint_set.find_set(lowerCAmelCase_ ) if parent_u != parent_v: num_edges += 1 graph.add_edge(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) disjoint_set.union(lowerCAmelCase_ , lowerCAmelCase_ ) return graph
717
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class __a (lowerCamelCase ): __a : List[Any] = "openai/whisper-base" __a : Optional[Any] = ( "This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the " "transcribed text." ) __a : Any = "transcriber" __a : str = WhisperProcessor __a : List[Any] = WhisperForConditionalGeneration __a : int = ["audio"] __a : Optional[Any] = ["text"] def UpperCAmelCase__ ( self : Dict , __magic_name__ : List[str] ) -> Optional[int]: """simple docstring""" return self.pre_processor(__magic_name__ , return_tensors='''pt''' ).input_features def UpperCAmelCase__ ( self : Dict , __magic_name__ : Dict ) -> Tuple: """simple docstring""" return self.model.generate(inputs=__magic_name__ ) def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Dict ) -> str: """simple docstring""" return self.pre_processor.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ )[0]
644
0
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() snake_case_ : Optional[Any] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) snake_case_ : int = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', f'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', f'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.encoder.layers.{i}.norm1.weight''', f'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.multihead_attn.out_proj.weight''', f'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.multihead_attn.out_proj.bias''', f'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm1.weight''', f'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.weight''', f'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.bias''', f'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''decoder.layers.{i}.final_layer_norm.bias''')) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.encoder.norm.weight", "encoder.layernorm.weight"), ("transformer.encoder.norm.bias", "encoder.layernorm.bias"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ] ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[Any], SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : str ) -> Any: UpperCAmelCase_ : List[str] = state_dict.pop(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : List[Any] = val def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int ) -> str: UpperCAmelCase_ : int = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: UpperCAmelCase_ : Dict = key.replace('''backbone.0.body''', '''backbone.conv_encoder.model''' ) UpperCAmelCase_ : Dict = value else: UpperCAmelCase_ : Tuple = value return new_state_dict def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Any ) -> Dict: UpperCAmelCase_ : int = '''''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCAmelCase_ : List[str] = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) UpperCAmelCase_ : Optional[Any] = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ : Union[str, Any] = in_proj_weight[:256, :] UpperCAmelCase_ : int = in_proj_bias[:256] UpperCAmelCase_ : int = in_proj_weight[256:512, :] UpperCAmelCase_ : int = in_proj_bias[256:512] UpperCAmelCase_ : Tuple = in_proj_weight[-256:, :] UpperCAmelCase_ : Any = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention UpperCAmelCase_ : int = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight""" ) UpperCAmelCase_ : Tuple = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ : Optional[int] = in_proj_weight[:256, :] UpperCAmelCase_ : Dict = in_proj_bias[:256] UpperCAmelCase_ : Any = in_proj_weight[256:512, :] UpperCAmelCase_ : List[str] = in_proj_bias[256:512] UpperCAmelCase_ : int = in_proj_weight[-256:, :] UpperCAmelCase_ : str = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention UpperCAmelCase_ : Optional[Any] = state_dict.pop( F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight""" ) UpperCAmelCase_ : int = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) of cross-attention to the state dict UpperCAmelCase_ : Tuple = in_proj_weight_cross_attn[:256, :] UpperCAmelCase_ : int = in_proj_bias_cross_attn[:256] UpperCAmelCase_ : Any = in_proj_weight_cross_attn[256:512, :] UpperCAmelCase_ : List[Any] = in_proj_bias_cross_attn[256:512] UpperCAmelCase_ : List[Any] = in_proj_weight_cross_attn[-256:, :] UpperCAmelCase_ : int = in_proj_bias_cross_attn[-256:] def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : Tuple ) -> Dict: UpperCAmelCase_ : List[str] = image.size UpperCAmelCase_ : str = max(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : str = 800 if '''detection''' in checkpoint_url else 1000 UpperCAmelCase_ : int = target_max_size / current_max_size UpperCAmelCase_ : Dict = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Any ) -> Optional[int]: UpperCAmelCase_ : Optional[int] = F.to_tensor(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Any = F.normalize(SCREAMING_SNAKE_CASE__, mean=[0.4_85, 0.4_56, 0.4_06], std=[0.2_29, 0.2_24, 0.2_25] ) return image @torch.no_grad() def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : List[str], SCREAMING_SNAKE_CASE__ : int ) -> List[str]: logger.info('''Converting model...''' ) # load original state dict UpperCAmelCase_ : Any = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE__, map_location='''cpu''' ) # rename keys for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Union[str, Any] = rename_backbone_keys(SCREAMING_SNAKE_CASE__ ) # query, key and value matrices need special treatment read_in_q_k_v(SCREAMING_SNAKE_CASE__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCAmelCase_ : List[str] = '''model.''' for key in state_dict.copy().keys(): if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): UpperCAmelCase_ : Union[str, Any] = state_dict.pop(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : List[Any] = val # create HuggingFace model and load state dict UpperCAmelCase_ : Union[str, Any] = TableTransformerConfig( backbone='''resnet18''', mask_loss_coefficient=1, dice_loss_coefficient=1, ce_loss_coefficient=1, bbox_loss_coefficient=5, giou_loss_coefficient=2, eos_coefficient=0.4, class_cost=1, bbox_cost=5, giou_cost=2, ) if "detection" in checkpoint_url: UpperCAmelCase_ : Optional[Any] = 15 UpperCAmelCase_ : str = 2 UpperCAmelCase_ : Dict = {0: '''table''', 1: '''table rotated'''} UpperCAmelCase_ : Dict = idalabel UpperCAmelCase_ : str = {v: k for k, v in idalabel.items()} else: UpperCAmelCase_ : Union[str, Any] = 125 UpperCAmelCase_ : Union[str, Any] = 6 UpperCAmelCase_ : Union[str, Any] = { 0: '''table''', 1: '''table column''', 2: '''table row''', 3: '''table column header''', 4: '''table projected row header''', 5: '''table spanning cell''', } UpperCAmelCase_ : Optional[Any] = idalabel UpperCAmelCase_ : List[str] = {v: k for k, v in idalabel.items()} UpperCAmelCase_ : Any = DetrImageProcessor( format='''coco_detection''', max_size=800 if '''detection''' in checkpoint_url else 1000 ) UpperCAmelCase_ : Any = TableTransformerForObjectDetection(SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) model.eval() # verify our conversion UpperCAmelCase_ : Any = '''example_pdf.png''' if '''detection''' in checkpoint_url else '''example_table.png''' UpperCAmelCase_ : Union[str, Any] = hf_hub_download(repo_id='''nielsr/example-pdf''', repo_type='''dataset''', filename=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Any = Image.open(SCREAMING_SNAKE_CASE__ ).convert('''RGB''' ) UpperCAmelCase_ : Dict = normalize(resize(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) ).unsqueeze(0 ) UpperCAmelCase_ : Dict = model(SCREAMING_SNAKE_CASE__ ) if "detection" in checkpoint_url: UpperCAmelCase_ : int = (1, 15, 3) UpperCAmelCase_ : Tuple = torch.tensor( [[-6.78_97, -16.99_85, 6.79_37], [-8.01_86, -22.21_92, 6.96_77], [-7.31_17, -21.07_08, 7.40_55]] ) UpperCAmelCase_ : List[str] = torch.tensor([[0.48_67, 0.17_67, 0.67_32], [0.67_18, 0.44_79, 0.38_30], [0.47_16, 0.17_60, 0.63_64]] ) else: UpperCAmelCase_ : Dict = (1, 125, 7) UpperCAmelCase_ : Optional[int] = torch.tensor( [[-18.14_30, -8.32_14, 4.82_74], [-18.46_85, -7.13_61, -4.26_67], [-26.36_93, -9.34_29, -4.99_62]] ) UpperCAmelCase_ : int = torch.tensor([[0.49_83, 0.55_95, 0.94_40], [0.49_16, 0.63_15, 0.59_54], [0.61_08, 0.86_37, 0.11_35]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3], SCREAMING_SNAKE_CASE__, atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3], SCREAMING_SNAKE_CASE__, atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if push_to_hub: # Push model to HF hub logger.info('''Pushing model to the hub...''' ) UpperCAmelCase_ : Tuple = ( '''microsoft/table-transformer-detection''' if '''detection''' in checkpoint_url else '''microsoft/table-transformer-structure-recognition''' ) model.push_to_hub(SCREAMING_SNAKE_CASE__ ) image_processor.push_to_hub(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": snake_case_ : str = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth", type=str, choices=[ "https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth", "https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth", ], help="URL of the Table Transformer checkpoint you\'d like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) snake_case_ : Dict = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
718
'''simple docstring''' def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : int ) -> int: return abs(SCREAMING_SNAKE_CASE__ ) if a == 0 else greatest_common_divisor(b % a, SCREAMING_SNAKE_CASE__ ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : int ) -> int: while y: # --> when y=0 then loop will terminate and return x as final GCD. UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = y, x % y return abs(SCREAMING_SNAKE_CASE__ ) def lowerCamelCase_ ( ) -> Optional[int]: try: UpperCAmelCase_ : Optional[Any] = input('''Enter two integers separated by comma (,): ''' ).split(''',''' ) UpperCAmelCase_ : Optional[int] = int(nums[0] ) UpperCAmelCase_ : List[Any] = int(nums[1] ) print( F"""greatest_common_divisor({num_a}, {num_a}) = """ F"""{greatest_common_divisor(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )}""" ) print(F"""By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )}""" ) except (IndexError, UnboundLocalError, ValueError): print('''Wrong input''' ) if __name__ == "__main__": main()
644
0
'''simple docstring''' import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig snake_case_ : Optional[Any] = logging.get_logger(__name__) snake_case_ : Optional[Any] = """T5Config""" def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : List[str] ) -> jnp.ndarray: UpperCAmelCase_ : Tuple = jnp.zeros_like(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : str = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) UpperCAmelCase_ : Optional[int] = shifted_input_ids.at[:, 0].set(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Optional[int] = jnp.where(shifted_input_ids == -100, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) return shifted_input_ids class __a (SCREAMING_SNAKE_CASE__ ): __a : Optional[int] = "mt5" __a : Tuple = MTaConfig class __a (SCREAMING_SNAKE_CASE__ ): __a : Union[str, Any] = "mt5" __a : Union[str, Any] = MTaConfig class __a (SCREAMING_SNAKE_CASE__ ): __a : Union[str, Any] = "mt5" __a : Optional[Any] = MTaConfig
719
'''simple docstring''' import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class __a : def __init__( self : int , __magic_name__ : Optional[Any] , __magic_name__ : Any=13 , __magic_name__ : Any=7 , __magic_name__ : Union[str, Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : str=True , __magic_name__ : Optional[int]=True , __magic_name__ : List[Any]=99 , __magic_name__ : int=24 , __magic_name__ : Optional[int]=2 , __magic_name__ : Tuple=6 , __magic_name__ : Union[str, Any]=37 , __magic_name__ : Optional[Any]="gelu" , __magic_name__ : Any=0.1 , __magic_name__ : str=0.1 , __magic_name__ : Tuple=5_12 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : Tuple=2 , __magic_name__ : Tuple=0.0_2 , __magic_name__ : Optional[Any]=3 , __magic_name__ : Optional[int]=None , __magic_name__ : Any=10_00 , ) -> str: """simple docstring""" UpperCAmelCase_ : Tuple = parent UpperCAmelCase_ : Optional[int] = batch_size UpperCAmelCase_ : List[str] = seq_length UpperCAmelCase_ : Dict = is_training UpperCAmelCase_ : List[str] = use_input_mask UpperCAmelCase_ : Any = use_token_type_ids UpperCAmelCase_ : Any = use_labels UpperCAmelCase_ : Any = vocab_size UpperCAmelCase_ : Dict = hidden_size UpperCAmelCase_ : Tuple = num_hidden_layers UpperCAmelCase_ : Tuple = num_attention_heads UpperCAmelCase_ : int = intermediate_size UpperCAmelCase_ : Union[str, Any] = hidden_act UpperCAmelCase_ : Optional[int] = hidden_dropout_prob UpperCAmelCase_ : Optional[Any] = attention_probs_dropout_prob UpperCAmelCase_ : Union[str, Any] = max_position_embeddings UpperCAmelCase_ : int = type_vocab_size UpperCAmelCase_ : List[Any] = type_sequence_label_size UpperCAmelCase_ : int = initializer_range UpperCAmelCase_ : Dict = num_labels UpperCAmelCase_ : List[str] = scope UpperCAmelCase_ : List[str] = range_bbox def UpperCAmelCase__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: UpperCAmelCase_ : List[str] = bbox[i, j, 3] UpperCAmelCase_ : Dict = bbox[i, j, 1] UpperCAmelCase_ : Optional[Any] = t if bbox[i, j, 2] < bbox[i, j, 0]: UpperCAmelCase_ : List[str] = bbox[i, j, 2] UpperCAmelCase_ : Tuple = bbox[i, j, 0] UpperCAmelCase_ : Union[str, Any] = t UpperCAmelCase_ : int = None if self.use_input_mask: UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) UpperCAmelCase_ : Optional[int] = None if self.use_token_type_ids: UpperCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Tuple = None if self.use_labels: UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : int = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def UpperCAmelCase__ ( self : Any ) -> List[Any]: """simple docstring""" return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : str , __magic_name__ : Optional[Any] , __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : int , ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : Any = LiltModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() UpperCAmelCase_ : Optional[Any] = model(__magic_name__ , bbox=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ ) UpperCAmelCase_ : List[Any] = model(__magic_name__ , bbox=__magic_name__ , token_type_ids=__magic_name__ ) UpperCAmelCase_ : Optional[int] = model(__magic_name__ , bbox=__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCAmelCase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[int] , __magic_name__ : List[Any] , ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ : Any = self.num_labels UpperCAmelCase_ : List[Any] = LiltForTokenClassification(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() UpperCAmelCase_ : List[Any] = model( __magic_name__ , bbox=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase__ ( self : Any , __magic_name__ : Optional[Any] , __magic_name__ : Dict , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : Any , ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ : str = LiltForQuestionAnswering(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() UpperCAmelCase_ : Optional[Any] = model( __magic_name__ , bbox=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Tuple = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Optional[int] = config_and_inputs UpperCAmelCase_ : Tuple = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class __a (lowerCamelCase , lowerCamelCase , lowerCamelCase , unittest.TestCase ): __a : Tuple = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) __a : Any = ( { "feature-extraction": LiltModel, "question-answering": LiltForQuestionAnswering, "text-classification": LiltForSequenceClassification, "token-classification": LiltForTokenClassification, "zero-shot": LiltForSequenceClassification, } if is_torch_available() else {} ) __a : Union[str, Any] = False __a : int = False def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : int ) -> str: """simple docstring""" return True def UpperCAmelCase__ ( self : str ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : List[Any] = LiltModelTester(self ) UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> str: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : str ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def UpperCAmelCase__ ( self : str ) -> str: """simple docstring""" UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase_ : Tuple = type self.model_tester.create_and_check_model(*__magic_name__ ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> int: """simple docstring""" UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__magic_name__ ) def UpperCAmelCase__ ( self : str ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__magic_name__ ) @slow def UpperCAmelCase__ ( self : int ) -> Union[str, Any]: """simple docstring""" for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Optional[int] = LiltModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) @require_torch @slow class __a (unittest.TestCase ): def UpperCAmelCase__ ( self : Tuple ) -> Tuple: """simple docstring""" UpperCAmelCase_ : str = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(__magic_name__ ) UpperCAmelCase_ : Any = torch.tensor([[1, 2]] , device=__magic_name__ ) UpperCAmelCase_ : int = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=__magic_name__ ) # forward pass with torch.no_grad(): UpperCAmelCase_ : Optional[int] = model(input_ids=__magic_name__ , bbox=__magic_name__ ) UpperCAmelCase_ : int = torch.Size([1, 2, 7_68] ) UpperCAmelCase_ : List[str] = torch.tensor( [[-0.0_6_5_3, 0.0_9_5_0, -0.0_0_6_1], [-0.0_5_4_5, 0.0_9_2_6, -0.0_3_2_4]] , device=__magic_name__ , ) self.assertTrue(outputs.last_hidden_state.shape , __magic_name__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , __magic_name__ , atol=1E-3 ) )
644
0
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : int ) -> List[str]: return abs(__a ) if a == 0 else greatest_common_divisor(b % a, __a ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : int ) -> int: while y: # --> when y=0 then loop will terminate and return x as final GCD. UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = y, x % y return abs(__a ) def lowerCamelCase_ ( ) -> Tuple: try: UpperCAmelCase_ : Any = input('''Enter two integers separated by comma (,): ''' ).split(''',''' ) UpperCAmelCase_ : Optional[Any] = int(nums[0] ) UpperCAmelCase_ : List[str] = int(nums[1] ) print( F"""greatest_common_divisor({num_a}, {num_a}) = """ F"""{greatest_common_divisor(__a, __a )}""" ) print(F"""By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(__a, __a )}""" ) except (IndexError, UnboundLocalError, ValueError): print('''Wrong input''' ) if __name__ == "__main__": main()
720
'''simple docstring''' import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case_ : str = logging.get_logger(__name__) snake_case_ : int = "▁" snake_case_ : str = {"vocab_file": "vocab.txt", "sentencepiece_model_ckpt": "sentencepiece.bpe.model"} snake_case_ : int = { "sentencepiece_model_file": "sentencepiece.bpe.model", "vocab_file": "vocab.txt", } snake_case_ : Optional[Any] = { "vocab_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", }, "sentencepiece_model_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", }, } snake_case_ : Dict = { "ernie-m-base": 5_14, "ernie-m-large": 5_14, } snake_case_ : Any = { "ernie-m-base": {"do_lower_case": False}, "ernie-m-large": {"do_lower_case": False}, } class __a (lowerCamelCase ): __a : List[str] = ["input_ids"] __a : Union[str, Any] = VOCAB_FILES_NAMES __a : Tuple = PRETRAINED_INIT_CONFIGURATION __a : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __a : Union[str, Any] = RESOURCE_FILES_NAMES def __init__( self : Union[str, Any] , __magic_name__ : Dict , __magic_name__ : int=None , __magic_name__ : str=False , __magic_name__ : int="utf8" , __magic_name__ : Optional[int]="[UNK]" , __magic_name__ : Dict="[SEP]" , __magic_name__ : List[Any]="[PAD]" , __magic_name__ : str="[CLS]" , __magic_name__ : Optional[int]="[MASK]" , __magic_name__ : Optional[Dict[str, Any]] = None , **__magic_name__ : Union[str, Any] , ) -> None: """simple docstring""" # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. UpperCAmelCase_ : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__magic_name__ , unk_token=__magic_name__ , sep_token=__magic_name__ , pad_token=__magic_name__ , cls_token=__magic_name__ , mask_token=__magic_name__ , vocab_file=__magic_name__ , encoding=__magic_name__ , sp_model_kwargs=self.sp_model_kwargs , **__magic_name__ , ) UpperCAmelCase_ : Optional[Any] = do_lower_case UpperCAmelCase_ : List[str] = sentencepiece_model_ckpt UpperCAmelCase_ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__magic_name__ ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: UpperCAmelCase_ : List[Any] = self.load_vocab(filepath=__magic_name__ ) else: UpperCAmelCase_ : str = {self.sp_model.id_to_piece(__magic_name__ ): id for id in range(self.sp_model.get_piece_size() )} UpperCAmelCase_ : int = {v: k for k, v in self.vocab.items()} def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Any ) -> Any: """simple docstring""" if text is None: return None UpperCAmelCase_ : str = self.tokenize(__magic_name__ ) UpperCAmelCase_ , UpperCAmelCase_ : str = '''''', [] for i, ch in enumerate(__magic_name__ ): if ch in self.SP_CHAR_MAPPING: UpperCAmelCase_ : Optional[int] = self.SP_CHAR_MAPPING.get(__magic_name__ ) else: UpperCAmelCase_ : Union[str, Any] = unicodedata.normalize('''NFKC''' , __magic_name__ ) if self.is_whitespace(__magic_name__ ): continue normalized_text += ch char_mapping.extend([i] * len(__magic_name__ ) ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = normalized_text, [], 0 if self.do_lower_case: UpperCAmelCase_ : Optional[int] = text.lower() for token in split_tokens: if token[:1] == "▁": UpperCAmelCase_ : Tuple = token[1:] UpperCAmelCase_ : int = text[offset:].index(__magic_name__ ) + offset UpperCAmelCase_ : Optional[int] = start + len(__magic_name__ ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) UpperCAmelCase_ : int = end return token_mapping @property def UpperCAmelCase__ ( self : Any ) -> Any: """simple docstring""" return len(self.vocab ) def UpperCAmelCase__ ( self : List[Any] ) -> int: """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self : str ) -> Any: """simple docstring""" UpperCAmelCase_ : Optional[Any] = self.__dict__.copy() UpperCAmelCase_ : Optional[Any] = None return state def __setstate__( self : str , __magic_name__ : Any ) -> Dict: """simple docstring""" UpperCAmelCase_ : Dict = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCAmelCase_ : int = {} UpperCAmelCase_ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : Any ) -> List[str]: """simple docstring""" return "".join((self.SP_CHAR_MAPPING.get(__magic_name__ , __magic_name__ ) for c in text) ) def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Tuple , __magic_name__ : Any=False , __magic_name__ : List[str]=64 , __magic_name__ : List[str]=0.1 ) -> List[str]: """simple docstring""" if self.sp_model_kwargs.get('''enable_sampling''' ) is True: UpperCAmelCase_ : Dict = True if self.sp_model_kwargs.get('''alpha''' ) is not None: UpperCAmelCase_ : Union[str, Any] = self.sp_model_kwargs.get('''alpha''' ) if self.sp_model_kwargs.get('''nbest_size''' ) is not None: UpperCAmelCase_ : Any = self.sp_model_kwargs.get('''nbest_size''' ) if not enable_sampling: UpperCAmelCase_ : Dict = self.sp_model.EncodeAsPieces(__magic_name__ ) else: UpperCAmelCase_ : Dict = self.sp_model.SampleEncodeAsPieces(__magic_name__ , __magic_name__ , __magic_name__ ) UpperCAmelCase_ : List[Any] = [] for pi, piece in enumerate(__magic_name__ ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(__magic_name__ ) and pi != 0: new_pieces.append(__magic_name__ ) continue else: continue UpperCAmelCase_ : List[str] = 0 for i, chunk in enumerate(__magic_name__ ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(__magic_name__ ) or self.is_punct(__magic_name__ ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(__magic_name__ ) UpperCAmelCase_ : List[Any] = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) UpperCAmelCase_ : List[str] = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) UpperCAmelCase_ : str = i if len(__magic_name__ ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Optional[int] ) -> List[str]: """simple docstring""" UpperCAmelCase_ : Optional[Any] = ''''''.join(__magic_name__ ).replace(__magic_name__ , ''' ''' ).strip() return out_string def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Union[str, Any] ) -> List[str]: """simple docstring""" UpperCAmelCase_ : str = self.convert_ids_to_tokens(__magic_name__ ) UpperCAmelCase_ : Optional[Any] = ''''''.join(__magic_name__ ).replace(__magic_name__ , ''' ''' ).strip() return out_string def UpperCAmelCase__ ( self : str , __magic_name__ : Optional[Any] ) -> List[Any]: """simple docstring""" return self.vocab.get(__magic_name__ , self.vocab.get(self.unk_token ) ) def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return self.reverse_vocab.get(__magic_name__ , self.unk_token ) def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Any , __magic_name__ : Union[str, Any]=None ) -> Any: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase_ : Union[str, Any] = [self.cls_token_id] UpperCAmelCase_ : List[Any] = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def UpperCAmelCase__ ( self : Any , __magic_name__ : Optional[Any] , __magic_name__ : List[str]=None ) -> int: """simple docstring""" if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def UpperCAmelCase__ ( self : Dict , __magic_name__ : Optional[Any] , __magic_name__ : List[str]=None , __magic_name__ : Optional[Any]=False ) -> Optional[int]: """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__magic_name__ )) + [1, 1] + ([0] * len(__magic_name__ )) + [1] return [1] + ([0] * len(__magic_name__ )) + [1] def UpperCAmelCase__ ( self : List[str] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" # called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method if token_ids_a is None: # [CLS] X [SEP] return (len(__magic_name__ ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(__magic_name__ ) + 1) + [1] * (len(__magic_name__ ) + 3) def UpperCAmelCase__ ( self : Dict , __magic_name__ : str ) -> Tuple: """simple docstring""" if "\u4e00" <= char <= "\u9fff": return True return False def UpperCAmelCase__ ( self : int , __magic_name__ : Optional[int] ) -> str: """simple docstring""" if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def UpperCAmelCase__ ( self : int , __magic_name__ : Optional[Any] ) -> Dict: """simple docstring""" if char in ",;:.?!~,;:。?!《》【】": return True return False def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Any ) -> Union[str, Any]: """simple docstring""" if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(__magic_name__ ) == 1: UpperCAmelCase_ : Optional[Any] = unicodedata.category(__magic_name__ ) if cat == "Zs": return True return False def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : Tuple ) -> Any: """simple docstring""" UpperCAmelCase_ : Optional[Any] = {} with io.open(__magic_name__ , '''r''' , encoding='''utf-8''' ) as f: for index, line in enumerate(__magic_name__ ): UpperCAmelCase_ : List[Any] = line.rstrip('''\n''' ) UpperCAmelCase_ : Dict = int(__magic_name__ ) return token_to_idx def UpperCAmelCase__ ( self : Dict , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = 0 if os.path.isdir(__magic_name__ ): UpperCAmelCase_ : Any = os.path.join( __magic_name__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: UpperCAmelCase_ : List[str] = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory with open(__magic_name__ , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda __magic_name__ : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ''' Please check that the vocabulary is not corrupted!''' ) UpperCAmelCase_ : Dict = token_index writer.write(token + '''\n''' ) index += 1 UpperCAmelCase_ : Union[str, Any] = os.path.join(__magic_name__ , '''sentencepiece.bpe.model''' ) with open(__magic_name__ , '''wb''' ) as fi: UpperCAmelCase_ : Optional[int] = self.sp_model.serialized_model_proto() fi.write(__magic_name__ ) return (vocab_file,)
644
0
'''simple docstring''' from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : bool = True, *SCREAMING_SNAKE_CASE__ : Optional[int], **SCREAMING_SNAKE_CASE__ : str ) -> Optional[int]: if not is_tqdm_available(): raise ImportError('''Accelerate\'s `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.''' ) UpperCAmelCase_ : List[str] = False if main_process_only: UpperCAmelCase_ : Any = PartialState().local_process_index == 0 return _tqdm(*SCREAMING_SNAKE_CASE__, **SCREAMING_SNAKE_CASE__, disable=SCREAMING_SNAKE_CASE__ )
721
'''simple docstring''' def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int ) -> str: if number > 0: raise ValueError('''input must be a negative integer''' ) UpperCAmelCase_ : Union[str, Any] = len(bin(SCREAMING_SNAKE_CASE__ )[3:] ) UpperCAmelCase_ : Union[str, Any] = bin(abs(SCREAMING_SNAKE_CASE__ ) - (1 << binary_number_length) )[3:] UpperCAmelCase_ : Optional[Any] = ( ( '''1''' + '''0''' * (binary_number_length - len(SCREAMING_SNAKE_CASE__ )) + twos_complement_number ) if number < 0 else '''0''' ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
644
0
import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home snake_case_ : int = HUGGINGFACE_HUB_CACHE snake_case_ : str = "config.json" snake_case_ : Union[str, Any] = "diffusion_pytorch_model.bin" snake_case_ : Union[str, Any] = "diffusion_flax_model.msgpack" snake_case_ : Tuple = "model.onnx" snake_case_ : Tuple = "diffusion_pytorch_model.safetensors" snake_case_ : Dict = "weights.pb" snake_case_ : Union[str, Any] = "https://huggingface.co" snake_case_ : str = default_cache_path snake_case_ : List[Any] = "diffusers_modules" snake_case_ : Optional[int] = os.getenv("HF_MODULES_CACHE", os.path.join(hf_cache_home, "modules")) snake_case_ : Tuple = ["fp16", "non-ema"] snake_case_ : List[Any] = ".self_attn"
700
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class __a (unittest.TestCase ): def UpperCAmelCase__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. UpperCAmelCase_ : List[str] = [[1, 2, 4], [1, 2, 3, 4]] UpperCAmelCase_ : List[str] = DisjunctiveConstraint(__magic_name__ ) self.assertTrue(isinstance(dc.token_ids , __magic_name__ ) ) with self.assertRaises(__magic_name__ ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(__magic_name__ ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def UpperCAmelCase__ ( self : List[str] ) -> Dict: """simple docstring""" # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). UpperCAmelCase_ : Tuple = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(__magic_name__ ): DisjunctiveConstraint(__magic_name__ ) # fails here def UpperCAmelCase__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : Optional[int] = [[1, 2, 3], [1, 2, 4]] UpperCAmelCase_ : List[str] = DisjunctiveConstraint(__magic_name__ ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = dc.update(1 ) UpperCAmelCase_ : Dict = stepped is True and completed is False and reset is False self.assertTrue(__magic_name__ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = dc.update(2 ) UpperCAmelCase_ : Optional[Any] = stepped is True and completed is False and reset is False self.assertTrue(__magic_name__ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = dc.update(3 ) UpperCAmelCase_ : Dict = stepped is True and completed is True and reset is False self.assertTrue(__magic_name__ ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def UpperCAmelCase__ ( self : int ) -> Dict: """simple docstring""" UpperCAmelCase_ : Any = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] UpperCAmelCase_ : Tuple = DisjunctiveConstraint(__magic_name__ ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
644
0
'''simple docstring''' import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer snake_case_ : Optional[int] = "bart" snake_case_ : Tuple = True @st.cache(allow_output_mutation=_lowerCAmelCase ) def lowerCamelCase_ ( ) -> str: if LOAD_DENSE_INDEX: UpperCAmelCase_ : int = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) UpperCAmelCase_ : Dict = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) UpperCAmelCase_ : Any = qar_model.eval() else: UpperCAmelCase_ , UpperCAmelCase_ : int = (None, None) if MODEL_TYPE == "bart": UpperCAmelCase_ : List[Any] = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) UpperCAmelCase_ : List[str] = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) UpperCAmelCase_ : Any = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) UpperCAmelCase_ : Tuple = sas_model.eval() else: UpperCAmelCase_ , UpperCAmelCase_ : Any = make_qa_sas_model( model_name='''t5-small''', from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''', device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=_lowerCAmelCase ) def lowerCamelCase_ ( ) -> Dict: if LOAD_DENSE_INDEX: UpperCAmelCase_ : str = faiss.StandardGpuResources() UpperCAmelCase_ : Tuple = datasets.load_dataset(path='''wiki_snippets''', name='''wiki40b_en_100_0''' )['''train'''] UpperCAmelCase_ : Union[str, Any] = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''', dtype='''float32''', mode='''r''', shape=(wikiaab_passages.num_rows, 128), ) UpperCAmelCase_ : Dict = faiss.IndexFlatIP(128 ) UpperCAmelCase_ : Dict = faiss.index_cpu_to_gpu(_lowerCAmelCase, 1, _lowerCAmelCase ) wikiaab_gpu_index_flat.add(_lowerCAmelCase ) # TODO fix for larger GPU else: UpperCAmelCase_ , UpperCAmelCase_ : str = (None, None) UpperCAmelCase_ : Union[str, Any] = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=_lowerCAmelCase ) def lowerCamelCase_ ( ) -> List[Any]: UpperCAmelCase_ : List[Any] = datasets.load_dataset('''eli5''', name='''LFQA_reddit''' ) UpperCAmelCase_ : Any = elia['''train_eli5'''] UpperCAmelCase_ : Union[str, Any] = np.memmap( '''eli5_questions_reps.dat''', dtype='''float32''', mode='''r''', shape=(elia_train.num_rows, 128) ) UpperCAmelCase_ : Union[str, Any] = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(_lowerCAmelCase ) return (elia_train, eli5_train_q_index) snake_case_ ,snake_case_ ,snake_case_ : Optional[Any] = load_indexes() snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ : List[Any] = load_models() snake_case_ ,snake_case_ : List[Any] = load_train_data() def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Dict, SCREAMING_SNAKE_CASE__ : int=10 ) -> List[Any]: UpperCAmelCase_ : Any = embed_questions_for_retrieval([question], _lowerCAmelCase, _lowerCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = eli5_train_q_index.search(_lowerCAmelCase, _lowerCAmelCase ) UpperCAmelCase_ : Tuple = [elia_train[int(_lowerCAmelCase )] for i in I[0]] return nn_examples def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : Optional[Any]="wiki40b", SCREAMING_SNAKE_CASE__ : str="dense", SCREAMING_SNAKE_CASE__ : List[str]=10 ) -> int: if source == "none": UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": UpperCAmelCase_ , UpperCAmelCase_ : int = query_qa_dense_index( _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) else: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = query_es_index( _lowerCAmelCase, _lowerCAmelCase, index_name='''english_wiki40b_snippets_100w''', n_results=_lowerCAmelCase, ) UpperCAmelCase_ : Union[str, Any] = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] UpperCAmelCase_ : Optional[Any] = '''question: {} context: {}'''.format(_lowerCAmelCase, _lowerCAmelCase ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda SCREAMING_SNAKE_CASE__ : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda SCREAMING_SNAKE_CASE__ : None), } ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : str, SCREAMING_SNAKE_CASE__ : List[str], SCREAMING_SNAKE_CASE__ : str, SCREAMING_SNAKE_CASE__ : Union[str, Any]=64, SCREAMING_SNAKE_CASE__ : List[Any]=256, SCREAMING_SNAKE_CASE__ : List[str]=False, SCREAMING_SNAKE_CASE__ : List[Any]=2, SCREAMING_SNAKE_CASE__ : Dict=0.95, SCREAMING_SNAKE_CASE__ : Optional[Any]=0.8 ) -> Any: with torch.no_grad(): UpperCAmelCase_ : Dict = qa_sas_generate( _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, num_answers=1, num_beams=_lowerCAmelCase, min_len=_lowerCAmelCase, max_len=_lowerCAmelCase, do_sample=_lowerCAmelCase, temp=_lowerCAmelCase, top_p=_lowerCAmelCase, top_k=_lowerCAmelCase, max_input_length=1024, device='''cuda:0''', )[0] return (answer, support_list) st.title("Long Form Question Answering with ELI5") # Start sidebar snake_case_ : Union[str, Any] = "<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>" snake_case_ : Union[str, Any] = "\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class=\"img-container\"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n" % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia snake_case_ : Optional[int] = "\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n" st.sidebar.markdown(description, unsafe_allow_html=True) snake_case_ : List[Any] = [ "Answer the question", "View the retrieved document only", "View the most similar ELI5 question and answer", "Show me everything, please!", ] snake_case_ : List[Any] = st.sidebar.checkbox("Demo options") if demo_options: snake_case_ : Optional[Any] = st.sidebar.selectbox( "", action_list, index=3, ) snake_case_ : List[Any] = action_list.index(action_st) snake_case_ : Any = st.sidebar.selectbox( "", ["Show full text of passages", "Show passage section titles"], index=0, ) snake_case_ : List[str] = show_type == "Show full text of passages" else: snake_case_ : Optional[int] = 3 snake_case_ : List[Any] = True snake_case_ : Optional[int] = st.sidebar.checkbox("Retrieval options") if retrieval_options: snake_case_ : Any = "\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n " st.sidebar.markdown(retriever_info) snake_case_ : str = st.sidebar.selectbox("Which Wikipedia format should the model use?", ["wiki40b", "none"]) snake_case_ : int = st.sidebar.selectbox("Which Wikipedia indexer should the model use?", ["dense", "sparse", "mixed"]) else: snake_case_ : Any = "wiki40b" snake_case_ : Optional[Any] = "dense" snake_case_ : Dict = "beam" snake_case_ : List[str] = 2 snake_case_ : Union[str, Any] = 64 snake_case_ : Any = 2_56 snake_case_ : str = None snake_case_ : List[str] = None snake_case_ : List[Any] = st.sidebar.checkbox("Generation options") if generate_options: snake_case_ : Optional[int] = "\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder's output probabilities.\n " st.sidebar.markdown(generate_info) snake_case_ : Optional[Any] = st.sidebar.selectbox("Would you like to use beam search or sample an answer?", ["beam", "sampled"]) snake_case_ : Any = st.sidebar.slider( "Minimum generation length", min_value=8, max_value=2_56, value=64, step=8, format=None, key=None ) snake_case_ : Optional[int] = st.sidebar.slider( "Maximum generation length", min_value=64, max_value=5_12, value=2_56, step=16, format=None, key=None ) if sampled == "beam": snake_case_ : int = st.sidebar.slider("Beam size", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: snake_case_ : Tuple = st.sidebar.slider( "Nucleus sampling p", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) snake_case_ : Union[str, Any] = st.sidebar.slider( "Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) snake_case_ : List[str] = None # start main text snake_case_ : Optional[int] = [ "<MY QUESTION>", "How do people make chocolate?", "Why do we get a fever when we are sick?", "How can different animals perceive different colors?", "What is natural language processing?", "What's the best way to treat a sunburn?", "What exactly are vitamins ?", "How does nuclear energy provide electricity?", "What's the difference between viruses and bacteria?", "Why are flutes classified as woodwinds when most of them are made out of metal ?", "Why do people like drinking coffee even though it tastes so bad?", "What happens when wine ages? How does it make the wine taste better?", "If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?", "How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?", "How does New Zealand have so many large bird predators?", ] snake_case_ : str = st.selectbox( "What would you like to ask? ---- select <MY QUESTION> to enter a new query", questions_list, index=1, ) if question_s == "<MY QUESTION>": snake_case_ : str = st.text_input("Enter your question here:", "") else: snake_case_ : str = question_s if st.button("Show me!"): if action in [0, 1, 3]: if index_type == "mixed": snake_case_ ,snake_case_ : Optional[Any] = make_support(question, source=wiki_source, method="dense", n_results=10) snake_case_ ,snake_case_ : List[str] = make_support(question, source=wiki_source, method="sparse", n_results=10) snake_case_ : Optional[int] = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] snake_case_ : str = support_list[:10] snake_case_ : Optional[Any] = "<P> " + " <P> ".join([res[-1] for res in support_list]) else: snake_case_ ,snake_case_ : Optional[Any] = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: snake_case_ ,snake_case_ : int = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == "sampled"), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("### The model generated answer is:") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("--- \n ### The model is drawing information from the following Wikipedia passages:") for i, res in enumerate(support_list): snake_case_ : int = "https://en.wikipedia.org/wiki/{}".format(res[0].replace(" ", "_")) snake_case_ : List[str] = res[1].strip() if sec_titles == "": snake_case_ : List[Any] = "[{}]({})".format(res[0], wiki_url) else: snake_case_ : str = sec_titles.split(" & ") snake_case_ : str = " & ".join( ["[{}]({}#{})".format(sec.strip(), wiki_url, sec.strip().replace(" ", "_")) for sec in sec_list] ) st.markdown( "{0:02d} - **Article**: {1:<18} <br> _Section_: {2}".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( "> <span style=\"font-family:arial; font-size:10pt;\">" + res[-1] + "</span>", unsafe_allow_html=True ) if action in [2, 3]: snake_case_ : str = find_nearest_training(question) snake_case_ : Tuple = nn_train_list[0] st.markdown( "--- \n ### The most similar question in the ELI5 training set was: \n\n {}".format(train_exple["title"]) ) snake_case_ : Dict = [ "{}. {}".format(i + 1, " \n".join([line.strip() for line in ans.split("\n") if line.strip() != ""])) for i, (ans, sc) in enumerate(zip(train_exple["answers"]["text"], train_exple["answers"]["score"])) if i == 0 or sc > 2 ] st.markdown("##### Its answers were: \n\n {}".format("\n".join(answers_st))) snake_case_ : Dict = "\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n" st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
701
'''simple docstring''' import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": snake_case_ : List[Any] = pd.read_csv("sample_data.csv", header=None) snake_case_ : Optional[Any] = df.shape[:1][0] # If you're using some other dataset input the target column snake_case_ : Any = df.iloc[:, 1:2] snake_case_ : str = actual_data.values.reshape(len_data, 1) snake_case_ : Optional[Any] = MinMaxScaler().fit_transform(actual_data) snake_case_ : List[str] = 10 snake_case_ : Any = 5 snake_case_ : Any = 20 snake_case_ : Tuple = len_data - periods * look_back snake_case_ : str = actual_data[:division] snake_case_ : Optional[int] = actual_data[division - look_back :] snake_case_ ,snake_case_ : Any = [], [] snake_case_ ,snake_case_ : Union[str, Any] = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) snake_case_ : Any = np.array(train_x) snake_case_ : Optional[Any] = np.array(test_x) snake_case_ : Optional[Any] = np.array([list(i.ravel()) for i in train_y]) snake_case_ : List[str] = np.array([list(i.ravel()) for i in test_y]) snake_case_ : List[Any] = Sequential() model.add(LSTM(1_28, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(1_28, 1))) model.add(Dense(forward_days)) model.compile(loss="mean_squared_error", optimizer="adam") snake_case_ : Dict = model.fit( x_train, y_train, epochs=1_50, verbose=1, shuffle=True, batch_size=4 ) snake_case_ : Optional[Any] = model.predict(x_test)
644
0
'''simple docstring''' def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int = 50 ) -> str: UpperCAmelCase_ : Union[str, Any] = [1] * (length + 1) for row_length in range(3, length + 1 ): for block_length in range(3, row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f'''{solution() = }''')
702
'''simple docstring''' from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker snake_case_ : Union[str, Any] = "CompVis/stable-diffusion-v1-1" snake_case_ : Dict = "CompVis/stable-diffusion-v1-2" snake_case_ : Any = "CompVis/stable-diffusion-v1-3" snake_case_ : str = "CompVis/stable-diffusion-v1-4" class __a (lowerCamelCase ): def __init__( self : Any , __magic_name__ : AutoencoderKL , __magic_name__ : CLIPTextModel , __magic_name__ : CLIPTokenizer , __magic_name__ : UNetaDConditionModel , __magic_name__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __magic_name__ : StableDiffusionSafetyChecker , __magic_name__ : CLIPImageProcessor , __magic_name__ : bool = True , ) -> str: """simple docstring""" super()._init_() UpperCAmelCase_ : Any = StableDiffusionPipeline.from_pretrained(__magic_name__ ) UpperCAmelCase_ : Dict = StableDiffusionPipeline.from_pretrained(__magic_name__ ) UpperCAmelCase_ : List[Any] = StableDiffusionPipeline.from_pretrained(__magic_name__ ) UpperCAmelCase_ : Tuple = StableDiffusionPipeline( vae=__magic_name__ , text_encoder=__magic_name__ , tokenizer=__magic_name__ , unet=__magic_name__ , scheduler=__magic_name__ , safety_checker=__magic_name__ , feature_extractor=__magic_name__ , requires_safety_checker=__magic_name__ , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def UpperCAmelCase__ ( self : Tuple ) -> Dict[str, Any]: """simple docstring""" return {k: getattr(self , __magic_name__ ) for k in self.config.keys() if not k.startswith('''_''' )} def UpperCAmelCase__ ( self : Dict , __magic_name__ : Optional[Union[str, int]] = "auto" ) -> int: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCAmelCase_ : List[str] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__magic_name__ ) def UpperCAmelCase__ ( self : Tuple ) -> List[str]: """simple docstring""" self.enable_attention_slicing(__magic_name__ ) @torch.no_grad() def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Tuple , ) -> Optional[int]: """simple docstring""" return self.pipea( prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , ) @torch.no_grad() def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Any , ) -> Any: """simple docstring""" return self.pipea( prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , ) @torch.no_grad() def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Dict , ) -> List[str]: """simple docstring""" return self.pipea( prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , ) @torch.no_grad() def UpperCAmelCase__ ( self : int , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Optional[int] , ) -> str: """simple docstring""" return self.pipea( prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , ) @torch.no_grad() def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Optional[int] , ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : int = '''cuda''' if torch.cuda.is_available() else '''cpu''' self.to(__magic_name__ ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` must be divisible by 8 but are {height} and {width}.""" ) # Get first result from Stable Diffusion Checkpoint v1.1 UpperCAmelCase_ : Optional[int] = self.textaimg_sda_a( prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , ) # Get first result from Stable Diffusion Checkpoint v1.2 UpperCAmelCase_ : int = self.textaimg_sda_a( prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , ) # Get first result from Stable Diffusion Checkpoint v1.3 UpperCAmelCase_ : str = self.textaimg_sda_a( prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , ) # Get first result from Stable Diffusion Checkpoint v1.4 UpperCAmelCase_ : str = self.textaimg_sda_a( prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
644
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case_ : Any = { "configuration_lxmert": ["LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LxmertConfig"], "tokenization_lxmert": ["LxmertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : int = ["LxmertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Union[str, Any] = [ "LxmertEncoder", "LxmertForPreTraining", "LxmertForQuestionAnswering", "LxmertModel", "LxmertPreTrainedModel", "LxmertVisualFeatureEncoder", "LxmertXLayer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Union[str, Any] = [ "TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFLxmertForPreTraining", "TFLxmertMainLayer", "TFLxmertModel", "TFLxmertPreTrainedModel", "TFLxmertVisualFeatureEncoder", ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys snake_case_ : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
703
'''simple docstring''' import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler snake_case_ : Optional[int] = 16 snake_case_ : Tuple = 32 def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Accelerator, SCREAMING_SNAKE_CASE__ : int = 16, SCREAMING_SNAKE_CASE__ : str = "bert-base-cased" ) -> Dict: UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : int = load_dataset('''glue''', '''mrpc''' ) def tokenize_function(SCREAMING_SNAKE_CASE__ : Optional[int] ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase_ : Union[str, Any] = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=SCREAMING_SNAKE_CASE__, max_length=SCREAMING_SNAKE_CASE__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset UpperCAmelCase_ : Tuple = datasets.map( SCREAMING_SNAKE_CASE__, batched=SCREAMING_SNAKE_CASE__, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], load_from_cache_file=SCREAMING_SNAKE_CASE__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase_ : Optional[Any] = tokenized_datasets.rename_column('''label''', '''labels''' ) def collate_fn(SCREAMING_SNAKE_CASE__ : str ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(SCREAMING_SNAKE_CASE__, padding='''max_length''', max_length=128, return_tensors='''pt''' ) return tokenizer.pad(SCREAMING_SNAKE_CASE__, padding='''longest''', return_tensors='''pt''' ) # Instantiate dataloaders. UpperCAmelCase_ : str = DataLoader( tokenized_datasets['''train'''], shuffle=SCREAMING_SNAKE_CASE__, collate_fn=SCREAMING_SNAKE_CASE__, batch_size=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : int = DataLoader( tokenized_datasets['''validation'''], shuffle=SCREAMING_SNAKE_CASE__, collate_fn=SCREAMING_SNAKE_CASE__, batch_size=SCREAMING_SNAKE_CASE__ ) return train_dataloader, eval_dataloader def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Optional[Any], SCREAMING_SNAKE_CASE__ : Optional[int], SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : Any ) -> Any: model.eval() UpperCAmelCase_ : List[str] = 0 for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase_ : Dict = model(**SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : str = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times UpperCAmelCase_ , UpperCAmelCase_ : List[str] = accelerator.gather( (predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(SCREAMING_SNAKE_CASE__ ) - 1: UpperCAmelCase_ : Tuple = predictions[: len(eval_dataloader.dataset ) - samples_seen] UpperCAmelCase_ : int = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=SCREAMING_SNAKE_CASE__, references=SCREAMING_SNAKE_CASE__, ) UpperCAmelCase_ : List[str] = metric.compute() return eval_metric["accuracy"] def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : int ) -> Tuple: # Initialize accelerator UpperCAmelCase_ : Union[str, Any] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase_ : int = config['''lr'''] UpperCAmelCase_ : Optional[int] = int(config['''num_epochs'''] ) UpperCAmelCase_ : Optional[int] = int(config['''seed'''] ) UpperCAmelCase_ : List[str] = int(config['''batch_size'''] ) UpperCAmelCase_ : Optional[int] = args.model_name_or_path set_seed(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = get_dataloaders(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase_ : List[Any] = AutoModelForSequenceClassification.from_pretrained(SCREAMING_SNAKE_CASE__, return_dict=SCREAMING_SNAKE_CASE__ ) # Instantiate optimizer UpperCAmelCase_ : str = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) UpperCAmelCase_ : List[str] = optimizer_cls(params=model.parameters(), lr=SCREAMING_SNAKE_CASE__ ) if accelerator.state.deepspeed_plugin is not None: UpperCAmelCase_ : List[Any] = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: UpperCAmelCase_ : Tuple = 1 UpperCAmelCase_ : int = (len(SCREAMING_SNAKE_CASE__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): UpperCAmelCase_ : Tuple = get_linear_schedule_with_warmup( optimizer=SCREAMING_SNAKE_CASE__, num_warmup_steps=0, num_training_steps=SCREAMING_SNAKE_CASE__, ) else: UpperCAmelCase_ : Any = DummyScheduler(SCREAMING_SNAKE_CASE__, total_num_steps=SCREAMING_SNAKE_CASE__, warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = accelerator.prepare( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) # We need to keep track of how many total steps we have iterated over UpperCAmelCase_ : Union[str, Any] = 0 # We also need to keep track of the stating epoch so files are named properly UpperCAmelCase_ : Dict = 0 UpperCAmelCase_ : int = evaluate.load('''glue''', '''mrpc''' ) UpperCAmelCase_ : Optional[Any] = num_epochs if args.partial_train_epoch is not None: UpperCAmelCase_ : List[Any] = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) UpperCAmelCase_ : Tuple = args.resume_from_checkpoint.split('''epoch_''' )[1] UpperCAmelCase_ : int = '''''' for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break UpperCAmelCase_ : Union[str, Any] = int(SCREAMING_SNAKE_CASE__ ) + 1 UpperCAmelCase_ : Dict = evaluation_loop(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) accelerator.print('''resumed checkpoint performance:''', SCREAMING_SNAKE_CASE__ ) accelerator.print('''resumed checkpoint\'s scheduler\'s lr:''', lr_scheduler.get_lr()[0] ) accelerator.print('''resumed optimizers\'s lr:''', optimizer.param_groups[0]['''lr'''] ) with open(os.path.join(args.output_dir, F"""state_{starting_epoch-1}.json""" ), '''r''' ) as f: UpperCAmelCase_ : Optional[int] = json.load(SCREAMING_SNAKE_CASE__ ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model UpperCAmelCase_ : int = {} for epoch in range(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ): model.train() for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ): UpperCAmelCase_ : Optional[int] = model(**SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Any = outputs.loss UpperCAmelCase_ : Tuple = loss / gradient_accumulation_steps accelerator.backward(SCREAMING_SNAKE_CASE__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 UpperCAmelCase_ : Tuple = F"""epoch_{epoch}""" UpperCAmelCase_ : Optional[int] = os.path.join(args.output_dir, SCREAMING_SNAKE_CASE__ ) accelerator.save_state(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : int = evaluation_loop(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Optional[Any] = accuracy UpperCAmelCase_ : Any = lr_scheduler.get_lr()[0] UpperCAmelCase_ : List[str] = optimizer.param_groups[0]['''lr'''] UpperCAmelCase_ : Tuple = epoch UpperCAmelCase_ : Dict = overall_step accelerator.print(F"""epoch {epoch}:""", SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir, F"""state_{epoch}.json""" ), '''w''' ) as f: json.dump(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) def lowerCamelCase_ ( ) -> List[str]: UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''', type=SCREAMING_SNAKE_CASE__, default='''bert-base-cased''', help='''Path to pretrained model or model identifier from huggingface.co/models.''', required=SCREAMING_SNAKE_CASE__, ) parser.add_argument( '''--output_dir''', type=SCREAMING_SNAKE_CASE__, default='''.''', help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''', ) parser.add_argument( '''--resume_from_checkpoint''', type=SCREAMING_SNAKE_CASE__, default=SCREAMING_SNAKE_CASE__, help='''If the training should continue from a checkpoint folder.''', ) parser.add_argument( '''--partial_train_epoch''', type=SCREAMING_SNAKE_CASE__, default=SCREAMING_SNAKE_CASE__, help='''If passed, the training will stop after this number of epochs.''', ) parser.add_argument( '''--num_epochs''', type=SCREAMING_SNAKE_CASE__, default=2, help='''Number of train epochs.''', ) UpperCAmelCase_ : Optional[int] = parser.parse_args() UpperCAmelCase_ : List[Any] = {'''lr''': 2E-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
644
0
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params snake_case_ : int = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["memory_attention", "encoder_attn"], ["attention", "attn"], ["/", "."], [".LayerNorm.gamma", "_layer_norm.weight"], [".LayerNorm.beta", "_layer_norm.bias"], ["r.layer_", "r.layers."], ["output_proj", "out_proj"], ["ffn.dense_1.", "fc2."], ["ffn.dense.", "fc1."], ["ffn_layer_norm", "final_layer_norm"], ["kernel", "weight"], ["encoder_layer_norm.", "encoder.layer_norm."], ["decoder_layer_norm.", "decoder.layer_norm."], ["embeddings.weights", "shared.weight"], ] def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Dict ) -> Optional[int]: for pegasus_name, hf_name in PATTERNS: UpperCAmelCase_ : Optional[Any] = k.replace(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ) return k def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : Dict ) -> List[Any]: UpperCAmelCase_ : Union[str, Any] = DEFAULTS.copy() cfg_kwargs.update(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = PegasusConfig(**__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = PegasusForConditionalGeneration(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = torch_model.model.state_dict() UpperCAmelCase_ : Union[str, Any] = {} for k, v in tf_weights.items(): UpperCAmelCase_ : List[str] = rename_state_dict_key(__SCREAMING_SNAKE_CASE ) if new_k not in sd: raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if "dense" in k or "proj" in new_k: UpperCAmelCase_ : Dict = v.T UpperCAmelCase_ : Optional[Any] = torch.tensor(__SCREAMING_SNAKE_CASE, dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F"""{new_k}, {k}, {v.shape}, {sd[new_k].shape}""" # make sure embedding.padding_idx is respected UpperCAmelCase_ : Optional[int] = torch.zeros_like(mapping['''shared.weight'''][cfg.pad_token_id + 1] ) UpperCAmelCase_ : Union[str, Any] = mapping["shared.weight"] UpperCAmelCase_ : Optional[int] = mapping["shared.weight"] UpperCAmelCase_ : Optional[int] = {k: torch.zeros_like(__SCREAMING_SNAKE_CASE ) for k, v in sd.items() if k.endswith('''bias''' ) and k not in mapping} mapping.update(**__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = torch_model.model.load_state_dict(__SCREAMING_SNAKE_CASE, strict=__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = [ k for k in missing if k not in ["encoder.embed_positions.weight", "decoder.embed_positions.weight"] ] assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], F"""no matches found for the following tf keys {extra}""" return torch_model def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Optional[int]="./ckpt/aeslc/model.ckpt-32000" ) -> Optional[Any]: UpperCAmelCase_ : Any = tf.train.list_variables(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = {} UpperCAmelCase_ : Optional[int] = ["Adafactor", "global_step"] for name, shape in tqdm(__SCREAMING_SNAKE_CASE, desc='''converting tf checkpoint to dict''' ): UpperCAmelCase_ : Optional[int] = any(pat in name for pat in ignore_name ) if skip_key: continue UpperCAmelCase_ : Dict = tf.train.load_variable(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[Any] = array return tf_weights def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[str], SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Union[str, Any]: UpperCAmelCase_ : Optional[int] = Path(__SCREAMING_SNAKE_CASE ).parent.name UpperCAmelCase_ : Optional[Any] = task_specific_params[F"""summarization_{dataset}"""]["max_position_embeddings"] UpperCAmelCase_ : int = PegasusTokenizer.from_pretrained('''sshleifer/pegasus''', model_max_length=__SCREAMING_SNAKE_CASE ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(__SCREAMING_SNAKE_CASE ) # convert model UpperCAmelCase_ : Tuple = get_tf_weights_as_numpy(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = task_specific_params[F"""summarization_{dataset}"""] if dataset == "large": UpperCAmelCase_ : Optional[int] = task_specific_params UpperCAmelCase_ : Optional[int] = convert_pegasus(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ) torch_model.save_pretrained(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = torch_model.state_dict() sd.pop('''model.decoder.embed_positions.weight''' ) sd.pop('''model.encoder.embed_positions.weight''' ) torch.save(__SCREAMING_SNAKE_CASE, Path(__SCREAMING_SNAKE_CASE ) / '''pytorch_model.bin''' ) if __name__ == "__main__": snake_case_ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("save_dir", default=None, type=str, help="Path to the output PyTorch model.") snake_case_ : Tuple = parser.parse_args() if args.save_dir is None: snake_case_ : Any = Path(args.tf_ckpt_path).parent.name snake_case_ : str = os.path.join("pegasus", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
704
'''simple docstring''' def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : list[int] ) -> list[list[int]]: UpperCAmelCase_ : int = [] if len(SCREAMING_SNAKE_CASE__ ) == 1: return [nums.copy()] for _ in range(len(SCREAMING_SNAKE_CASE__ ) ): UpperCAmelCase_ : List[Any] = nums.pop(0 ) UpperCAmelCase_ : Optional[Any] = permute(SCREAMING_SNAKE_CASE__ ) for perm in permutations: perm.append(SCREAMING_SNAKE_CASE__ ) result.extend(SCREAMING_SNAKE_CASE__ ) nums.append(SCREAMING_SNAKE_CASE__ ) return result def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[str] ) -> Any: def backtrack(SCREAMING_SNAKE_CASE__ : Union[str, Any] ): if start == len(SCREAMING_SNAKE_CASE__ ) - 1: output.append(nums[:] ) else: for i in range(SCREAMING_SNAKE_CASE__, len(SCREAMING_SNAKE_CASE__ ) ): UpperCAmelCase_ , UpperCAmelCase_ : Tuple = nums[i], nums[start] backtrack(start + 1 ) UpperCAmelCase_ , UpperCAmelCase_ : int = nums[i], nums[start] # backtrack UpperCAmelCase_ : Optional[int] = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function snake_case_ : Tuple = permutea([1, 2, 3]) print(res) doctest.testmod()
644
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ : Dict = logging.get_logger(__name__) snake_case_ : int = { "google/switch-base-8": "https://huggingface.co/google/switch-base-8/blob/main/config.json", } class __a (_UpperCAmelCase ): __a : str = '''switch_transformers''' __a : Any = ['''past_key_values'''] __a : Optional[int] = {'''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self : Optional[int] , __magic_name__ : List[str]=3_21_28 , __magic_name__ : Tuple=7_68 , __magic_name__ : List[str]=64 , __magic_name__ : Optional[Any]=20_48 , __magic_name__ : Dict=64 , __magic_name__ : Optional[int]=12 , __magic_name__ : int=3 , __magic_name__ : Tuple=12 , __magic_name__ : List[str]=3 , __magic_name__ : List[str]=12 , __magic_name__ : List[Any]=8 , __magic_name__ : List[str]=False , __magic_name__ : Dict=0.0_1 , __magic_name__ : Dict="float32" , __magic_name__ : int=False , __magic_name__ : Union[str, Any]=32 , __magic_name__ : Optional[int]=1_28 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : Any=1E-6 , __magic_name__ : int=0.0_0_1 , __magic_name__ : Union[str, Any]=0.0_0_1 , __magic_name__ : Dict=1.0 , __magic_name__ : List[str]="relu" , __magic_name__ : List[str]=True , __magic_name__ : Optional[Any]=False , __magic_name__ : Union[str, Any]=True , __magic_name__ : Dict=0 , __magic_name__ : List[Any]=1 , **__magic_name__ : Dict , ) -> Tuple: """simple docstring""" UpperCAmelCase_ : Any = vocab_size UpperCAmelCase_ : List[Any] = d_model UpperCAmelCase_ : Optional[Any] = d_kv UpperCAmelCase_ : str = d_ff UpperCAmelCase_ : List[Any] = num_sparse_encoder_layers UpperCAmelCase_ : List[Any] = num_layers UpperCAmelCase_ : int = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry UpperCAmelCase_ : int = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: UpperCAmelCase_ : Optional[int] = self.num_layers // self.num_sparse_encoder_layers else: UpperCAmelCase_ : List[Any] = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: UpperCAmelCase_ : Optional[int] = self.num_decoder_layers // self.num_sparse_decoder_layers else: UpperCAmelCase_ : Any = self.num_decoder_layers # HACK: this will create 0 sparse layers UpperCAmelCase_ : Optional[int] = num_heads UpperCAmelCase_ : Optional[int] = num_experts UpperCAmelCase_ : Dict = expert_capacity UpperCAmelCase_ : Dict = router_bias UpperCAmelCase_ : Optional[int] = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F"""`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}""" ) UpperCAmelCase_ : List[str] = router_dtype UpperCAmelCase_ : List[str] = router_ignore_padding_tokens UpperCAmelCase_ : int = relative_attention_num_buckets UpperCAmelCase_ : str = relative_attention_max_distance UpperCAmelCase_ : Dict = dropout_rate UpperCAmelCase_ : Any = layer_norm_epsilon UpperCAmelCase_ : Union[str, Any] = initializer_factor UpperCAmelCase_ : List[str] = feed_forward_proj UpperCAmelCase_ : int = use_cache UpperCAmelCase_ : int = add_router_probs UpperCAmelCase_ : Optional[int] = router_z_loss_coef UpperCAmelCase_ : List[Any] = router_aux_loss_coef UpperCAmelCase_ : Optional[int] = self.feed_forward_proj.split('''-''' ) UpperCAmelCase_ : List[str] = act_info[-1] UpperCAmelCase_ : str = act_info[0] == '''gated''' if len(A_ ) > 1 and act_info[0] != "gated" or len(A_ ) > 2: raise ValueError( F"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": UpperCAmelCase_ : Dict = '''gelu_new''' super().__init__( pad_token_id=A_ , eos_token_id=A_ , is_encoder_decoder=A_ , **A_ , )
705
'''simple docstring''' class __a : def __init__( self : List[Any] , __magic_name__ : int ) -> None: """simple docstring""" UpperCAmelCase_ : Optional[Any] = size UpperCAmelCase_ : Tuple = [0] * size UpperCAmelCase_ : Optional[Any] = [0] * size @staticmethod def UpperCAmelCase__ ( __magic_name__ : int ) -> int: """simple docstring""" return index | (index + 1) @staticmethod def UpperCAmelCase__ ( __magic_name__ : int ) -> int: """simple docstring""" return (index & (index + 1)) - 1 def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : int , __magic_name__ : int ) -> None: """simple docstring""" UpperCAmelCase_ : int = value while index < self.size: UpperCAmelCase_ : str = self.get_prev(__magic_name__ ) + 1 if current_left_border == index: UpperCAmelCase_ : List[str] = value else: UpperCAmelCase_ : Optional[int] = max(__magic_name__ , __magic_name__ , __magic_name__ ) UpperCAmelCase_ : Tuple = self.get_next(__magic_name__ ) def UpperCAmelCase__ ( self : Any , __magic_name__ : int , __magic_name__ : int ) -> int: """simple docstring""" right -= 1 # Because of right is exclusive UpperCAmelCase_ : List[str] = 0 while left <= right: UpperCAmelCase_ : Optional[Any] = self.get_prev(__magic_name__ ) if left <= current_left: UpperCAmelCase_ : Dict = max(__magic_name__ , self.tree[right] ) UpperCAmelCase_ : Optional[Any] = current_left else: UpperCAmelCase_ : str = max(__magic_name__ , self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
644
0
'''simple docstring''' from collections.abc import Sequence def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Sequence[int] | None = None ) -> int: if nums is None or not nums: raise ValueError('''Input sequence should not be empty''' ) UpperCAmelCase_ : int = nums[0] for i in range(1, len(_lowerCamelCase ) ): UpperCAmelCase_ : str = nums[i] UpperCAmelCase_ : Tuple = max(_lowerCamelCase, ans + num, _lowerCamelCase ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user snake_case_ : Union[str, Any] = int(input("Enter number of elements : ").strip()) snake_case_ : Union[str, Any] = list(map(int, input("\nEnter the numbers : ").strip().split()))[:n] print(max_subsequence_sum(array))
706
'''simple docstring''' import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class __a : def __init__( self : List[str] , __magic_name__ : List[str] , __magic_name__ : str=13 , __magic_name__ : Union[str, Any]=7 , __magic_name__ : Union[str, Any]=True , __magic_name__ : Any=True , __magic_name__ : List[str]=False , __magic_name__ : Optional[int]=True , __magic_name__ : Dict=99 , __magic_name__ : Tuple=32 , __magic_name__ : int=5 , __magic_name__ : Dict=4 , __magic_name__ : Tuple=37 , __magic_name__ : Optional[int]="gelu" , __magic_name__ : List[str]=0.1 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : str=5_12 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : int=2 , __magic_name__ : List[Any]=0.0_2 , __magic_name__ : Tuple=3 , __magic_name__ : Union[str, Any]=4 , __magic_name__ : Optional[int]=None , ) -> str: """simple docstring""" UpperCAmelCase_ : Any = parent UpperCAmelCase_ : Union[str, Any] = batch_size UpperCAmelCase_ : List[Any] = seq_length UpperCAmelCase_ : str = is_training UpperCAmelCase_ : Any = use_input_mask UpperCAmelCase_ : List[str] = use_token_type_ids UpperCAmelCase_ : Union[str, Any] = use_labels UpperCAmelCase_ : Dict = vocab_size UpperCAmelCase_ : Optional[Any] = hidden_size UpperCAmelCase_ : Dict = num_hidden_layers UpperCAmelCase_ : List[Any] = num_attention_heads UpperCAmelCase_ : Optional[int] = intermediate_size UpperCAmelCase_ : Union[str, Any] = hidden_act UpperCAmelCase_ : str = hidden_dropout_prob UpperCAmelCase_ : Optional[Any] = attention_probs_dropout_prob UpperCAmelCase_ : Any = max_position_embeddings UpperCAmelCase_ : str = type_vocab_size UpperCAmelCase_ : Optional[Any] = type_sequence_label_size UpperCAmelCase_ : List[Any] = initializer_range UpperCAmelCase_ : int = num_labels UpperCAmelCase_ : Optional[int] = num_choices UpperCAmelCase_ : Tuple = scope def UpperCAmelCase__ ( self : Union[str, Any] ) -> int: """simple docstring""" UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Union[str, Any] = None if self.use_input_mask: UpperCAmelCase_ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : str = None if self.use_token_type_ids: UpperCAmelCase_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ : Tuple = None UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Union[str, Any] = None if self.use_labels: UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ : int = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self : Any ) -> List[Any]: """simple docstring""" return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__magic_name__ , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : Tuple , __magic_name__ : str , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : Optional[Any] = BioGptModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() UpperCAmelCase_ : Dict = model(__magic_name__ , attention_mask=__magic_name__ ) UpperCAmelCase_ : Optional[Any] = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : Dict , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Any , __magic_name__ : Tuple , __magic_name__ : List[str] , __magic_name__ : Optional[int] , ) -> int: """simple docstring""" UpperCAmelCase_ : Dict = BioGptForCausalLM(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() UpperCAmelCase_ : List[Any] = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self : str , __magic_name__ : Optional[int] , __magic_name__ : Tuple , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : str , *__magic_name__ : Any ) -> int: """simple docstring""" UpperCAmelCase_ : Dict = BioGptModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() # create attention mask UpperCAmelCase_ : Optional[Any] = torch.ones(input_ids.shape , dtype=torch.long , device=__magic_name__ ) UpperCAmelCase_ : Any = self.seq_length // 2 UpperCAmelCase_ : Tuple = 0 # first forward pass UpperCAmelCase_ , UpperCAmelCase_ : Dict = model(__magic_name__ , attention_mask=__magic_name__ ).to_tuple() # create hypothetical next token and extent to next_input_ids UpperCAmelCase_ : Tuple = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids UpperCAmelCase_ : List[str] = ids_tensor((1,) , __magic_name__ ).item() + 1 UpperCAmelCase_ : Tuple = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) UpperCAmelCase_ : str = random_other_next_tokens # append to next input_ids and attn_mask UpperCAmelCase_ : Tuple = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase_ : int = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=__magic_name__ )] , dim=1 , ) # get two different outputs UpperCAmelCase_ : Any = model(__magic_name__ , attention_mask=__magic_name__ )['''last_hidden_state'''] UpperCAmelCase_ : int = model(__magic_name__ , past_key_values=__magic_name__ , attention_mask=__magic_name__ )['''last_hidden_state'''] # select random slice UpperCAmelCase_ : Optional[int] = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase_ : Union[str, Any] = output_from_no_past[:, -1, random_slice_idx].detach() UpperCAmelCase_ : Dict = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) ) def UpperCAmelCase__ ( self : Dict , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : Dict , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , *__magic_name__ : str ) -> int: """simple docstring""" UpperCAmelCase_ : Dict = BioGptModel(config=__magic_name__ ).to(__magic_name__ ).eval() UpperCAmelCase_ : Optional[int] = torch.ones(input_ids.shape , dtype=torch.long , device=__magic_name__ ) # first forward pass UpperCAmelCase_ : Union[str, Any] = model(__magic_name__ , attention_mask=__magic_name__ , use_cache=__magic_name__ ) UpperCAmelCase_ , UpperCAmelCase_ : int = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase_ : Any = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase_ : Any = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and UpperCAmelCase_ : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase_ : List[str] = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) UpperCAmelCase_ : Any = model(__magic_name__ , attention_mask=__magic_name__ )['''last_hidden_state'''] UpperCAmelCase_ : Optional[Any] = model(__magic_name__ , attention_mask=__magic_name__ , past_key_values=__magic_name__ )[ '''last_hidden_state''' ] # select random slice UpperCAmelCase_ : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase_ : str = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase_ : Optional[int] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) ) def UpperCAmelCase__ ( self : List[str] , __magic_name__ : str , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , *__magic_name__ : Any , __magic_name__ : List[Any]=False ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : Any = BioGptForCausalLM(__magic_name__ ) model.to(__magic_name__ ) if gradient_checkpointing: model.gradient_checkpointing_enable() UpperCAmelCase_ : List[str] = model(__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Optional[int] , *__magic_name__ : List[str] ) -> str: """simple docstring""" UpperCAmelCase_ : int = BioGptModel(__magic_name__ ) UpperCAmelCase_ : Dict = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.0_0_1 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.0_1 ) def UpperCAmelCase__ ( self : int , __magic_name__ : Tuple , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] , *__magic_name__ : Any ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : str = self.num_labels UpperCAmelCase_ : Any = BioGptForTokenClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() UpperCAmelCase_ : Any = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase__ ( self : Optional[Any] ) -> str: """simple docstring""" UpperCAmelCase_ : List[Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : int = config_and_inputs UpperCAmelCase_ : Any = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __a (lowerCamelCase , lowerCamelCase , lowerCamelCase , unittest.TestCase ): __a : str = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) __a : List[Any] = (BioGptForCausalLM,) if is_torch_available() else () __a : Union[str, Any] = ( { "feature-extraction": BioGptModel, "text-classification": BioGptForSequenceClassification, "text-generation": BioGptForCausalLM, "token-classification": BioGptForTokenClassification, "zero-shot": BioGptForSequenceClassification, } if is_torch_available() else {} ) __a : List[str] = False def UpperCAmelCase__ ( self : Optional[Any] ) -> Dict: """simple docstring""" UpperCAmelCase_ : List[str] = BioGptModelTester(self ) UpperCAmelCase_ : Optional[Any] = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : List[str] ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def UpperCAmelCase__ ( self : Tuple ) -> List[str]: """simple docstring""" UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase_ : str = type self.model_tester.create_and_check_model(*__magic_name__ ) def UpperCAmelCase__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*__magic_name__ ) def UpperCAmelCase__ ( self : Tuple ) -> List[str]: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*__magic_name__ , gradient_checkpointing=__magic_name__ ) def UpperCAmelCase__ ( self : str ) -> List[str]: """simple docstring""" UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*__magic_name__ ) def UpperCAmelCase__ ( self : Dict ) -> Tuple: """simple docstring""" UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*__magic_name__ ) def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*__magic_name__ ) @slow def UpperCAmelCase__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : Tuple = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) model.to(__magic_name__ ) UpperCAmelCase_ : List[str] = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) UpperCAmelCase_ : Tuple = '''left''' # Define PAD Token = EOS Token = 50256 UpperCAmelCase_ : List[Any] = tokenizer.eos_token UpperCAmelCase_ : List[Any] = model.config.eos_token_id # use different length sentences to test batching UpperCAmelCase_ : Tuple = [ '''Hello, my dog is a little''', '''Today, I''', ] UpperCAmelCase_ : Optional[Any] = tokenizer(__magic_name__ , return_tensors='''pt''' , padding=__magic_name__ ) UpperCAmelCase_ : Optional[Any] = inputs['''input_ids'''].to(__magic_name__ ) UpperCAmelCase_ : Any = model.generate( input_ids=__magic_name__ , attention_mask=inputs['''attention_mask'''].to(__magic_name__ ) , ) UpperCAmelCase_ : Union[str, Any] = tokenizer(sentences[0] , return_tensors='''pt''' ).input_ids.to(__magic_name__ ) UpperCAmelCase_ : Tuple = model.generate(input_ids=__magic_name__ ) UpperCAmelCase_ : List[str] = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item() UpperCAmelCase_ : List[Any] = tokenizer(sentences[1] , return_tensors='''pt''' ).input_ids.to(__magic_name__ ) UpperCAmelCase_ : Tuple = model.generate(input_ids=__magic_name__ , max_length=model.config.max_length - num_paddings ) UpperCAmelCase_ : int = tokenizer.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ ) UpperCAmelCase_ : Dict = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__magic_name__ ) UpperCAmelCase_ : Union[str, Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=__magic_name__ ) UpperCAmelCase_ : Optional[Any] = [ '''Hello, my dog is a little bit bigger than a little bit.''', '''Today, I have a good idea of how to use the information''', ] self.assertListEqual(__magic_name__ , __magic_name__ ) self.assertListEqual(__magic_name__ , [non_padded_sentence, padded_sentence] ) @slow def UpperCAmelCase__ ( self : str ) -> Optional[Any]: """simple docstring""" for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : List[Any] = BioGptModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def UpperCAmelCase__ ( self : Tuple ) -> str: """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : List[str] = 3 UpperCAmelCase_ : Tuple = input_dict['''input_ids'''] UpperCAmelCase_ : Dict = input_ids.ne(1 ).to(__magic_name__ ) UpperCAmelCase_ : List[str] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase_ : Dict = BioGptForSequenceClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() UpperCAmelCase_ : int = model(__magic_name__ , attention_mask=__magic_name__ , labels=__magic_name__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]: """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : List[Any] = 3 UpperCAmelCase_ : Optional[int] = '''multi_label_classification''' UpperCAmelCase_ : int = input_dict['''input_ids'''] UpperCAmelCase_ : str = input_ids.ne(1 ).to(__magic_name__ ) UpperCAmelCase_ : Any = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCAmelCase_ : Union[str, Any] = BioGptForSequenceClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() UpperCAmelCase_ : str = model(__magic_name__ , attention_mask=__magic_name__ , labels=__magic_name__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class __a (unittest.TestCase ): @slow def UpperCAmelCase__ ( self : List[Any] ) -> str: """simple docstring""" UpperCAmelCase_ : str = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) UpperCAmelCase_ : List[str] = torch.tensor([[2, 48_05, 9, 6_56, 21]] ) UpperCAmelCase_ : str = model(__magic_name__ )[0] UpperCAmelCase_ : Optional[int] = 4_23_84 UpperCAmelCase_ : Tuple = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , __magic_name__ ) UpperCAmelCase_ : List[Any] = torch.tensor( [[[-9.5_2_3_6, -9.8_9_1_8, 1_0.4_5_5_7], [-1_1.0_4_6_9, -9.6_4_2_3, 8.1_0_2_2], [-8.8_6_6_4, -7.8_8_2_6, 5.5_3_2_5]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __magic_name__ , atol=1E-4 ) ) @slow def UpperCAmelCase__ ( self : Any ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Any = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) UpperCAmelCase_ : str = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) model.to(__magic_name__ ) torch.manual_seed(0 ) UpperCAmelCase_ : Optional[Any] = tokenizer('''COVID-19 is''' , return_tensors='''pt''' ).to(__magic_name__ ) UpperCAmelCase_ : Optional[int] = model.generate( **__magic_name__ , min_length=1_00 , max_length=10_24 , num_beams=5 , early_stopping=__magic_name__ , ) UpperCAmelCase_ : int = tokenizer.decode(output_ids[0] , skip_special_tokens=__magic_name__ ) UpperCAmelCase_ : Optional[Any] = ( '''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the''' ''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and''' ''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),''' ''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and''' ''' more than 800,000 deaths.''' ) self.assertEqual(__magic_name__ , __magic_name__ )
644
0
'''simple docstring''' class __a : def __init__( self : Dict ) -> str: """simple docstring""" UpperCAmelCase_ : str = '''''' UpperCAmelCase_ : List[Any] = '''''' UpperCAmelCase_ : Optional[int] = [] def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : int , __magic_name__ : int ) -> int: """simple docstring""" if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: UpperCAmelCase_ : Union[str, Any] = self.__min_dist_top_down_dp(m - 1 , n - 1 ) else: UpperCAmelCase_ : List[str] = self.__min_dist_top_down_dp(__UpperCamelCase , n - 1 ) UpperCAmelCase_ : Dict = self.__min_dist_top_down_dp(m - 1 , __UpperCamelCase ) UpperCAmelCase_ : Union[str, Any] = self.__min_dist_top_down_dp(m - 1 , n - 1 ) UpperCAmelCase_ : int = 1 + min(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return self.dp[m][n] def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : str , __magic_name__ : str ) -> int: """simple docstring""" UpperCAmelCase_ : Dict = worda UpperCAmelCase_ : Tuple = worda UpperCAmelCase_ : List[Any] = [[-1 for _ in range(len(__UpperCamelCase ) )] for _ in range(len(__UpperCamelCase ) )] return self.__min_dist_top_down_dp(len(__UpperCamelCase ) - 1 , len(__UpperCamelCase ) - 1 ) def UpperCAmelCase__ ( self : Tuple , __magic_name__ : str , __magic_name__ : str ) -> int: """simple docstring""" UpperCAmelCase_ : str = worda UpperCAmelCase_ : Optional[Any] = worda UpperCAmelCase_ : Dict = len(__UpperCamelCase ) UpperCAmelCase_ : Tuple = len(__UpperCamelCase ) UpperCAmelCase_ : Optional[int] = [[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty UpperCAmelCase_ : Dict = j elif j == 0: # second string is empty UpperCAmelCase_ : Dict = i elif worda[i - 1] == worda[j - 1]: # last characters are equal UpperCAmelCase_ : int = self.dp[i - 1][j - 1] else: UpperCAmelCase_ : Optional[Any] = self.dp[i][j - 1] UpperCAmelCase_ : int = self.dp[i - 1][j] UpperCAmelCase_ : List[Any] = self.dp[i - 1][j - 1] UpperCAmelCase_ : Any = 1 + min(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return self.dp[m][n] if __name__ == "__main__": lowerCamelCase : List[Any] = EditDistance() print("****************** Testing Edit Distance DP Algorithm ******************") print() lowerCamelCase : Dict = input("Enter the first string: ").strip() lowerCamelCase : str = input("Enter the second string: ").strip() print() print(f'''The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}''') print(f'''The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}''') print() print("*************** End of Testing Edit Distance DP Algorithm ***************")
707
'''simple docstring''' import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class __a (lowerCamelCase , unittest.TestCase ): __a : List[str] = BlenderbotSmallTokenizer __a : List[Any] = False def UpperCAmelCase__ ( self : str ) -> str: """simple docstring""" super().setUp() UpperCAmelCase_ : Tuple = ['''__start__''', '''adapt''', '''act''', '''ap@@''', '''te''', '''__end__''', '''__unk__'''] UpperCAmelCase_ : Optional[Any] = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) ) UpperCAmelCase_ : int = ['''#version: 0.2''', '''a p''', '''t e</w>''', '''ap t</w>''', '''a d''', '''ad apt</w>''', '''a c''', '''ac t</w>''', ''''''] UpperCAmelCase_ : Optional[Any] = {'''unk_token''': '''__unk__''', '''bos_token''': '''__start__''', '''eos_token''': '''__end__'''} UpperCAmelCase_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase_ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__magic_name__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__magic_name__ ) ) def UpperCAmelCase__ ( self : List[Any] , **__magic_name__ : Dict ) -> Tuple: """simple docstring""" kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **__magic_name__ ) def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : List[str] ) -> List[str]: """simple docstring""" UpperCAmelCase_ : str = '''adapt act apte''' UpperCAmelCase_ : Tuple = '''adapt act apte''' return input_text, output_text def UpperCAmelCase__ ( self : str ) -> Any: """simple docstring""" UpperCAmelCase_ : str = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCAmelCase_ : List[Any] = '''adapt act apte''' UpperCAmelCase_ : Dict = ['''adapt''', '''act''', '''ap@@''', '''te'''] UpperCAmelCase_ : Dict = tokenizer.tokenize(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) UpperCAmelCase_ : Tuple = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] UpperCAmelCase_ : Dict = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , __magic_name__ ) def UpperCAmelCase__ ( self : int ) -> List[str]: """simple docstring""" UpperCAmelCase_ : List[Any] = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) assert tok('''sam''' ).input_ids == [13_84] UpperCAmelCase_ : Optional[int] = '''I am a small frog.''' UpperCAmelCase_ : List[str] = tok([src_text] , padding=__magic_name__ , truncation=__magic_name__ )['''input_ids'''] UpperCAmelCase_ : Dict = tok.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ , clean_up_tokenization_spaces=__magic_name__ )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def UpperCAmelCase__ ( self : Any ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : int = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) UpperCAmelCase_ : List[Any] = '''I am a small frog .''' UpperCAmelCase_ : Any = '''.''' UpperCAmelCase_ : List[Any] = tok(__magic_name__ )['''input_ids'''] UpperCAmelCase_ : Optional[int] = tok(__magic_name__ )['''input_ids'''] assert encoded[-1] == encoded_dot[0]
644
0
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING snake_case_ : Dict = logging.get_logger(__name__) @add_end_docstrings(A_ ) class __a (A_ ): def __init__( self : Optional[int] , *__magic_name__ : List[str] , **__magic_name__ : Any ) -> Optional[Any]: """simple docstring""" super().__init__(*__magic_name__ , **__magic_name__ ) requires_backends(self , '''vision''' ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == '''tf''' else MODEL_FOR_VISION_2_SEQ_MAPPING ) def UpperCAmelCase__ ( self : Any , __magic_name__ : Union[str, Any]=None , __magic_name__ : Union[str, Any]=None , __magic_name__ : Union[str, Any]=None ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = {} UpperCAmelCase_ : Union[str, Any] = {} if prompt is not None: UpperCAmelCase_ : List[str] = prompt if generate_kwargs is not None: UpperCAmelCase_ : int = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: UpperCAmelCase_ : str = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( '''\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,''' ''' please use only one''' ) UpperCAmelCase_ : List[str] = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : str , __magic_name__ : int , **__magic_name__ : Any ) -> List[Any]: """simple docstring""" return super().__call__(__magic_name__ , **__magic_name__ ) def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : Dict , __magic_name__ : str=None ) -> List[str]: """simple docstring""" UpperCAmelCase_ : Optional[int] = load_image(__magic_name__ ) if prompt is not None: if not isinstance(__magic_name__ , __magic_name__ ): raise ValueError( F"""Received an invalid text input, got - {type(__magic_name__ )} - but expected a single string. """ '''Note also that one single text can be provided for conditional image to text generation.''' ) UpperCAmelCase_ : int = self.model.config.model_type if model_type == "git": UpperCAmelCase_ : List[str] = self.image_processor(images=__magic_name__ , return_tensors=self.framework ) UpperCAmelCase_ : Any = self.tokenizer(text=__magic_name__ , add_special_tokens=__magic_name__ ).input_ids UpperCAmelCase_ : List[str] = [self.tokenizer.cls_token_id] + input_ids UpperCAmelCase_ : Optional[Any] = torch.tensor(__magic_name__ ).unsqueeze(0 ) model_inputs.update({'''input_ids''': input_ids} ) elif model_type == "pix2struct": UpperCAmelCase_ : Any = self.image_processor(images=__magic_name__ , header_text=__magic_name__ , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation UpperCAmelCase_ : str = self.image_processor(images=__magic_name__ , return_tensors=self.framework ) UpperCAmelCase_ : Dict = self.tokenizer(__magic_name__ , return_tensors=self.framework ) model_inputs.update(__magic_name__ ) else: raise ValueError(F"""Model type {model_type} does not support conditional text generation""" ) else: UpperCAmelCase_ : List[Any] = self.image_processor(images=__magic_name__ , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: UpperCAmelCase_ : Optional[Any] = None return model_inputs def UpperCAmelCase__ ( self : Any , __magic_name__ : List[Any] , __magic_name__ : Optional[int]=None ) -> str: """simple docstring""" # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs['''input_ids'''] , __magic_name__ ) and all(x is None for x in model_inputs['''input_ids'''] ) ): UpperCAmelCase_ : Optional[Any] = None if generate_kwargs is None: UpperCAmelCase_ : int = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. UpperCAmelCase_ : List[str] = model_inputs.pop(self.model.main_input_name ) UpperCAmelCase_ : Union[str, Any] = self.model.generate(__magic_name__ , **__magic_name__ , **__magic_name__ ) return model_outputs def UpperCAmelCase__ ( self : Any , __magic_name__ : Tuple ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : str = [] for output_ids in model_outputs: UpperCAmelCase_ : int = { """generated_text""": self.tokenizer.decode( __magic_name__ , skip_special_tokens=__magic_name__ , ) } records.append(__magic_name__ ) return records
708
'''simple docstring''' import unittest import torch from torch import nn from diffusers.models.activations import get_activation class __a (unittest.TestCase ): def UpperCAmelCase__ ( self : Dict ) -> Dict: """simple docstring""" UpperCAmelCase_ : Dict = get_activation('''swish''' ) self.assertIsInstance(__magic_name__ , nn.SiLU ) self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def UpperCAmelCase__ ( self : Tuple ) -> Tuple: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = get_activation('''silu''' ) self.assertIsInstance(__magic_name__ , nn.SiLU ) self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def UpperCAmelCase__ ( self : Tuple ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : Optional[int] = get_activation('''mish''' ) self.assertIsInstance(__magic_name__ , nn.Mish ) self.assertEqual(act(torch.tensor(-2_00 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def UpperCAmelCase__ ( self : str ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ : List[Any] = get_activation('''gelu''' ) self.assertIsInstance(__magic_name__ , nn.GELU ) self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
644
0
'''simple docstring''' from datetime import datetime as dt import os from github import Github snake_case_ : Optional[int] = [ "good first issue", "good second issue", "good difficult issue", "feature request", "new model", "wip", ] def lowerCamelCase_ ( ) -> Tuple: UpperCAmelCase_ : str = Github(os.environ['''GITHUB_TOKEN'''] ) UpperCAmelCase_ : Optional[Any] = g.get_repo('''huggingface/transformers''' ) UpperCAmelCase_ : Optional[int] = repo.get_issues(state='''open''' ) for issue in open_issues: UpperCAmelCase_ : Tuple = sorted([comment for comment in issue.get_comments()], key=lambda SCREAMING_SNAKE_CASE__ : i.created_at, reverse=lowerCAmelCase__ ) UpperCAmelCase_ : Tuple = comments[0] if len(lowerCAmelCase__ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state='''closed''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) if __name__ == "__main__": main()
709
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging snake_case_ : Union[str, Any] = logging.get_logger(__name__) class __a (lowerCamelCase ): __a : Tuple = ["pixel_values"] def __init__( self : List[Any] , __magic_name__ : bool = True , __magic_name__ : int = 32 , __magic_name__ : Union[str, Any]=PILImageResampling.BILINEAR , __magic_name__ : bool = True , **__magic_name__ : List[str] , ) -> None: """simple docstring""" UpperCAmelCase_ : int = do_resize UpperCAmelCase_ : Tuple = do_rescale UpperCAmelCase_ : List[Any] = size_divisor UpperCAmelCase_ : Any = resample super().__init__(**__magic_name__ ) def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : np.ndarray , __magic_name__ : int , __magic_name__ : str , __magic_name__ : Optional[ChannelDimension] = None , **__magic_name__ : Tuple ) -> np.ndarray: """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : List[str] = get_image_size(__magic_name__ ) # Rounds the height and width down to the closest multiple of size_divisor UpperCAmelCase_ : Dict = height // size_divisor * size_divisor UpperCAmelCase_ : Dict = width // size_divisor * size_divisor UpperCAmelCase_ : Any = resize(__magic_name__ , (new_h, new_w) , resample=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) return image def UpperCAmelCase__ ( self : int , __magic_name__ : np.ndarray , __magic_name__ : float , __magic_name__ : Optional[ChannelDimension] = None , **__magic_name__ : Optional[Any] ) -> np.ndarray: """simple docstring""" return rescale(image=__magic_name__ , scale=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def UpperCAmelCase__ ( self : str , __magic_name__ : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[int] = None , __magic_name__ : Any=None , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[Union[TensorType, str]] = None , __magic_name__ : ChannelDimension = ChannelDimension.FIRST , **__magic_name__ : Tuple , ) -> BatchFeature: """simple docstring""" UpperCAmelCase_ : Dict = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ : str = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ : Any = size_divisor if size_divisor is not None else self.size_divisor UpperCAmelCase_ : Dict = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('''size_divisor is required for resizing''' ) UpperCAmelCase_ : Optional[int] = make_list_of_images(__magic_name__ ) if not valid_images(__magic_name__ ): raise ValueError('''Invalid image(s)''' ) # All transformations expect numpy arrays. UpperCAmelCase_ : List[str] = [to_numpy_array(__magic_name__ ) for img in images] if do_resize: UpperCAmelCase_ : str = [self.resize(__magic_name__ , size_divisor=__magic_name__ , resample=__magic_name__ ) for image in images] if do_rescale: UpperCAmelCase_ : Tuple = [self.rescale(__magic_name__ , scale=1 / 2_55 ) for image in images] UpperCAmelCase_ : Union[str, Any] = [to_channel_dimension_format(__magic_name__ , __magic_name__ ) for image in images] UpperCAmelCase_ : int = {'''pixel_values''': images} return BatchFeature(data=__magic_name__ , tensor_type=__magic_name__ )
644
0
'''simple docstring''' import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __a (unittest.TestCase ): @property def UpperCAmelCase__ ( self : List[Any] ) -> Optional[Any]: """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase_ : int = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def UpperCAmelCase__ ( self : Tuple ) -> List[str]: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = self.dummy_uncond_unet UpperCAmelCase_ : Union[str, Any] = PNDMScheduler() UpperCAmelCase_ : Optional[int] = PNDMPipeline(unet=lowerCamelCase_ , scheduler=lowerCamelCase_ ) pndm.to(lowerCamelCase_ ) pndm.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = torch.manual_seed(0 ) UpperCAmelCase_ : Dict = pndm(generator=lowerCamelCase_ , num_inference_steps=20 , output_type='''numpy''' ).images UpperCAmelCase_ : List[Any] = torch.manual_seed(0 ) UpperCAmelCase_ : Union[str, Any] = pndm(generator=lowerCamelCase_ , num_inference_steps=20 , output_type='''numpy''' , return_dict=lowerCamelCase_ )[0] UpperCAmelCase_ : str = image[0, -3:, -3:, -1] UpperCAmelCase_ : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase_ : Optional[int] = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class __a (unittest.TestCase ): def UpperCAmelCase__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" UpperCAmelCase_ : Optional[Any] = '''google/ddpm-cifar10-32''' UpperCAmelCase_ : Optional[int] = UNetaDModel.from_pretrained(lowerCamelCase_ ) UpperCAmelCase_ : Tuple = PNDMScheduler() UpperCAmelCase_ : str = PNDMPipeline(unet=lowerCamelCase_ , scheduler=lowerCamelCase_ ) pndm.to(lowerCamelCase_ ) pndm.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = torch.manual_seed(0 ) UpperCAmelCase_ : Tuple = pndm(generator=lowerCamelCase_ , output_type='''numpy''' ).images UpperCAmelCase_ : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase_ : Any = np.array([0.1_5_6_4, 0.1_4_6_4_5, 0.1_4_0_6, 0.1_4_7_1_5, 0.1_2_4_2_5, 0.1_4_0_4_5, 0.1_3_1_1_5, 0.1_2_1_7_5, 0.1_2_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
710
'''simple docstring''' def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int = 10, SCREAMING_SNAKE_CASE__ : int = 22 ) -> int: UpperCAmelCase_ : Optional[int] = range(1, SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : List[Any] = range(1, SCREAMING_SNAKE_CASE__ ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(f'''{solution(10, 22) = }''')
644
0
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class __a (lowercase_ ): __a : List[str] = ( '''This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.''' '''It takes two arguments named `image` which should be the original image, and `label` which should be a text ''' '''describing the elements what should be identified in the segmentation mask. The tool returns the mask.''' ) __a : List[Any] = '''CIDAS/clipseg-rd64-refined''' __a : List[str] = '''image_segmenter''' __a : Tuple = CLIPSegForImageSegmentation __a : Tuple = ['''image''', '''text'''] __a : List[Any] = ['''image'''] def __init__( self : Dict , *__magic_name__ : List[str] , **__magic_name__ : Tuple ) -> Dict: """simple docstring""" requires_backends(self , ['''vision'''] ) super().__init__(*UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : int , __magic_name__ : "Image" , __magic_name__ : str ) -> List[Any]: """simple docstring""" return self.pre_processor(text=[label] , images=[image] , padding=UpperCamelCase__ , return_tensors='''pt''' ) def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : List[str] ) -> Union[str, Any]: """simple docstring""" with torch.no_grad(): UpperCAmelCase_ : Optional[int] = self.model(**UpperCamelCase__ ).logits return logits def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : Optional[int] ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = outputs.cpu().detach().numpy() UpperCAmelCase_ : List[Any] = 0 UpperCAmelCase_ : Dict = 1 return Image.fromarray((array * 2_55).astype(np.uinta ) )
711
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class __a (lowerCamelCase ): __a : int = "dandelin/vilt-b32-finetuned-vqa" __a : Any = ( "This is a tool that answers a question about an image. It takes an input named `image` which should be the " "image containing the information, as well as a `question` which should be the question in English. It " "returns a text that is the answer to the question." ) __a : Any = "image_qa" __a : str = AutoProcessor __a : Any = AutoModelForVisualQuestionAnswering __a : List[Any] = ["image", "text"] __a : int = ["text"] def __init__( self : Tuple , *__magic_name__ : Any , **__magic_name__ : Any ) -> Tuple: """simple docstring""" requires_backends(self , ['''vision'''] ) super().__init__(*__magic_name__ , **__magic_name__ ) def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : "Image" , __magic_name__ : str ) -> Tuple: """simple docstring""" return self.pre_processor(__magic_name__ , __magic_name__ , return_tensors='''pt''' ) def UpperCAmelCase__ ( self : Any , __magic_name__ : List[str] ) -> Optional[Any]: """simple docstring""" with torch.no_grad(): return self.model(**__magic_name__ ).logits def UpperCAmelCase__ ( self : int , __magic_name__ : int ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : Dict = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
644
0
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging snake_case_ : str = logging.get_logger(__name__) snake_case_ : Optional[Any] = {"vocab_file": "spiece.model"} snake_case_ : str = { "vocab_file": { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/spiece.model", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/spiece.model", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/spiece.model", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/spiece.model", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model", } } snake_case_ : Optional[Any] = { "albert-base-v1": 5_12, "albert-large-v1": 5_12, "albert-xlarge-v1": 5_12, "albert-xxlarge-v1": 5_12, "albert-base-v2": 5_12, "albert-large-v2": 5_12, "albert-xlarge-v2": 5_12, "albert-xxlarge-v2": 5_12, } snake_case_ : Union[str, Any] = "▁" class __a (__UpperCAmelCase ): __a : List[Any] = VOCAB_FILES_NAMES __a : Tuple = PRETRAINED_VOCAB_FILES_MAP __a : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Any , __magic_name__ : Optional[int] , __magic_name__ : Tuple=True , __magic_name__ : List[str]=True , __magic_name__ : Union[str, Any]=False , __magic_name__ : str="[CLS]" , __magic_name__ : int="[SEP]" , __magic_name__ : Dict="<unk>" , __magic_name__ : Dict="[SEP]" , __magic_name__ : Any="<pad>" , __magic_name__ : Optional[int]="[CLS]" , __magic_name__ : Any="[MASK]" , __magic_name__ : Optional[Dict[str, Any]] = None , **__magic_name__ : str , ) -> Tuple: """simple docstring""" UpperCAmelCase_ : Dict = ( AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ , normalized=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else mask_token ) UpperCAmelCase_ : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowerCAmelCase_ , remove_space=lowerCAmelCase_ , keep_accents=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase_ , ) UpperCAmelCase_ : int = do_lower_case UpperCAmelCase_ : List[Any] = remove_space UpperCAmelCase_ : List[Any] = keep_accents UpperCAmelCase_ : List[Any] = vocab_file UpperCAmelCase_ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCAmelCase_ ) @property def UpperCAmelCase__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return len(self.sp_model ) def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Tuple = {self.convert_ids_to_tokens(lowerCAmelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ : Optional[Any] = self.__dict__.copy() UpperCAmelCase_ : Optional[int] = None return state def __setstate__( self : Optional[Any] , __magic_name__ : int ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : List[Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCAmelCase_ : str = {} UpperCAmelCase_ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : Optional[int] ) -> Union[str, Any]: """simple docstring""" if self.remove_space: UpperCAmelCase_ : Dict = ''' '''.join(inputs.strip().split() ) else: UpperCAmelCase_ : Union[str, Any] = inputs UpperCAmelCase_ : int = outputs.replace('''``''' , '''\"''' ).replace('''\'\'''' , '''\"''' ) if not self.keep_accents: UpperCAmelCase_ : Dict = unicodedata.normalize('''NFKD''' , lowerCAmelCase_ ) UpperCAmelCase_ : str = ''''''.join([c for c in outputs if not unicodedata.combining(lowerCAmelCase_ )] ) if self.do_lower_case: UpperCAmelCase_ : Dict = outputs.lower() return outputs def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : str ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : int = self.preprocess_text(lowerCAmelCase_ ) UpperCAmelCase_ : Any = self.sp_model.encode(lowerCAmelCase_ , out_type=lowerCAmelCase_ ) UpperCAmelCase_ : Any = [] for piece in pieces: if len(lowerCAmelCase_ ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): UpperCAmelCase_ : List[Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(lowerCAmelCase_ , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: UpperCAmelCase_ : Optional[int] = cur_pieces[1:] else: UpperCAmelCase_ : Any = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(lowerCAmelCase_ ) else: new_pieces.append(lowerCAmelCase_ ) return new_pieces def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : int ) -> List[Any]: """simple docstring""" return self.sp_model.PieceToId(lowerCAmelCase_ ) def UpperCAmelCase__ ( self : Dict , __magic_name__ : Dict ) -> Dict: """simple docstring""" return self.sp_model.IdToPiece(lowerCAmelCase_ ) def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : int ) -> Any: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = [] UpperCAmelCase_ : Tuple = '''''' UpperCAmelCase_ : str = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCAmelCase_ ) + token UpperCAmelCase_ : List[Any] = True UpperCAmelCase_ : int = [] else: current_sub_tokens.append(lowerCAmelCase_ ) UpperCAmelCase_ : Any = False out_string += self.sp_model.decode(lowerCAmelCase_ ) return out_string.strip() def UpperCAmelCase__ ( self : Dict , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : Tuple = [self.sep_token_id] UpperCAmelCase_ : Dict = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCAmelCase__ ( self : Tuple , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None , __magic_name__ : bool = False ) -> str: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase_ , token_ids_a=lowerCAmelCase_ , already_has_special_tokens=lowerCAmelCase_ ) if token_ids_a is not None: return [1] + ([0] * len(lowerCAmelCase_ )) + [1] + ([0] * len(lowerCAmelCase_ )) + [1] return [1] + ([0] * len(lowerCAmelCase_ )) + [1] def UpperCAmelCase__ ( self : List[str] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ : Optional[Any] = [self.sep_token_id] UpperCAmelCase_ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase__ ( self : Dict , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> List[Any]: """simple docstring""" if not os.path.isdir(lowerCAmelCase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase_ : Tuple = os.path.join( lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase_ , '''wb''' ) as fi: UpperCAmelCase_ : Any = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase_ ) return (out_vocab_file,)
712
'''simple docstring''' from collections.abc import Iterable from typing import Any class __a : def __init__( self : Optional[Any] , __magic_name__ : int | None = None ) -> Tuple: """simple docstring""" UpperCAmelCase_ : List[str] = value UpperCAmelCase_ : Node | None = None # Added in order to delete a node easier UpperCAmelCase_ : Node | None = None UpperCAmelCase_ : Node | None = None def __repr__( self : List[str] ) -> str: """simple docstring""" from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({F"""{self.value}""": (self.left, self.right)} , indent=1 ) class __a : def __init__( self : int , __magic_name__ : Node | None = None ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : str = root def __str__( self : Any ) -> str: """simple docstring""" return str(self.root ) def UpperCAmelCase__ ( self : Any , __magic_name__ : Node , __magic_name__ : Node | None ) -> None: """simple docstring""" if new_children is not None: # reset its kids UpperCAmelCase_ : Dict = node.parent if node.parent is not None: # reset its parent if self.is_right(__magic_name__ ): # If it is the right children UpperCAmelCase_ : Optional[Any] = new_children else: UpperCAmelCase_ : Optional[int] = new_children else: UpperCAmelCase_ : List[str] = new_children def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Node ) -> bool: """simple docstring""" if node.parent and node.parent.right: return node == node.parent.right return False def UpperCAmelCase__ ( self : Union[str, Any] ) -> bool: """simple docstring""" return self.root is None def UpperCAmelCase__ ( self : Any , __magic_name__ : str ) -> None: """simple docstring""" UpperCAmelCase_ : Tuple = Node(__magic_name__ ) # create a new Node if self.empty(): # if Tree is empty UpperCAmelCase_ : List[Any] = new_node # set its root else: # Tree is not empty UpperCAmelCase_ : str = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: UpperCAmelCase_ : Union[str, Any] = new_node # We insert the new node in a leaf break else: UpperCAmelCase_ : List[Any] = parent_node.left else: if parent_node.right is None: UpperCAmelCase_ : List[Any] = new_node break else: UpperCAmelCase_ : Union[str, Any] = parent_node.right UpperCAmelCase_ : Union[str, Any] = parent_node def UpperCAmelCase__ ( self : Optional[Any] , *__magic_name__ : List[str] ) -> None: """simple docstring""" for value in values: self.__insert(__magic_name__ ) def UpperCAmelCase__ ( self : Dict , __magic_name__ : int ) -> Node | None: """simple docstring""" if self.empty(): raise IndexError('''Warning: Tree is empty! please use another.''' ) else: UpperCAmelCase_ : str = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: UpperCAmelCase_ : List[str] = node.left if value < node.value else node.right return node def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : Node | None = None ) -> Node | None: """simple docstring""" if node is None: if self.root is None: return None UpperCAmelCase_ : Dict = self.root if not self.empty(): while node.right is not None: UpperCAmelCase_ : Any = node.right return node def UpperCAmelCase__ ( self : Dict , __magic_name__ : Node | None = None ) -> Node | None: """simple docstring""" if node is None: UpperCAmelCase_ : Optional[int] = self.root if self.root is None: return None if not self.empty(): UpperCAmelCase_ : Union[str, Any] = self.root while node.left is not None: UpperCAmelCase_ : Dict = node.left return node def UpperCAmelCase__ ( self : Tuple , __magic_name__ : int ) -> None: """simple docstring""" UpperCAmelCase_ : List[str] = self.search(__magic_name__ ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(__magic_name__ , __magic_name__ ) elif node.left is None: # Has only right children self.__reassign_nodes(__magic_name__ , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(__magic_name__ , node.left ) else: UpperCAmelCase_ : List[str] = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore UpperCAmelCase_ : Optional[int] = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Node | None ) -> Iterable: """simple docstring""" if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : List[Any]=None ) -> Any: """simple docstring""" if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : list , __magic_name__ : Node | None ) -> None: """simple docstring""" if node: self.inorder(__magic_name__ , node.left ) arr.append(node.value ) self.inorder(__magic_name__ , node.right ) def UpperCAmelCase__ ( self : Tuple , __magic_name__ : int , __magic_name__ : Node ) -> int: """simple docstring""" UpperCAmelCase_ : list[int] = [] self.inorder(__magic_name__ , __magic_name__ ) # append all values to list using inorder traversal return arr[k - 1] def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Node | None ) -> list[Node]: UpperCAmelCase_ : Any = [] if curr_node is not None: UpperCAmelCase_ : Any = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def lowerCamelCase_ ( ) -> None: UpperCAmelCase_ : str = (8, 3, 6, 1, 10, 14, 13, 4, 7) UpperCAmelCase_ : Tuple = BinarySearchTree() for i in testlist: t.insert(SCREAMING_SNAKE_CASE__ ) # Prints all the elements of the list in order traversal print(SCREAMING_SNAKE_CASE__ ) if t.search(6 ) is not None: print('''The value 6 exists''' ) else: print('''The value 6 doesn\'t exist''' ) if t.search(-1 ) is not None: print('''The value -1 exists''' ) else: print('''The value -1 doesn\'t exist''' ) if not t.empty(): print('''Max Value: ''', t.get_max().value ) # type: ignore print('''Min Value: ''', t.get_min().value ) # type: ignore for i in testlist: t.remove(SCREAMING_SNAKE_CASE__ ) print(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
644
0
from __future__ import annotations import typing from collections import Counter def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int ) -> typing.Counter[int]: UpperCAmelCase_ : typing.Counter[int] = Counter() for base in range(1, max_perimeter + 1 ): for perpendicular in range(a_, max_perimeter + 1 ): UpperCAmelCase_ : Any = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(a_ ): UpperCAmelCase_ : List[Any] = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int = 1000 ) -> int: UpperCAmelCase_ : Dict = pythagorean_triple(a_ ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(f'''Perimeter {solution()} has maximum solutions''')
713
'''simple docstring''' import sys import turtle def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : tuple[float, float] ) -> tuple[float, float]: return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : int, ) -> None: my_pen.up() my_pen.goto(vertexa[0], vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0], vertexa[1] ) my_pen.goto(vertexa[0], vertexa[1] ) my_pen.goto(vertexa[0], vertexa[1] ) if depth == 0: return triangle(SCREAMING_SNAKE_CASE__, get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), depth - 1 ) triangle(SCREAMING_SNAKE_CASE__, get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), depth - 1 ) triangle(SCREAMING_SNAKE_CASE__, get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( "Correct format for using this script: " "python fractals.py <int:depth_for_fractal>" ) snake_case_ : Any = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor("red") snake_case_ : Tuple = [(-1_75, -1_25), (0, 1_75), (1_75, -1_25)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
644
0
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=_a ) class __a (_a ): __a : Dict = field(default="question-answering-extractive" , metadata={"include_in_asdict_even_if_is_default": True} ) __a : Optional[Any] = Features({"question": Value("string" ), "context": Value("string" )} ) __a : List[Any] = Features( { "answers": Sequence( { "text": Value("string" ), "answer_start": Value("int32" ), } ) } ) __a : str = "question" __a : Union[str, Any] = "context" __a : Tuple = "answers" @property def UpperCAmelCase__ ( self : int ) -> int: """simple docstring""" return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
714
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device snake_case_ : List[str] = False class __a (unittest.TestCase ): pass @nightly @require_torch_gpu class __a (unittest.TestCase ): def UpperCAmelCase__ ( self : int ) -> str: """simple docstring""" # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self : List[str] ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Tuple = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) UpperCAmelCase_ : List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) UpperCAmelCase_ : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase_ : Union[str, Any] = pipe.dual_guided( prompt='''first prompt''' , image=__magic_name__ , text_to_image_strength=0.7_5 , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__magic_name__ ) UpperCAmelCase_ : Optional[int] = VersatileDiffusionPipeline.from_pretrained(__magic_name__ , torch_dtype=torch.floataa ) pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) UpperCAmelCase_ : Any = generator.manual_seed(0 ) UpperCAmelCase_ : Dict = pipe.dual_guided( prompt='''first prompt''' , image=__magic_name__ , text_to_image_strength=0.7_5 , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def UpperCAmelCase__ ( self : str ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : str = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) UpperCAmelCase_ : Union[str, Any] = '''cyberpunk 2077''' UpperCAmelCase_ : Union[str, Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) UpperCAmelCase_ : Tuple = torch.manual_seed(0 ) UpperCAmelCase_ : Optional[Any] = pipe.dual_guided( prompt=__magic_name__ , image=__magic_name__ , text_to_image_strength=0.7_5 , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' , ).images UpperCAmelCase_ : List[str] = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCAmelCase_ : Union[str, Any] = np.array([0.1_4_4_8, 0.1_6_1_9, 0.1_7_4_1, 0.1_0_8_6, 0.1_1_4_7, 0.1_1_2_8, 0.1_1_9_9, 0.1_1_6_5, 0.1_0_0_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 UpperCAmelCase_ : Tuple = '''A painting of a squirrel eating a burger ''' UpperCAmelCase_ : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase_ : List[Any] = pipe.text_to_image( prompt=__magic_name__ , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' ).images UpperCAmelCase_ : Tuple = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCAmelCase_ : Any = np.array([0.3_3_6_7, 0.3_1_6_9, 0.2_6_5_6, 0.3_8_7_0, 0.4_7_9_0, 0.3_7_9_6, 0.4_0_0_9, 0.4_8_7_8, 0.4_7_7_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 UpperCAmelCase_ : Tuple = pipe.image_variation(__magic_name__ , generator=__magic_name__ , output_type='''numpy''' ).images UpperCAmelCase_ : Optional[Any] = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCAmelCase_ : List[str] = np.array([0.3_0_7_6, 0.3_1_2_3, 0.3_2_8_4, 0.3_7_8_2, 0.3_7_7_0, 0.3_8_9_4, 0.4_2_9_7, 0.4_3_3_1, 0.4_4_5_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
644
0
'''simple docstring''' import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) snake_case_ : Union[str, Any] = logging.getLogger(__name__) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : str ) -> int: UpperCAmelCase_ : Optional[Any] = git.Repo(search_parent_directories=UpperCAmelCase__ ) UpperCAmelCase_ : List[Any] = { '''repo_id''': str(UpperCAmelCase__ ), '''repo_sha''': str(repo.head.object.hexsha ), '''repo_branch''': str(repo.active_branch ), } with open(os.path.join(UpperCAmelCase__, '''git_log.json''' ), '''w''' ) as f: json.dump(UpperCAmelCase__, UpperCAmelCase__, indent=4 ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : str ) -> str: if params.n_gpu <= 0: UpperCAmelCase_ : int = 0 UpperCAmelCase_ : Any = -1 UpperCAmelCase_ : Optional[int] = True UpperCAmelCase_ : List[str] = False return assert torch.cuda.is_available() logger.info('''Initializing GPUs''' ) if params.n_gpu > 1: assert params.local_rank != -1 UpperCAmelCase_ : List[str] = int(os.environ['''WORLD_SIZE'''] ) UpperCAmelCase_ : Any = int(os.environ['''N_GPU_NODE'''] ) UpperCAmelCase_ : List[str] = int(os.environ['''RANK'''] ) # number of nodes / node ID UpperCAmelCase_ : Optional[int] = params.world_size // params.n_gpu_per_node UpperCAmelCase_ : str = params.global_rank // params.n_gpu_per_node UpperCAmelCase_ : Tuple = True assert params.n_nodes == int(os.environ['''N_NODES'''] ) assert params.node_id == int(os.environ['''NODE_RANK'''] ) # local job (single GPU) else: assert params.local_rank == -1 UpperCAmelCase_ : Optional[Any] = 1 UpperCAmelCase_ : int = 0 UpperCAmelCase_ : Any = 0 UpperCAmelCase_ : str = 0 UpperCAmelCase_ : Optional[Any] = 1 UpperCAmelCase_ : str = 1 UpperCAmelCase_ : List[str] = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode UpperCAmelCase_ : str = params.node_id == 0 and params.local_rank == 0 UpperCAmelCase_ : Optional[int] = params.n_nodes > 1 # summary UpperCAmelCase_ : Union[str, Any] = F"""--- Global rank: {params.global_rank} - """ logger.info(PREFIX + '''Number of nodes: %i''' % params.n_nodes ) logger.info(PREFIX + '''Node ID : %i''' % params.node_id ) logger.info(PREFIX + '''Local rank : %i''' % params.local_rank ) logger.info(PREFIX + '''World size : %i''' % params.world_size ) logger.info(PREFIX + '''GPUs per node : %i''' % params.n_gpu_per_node ) logger.info(PREFIX + '''Master : %s''' % str(params.is_master ) ) logger.info(PREFIX + '''Multi-node : %s''' % str(params.multi_node ) ) logger.info(PREFIX + '''Multi-GPU : %s''' % str(params.multi_gpu ) ) logger.info(PREFIX + '''Hostname : %s''' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('''Initializing PyTorch distributed''' ) torch.distributed.init_process_group( init_method='''env://''', backend='''nccl''', ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
715
'''simple docstring''' snake_case_ : int = { "Pillow": "Pillow", "accelerate": "accelerate>=0.11.0", "compel": "compel==0.1.8", "black": "black~=23.1", "datasets": "datasets", "filelock": "filelock", "flax": "flax>=0.4.1", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.13.2", "requests-mock": "requests-mock==1.10.0", "importlib_metadata": "importlib_metadata", "invisible-watermark": "invisible-watermark", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2", "jaxlib": "jaxlib>=0.1.65", "Jinja2": "Jinja2", "k-diffusion": "k-diffusion>=0.0.12", "torchsde": "torchsde", "note_seq": "note_seq", "librosa": "librosa", "numpy": "numpy", "omegaconf": "omegaconf", "parameterized": "parameterized", "protobuf": "protobuf>=3.20.3,<4", "pytest": "pytest", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "ruff": "ruff>=0.0.241", "safetensors": "safetensors", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "scipy": "scipy", "onnx": "onnx", "regex": "regex!=2019.12.17", "requests": "requests", "tensorboard": "tensorboard", "torch": "torch>=1.4", "torchvision": "torchvision", "transformers": "transformers>=4.25.1", "urllib3": "urllib3<=2.0.0", }
644
0
'''simple docstring''' def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int ) -> bool: if not isinstance(_UpperCamelCase, _UpperCamelCase ): UpperCAmelCase_ : Tuple = F"""Input value of [number={number}] must be an integer""" raise TypeError(_UpperCamelCase ) if number < 0: return False UpperCAmelCase_ : Union[str, Any] = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
716
'''simple docstring''' import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __a (unittest.TestCase ): @property def UpperCAmelCase__ ( self : Dict ) -> str: """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase_ : Optional[Any] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def UpperCAmelCase__ ( self : Dict ) -> Tuple: """simple docstring""" UpperCAmelCase_ : List[Any] = self.dummy_uncond_unet UpperCAmelCase_ : Dict = KarrasVeScheduler() UpperCAmelCase_ : Union[str, Any] = KarrasVePipeline(unet=__magic_name__ , scheduler=__magic_name__ ) pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) UpperCAmelCase_ : Dict = torch.manual_seed(0 ) UpperCAmelCase_ : Optional[int] = pipe(num_inference_steps=2 , generator=__magic_name__ , output_type='''numpy''' ).images UpperCAmelCase_ : Tuple = torch.manual_seed(0 ) UpperCAmelCase_ : str = pipe(num_inference_steps=2 , generator=__magic_name__ , output_type='''numpy''' , return_dict=__magic_name__ )[0] UpperCAmelCase_ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCAmelCase_ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase_ : Dict = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class __a (unittest.TestCase ): def UpperCAmelCase__ ( self : int ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : List[str] = '''google/ncsnpp-celebahq-256''' UpperCAmelCase_ : List[str] = UNetaDModel.from_pretrained(__magic_name__ ) UpperCAmelCase_ : List[Any] = KarrasVeScheduler() UpperCAmelCase_ : Any = KarrasVePipeline(unet=__magic_name__ , scheduler=__magic_name__ ) pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) UpperCAmelCase_ : Dict = torch.manual_seed(0 ) UpperCAmelCase_ : Optional[Any] = pipe(num_inference_steps=20 , generator=__magic_name__ , output_type='''numpy''' ).images UpperCAmelCase_ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) UpperCAmelCase_ : Optional[Any] = np.array([0.5_7_8, 0.5_8_1_1, 0.5_9_2_4, 0.5_8_0_9, 0.5_8_7, 0.5_8_8_6, 0.5_8_6_1, 0.5_8_0_2, 0.5_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
644
0
'''simple docstring''' from __future__ import annotations import math class __a : def __init__( self : int , __magic_name__ : Optional[Any] ) -> Dict: """simple docstring""" UpperCAmelCase_ : Optional[int] = size # approximate the overall size of segment tree with given value UpperCAmelCase_ : Optional[Any] = [0 for i in range(0 , 4 * size )] # create array to store lazy update UpperCAmelCase_ : List[Any] = [0 for i in range(0 , 4 * size )] UpperCAmelCase_ : Any = [0 for i in range(0 , 4 * size )] # flag for lazy update def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Optional[Any] ) -> Optional[int]: """simple docstring""" return idx * 2 def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : Tuple ) -> str: """simple docstring""" return idx * 2 + 1 def UpperCAmelCase__ ( self : str , __magic_name__ : str , __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : Any ) -> Dict: """simple docstring""" if left_element == right_element: UpperCAmelCase_ : int = a[left_element - 1] else: UpperCAmelCase_ : List[Any] = (left_element + right_element) // 2 self.build(self.left(__magic_name__ ) , __magic_name__ , __magic_name__ , __magic_name__ ) self.build(self.right(__magic_name__ ) , mid + 1 , __magic_name__ , __magic_name__ ) UpperCAmelCase_ : str = max( self.segment_tree[self.left(__magic_name__ )] , self.segment_tree[self.right(__magic_name__ )] ) def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : List[str] , __magic_name__ : Tuple , __magic_name__ : str , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int] , __magic_name__ : List[Any] ) -> List[str]: """simple docstring""" if self.flag[idx] is True: UpperCAmelCase_ : List[str] = self.lazy[idx] UpperCAmelCase_ : Any = False if left_element != right_element: UpperCAmelCase_ : List[Any] = self.lazy[idx] UpperCAmelCase_ : Any = self.lazy[idx] UpperCAmelCase_ : Optional[Any] = True UpperCAmelCase_ : Any = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: UpperCAmelCase_ : Union[str, Any] = val if left_element != right_element: UpperCAmelCase_ : Union[str, Any] = val UpperCAmelCase_ : List[Any] = val UpperCAmelCase_ : Dict = True UpperCAmelCase_ : Dict = True return True UpperCAmelCase_ : List[Any] = (left_element + right_element) // 2 self.update(self.left(__magic_name__ ) , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) self.update(self.right(__magic_name__ ) , mid + 1 , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) UpperCAmelCase_ : Optional[Any] = max( self.segment_tree[self.left(__magic_name__ )] , self.segment_tree[self.right(__magic_name__ )] ) return True def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : Any , __magic_name__ : List[Any] , __magic_name__ : int , __magic_name__ : List[Any] , __magic_name__ : int ) -> Optional[Any]: """simple docstring""" if self.flag[idx] is True: UpperCAmelCase_ : Optional[int] = self.lazy[idx] UpperCAmelCase_ : List[str] = False if left_element != right_element: UpperCAmelCase_ : Dict = self.lazy[idx] UpperCAmelCase_ : Union[str, Any] = self.lazy[idx] UpperCAmelCase_ : Optional[Any] = True UpperCAmelCase_ : List[Any] = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] UpperCAmelCase_ : List[str] = (left_element + right_element) // 2 UpperCAmelCase_ : Dict = self.query(self.left(__magic_name__ ) , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) UpperCAmelCase_ : Union[str, Any] = self.query(self.right(__magic_name__ ) , mid + 1 , __magic_name__ , __magic_name__ , __magic_name__ ) return max(__magic_name__ , __magic_name__ ) def __str__( self : List[str] ) -> List[Any]: """simple docstring""" return str([self.query(1 , 1 , self.size , __magic_name__ , __magic_name__ ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": snake_case_ : str = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] snake_case_ : str = 15 snake_case_ : Union[str, Any] = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 1_11) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 2_35) print(segt)
717
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class __a (lowerCamelCase ): __a : List[Any] = "openai/whisper-base" __a : Optional[Any] = ( "This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the " "transcribed text." ) __a : Any = "transcriber" __a : str = WhisperProcessor __a : List[Any] = WhisperForConditionalGeneration __a : int = ["audio"] __a : Optional[Any] = ["text"] def UpperCAmelCase__ ( self : Dict , __magic_name__ : List[str] ) -> Optional[int]: """simple docstring""" return self.pre_processor(__magic_name__ , return_tensors='''pt''' ).input_features def UpperCAmelCase__ ( self : Dict , __magic_name__ : Dict ) -> Tuple: """simple docstring""" return self.model.generate(inputs=__magic_name__ ) def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Dict ) -> str: """simple docstring""" return self.pre_processor.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ )[0]
644
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available snake_case_ : Optional[int] = { "configuration_rag": ["RagConfig"], "retrieval_rag": ["RagRetriever"], "tokenization_rag": ["RagTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Optional[int] = [ "RagModel", "RagPreTrainedModel", "RagSequenceForGeneration", "RagTokenForGeneration", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : List[Any] = [ "TFRagModel", "TFRagPreTrainedModel", "TFRagSequenceForGeneration", "TFRagTokenForGeneration", ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys snake_case_ : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
718
'''simple docstring''' def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : int ) -> int: return abs(SCREAMING_SNAKE_CASE__ ) if a == 0 else greatest_common_divisor(b % a, SCREAMING_SNAKE_CASE__ ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : int ) -> int: while y: # --> when y=0 then loop will terminate and return x as final GCD. UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = y, x % y return abs(SCREAMING_SNAKE_CASE__ ) def lowerCamelCase_ ( ) -> Optional[int]: try: UpperCAmelCase_ : Optional[Any] = input('''Enter two integers separated by comma (,): ''' ).split(''',''' ) UpperCAmelCase_ : Optional[int] = int(nums[0] ) UpperCAmelCase_ : List[Any] = int(nums[1] ) print( F"""greatest_common_divisor({num_a}, {num_a}) = """ F"""{greatest_common_divisor(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )}""" ) print(F"""By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )}""" ) except (IndexError, UnboundLocalError, ValueError): print('''Wrong input''' ) if __name__ == "__main__": main()
644
0
'''simple docstring''' from typing import List import numpy as np def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : dict ) -> int: UpperCAmelCase_ : Tuple = {key: len(snake_case_ ) for key, value in gen_kwargs.items() if isinstance(snake_case_, snake_case_ )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( '''Sharding is ambiguous for this dataset: ''' + '''we found several data sources lists of different lengths, and we don\'t know over which list we should parallelize:\n''' + '''\n'''.join(F"""\t- key {key} has length {length}""" for key, length in lists_lengths.items() ) + '''\nTo fix this, check the \'gen_kwargs\' and make sure to use lists only for data sources, ''' + '''and use tuples otherwise. In the end there should only be one single list, or several lists with the same length.''' ) ) UpperCAmelCase_ : List[Any] = max(lists_lengths.values(), default=0 ) return max(1, snake_case_ ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : int ) -> Any: UpperCAmelCase_ : List[Any] = [] for group_idx in range(snake_case_ ): UpperCAmelCase_ : int = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break UpperCAmelCase_ : str = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 UpperCAmelCase_ : List[Any] = range(snake_case_, start + num_shards_to_add ) shards_indices_per_group.append(snake_case_ ) return shards_indices_per_group def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : dict, SCREAMING_SNAKE_CASE__ : int ) -> Tuple: UpperCAmelCase_ : Any = _number_of_shards_in_gen_kwargs(snake_case_ ) if num_shards == 1: return [dict(snake_case_ )] else: UpperCAmelCase_ : Optional[Any] = _distribute_shards(num_shards=snake_case_, max_num_jobs=snake_case_ ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(snake_case_, snake_case_ ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(snake_case_ ) ) ] def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[dict] ) -> Union[str, Any]: return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key], snake_case_ ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : np.random.Generator, SCREAMING_SNAKE_CASE__ : dict ) -> Optional[Any]: UpperCAmelCase_ : Tuple = {len(snake_case_ ) for value in gen_kwargs.values() if isinstance(snake_case_, snake_case_ )} UpperCAmelCase_ : Tuple = {} for size in list_sizes: UpperCAmelCase_ : int = list(range(snake_case_ ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes UpperCAmelCase_ : int = dict(snake_case_ ) for key, value in shuffled_kwargs.items(): if isinstance(snake_case_, snake_case_ ): UpperCAmelCase_ : List[Any] = [value[i] for i in indices_per_size[len(snake_case_ )]] return shuffled_kwargs
719
'''simple docstring''' import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class __a : def __init__( self : int , __magic_name__ : Optional[Any] , __magic_name__ : Any=13 , __magic_name__ : Any=7 , __magic_name__ : Union[str, Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : str=True , __magic_name__ : Optional[int]=True , __magic_name__ : List[Any]=99 , __magic_name__ : int=24 , __magic_name__ : Optional[int]=2 , __magic_name__ : Tuple=6 , __magic_name__ : Union[str, Any]=37 , __magic_name__ : Optional[Any]="gelu" , __magic_name__ : Any=0.1 , __magic_name__ : str=0.1 , __magic_name__ : Tuple=5_12 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : Tuple=2 , __magic_name__ : Tuple=0.0_2 , __magic_name__ : Optional[Any]=3 , __magic_name__ : Optional[int]=None , __magic_name__ : Any=10_00 , ) -> str: """simple docstring""" UpperCAmelCase_ : Tuple = parent UpperCAmelCase_ : Optional[int] = batch_size UpperCAmelCase_ : List[str] = seq_length UpperCAmelCase_ : Dict = is_training UpperCAmelCase_ : List[str] = use_input_mask UpperCAmelCase_ : Any = use_token_type_ids UpperCAmelCase_ : Any = use_labels UpperCAmelCase_ : Any = vocab_size UpperCAmelCase_ : Dict = hidden_size UpperCAmelCase_ : Tuple = num_hidden_layers UpperCAmelCase_ : Tuple = num_attention_heads UpperCAmelCase_ : int = intermediate_size UpperCAmelCase_ : Union[str, Any] = hidden_act UpperCAmelCase_ : Optional[int] = hidden_dropout_prob UpperCAmelCase_ : Optional[Any] = attention_probs_dropout_prob UpperCAmelCase_ : Union[str, Any] = max_position_embeddings UpperCAmelCase_ : int = type_vocab_size UpperCAmelCase_ : List[Any] = type_sequence_label_size UpperCAmelCase_ : int = initializer_range UpperCAmelCase_ : Dict = num_labels UpperCAmelCase_ : List[str] = scope UpperCAmelCase_ : List[str] = range_bbox def UpperCAmelCase__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: UpperCAmelCase_ : List[str] = bbox[i, j, 3] UpperCAmelCase_ : Dict = bbox[i, j, 1] UpperCAmelCase_ : Optional[Any] = t if bbox[i, j, 2] < bbox[i, j, 0]: UpperCAmelCase_ : List[str] = bbox[i, j, 2] UpperCAmelCase_ : Tuple = bbox[i, j, 0] UpperCAmelCase_ : Union[str, Any] = t UpperCAmelCase_ : int = None if self.use_input_mask: UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) UpperCAmelCase_ : Optional[int] = None if self.use_token_type_ids: UpperCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Tuple = None if self.use_labels: UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : int = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def UpperCAmelCase__ ( self : Any ) -> List[Any]: """simple docstring""" return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : str , __magic_name__ : Optional[Any] , __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : int , ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : Any = LiltModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() UpperCAmelCase_ : Optional[Any] = model(__magic_name__ , bbox=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ ) UpperCAmelCase_ : List[Any] = model(__magic_name__ , bbox=__magic_name__ , token_type_ids=__magic_name__ ) UpperCAmelCase_ : Optional[int] = model(__magic_name__ , bbox=__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCAmelCase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[int] , __magic_name__ : List[Any] , ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ : Any = self.num_labels UpperCAmelCase_ : List[Any] = LiltForTokenClassification(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() UpperCAmelCase_ : List[Any] = model( __magic_name__ , bbox=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase__ ( self : Any , __magic_name__ : Optional[Any] , __magic_name__ : Dict , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : Any , ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ : str = LiltForQuestionAnswering(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() UpperCAmelCase_ : Optional[Any] = model( __magic_name__ , bbox=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Tuple = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Optional[int] = config_and_inputs UpperCAmelCase_ : Tuple = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class __a (lowerCamelCase , lowerCamelCase , lowerCamelCase , unittest.TestCase ): __a : Tuple = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) __a : Any = ( { "feature-extraction": LiltModel, "question-answering": LiltForQuestionAnswering, "text-classification": LiltForSequenceClassification, "token-classification": LiltForTokenClassification, "zero-shot": LiltForSequenceClassification, } if is_torch_available() else {} ) __a : Union[str, Any] = False __a : int = False def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : int ) -> str: """simple docstring""" return True def UpperCAmelCase__ ( self : str ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : List[Any] = LiltModelTester(self ) UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> str: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : str ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def UpperCAmelCase__ ( self : str ) -> str: """simple docstring""" UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase_ : Tuple = type self.model_tester.create_and_check_model(*__magic_name__ ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> int: """simple docstring""" UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__magic_name__ ) def UpperCAmelCase__ ( self : str ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__magic_name__ ) @slow def UpperCAmelCase__ ( self : int ) -> Union[str, Any]: """simple docstring""" for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Optional[int] = LiltModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) @require_torch @slow class __a (unittest.TestCase ): def UpperCAmelCase__ ( self : Tuple ) -> Tuple: """simple docstring""" UpperCAmelCase_ : str = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(__magic_name__ ) UpperCAmelCase_ : Any = torch.tensor([[1, 2]] , device=__magic_name__ ) UpperCAmelCase_ : int = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=__magic_name__ ) # forward pass with torch.no_grad(): UpperCAmelCase_ : Optional[int] = model(input_ids=__magic_name__ , bbox=__magic_name__ ) UpperCAmelCase_ : int = torch.Size([1, 2, 7_68] ) UpperCAmelCase_ : List[str] = torch.tensor( [[-0.0_6_5_3, 0.0_9_5_0, -0.0_0_6_1], [-0.0_5_4_5, 0.0_9_2_6, -0.0_3_2_4]] , device=__magic_name__ , ) self.assertTrue(outputs.last_hidden_state.shape , __magic_name__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , __magic_name__ , atol=1E-3 ) )
644
0
# This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class __a (lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ): __a : List[Any] = StableDiffusionControlNetImgaImgPipeline __a : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} __a : Any = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __a : Tuple = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({"control_image"} ) __a : Tuple = IMAGE_TO_IMAGE_IMAGE_PARAMS def UpperCAmelCase__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase_ : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) torch.manual_seed(0 ) UpperCAmelCase_ : Tuple = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) torch.manual_seed(0 ) UpperCAmelCase_ : Optional[int] = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=__magic_name__ , set_alpha_to_one=__magic_name__ , ) torch.manual_seed(0 ) UpperCAmelCase_ : Optional[int] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCAmelCase_ : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) UpperCAmelCase_ : List[str] = CLIPTextModel(__magic_name__ ) UpperCAmelCase_ : List[str] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) UpperCAmelCase_ : Union[str, Any] = { '''unet''': unet, '''controlnet''': controlnet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : Tuple , __magic_name__ : Optional[Any]=0 ) -> List[str]: """simple docstring""" if str(__magic_name__ ).startswith('''mps''' ): UpperCAmelCase_ : int = torch.manual_seed(__magic_name__ ) else: UpperCAmelCase_ : Union[str, Any] = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) UpperCAmelCase_ : Tuple = 2 UpperCAmelCase_ : List[Any] = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=__magic_name__ , device=torch.device(__magic_name__ ) , ) UpperCAmelCase_ : List[Any] = floats_tensor(control_image.shape , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) UpperCAmelCase_ : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ : Any = Image.fromarray(np.uinta(__magic_name__ ) ).convert('''RGB''' ).resize((64, 64) ) UpperCAmelCase_ : Optional[Any] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''image''': image, '''control_image''': control_image, } return inputs def UpperCAmelCase__ ( self : Optional[int] ) -> List[str]: """simple docstring""" return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) class __a (lowercase_ , lowercase_ , unittest.TestCase ): __a : Optional[int] = StableDiffusionControlNetImgaImgPipeline __a : str = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} __a : Dict = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __a : Optional[Any] = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def UpperCAmelCase__ ( self : List[Any] ) -> Tuple: """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase_ : Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) torch.manual_seed(0 ) def init_weights(__magic_name__ : Optional[int] ): if isinstance(__magic_name__ , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) UpperCAmelCase_ : List[str] = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(__magic_name__ ) torch.manual_seed(0 ) UpperCAmelCase_ : List[str] = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(__magic_name__ ) torch.manual_seed(0 ) UpperCAmelCase_ : Union[str, Any] = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=__magic_name__ , set_alpha_to_one=__magic_name__ , ) torch.manual_seed(0 ) UpperCAmelCase_ : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCAmelCase_ : Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) UpperCAmelCase_ : Any = CLIPTextModel(__magic_name__ ) UpperCAmelCase_ : int = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) UpperCAmelCase_ : List[str] = MultiControlNetModel([controlneta, controlneta] ) UpperCAmelCase_ : Tuple = { '''unet''': unet, '''controlnet''': controlnet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : Any , __magic_name__ : Optional[int]=0 ) -> Optional[int]: """simple docstring""" if str(__magic_name__ ).startswith('''mps''' ): UpperCAmelCase_ : Dict = torch.manual_seed(__magic_name__ ) else: UpperCAmelCase_ : Union[str, Any] = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) UpperCAmelCase_ : List[Any] = 2 UpperCAmelCase_ : Union[str, Any] = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=__magic_name__ , device=torch.device(__magic_name__ ) , ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=__magic_name__ , device=torch.device(__magic_name__ ) , ), ] UpperCAmelCase_ : List[Any] = floats_tensor(control_image[0].shape , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) UpperCAmelCase_ : int = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ : List[str] = Image.fromarray(np.uinta(__magic_name__ ) ).convert('''RGB''' ).resize((64, 64) ) UpperCAmelCase_ : List[Any] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''image''': image, '''control_image''': control_image, } return inputs def UpperCAmelCase__ ( self : List[str] ) -> Tuple: """simple docstring""" UpperCAmelCase_ : Optional[int] = self.get_dummy_components() UpperCAmelCase_ : str = self.pipeline_class(**__magic_name__ ) pipe.to(__magic_name__ ) UpperCAmelCase_ : List[str] = 1_0.0 UpperCAmelCase_ : List[Any] = 4 UpperCAmelCase_ : Optional[Any] = self.get_dummy_inputs(__magic_name__ ) UpperCAmelCase_ : List[str] = steps UpperCAmelCase_ : Optional[Any] = scale UpperCAmelCase_ : List[Any] = pipe(**__magic_name__ )[0] UpperCAmelCase_ : List[str] = self.get_dummy_inputs(__magic_name__ ) UpperCAmelCase_ : List[Any] = steps UpperCAmelCase_ : Dict = scale UpperCAmelCase_ : List[Any] = pipe(**__magic_name__ , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] UpperCAmelCase_ : List[Any] = self.get_dummy_inputs(__magic_name__ ) UpperCAmelCase_ : Union[str, Any] = steps UpperCAmelCase_ : Optional[Any] = scale UpperCAmelCase_ : str = pipe(**__magic_name__ , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] UpperCAmelCase_ : Any = self.get_dummy_inputs(__magic_name__ ) UpperCAmelCase_ : List[str] = steps UpperCAmelCase_ : List[Any] = scale UpperCAmelCase_ : Tuple = pipe(**__magic_name__ , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 def UpperCAmelCase__ ( self : Any ) -> Dict: """simple docstring""" return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def UpperCAmelCase__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) def UpperCAmelCase__ ( self : Dict ) -> int: """simple docstring""" UpperCAmelCase_ : Any = self.get_dummy_components() UpperCAmelCase_ : str = self.pipeline_class(**__magic_name__ ) pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(__magic_name__ ) except NotImplementedError: pass @slow @require_torch_gpu class __a (unittest.TestCase ): def UpperCAmelCase__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : Any = ControlNetModel.from_pretrained('''lllyasviel/sd-controlnet-canny''' ) UpperCAmelCase_ : Union[str, Any] = StableDiffusionControlNetImgaImgPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , safety_checker=__magic_name__ , controlnet=__magic_name__ ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=__magic_name__ ) UpperCAmelCase_ : str = torch.Generator(device='''cpu''' ).manual_seed(0 ) UpperCAmelCase_ : Optional[int] = '''evil space-punk bird''' UpperCAmelCase_ : int = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png''' ).resize((5_12, 5_12) ) UpperCAmelCase_ : Optional[int] = load_image( '''https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png''' ).resize((5_12, 5_12) ) UpperCAmelCase_ : str = pipe( __magic_name__ , __magic_name__ , control_image=__magic_name__ , generator=__magic_name__ , output_type='''np''' , num_inference_steps=50 , strength=0.6 , ) UpperCAmelCase_ : List[Any] = output.images[0] assert image.shape == (5_12, 5_12, 3) UpperCAmelCase_ : Dict = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy''' ) assert np.abs(expected_image - image ).max() < 9E-2
720
'''simple docstring''' import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case_ : str = logging.get_logger(__name__) snake_case_ : int = "▁" snake_case_ : str = {"vocab_file": "vocab.txt", "sentencepiece_model_ckpt": "sentencepiece.bpe.model"} snake_case_ : int = { "sentencepiece_model_file": "sentencepiece.bpe.model", "vocab_file": "vocab.txt", } snake_case_ : Optional[Any] = { "vocab_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", }, "sentencepiece_model_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", }, } snake_case_ : Dict = { "ernie-m-base": 5_14, "ernie-m-large": 5_14, } snake_case_ : Any = { "ernie-m-base": {"do_lower_case": False}, "ernie-m-large": {"do_lower_case": False}, } class __a (lowerCamelCase ): __a : List[str] = ["input_ids"] __a : Union[str, Any] = VOCAB_FILES_NAMES __a : Tuple = PRETRAINED_INIT_CONFIGURATION __a : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __a : Union[str, Any] = RESOURCE_FILES_NAMES def __init__( self : Union[str, Any] , __magic_name__ : Dict , __magic_name__ : int=None , __magic_name__ : str=False , __magic_name__ : int="utf8" , __magic_name__ : Optional[int]="[UNK]" , __magic_name__ : Dict="[SEP]" , __magic_name__ : List[Any]="[PAD]" , __magic_name__ : str="[CLS]" , __magic_name__ : Optional[int]="[MASK]" , __magic_name__ : Optional[Dict[str, Any]] = None , **__magic_name__ : Union[str, Any] , ) -> None: """simple docstring""" # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. UpperCAmelCase_ : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__magic_name__ , unk_token=__magic_name__ , sep_token=__magic_name__ , pad_token=__magic_name__ , cls_token=__magic_name__ , mask_token=__magic_name__ , vocab_file=__magic_name__ , encoding=__magic_name__ , sp_model_kwargs=self.sp_model_kwargs , **__magic_name__ , ) UpperCAmelCase_ : Optional[Any] = do_lower_case UpperCAmelCase_ : List[str] = sentencepiece_model_ckpt UpperCAmelCase_ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__magic_name__ ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: UpperCAmelCase_ : List[Any] = self.load_vocab(filepath=__magic_name__ ) else: UpperCAmelCase_ : str = {self.sp_model.id_to_piece(__magic_name__ ): id for id in range(self.sp_model.get_piece_size() )} UpperCAmelCase_ : int = {v: k for k, v in self.vocab.items()} def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Any ) -> Any: """simple docstring""" if text is None: return None UpperCAmelCase_ : str = self.tokenize(__magic_name__ ) UpperCAmelCase_ , UpperCAmelCase_ : str = '''''', [] for i, ch in enumerate(__magic_name__ ): if ch in self.SP_CHAR_MAPPING: UpperCAmelCase_ : Optional[int] = self.SP_CHAR_MAPPING.get(__magic_name__ ) else: UpperCAmelCase_ : Union[str, Any] = unicodedata.normalize('''NFKC''' , __magic_name__ ) if self.is_whitespace(__magic_name__ ): continue normalized_text += ch char_mapping.extend([i] * len(__magic_name__ ) ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = normalized_text, [], 0 if self.do_lower_case: UpperCAmelCase_ : Optional[int] = text.lower() for token in split_tokens: if token[:1] == "▁": UpperCAmelCase_ : Tuple = token[1:] UpperCAmelCase_ : int = text[offset:].index(__magic_name__ ) + offset UpperCAmelCase_ : Optional[int] = start + len(__magic_name__ ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) UpperCAmelCase_ : int = end return token_mapping @property def UpperCAmelCase__ ( self : Any ) -> Any: """simple docstring""" return len(self.vocab ) def UpperCAmelCase__ ( self : List[Any] ) -> int: """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self : str ) -> Any: """simple docstring""" UpperCAmelCase_ : Optional[Any] = self.__dict__.copy() UpperCAmelCase_ : Optional[Any] = None return state def __setstate__( self : str , __magic_name__ : Any ) -> Dict: """simple docstring""" UpperCAmelCase_ : Dict = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCAmelCase_ : int = {} UpperCAmelCase_ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : Any ) -> List[str]: """simple docstring""" return "".join((self.SP_CHAR_MAPPING.get(__magic_name__ , __magic_name__ ) for c in text) ) def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Tuple , __magic_name__ : Any=False , __magic_name__ : List[str]=64 , __magic_name__ : List[str]=0.1 ) -> List[str]: """simple docstring""" if self.sp_model_kwargs.get('''enable_sampling''' ) is True: UpperCAmelCase_ : Dict = True if self.sp_model_kwargs.get('''alpha''' ) is not None: UpperCAmelCase_ : Union[str, Any] = self.sp_model_kwargs.get('''alpha''' ) if self.sp_model_kwargs.get('''nbest_size''' ) is not None: UpperCAmelCase_ : Any = self.sp_model_kwargs.get('''nbest_size''' ) if not enable_sampling: UpperCAmelCase_ : Dict = self.sp_model.EncodeAsPieces(__magic_name__ ) else: UpperCAmelCase_ : Dict = self.sp_model.SampleEncodeAsPieces(__magic_name__ , __magic_name__ , __magic_name__ ) UpperCAmelCase_ : List[Any] = [] for pi, piece in enumerate(__magic_name__ ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(__magic_name__ ) and pi != 0: new_pieces.append(__magic_name__ ) continue else: continue UpperCAmelCase_ : List[str] = 0 for i, chunk in enumerate(__magic_name__ ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(__magic_name__ ) or self.is_punct(__magic_name__ ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(__magic_name__ ) UpperCAmelCase_ : List[Any] = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) UpperCAmelCase_ : List[str] = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) UpperCAmelCase_ : str = i if len(__magic_name__ ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Optional[int] ) -> List[str]: """simple docstring""" UpperCAmelCase_ : Optional[Any] = ''''''.join(__magic_name__ ).replace(__magic_name__ , ''' ''' ).strip() return out_string def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Union[str, Any] ) -> List[str]: """simple docstring""" UpperCAmelCase_ : str = self.convert_ids_to_tokens(__magic_name__ ) UpperCAmelCase_ : Optional[Any] = ''''''.join(__magic_name__ ).replace(__magic_name__ , ''' ''' ).strip() return out_string def UpperCAmelCase__ ( self : str , __magic_name__ : Optional[Any] ) -> List[Any]: """simple docstring""" return self.vocab.get(__magic_name__ , self.vocab.get(self.unk_token ) ) def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return self.reverse_vocab.get(__magic_name__ , self.unk_token ) def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Any , __magic_name__ : Union[str, Any]=None ) -> Any: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase_ : Union[str, Any] = [self.cls_token_id] UpperCAmelCase_ : List[Any] = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def UpperCAmelCase__ ( self : Any , __magic_name__ : Optional[Any] , __magic_name__ : List[str]=None ) -> int: """simple docstring""" if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def UpperCAmelCase__ ( self : Dict , __magic_name__ : Optional[Any] , __magic_name__ : List[str]=None , __magic_name__ : Optional[Any]=False ) -> Optional[int]: """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__magic_name__ )) + [1, 1] + ([0] * len(__magic_name__ )) + [1] return [1] + ([0] * len(__magic_name__ )) + [1] def UpperCAmelCase__ ( self : List[str] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" # called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method if token_ids_a is None: # [CLS] X [SEP] return (len(__magic_name__ ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(__magic_name__ ) + 1) + [1] * (len(__magic_name__ ) + 3) def UpperCAmelCase__ ( self : Dict , __magic_name__ : str ) -> Tuple: """simple docstring""" if "\u4e00" <= char <= "\u9fff": return True return False def UpperCAmelCase__ ( self : int , __magic_name__ : Optional[int] ) -> str: """simple docstring""" if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def UpperCAmelCase__ ( self : int , __magic_name__ : Optional[Any] ) -> Dict: """simple docstring""" if char in ",;:.?!~,;:。?!《》【】": return True return False def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Any ) -> Union[str, Any]: """simple docstring""" if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(__magic_name__ ) == 1: UpperCAmelCase_ : Optional[Any] = unicodedata.category(__magic_name__ ) if cat == "Zs": return True return False def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : Tuple ) -> Any: """simple docstring""" UpperCAmelCase_ : Optional[Any] = {} with io.open(__magic_name__ , '''r''' , encoding='''utf-8''' ) as f: for index, line in enumerate(__magic_name__ ): UpperCAmelCase_ : List[Any] = line.rstrip('''\n''' ) UpperCAmelCase_ : Dict = int(__magic_name__ ) return token_to_idx def UpperCAmelCase__ ( self : Dict , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = 0 if os.path.isdir(__magic_name__ ): UpperCAmelCase_ : Any = os.path.join( __magic_name__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: UpperCAmelCase_ : List[str] = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory with open(__magic_name__ , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda __magic_name__ : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ''' Please check that the vocabulary is not corrupted!''' ) UpperCAmelCase_ : Dict = token_index writer.write(token + '''\n''' ) index += 1 UpperCAmelCase_ : Union[str, Any] = os.path.join(__magic_name__ , '''sentencepiece.bpe.model''' ) with open(__magic_name__ , '''wb''' ) as fi: UpperCAmelCase_ : Optional[int] = self.sp_model.serialized_model_proto() fi.write(__magic_name__ ) return (vocab_file,)
644
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ : Optional[Any] = logging.get_logger(__name__) snake_case_ : str = { "s-JoL/Open-Llama-V1": "https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json", } class __a (lowerCamelCase ): __a : Tuple = """open-llama""" def __init__( self : Dict , __magic_name__ : Optional[Any]=10_00_00 , __magic_name__ : Tuple=40_96 , __magic_name__ : Union[str, Any]=1_10_08 , __magic_name__ : List[Any]=32 , __magic_name__ : Optional[Any]=32 , __magic_name__ : List[str]="silu" , __magic_name__ : Optional[int]=20_48 , __magic_name__ : str=0.0_2 , __magic_name__ : Any=1E-6 , __magic_name__ : Tuple=True , __magic_name__ : Any=0 , __magic_name__ : Dict=1 , __magic_name__ : Any=2 , __magic_name__ : Optional[Any]=False , __magic_name__ : Optional[int]=True , __magic_name__ : Any=0.1 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : List[Any]=True , __magic_name__ : Any=True , __magic_name__ : int=None , **__magic_name__ : Dict , ) -> List[str]: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = vocab_size UpperCAmelCase_ : List[str] = max_position_embeddings UpperCAmelCase_ : str = hidden_size UpperCAmelCase_ : Union[str, Any] = intermediate_size UpperCAmelCase_ : Optional[Any] = num_hidden_layers UpperCAmelCase_ : str = num_attention_heads UpperCAmelCase_ : Tuple = hidden_act UpperCAmelCase_ : List[str] = initializer_range UpperCAmelCase_ : Dict = rms_norm_eps UpperCAmelCase_ : List[Any] = use_cache UpperCAmelCase_ : Dict = kwargs.pop( '''use_memorry_efficient_attention''' , __magic_name__ ) UpperCAmelCase_ : Union[str, Any] = hidden_dropout_prob UpperCAmelCase_ : Tuple = attention_dropout_prob UpperCAmelCase_ : List[Any] = use_stable_embedding UpperCAmelCase_ : List[str] = shared_input_output_embedding UpperCAmelCase_ : List[Any] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=__magic_name__ , bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , tie_word_embeddings=__magic_name__ , **__magic_name__ , ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Any: """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __magic_name__ ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' F"""got {self.rope_scaling}""" ) UpperCAmelCase_ : Dict = self.rope_scaling.get('''type''' , __magic_name__ ) UpperCAmelCase_ : Tuple = self.rope_scaling.get('''factor''' , __magic_name__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(__magic_name__ , __magic_name__ ) or rope_scaling_factor <= 1.0: raise ValueError(F"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
721
'''simple docstring''' def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int ) -> str: if number > 0: raise ValueError('''input must be a negative integer''' ) UpperCAmelCase_ : Union[str, Any] = len(bin(SCREAMING_SNAKE_CASE__ )[3:] ) UpperCAmelCase_ : Union[str, Any] = bin(abs(SCREAMING_SNAKE_CASE__ ) - (1 << binary_number_length) )[3:] UpperCAmelCase_ : Optional[Any] = ( ( '''1''' + '''0''' * (binary_number_length - len(SCREAMING_SNAKE_CASE__ )) + twos_complement_number ) if number < 0 else '''0''' ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
644
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case_ : Optional[Any] = logging.get_logger(__name__) snake_case_ : Tuple = { "facebook/levit-128S": "https://huggingface.co/facebook/levit-128S/resolve/main/config.json", # See all LeViT models at https://huggingface.co/models?filter=levit } class __a (lowerCamelCase ): __a : Tuple = "levit" def __init__( self : List[str] , __magic_name__ : Optional[Any]=2_24 , __magic_name__ : Tuple=3 , __magic_name__ : List[str]=3 , __magic_name__ : Optional[int]=2 , __magic_name__ : Optional[Any]=1 , __magic_name__ : Optional[Any]=16 , __magic_name__ : str=[1_28, 2_56, 3_84] , __magic_name__ : Union[str, Any]=[4, 8, 12] , __magic_name__ : int=[4, 4, 4] , __magic_name__ : List[Any]=[16, 16, 16] , __magic_name__ : Dict=0 , __magic_name__ : Union[str, Any]=[2, 2, 2] , __magic_name__ : int=[2, 2, 2] , __magic_name__ : Any=0.0_2 , **__magic_name__ : Union[str, Any] , ) -> Dict: """simple docstring""" super().__init__(**__magic_name__ ) UpperCAmelCase_ : Tuple = image_size UpperCAmelCase_ : str = num_channels UpperCAmelCase_ : Tuple = kernel_size UpperCAmelCase_ : int = stride UpperCAmelCase_ : List[Any] = padding UpperCAmelCase_ : int = hidden_sizes UpperCAmelCase_ : int = num_attention_heads UpperCAmelCase_ : Union[str, Any] = depths UpperCAmelCase_ : List[Any] = key_dim UpperCAmelCase_ : Tuple = drop_path_rate UpperCAmelCase_ : Optional[Any] = patch_size UpperCAmelCase_ : Tuple = attention_ratio UpperCAmelCase_ : Union[str, Any] = mlp_ratio UpperCAmelCase_ : Dict = initializer_range UpperCAmelCase_ : Tuple = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class __a (lowerCamelCase ): __a : Optional[Any] = version.parse("1.11" ) @property def UpperCAmelCase__ ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def UpperCAmelCase__ ( self : Any ) -> float: """simple docstring""" return 1E-4
700
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class __a (unittest.TestCase ): def UpperCAmelCase__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. UpperCAmelCase_ : List[str] = [[1, 2, 4], [1, 2, 3, 4]] UpperCAmelCase_ : List[str] = DisjunctiveConstraint(__magic_name__ ) self.assertTrue(isinstance(dc.token_ids , __magic_name__ ) ) with self.assertRaises(__magic_name__ ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(__magic_name__ ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def UpperCAmelCase__ ( self : List[str] ) -> Dict: """simple docstring""" # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). UpperCAmelCase_ : Tuple = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(__magic_name__ ): DisjunctiveConstraint(__magic_name__ ) # fails here def UpperCAmelCase__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : Optional[int] = [[1, 2, 3], [1, 2, 4]] UpperCAmelCase_ : List[str] = DisjunctiveConstraint(__magic_name__ ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = dc.update(1 ) UpperCAmelCase_ : Dict = stepped is True and completed is False and reset is False self.assertTrue(__magic_name__ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = dc.update(2 ) UpperCAmelCase_ : Optional[Any] = stepped is True and completed is False and reset is False self.assertTrue(__magic_name__ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = dc.update(3 ) UpperCAmelCase_ : Dict = stepped is True and completed is True and reset is False self.assertTrue(__magic_name__ ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def UpperCAmelCase__ ( self : int ) -> Dict: """simple docstring""" UpperCAmelCase_ : Any = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] UpperCAmelCase_ : Tuple = DisjunctiveConstraint(__magic_name__ ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
644
0
'''simple docstring''' import unittest import torch from torch import nn from diffusers.models.activations import get_activation class __a (unittest.TestCase ): def UpperCAmelCase__ ( self : Dict ) -> Dict: """simple docstring""" UpperCAmelCase_ : Dict = get_activation('''swish''' ) self.assertIsInstance(__magic_name__ , nn.SiLU ) self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def UpperCAmelCase__ ( self : Tuple ) -> Tuple: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = get_activation('''silu''' ) self.assertIsInstance(__magic_name__ , nn.SiLU ) self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def UpperCAmelCase__ ( self : Tuple ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : Optional[int] = get_activation('''mish''' ) self.assertIsInstance(__magic_name__ , nn.Mish ) self.assertEqual(act(torch.tensor(-2_00 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def UpperCAmelCase__ ( self : str ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ : List[Any] = get_activation('''gelu''' ) self.assertIsInstance(__magic_name__ , nn.GELU ) self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
701
'''simple docstring''' import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": snake_case_ : List[Any] = pd.read_csv("sample_data.csv", header=None) snake_case_ : Optional[Any] = df.shape[:1][0] # If you're using some other dataset input the target column snake_case_ : Any = df.iloc[:, 1:2] snake_case_ : str = actual_data.values.reshape(len_data, 1) snake_case_ : Optional[Any] = MinMaxScaler().fit_transform(actual_data) snake_case_ : List[str] = 10 snake_case_ : Any = 5 snake_case_ : Any = 20 snake_case_ : Tuple = len_data - periods * look_back snake_case_ : str = actual_data[:division] snake_case_ : Optional[int] = actual_data[division - look_back :] snake_case_ ,snake_case_ : Any = [], [] snake_case_ ,snake_case_ : Union[str, Any] = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) snake_case_ : Any = np.array(train_x) snake_case_ : Optional[Any] = np.array(test_x) snake_case_ : Optional[Any] = np.array([list(i.ravel()) for i in train_y]) snake_case_ : List[str] = np.array([list(i.ravel()) for i in test_y]) snake_case_ : List[Any] = Sequential() model.add(LSTM(1_28, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(1_28, 1))) model.add(Dense(forward_days)) model.compile(loss="mean_squared_error", optimizer="adam") snake_case_ : Dict = model.fit( x_train, y_train, epochs=1_50, verbose=1, shuffle=True, batch_size=4 ) snake_case_ : Optional[Any] = model.predict(x_test)
644
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) snake_case_ : Tuple = {"configuration_unispeech": ["UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP", "UniSpeechConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Optional[Any] = [ "UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST", "UniSpeechForCTC", "UniSpeechForPreTraining", "UniSpeechForSequenceClassification", "UniSpeechModel", "UniSpeechPreTrainedModel", ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys snake_case_ : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
702
'''simple docstring''' from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker snake_case_ : Union[str, Any] = "CompVis/stable-diffusion-v1-1" snake_case_ : Dict = "CompVis/stable-diffusion-v1-2" snake_case_ : Any = "CompVis/stable-diffusion-v1-3" snake_case_ : str = "CompVis/stable-diffusion-v1-4" class __a (lowerCamelCase ): def __init__( self : Any , __magic_name__ : AutoencoderKL , __magic_name__ : CLIPTextModel , __magic_name__ : CLIPTokenizer , __magic_name__ : UNetaDConditionModel , __magic_name__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __magic_name__ : StableDiffusionSafetyChecker , __magic_name__ : CLIPImageProcessor , __magic_name__ : bool = True , ) -> str: """simple docstring""" super()._init_() UpperCAmelCase_ : Any = StableDiffusionPipeline.from_pretrained(__magic_name__ ) UpperCAmelCase_ : Dict = StableDiffusionPipeline.from_pretrained(__magic_name__ ) UpperCAmelCase_ : List[Any] = StableDiffusionPipeline.from_pretrained(__magic_name__ ) UpperCAmelCase_ : Tuple = StableDiffusionPipeline( vae=__magic_name__ , text_encoder=__magic_name__ , tokenizer=__magic_name__ , unet=__magic_name__ , scheduler=__magic_name__ , safety_checker=__magic_name__ , feature_extractor=__magic_name__ , requires_safety_checker=__magic_name__ , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def UpperCAmelCase__ ( self : Tuple ) -> Dict[str, Any]: """simple docstring""" return {k: getattr(self , __magic_name__ ) for k in self.config.keys() if not k.startswith('''_''' )} def UpperCAmelCase__ ( self : Dict , __magic_name__ : Optional[Union[str, int]] = "auto" ) -> int: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCAmelCase_ : List[str] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__magic_name__ ) def UpperCAmelCase__ ( self : Tuple ) -> List[str]: """simple docstring""" self.enable_attention_slicing(__magic_name__ ) @torch.no_grad() def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Tuple , ) -> Optional[int]: """simple docstring""" return self.pipea( prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , ) @torch.no_grad() def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Any , ) -> Any: """simple docstring""" return self.pipea( prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , ) @torch.no_grad() def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Dict , ) -> List[str]: """simple docstring""" return self.pipea( prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , ) @torch.no_grad() def UpperCAmelCase__ ( self : int , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Optional[int] , ) -> str: """simple docstring""" return self.pipea( prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , ) @torch.no_grad() def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Optional[int] , ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : int = '''cuda''' if torch.cuda.is_available() else '''cpu''' self.to(__magic_name__ ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` must be divisible by 8 but are {height} and {width}.""" ) # Get first result from Stable Diffusion Checkpoint v1.1 UpperCAmelCase_ : Optional[int] = self.textaimg_sda_a( prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , ) # Get first result from Stable Diffusion Checkpoint v1.2 UpperCAmelCase_ : int = self.textaimg_sda_a( prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , ) # Get first result from Stable Diffusion Checkpoint v1.3 UpperCAmelCase_ : str = self.textaimg_sda_a( prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , ) # Get first result from Stable Diffusion Checkpoint v1.4 UpperCAmelCase_ : str = self.textaimg_sda_a( prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
644
0
'''simple docstring''' import operator as op def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Dict: UpperCAmelCase_ : int = [] UpperCAmelCase_ : Optional[Any] = lambda SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : int(x / y ) # noqa: E731 integer division operation UpperCAmelCase_ : Optional[Any] = { '''^''': op.pow, '''*''': op.mul, '''/''': div, '''+''': op.add, '''-''': op.sub, } # operators & their respective operation # print table header print('''Symbol'''.center(8 ), '''Action'''.center(12 ), '''Stack''', sep=''' | ''' ) print('''-''' * (30 + len(SCREAMING_SNAKE_CASE__ )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(SCREAMING_SNAKE_CASE__ ) # append x to stack # output in tabular format print(x.rjust(8 ), ('''push(''' + x + ''')''').ljust(12 ), ''','''.join(SCREAMING_SNAKE_CASE__ ), sep=''' | ''' ) else: UpperCAmelCase_ : int = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8 ), ('''pop(''' + b + ''')''').ljust(12 ), ''','''.join(SCREAMING_SNAKE_CASE__ ), sep=''' | ''' ) UpperCAmelCase_ : int = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8 ), ('''pop(''' + a + ''')''').ljust(12 ), ''','''.join(SCREAMING_SNAKE_CASE__ ), sep=''' | ''' ) stack.append( str(opr[x](int(SCREAMING_SNAKE_CASE__ ), int(SCREAMING_SNAKE_CASE__ ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ), ('''push(''' + a + x + b + ''')''').ljust(12 ), ''','''.join(SCREAMING_SNAKE_CASE__ ), sep=''' | ''', ) return int(stack[0] ) if __name__ == "__main__": snake_case_ : List[Any] = input("\n\nEnter a Postfix Equation (space separated) = ").split(" ") print("\n\tResult = ", solve(Postfix))
703
'''simple docstring''' import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler snake_case_ : Optional[int] = 16 snake_case_ : Tuple = 32 def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Accelerator, SCREAMING_SNAKE_CASE__ : int = 16, SCREAMING_SNAKE_CASE__ : str = "bert-base-cased" ) -> Dict: UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : int = load_dataset('''glue''', '''mrpc''' ) def tokenize_function(SCREAMING_SNAKE_CASE__ : Optional[int] ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase_ : Union[str, Any] = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=SCREAMING_SNAKE_CASE__, max_length=SCREAMING_SNAKE_CASE__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset UpperCAmelCase_ : Tuple = datasets.map( SCREAMING_SNAKE_CASE__, batched=SCREAMING_SNAKE_CASE__, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], load_from_cache_file=SCREAMING_SNAKE_CASE__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase_ : Optional[Any] = tokenized_datasets.rename_column('''label''', '''labels''' ) def collate_fn(SCREAMING_SNAKE_CASE__ : str ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(SCREAMING_SNAKE_CASE__, padding='''max_length''', max_length=128, return_tensors='''pt''' ) return tokenizer.pad(SCREAMING_SNAKE_CASE__, padding='''longest''', return_tensors='''pt''' ) # Instantiate dataloaders. UpperCAmelCase_ : str = DataLoader( tokenized_datasets['''train'''], shuffle=SCREAMING_SNAKE_CASE__, collate_fn=SCREAMING_SNAKE_CASE__, batch_size=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : int = DataLoader( tokenized_datasets['''validation'''], shuffle=SCREAMING_SNAKE_CASE__, collate_fn=SCREAMING_SNAKE_CASE__, batch_size=SCREAMING_SNAKE_CASE__ ) return train_dataloader, eval_dataloader def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Optional[Any], SCREAMING_SNAKE_CASE__ : Optional[int], SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : Any ) -> Any: model.eval() UpperCAmelCase_ : List[str] = 0 for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase_ : Dict = model(**SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : str = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times UpperCAmelCase_ , UpperCAmelCase_ : List[str] = accelerator.gather( (predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(SCREAMING_SNAKE_CASE__ ) - 1: UpperCAmelCase_ : Tuple = predictions[: len(eval_dataloader.dataset ) - samples_seen] UpperCAmelCase_ : int = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=SCREAMING_SNAKE_CASE__, references=SCREAMING_SNAKE_CASE__, ) UpperCAmelCase_ : List[str] = metric.compute() return eval_metric["accuracy"] def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : int ) -> Tuple: # Initialize accelerator UpperCAmelCase_ : Union[str, Any] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase_ : int = config['''lr'''] UpperCAmelCase_ : Optional[int] = int(config['''num_epochs'''] ) UpperCAmelCase_ : Optional[int] = int(config['''seed'''] ) UpperCAmelCase_ : List[str] = int(config['''batch_size'''] ) UpperCAmelCase_ : Optional[int] = args.model_name_or_path set_seed(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = get_dataloaders(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase_ : List[Any] = AutoModelForSequenceClassification.from_pretrained(SCREAMING_SNAKE_CASE__, return_dict=SCREAMING_SNAKE_CASE__ ) # Instantiate optimizer UpperCAmelCase_ : str = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) UpperCAmelCase_ : List[str] = optimizer_cls(params=model.parameters(), lr=SCREAMING_SNAKE_CASE__ ) if accelerator.state.deepspeed_plugin is not None: UpperCAmelCase_ : List[Any] = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: UpperCAmelCase_ : Tuple = 1 UpperCAmelCase_ : int = (len(SCREAMING_SNAKE_CASE__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): UpperCAmelCase_ : Tuple = get_linear_schedule_with_warmup( optimizer=SCREAMING_SNAKE_CASE__, num_warmup_steps=0, num_training_steps=SCREAMING_SNAKE_CASE__, ) else: UpperCAmelCase_ : Any = DummyScheduler(SCREAMING_SNAKE_CASE__, total_num_steps=SCREAMING_SNAKE_CASE__, warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = accelerator.prepare( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) # We need to keep track of how many total steps we have iterated over UpperCAmelCase_ : Union[str, Any] = 0 # We also need to keep track of the stating epoch so files are named properly UpperCAmelCase_ : Dict = 0 UpperCAmelCase_ : int = evaluate.load('''glue''', '''mrpc''' ) UpperCAmelCase_ : Optional[Any] = num_epochs if args.partial_train_epoch is not None: UpperCAmelCase_ : List[Any] = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) UpperCAmelCase_ : Tuple = args.resume_from_checkpoint.split('''epoch_''' )[1] UpperCAmelCase_ : int = '''''' for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break UpperCAmelCase_ : Union[str, Any] = int(SCREAMING_SNAKE_CASE__ ) + 1 UpperCAmelCase_ : Dict = evaluation_loop(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) accelerator.print('''resumed checkpoint performance:''', SCREAMING_SNAKE_CASE__ ) accelerator.print('''resumed checkpoint\'s scheduler\'s lr:''', lr_scheduler.get_lr()[0] ) accelerator.print('''resumed optimizers\'s lr:''', optimizer.param_groups[0]['''lr'''] ) with open(os.path.join(args.output_dir, F"""state_{starting_epoch-1}.json""" ), '''r''' ) as f: UpperCAmelCase_ : Optional[int] = json.load(SCREAMING_SNAKE_CASE__ ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model UpperCAmelCase_ : int = {} for epoch in range(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ): model.train() for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ): UpperCAmelCase_ : Optional[int] = model(**SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Any = outputs.loss UpperCAmelCase_ : Tuple = loss / gradient_accumulation_steps accelerator.backward(SCREAMING_SNAKE_CASE__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 UpperCAmelCase_ : Tuple = F"""epoch_{epoch}""" UpperCAmelCase_ : Optional[int] = os.path.join(args.output_dir, SCREAMING_SNAKE_CASE__ ) accelerator.save_state(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : int = evaluation_loop(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Optional[Any] = accuracy UpperCAmelCase_ : Any = lr_scheduler.get_lr()[0] UpperCAmelCase_ : List[str] = optimizer.param_groups[0]['''lr'''] UpperCAmelCase_ : Tuple = epoch UpperCAmelCase_ : Dict = overall_step accelerator.print(F"""epoch {epoch}:""", SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir, F"""state_{epoch}.json""" ), '''w''' ) as f: json.dump(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) def lowerCamelCase_ ( ) -> List[str]: UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''', type=SCREAMING_SNAKE_CASE__, default='''bert-base-cased''', help='''Path to pretrained model or model identifier from huggingface.co/models.''', required=SCREAMING_SNAKE_CASE__, ) parser.add_argument( '''--output_dir''', type=SCREAMING_SNAKE_CASE__, default='''.''', help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''', ) parser.add_argument( '''--resume_from_checkpoint''', type=SCREAMING_SNAKE_CASE__, default=SCREAMING_SNAKE_CASE__, help='''If the training should continue from a checkpoint folder.''', ) parser.add_argument( '''--partial_train_epoch''', type=SCREAMING_SNAKE_CASE__, default=SCREAMING_SNAKE_CASE__, help='''If passed, the training will stop after this number of epochs.''', ) parser.add_argument( '''--num_epochs''', type=SCREAMING_SNAKE_CASE__, default=2, help='''Number of train epochs.''', ) UpperCAmelCase_ : Optional[int] = parser.parse_args() UpperCAmelCase_ : List[Any] = {'''lr''': 2E-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
644
0
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int ) -> str: if number > 0: raise ValueError('''input must be a negative integer''' ) UpperCAmelCase_ : Union[str, Any] = len(bin(SCREAMING_SNAKE_CASE__ )[3:] ) UpperCAmelCase_ : Union[str, Any] = bin(abs(SCREAMING_SNAKE_CASE__ ) - (1 << binary_number_length) )[3:] UpperCAmelCase_ : Optional[Any] = ( ( '''1''' + '''0''' * (binary_number_length - len(SCREAMING_SNAKE_CASE__ )) + twos_complement_number ) if number < 0 else '''0''' ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
704
'''simple docstring''' def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : list[int] ) -> list[list[int]]: UpperCAmelCase_ : int = [] if len(SCREAMING_SNAKE_CASE__ ) == 1: return [nums.copy()] for _ in range(len(SCREAMING_SNAKE_CASE__ ) ): UpperCAmelCase_ : List[Any] = nums.pop(0 ) UpperCAmelCase_ : Optional[Any] = permute(SCREAMING_SNAKE_CASE__ ) for perm in permutations: perm.append(SCREAMING_SNAKE_CASE__ ) result.extend(SCREAMING_SNAKE_CASE__ ) nums.append(SCREAMING_SNAKE_CASE__ ) return result def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[str] ) -> Any: def backtrack(SCREAMING_SNAKE_CASE__ : Union[str, Any] ): if start == len(SCREAMING_SNAKE_CASE__ ) - 1: output.append(nums[:] ) else: for i in range(SCREAMING_SNAKE_CASE__, len(SCREAMING_SNAKE_CASE__ ) ): UpperCAmelCase_ , UpperCAmelCase_ : Tuple = nums[i], nums[start] backtrack(start + 1 ) UpperCAmelCase_ , UpperCAmelCase_ : int = nums[i], nums[start] # backtrack UpperCAmelCase_ : Optional[int] = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function snake_case_ : Tuple = permutea([1, 2, 3]) print(res) doctest.testmod()
644
0
'''simple docstring''' import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline snake_case_ : Dict = datasets.utils.logging.get_logger(__name__) @dataclass class __a (datasets.BuilderConfig ): __a : Optional[datasets.Features] = None __a : str = "utf-8" __a : Optional[str] = None __a : Optional[str] = None __a : bool = True # deprecated __a : Optional[int] = None # deprecated __a : int = 10 << 20 # 10MB __a : Optional[bool] = None class __a (datasets.ArrowBasedBuilder ): __a : Optional[int] = JsonConfig def UpperCAmelCase__ ( self : int ) -> Union[str, Any]: """simple docstring""" if self.config.block_size is not None: logger.warning('''The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead''' ) UpperCAmelCase_ : Optional[int] = self.config.block_size if self.config.use_threads is not True: logger.warning( '''The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.''' ) if self.config.newlines_in_values is not None: raise ValueError('''The JSON loader parameter `newlines_in_values` is no longer supported''' ) return datasets.DatasetInfo(features=self.config.features ) def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : List[str] ) -> Tuple: """simple docstring""" if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) UpperCAmelCase_ : int = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__magic_name__ , (str, list, tuple) ): UpperCAmelCase_ : Tuple = data_files if isinstance(__magic_name__ , __magic_name__ ): UpperCAmelCase_ : Optional[int] = [files] UpperCAmelCase_ : Any = [dl_manager.iter_files(__magic_name__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] UpperCAmelCase_ : Optional[Any] = [] for split_name, files in data_files.items(): if isinstance(__magic_name__ , __magic_name__ ): UpperCAmelCase_ : List[Any] = [files] UpperCAmelCase_ : Any = [dl_manager.iter_files(__magic_name__ ) for file in files] splits.append(datasets.SplitGenerator(name=__magic_name__ , gen_kwargs={'''files''': files} ) ) return splits def UpperCAmelCase__ ( self : List[str] , __magic_name__ : pa.Table ) -> pa.Table: """simple docstring""" if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): UpperCAmelCase_ : int = self.config.features.arrow_schema.field(__magic_name__ ).type UpperCAmelCase_ : Optional[int] = pa_table.append_column(__magic_name__ , pa.array([None] * len(__magic_name__ ) , type=__magic_name__ ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example UpperCAmelCase_ : Optional[Any] = table_cast(__magic_name__ , self.config.features.arrow_schema ) return pa_table def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Tuple ) -> List[Any]: """simple docstring""" for file_idx, file in enumerate(itertools.chain.from_iterable(__magic_name__ ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(__magic_name__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: UpperCAmelCase_ : List[str] = json.load(__magic_name__ ) # We keep only the field we are interested in UpperCAmelCase_ : Any = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(__magic_name__ , (list, tuple) ): UpperCAmelCase_ : int = set().union(*[row.keys() for row in dataset] ) UpperCAmelCase_ : List[Any] = {col: [row.get(__magic_name__ ) for row in dataset] for col in keys} else: UpperCAmelCase_ : Optional[int] = dataset UpperCAmelCase_ : int = pa.Table.from_pydict(__magic_name__ ) yield file_idx, self._cast_table(__magic_name__ ) # If the file has one json object per line else: with open(__magic_name__ , '''rb''' ) as f: UpperCAmelCase_ : Optional[Any] = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small UpperCAmelCase_ : List[Any] = max(self.config.chunksize // 32 , 16 << 10 ) UpperCAmelCase_ : List[Any] = ( self.config.encoding_errors if self.config.encoding_errors is not None else '''strict''' ) while True: UpperCAmelCase_ : List[Any] = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(__magic_name__ ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": UpperCAmelCase_ : List[Any] = batch.decode(self.config.encoding , errors=__magic_name__ ).encode('''utf-8''' ) try: while True: try: UpperCAmelCase_ : Union[str, Any] = paj.read_json( io.BytesIO(__magic_name__ ) , read_options=paj.ReadOptions(block_size=__magic_name__ ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(__magic_name__ , pa.ArrowInvalid ) and "straddling" not in str(__magic_name__ ) or block_size > len(__magic_name__ ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( F"""Batch of {len(__magic_name__ )} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.""" ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( __magic_name__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: UpperCAmelCase_ : int = json.load(__magic_name__ ) except json.JSONDecodeError: logger.error(F"""Failed to read file '{file}' with error {type(__magic_name__ )}: {e}""" ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(__magic_name__ , __magic_name__ ): # list is the only sequence type supported in JSON try: UpperCAmelCase_ : str = set().union(*[row.keys() for row in dataset] ) UpperCAmelCase_ : Optional[int] = {col: [row.get(__magic_name__ ) for row in dataset] for col in keys} UpperCAmelCase_ : Union[str, Any] = pa.Table.from_pydict(__magic_name__ ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(F"""Failed to read file '{file}' with error {type(__magic_name__ )}: {e}""" ) raise ValueError(F"""Not able to read records in the JSON file at {file}.""" ) from None yield file_idx, self._cast_table(__magic_name__ ) break else: logger.error(F"""Failed to read file '{file}' with error {type(__magic_name__ )}: {e}""" ) raise ValueError( F"""Not able to read records in the JSON file at {file}. """ F"""You should probably indicate the field of the JSON file containing your records. """ F"""This JSON file contain the following fields: {str(list(dataset.keys() ) )}. """ F"""Select the correct one and provide it as `field='XXX'` to the dataset loading method. """ ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(__magic_name__ ) batch_idx += 1
705
'''simple docstring''' class __a : def __init__( self : List[Any] , __magic_name__ : int ) -> None: """simple docstring""" UpperCAmelCase_ : Optional[Any] = size UpperCAmelCase_ : Tuple = [0] * size UpperCAmelCase_ : Optional[Any] = [0] * size @staticmethod def UpperCAmelCase__ ( __magic_name__ : int ) -> int: """simple docstring""" return index | (index + 1) @staticmethod def UpperCAmelCase__ ( __magic_name__ : int ) -> int: """simple docstring""" return (index & (index + 1)) - 1 def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : int , __magic_name__ : int ) -> None: """simple docstring""" UpperCAmelCase_ : int = value while index < self.size: UpperCAmelCase_ : str = self.get_prev(__magic_name__ ) + 1 if current_left_border == index: UpperCAmelCase_ : List[str] = value else: UpperCAmelCase_ : Optional[int] = max(__magic_name__ , __magic_name__ , __magic_name__ ) UpperCAmelCase_ : Tuple = self.get_next(__magic_name__ ) def UpperCAmelCase__ ( self : Any , __magic_name__ : int , __magic_name__ : int ) -> int: """simple docstring""" right -= 1 # Because of right is exclusive UpperCAmelCase_ : List[str] = 0 while left <= right: UpperCAmelCase_ : Optional[Any] = self.get_prev(__magic_name__ ) if left <= current_left: UpperCAmelCase_ : Dict = max(__magic_name__ , self.tree[right] ) UpperCAmelCase_ : Optional[Any] = current_left else: UpperCAmelCase_ : str = max(__magic_name__ , self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
644
0
'''simple docstring''' import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py snake_case_ : Optional[Any] = "." # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) snake_case_ : Optional[int] = [ "Assert", "AssignVariableOp", "EmptyTensorList", "MergeV2Checkpoints", "ReadVariableOp", "ResourceGather", "RestoreV2", "SaveV2", "ShardedFilename", "StatefulPartitionedCall", "StaticRegexFullMatch", "VarHandleOp", ] def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : Optional[Any], SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> List[str]: UpperCAmelCase_ : Any = SavedModel() UpperCAmelCase_ : Any = [] with open(os.path.join(SCREAMING_SNAKE_CASE__, '''utils''', '''tf_ops''', '''onnx.json''' ) ) as f: UpperCAmelCase_ : int = json.load(SCREAMING_SNAKE_CASE__ )['''opsets'''] for i in range(1, opset + 1 ): onnx_ops.extend(onnx_opsets[str(SCREAMING_SNAKE_CASE__ )] ) with open(SCREAMING_SNAKE_CASE__, '''rb''' ) as f: saved_model.ParseFromString(f.read() ) UpperCAmelCase_ : Dict = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want UpperCAmelCase_ : Any = sorted(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Dict = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(SCREAMING_SNAKE_CASE__ ) if strict and len(SCREAMING_SNAKE_CASE__ ) > 0: raise Exception(F"""Found the following incompatible ops for the opset {opset}:\n""" + incompatible_ops ) elif len(SCREAMING_SNAKE_CASE__ ) > 0: print(F"""Found the following incompatible ops for the opset {opset}:""" ) print(*SCREAMING_SNAKE_CASE__, sep='''\n''' ) else: print(F"""The saved model {saved_model_path} can properly be converted with ONNX.""" ) if __name__ == "__main__": snake_case_ : Dict = argparse.ArgumentParser() parser.add_argument("--saved_model_path", help="Path of the saved model to check (the .pb file).") parser.add_argument( "--opset", default=12, type=int, help="The ONNX opset against which the model has to be tested." ) parser.add_argument( "--framework", choices=["onnx"], default="onnx", help="Frameworks against which to test the saved model." ) parser.add_argument( "--strict", action="store_true", help="Whether make the checking strict (raise errors) or not (raise warnings)" ) snake_case_ : List[str] = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
706
'''simple docstring''' import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class __a : def __init__( self : List[str] , __magic_name__ : List[str] , __magic_name__ : str=13 , __magic_name__ : Union[str, Any]=7 , __magic_name__ : Union[str, Any]=True , __magic_name__ : Any=True , __magic_name__ : List[str]=False , __magic_name__ : Optional[int]=True , __magic_name__ : Dict=99 , __magic_name__ : Tuple=32 , __magic_name__ : int=5 , __magic_name__ : Dict=4 , __magic_name__ : Tuple=37 , __magic_name__ : Optional[int]="gelu" , __magic_name__ : List[str]=0.1 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : str=5_12 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : int=2 , __magic_name__ : List[Any]=0.0_2 , __magic_name__ : Tuple=3 , __magic_name__ : Union[str, Any]=4 , __magic_name__ : Optional[int]=None , ) -> str: """simple docstring""" UpperCAmelCase_ : Any = parent UpperCAmelCase_ : Union[str, Any] = batch_size UpperCAmelCase_ : List[Any] = seq_length UpperCAmelCase_ : str = is_training UpperCAmelCase_ : Any = use_input_mask UpperCAmelCase_ : List[str] = use_token_type_ids UpperCAmelCase_ : Union[str, Any] = use_labels UpperCAmelCase_ : Dict = vocab_size UpperCAmelCase_ : Optional[Any] = hidden_size UpperCAmelCase_ : Dict = num_hidden_layers UpperCAmelCase_ : List[Any] = num_attention_heads UpperCAmelCase_ : Optional[int] = intermediate_size UpperCAmelCase_ : Union[str, Any] = hidden_act UpperCAmelCase_ : str = hidden_dropout_prob UpperCAmelCase_ : Optional[Any] = attention_probs_dropout_prob UpperCAmelCase_ : Any = max_position_embeddings UpperCAmelCase_ : str = type_vocab_size UpperCAmelCase_ : Optional[Any] = type_sequence_label_size UpperCAmelCase_ : List[Any] = initializer_range UpperCAmelCase_ : int = num_labels UpperCAmelCase_ : Optional[int] = num_choices UpperCAmelCase_ : Tuple = scope def UpperCAmelCase__ ( self : Union[str, Any] ) -> int: """simple docstring""" UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Union[str, Any] = None if self.use_input_mask: UpperCAmelCase_ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : str = None if self.use_token_type_ids: UpperCAmelCase_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ : Tuple = None UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Union[str, Any] = None if self.use_labels: UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ : int = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self : Any ) -> List[Any]: """simple docstring""" return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__magic_name__ , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : Tuple , __magic_name__ : str , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : Optional[Any] = BioGptModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() UpperCAmelCase_ : Dict = model(__magic_name__ , attention_mask=__magic_name__ ) UpperCAmelCase_ : Optional[Any] = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : Dict , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Any , __magic_name__ : Tuple , __magic_name__ : List[str] , __magic_name__ : Optional[int] , ) -> int: """simple docstring""" UpperCAmelCase_ : Dict = BioGptForCausalLM(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() UpperCAmelCase_ : List[Any] = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self : str , __magic_name__ : Optional[int] , __magic_name__ : Tuple , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : str , *__magic_name__ : Any ) -> int: """simple docstring""" UpperCAmelCase_ : Dict = BioGptModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() # create attention mask UpperCAmelCase_ : Optional[Any] = torch.ones(input_ids.shape , dtype=torch.long , device=__magic_name__ ) UpperCAmelCase_ : Any = self.seq_length // 2 UpperCAmelCase_ : Tuple = 0 # first forward pass UpperCAmelCase_ , UpperCAmelCase_ : Dict = model(__magic_name__ , attention_mask=__magic_name__ ).to_tuple() # create hypothetical next token and extent to next_input_ids UpperCAmelCase_ : Tuple = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids UpperCAmelCase_ : List[str] = ids_tensor((1,) , __magic_name__ ).item() + 1 UpperCAmelCase_ : Tuple = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) UpperCAmelCase_ : str = random_other_next_tokens # append to next input_ids and attn_mask UpperCAmelCase_ : Tuple = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase_ : int = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=__magic_name__ )] , dim=1 , ) # get two different outputs UpperCAmelCase_ : Any = model(__magic_name__ , attention_mask=__magic_name__ )['''last_hidden_state'''] UpperCAmelCase_ : int = model(__magic_name__ , past_key_values=__magic_name__ , attention_mask=__magic_name__ )['''last_hidden_state'''] # select random slice UpperCAmelCase_ : Optional[int] = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase_ : Union[str, Any] = output_from_no_past[:, -1, random_slice_idx].detach() UpperCAmelCase_ : Dict = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) ) def UpperCAmelCase__ ( self : Dict , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : Dict , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , *__magic_name__ : str ) -> int: """simple docstring""" UpperCAmelCase_ : Dict = BioGptModel(config=__magic_name__ ).to(__magic_name__ ).eval() UpperCAmelCase_ : Optional[int] = torch.ones(input_ids.shape , dtype=torch.long , device=__magic_name__ ) # first forward pass UpperCAmelCase_ : Union[str, Any] = model(__magic_name__ , attention_mask=__magic_name__ , use_cache=__magic_name__ ) UpperCAmelCase_ , UpperCAmelCase_ : int = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase_ : Any = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase_ : Any = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and UpperCAmelCase_ : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase_ : List[str] = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) UpperCAmelCase_ : Any = model(__magic_name__ , attention_mask=__magic_name__ )['''last_hidden_state'''] UpperCAmelCase_ : Optional[Any] = model(__magic_name__ , attention_mask=__magic_name__ , past_key_values=__magic_name__ )[ '''last_hidden_state''' ] # select random slice UpperCAmelCase_ : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase_ : str = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase_ : Optional[int] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) ) def UpperCAmelCase__ ( self : List[str] , __magic_name__ : str , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , *__magic_name__ : Any , __magic_name__ : List[Any]=False ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : Any = BioGptForCausalLM(__magic_name__ ) model.to(__magic_name__ ) if gradient_checkpointing: model.gradient_checkpointing_enable() UpperCAmelCase_ : List[str] = model(__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Optional[int] , *__magic_name__ : List[str] ) -> str: """simple docstring""" UpperCAmelCase_ : int = BioGptModel(__magic_name__ ) UpperCAmelCase_ : Dict = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.0_0_1 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.0_1 ) def UpperCAmelCase__ ( self : int , __magic_name__ : Tuple , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] , *__magic_name__ : Any ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : str = self.num_labels UpperCAmelCase_ : Any = BioGptForTokenClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() UpperCAmelCase_ : Any = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase__ ( self : Optional[Any] ) -> str: """simple docstring""" UpperCAmelCase_ : List[Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : int = config_and_inputs UpperCAmelCase_ : Any = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __a (lowerCamelCase , lowerCamelCase , lowerCamelCase , unittest.TestCase ): __a : str = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) __a : List[Any] = (BioGptForCausalLM,) if is_torch_available() else () __a : Union[str, Any] = ( { "feature-extraction": BioGptModel, "text-classification": BioGptForSequenceClassification, "text-generation": BioGptForCausalLM, "token-classification": BioGptForTokenClassification, "zero-shot": BioGptForSequenceClassification, } if is_torch_available() else {} ) __a : List[str] = False def UpperCAmelCase__ ( self : Optional[Any] ) -> Dict: """simple docstring""" UpperCAmelCase_ : List[str] = BioGptModelTester(self ) UpperCAmelCase_ : Optional[Any] = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : List[str] ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def UpperCAmelCase__ ( self : Tuple ) -> List[str]: """simple docstring""" UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase_ : str = type self.model_tester.create_and_check_model(*__magic_name__ ) def UpperCAmelCase__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*__magic_name__ ) def UpperCAmelCase__ ( self : Tuple ) -> List[str]: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*__magic_name__ , gradient_checkpointing=__magic_name__ ) def UpperCAmelCase__ ( self : str ) -> List[str]: """simple docstring""" UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*__magic_name__ ) def UpperCAmelCase__ ( self : Dict ) -> Tuple: """simple docstring""" UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*__magic_name__ ) def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*__magic_name__ ) @slow def UpperCAmelCase__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : Tuple = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) model.to(__magic_name__ ) UpperCAmelCase_ : List[str] = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) UpperCAmelCase_ : Tuple = '''left''' # Define PAD Token = EOS Token = 50256 UpperCAmelCase_ : List[Any] = tokenizer.eos_token UpperCAmelCase_ : List[Any] = model.config.eos_token_id # use different length sentences to test batching UpperCAmelCase_ : Tuple = [ '''Hello, my dog is a little''', '''Today, I''', ] UpperCAmelCase_ : Optional[Any] = tokenizer(__magic_name__ , return_tensors='''pt''' , padding=__magic_name__ ) UpperCAmelCase_ : Optional[Any] = inputs['''input_ids'''].to(__magic_name__ ) UpperCAmelCase_ : Any = model.generate( input_ids=__magic_name__ , attention_mask=inputs['''attention_mask'''].to(__magic_name__ ) , ) UpperCAmelCase_ : Union[str, Any] = tokenizer(sentences[0] , return_tensors='''pt''' ).input_ids.to(__magic_name__ ) UpperCAmelCase_ : Tuple = model.generate(input_ids=__magic_name__ ) UpperCAmelCase_ : List[str] = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item() UpperCAmelCase_ : List[Any] = tokenizer(sentences[1] , return_tensors='''pt''' ).input_ids.to(__magic_name__ ) UpperCAmelCase_ : Tuple = model.generate(input_ids=__magic_name__ , max_length=model.config.max_length - num_paddings ) UpperCAmelCase_ : int = tokenizer.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ ) UpperCAmelCase_ : Dict = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__magic_name__ ) UpperCAmelCase_ : Union[str, Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=__magic_name__ ) UpperCAmelCase_ : Optional[Any] = [ '''Hello, my dog is a little bit bigger than a little bit.''', '''Today, I have a good idea of how to use the information''', ] self.assertListEqual(__magic_name__ , __magic_name__ ) self.assertListEqual(__magic_name__ , [non_padded_sentence, padded_sentence] ) @slow def UpperCAmelCase__ ( self : str ) -> Optional[Any]: """simple docstring""" for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : List[Any] = BioGptModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def UpperCAmelCase__ ( self : Tuple ) -> str: """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : List[str] = 3 UpperCAmelCase_ : Tuple = input_dict['''input_ids'''] UpperCAmelCase_ : Dict = input_ids.ne(1 ).to(__magic_name__ ) UpperCAmelCase_ : List[str] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase_ : Dict = BioGptForSequenceClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() UpperCAmelCase_ : int = model(__magic_name__ , attention_mask=__magic_name__ , labels=__magic_name__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]: """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : List[Any] = 3 UpperCAmelCase_ : Optional[int] = '''multi_label_classification''' UpperCAmelCase_ : int = input_dict['''input_ids'''] UpperCAmelCase_ : str = input_ids.ne(1 ).to(__magic_name__ ) UpperCAmelCase_ : Any = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCAmelCase_ : Union[str, Any] = BioGptForSequenceClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() UpperCAmelCase_ : str = model(__magic_name__ , attention_mask=__magic_name__ , labels=__magic_name__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class __a (unittest.TestCase ): @slow def UpperCAmelCase__ ( self : List[Any] ) -> str: """simple docstring""" UpperCAmelCase_ : str = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) UpperCAmelCase_ : List[str] = torch.tensor([[2, 48_05, 9, 6_56, 21]] ) UpperCAmelCase_ : str = model(__magic_name__ )[0] UpperCAmelCase_ : Optional[int] = 4_23_84 UpperCAmelCase_ : Tuple = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , __magic_name__ ) UpperCAmelCase_ : List[Any] = torch.tensor( [[[-9.5_2_3_6, -9.8_9_1_8, 1_0.4_5_5_7], [-1_1.0_4_6_9, -9.6_4_2_3, 8.1_0_2_2], [-8.8_6_6_4, -7.8_8_2_6, 5.5_3_2_5]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __magic_name__ , atol=1E-4 ) ) @slow def UpperCAmelCase__ ( self : Any ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Any = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) UpperCAmelCase_ : str = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) model.to(__magic_name__ ) torch.manual_seed(0 ) UpperCAmelCase_ : Optional[Any] = tokenizer('''COVID-19 is''' , return_tensors='''pt''' ).to(__magic_name__ ) UpperCAmelCase_ : Optional[int] = model.generate( **__magic_name__ , min_length=1_00 , max_length=10_24 , num_beams=5 , early_stopping=__magic_name__ , ) UpperCAmelCase_ : int = tokenizer.decode(output_ids[0] , skip_special_tokens=__magic_name__ ) UpperCAmelCase_ : Optional[Any] = ( '''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the''' ''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and''' ''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),''' ''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and''' ''' more than 800,000 deaths.''' ) self.assertEqual(__magic_name__ , __magic_name__ )
644
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase : Tuple = { "configuration_roberta": ["ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "RobertaConfig", "RobertaOnnxConfig"], "tokenization_roberta": ["RobertaTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[int] = ["RobertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[int] = [ "ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "RobertaForCausalLM", "RobertaForMaskedLM", "RobertaForMultipleChoice", "RobertaForQuestionAnswering", "RobertaForSequenceClassification", "RobertaForTokenClassification", "RobertaModel", "RobertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = [ "TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRobertaForCausalLM", "TFRobertaForMaskedLM", "TFRobertaForMultipleChoice", "TFRobertaForQuestionAnswering", "TFRobertaForSequenceClassification", "TFRobertaForTokenClassification", "TFRobertaMainLayer", "TFRobertaModel", "TFRobertaPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = [ "FlaxRobertaForCausalLM", "FlaxRobertaForMaskedLM", "FlaxRobertaForMultipleChoice", "FlaxRobertaForQuestionAnswering", "FlaxRobertaForSequenceClassification", "FlaxRobertaForTokenClassification", "FlaxRobertaModel", "FlaxRobertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys lowerCamelCase : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
707
'''simple docstring''' import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class __a (lowerCamelCase , unittest.TestCase ): __a : List[str] = BlenderbotSmallTokenizer __a : List[Any] = False def UpperCAmelCase__ ( self : str ) -> str: """simple docstring""" super().setUp() UpperCAmelCase_ : Tuple = ['''__start__''', '''adapt''', '''act''', '''ap@@''', '''te''', '''__end__''', '''__unk__'''] UpperCAmelCase_ : Optional[Any] = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) ) UpperCAmelCase_ : int = ['''#version: 0.2''', '''a p''', '''t e</w>''', '''ap t</w>''', '''a d''', '''ad apt</w>''', '''a c''', '''ac t</w>''', ''''''] UpperCAmelCase_ : Optional[Any] = {'''unk_token''': '''__unk__''', '''bos_token''': '''__start__''', '''eos_token''': '''__end__'''} UpperCAmelCase_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase_ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__magic_name__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__magic_name__ ) ) def UpperCAmelCase__ ( self : List[Any] , **__magic_name__ : Dict ) -> Tuple: """simple docstring""" kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **__magic_name__ ) def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : List[str] ) -> List[str]: """simple docstring""" UpperCAmelCase_ : str = '''adapt act apte''' UpperCAmelCase_ : Tuple = '''adapt act apte''' return input_text, output_text def UpperCAmelCase__ ( self : str ) -> Any: """simple docstring""" UpperCAmelCase_ : str = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCAmelCase_ : List[Any] = '''adapt act apte''' UpperCAmelCase_ : Dict = ['''adapt''', '''act''', '''ap@@''', '''te'''] UpperCAmelCase_ : Dict = tokenizer.tokenize(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) UpperCAmelCase_ : Tuple = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] UpperCAmelCase_ : Dict = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , __magic_name__ ) def UpperCAmelCase__ ( self : int ) -> List[str]: """simple docstring""" UpperCAmelCase_ : List[Any] = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) assert tok('''sam''' ).input_ids == [13_84] UpperCAmelCase_ : Optional[int] = '''I am a small frog.''' UpperCAmelCase_ : List[str] = tok([src_text] , padding=__magic_name__ , truncation=__magic_name__ )['''input_ids'''] UpperCAmelCase_ : Dict = tok.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ , clean_up_tokenization_spaces=__magic_name__ )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def UpperCAmelCase__ ( self : Any ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : int = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) UpperCAmelCase_ : List[Any] = '''I am a small frog .''' UpperCAmelCase_ : Any = '''.''' UpperCAmelCase_ : List[Any] = tok(__magic_name__ )['''input_ids'''] UpperCAmelCase_ : Optional[int] = tok(__magic_name__ )['''input_ids'''] assert encoded[-1] == encoded_dot[0]
644
0
'''simple docstring''' from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 snake_case_ : List[str] = { # 1536-bit 5: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 2048-bit 14: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AACAA68FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 3072-bit 15: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 4096-bit 16: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199" + "FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 6144-bit 17: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08" + "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B" + "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9" + "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6" + "49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8" + "FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C" + "180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718" + "3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D" + "04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D" + "B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226" + "1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC" + "E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26" + "99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB" + "04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2" + "233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127" + "D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406" + "AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918" + "DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151" + "2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03" + "F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F" + "BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B" + "B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632" + "387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E" + "6DCC4024FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 8192-bit 18: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD" + "F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831" + "179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B" + "DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF" + "5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6" + "D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3" + "23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328" + "06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C" + "DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE" + "12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4" + "38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300" + "741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568" + "3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9" + "22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B" + "4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A" + "062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36" + "4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1" + "B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92" + "4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47" + "9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71" + "60C980DD98EDD3DFFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, } class __a : def __init__( self : Any , __magic_name__ : int = 14 ) -> None: """simple docstring""" if group not in primes: raise ValueError('''Unsupported Group''' ) UpperCAmelCase_ : Optional[Any] = primes[group]['''prime'''] UpperCAmelCase_ : str = primes[group]['''generator'''] UpperCAmelCase_ : Union[str, Any] = int(hexlify(urandom(32 ) ) , base=16 ) def UpperCAmelCase__ ( self : List[Any] ) -> str: """simple docstring""" return hex(self.__private_key )[2:] def UpperCAmelCase__ ( self : Any ) -> str: """simple docstring""" UpperCAmelCase_ : Any = pow(self.generator , self.__private_key , self.prime ) return hex(__magic_name__ )[2:] def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : int ) -> bool: """simple docstring""" return ( 2 <= key <= self.prime - 2 and pow(__magic_name__ , (self.prime - 1) // 2 , self.prime ) == 1 ) def UpperCAmelCase__ ( self : Any , __magic_name__ : str ) -> str: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = int(__magic_name__ , base=16 ) if not self.is_valid_public_key(__magic_name__ ): raise ValueError('''Invalid public key''' ) UpperCAmelCase_ : Tuple = pow(__magic_name__ , self.__private_key , self.prime ) return shaaaa(str(__magic_name__ ).encode() ).hexdigest() @staticmethod def UpperCAmelCase__ ( __magic_name__ : int , __magic_name__ : int ) -> bool: """simple docstring""" return ( 2 <= remote_public_key_str <= prime - 2 and pow(__magic_name__ , (prime - 1) // 2 , __magic_name__ ) == 1 ) @staticmethod def UpperCAmelCase__ ( __magic_name__ : str , __magic_name__ : str , __magic_name__ : int = 14 ) -> str: """simple docstring""" UpperCAmelCase_ : str = int(__magic_name__ , base=16 ) UpperCAmelCase_ : Union[str, Any] = int(__magic_name__ , base=16 ) UpperCAmelCase_ : Any = primes[group]['''prime'''] if not DiffieHellman.is_valid_public_key_static(__magic_name__ , __magic_name__ ): raise ValueError('''Invalid public key''' ) UpperCAmelCase_ : List[Any] = pow(__magic_name__ , __magic_name__ , __magic_name__ ) return shaaaa(str(__magic_name__ ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
708
'''simple docstring''' import unittest import torch from torch import nn from diffusers.models.activations import get_activation class __a (unittest.TestCase ): def UpperCAmelCase__ ( self : Dict ) -> Dict: """simple docstring""" UpperCAmelCase_ : Dict = get_activation('''swish''' ) self.assertIsInstance(__magic_name__ , nn.SiLU ) self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def UpperCAmelCase__ ( self : Tuple ) -> Tuple: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = get_activation('''silu''' ) self.assertIsInstance(__magic_name__ , nn.SiLU ) self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def UpperCAmelCase__ ( self : Tuple ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : Optional[int] = get_activation('''mish''' ) self.assertIsInstance(__magic_name__ , nn.Mish ) self.assertEqual(act(torch.tensor(-2_00 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def UpperCAmelCase__ ( self : str ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ : List[Any] = get_activation('''gelu''' ) self.assertIsInstance(__magic_name__ , nn.GELU ) self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
644
0
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class __a (unittest.TestCase ): @slow def UpperCAmelCase__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ : Optional[Any] = XLMRobertaModel.from_pretrained('''xlm-roberta-base''' ) UpperCAmelCase_ : List[Any] = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] ) # The dog is cute and lives in the garden house UpperCAmelCase_ : int = torch.Size((1, 12, 7_68) ) # batch_size, sequence_length, embedding_vector_dim UpperCAmelCase_ : Tuple = torch.tensor( [[-0.0_1_0_1, 0.1_2_1_8, -0.0_8_0_3, 0.0_8_0_1, 0.1_3_2_7, 0.0_7_7_6, -0.1_2_1_5, 0.2_3_8_3, 0.3_3_3_8, 0.3_1_0_6, 0.0_3_0_0, 0.0_2_5_2]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCAmelCase_ : Optional[int] = model(__magic_name__ )['''last_hidden_state'''].detach() self.assertEqual(output.shape , __magic_name__ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , __magic_name__ , atol=1E-3 ) ) @slow def UpperCAmelCase__ ( self : str ) -> List[str]: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = XLMRobertaModel.from_pretrained('''xlm-roberta-large''' ) UpperCAmelCase_ : List[Any] = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] ) # The dog is cute and lives in the garden house UpperCAmelCase_ : Tuple = torch.Size((1, 12, 10_24) ) # batch_size, sequence_length, embedding_vector_dim UpperCAmelCase_ : Tuple = torch.tensor( [[-0.0_6_9_9, -0.0_3_1_8, 0.0_7_0_5, -0.1_2_4_1, 0.0_9_9_9, -0.0_5_2_0, 0.1_0_0_4, -0.1_8_3_8, -0.4_7_0_4, 0.1_4_3_7, 0.0_8_2_1, 0.0_1_2_6]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCAmelCase_ : int = model(__magic_name__ )['''last_hidden_state'''].detach() self.assertEqual(output.shape , __magic_name__ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , __magic_name__ , atol=1E-3 ) )
709
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging snake_case_ : Union[str, Any] = logging.get_logger(__name__) class __a (lowerCamelCase ): __a : Tuple = ["pixel_values"] def __init__( self : List[Any] , __magic_name__ : bool = True , __magic_name__ : int = 32 , __magic_name__ : Union[str, Any]=PILImageResampling.BILINEAR , __magic_name__ : bool = True , **__magic_name__ : List[str] , ) -> None: """simple docstring""" UpperCAmelCase_ : int = do_resize UpperCAmelCase_ : Tuple = do_rescale UpperCAmelCase_ : List[Any] = size_divisor UpperCAmelCase_ : Any = resample super().__init__(**__magic_name__ ) def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : np.ndarray , __magic_name__ : int , __magic_name__ : str , __magic_name__ : Optional[ChannelDimension] = None , **__magic_name__ : Tuple ) -> np.ndarray: """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : List[str] = get_image_size(__magic_name__ ) # Rounds the height and width down to the closest multiple of size_divisor UpperCAmelCase_ : Dict = height // size_divisor * size_divisor UpperCAmelCase_ : Dict = width // size_divisor * size_divisor UpperCAmelCase_ : Any = resize(__magic_name__ , (new_h, new_w) , resample=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) return image def UpperCAmelCase__ ( self : int , __magic_name__ : np.ndarray , __magic_name__ : float , __magic_name__ : Optional[ChannelDimension] = None , **__magic_name__ : Optional[Any] ) -> np.ndarray: """simple docstring""" return rescale(image=__magic_name__ , scale=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def UpperCAmelCase__ ( self : str , __magic_name__ : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[int] = None , __magic_name__ : Any=None , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[Union[TensorType, str]] = None , __magic_name__ : ChannelDimension = ChannelDimension.FIRST , **__magic_name__ : Tuple , ) -> BatchFeature: """simple docstring""" UpperCAmelCase_ : Dict = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ : str = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ : Any = size_divisor if size_divisor is not None else self.size_divisor UpperCAmelCase_ : Dict = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('''size_divisor is required for resizing''' ) UpperCAmelCase_ : Optional[int] = make_list_of_images(__magic_name__ ) if not valid_images(__magic_name__ ): raise ValueError('''Invalid image(s)''' ) # All transformations expect numpy arrays. UpperCAmelCase_ : List[str] = [to_numpy_array(__magic_name__ ) for img in images] if do_resize: UpperCAmelCase_ : str = [self.resize(__magic_name__ , size_divisor=__magic_name__ , resample=__magic_name__ ) for image in images] if do_rescale: UpperCAmelCase_ : Tuple = [self.rescale(__magic_name__ , scale=1 / 2_55 ) for image in images] UpperCAmelCase_ : Union[str, Any] = [to_channel_dimension_format(__magic_name__ , __magic_name__ ) for image in images] UpperCAmelCase_ : int = {'''pixel_values''': images} return BatchFeature(data=__magic_name__ , tensor_type=__magic_name__ )
644
0
'''simple docstring''' import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging snake_case_ = logging.get_logger(__name__) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int ) -> Union[str, Any]: UpperCAmelCase_ : Tuple = R'''\w+[.]\d+''' UpperCAmelCase_ : Tuple = re.findall(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) for pat in pats: UpperCAmelCase_ : Optional[int] = key.replace(SCREAMING_SNAKE_CASE__, '''_'''.join(pat.split('''.''' ) ) ) return key def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : str, SCREAMING_SNAKE_CASE__ : Dict ) -> str: UpperCAmelCase_ : List[str] = pt_tuple_key[:-1] + ('''scale''',) if ( any('''norm''' in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): UpperCAmelCase_ : int = pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: UpperCAmelCase_ : Dict = pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: UpperCAmelCase_ : str = pt_tuple_key[:-1] + ('''embedding''',) return renamed_pt_tuple_key, pt_tensor # conv layer UpperCAmelCase_ : List[Any] = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: UpperCAmelCase_ : Union[str, Any] = pt_tensor.transpose(2, 3, 1, 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer UpperCAmelCase_ : Tuple = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight": UpperCAmelCase_ : str = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight UpperCAmelCase_ : Dict = pt_tuple_key[:-1] + ('''weight''',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias UpperCAmelCase_ : int = pt_tuple_key[:-1] + ('''bias''',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : Optional[Any], SCREAMING_SNAKE_CASE__ : Dict=42 ) -> List[str]: # Step 1: Convert pytorch tensor to numpy UpperCAmelCase_ : int = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params UpperCAmelCase_ : Optional[int] = flax_model.init_weights(PRNGKey(SCREAMING_SNAKE_CASE__ ) ) UpperCAmelCase_ : Any = flatten_dict(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Optional[Any] = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCAmelCase_ : List[str] = rename_key(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Optional[int] = tuple(renamed_pt_key.split('''.''' ) ) # Correctly rename weight parameters UpperCAmelCase_ : Optional[Any] = rename_key_and_reshape_tensor(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ F"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # also add unexpected weight so that warning is thrown UpperCAmelCase_ : Dict = jnp.asarray(SCREAMING_SNAKE_CASE__ ) return unflatten_dict(SCREAMING_SNAKE_CASE__ )
710
'''simple docstring''' def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int = 10, SCREAMING_SNAKE_CASE__ : int = 22 ) -> int: UpperCAmelCase_ : Optional[int] = range(1, SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : List[Any] = range(1, SCREAMING_SNAKE_CASE__ ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(f'''{solution(10, 22) = }''')
644
0
'''simple docstring''' import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging snake_case_ : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class __a (lowerCamelCase ): def __init__( self : Union[str, Any] , __magic_name__ : int , __magic_name__ : List[str]=7_68 ) -> Tuple: """simple docstring""" super().__init__(__magic_name__ ) UpperCAmelCase_ : str = proj_size UpperCAmelCase_ : Dict = CLIPVisionModel(__magic_name__ ) UpperCAmelCase_ : Optional[Any] = PaintByExampleMapper(__magic_name__ ) UpperCAmelCase_ : Tuple = nn.LayerNorm(config.hidden_size ) UpperCAmelCase_ : Dict = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling UpperCAmelCase_ : Any = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : Tuple , __magic_name__ : Tuple=False ) -> List[str]: """simple docstring""" UpperCAmelCase_ : Tuple = self.model(pixel_values=__magic_name__ ) UpperCAmelCase_ : Union[str, Any] = clip_output.pooler_output UpperCAmelCase_ : Any = self.mapper(latent_states[:, None] ) UpperCAmelCase_ : Dict = self.final_layer_norm(__magic_name__ ) UpperCAmelCase_ : str = self.proj_out(__magic_name__ ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class __a (nn.Module ): def __init__( self : Union[str, Any] , __magic_name__ : Any ) -> Tuple: """simple docstring""" super().__init__() UpperCAmelCase_ : int = (config.num_hidden_layers + 1) // 5 UpperCAmelCase_ : Dict = config.hidden_size UpperCAmelCase_ : Optional[int] = 1 UpperCAmelCase_ : Union[str, Any] = nn.ModuleList( [ BasicTransformerBlock(__magic_name__ , __magic_name__ , __magic_name__ , activation_fn='''gelu''' , attention_bias=__magic_name__ ) for _ in range(__magic_name__ ) ] ) def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : List[str] ) -> List[str]: """simple docstring""" for block in self.blocks: UpperCAmelCase_ : Any = block(__magic_name__ ) return hidden_states
711
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class __a (lowerCamelCase ): __a : int = "dandelin/vilt-b32-finetuned-vqa" __a : Any = ( "This is a tool that answers a question about an image. It takes an input named `image` which should be the " "image containing the information, as well as a `question` which should be the question in English. It " "returns a text that is the answer to the question." ) __a : Any = "image_qa" __a : str = AutoProcessor __a : Any = AutoModelForVisualQuestionAnswering __a : List[Any] = ["image", "text"] __a : int = ["text"] def __init__( self : Tuple , *__magic_name__ : Any , **__magic_name__ : Any ) -> Tuple: """simple docstring""" requires_backends(self , ['''vision'''] ) super().__init__(*__magic_name__ , **__magic_name__ ) def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : "Image" , __magic_name__ : str ) -> Tuple: """simple docstring""" return self.pre_processor(__magic_name__ , __magic_name__ , return_tensors='''pt''' ) def UpperCAmelCase__ ( self : Any , __magic_name__ : List[str] ) -> Optional[Any]: """simple docstring""" with torch.no_grad(): return self.model(**__magic_name__ ).logits def UpperCAmelCase__ ( self : int , __magic_name__ : int ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : Dict = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
644
0
'''simple docstring''' def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int ) -> str: if isinstance(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ): raise TypeError('''\'float\' object cannot be interpreted as an integer''' ) if isinstance(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ): raise TypeError('''\'str\' object cannot be interpreted as an integer''' ) if num == 0: return "0b0" UpperCAmelCase_ : List[Any] = False if num < 0: UpperCAmelCase_ : Optional[Any] = True UpperCAmelCase_ : Union[str, Any] = -num UpperCAmelCase_ : list[int] = [] while num > 0: binary.insert(0, num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(SCREAMING_SNAKE_CASE__ ) for e in binary ) return "0b" + "".join(str(SCREAMING_SNAKE_CASE__ ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
712
'''simple docstring''' from collections.abc import Iterable from typing import Any class __a : def __init__( self : Optional[Any] , __magic_name__ : int | None = None ) -> Tuple: """simple docstring""" UpperCAmelCase_ : List[str] = value UpperCAmelCase_ : Node | None = None # Added in order to delete a node easier UpperCAmelCase_ : Node | None = None UpperCAmelCase_ : Node | None = None def __repr__( self : List[str] ) -> str: """simple docstring""" from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({F"""{self.value}""": (self.left, self.right)} , indent=1 ) class __a : def __init__( self : int , __magic_name__ : Node | None = None ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : str = root def __str__( self : Any ) -> str: """simple docstring""" return str(self.root ) def UpperCAmelCase__ ( self : Any , __magic_name__ : Node , __magic_name__ : Node | None ) -> None: """simple docstring""" if new_children is not None: # reset its kids UpperCAmelCase_ : Dict = node.parent if node.parent is not None: # reset its parent if self.is_right(__magic_name__ ): # If it is the right children UpperCAmelCase_ : Optional[Any] = new_children else: UpperCAmelCase_ : Optional[int] = new_children else: UpperCAmelCase_ : List[str] = new_children def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Node ) -> bool: """simple docstring""" if node.parent and node.parent.right: return node == node.parent.right return False def UpperCAmelCase__ ( self : Union[str, Any] ) -> bool: """simple docstring""" return self.root is None def UpperCAmelCase__ ( self : Any , __magic_name__ : str ) -> None: """simple docstring""" UpperCAmelCase_ : Tuple = Node(__magic_name__ ) # create a new Node if self.empty(): # if Tree is empty UpperCAmelCase_ : List[Any] = new_node # set its root else: # Tree is not empty UpperCAmelCase_ : str = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: UpperCAmelCase_ : Union[str, Any] = new_node # We insert the new node in a leaf break else: UpperCAmelCase_ : List[Any] = parent_node.left else: if parent_node.right is None: UpperCAmelCase_ : List[Any] = new_node break else: UpperCAmelCase_ : Union[str, Any] = parent_node.right UpperCAmelCase_ : Union[str, Any] = parent_node def UpperCAmelCase__ ( self : Optional[Any] , *__magic_name__ : List[str] ) -> None: """simple docstring""" for value in values: self.__insert(__magic_name__ ) def UpperCAmelCase__ ( self : Dict , __magic_name__ : int ) -> Node | None: """simple docstring""" if self.empty(): raise IndexError('''Warning: Tree is empty! please use another.''' ) else: UpperCAmelCase_ : str = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: UpperCAmelCase_ : List[str] = node.left if value < node.value else node.right return node def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : Node | None = None ) -> Node | None: """simple docstring""" if node is None: if self.root is None: return None UpperCAmelCase_ : Dict = self.root if not self.empty(): while node.right is not None: UpperCAmelCase_ : Any = node.right return node def UpperCAmelCase__ ( self : Dict , __magic_name__ : Node | None = None ) -> Node | None: """simple docstring""" if node is None: UpperCAmelCase_ : Optional[int] = self.root if self.root is None: return None if not self.empty(): UpperCAmelCase_ : Union[str, Any] = self.root while node.left is not None: UpperCAmelCase_ : Dict = node.left return node def UpperCAmelCase__ ( self : Tuple , __magic_name__ : int ) -> None: """simple docstring""" UpperCAmelCase_ : List[str] = self.search(__magic_name__ ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(__magic_name__ , __magic_name__ ) elif node.left is None: # Has only right children self.__reassign_nodes(__magic_name__ , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(__magic_name__ , node.left ) else: UpperCAmelCase_ : List[str] = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore UpperCAmelCase_ : Optional[int] = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Node | None ) -> Iterable: """simple docstring""" if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : List[Any]=None ) -> Any: """simple docstring""" if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : list , __magic_name__ : Node | None ) -> None: """simple docstring""" if node: self.inorder(__magic_name__ , node.left ) arr.append(node.value ) self.inorder(__magic_name__ , node.right ) def UpperCAmelCase__ ( self : Tuple , __magic_name__ : int , __magic_name__ : Node ) -> int: """simple docstring""" UpperCAmelCase_ : list[int] = [] self.inorder(__magic_name__ , __magic_name__ ) # append all values to list using inorder traversal return arr[k - 1] def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Node | None ) -> list[Node]: UpperCAmelCase_ : Any = [] if curr_node is not None: UpperCAmelCase_ : Any = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def lowerCamelCase_ ( ) -> None: UpperCAmelCase_ : str = (8, 3, 6, 1, 10, 14, 13, 4, 7) UpperCAmelCase_ : Tuple = BinarySearchTree() for i in testlist: t.insert(SCREAMING_SNAKE_CASE__ ) # Prints all the elements of the list in order traversal print(SCREAMING_SNAKE_CASE__ ) if t.search(6 ) is not None: print('''The value 6 exists''' ) else: print('''The value 6 doesn\'t exist''' ) if t.search(-1 ) is not None: print('''The value -1 exists''' ) else: print('''The value -1 doesn\'t exist''' ) if not t.empty(): print('''Max Value: ''', t.get_max().value ) # type: ignore print('''Min Value: ''', t.get_min().value ) # type: ignore for i in testlist: t.remove(SCREAMING_SNAKE_CASE__ ) print(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
644
0
import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP snake_case_ : Any = False try: snake_case_ : Optional[int] = _is_package_available("google.colab") except ModuleNotFoundError: pass @input.register class __a : def __init__( self : str , __magic_name__ : str = None , __magic_name__ : list = [] ) -> Dict: """simple docstring""" UpperCAmelCase_ : Dict = 0 UpperCAmelCase_ : List[str] = choices UpperCAmelCase_ : Any = prompt if sys.platform == "win32": UpperCAmelCase_ : List[Any] = '''*''' else: UpperCAmelCase_ : List[Any] = '''➔ ''' def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Any , __magic_name__ : str = "" ) -> Tuple: """simple docstring""" if sys.platform != "win32": writeColor(self.choices[index] , 32 , __magic_name__ ) else: forceWrite(self.choices[index] , __magic_name__ ) def UpperCAmelCase__ ( self : Dict , __magic_name__ : int ) -> str: """simple docstring""" if index == self.position: forceWrite(F""" {self.arrow_char} """ ) self.write_choice(__magic_name__ ) else: forceWrite(F""" {self.choices[index]}""" ) reset_cursor() def UpperCAmelCase__ ( self : str , __magic_name__ : Direction , __magic_name__ : int = 1 ) -> Tuple: """simple docstring""" UpperCAmelCase_ : Optional[int] = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(__magic_name__ ) move_cursor(__magic_name__ , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP['''up'''] ) def UpperCAmelCase__ ( self : Tuple ) -> Tuple: """simple docstring""" self.move_direction(Direction.UP ) @input.mark(KEYMAP['''down'''] ) def UpperCAmelCase__ ( self : str ) -> Tuple: """simple docstring""" self.move_direction(Direction.DOWN ) @input.mark(KEYMAP['''newline'''] ) def UpperCAmelCase__ ( self : Dict ) -> Optional[Any]: """simple docstring""" move_cursor(len(self.choices ) - self.position , '''DOWN''' ) return self.position @input.mark(KEYMAP['''interrupt'''] ) def UpperCAmelCase__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" move_cursor(len(self.choices ) - self.position , '''DOWN''' ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(__magic_name__ )] for number in range(10 )] ) def UpperCAmelCase__ ( self : str ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Any = int(chr(self.current_selection ) ) UpperCAmelCase_ : List[str] = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , __magic_name__ ) else: return else: return def UpperCAmelCase__ ( self : Any , __magic_name__ : int = 0 ) -> Union[str, Any]: """simple docstring""" if self.prompt: linebreak() forceWrite(self.prompt , '''\n''' ) if in_colab: forceWrite('''Please input a choice index (starting from 0), and press enter''' , '''\n''' ) else: forceWrite('''Please select a choice using the arrow or number keys, and selecting with enter''' , '''\n''' ) UpperCAmelCase_ : Tuple = default_choice for i in range(len(self.choices ) ): self.print_choice(__magic_name__ ) forceWrite('''\n''' ) move_cursor(len(self.choices ) - self.position , '''UP''' ) with cursor.hide(): while True: if in_colab: try: UpperCAmelCase_ : int = int(builtins.input() ) except ValueError: UpperCAmelCase_ : Tuple = default_choice else: UpperCAmelCase_ : Dict = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , '''UP''' ) clear_line() self.write_choice(__magic_name__ , '''\n''' ) return choice
713
'''simple docstring''' import sys import turtle def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : tuple[float, float] ) -> tuple[float, float]: return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : int, ) -> None: my_pen.up() my_pen.goto(vertexa[0], vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0], vertexa[1] ) my_pen.goto(vertexa[0], vertexa[1] ) my_pen.goto(vertexa[0], vertexa[1] ) if depth == 0: return triangle(SCREAMING_SNAKE_CASE__, get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), depth - 1 ) triangle(SCREAMING_SNAKE_CASE__, get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), depth - 1 ) triangle(SCREAMING_SNAKE_CASE__, get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( "Correct format for using this script: " "python fractals.py <int:depth_for_fractal>" ) snake_case_ : Any = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor("red") snake_case_ : Tuple = [(-1_75, -1_25), (0, 1_75), (1_75, -1_25)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
644
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ : str = logging.get_logger(__name__) snake_case_ : int = { "microsoft/wavlm-base": "https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json", # See all WavLM models at https://huggingface.co/models?filter=wavlm } class __a (lowerCamelCase ): __a : Dict = "wavlm" def __init__( self : Dict , __magic_name__ : Any=32 , __magic_name__ : Dict=7_68 , __magic_name__ : int=12 , __magic_name__ : List[str]=12 , __magic_name__ : Optional[int]=30_72 , __magic_name__ : List[str]="gelu" , __magic_name__ : Dict=0.1 , __magic_name__ : Any=0.1 , __magic_name__ : str=0.1 , __magic_name__ : Any=0.0 , __magic_name__ : List[str]=0.1 , __magic_name__ : Optional[Any]=0.1 , __magic_name__ : Tuple=0.0_2 , __magic_name__ : int=1E-5 , __magic_name__ : str="group" , __magic_name__ : Tuple="gelu" , __magic_name__ : int=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , __magic_name__ : Any=(5, 2, 2, 2, 2, 2, 2) , __magic_name__ : Optional[int]=(10, 3, 3, 3, 3, 2, 2) , __magic_name__ : Optional[int]=False , __magic_name__ : Dict=1_28 , __magic_name__ : int=16 , __magic_name__ : Tuple=3_20 , __magic_name__ : Any=8_00 , __magic_name__ : Optional[int]=False , __magic_name__ : Any=True , __magic_name__ : Tuple=0.0_5 , __magic_name__ : Tuple=10 , __magic_name__ : Union[str, Any]=2 , __magic_name__ : List[str]=0.0 , __magic_name__ : Tuple=10 , __magic_name__ : Optional[Any]=3_20 , __magic_name__ : Tuple=2 , __magic_name__ : Dict=0.1 , __magic_name__ : Any=1_00 , __magic_name__ : Dict=2_56 , __magic_name__ : Any=2_56 , __magic_name__ : Tuple=0.1 , __magic_name__ : Dict="mean" , __magic_name__ : Dict=False , __magic_name__ : List[str]=False , __magic_name__ : int=2_56 , __magic_name__ : Optional[int]=(5_12, 5_12, 5_12, 5_12, 15_00) , __magic_name__ : Union[str, Any]=(5, 3, 3, 1, 1) , __magic_name__ : str=(1, 2, 3, 1, 1) , __magic_name__ : Tuple=5_12 , __magic_name__ : Any=80 , __magic_name__ : Dict=0 , __magic_name__ : List[Any]=1 , __magic_name__ : int=2 , __magic_name__ : List[str]=False , __magic_name__ : Dict=3 , __magic_name__ : List[Any]=2 , __magic_name__ : str=3 , __magic_name__ : Any=None , **__magic_name__ : Any , ) -> List[Any]: """simple docstring""" super().__init__(**__magic_name__ , pad_token_id=__magic_name__ , bos_token_id=__magic_name__ , eos_token_id=__magic_name__ ) UpperCAmelCase_ : Optional[Any] = hidden_size UpperCAmelCase_ : Union[str, Any] = feat_extract_norm UpperCAmelCase_ : Union[str, Any] = feat_extract_activation UpperCAmelCase_ : List[Any] = list(__magic_name__ ) UpperCAmelCase_ : Any = list(__magic_name__ ) UpperCAmelCase_ : List[str] = list(__magic_name__ ) UpperCAmelCase_ : Tuple = conv_bias UpperCAmelCase_ : Any = num_buckets UpperCAmelCase_ : Union[str, Any] = max_bucket_distance UpperCAmelCase_ : Tuple = num_conv_pos_embeddings UpperCAmelCase_ : Optional[Any] = num_conv_pos_embedding_groups UpperCAmelCase_ : Union[str, Any] = len(self.conv_dim ) UpperCAmelCase_ : Union[str, Any] = num_hidden_layers UpperCAmelCase_ : List[Any] = intermediate_size UpperCAmelCase_ : Any = hidden_act UpperCAmelCase_ : List[Any] = num_attention_heads UpperCAmelCase_ : List[str] = hidden_dropout UpperCAmelCase_ : int = attention_dropout UpperCAmelCase_ : int = activation_dropout UpperCAmelCase_ : Optional[int] = feat_proj_dropout UpperCAmelCase_ : Any = final_dropout UpperCAmelCase_ : List[Any] = layerdrop UpperCAmelCase_ : Optional[int] = layer_norm_eps UpperCAmelCase_ : Optional[Any] = initializer_range UpperCAmelCase_ : Optional[int] = num_ctc_classes UpperCAmelCase_ : List[str] = vocab_size UpperCAmelCase_ : Tuple = do_stable_layer_norm UpperCAmelCase_ : List[Any] = use_weighted_layer_sum UpperCAmelCase_ : Dict = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase_ : Optional[int] = apply_spec_augment UpperCAmelCase_ : Optional[Any] = mask_time_prob UpperCAmelCase_ : Dict = mask_time_length UpperCAmelCase_ : Dict = mask_time_min_masks UpperCAmelCase_ : Optional[Any] = mask_feature_prob UpperCAmelCase_ : Union[str, Any] = mask_feature_length # parameters for pretraining with codevector quantized representations UpperCAmelCase_ : str = num_codevectors_per_group UpperCAmelCase_ : List[Any] = num_codevector_groups UpperCAmelCase_ : str = contrastive_logits_temperature UpperCAmelCase_ : List[Any] = num_negatives UpperCAmelCase_ : List[str] = codevector_dim UpperCAmelCase_ : List[str] = proj_codevector_dim UpperCAmelCase_ : int = diversity_loss_weight # ctc loss UpperCAmelCase_ : List[Any] = ctc_loss_reduction UpperCAmelCase_ : Union[str, Any] = ctc_zero_infinity # adapter UpperCAmelCase_ : Dict = add_adapter UpperCAmelCase_ : Union[str, Any] = adapter_kernel_size UpperCAmelCase_ : str = adapter_stride UpperCAmelCase_ : Any = num_adapter_layers UpperCAmelCase_ : List[Any] = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCAmelCase_ : str = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCAmelCase_ : List[Any] = list(__magic_name__ ) UpperCAmelCase_ : str = list(__magic_name__ ) UpperCAmelCase_ : Dict = list(__magic_name__ ) UpperCAmelCase_ : List[str] = xvector_output_dim @property def UpperCAmelCase__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
714
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device snake_case_ : List[str] = False class __a (unittest.TestCase ): pass @nightly @require_torch_gpu class __a (unittest.TestCase ): def UpperCAmelCase__ ( self : int ) -> str: """simple docstring""" # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self : List[str] ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Tuple = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) UpperCAmelCase_ : List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) UpperCAmelCase_ : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase_ : Union[str, Any] = pipe.dual_guided( prompt='''first prompt''' , image=__magic_name__ , text_to_image_strength=0.7_5 , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__magic_name__ ) UpperCAmelCase_ : Optional[int] = VersatileDiffusionPipeline.from_pretrained(__magic_name__ , torch_dtype=torch.floataa ) pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) UpperCAmelCase_ : Any = generator.manual_seed(0 ) UpperCAmelCase_ : Dict = pipe.dual_guided( prompt='''first prompt''' , image=__magic_name__ , text_to_image_strength=0.7_5 , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def UpperCAmelCase__ ( self : str ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : str = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) UpperCAmelCase_ : Union[str, Any] = '''cyberpunk 2077''' UpperCAmelCase_ : Union[str, Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) UpperCAmelCase_ : Tuple = torch.manual_seed(0 ) UpperCAmelCase_ : Optional[Any] = pipe.dual_guided( prompt=__magic_name__ , image=__magic_name__ , text_to_image_strength=0.7_5 , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' , ).images UpperCAmelCase_ : List[str] = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCAmelCase_ : Union[str, Any] = np.array([0.1_4_4_8, 0.1_6_1_9, 0.1_7_4_1, 0.1_0_8_6, 0.1_1_4_7, 0.1_1_2_8, 0.1_1_9_9, 0.1_1_6_5, 0.1_0_0_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 UpperCAmelCase_ : Tuple = '''A painting of a squirrel eating a burger ''' UpperCAmelCase_ : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase_ : List[Any] = pipe.text_to_image( prompt=__magic_name__ , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' ).images UpperCAmelCase_ : Tuple = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCAmelCase_ : Any = np.array([0.3_3_6_7, 0.3_1_6_9, 0.2_6_5_6, 0.3_8_7_0, 0.4_7_9_0, 0.3_7_9_6, 0.4_0_0_9, 0.4_8_7_8, 0.4_7_7_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 UpperCAmelCase_ : Tuple = pipe.image_variation(__magic_name__ , generator=__magic_name__ , output_type='''numpy''' ).images UpperCAmelCase_ : Optional[Any] = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCAmelCase_ : List[str] = np.array([0.3_0_7_6, 0.3_1_2_3, 0.3_2_8_4, 0.3_7_8_2, 0.3_7_7_0, 0.3_8_9_4, 0.4_2_9_7, 0.4_3_3_1, 0.4_4_5_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
644
0
'''simple docstring''' def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : str ) -> str: return " ".join( ''''''.join(word[::-1] ) if len(SCREAMING_SNAKE_CASE__ ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words("Hey wollef sroirraw"))
715
'''simple docstring''' snake_case_ : int = { "Pillow": "Pillow", "accelerate": "accelerate>=0.11.0", "compel": "compel==0.1.8", "black": "black~=23.1", "datasets": "datasets", "filelock": "filelock", "flax": "flax>=0.4.1", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.13.2", "requests-mock": "requests-mock==1.10.0", "importlib_metadata": "importlib_metadata", "invisible-watermark": "invisible-watermark", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2", "jaxlib": "jaxlib>=0.1.65", "Jinja2": "Jinja2", "k-diffusion": "k-diffusion>=0.0.12", "torchsde": "torchsde", "note_seq": "note_seq", "librosa": "librosa", "numpy": "numpy", "omegaconf": "omegaconf", "parameterized": "parameterized", "protobuf": "protobuf>=3.20.3,<4", "pytest": "pytest", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "ruff": "ruff>=0.0.241", "safetensors": "safetensors", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "scipy": "scipy", "onnx": "onnx", "regex": "regex!=2019.12.17", "requests": "requests", "tensorboard": "tensorboard", "torch": "torch>=1.4", "torchvision": "torchvision", "transformers": "transformers>=4.25.1", "urllib3": "urllib3<=2.0.0", }
644
0
'''simple docstring''' import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class __a (lowerCamelCase ): __a : Dict = "microsoft/speecht5_tts" __a : List[str] = ( "This is a tool that reads an English text out loud. It takes an input named `text` which should contain the " "text to read (in English) and returns a waveform object containing the sound." ) __a : Dict = "text_reader" __a : int = SpeechTaProcessor __a : List[str] = SpeechTaForTextToSpeech __a : str = SpeechTaHifiGan __a : int = ["text"] __a : int = ["audio"] def UpperCAmelCase__ ( self : Any ) -> Any: """simple docstring""" if self.post_processor is None: UpperCAmelCase_ : List[Any] = '''microsoft/speecht5_hifigan''' super().setup() def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Tuple , __magic_name__ : str=None ) -> List[str]: """simple docstring""" UpperCAmelCase_ : str = self.pre_processor(text=__magic_name__ , return_tensors='''pt''' , truncation=__magic_name__ ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError('''Datasets needs to be installed if not passing speaker embeddings.''' ) UpperCAmelCase_ : List[str] = load_dataset('''Matthijs/cmu-arctic-xvectors''' , split='''validation''' ) UpperCAmelCase_ : Any = torch.tensor(embeddings_dataset[73_05]['''xvector'''] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def UpperCAmelCase__ ( self : Dict , __magic_name__ : Optional[int] ) -> int: """simple docstring""" with torch.no_grad(): return self.model.generate_speech(**__magic_name__ ) def UpperCAmelCase__ ( self : int , __magic_name__ : Tuple ) -> int: """simple docstring""" with torch.no_grad(): return self.post_processor(__magic_name__ ).cpu().detach()
716
'''simple docstring''' import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __a (unittest.TestCase ): @property def UpperCAmelCase__ ( self : Dict ) -> str: """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase_ : Optional[Any] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def UpperCAmelCase__ ( self : Dict ) -> Tuple: """simple docstring""" UpperCAmelCase_ : List[Any] = self.dummy_uncond_unet UpperCAmelCase_ : Dict = KarrasVeScheduler() UpperCAmelCase_ : Union[str, Any] = KarrasVePipeline(unet=__magic_name__ , scheduler=__magic_name__ ) pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) UpperCAmelCase_ : Dict = torch.manual_seed(0 ) UpperCAmelCase_ : Optional[int] = pipe(num_inference_steps=2 , generator=__magic_name__ , output_type='''numpy''' ).images UpperCAmelCase_ : Tuple = torch.manual_seed(0 ) UpperCAmelCase_ : str = pipe(num_inference_steps=2 , generator=__magic_name__ , output_type='''numpy''' , return_dict=__magic_name__ )[0] UpperCAmelCase_ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCAmelCase_ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase_ : Dict = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class __a (unittest.TestCase ): def UpperCAmelCase__ ( self : int ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : List[str] = '''google/ncsnpp-celebahq-256''' UpperCAmelCase_ : List[str] = UNetaDModel.from_pretrained(__magic_name__ ) UpperCAmelCase_ : List[Any] = KarrasVeScheduler() UpperCAmelCase_ : Any = KarrasVePipeline(unet=__magic_name__ , scheduler=__magic_name__ ) pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) UpperCAmelCase_ : Dict = torch.manual_seed(0 ) UpperCAmelCase_ : Optional[Any] = pipe(num_inference_steps=20 , generator=__magic_name__ , output_type='''numpy''' ).images UpperCAmelCase_ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) UpperCAmelCase_ : Optional[Any] = np.array([0.5_7_8, 0.5_8_1_1, 0.5_9_2_4, 0.5_8_0_9, 0.5_8_7, 0.5_8_8_6, 0.5_8_6_1, 0.5_8_0_2, 0.5_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
644
0
'''simple docstring''' import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig snake_case_ : Any = logging.get_logger(__name__) class __a : def __init__( self : int , __magic_name__ : str , __magic_name__ : str ) -> Dict: """simple docstring""" UpperCAmelCase_ : Dict = question_encoder UpperCAmelCase_ : str = generator UpperCAmelCase_ : Dict = self.question_encoder def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Optional[Any] ) -> Optional[int]: """simple docstring""" if os.path.isfile(__magic_name__ ): raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(__magic_name__ , exist_ok=__magic_name__ ) UpperCAmelCase_ : str = os.path.join(__magic_name__ , '''question_encoder_tokenizer''' ) UpperCAmelCase_ : Optional[int] = os.path.join(__magic_name__ , '''generator_tokenizer''' ) self.question_encoder.save_pretrained(__magic_name__ ) self.generator.save_pretrained(__magic_name__ ) @classmethod def UpperCAmelCase__ ( cls : Tuple , __magic_name__ : str , **__magic_name__ : Dict ) -> Union[str, Any]: """simple docstring""" from ..auto.tokenization_auto import AutoTokenizer UpperCAmelCase_ : Dict = kwargs.pop('''config''' , __magic_name__ ) if config is None: UpperCAmelCase_ : Optional[Any] = RagConfig.from_pretrained(__magic_name__ ) UpperCAmelCase_ : List[Any] = AutoTokenizer.from_pretrained( __magic_name__ , config=config.question_encoder , subfolder='''question_encoder_tokenizer''' ) UpperCAmelCase_ : int = AutoTokenizer.from_pretrained( __magic_name__ , config=config.generator , subfolder='''generator_tokenizer''' ) return cls(question_encoder=__magic_name__ , generator=__magic_name__ ) def __call__( self : Union[str, Any] , *__magic_name__ : Union[str, Any] , **__magic_name__ : List[str] ) -> Any: """simple docstring""" return self.current_tokenizer(*__magic_name__ , **__magic_name__ ) def UpperCAmelCase__ ( self : List[Any] , *__magic_name__ : Optional[int] , **__magic_name__ : Dict ) -> Optional[int]: """simple docstring""" return self.generator.batch_decode(*__magic_name__ , **__magic_name__ ) def UpperCAmelCase__ ( self : Union[str, Any] , *__magic_name__ : List[str] , **__magic_name__ : Optional[Any] ) -> Optional[int]: """simple docstring""" return self.generator.decode(*__magic_name__ , **__magic_name__ ) def UpperCAmelCase__ ( self : Dict ) -> List[str]: """simple docstring""" UpperCAmelCase_ : int = self.question_encoder def UpperCAmelCase__ ( self : Any ) -> Tuple: """simple docstring""" UpperCAmelCase_ : Tuple = self.generator def UpperCAmelCase__ ( self : Any , __magic_name__ : List[str] , __magic_name__ : Optional[List[str]] = None , __magic_name__ : Optional[int] = None , __magic_name__ : Optional[int] = None , __magic_name__ : str = "longest" , __magic_name__ : str = None , __magic_name__ : bool = True , **__magic_name__ : List[str] , ) -> BatchEncoding: """simple docstring""" warnings.warn( '''`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ''' '''regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ''' '''context manager to prepare your targets. See the documentation of your specific tokenizer for more ''' '''details''' , __magic_name__ , ) if max_length is None: UpperCAmelCase_ : List[Any] = self.current_tokenizer.model_max_length UpperCAmelCase_ : List[Any] = self( __magic_name__ , add_special_tokens=__magic_name__ , return_tensors=__magic_name__ , max_length=__magic_name__ , padding=__magic_name__ , truncation=__magic_name__ , **__magic_name__ , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: UpperCAmelCase_ : str = self.current_tokenizer.model_max_length UpperCAmelCase_ : Dict = self( text_target=__magic_name__ , add_special_tokens=__magic_name__ , return_tensors=__magic_name__ , padding=__magic_name__ , max_length=__magic_name__ , truncation=__magic_name__ , **__magic_name__ , ) UpperCAmelCase_ : Any = labels['''input_ids'''] return model_inputs
717
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class __a (lowerCamelCase ): __a : List[Any] = "openai/whisper-base" __a : Optional[Any] = ( "This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the " "transcribed text." ) __a : Any = "transcriber" __a : str = WhisperProcessor __a : List[Any] = WhisperForConditionalGeneration __a : int = ["audio"] __a : Optional[Any] = ["text"] def UpperCAmelCase__ ( self : Dict , __magic_name__ : List[str] ) -> Optional[int]: """simple docstring""" return self.pre_processor(__magic_name__ , return_tensors='''pt''' ).input_features def UpperCAmelCase__ ( self : Dict , __magic_name__ : Dict ) -> Tuple: """simple docstring""" return self.model.generate(inputs=__magic_name__ ) def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Dict ) -> str: """simple docstring""" return self.pre_processor.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ )[0]
644
0
'''simple docstring''' import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: snake_case_ : Dict = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class __a (unittest.TestCase ): def __init__( self : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : str=7 , __magic_name__ : int=3 , __magic_name__ : List[Any]=18 , __magic_name__ : List[Any]=30 , __magic_name__ : Union[str, Any]=4_00 , __magic_name__ : Union[str, Any]=None , __magic_name__ : Tuple=True , __magic_name__ : List[str]=True , __magic_name__ : str=None , ) -> str: """simple docstring""" UpperCAmelCase_ : List[Any] = size if size is not None else {'''height''': 20, '''width''': 20} UpperCAmelCase_ : List[str] = parent UpperCAmelCase_ : List[Any] = batch_size UpperCAmelCase_ : Dict = num_channels UpperCAmelCase_ : List[str] = image_size UpperCAmelCase_ : int = min_resolution UpperCAmelCase_ : int = max_resolution UpperCAmelCase_ : Tuple = size UpperCAmelCase_ : Tuple = do_normalize UpperCAmelCase_ : Union[str, Any] = do_convert_rgb UpperCAmelCase_ : Dict = [5_12, 10_24, 20_48, 40_96] UpperCAmelCase_ : Any = patch_size if patch_size is not None else {'''height''': 16, '''width''': 16} def UpperCAmelCase__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def UpperCAmelCase__ ( self : List[Any] ) -> Tuple: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = '''https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg''' UpperCAmelCase_ : int = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw ).convert('''RGB''' ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="`Pix2StructImageProcessor` requires `torch>=1.11.0`." , ) @require_torch @require_vision class __a (lowerCamelCase , unittest.TestCase ): __a : Optional[Any] = PixaStructImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Any = PixaStructImageProcessingTester(self ) @property def UpperCAmelCase__ ( self : Union[str, Any] ) -> str: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__magic_name__ , '''do_normalize''' ) ) self.assertTrue(hasattr(__magic_name__ , '''do_convert_rgb''' ) ) def UpperCAmelCase__ ( self : Tuple ) -> List[str]: """simple docstring""" UpperCAmelCase_ : Tuple = self.image_processor_tester.prepare_dummy_image() UpperCAmelCase_ : Dict = self.image_processing_class(**self.image_processor_dict ) UpperCAmelCase_ : Optional[Any] = 20_48 UpperCAmelCase_ : int = image_processor(__magic_name__ , return_tensors='''pt''' , max_patches=__magic_name__ ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0_6_0_6 ) , atol=1E-3 , rtol=1E-3 ) ) def UpperCAmelCase__ ( self : List[str] ) -> List[str]: """simple docstring""" UpperCAmelCase_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , Image.Image ) # Test not batched input UpperCAmelCase_ : int = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCAmelCase_ : List[Any] = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=__magic_name__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase_ : Union[str, Any] = image_processor( __magic_name__ , return_tensors='''pt''' , max_patches=__magic_name__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def UpperCAmelCase__ ( self : str ) -> Dict: """simple docstring""" UpperCAmelCase_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , Image.Image ) # Test not batched input UpperCAmelCase_ : int = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 UpperCAmelCase_ : Optional[Any] = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(__magic_name__ ): UpperCAmelCase_ : int = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=__magic_name__ ).flattened_patches UpperCAmelCase_ : Tuple = '''Hello''' UpperCAmelCase_ : Optional[int] = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=__magic_name__ , header_text=__magic_name__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase_ : Tuple = image_processor( __magic_name__ , return_tensors='''pt''' , max_patches=__magic_name__ , header_text=__magic_name__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def UpperCAmelCase__ ( self : List[Any] ) -> int: """simple docstring""" UpperCAmelCase_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ , numpify=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , np.ndarray ) UpperCAmelCase_ : List[str] = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCAmelCase_ : Optional[Any] = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=__magic_name__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase_ : int = image_processor( __magic_name__ , return_tensors='''pt''' , max_patches=__magic_name__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def UpperCAmelCase__ ( self : str ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ , torchify=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , torch.Tensor ) # Test not batched input UpperCAmelCase_ : str = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCAmelCase_ : Union[str, Any] = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=__magic_name__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase_ : Optional[int] = image_processor( __magic_name__ , return_tensors='''pt''' , max_patches=__magic_name__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="`Pix2StructImageProcessor` requires `torch>=1.11.0`." , ) @require_torch @require_vision class __a (lowerCamelCase , unittest.TestCase ): __a : Optional[int] = PixaStructImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self : Tuple ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : List[str] = PixaStructImageProcessingTester(self , num_channels=4 ) UpperCAmelCase_ : Optional[int] = 3 @property def UpperCAmelCase__ ( self : Optional[int] ) -> Dict: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self : Optional[int] ) -> Any: """simple docstring""" UpperCAmelCase_ : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__magic_name__ , '''do_normalize''' ) ) self.assertTrue(hasattr(__magic_name__ , '''do_convert_rgb''' ) ) def UpperCAmelCase__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , Image.Image ) # Test not batched input UpperCAmelCase_ : Union[str, Any] = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCAmelCase_ : List[str] = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=__magic_name__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase_ : Tuple = image_processor( __magic_name__ , return_tensors='''pt''' , max_patches=__magic_name__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
718
'''simple docstring''' def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : int ) -> int: return abs(SCREAMING_SNAKE_CASE__ ) if a == 0 else greatest_common_divisor(b % a, SCREAMING_SNAKE_CASE__ ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : int ) -> int: while y: # --> when y=0 then loop will terminate and return x as final GCD. UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = y, x % y return abs(SCREAMING_SNAKE_CASE__ ) def lowerCamelCase_ ( ) -> Optional[int]: try: UpperCAmelCase_ : Optional[Any] = input('''Enter two integers separated by comma (,): ''' ).split(''',''' ) UpperCAmelCase_ : Optional[int] = int(nums[0] ) UpperCAmelCase_ : List[Any] = int(nums[1] ) print( F"""greatest_common_divisor({num_a}, {num_a}) = """ F"""{greatest_common_divisor(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )}""" ) print(F"""By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )}""" ) except (IndexError, UnboundLocalError, ValueError): print('''Wrong input''' ) if __name__ == "__main__": main()
644
0
'''simple docstring''' def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : str, SCREAMING_SNAKE_CASE__ : bool = False ) -> str: if not isinstance(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ): UpperCAmelCase_ : Any = F"""Expected string as input, found {type(SCREAMING_SNAKE_CASE__ )}""" raise ValueError(SCREAMING_SNAKE_CASE__ ) if not isinstance(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ): UpperCAmelCase_ : List[Any] = F"""Expected boolean as use_pascal parameter, found {type(SCREAMING_SNAKE_CASE__ )}""" raise ValueError(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Union[str, Any] = input_str.split('''_''' ) UpperCAmelCase_ : int = 0 if use_pascal else 1 UpperCAmelCase_ : Dict = words[start_index:] UpperCAmelCase_ : Tuple = [word[0].upper() + word[1:] for word in words_to_capitalize] UpperCAmelCase_ : List[Any] = '''''' if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
719
'''simple docstring''' import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class __a : def __init__( self : int , __magic_name__ : Optional[Any] , __magic_name__ : Any=13 , __magic_name__ : Any=7 , __magic_name__ : Union[str, Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : str=True , __magic_name__ : Optional[int]=True , __magic_name__ : List[Any]=99 , __magic_name__ : int=24 , __magic_name__ : Optional[int]=2 , __magic_name__ : Tuple=6 , __magic_name__ : Union[str, Any]=37 , __magic_name__ : Optional[Any]="gelu" , __magic_name__ : Any=0.1 , __magic_name__ : str=0.1 , __magic_name__ : Tuple=5_12 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : Tuple=2 , __magic_name__ : Tuple=0.0_2 , __magic_name__ : Optional[Any]=3 , __magic_name__ : Optional[int]=None , __magic_name__ : Any=10_00 , ) -> str: """simple docstring""" UpperCAmelCase_ : Tuple = parent UpperCAmelCase_ : Optional[int] = batch_size UpperCAmelCase_ : List[str] = seq_length UpperCAmelCase_ : Dict = is_training UpperCAmelCase_ : List[str] = use_input_mask UpperCAmelCase_ : Any = use_token_type_ids UpperCAmelCase_ : Any = use_labels UpperCAmelCase_ : Any = vocab_size UpperCAmelCase_ : Dict = hidden_size UpperCAmelCase_ : Tuple = num_hidden_layers UpperCAmelCase_ : Tuple = num_attention_heads UpperCAmelCase_ : int = intermediate_size UpperCAmelCase_ : Union[str, Any] = hidden_act UpperCAmelCase_ : Optional[int] = hidden_dropout_prob UpperCAmelCase_ : Optional[Any] = attention_probs_dropout_prob UpperCAmelCase_ : Union[str, Any] = max_position_embeddings UpperCAmelCase_ : int = type_vocab_size UpperCAmelCase_ : List[Any] = type_sequence_label_size UpperCAmelCase_ : int = initializer_range UpperCAmelCase_ : Dict = num_labels UpperCAmelCase_ : List[str] = scope UpperCAmelCase_ : List[str] = range_bbox def UpperCAmelCase__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: UpperCAmelCase_ : List[str] = bbox[i, j, 3] UpperCAmelCase_ : Dict = bbox[i, j, 1] UpperCAmelCase_ : Optional[Any] = t if bbox[i, j, 2] < bbox[i, j, 0]: UpperCAmelCase_ : List[str] = bbox[i, j, 2] UpperCAmelCase_ : Tuple = bbox[i, j, 0] UpperCAmelCase_ : Union[str, Any] = t UpperCAmelCase_ : int = None if self.use_input_mask: UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) UpperCAmelCase_ : Optional[int] = None if self.use_token_type_ids: UpperCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Tuple = None if self.use_labels: UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : int = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def UpperCAmelCase__ ( self : Any ) -> List[Any]: """simple docstring""" return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : str , __magic_name__ : Optional[Any] , __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : int , ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : Any = LiltModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() UpperCAmelCase_ : Optional[Any] = model(__magic_name__ , bbox=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ ) UpperCAmelCase_ : List[Any] = model(__magic_name__ , bbox=__magic_name__ , token_type_ids=__magic_name__ ) UpperCAmelCase_ : Optional[int] = model(__magic_name__ , bbox=__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCAmelCase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[int] , __magic_name__ : List[Any] , ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ : Any = self.num_labels UpperCAmelCase_ : List[Any] = LiltForTokenClassification(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() UpperCAmelCase_ : List[Any] = model( __magic_name__ , bbox=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase__ ( self : Any , __magic_name__ : Optional[Any] , __magic_name__ : Dict , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : Any , ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ : str = LiltForQuestionAnswering(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() UpperCAmelCase_ : Optional[Any] = model( __magic_name__ , bbox=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Tuple = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Optional[int] = config_and_inputs UpperCAmelCase_ : Tuple = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class __a (lowerCamelCase , lowerCamelCase , lowerCamelCase , unittest.TestCase ): __a : Tuple = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) __a : Any = ( { "feature-extraction": LiltModel, "question-answering": LiltForQuestionAnswering, "text-classification": LiltForSequenceClassification, "token-classification": LiltForTokenClassification, "zero-shot": LiltForSequenceClassification, } if is_torch_available() else {} ) __a : Union[str, Any] = False __a : int = False def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : int ) -> str: """simple docstring""" return True def UpperCAmelCase__ ( self : str ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : List[Any] = LiltModelTester(self ) UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> str: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : str ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def UpperCAmelCase__ ( self : str ) -> str: """simple docstring""" UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase_ : Tuple = type self.model_tester.create_and_check_model(*__magic_name__ ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> int: """simple docstring""" UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__magic_name__ ) def UpperCAmelCase__ ( self : str ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__magic_name__ ) @slow def UpperCAmelCase__ ( self : int ) -> Union[str, Any]: """simple docstring""" for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Optional[int] = LiltModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) @require_torch @slow class __a (unittest.TestCase ): def UpperCAmelCase__ ( self : Tuple ) -> Tuple: """simple docstring""" UpperCAmelCase_ : str = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(__magic_name__ ) UpperCAmelCase_ : Any = torch.tensor([[1, 2]] , device=__magic_name__ ) UpperCAmelCase_ : int = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=__magic_name__ ) # forward pass with torch.no_grad(): UpperCAmelCase_ : Optional[int] = model(input_ids=__magic_name__ , bbox=__magic_name__ ) UpperCAmelCase_ : int = torch.Size([1, 2, 7_68] ) UpperCAmelCase_ : List[str] = torch.tensor( [[-0.0_6_5_3, 0.0_9_5_0, -0.0_0_6_1], [-0.0_5_4_5, 0.0_9_2_6, -0.0_3_2_4]] , device=__magic_name__ , ) self.assertTrue(outputs.last_hidden_state.shape , __magic_name__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , __magic_name__ , atol=1E-3 ) )
644
0
import os def lowerCamelCase_ ( ) -> str: with open(os.path.dirname(SCREAMING_SNAKE_CASE__ ) + '''/p022_names.txt''' ) as file: UpperCAmelCase_ : Optional[int] = str(file.readlines()[0] ) UpperCAmelCase_ : Optional[int] = names.replace('''"''', '''''' ).split(''',''' ) names.sort() UpperCAmelCase_ : Dict = 0 UpperCAmelCase_ : List[str] = 0 for i, name in enumerate(SCREAMING_SNAKE_CASE__ ): for letter in name: name_score += ord(SCREAMING_SNAKE_CASE__ ) - 64 total_score += (i + 1) * name_score UpperCAmelCase_ : Optional[int] = 0 return total_score if __name__ == "__main__": print(solution())
720
'''simple docstring''' import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case_ : str = logging.get_logger(__name__) snake_case_ : int = "▁" snake_case_ : str = {"vocab_file": "vocab.txt", "sentencepiece_model_ckpt": "sentencepiece.bpe.model"} snake_case_ : int = { "sentencepiece_model_file": "sentencepiece.bpe.model", "vocab_file": "vocab.txt", } snake_case_ : Optional[Any] = { "vocab_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", }, "sentencepiece_model_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", }, } snake_case_ : Dict = { "ernie-m-base": 5_14, "ernie-m-large": 5_14, } snake_case_ : Any = { "ernie-m-base": {"do_lower_case": False}, "ernie-m-large": {"do_lower_case": False}, } class __a (lowerCamelCase ): __a : List[str] = ["input_ids"] __a : Union[str, Any] = VOCAB_FILES_NAMES __a : Tuple = PRETRAINED_INIT_CONFIGURATION __a : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __a : Union[str, Any] = RESOURCE_FILES_NAMES def __init__( self : Union[str, Any] , __magic_name__ : Dict , __magic_name__ : int=None , __magic_name__ : str=False , __magic_name__ : int="utf8" , __magic_name__ : Optional[int]="[UNK]" , __magic_name__ : Dict="[SEP]" , __magic_name__ : List[Any]="[PAD]" , __magic_name__ : str="[CLS]" , __magic_name__ : Optional[int]="[MASK]" , __magic_name__ : Optional[Dict[str, Any]] = None , **__magic_name__ : Union[str, Any] , ) -> None: """simple docstring""" # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. UpperCAmelCase_ : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__magic_name__ , unk_token=__magic_name__ , sep_token=__magic_name__ , pad_token=__magic_name__ , cls_token=__magic_name__ , mask_token=__magic_name__ , vocab_file=__magic_name__ , encoding=__magic_name__ , sp_model_kwargs=self.sp_model_kwargs , **__magic_name__ , ) UpperCAmelCase_ : Optional[Any] = do_lower_case UpperCAmelCase_ : List[str] = sentencepiece_model_ckpt UpperCAmelCase_ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__magic_name__ ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: UpperCAmelCase_ : List[Any] = self.load_vocab(filepath=__magic_name__ ) else: UpperCAmelCase_ : str = {self.sp_model.id_to_piece(__magic_name__ ): id for id in range(self.sp_model.get_piece_size() )} UpperCAmelCase_ : int = {v: k for k, v in self.vocab.items()} def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Any ) -> Any: """simple docstring""" if text is None: return None UpperCAmelCase_ : str = self.tokenize(__magic_name__ ) UpperCAmelCase_ , UpperCAmelCase_ : str = '''''', [] for i, ch in enumerate(__magic_name__ ): if ch in self.SP_CHAR_MAPPING: UpperCAmelCase_ : Optional[int] = self.SP_CHAR_MAPPING.get(__magic_name__ ) else: UpperCAmelCase_ : Union[str, Any] = unicodedata.normalize('''NFKC''' , __magic_name__ ) if self.is_whitespace(__magic_name__ ): continue normalized_text += ch char_mapping.extend([i] * len(__magic_name__ ) ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = normalized_text, [], 0 if self.do_lower_case: UpperCAmelCase_ : Optional[int] = text.lower() for token in split_tokens: if token[:1] == "▁": UpperCAmelCase_ : Tuple = token[1:] UpperCAmelCase_ : int = text[offset:].index(__magic_name__ ) + offset UpperCAmelCase_ : Optional[int] = start + len(__magic_name__ ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) UpperCAmelCase_ : int = end return token_mapping @property def UpperCAmelCase__ ( self : Any ) -> Any: """simple docstring""" return len(self.vocab ) def UpperCAmelCase__ ( self : List[Any] ) -> int: """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self : str ) -> Any: """simple docstring""" UpperCAmelCase_ : Optional[Any] = self.__dict__.copy() UpperCAmelCase_ : Optional[Any] = None return state def __setstate__( self : str , __magic_name__ : Any ) -> Dict: """simple docstring""" UpperCAmelCase_ : Dict = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCAmelCase_ : int = {} UpperCAmelCase_ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : Any ) -> List[str]: """simple docstring""" return "".join((self.SP_CHAR_MAPPING.get(__magic_name__ , __magic_name__ ) for c in text) ) def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Tuple , __magic_name__ : Any=False , __magic_name__ : List[str]=64 , __magic_name__ : List[str]=0.1 ) -> List[str]: """simple docstring""" if self.sp_model_kwargs.get('''enable_sampling''' ) is True: UpperCAmelCase_ : Dict = True if self.sp_model_kwargs.get('''alpha''' ) is not None: UpperCAmelCase_ : Union[str, Any] = self.sp_model_kwargs.get('''alpha''' ) if self.sp_model_kwargs.get('''nbest_size''' ) is not None: UpperCAmelCase_ : Any = self.sp_model_kwargs.get('''nbest_size''' ) if not enable_sampling: UpperCAmelCase_ : Dict = self.sp_model.EncodeAsPieces(__magic_name__ ) else: UpperCAmelCase_ : Dict = self.sp_model.SampleEncodeAsPieces(__magic_name__ , __magic_name__ , __magic_name__ ) UpperCAmelCase_ : List[Any] = [] for pi, piece in enumerate(__magic_name__ ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(__magic_name__ ) and pi != 0: new_pieces.append(__magic_name__ ) continue else: continue UpperCAmelCase_ : List[str] = 0 for i, chunk in enumerate(__magic_name__ ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(__magic_name__ ) or self.is_punct(__magic_name__ ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(__magic_name__ ) UpperCAmelCase_ : List[Any] = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) UpperCAmelCase_ : List[str] = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) UpperCAmelCase_ : str = i if len(__magic_name__ ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Optional[int] ) -> List[str]: """simple docstring""" UpperCAmelCase_ : Optional[Any] = ''''''.join(__magic_name__ ).replace(__magic_name__ , ''' ''' ).strip() return out_string def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Union[str, Any] ) -> List[str]: """simple docstring""" UpperCAmelCase_ : str = self.convert_ids_to_tokens(__magic_name__ ) UpperCAmelCase_ : Optional[Any] = ''''''.join(__magic_name__ ).replace(__magic_name__ , ''' ''' ).strip() return out_string def UpperCAmelCase__ ( self : str , __magic_name__ : Optional[Any] ) -> List[Any]: """simple docstring""" return self.vocab.get(__magic_name__ , self.vocab.get(self.unk_token ) ) def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return self.reverse_vocab.get(__magic_name__ , self.unk_token ) def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Any , __magic_name__ : Union[str, Any]=None ) -> Any: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase_ : Union[str, Any] = [self.cls_token_id] UpperCAmelCase_ : List[Any] = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def UpperCAmelCase__ ( self : Any , __magic_name__ : Optional[Any] , __magic_name__ : List[str]=None ) -> int: """simple docstring""" if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def UpperCAmelCase__ ( self : Dict , __magic_name__ : Optional[Any] , __magic_name__ : List[str]=None , __magic_name__ : Optional[Any]=False ) -> Optional[int]: """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__magic_name__ )) + [1, 1] + ([0] * len(__magic_name__ )) + [1] return [1] + ([0] * len(__magic_name__ )) + [1] def UpperCAmelCase__ ( self : List[str] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" # called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method if token_ids_a is None: # [CLS] X [SEP] return (len(__magic_name__ ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(__magic_name__ ) + 1) + [1] * (len(__magic_name__ ) + 3) def UpperCAmelCase__ ( self : Dict , __magic_name__ : str ) -> Tuple: """simple docstring""" if "\u4e00" <= char <= "\u9fff": return True return False def UpperCAmelCase__ ( self : int , __magic_name__ : Optional[int] ) -> str: """simple docstring""" if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def UpperCAmelCase__ ( self : int , __magic_name__ : Optional[Any] ) -> Dict: """simple docstring""" if char in ",;:.?!~,;:。?!《》【】": return True return False def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Any ) -> Union[str, Any]: """simple docstring""" if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(__magic_name__ ) == 1: UpperCAmelCase_ : Optional[Any] = unicodedata.category(__magic_name__ ) if cat == "Zs": return True return False def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : Tuple ) -> Any: """simple docstring""" UpperCAmelCase_ : Optional[Any] = {} with io.open(__magic_name__ , '''r''' , encoding='''utf-8''' ) as f: for index, line in enumerate(__magic_name__ ): UpperCAmelCase_ : List[Any] = line.rstrip('''\n''' ) UpperCAmelCase_ : Dict = int(__magic_name__ ) return token_to_idx def UpperCAmelCase__ ( self : Dict , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = 0 if os.path.isdir(__magic_name__ ): UpperCAmelCase_ : Any = os.path.join( __magic_name__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: UpperCAmelCase_ : List[str] = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory with open(__magic_name__ , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda __magic_name__ : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ''' Please check that the vocabulary is not corrupted!''' ) UpperCAmelCase_ : Dict = token_index writer.write(token + '''\n''' ) index += 1 UpperCAmelCase_ : Union[str, Any] = os.path.join(__magic_name__ , '''sentencepiece.bpe.model''' ) with open(__magic_name__ , '''wb''' ) as fi: UpperCAmelCase_ : Optional[int] = self.sp_model.serialized_model_proto() fi.write(__magic_name__ ) return (vocab_file,)
644
0
'''simple docstring''' import os import re import shutil import sys import tempfile import unittest import black snake_case_ : Any = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. snake_case_ : str = " def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n" class __a (unittest.TestCase ): def UpperCAmelCase__ ( self : Tuple ) -> str: """simple docstring""" UpperCAmelCase_ : Any = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , '''models/bert/''' ) ) UpperCAmelCase_ : Union[str, Any] = self.transformer_dir shutil.copy( os.path.join(__magic_name__ , '''src/transformers/models/bert/modeling_bert.py''' ) , os.path.join(self.transformer_dir , '''models/bert/modeling_bert.py''' ) , ) def UpperCAmelCase__ ( self : List[str] ) -> int: """simple docstring""" UpperCAmelCase_ : Tuple = '''src/transformers''' shutil.rmtree(self.transformer_dir ) def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : Any , __magic_name__ : Optional[Any] , __magic_name__ : Tuple , __magic_name__ : Union[str, Any]=None ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ : Optional[int] = comment + F"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: UpperCAmelCase_ : Tuple = comment + F"""\nclass {class_name}(nn.Module):\n""" + overwrite_result UpperCAmelCase_ : Any = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 ) UpperCAmelCase_ : Tuple = black.format_str(__magic_name__ , mode=__magic_name__ ) UpperCAmelCase_ : Union[str, Any] = os.path.join(self.transformer_dir , '''new_code.py''' ) with open(__magic_name__ , '''w''' , newline='''\n''' ) as f: f.write(__magic_name__ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(__magic_name__ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=__magic_name__ ) with open(__magic_name__ , '''r''' ) as f: self.assertTrue(f.read() , __magic_name__ ) def UpperCAmelCase__ ( self : Any ) -> List[str]: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = check_copies.find_code_in_transformers('''models.bert.modeling_bert.BertLMPredictionHead''' ) self.assertEqual(__magic_name__ , __magic_name__ ) def UpperCAmelCase__ ( self : str ) -> List[Any]: """simple docstring""" self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead''' , '''BertLMPredictionHead''' , REFERENCE_CODE + '''\n''' , ) # With no empty line at the end self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead''' , '''BertLMPredictionHead''' , __magic_name__ , ) # Copy consistency with rename self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel''' , '''TestModelLMPredictionHead''' , re.sub('''Bert''' , '''TestModel''' , __magic_name__ ) , ) # Copy consistency with a really long name UpperCAmelCase_ : Tuple = '''TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason''' self.check_copy_consistency( F"""# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}""" , F"""{long_class_name}LMPredictionHead""" , re.sub('''Bert''' , __magic_name__ , __magic_name__ ) , ) # Copy consistency with overwrite self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel''' , '''TestModelLMPredictionHead''' , __magic_name__ , overwrite_result=re.sub('''Bert''' , '''TestModel''' , __magic_name__ ) , ) def UpperCAmelCase__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" UpperCAmelCase_ : Optional[int] = check_copies.LOCALIZED_READMES['''README_zh-hans.md'''] UpperCAmelCase_ : Dict = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the''' ''' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for''' ''' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong''' ''' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.''' ''' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),''' ''' released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and''' ''' lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same''' ''' method has been applied to compress GPT2 into''' ''' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into''' ''' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),''' ''' Multilingual BERT into''' ''' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German''' ''' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**''' ''' (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders''' ''' as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang''' ''' Luong, Quoc V. Le, Christopher D. Manning.''' ) UpperCAmelCase_ : List[Any] = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the''' ''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n''' ) UpperCAmelCase_ : Any = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the''' ''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.''' ''' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文''' ''' [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and''' ''' lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same''' ''' method has been applied to compress GPT2 into''' ''' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into''' ''' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),''' ''' Multilingual BERT into''' ''' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German''' ''' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自''' ''' Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather''' ''' than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,''' ''' Christopher D. Manning 发布。\n''' ) UpperCAmelCase_ : Optional[int] = check_copies.convert_to_localized_md( __magic_name__ , __magic_name__ , localized_readme['''format_model_list'''] ) self.assertFalse(__magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ ) UpperCAmelCase_ : Tuple = check_copies.convert_to_localized_md( __magic_name__ , __magic_name__ , localized_readme['''format_model_list'''] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(__magic_name__ ) UpperCAmelCase_ : Union[str, Any] = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the''' ''' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for''' ''' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong''' ''' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.''' ) UpperCAmelCase_ : Union[str, Any] = ( '''1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and''' ''' the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n''' ) UpperCAmelCase_ : Optional[int] = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the''' ''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n''' ) UpperCAmelCase_ : Any = check_copies.convert_to_localized_md( __magic_name__ , __magic_name__ , localized_readme['''format_model_list'''] ) # Check if the model link is synchronized. self.assertEqual(__magic_name__ , __magic_name__ )
721
'''simple docstring''' def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int ) -> str: if number > 0: raise ValueError('''input must be a negative integer''' ) UpperCAmelCase_ : Union[str, Any] = len(bin(SCREAMING_SNAKE_CASE__ )[3:] ) UpperCAmelCase_ : Union[str, Any] = bin(abs(SCREAMING_SNAKE_CASE__ ) - (1 << binary_number_length) )[3:] UpperCAmelCase_ : Optional[Any] = ( ( '''1''' + '''0''' * (binary_number_length - len(SCREAMING_SNAKE_CASE__ )) + twos_complement_number ) if number < 0 else '''0''' ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
644
0