code
stringlengths 81
54k
| code_codestyle
int64 0
721
| style_context
stringlengths 91
41.9k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
|---|---|---|---|---|
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
snake_case_ : Tuple = logging.get_logger(__name__)
snake_case_ : int = {
"weiweishi/roc-bert-base-zh": "https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json",
}
class __a (lowerCamelCase ):
__a : Union[str, Any] = "roc_bert"
def __init__( self : Dict , __magic_name__ : Tuple=3_05_22 , __magic_name__ : Optional[Any]=7_68 , __magic_name__ : Dict=12 , __magic_name__ : Tuple=12 , __magic_name__ : Dict=30_72 , __magic_name__ : List[str]="gelu" , __magic_name__ : Any=0.1 , __magic_name__ : List[Any]=0.1 , __magic_name__ : Optional[Any]=5_12 , __magic_name__ : Optional[Any]=2 , __magic_name__ : Union[str, Any]=0.0_2 , __magic_name__ : Any=1E-12 , __magic_name__ : List[Any]=True , __magic_name__ : Any=0 , __magic_name__ : Optional[Any]="absolute" , __magic_name__ : List[str]=None , __magic_name__ : Tuple=True , __magic_name__ : Optional[Any]=True , __magic_name__ : int=7_68 , __magic_name__ : Tuple=9_10 , __magic_name__ : str=5_12 , __magic_name__ : Optional[int]=2_48_58 , __magic_name__ : Optional[Any]=True , **__magic_name__ : Union[str, Any] , ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = vocab_size
UpperCAmelCase_ : List[str] = max_position_embeddings
UpperCAmelCase_ : Optional[Any] = hidden_size
UpperCAmelCase_ : Any = num_hidden_layers
UpperCAmelCase_ : int = num_attention_heads
UpperCAmelCase_ : Optional[Any] = intermediate_size
UpperCAmelCase_ : int = hidden_act
UpperCAmelCase_ : int = hidden_dropout_prob
UpperCAmelCase_ : str = attention_probs_dropout_prob
UpperCAmelCase_ : Optional[int] = initializer_range
UpperCAmelCase_ : Dict = type_vocab_size
UpperCAmelCase_ : str = layer_norm_eps
UpperCAmelCase_ : int = use_cache
UpperCAmelCase_ : int = enable_pronunciation
UpperCAmelCase_ : List[Any] = enable_shape
UpperCAmelCase_ : int = pronunciation_embed_dim
UpperCAmelCase_ : Union[str, Any] = pronunciation_vocab_size
UpperCAmelCase_ : Optional[int] = shape_embed_dim
UpperCAmelCase_ : Optional[Any] = shape_vocab_size
UpperCAmelCase_ : List[str] = concat_input
UpperCAmelCase_ : Dict = position_embedding_type
UpperCAmelCase_ : Tuple = classifier_dropout
super().__init__(pad_token_id=__magic_name__ , **__magic_name__ )
| 644
|
'''simple docstring'''
import unittest
import torch
from torch import nn
from diffusers.models.activations import get_activation
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : Dict ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : Dict = get_activation('''swish''' )
self.assertIsInstance(__magic_name__ , nn.SiLU )
self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
def UpperCAmelCase__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = get_activation('''silu''' )
self.assertIsInstance(__magic_name__ , nn.SiLU )
self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
def UpperCAmelCase__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = get_activation('''mish''' )
self.assertIsInstance(__magic_name__ , nn.Mish )
self.assertEqual(act(torch.tensor(-2_00 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
def UpperCAmelCase__ ( self : str ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = get_activation('''gelu''' )
self.assertIsInstance(__magic_name__ , nn.GELU )
self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
| 644
| 1
|
'''simple docstring'''
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_tf_available
from transformers.testing_utils import require_tf
if is_tf_available():
import tensorflow as tf
from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments
@require_tf
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : str , __magic_name__ : str ) -> Any:
"""simple docstring"""
for model_result in results.values():
for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ):
UpperCAmelCase_ : Optional[Any] = model_result['''result'''][batch_size][sequence_length]
self.assertIsNotNone(__magic_name__ )
def UpperCAmelCase__ ( self : Optional[int] ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Tuple = '''sshleifer/tiny-gpt2'''
UpperCAmelCase_ : str = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__magic_name__ , inference=__magic_name__ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__magic_name__ , multi_process=__magic_name__ , )
UpperCAmelCase_ : Dict = TensorFlowBenchmark(__magic_name__ )
UpperCAmelCase_ : List[str] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCAmelCase__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = '''sgugger/tiny-distilbert-classification'''
UpperCAmelCase_ : int = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__magic_name__ , inference=__magic_name__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__magic_name__ , only_pretrain_model=__magic_name__ , )
UpperCAmelCase_ : Any = TensorFlowBenchmark(__magic_name__ )
UpperCAmelCase_ : int = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCAmelCase__ ( self : Optional[int] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : List[str] = '''sshleifer/tiny-gpt2'''
UpperCAmelCase_ : Any = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__magic_name__ , inference=__magic_name__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__magic_name__ , )
UpperCAmelCase_ : Optional[Any] = TensorFlowBenchmark(__magic_name__ )
UpperCAmelCase_ : Dict = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCAmelCase__ ( self : Optional[Any] ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : int = '''sshleifer/tiny-gpt2'''
UpperCAmelCase_ : List[str] = AutoConfig.from_pretrained(__magic_name__ )
UpperCAmelCase_ : Tuple = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__magic_name__ , inference=__magic_name__ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__magic_name__ , multi_process=__magic_name__ , )
UpperCAmelCase_ : str = TensorFlowBenchmark(__magic_name__ , [config] )
UpperCAmelCase_ : Dict = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCAmelCase__ ( self : Dict ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : Dict = '''sshleifer/tiny-gpt2'''
UpperCAmelCase_ : List[Any] = AutoConfig.from_pretrained(__magic_name__ )
UpperCAmelCase_ : str = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__magic_name__ , inference=__magic_name__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__magic_name__ , )
UpperCAmelCase_ : Optional[Any] = TensorFlowBenchmark(__magic_name__ , [config] )
UpperCAmelCase_ : Dict = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCAmelCase__ ( self : Any ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = '''sshleifer/tiny-gpt2'''
UpperCAmelCase_ : Dict = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__magic_name__ , inference=__magic_name__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__magic_name__ , )
UpperCAmelCase_ : Any = TensorFlowBenchmark(__magic_name__ )
UpperCAmelCase_ : str = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def UpperCAmelCase__ ( self : List[str] ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : str = '''sshleifer/tiny-gpt2'''
UpperCAmelCase_ : Dict = AutoConfig.from_pretrained(__magic_name__ )
UpperCAmelCase_ : Tuple = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__magic_name__ , inference=__magic_name__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__magic_name__ , )
UpperCAmelCase_ : List[str] = TensorFlowBenchmark(__magic_name__ , [config] )
UpperCAmelCase_ : str = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def UpperCAmelCase__ ( self : Dict ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Any = '''patrickvonplaten/t5-tiny-random'''
UpperCAmelCase_ : Union[str, Any] = AutoConfig.from_pretrained(__magic_name__ )
UpperCAmelCase_ : Union[str, Any] = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__magic_name__ , inference=__magic_name__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__magic_name__ , )
UpperCAmelCase_ : List[Any] = TensorFlowBenchmark(__magic_name__ , configs=[config] )
UpperCAmelCase_ : Any = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , '''Cannot do xla on CPU.''' )
def UpperCAmelCase__ ( self : int ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = '''sshleifer/tiny-gpt2'''
UpperCAmelCase_ : Tuple = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__magic_name__ , inference=__magic_name__ , sequence_lengths=[8] , batch_sizes=[1] , use_xla=__magic_name__ , multi_process=__magic_name__ , )
UpperCAmelCase_ : Dict = TensorFlowBenchmark(__magic_name__ )
UpperCAmelCase_ : List[Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCAmelCase__ ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : int = '''sshleifer/tiny-gpt2'''
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCAmelCase_ : Union[str, Any] = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , inference=__magic_name__ , save_to_csv=__magic_name__ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__magic_name__ , '''inf_time.csv''' ) , inference_memory_csv_file=os.path.join(__magic_name__ , '''inf_mem.csv''' ) , env_info_csv_file=os.path.join(__magic_name__ , '''env.csv''' ) , multi_process=__magic_name__ , )
UpperCAmelCase_ : Optional[int] = TensorFlowBenchmark(__magic_name__ )
benchmark.run()
self.assertTrue(Path(os.path.join(__magic_name__ , '''inf_time.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(__magic_name__ , '''inf_mem.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(__magic_name__ , '''env.csv''' ) ).exists() )
def UpperCAmelCase__ ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : str = '''sshleifer/tiny-gpt2'''
def _check_summary_is_not_empty(__magic_name__ : str ):
self.assertTrue(hasattr(__magic_name__ , '''sequential''' ) )
self.assertTrue(hasattr(__magic_name__ , '''cumulative''' ) )
self.assertTrue(hasattr(__magic_name__ , '''current''' ) )
self.assertTrue(hasattr(__magic_name__ , '''total''' ) )
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCAmelCase_ : str = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , inference=__magic_name__ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__magic_name__ , '''log.txt''' ) , log_print=__magic_name__ , trace_memory_line_by_line=__magic_name__ , eager_mode=__magic_name__ , multi_process=__magic_name__ , )
UpperCAmelCase_ : Dict = TensorFlowBenchmark(__magic_name__ )
UpperCAmelCase_ : Dict = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
self.assertTrue(Path(os.path.join(__magic_name__ , '''log.txt''' ) ).exists() )
| 644
|
'''simple docstring'''
from typing import List, Optional, Union
import numpy as np
import PIL.Image
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import rescale, resize, to_channel_dimension_format
from ...image_utils import (
ChannelDimension,
PILImageResampling,
get_image_size,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
snake_case_ : Union[str, Any] = logging.get_logger(__name__)
class __a (lowerCamelCase ):
__a : Tuple = ["pixel_values"]
def __init__( self : List[Any] , __magic_name__ : bool = True , __magic_name__ : int = 32 , __magic_name__ : Union[str, Any]=PILImageResampling.BILINEAR , __magic_name__ : bool = True , **__magic_name__ : List[str] , ) -> None:
"""simple docstring"""
UpperCAmelCase_ : int = do_resize
UpperCAmelCase_ : Tuple = do_rescale
UpperCAmelCase_ : List[Any] = size_divisor
UpperCAmelCase_ : Any = resample
super().__init__(**__magic_name__ )
def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : np.ndarray , __magic_name__ : int , __magic_name__ : str , __magic_name__ : Optional[ChannelDimension] = None , **__magic_name__ : Tuple ) -> np.ndarray:
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : List[str] = get_image_size(__magic_name__ )
# Rounds the height and width down to the closest multiple of size_divisor
UpperCAmelCase_ : Dict = height // size_divisor * size_divisor
UpperCAmelCase_ : Dict = width // size_divisor * size_divisor
UpperCAmelCase_ : Any = resize(__magic_name__ , (new_h, new_w) , resample=__magic_name__ , data_format=__magic_name__ , **__magic_name__ )
return image
def UpperCAmelCase__ ( self : int , __magic_name__ : np.ndarray , __magic_name__ : float , __magic_name__ : Optional[ChannelDimension] = None , **__magic_name__ : Optional[Any] ) -> np.ndarray:
"""simple docstring"""
return rescale(image=__magic_name__ , scale=__magic_name__ , data_format=__magic_name__ , **__magic_name__ )
def UpperCAmelCase__ ( self : str , __magic_name__ : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[int] = None , __magic_name__ : Any=None , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[Union[TensorType, str]] = None , __magic_name__ : ChannelDimension = ChannelDimension.FIRST , **__magic_name__ : Tuple , ) -> BatchFeature:
"""simple docstring"""
UpperCAmelCase_ : Dict = do_resize if do_resize is not None else self.do_resize
UpperCAmelCase_ : str = do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase_ : Any = size_divisor if size_divisor is not None else self.size_divisor
UpperCAmelCase_ : Dict = resample if resample is not None else self.resample
if do_resize and size_divisor is None:
raise ValueError('''size_divisor is required for resizing''' )
UpperCAmelCase_ : Optional[int] = make_list_of_images(__magic_name__ )
if not valid_images(__magic_name__ ):
raise ValueError('''Invalid image(s)''' )
# All transformations expect numpy arrays.
UpperCAmelCase_ : List[str] = [to_numpy_array(__magic_name__ ) for img in images]
if do_resize:
UpperCAmelCase_ : str = [self.resize(__magic_name__ , size_divisor=__magic_name__ , resample=__magic_name__ ) for image in images]
if do_rescale:
UpperCAmelCase_ : Tuple = [self.rescale(__magic_name__ , scale=1 / 2_55 ) for image in images]
UpperCAmelCase_ : Union[str, Any] = [to_channel_dimension_format(__magic_name__ , __magic_name__ ) for image in images]
UpperCAmelCase_ : int = {'''pixel_values''': images}
return BatchFeature(data=__magic_name__ , tensor_type=__magic_name__ )
| 644
| 1
|
'''simple docstring'''
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
snake_case_ : str = logging.get_logger(__name__)
snake_case_ : int = {
"microsoft/wavlm-base": "https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json",
# See all WavLM models at https://huggingface.co/models?filter=wavlm
}
class __a (lowerCamelCase ):
__a : Dict = "wavlm"
def __init__( self : Dict , __magic_name__ : Any=32 , __magic_name__ : Dict=7_68 , __magic_name__ : int=12 , __magic_name__ : List[str]=12 , __magic_name__ : Optional[int]=30_72 , __magic_name__ : List[str]="gelu" , __magic_name__ : Dict=0.1 , __magic_name__ : Any=0.1 , __magic_name__ : str=0.1 , __magic_name__ : Any=0.0 , __magic_name__ : List[str]=0.1 , __magic_name__ : Optional[Any]=0.1 , __magic_name__ : Tuple=0.0_2 , __magic_name__ : int=1E-5 , __magic_name__ : str="group" , __magic_name__ : Tuple="gelu" , __magic_name__ : int=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , __magic_name__ : Any=(5, 2, 2, 2, 2, 2, 2) , __magic_name__ : Optional[int]=(10, 3, 3, 3, 3, 2, 2) , __magic_name__ : Optional[int]=False , __magic_name__ : Dict=1_28 , __magic_name__ : int=16 , __magic_name__ : Tuple=3_20 , __magic_name__ : Any=8_00 , __magic_name__ : Optional[int]=False , __magic_name__ : Any=True , __magic_name__ : Tuple=0.0_5 , __magic_name__ : Tuple=10 , __magic_name__ : Union[str, Any]=2 , __magic_name__ : List[str]=0.0 , __magic_name__ : Tuple=10 , __magic_name__ : Optional[Any]=3_20 , __magic_name__ : Tuple=2 , __magic_name__ : Dict=0.1 , __magic_name__ : Any=1_00 , __magic_name__ : Dict=2_56 , __magic_name__ : Any=2_56 , __magic_name__ : Tuple=0.1 , __magic_name__ : Dict="mean" , __magic_name__ : Dict=False , __magic_name__ : List[str]=False , __magic_name__ : int=2_56 , __magic_name__ : Optional[int]=(5_12, 5_12, 5_12, 5_12, 15_00) , __magic_name__ : Union[str, Any]=(5, 3, 3, 1, 1) , __magic_name__ : str=(1, 2, 3, 1, 1) , __magic_name__ : Tuple=5_12 , __magic_name__ : Any=80 , __magic_name__ : Dict=0 , __magic_name__ : List[Any]=1 , __magic_name__ : int=2 , __magic_name__ : List[str]=False , __magic_name__ : Dict=3 , __magic_name__ : List[Any]=2 , __magic_name__ : str=3 , __magic_name__ : Any=None , **__magic_name__ : Any , ) -> List[Any]:
"""simple docstring"""
super().__init__(**__magic_name__ , pad_token_id=__magic_name__ , bos_token_id=__magic_name__ , eos_token_id=__magic_name__ )
UpperCAmelCase_ : Optional[Any] = hidden_size
UpperCAmelCase_ : Union[str, Any] = feat_extract_norm
UpperCAmelCase_ : Union[str, Any] = feat_extract_activation
UpperCAmelCase_ : List[Any] = list(__magic_name__ )
UpperCAmelCase_ : Any = list(__magic_name__ )
UpperCAmelCase_ : List[str] = list(__magic_name__ )
UpperCAmelCase_ : Tuple = conv_bias
UpperCAmelCase_ : Any = num_buckets
UpperCAmelCase_ : Union[str, Any] = max_bucket_distance
UpperCAmelCase_ : Tuple = num_conv_pos_embeddings
UpperCAmelCase_ : Optional[Any] = num_conv_pos_embedding_groups
UpperCAmelCase_ : Union[str, Any] = len(self.conv_dim )
UpperCAmelCase_ : Union[str, Any] = num_hidden_layers
UpperCAmelCase_ : List[Any] = intermediate_size
UpperCAmelCase_ : Any = hidden_act
UpperCAmelCase_ : List[Any] = num_attention_heads
UpperCAmelCase_ : List[str] = hidden_dropout
UpperCAmelCase_ : int = attention_dropout
UpperCAmelCase_ : int = activation_dropout
UpperCAmelCase_ : Optional[int] = feat_proj_dropout
UpperCAmelCase_ : Any = final_dropout
UpperCAmelCase_ : List[Any] = layerdrop
UpperCAmelCase_ : Optional[int] = layer_norm_eps
UpperCAmelCase_ : Optional[Any] = initializer_range
UpperCAmelCase_ : Optional[int] = num_ctc_classes
UpperCAmelCase_ : List[str] = vocab_size
UpperCAmelCase_ : Tuple = do_stable_layer_norm
UpperCAmelCase_ : List[Any] = use_weighted_layer_sum
UpperCAmelCase_ : Dict = classifier_proj_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =='''
''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ='''
F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,"""
F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
UpperCAmelCase_ : Optional[int] = apply_spec_augment
UpperCAmelCase_ : Optional[Any] = mask_time_prob
UpperCAmelCase_ : Dict = mask_time_length
UpperCAmelCase_ : Dict = mask_time_min_masks
UpperCAmelCase_ : Optional[Any] = mask_feature_prob
UpperCAmelCase_ : Union[str, Any] = mask_feature_length
# parameters for pretraining with codevector quantized representations
UpperCAmelCase_ : str = num_codevectors_per_group
UpperCAmelCase_ : List[Any] = num_codevector_groups
UpperCAmelCase_ : str = contrastive_logits_temperature
UpperCAmelCase_ : List[Any] = num_negatives
UpperCAmelCase_ : List[str] = codevector_dim
UpperCAmelCase_ : List[str] = proj_codevector_dim
UpperCAmelCase_ : int = diversity_loss_weight
# ctc loss
UpperCAmelCase_ : List[Any] = ctc_loss_reduction
UpperCAmelCase_ : Union[str, Any] = ctc_zero_infinity
# adapter
UpperCAmelCase_ : Dict = add_adapter
UpperCAmelCase_ : Union[str, Any] = adapter_kernel_size
UpperCAmelCase_ : str = adapter_stride
UpperCAmelCase_ : Any = num_adapter_layers
UpperCAmelCase_ : List[Any] = output_hidden_size or hidden_size
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
UpperCAmelCase_ : str = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
UpperCAmelCase_ : List[Any] = list(__magic_name__ )
UpperCAmelCase_ : str = list(__magic_name__ )
UpperCAmelCase_ : Dict = list(__magic_name__ )
UpperCAmelCase_ : List[str] = xvector_output_dim
@property
def UpperCAmelCase__ ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 644
|
'''simple docstring'''
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int = 10, SCREAMING_SNAKE_CASE__ : int = 22 ) -> int:
UpperCAmelCase_ : Optional[int] = range(1, SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : List[Any] = range(1, SCREAMING_SNAKE_CASE__ )
return sum(
1 for power in powers for base in bases if len(str(base**power ) ) == power )
if __name__ == "__main__":
print(f'''{solution(10, 22) = }''')
| 644
| 1
|
'''simple docstring'''
import inspect
import unittest
import numpy as np
from tests.test_modeling_common import floats_tensor
from transformers import MaskaFormerConfig, is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel
if is_vision_available():
from transformers import MaskaFormerImageProcessor
if is_vision_available():
from PIL import Image
class __a :
def __init__( self : Union[str, Any] , __magic_name__ : Any , __magic_name__ : str=2 , __magic_name__ : str=True , __magic_name__ : int=False , __magic_name__ : Any=10 , __magic_name__ : Dict=3 , __magic_name__ : Tuple=32 * 8 , __magic_name__ : int=32 * 8 , __magic_name__ : Union[str, Any]=4 , __magic_name__ : Dict=64 , ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : Any = parent
UpperCAmelCase_ : Optional[int] = batch_size
UpperCAmelCase_ : List[Any] = is_training
UpperCAmelCase_ : List[str] = use_auxiliary_loss
UpperCAmelCase_ : Any = num_queries
UpperCAmelCase_ : Tuple = num_channels
UpperCAmelCase_ : Optional[int] = min_size
UpperCAmelCase_ : Any = max_size
UpperCAmelCase_ : str = num_labels
UpperCAmelCase_ : Optional[int] = hidden_dim
UpperCAmelCase_ : Dict = hidden_dim
def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to(
__magic_name__ )
UpperCAmelCase_ : Dict = torch.ones([self.batch_size, self.min_size, self.max_size] , device=__magic_name__ )
UpperCAmelCase_ : str = (
torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=__magic_name__ ) > 0.5
).float()
UpperCAmelCase_ : str = (torch.rand((self.batch_size, self.num_labels) , device=__magic_name__ ) > 0.5).long()
UpperCAmelCase_ : List[str] = self.get_config()
return config, pixel_values, pixel_mask, mask_labels, class_labels
def UpperCAmelCase__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : List[str] = MaskaFormerConfig(
hidden_size=self.hidden_dim , )
UpperCAmelCase_ : Tuple = self.num_queries
UpperCAmelCase_ : int = self.num_labels
UpperCAmelCase_ : str = [1, 1, 1, 1]
UpperCAmelCase_ : int = self.num_channels
UpperCAmelCase_ : Union[str, Any] = 64
UpperCAmelCase_ : Tuple = 1_28
UpperCAmelCase_ : str = self.hidden_dim
UpperCAmelCase_ : Union[str, Any] = self.hidden_dim
UpperCAmelCase_ : List[Any] = self.hidden_dim
return config
def UpperCAmelCase__ ( self : str ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.prepare_config_and_inputs()
UpperCAmelCase_ : int = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask}
return config, inputs_dict
def UpperCAmelCase__ ( self : str , __magic_name__ : int , __magic_name__ : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = output.encoder_hidden_states
UpperCAmelCase_ : str = output.pixel_decoder_hidden_states
UpperCAmelCase_ : str = output.transformer_decoder_hidden_states
self.parent.assertTrue(len(__magic_name__ ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(__magic_name__ ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(__magic_name__ ) , config.decoder_layers )
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Dict , __magic_name__ : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any]=False ) -> List[str]:
"""simple docstring"""
with torch.no_grad():
UpperCAmelCase_ : Dict = MaskaFormerModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : List[str] = model(pixel_values=__magic_name__ , pixel_mask=__magic_name__ )
UpperCAmelCase_ : Dict = model(__magic_name__ , output_hidden_states=__magic_name__ )
self.parent.assertEqual(
output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , )
# let's ensure the other two hidden state exists
self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(output.encoder_last_hidden_state is not None )
if output_hidden_states:
self.check_output_hidden_state(__magic_name__ , __magic_name__ )
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : str , __magic_name__ : Union[str, Any] , __magic_name__ : Any , __magic_name__ : Tuple ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = MaskaFormerForUniversalSegmentation(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
def comm_check_on_output(__magic_name__ : Optional[Any] ):
# let's still check that all the required stuff is there
self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.encoder_last_hidden_state is not None )
# okay, now we need to check the logits shape
# due to the encoder compression, masks have a //4 spatial size
self.parent.assertEqual(
result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , )
# + 1 for null class
self.parent.assertEqual(
result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) )
with torch.no_grad():
UpperCAmelCase_ : List[Any] = model(pixel_values=__magic_name__ , pixel_mask=__magic_name__ )
UpperCAmelCase_ : Dict = model(__magic_name__ )
comm_check_on_output(__magic_name__ )
UpperCAmelCase_ : Dict = model(
pixel_values=__magic_name__ , pixel_mask=__magic_name__ , mask_labels=__magic_name__ , class_labels=__magic_name__ )
comm_check_on_output(__magic_name__ )
self.parent.assertTrue(result.loss is not None )
self.parent.assertEqual(result.loss.shape , torch.Size([1] ) )
@require_torch
class __a (lowerCamelCase , lowerCamelCase , unittest.TestCase ):
__a : Union[str, Any] = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else ()
__a : Union[str, Any] = {"feature-extraction": MaskaFormerModel} if is_torch_available() else {}
__a : List[str] = False
__a : Dict = False
__a : List[str] = False
__a : Any = False
def UpperCAmelCase__ ( self : List[Any] ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : List[str] = MaskaFormerModelTester(self )
UpperCAmelCase_ : str = ConfigTester(self , config_class=__magic_name__ , has_text_modality=__magic_name__ )
def UpperCAmelCase__ ( self : List[str] ) -> str:
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCAmelCase__ ( self : Tuple ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskaformer_model(__magic_name__ , **__magic_name__ , output_hidden_states=__magic_name__ )
def UpperCAmelCase__ ( self : str ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*__magic_name__ )
@unittest.skip(reason='''Mask2Former does not use inputs_embeds''' )
def UpperCAmelCase__ ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
pass
@unittest.skip(reason='''Mask2Former does not have a get_input_embeddings method''' )
def UpperCAmelCase__ ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
pass
@unittest.skip(reason='''Mask2Former is not a generative model''' )
def UpperCAmelCase__ ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
pass
@unittest.skip(reason='''Mask2Former does not use token embeddings''' )
def UpperCAmelCase__ ( self : List[Any] ) -> Optional[Any]:
"""simple docstring"""
pass
@require_torch_multi_gpu
@unittest.skip(
reason='''Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' )
def UpperCAmelCase__ ( self : Optional[int] ) -> str:
"""simple docstring"""
pass
@unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' )
def UpperCAmelCase__ ( self : str ) -> Any:
"""simple docstring"""
pass
def UpperCAmelCase__ ( self : Optional[Any] ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ : Union[str, Any] = model_class(__magic_name__ )
UpperCAmelCase_ : str = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase_ : List[Any] = [*signature.parameters.keys()]
UpperCAmelCase_ : str = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , __magic_name__ )
@slow
def UpperCAmelCase__ ( self : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
for model_name in ["facebook/mask2former-swin-small-coco-instance"]:
UpperCAmelCase_ : str = MaskaFormerModel.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
def UpperCAmelCase__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : str = (self.model_tester.min_size,) * 2
UpperCAmelCase_ : Tuple = {
'''pixel_values''': torch.randn((2, 3, *size) , device=__magic_name__ ),
'''mask_labels''': torch.randn((2, 10, *size) , device=__magic_name__ ),
'''class_labels''': torch.zeros(2 , 10 , device=__magic_name__ ).long(),
}
UpperCAmelCase_ : Optional[int] = self.model_tester.get_config()
UpperCAmelCase_ : Any = MaskaFormerForUniversalSegmentation(__magic_name__ ).to(__magic_name__ )
UpperCAmelCase_ : List[str] = model(**__magic_name__ )
self.assertTrue(outputs.loss is not None )
def UpperCAmelCase__ ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskaformer_model(__magic_name__ , **__magic_name__ , output_hidden_states=__magic_name__ )
def UpperCAmelCase__ ( self : str ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ : Tuple = model_class(__magic_name__ ).to(__magic_name__ )
UpperCAmelCase_ : Tuple = model(**__magic_name__ , output_attentions=__magic_name__ )
self.assertTrue(outputs.attentions is not None )
def UpperCAmelCase__ ( self : int ) -> int:
"""simple docstring"""
if not self.model_tester.is_training:
return
UpperCAmelCase_ : int = self.all_model_classes[1]
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs()
UpperCAmelCase_ : List[str] = model_class(__magic_name__ )
model.to(__magic_name__ )
model.train()
UpperCAmelCase_ : Optional[Any] = model(__magic_name__ , mask_labels=__magic_name__ , class_labels=__magic_name__ ).loss
loss.backward()
def UpperCAmelCase__ ( self : List[str] ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = self.all_model_classes[1]
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs()
UpperCAmelCase_ : int = True
UpperCAmelCase_ : List[Any] = True
UpperCAmelCase_ : Union[str, Any] = model_class(__magic_name__ ).to(__magic_name__ )
model.train()
UpperCAmelCase_ : List[Any] = model(__magic_name__ , mask_labels=__magic_name__ , class_labels=__magic_name__ )
UpperCAmelCase_ : List[str] = outputs.encoder_hidden_states[0]
encoder_hidden_states.retain_grad()
UpperCAmelCase_ : str = outputs.pixel_decoder_hidden_states[0]
pixel_decoder_hidden_states.retain_grad()
UpperCAmelCase_ : Optional[int] = outputs.transformer_decoder_hidden_states[0]
transformer_decoder_hidden_states.retain_grad()
UpperCAmelCase_ : str = outputs.attentions[0]
attentions.retain_grad()
outputs.loss.backward(retain_graph=__magic_name__ )
self.assertIsNotNone(encoder_hidden_states.grad )
self.assertIsNotNone(pixel_decoder_hidden_states.grad )
self.assertIsNotNone(transformer_decoder_hidden_states.grad )
self.assertIsNotNone(attentions.grad )
snake_case_ : Optional[Any] = 1E-4
def lowerCamelCase_ ( ) -> Any:
UpperCAmelCase_ : Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_vision
@slow
class __a (unittest.TestCase ):
@cached_property
def UpperCAmelCase__ ( self : Optional[Any] ) -> List[str]:
"""simple docstring"""
return "facebook/mask2former-swin-small-coco-instance"
@cached_property
def UpperCAmelCase__ ( self : Union[str, Any] ) -> List[str]:
"""simple docstring"""
return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None
def UpperCAmelCase__ ( self : int ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(__magic_name__ )
UpperCAmelCase_ : Any = self.default_image_processor
UpperCAmelCase_ : int = prepare_img()
UpperCAmelCase_ : str = image_processor(__magic_name__ , return_tensors='''pt''' ).to(__magic_name__ )
UpperCAmelCase_ : Union[str, Any] = inputs['''pixel_values'''].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(__magic_name__ , (1, 3, 3_84, 3_84) )
with torch.no_grad():
UpperCAmelCase_ : int = model(**__magic_name__ )
UpperCAmelCase_ : int = torch.tensor(
[[-0.2_7_9_0, -1.0_7_1_7, -1.1_6_6_8], [-0.5_1_2_8, -0.3_1_2_8, -0.4_9_8_7], [-0.5_8_3_2, 0.1_9_7_1, -0.0_1_9_7]] ).to(__magic_name__ )
self.assertTrue(
torch.allclose(
outputs.encoder_last_hidden_state[0, 0, :3, :3] , __magic_name__ , atol=__magic_name__ ) )
UpperCAmelCase_ : Dict = torch.tensor(
[[0.8_9_7_3, 1.1_8_4_7, 1.1_7_7_6], [1.1_9_3_4, 1.5_0_4_0, 1.5_1_2_8], [1.1_1_5_3, 1.4_4_8_6, 1.4_9_5_1]] ).to(__magic_name__ )
self.assertTrue(
torch.allclose(
outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , __magic_name__ , atol=__magic_name__ ) )
UpperCAmelCase_ : int = torch.tensor(
[[2.1_1_5_2, 1.7_0_0_0, -0.8_6_0_3], [1.5_8_0_8, 1.8_0_0_4, -0.9_3_5_3], [1.6_0_4_3, 1.7_4_9_5, -0.5_9_9_9]] ).to(__magic_name__ )
self.assertTrue(
torch.allclose(
outputs.transformer_decoder_last_hidden_state[0, :3, :3] , __magic_name__ , atol=__magic_name__ ) )
def UpperCAmelCase__ ( self : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : List[str] = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__magic_name__ ).eval()
UpperCAmelCase_ : int = self.default_image_processor
UpperCAmelCase_ : Dict = prepare_img()
UpperCAmelCase_ : Optional[int] = image_processor(__magic_name__ , return_tensors='''pt''' ).to(__magic_name__ )
UpperCAmelCase_ : List[str] = inputs['''pixel_values'''].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(__magic_name__ , (1, 3, 3_84, 3_84) )
with torch.no_grad():
UpperCAmelCase_ : Any = model(**__magic_name__ )
# masks_queries_logits
UpperCAmelCase_ : Dict = outputs.masks_queries_logits
self.assertEqual(
masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) )
UpperCAmelCase_ : Union[str, Any] = [
[-8.7_8_3_9, -9.0_0_5_6, -8.8_1_2_1],
[-7.4_1_0_4, -7.0_3_1_3, -6.5_4_0_1],
[-6.6_1_0_5, -6.3_4_2_7, -6.4_6_7_5],
]
UpperCAmelCase_ : List[str] = torch.tensor(__magic_name__ ).to(__magic_name__ )
self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , __magic_name__ , atol=__magic_name__ ) )
# class_queries_logits
UpperCAmelCase_ : Optional[int] = outputs.class_queries_logits
self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) )
UpperCAmelCase_ : Optional[Any] = torch.tensor(
[
[1.8_3_2_4, -8.0_8_3_5, -4.1_9_2_2],
[0.8_4_5_0, -9.0_0_5_0, -3.6_0_5_3],
[0.3_0_4_5, -7.7_2_9_3, -3.0_2_7_5],
] ).to(__magic_name__ )
self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , __magic_name__ , atol=__magic_name__ ) )
def UpperCAmelCase__ ( self : List[Any] ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__magic_name__ ).eval()
UpperCAmelCase_ : str = self.default_image_processor
UpperCAmelCase_ : str = image_processor(
[np.zeros((3, 8_00, 13_33) ), np.zeros((3, 8_00, 13_33) )] , segmentation_maps=[np.zeros((3_84, 3_84) ).astype(np.floataa ), np.zeros((3_84, 3_84) ).astype(np.floataa )] , return_tensors='''pt''' , )
UpperCAmelCase_ : List[str] = inputs['''pixel_values'''].to(__magic_name__ )
UpperCAmelCase_ : Union[str, Any] = [el.to(__magic_name__ ) for el in inputs['''mask_labels''']]
UpperCAmelCase_ : List[Any] = [el.to(__magic_name__ ) for el in inputs['''class_labels''']]
with torch.no_grad():
UpperCAmelCase_ : List[str] = model(**__magic_name__ )
self.assertTrue(outputs.loss is not None )
| 644
|
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
import torch
from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor
from ..utils import requires_backends
from .base import PipelineTool
if TYPE_CHECKING:
from PIL import Image
class __a (lowerCamelCase ):
__a : int = "dandelin/vilt-b32-finetuned-vqa"
__a : Any = (
"This is a tool that answers a question about an image. It takes an input named `image` which should be the "
"image containing the information, as well as a `question` which should be the question in English. It "
"returns a text that is the answer to the question."
)
__a : Any = "image_qa"
__a : str = AutoProcessor
__a : Any = AutoModelForVisualQuestionAnswering
__a : List[Any] = ["image", "text"]
__a : int = ["text"]
def __init__( self : Tuple , *__magic_name__ : Any , **__magic_name__ : Any ) -> Tuple:
"""simple docstring"""
requires_backends(self , ['''vision'''] )
super().__init__(*__magic_name__ , **__magic_name__ )
def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : "Image" , __magic_name__ : str ) -> Tuple:
"""simple docstring"""
return self.pre_processor(__magic_name__ , __magic_name__ , return_tensors='''pt''' )
def UpperCAmelCase__ ( self : Any , __magic_name__ : List[str] ) -> Optional[Any]:
"""simple docstring"""
with torch.no_grad():
return self.model(**__magic_name__ ).logits
def UpperCAmelCase__ ( self : int , __magic_name__ : int ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Dict = outputs.argmax(-1 ).item()
return self.model.config.idalabel[idx]
| 644
| 1
|
'''simple docstring'''
import os
import re
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
snake_case_ : Dict = logging.get_logger(__name__)
snake_case_ : Optional[Any] = {"vocab_file": "spiece.model"}
snake_case_ : Union[str, Any] = {
"vocab_file": {
"google/bigbird-roberta-base": "https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model",
"google/bigbird-roberta-large": (
"https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model"
),
"google/bigbird-base-trivia-itc": (
"https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model"
),
}
}
snake_case_ : Any = {
"google/bigbird-roberta-base": 40_96,
"google/bigbird-roberta-large": 40_96,
"google/bigbird-base-trivia-itc": 40_96,
}
class __a (lowerCamelCase ):
__a : int = VOCAB_FILES_NAMES
__a : Any = PRETRAINED_VOCAB_FILES_MAP
__a : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__a : Any = ["input_ids", "attention_mask"]
__a : List[int] = []
def __init__( self : Optional[int] , __magic_name__ : Optional[int] , __magic_name__ : List[Any]="<unk>" , __magic_name__ : int="<s>" , __magic_name__ : int="</s>" , __magic_name__ : Dict="<pad>" , __magic_name__ : Dict="[SEP]" , __magic_name__ : Dict="[MASK]" , __magic_name__ : List[str]="[CLS]" , __magic_name__ : Optional[Dict[str, Any]] = None , **__magic_name__ : Optional[int] , ) -> None:
"""simple docstring"""
UpperCAmelCase_ : Dict = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else bos_token
UpperCAmelCase_ : Optional[Any] = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else eos_token
UpperCAmelCase_ : int = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else unk_token
UpperCAmelCase_ : Any = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else pad_token
UpperCAmelCase_ : List[Any] = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else cls_token
UpperCAmelCase_ : Any = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else sep_token
# Mask token behave like a normal word, i.e. include the space before it
UpperCAmelCase_ : List[Any] = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else mask_token
UpperCAmelCase_ : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=__magic_name__ , eos_token=__magic_name__ , unk_token=__magic_name__ , pad_token=__magic_name__ , sep_token=__magic_name__ , mask_token=__magic_name__ , cls_token=__magic_name__ , sp_model_kwargs=self.sp_model_kwargs , **__magic_name__ , )
UpperCAmelCase_ : Optional[Any] = vocab_file
UpperCAmelCase_ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(__magic_name__ )
@property
def UpperCAmelCase__ ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
return self.sp_model.get_piece_size()
def UpperCAmelCase__ ( self : List[Any] ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = {self.convert_ids_to_tokens(__magic_name__ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Any ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : List[str] = self.__dict__.copy()
UpperCAmelCase_ : Optional[Any] = None
return state
def __setstate__( self : int , __magic_name__ : List[str] ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : int = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
UpperCAmelCase_ : Any = {}
UpperCAmelCase_ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def UpperCAmelCase__ ( self : Any , __magic_name__ : str ) -> List[str]:
"""simple docstring"""
return self.sp_model.encode(__magic_name__ , out_type=__magic_name__ )
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : List[str] ) -> Optional[int]:
"""simple docstring"""
return self.sp_model.piece_to_id(__magic_name__ )
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Optional[int] ) -> str:
"""simple docstring"""
UpperCAmelCase_ : str = self.sp_model.IdToPiece(__magic_name__ )
return token
def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : str ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : Any = []
UpperCAmelCase_ : List[str] = ''''''
UpperCAmelCase_ : Optional[int] = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(__magic_name__ ) + token
UpperCAmelCase_ : Tuple = True
UpperCAmelCase_ : List[str] = []
else:
current_sub_tokens.append(__magic_name__ )
UpperCAmelCase_ : Any = False
out_string += self.sp_model.decode(__magic_name__ )
return out_string.strip()
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : List[int] , __magic_name__ : bool = False , __magic_name__ : bool = None , __magic_name__ : bool = True , **__magic_name__ : List[Any] , ) -> str:
"""simple docstring"""
UpperCAmelCase_ : Tuple = kwargs.pop('''use_source_tokenizer''' , __magic_name__ )
UpperCAmelCase_ : str = self.convert_ids_to_tokens(__magic_name__ , skip_special_tokens=__magic_name__ )
# To avoid mixing byte-level and unicode for byte-level BPT
# we need to build string separately for added tokens and byte-level tokens
# cf. https://github.com/huggingface/transformers/issues/1133
UpperCAmelCase_ : int = []
UpperCAmelCase_ : Dict = []
for token in filtered_tokens:
if skip_special_tokens and token in self.all_special_ids:
continue
if token in self.added_tokens_encoder:
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(__magic_name__ ) )
UpperCAmelCase_ : List[Any] = []
sub_texts.append(__magic_name__ )
else:
current_sub_text.append(__magic_name__ )
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(__magic_name__ ) )
# Mimic the behavior of the Rust tokenizer:
# No space before [MASK] and [SEP]
if spaces_between_special_tokens:
UpperCAmelCase_ : List[str] = re.sub(R''' (\[(MASK|SEP)\])''' , R'''\1''' , ''' '''.join(__magic_name__ ) )
else:
UpperCAmelCase_ : Union[str, Any] = ''''''.join(__magic_name__ )
UpperCAmelCase_ : Optional[int] = (
clean_up_tokenization_spaces
if clean_up_tokenization_spaces is not None
else self.clean_up_tokenization_spaces
)
if clean_up_tokenization_spaces:
UpperCAmelCase_ : Any = self.clean_up_tokenization(__magic_name__ )
return clean_text
else:
return text
def UpperCAmelCase__ ( self : str , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
if not os.path.isdir(__magic_name__ ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
UpperCAmelCase_ : Tuple = os.path.join(
__magic_name__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__magic_name__ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __magic_name__ )
elif not os.path.isfile(self.vocab_file ):
with open(__magic_name__ , '''wb''' ) as fi:
UpperCAmelCase_ : int = self.sp_model.serialized_model_proto()
fi.write(__magic_name__ )
return (out_vocab_file,)
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
UpperCAmelCase_ : List[Any] = [self.cls_token_id]
UpperCAmelCase_ : List[str] = [self.sep_token_id]
return cls + token_ids_a + sep + token_ids_a + sep
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None , __magic_name__ : bool = False ) -> List[int]:
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__magic_name__ , token_ids_a=__magic_name__ , already_has_special_tokens=__magic_name__ )
if token_ids_a is None:
return [1] + ([0] * len(__magic_name__ )) + [1]
return [1] + ([0] * len(__magic_name__ )) + [1] + ([0] * len(__magic_name__ )) + [1]
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = [self.sep_token_id]
UpperCAmelCase_ : Dict = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
| 644
|
'''simple docstring'''
from collections.abc import Iterable
from typing import Any
class __a :
def __init__( self : Optional[Any] , __magic_name__ : int | None = None ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : List[str] = value
UpperCAmelCase_ : Node | None = None # Added in order to delete a node easier
UpperCAmelCase_ : Node | None = None
UpperCAmelCase_ : Node | None = None
def __repr__( self : List[str] ) -> str:
"""simple docstring"""
from pprint import pformat
if self.left is None and self.right is None:
return str(self.value )
return pformat({F"""{self.value}""": (self.left, self.right)} , indent=1 )
class __a :
def __init__( self : int , __magic_name__ : Node | None = None ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : str = root
def __str__( self : Any ) -> str:
"""simple docstring"""
return str(self.root )
def UpperCAmelCase__ ( self : Any , __magic_name__ : Node , __magic_name__ : Node | None ) -> None:
"""simple docstring"""
if new_children is not None: # reset its kids
UpperCAmelCase_ : Dict = node.parent
if node.parent is not None: # reset its parent
if self.is_right(__magic_name__ ): # If it is the right children
UpperCAmelCase_ : Optional[Any] = new_children
else:
UpperCAmelCase_ : Optional[int] = new_children
else:
UpperCAmelCase_ : List[str] = new_children
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Node ) -> bool:
"""simple docstring"""
if node.parent and node.parent.right:
return node == node.parent.right
return False
def UpperCAmelCase__ ( self : Union[str, Any] ) -> bool:
"""simple docstring"""
return self.root is None
def UpperCAmelCase__ ( self : Any , __magic_name__ : str ) -> None:
"""simple docstring"""
UpperCAmelCase_ : Tuple = Node(__magic_name__ ) # create a new Node
if self.empty(): # if Tree is empty
UpperCAmelCase_ : List[Any] = new_node # set its root
else: # Tree is not empty
UpperCAmelCase_ : str = self.root # from root
if parent_node is None:
return
while True: # While we don't get to a leaf
if value < parent_node.value: # We go left
if parent_node.left is None:
UpperCAmelCase_ : Union[str, Any] = new_node # We insert the new node in a leaf
break
else:
UpperCAmelCase_ : List[Any] = parent_node.left
else:
if parent_node.right is None:
UpperCAmelCase_ : List[Any] = new_node
break
else:
UpperCAmelCase_ : Union[str, Any] = parent_node.right
UpperCAmelCase_ : Union[str, Any] = parent_node
def UpperCAmelCase__ ( self : Optional[Any] , *__magic_name__ : List[str] ) -> None:
"""simple docstring"""
for value in values:
self.__insert(__magic_name__ )
def UpperCAmelCase__ ( self : Dict , __magic_name__ : int ) -> Node | None:
"""simple docstring"""
if self.empty():
raise IndexError('''Warning: Tree is empty! please use another.''' )
else:
UpperCAmelCase_ : str = self.root
# use lazy evaluation here to avoid NoneType Attribute error
while node is not None and node.value is not value:
UpperCAmelCase_ : List[str] = node.left if value < node.value else node.right
return node
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : Node | None = None ) -> Node | None:
"""simple docstring"""
if node is None:
if self.root is None:
return None
UpperCAmelCase_ : Dict = self.root
if not self.empty():
while node.right is not None:
UpperCAmelCase_ : Any = node.right
return node
def UpperCAmelCase__ ( self : Dict , __magic_name__ : Node | None = None ) -> Node | None:
"""simple docstring"""
if node is None:
UpperCAmelCase_ : Optional[int] = self.root
if self.root is None:
return None
if not self.empty():
UpperCAmelCase_ : Union[str, Any] = self.root
while node.left is not None:
UpperCAmelCase_ : Dict = node.left
return node
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : int ) -> None:
"""simple docstring"""
UpperCAmelCase_ : List[str] = self.search(__magic_name__ ) # Look for the node with that label
if node is not None:
if node.left is None and node.right is None: # If it has no children
self.__reassign_nodes(__magic_name__ , __magic_name__ )
elif node.left is None: # Has only right children
self.__reassign_nodes(__magic_name__ , node.right )
elif node.right is None: # Has only left children
self.__reassign_nodes(__magic_name__ , node.left )
else:
UpperCAmelCase_ : List[str] = self.get_max(
node.left ) # Gets the max value of the left branch
self.remove(tmp_node.value ) # type: ignore
UpperCAmelCase_ : Optional[int] = (
tmp_node.value # type: ignore
) # Assigns the value to the node to delete and keep tree structure
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Node | None ) -> Iterable:
"""simple docstring"""
if node is not None:
yield node # Preorder Traversal
yield from self.preorder_traverse(node.left )
yield from self.preorder_traverse(node.right )
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : List[Any]=None ) -> Any:
"""simple docstring"""
if traversal_function is None:
return self.preorder_traverse(self.root )
else:
return traversal_function(self.root )
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : list , __magic_name__ : Node | None ) -> None:
"""simple docstring"""
if node:
self.inorder(__magic_name__ , node.left )
arr.append(node.value )
self.inorder(__magic_name__ , node.right )
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : int , __magic_name__ : Node ) -> int:
"""simple docstring"""
UpperCAmelCase_ : list[int] = []
self.inorder(__magic_name__ , __magic_name__ ) # append all values to list using inorder traversal
return arr[k - 1]
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Node | None ) -> list[Node]:
UpperCAmelCase_ : Any = []
if curr_node is not None:
UpperCAmelCase_ : Any = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node]
return node_list
def lowerCamelCase_ ( ) -> None:
UpperCAmelCase_ : str = (8, 3, 6, 1, 10, 14, 13, 4, 7)
UpperCAmelCase_ : Tuple = BinarySearchTree()
for i in testlist:
t.insert(SCREAMING_SNAKE_CASE__ )
# Prints all the elements of the list in order traversal
print(SCREAMING_SNAKE_CASE__ )
if t.search(6 ) is not None:
print('''The value 6 exists''' )
else:
print('''The value 6 doesn\'t exist''' )
if t.search(-1 ) is not None:
print('''The value -1 exists''' )
else:
print('''The value -1 doesn\'t exist''' )
if not t.empty():
print('''Max Value: ''', t.get_max().value ) # type: ignore
print('''Min Value: ''', t.get_min().value ) # type: ignore
for i in testlist:
t.remove(SCREAMING_SNAKE_CASE__ )
print(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
| 644
| 1
|
'''simple docstring'''
import hashlib
import unittest
from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available
from transformers.pipelines import DepthEstimationPipeline, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_timm,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
else:
class __a :
@staticmethod
def UpperCAmelCase__ ( *__magic_name__ : Any , **__magic_name__ : Dict ) -> Dict:
"""simple docstring"""
pass
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Image ) -> str:
UpperCAmelCase_ : int = hashlib.mda(image.tobytes() )
return m.hexdigest()
@is_pipeline_test
@require_vision
@require_timm
@require_torch
class __a (unittest.TestCase ):
__a : str = MODEL_FOR_DEPTH_ESTIMATION_MAPPING
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Any , __magic_name__ : List[Any] ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : List[str] = DepthEstimationPipeline(model=__magic_name__ , image_processor=__magic_name__ )
return depth_estimator, [
"./tests/fixtures/tests_samples/COCO/000000039769.png",
"./tests/fixtures/tests_samples/COCO/000000039769.png",
]
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Tuple ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : str = depth_estimator('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
self.assertEqual({'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )} , __magic_name__ )
import datasets
UpperCAmelCase_ : int = datasets.load_dataset('''hf-internal-testing/fixtures_image_utils''' , '''image''' , split='''test''' )
UpperCAmelCase_ : List[str] = depth_estimator(
[
Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ),
'''http://images.cocodataset.org/val2017/000000039769.jpg''',
# RGBA
dataset[0]['''file'''],
# LA
dataset[1]['''file'''],
# L
dataset[2]['''file'''],
] )
self.assertEqual(
[
{'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )},
{'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )},
{'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )},
{'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )},
{'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )},
] , __magic_name__ , )
@require_tf
@unittest.skip('''Depth estimation is not implemented in TF''' )
def UpperCAmelCase__ ( self : Tuple ) -> str:
"""simple docstring"""
pass
@slow
@require_torch
def UpperCAmelCase__ ( self : int ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = '''Intel/dpt-large'''
UpperCAmelCase_ : Tuple = pipeline('''depth-estimation''' , model=__magic_name__ )
UpperCAmelCase_ : Optional[Any] = depth_estimator('''http://images.cocodataset.org/val2017/000000039769.jpg''' )
UpperCAmelCase_ : int = hashimage(outputs['''depth'''] )
# This seems flaky.
# self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977")
self.assertEqual(nested_simplify(outputs['''predicted_depth'''].max().item() ) , 2_9.3_0_4 )
self.assertEqual(nested_simplify(outputs['''predicted_depth'''].min().item() ) , 2.6_6_2 )
@require_torch
def UpperCAmelCase__ ( self : List[str] ) -> Tuple:
"""simple docstring"""
# This is highly irregular to have no small tests.
self.skipTest('''There is not hf-internal-testing tiny model for either GLPN nor DPT''' )
| 644
|
'''simple docstring'''
import sys
import turtle
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : tuple[float, float] ) -> tuple[float, float]:
return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : int, ) -> None:
my_pen.up()
my_pen.goto(vertexa[0], vertexa[1] )
my_pen.down()
my_pen.goto(vertexa[0], vertexa[1] )
my_pen.goto(vertexa[0], vertexa[1] )
my_pen.goto(vertexa[0], vertexa[1] )
if depth == 0:
return
triangle(SCREAMING_SNAKE_CASE__, get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), depth - 1 )
triangle(SCREAMING_SNAKE_CASE__, get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), depth - 1 )
triangle(SCREAMING_SNAKE_CASE__, get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), depth - 1 )
if __name__ == "__main__":
if len(sys.argv) != 2:
raise ValueError(
"Correct format for using this script: "
"python fractals.py <int:depth_for_fractal>"
)
snake_case_ : Any = turtle.Turtle()
my_pen.ht()
my_pen.speed(5)
my_pen.pencolor("red")
snake_case_ : Tuple = [(-1_75, -1_25), (0, 1_75), (1_75, -1_25)] # vertices of triangle
triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
| 644
| 1
|
'''simple docstring'''
import os
import unittest
from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer
from transformers.testing_utils import get_tests_dir
from ...test_tokenization_common import TokenizerTesterMixin
snake_case_ : int = get_tests_dir("fixtures/test_sentencepiece_bpe.model")
class __a (lowerCamelCase , unittest.TestCase ):
__a : str = BartphoTokenizer
__a : Any = False
__a : Dict = True
def UpperCAmelCase__ ( self : str ) -> Optional[Any]:
"""simple docstring"""
super().setUp()
UpperCAmelCase_ : Tuple = ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']
UpperCAmelCase_ : Optional[int] = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) )
UpperCAmelCase_ : Optional[int] = {'''unk_token''': '''<unk>'''}
UpperCAmelCase_ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''monolingual_vocab_file'''] )
with open(self.monolingual_vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
for token in vocab_tokens:
fp.write(F"""{token} {vocab_tokens[token]}\n""" )
UpperCAmelCase_ : int = BartphoTokenizer(__magic_name__ , self.monolingual_vocab_file , **self.special_tokens_map )
tokenizer.save_pretrained(self.tmpdirname )
def UpperCAmelCase__ ( self : str , **__magic_name__ : Dict ) -> Optional[Any]:
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return BartphoTokenizer.from_pretrained(self.tmpdirname , **__magic_name__ )
def UpperCAmelCase__ ( self : Dict , __magic_name__ : Tuple ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = '''This is a là test'''
UpperCAmelCase_ : List[Any] = '''This is a<unk><unk> test'''
return input_text, output_text
def UpperCAmelCase__ ( self : List[Any] ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : str = BartphoTokenizer(__magic_name__ , self.monolingual_vocab_file , **self.special_tokens_map )
UpperCAmelCase_ : str = '''This is a là test'''
UpperCAmelCase_ : int = '''▁This ▁is ▁a ▁l à ▁t est'''.split()
UpperCAmelCase_ : str = tokenizer.tokenize(__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
UpperCAmelCase_ : Dict = tokens + [tokenizer.unk_token]
UpperCAmelCase_ : Dict = [4, 5, 6, 3, 3, 7, 8, 3]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , __magic_name__ )
| 644
|
'''simple docstring'''
import gc
import tempfile
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionPipeline
from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device
snake_case_ : List[str] = False
class __a (unittest.TestCase ):
pass
@nightly
@require_torch_gpu
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : int ) -> str:
"""simple docstring"""
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : List[Any] = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' )
UpperCAmelCase_ : Optional[int] = torch.manual_seed(0 )
UpperCAmelCase_ : Union[str, Any] = pipe.dual_guided(
prompt='''first prompt''' , image=__magic_name__ , text_to_image_strength=0.7_5 , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(__magic_name__ )
UpperCAmelCase_ : Optional[int] = VersatileDiffusionPipeline.from_pretrained(__magic_name__ , torch_dtype=torch.floataa )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : Any = generator.manual_seed(0 )
UpperCAmelCase_ : Dict = pipe.dual_guided(
prompt='''first prompt''' , image=__magic_name__ , text_to_image_strength=0.7_5 , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images
assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass"
def UpperCAmelCase__ ( self : str ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : str = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : Union[str, Any] = '''cyberpunk 2077'''
UpperCAmelCase_ : Union[str, Any] = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' )
UpperCAmelCase_ : Tuple = torch.manual_seed(0 )
UpperCAmelCase_ : Optional[Any] = pipe.dual_guided(
prompt=__magic_name__ , image=__magic_name__ , text_to_image_strength=0.7_5 , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' , ).images
UpperCAmelCase_ : List[str] = image[0, 2_53:2_56, 2_53:2_56, -1]
assert image.shape == (1, 5_12, 5_12, 3)
UpperCAmelCase_ : Union[str, Any] = np.array([0.1_4_4_8, 0.1_6_1_9, 0.1_7_4_1, 0.1_0_8_6, 0.1_1_4_7, 0.1_1_2_8, 0.1_1_9_9, 0.1_1_6_5, 0.1_0_0_1] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
UpperCAmelCase_ : Tuple = '''A painting of a squirrel eating a burger '''
UpperCAmelCase_ : Optional[int] = torch.manual_seed(0 )
UpperCAmelCase_ : List[Any] = pipe.text_to_image(
prompt=__magic_name__ , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' ).images
UpperCAmelCase_ : Tuple = image[0, 2_53:2_56, 2_53:2_56, -1]
assert image.shape == (1, 5_12, 5_12, 3)
UpperCAmelCase_ : Any = np.array([0.3_3_6_7, 0.3_1_6_9, 0.2_6_5_6, 0.3_8_7_0, 0.4_7_9_0, 0.3_7_9_6, 0.4_0_0_9, 0.4_8_7_8, 0.4_7_7_8] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
UpperCAmelCase_ : Tuple = pipe.image_variation(__magic_name__ , generator=__magic_name__ , output_type='''numpy''' ).images
UpperCAmelCase_ : Optional[Any] = image[0, 2_53:2_56, 2_53:2_56, -1]
assert image.shape == (1, 5_12, 5_12, 3)
UpperCAmelCase_ : List[str] = np.array([0.3_0_7_6, 0.3_1_2_3, 0.3_2_8_4, 0.3_7_8_2, 0.3_7_7_0, 0.3_8_9_4, 0.4_2_9_7, 0.4_3_3_1, 0.4_4_5_6] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
| 644
| 1
|
'''simple docstring'''
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int ) -> str:
if isinstance(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ):
raise TypeError('''\'float\' object cannot be interpreted as an integer''' )
if isinstance(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ):
raise TypeError('''\'str\' object cannot be interpreted as an integer''' )
if num == 0:
return "0b0"
UpperCAmelCase_ : List[Any] = False
if num < 0:
UpperCAmelCase_ : Optional[Any] = True
UpperCAmelCase_ : Union[str, Any] = -num
UpperCAmelCase_ : list[int] = []
while num > 0:
binary.insert(0, num % 2 )
num >>= 1
if negative:
return "-0b" + "".join(str(SCREAMING_SNAKE_CASE__ ) for e in binary )
return "0b" + "".join(str(SCREAMING_SNAKE_CASE__ ) for e in binary )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 644
|
'''simple docstring'''
snake_case_ : int = {
"Pillow": "Pillow",
"accelerate": "accelerate>=0.11.0",
"compel": "compel==0.1.8",
"black": "black~=23.1",
"datasets": "datasets",
"filelock": "filelock",
"flax": "flax>=0.4.1",
"hf-doc-builder": "hf-doc-builder>=0.3.0",
"huggingface-hub": "huggingface-hub>=0.13.2",
"requests-mock": "requests-mock==1.10.0",
"importlib_metadata": "importlib_metadata",
"invisible-watermark": "invisible-watermark",
"isort": "isort>=5.5.4",
"jax": "jax>=0.2.8,!=0.3.2",
"jaxlib": "jaxlib>=0.1.65",
"Jinja2": "Jinja2",
"k-diffusion": "k-diffusion>=0.0.12",
"torchsde": "torchsde",
"note_seq": "note_seq",
"librosa": "librosa",
"numpy": "numpy",
"omegaconf": "omegaconf",
"parameterized": "parameterized",
"protobuf": "protobuf>=3.20.3,<4",
"pytest": "pytest",
"pytest-timeout": "pytest-timeout",
"pytest-xdist": "pytest-xdist",
"ruff": "ruff>=0.0.241",
"safetensors": "safetensors",
"sentencepiece": "sentencepiece>=0.1.91,!=0.1.92",
"scipy": "scipy",
"onnx": "onnx",
"regex": "regex!=2019.12.17",
"requests": "requests",
"tensorboard": "tensorboard",
"torch": "torch>=1.4",
"torchvision": "torchvision",
"transformers": "transformers>=4.25.1",
"urllib3": "urllib3<=2.0.0",
}
| 644
| 1
|
'''simple docstring'''
from collections import defaultdict
class __a :
def __init__( self : Dict , __magic_name__ : List[Any] , __magic_name__ : Dict ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : str = total # total no of tasks (N)
# DP table will have a dimension of (2^M)*N
# initially all values are set to -1
UpperCAmelCase_ : str = [
[-1 for i in range(total + 1 )] for j in range(2 ** len(__magic_name__ ) )
]
UpperCAmelCase_ : str = defaultdict(__magic_name__ ) # stores the list of persons for each task
# final_mask is used to check if all persons are included by setting all bits
# to 1
UpperCAmelCase_ : Any = (1 << len(__magic_name__ )) - 1
def UpperCAmelCase__ ( self : Dict , __magic_name__ : str , __magic_name__ : Any ) -> Optional[Any]:
"""simple docstring"""
# if mask == self.finalmask all persons are distributed tasks, return 1
if mask == self.final_mask:
return 1
# if not everyone gets the task and no more tasks are available, return 0
if task_no > self.total_tasks:
return 0
# if case already considered
if self.dp[mask][task_no] != -1:
return self.dp[mask][task_no]
# Number of ways when we don't this task in the arrangement
UpperCAmelCase_ : int = self.count_ways_until(__magic_name__ , task_no + 1 )
# now assign the tasks one by one to all possible persons and recursively
# assign for the remaining tasks.
if task_no in self.task:
for p in self.task[task_no]:
# if p is already given a task
if mask & (1 << p):
continue
# assign this task to p and change the mask value. And recursively
# assign tasks with the new mask value.
total_ways_util += self.count_ways_until(mask | (1 << p) , task_no + 1 )
# save the value.
UpperCAmelCase_ : Dict = total_ways_util
return self.dp[mask][task_no]
def UpperCAmelCase__ ( self : str , __magic_name__ : Optional[Any] ) -> Tuple:
"""simple docstring"""
# Store the list of persons for each task
for i in range(len(__magic_name__ ) ):
for j in task_performed[i]:
self.task[j].append(__magic_name__ )
# call the function to fill the DP table, final answer is stored in dp[0][1]
return self.count_ways_until(0 , 1 )
if __name__ == "__main__":
snake_case_ : List[str] = 5 # total no of tasks (the value of N)
# the list of tasks that can be done by M persons.
snake_case_ : List[Any] = [[1, 3, 4], [1, 2, 5], [3, 4]]
print(
AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways(
task_performed
)
)
| 644
|
'''simple docstring'''
import unittest
import numpy as np
import torch
from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class __a (unittest.TestCase ):
@property
def UpperCAmelCase__ ( self : Dict ) -> str:
"""simple docstring"""
torch.manual_seed(0 )
UpperCAmelCase_ : Optional[Any] = UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , )
return model
def UpperCAmelCase__ ( self : Dict ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = self.dummy_uncond_unet
UpperCAmelCase_ : Dict = KarrasVeScheduler()
UpperCAmelCase_ : Union[str, Any] = KarrasVePipeline(unet=__magic_name__ , scheduler=__magic_name__ )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : Dict = torch.manual_seed(0 )
UpperCAmelCase_ : Optional[int] = pipe(num_inference_steps=2 , generator=__magic_name__ , output_type='''numpy''' ).images
UpperCAmelCase_ : Tuple = torch.manual_seed(0 )
UpperCAmelCase_ : str = pipe(num_inference_steps=2 , generator=__magic_name__ , output_type='''numpy''' , return_dict=__magic_name__ )[0]
UpperCAmelCase_ : Union[str, Any] = image[0, -3:, -3:, -1]
UpperCAmelCase_ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
UpperCAmelCase_ : Dict = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : int ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : List[str] = '''google/ncsnpp-celebahq-256'''
UpperCAmelCase_ : List[str] = UNetaDModel.from_pretrained(__magic_name__ )
UpperCAmelCase_ : List[Any] = KarrasVeScheduler()
UpperCAmelCase_ : Any = KarrasVePipeline(unet=__magic_name__ , scheduler=__magic_name__ )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : Dict = torch.manual_seed(0 )
UpperCAmelCase_ : Optional[Any] = pipe(num_inference_steps=20 , generator=__magic_name__ , output_type='''numpy''' ).images
UpperCAmelCase_ : Any = image[0, -3:, -3:, -1]
assert image.shape == (1, 2_56, 2_56, 3)
UpperCAmelCase_ : Optional[Any] = np.array([0.5_7_8, 0.5_8_1_1, 0.5_9_2_4, 0.5_8_0_9, 0.5_8_7, 0.5_8_8_6, 0.5_8_6_1, 0.5_8_0_2, 0.5_8_6] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 644
| 1
|
'''simple docstring'''
import json
import os
import unittest
from transformers import DebertaTokenizer, DebertaTokenizerFast
from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES
from transformers.testing_utils import slow
from ...test_tokenization_common import TokenizerTesterMixin
class __a (lowerCamelCase , unittest.TestCase ):
__a : int = DebertaTokenizer
__a : Optional[int] = True
__a : Union[str, Any] = DebertaTokenizerFast
def UpperCAmelCase__ ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
UpperCAmelCase_ : Tuple = [
'''l''',
'''o''',
'''w''',
'''e''',
'''r''',
'''s''',
'''t''',
'''i''',
'''d''',
'''n''',
'''\u0120''',
'''\u0120l''',
'''\u0120n''',
'''\u0120lo''',
'''\u0120low''',
'''er''',
'''\u0120lowest''',
'''\u0120newer''',
'''\u0120wider''',
'''[UNK]''',
]
UpperCAmelCase_ : Tuple = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) )
UpperCAmelCase_ : Tuple = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', '''''']
UpperCAmelCase_ : List[str] = {'''unk_token''': '''[UNK]'''}
UpperCAmelCase_ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
UpperCAmelCase_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(__magic_name__ ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(__magic_name__ ) )
def UpperCAmelCase__ ( self : Optional[int] , **__magic_name__ : int ) -> str:
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **__magic_name__ )
def UpperCAmelCase__ ( self : Any , __magic_name__ : str ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Dict = '''lower newer'''
UpperCAmelCase_ : Optional[Any] = '''lower newer'''
return input_text, output_text
def UpperCAmelCase__ ( self : str ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = self.get_tokenizer()
UpperCAmelCase_ : Tuple = '''lower newer'''
UpperCAmelCase_ : List[str] = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er''']
UpperCAmelCase_ : Tuple = tokenizer.tokenize(__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
UpperCAmelCase_ : Any = tokens + [tokenizer.unk_token]
UpperCAmelCase_ : str = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , __magic_name__ )
def UpperCAmelCase__ ( self : List[str] ) -> int:
"""simple docstring"""
UpperCAmelCase_ : str = self.get_tokenizer()
UpperCAmelCase_ : Optional[int] = tokenizer('''Hello''' , '''World''' )
UpperCAmelCase_ : Any = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]
self.assertListEqual(tokd['''token_type_ids'''] , __magic_name__ )
@slow
def UpperCAmelCase__ ( self : Any ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : List[str] = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' )
UpperCAmelCase_ : Tuple = tokenizer.encode('''sequence builders''' , add_special_tokens=__magic_name__ )
UpperCAmelCase_ : Any = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__magic_name__ )
UpperCAmelCase_ : Union[str, Any] = tokenizer.encode(
'''sequence builders''' , add_special_tokens=__magic_name__ , add_prefix_space=__magic_name__ )
UpperCAmelCase_ : List[Any] = tokenizer.encode(
'''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__magic_name__ , add_prefix_space=__magic_name__ )
UpperCAmelCase_ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(__magic_name__ )
UpperCAmelCase_ : Optional[int] = tokenizer.build_inputs_with_special_tokens(__magic_name__ , __magic_name__ )
assert encoded_sentence == encoded_text_from_decode
assert encoded_pair == encoded_pair_from_decode
@slow
def UpperCAmelCase__ ( self : Any ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = [self.tokenizer_class]
if self.test_rust_tokenizer:
tokenizer_classes.append(self.rust_tokenizer_class )
for tokenizer_class in tokenizer_classes:
UpperCAmelCase_ : List[str] = tokenizer_class.from_pretrained('''microsoft/deberta-base''' )
UpperCAmelCase_ : int = [
'''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''',
'''ALBERT incorporates two parameter reduction techniques''',
'''The first one is a factorized embedding parameterization. By decomposing the large vocabulary'''
''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of'''
''' vocabulary embedding.''',
]
UpperCAmelCase_ : Optional[Any] = tokenizer(__magic_name__ , padding=__magic_name__ )
UpperCAmelCase_ : List[str] = [tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ ) for seq in encoding['''input_ids''']]
# fmt: off
UpperCAmelCase_ : Dict = {
'''input_ids''': [
[1, 21_18, 1_11_26, 5_65, 35, 83, 2_51_91, 1_63, 1_88_54, 13, 1_21_56, 12, 1_61_01, 2_53_76, 1_38_07, 9, 2_22_05, 2_78_93, 16_35, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 21_18, 1_11_26, 5_65, 2_45_36, 80, 4_37_97, 48_78, 73_73, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1_33, 78, 65, 16, 10, 37_24, 15_38, 3_31_83, 1_13_03, 4_37_97, 19_38, 4, 8_70, 2_41_65, 2_91_05, 5, 7_39, 3_26_44, 3_31_83, 1_13_03, 3_61_73, 88, 80, 6_50, 78_21, 4_59_40, 6, 52, 25_59, 5, 18_36, 9, 5, 73_97, 1_31_71, 31, 5, 18_36, 9, 3_26_44, 3_31_83, 1_13_03, 4, 2]
],
'''token_type_ids''': [
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
],
'''attention_mask''': [
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
]
}
# fmt: on
UpperCAmelCase_ : str = [
'''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''',
'''ALBERT incorporates two parameter reduction techniques''',
'''The first one is a factorized embedding parameterization. By decomposing the large vocabulary'''
''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of'''
''' vocabulary embedding.''',
]
self.assertDictEqual(encoding.data , __magic_name__ )
for expected, decoded in zip(__magic_name__ , __magic_name__ ):
self.assertEqual(__magic_name__ , __magic_name__ )
| 644
|
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor
from .base import PipelineTool
class __a (lowerCamelCase ):
__a : List[Any] = "openai/whisper-base"
__a : Optional[Any] = (
"This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the "
"transcribed text."
)
__a : Any = "transcriber"
__a : str = WhisperProcessor
__a : List[Any] = WhisperForConditionalGeneration
__a : int = ["audio"]
__a : Optional[Any] = ["text"]
def UpperCAmelCase__ ( self : Dict , __magic_name__ : List[str] ) -> Optional[int]:
"""simple docstring"""
return self.pre_processor(__magic_name__ , return_tensors='''pt''' ).input_features
def UpperCAmelCase__ ( self : Dict , __magic_name__ : Dict ) -> Tuple:
"""simple docstring"""
return self.model.generate(inputs=__magic_name__ )
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Dict ) -> str:
"""simple docstring"""
return self.pre_processor.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ )[0]
| 644
| 1
|
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class __a (metaclass=lowerCamelCase ):
__a : List[str] = ["flax", "transformers"]
def __init__( self : List[str] , *__magic_name__ : int , **__magic_name__ : str ) -> str:
"""simple docstring"""
requires_backends(self , ['''flax''', '''transformers'''] )
@classmethod
def UpperCAmelCase__ ( cls : Optional[int] , *__magic_name__ : Optional[int] , **__magic_name__ : Optional[int] ) -> List[str]:
"""simple docstring"""
requires_backends(cls , ['''flax''', '''transformers'''] )
@classmethod
def UpperCAmelCase__ ( cls : List[str] , *__magic_name__ : List[Any] , **__magic_name__ : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ['''flax''', '''transformers'''] )
class __a (metaclass=lowerCamelCase ):
__a : List[str] = ["flax", "transformers"]
def __init__( self : List[Any] , *__magic_name__ : Optional[Any] , **__magic_name__ : str ) -> int:
"""simple docstring"""
requires_backends(self , ['''flax''', '''transformers'''] )
@classmethod
def UpperCAmelCase__ ( cls : Any , *__magic_name__ : str , **__magic_name__ : List[str] ) -> List[Any]:
"""simple docstring"""
requires_backends(cls , ['''flax''', '''transformers'''] )
@classmethod
def UpperCAmelCase__ ( cls : Tuple , *__magic_name__ : Dict , **__magic_name__ : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ['''flax''', '''transformers'''] )
class __a (metaclass=lowerCamelCase ):
__a : Any = ["flax", "transformers"]
def __init__( self : List[str] , *__magic_name__ : List[str] , **__magic_name__ : Optional[int] ) -> Tuple:
"""simple docstring"""
requires_backends(self , ['''flax''', '''transformers'''] )
@classmethod
def UpperCAmelCase__ ( cls : Tuple , *__magic_name__ : Any , **__magic_name__ : List[str] ) -> List[str]:
"""simple docstring"""
requires_backends(cls , ['''flax''', '''transformers'''] )
@classmethod
def UpperCAmelCase__ ( cls : Optional[Any] , *__magic_name__ : Optional[int] , **__magic_name__ : Any ) -> Optional[int]:
"""simple docstring"""
requires_backends(cls , ['''flax''', '''transformers'''] )
class __a (metaclass=lowerCamelCase ):
__a : Dict = ["flax", "transformers"]
def __init__( self : List[str] , *__magic_name__ : List[str] , **__magic_name__ : Tuple ) -> Optional[Any]:
"""simple docstring"""
requires_backends(self , ['''flax''', '''transformers'''] )
@classmethod
def UpperCAmelCase__ ( cls : Union[str, Any] , *__magic_name__ : List[Any] , **__magic_name__ : Any ) -> str:
"""simple docstring"""
requires_backends(cls , ['''flax''', '''transformers'''] )
@classmethod
def UpperCAmelCase__ ( cls : int , *__magic_name__ : Optional[Any] , **__magic_name__ : Union[str, Any] ) -> Any:
"""simple docstring"""
requires_backends(cls , ['''flax''', '''transformers'''] )
| 644
|
'''simple docstring'''
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : int ) -> int:
return abs(SCREAMING_SNAKE_CASE__ ) if a == 0 else greatest_common_divisor(b % a, SCREAMING_SNAKE_CASE__ )
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : int ) -> int:
while y: # --> when y=0 then loop will terminate and return x as final GCD.
UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = y, x % y
return abs(SCREAMING_SNAKE_CASE__ )
def lowerCamelCase_ ( ) -> Optional[int]:
try:
UpperCAmelCase_ : Optional[Any] = input('''Enter two integers separated by comma (,): ''' ).split(''',''' )
UpperCAmelCase_ : Optional[int] = int(nums[0] )
UpperCAmelCase_ : List[Any] = int(nums[1] )
print(
F"""greatest_common_divisor({num_a}, {num_a}) = """
F"""{greatest_common_divisor(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )}""" )
print(F"""By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )}""" )
except (IndexError, UnboundLocalError, ValueError):
print('''Wrong input''' )
if __name__ == "__main__":
main()
| 644
| 1
|
'''simple docstring'''
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int = 50 ) -> int:
UpperCAmelCase_ : Tuple = [1] * (length + 1)
for row_length in range(3, length + 1 ):
for block_length in range(3, row_length + 1 ):
for block_start in range(row_length - block_length ):
ways_number[row_length] += ways_number[
row_length - block_start - block_length - 1
]
ways_number[row_length] += 1
return ways_number[length]
if __name__ == "__main__":
print(f'''{solution() = }''')
| 644
|
'''simple docstring'''
import unittest
from transformers import LiltConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
LiltForQuestionAnswering,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltModel,
)
from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST
class __a :
def __init__( self : int , __magic_name__ : Optional[Any] , __magic_name__ : Any=13 , __magic_name__ : Any=7 , __magic_name__ : Union[str, Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : str=True , __magic_name__ : Optional[int]=True , __magic_name__ : List[Any]=99 , __magic_name__ : int=24 , __magic_name__ : Optional[int]=2 , __magic_name__ : Tuple=6 , __magic_name__ : Union[str, Any]=37 , __magic_name__ : Optional[Any]="gelu" , __magic_name__ : Any=0.1 , __magic_name__ : str=0.1 , __magic_name__ : Tuple=5_12 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : Tuple=2 , __magic_name__ : Tuple=0.0_2 , __magic_name__ : Optional[Any]=3 , __magic_name__ : Optional[int]=None , __magic_name__ : Any=10_00 , ) -> str:
"""simple docstring"""
UpperCAmelCase_ : Tuple = parent
UpperCAmelCase_ : Optional[int] = batch_size
UpperCAmelCase_ : List[str] = seq_length
UpperCAmelCase_ : Dict = is_training
UpperCAmelCase_ : List[str] = use_input_mask
UpperCAmelCase_ : Any = use_token_type_ids
UpperCAmelCase_ : Any = use_labels
UpperCAmelCase_ : Any = vocab_size
UpperCAmelCase_ : Dict = hidden_size
UpperCAmelCase_ : Tuple = num_hidden_layers
UpperCAmelCase_ : Tuple = num_attention_heads
UpperCAmelCase_ : int = intermediate_size
UpperCAmelCase_ : Union[str, Any] = hidden_act
UpperCAmelCase_ : Optional[int] = hidden_dropout_prob
UpperCAmelCase_ : Optional[Any] = attention_probs_dropout_prob
UpperCAmelCase_ : Union[str, Any] = max_position_embeddings
UpperCAmelCase_ : int = type_vocab_size
UpperCAmelCase_ : List[Any] = type_sequence_label_size
UpperCAmelCase_ : int = initializer_range
UpperCAmelCase_ : Dict = num_labels
UpperCAmelCase_ : List[str] = scope
UpperCAmelCase_ : List[str] = range_bbox
def UpperCAmelCase__ ( self : Optional[int] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
UpperCAmelCase_ : List[str] = bbox[i, j, 3]
UpperCAmelCase_ : Dict = bbox[i, j, 1]
UpperCAmelCase_ : Optional[Any] = t
if bbox[i, j, 2] < bbox[i, j, 0]:
UpperCAmelCase_ : List[str] = bbox[i, j, 2]
UpperCAmelCase_ : Tuple = bbox[i, j, 0]
UpperCAmelCase_ : Union[str, Any] = t
UpperCAmelCase_ : int = None
if self.use_input_mask:
UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
UpperCAmelCase_ : Optional[int] = None
if self.use_token_type_ids:
UpperCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase_ : Dict = None
UpperCAmelCase_ : Tuple = None
if self.use_labels:
UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase_ : int = self.get_config()
return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels
def UpperCAmelCase__ ( self : Any ) -> List[Any]:
"""simple docstring"""
return LiltConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : str , __magic_name__ : Optional[Any] , __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : int , ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Any = LiltModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : Optional[Any] = model(__magic_name__ , bbox=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ )
UpperCAmelCase_ : List[Any] = model(__magic_name__ , bbox=__magic_name__ , token_type_ids=__magic_name__ )
UpperCAmelCase_ : Optional[int] = model(__magic_name__ , bbox=__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def UpperCAmelCase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[int] , __magic_name__ : List[Any] , ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : Any = self.num_labels
UpperCAmelCase_ : List[Any] = LiltForTokenClassification(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : List[Any] = model(
__magic_name__ , bbox=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCAmelCase__ ( self : Any , __magic_name__ : Optional[Any] , __magic_name__ : Dict , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : Any , ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : str = LiltForQuestionAnswering(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : Optional[Any] = model(
__magic_name__ , bbox=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = self.prepare_config_and_inputs()
(
(
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) ,
) : Optional[int] = config_and_inputs
UpperCAmelCase_ : Tuple = {
'''input_ids''': input_ids,
'''bbox''': bbox,
'''token_type_ids''': token_type_ids,
'''attention_mask''': input_mask,
}
return config, inputs_dict
@require_torch
class __a (lowerCamelCase , lowerCamelCase , lowerCamelCase , unittest.TestCase ):
__a : Tuple = (
(
LiltModel,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltForQuestionAnswering,
)
if is_torch_available()
else ()
)
__a : Any = (
{
"feature-extraction": LiltModel,
"question-answering": LiltForQuestionAnswering,
"text-classification": LiltForSequenceClassification,
"token-classification": LiltForTokenClassification,
"zero-shot": LiltForSequenceClassification,
}
if is_torch_available()
else {}
)
__a : Union[str, Any] = False
__a : int = False
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : int ) -> str:
"""simple docstring"""
return True
def UpperCAmelCase__ ( self : str ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = LiltModelTester(self )
UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 )
def UpperCAmelCase__ ( self : Union[str, Any] ) -> str:
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCAmelCase__ ( self : str ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__magic_name__ )
def UpperCAmelCase__ ( self : str ) -> str:
"""simple docstring"""
UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
UpperCAmelCase_ : Tuple = type
self.model_tester.create_and_check_model(*__magic_name__ )
def UpperCAmelCase__ ( self : Union[str, Any] ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__magic_name__ )
def UpperCAmelCase__ ( self : str ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__magic_name__ )
@slow
def UpperCAmelCase__ ( self : int ) -> Union[str, Any]:
"""simple docstring"""
for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase_ : Optional[int] = LiltModel.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
@require_torch
@slow
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : str = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(__magic_name__ )
UpperCAmelCase_ : Any = torch.tensor([[1, 2]] , device=__magic_name__ )
UpperCAmelCase_ : int = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=__magic_name__ )
# forward pass
with torch.no_grad():
UpperCAmelCase_ : Optional[int] = model(input_ids=__magic_name__ , bbox=__magic_name__ )
UpperCAmelCase_ : int = torch.Size([1, 2, 7_68] )
UpperCAmelCase_ : List[str] = torch.tensor(
[[-0.0_6_5_3, 0.0_9_5_0, -0.0_0_6_1], [-0.0_5_4_5, 0.0_9_2_6, -0.0_3_2_4]] , device=__magic_name__ , )
self.assertTrue(outputs.last_hidden_state.shape , __magic_name__ )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , __magic_name__ , atol=1E-3 ) )
| 644
| 1
|
'''simple docstring'''
import inspect
import os
import re
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_config_docstrings.py
snake_case_ : Optional[int] = "src/transformers"
# This is to make sure the transformers module imported is the one in the repo.
snake_case_ : Optional[int] = direct_transformers_import(PATH_TO_TRANSFORMERS)
snake_case_ : Optional[Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING
snake_case_ : int = {
# used to compute the property `self.chunk_length`
"EncodecConfig": ["overlap"],
# used as `self.bert_model = BertModel(config, ...)`
"DPRConfig": True,
# not used in modeling files, but it's an important information
"FSMTConfig": ["langs"],
# used internally in the configuration class file
"GPTNeoConfig": ["attention_types"],
# used internally in the configuration class file
"EsmConfig": ["is_folding_model"],
# used during training (despite we don't have training script for these models yet)
"Mask2FormerConfig": ["ignore_value"],
# `ignore_value` used during training (despite we don't have training script for these models yet)
# `norm` used in conversion script (despite not using in the modeling file)
"OneFormerConfig": ["ignore_value", "norm"],
# used during preprocessing and collation, see `collating_graphormer.py`
"GraphormerConfig": ["spatial_pos_max"],
# used internally in the configuration class file
"T5Config": ["feed_forward_proj"],
# used internally in the configuration class file
# `tokenizer_class` get default value `T5Tokenizer` intentionally
"MT5Config": ["feed_forward_proj", "tokenizer_class"],
"UMT5Config": ["feed_forward_proj", "tokenizer_class"],
# used internally in the configuration class file
"LongT5Config": ["feed_forward_proj"],
# used internally in the configuration class file
"SwitchTransformersConfig": ["feed_forward_proj"],
# having default values other than `1e-5` - we can't fix them without breaking
"BioGptConfig": ["layer_norm_eps"],
# having default values other than `1e-5` - we can't fix them without breaking
"GLPNConfig": ["layer_norm_eps"],
# having default values other than `1e-5` - we can't fix them without breaking
"SegformerConfig": ["layer_norm_eps"],
# having default values other than `1e-5` - we can't fix them without breaking
"CvtConfig": ["layer_norm_eps"],
# having default values other than `1e-5` - we can't fix them without breaking
"PerceiverConfig": ["layer_norm_eps"],
# used internally to calculate the feature size
"InformerConfig": ["num_static_real_features", "num_time_features"],
# used internally to calculate the feature size
"TimeSeriesTransformerConfig": ["num_static_real_features", "num_time_features"],
# used internally to calculate the feature size
"AutoformerConfig": ["num_static_real_features", "num_time_features"],
# used internally to calculate `mlp_dim`
"SamVisionConfig": ["mlp_ratio"],
# For (head) training, but so far not implemented
"ClapAudioConfig": ["num_classes"],
# Not used, but providing useful information to users
"SpeechT5HifiGanConfig": ["sampling_rate"],
}
# TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure
SPECIAL_CASES_TO_ALLOW.update(
{
"CLIPSegConfig": True,
"DeformableDetrConfig": True,
"DetaConfig": True,
"DinatConfig": True,
"DonutSwinConfig": True,
"EfficientFormerConfig": True,
"FSMTConfig": True,
"JukeboxConfig": True,
"LayoutLMv2Config": True,
"MaskFormerSwinConfig": True,
"MT5Config": True,
"NatConfig": True,
"OneFormerConfig": True,
"PerceiverConfig": True,
"RagConfig": True,
"SpeechT5Config": True,
"SwinConfig": True,
"Swin2SRConfig": True,
"Swinv2Config": True,
"SwitchTransformersConfig": True,
"TableTransformerConfig": True,
"TapasConfig": True,
"TransfoXLConfig": True,
"UniSpeechConfig": True,
"UniSpeechSatConfig": True,
"WavLMConfig": True,
"WhisperConfig": True,
# TODO: @Arthur (for `alignment_head` and `alignment_layer`)
"JukeboxPriorConfig": True,
# TODO: @Younes (for `is_decoder`)
"Pix2StructTextConfig": True,
}
)
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Dict, SCREAMING_SNAKE_CASE__ : Union[str, Any], SCREAMING_SNAKE_CASE__ : List[Any], SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Tuple:
UpperCAmelCase_ : Union[str, Any] = False
for attribute in attributes:
for modeling_source in source_strings:
# check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)`
if (
F"""config.{attribute}""" in modeling_source
or F"""getattr(config, \"{attribute}\"""" in modeling_source
or F"""getattr(self.config, \"{attribute}\"""" in modeling_source
):
UpperCAmelCase_ : int = True
# Deal with multi-line cases
elif (
re.search(
RF"""getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*\"{attribute}\"""", SCREAMING_SNAKE_CASE__, )
is not None
):
UpperCAmelCase_ : Any = True
# `SequenceSummary` is called with `SequenceSummary(config)`
elif attribute in [
"summary_type",
"summary_use_proj",
"summary_activation",
"summary_last_dropout",
"summary_proj_to_labels",
"summary_first_dropout",
]:
if "SequenceSummary" in modeling_source:
UpperCAmelCase_ : Optional[int] = True
if attribute_used:
break
if attribute_used:
break
# common and important attributes, even if they do not always appear in the modeling files
UpperCAmelCase_ : Union[str, Any] = [
'''bos_index''',
'''eos_index''',
'''pad_index''',
'''unk_index''',
'''mask_index''',
'''image_size''',
'''use_cache''',
'''out_features''',
'''out_indices''',
]
UpperCAmelCase_ : Any = ['''encoder_no_repeat_ngram_size''']
# Special cases to be allowed
UpperCAmelCase_ : Union[str, Any] = True
if not attribute_used:
UpperCAmelCase_ : List[str] = False
for attribute in attributes:
# Allow if the default value in the configuration class is different from the one in `PretrainedConfig`
if attribute in ["is_encoder_decoder"] and default_value is True:
UpperCAmelCase_ : Tuple = True
elif attribute in ["tie_word_embeddings"] and default_value is False:
UpperCAmelCase_ : Any = True
# Allow cases without checking the default value in the configuration class
elif attribute in attributes_to_allow + attributes_used_in_generation:
UpperCAmelCase_ : Optional[int] = True
elif attribute.endswith('''_token_id''' ):
UpperCAmelCase_ : Any = True
# configuration class specific cases
if not case_allowed:
UpperCAmelCase_ : str = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__, [] )
UpperCAmelCase_ : Tuple = allowed_cases is True or attribute in allowed_cases
return attribute_used or case_allowed
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int ) -> str:
UpperCAmelCase_ : Any = dict(inspect.signature(config_class.__init__ ).parameters )
UpperCAmelCase_ : List[Any] = [x for x in list(signature.keys() ) if x not in ['''self''', '''kwargs''']]
UpperCAmelCase_ : str = [signature[param].default for param in parameter_names]
# If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long
# as one variant is used, the test should pass
UpperCAmelCase_ : Tuple = {}
if len(config_class.attribute_map ) > 0:
UpperCAmelCase_ : Optional[int] = {v: k for k, v in config_class.attribute_map.items()}
# Get the path to modeling source files
UpperCAmelCase_ : Optional[int] = inspect.getsourcefile(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Optional[int] = os.path.dirname(SCREAMING_SNAKE_CASE__ )
# Let's check against all frameworks: as long as one framework uses an attribute, we are good.
UpperCAmelCase_ : Optional[int] = [os.path.join(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) for fn in os.listdir(SCREAMING_SNAKE_CASE__ ) if fn.startswith('''modeling_''' )]
# Get the source code strings
UpperCAmelCase_ : List[str] = []
for path in modeling_paths:
if os.path.isfile(SCREAMING_SNAKE_CASE__ ):
with open(SCREAMING_SNAKE_CASE__ ) as fp:
modeling_sources.append(fp.read() )
UpperCAmelCase_ : Dict = []
for config_param, default_value in zip(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ):
# `attributes` here is all the variant names for `config_param`
UpperCAmelCase_ : List[Any] = [config_param]
# some configuration classes have non-empty `attribute_map`, and both names could be used in the
# corresponding modeling files. As long as one of them appears, it is fine.
if config_param in reversed_attribute_map:
attributes.append(reversed_attribute_map[config_param] )
if not check_attribute_being_used(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ):
unused_attributes.append(attributes[0] )
return sorted(SCREAMING_SNAKE_CASE__ )
def lowerCamelCase_ ( ) -> List[str]:
UpperCAmelCase_ : str = {}
for _config_class in list(CONFIG_MAPPING.values() ):
# Skip deprecated models
if "models.deprecated" in _config_class.__module__:
continue
# Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.)
UpperCAmelCase_ : Any = [
cls
for name, cls in inspect.getmembers(
inspect.getmodule(_config_class ), lambda SCREAMING_SNAKE_CASE__ : inspect.isclass(SCREAMING_SNAKE_CASE__ )
and issubclass(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
and inspect.getmodule(SCREAMING_SNAKE_CASE__ ) == inspect.getmodule(_config_class ), )
]
for config_class in config_classes_in_module:
UpperCAmelCase_ : Optional[Any] = check_config_attributes_being_used(SCREAMING_SNAKE_CASE__ )
if len(SCREAMING_SNAKE_CASE__ ) > 0:
UpperCAmelCase_ : Optional[int] = unused_attributes
if len(SCREAMING_SNAKE_CASE__ ) > 0:
UpperCAmelCase_ : Dict = '''The following configuration classes contain unused attributes in the corresponding modeling files:\n'''
for name, attributes in configs_with_unused_attributes.items():
error += F"""{name}: {attributes}\n"""
raise ValueError(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
check_config_attributes()
| 644
|
'''simple docstring'''
import io
import os
import unicodedata
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
snake_case_ : str = logging.get_logger(__name__)
snake_case_ : int = "▁"
snake_case_ : str = {"vocab_file": "vocab.txt", "sentencepiece_model_ckpt": "sentencepiece.bpe.model"}
snake_case_ : int = {
"sentencepiece_model_file": "sentencepiece.bpe.model",
"vocab_file": "vocab.txt",
}
snake_case_ : Optional[Any] = {
"vocab_file": {
"ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt",
"ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt",
},
"sentencepiece_model_file": {
"ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model",
"ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model",
},
}
snake_case_ : Dict = {
"ernie-m-base": 5_14,
"ernie-m-large": 5_14,
}
snake_case_ : Any = {
"ernie-m-base": {"do_lower_case": False},
"ernie-m-large": {"do_lower_case": False},
}
class __a (lowerCamelCase ):
__a : List[str] = ["input_ids"]
__a : Union[str, Any] = VOCAB_FILES_NAMES
__a : Tuple = PRETRAINED_INIT_CONFIGURATION
__a : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__a : Optional[int] = PRETRAINED_VOCAB_FILES_MAP
__a : Union[str, Any] = RESOURCE_FILES_NAMES
def __init__( self : Union[str, Any] , __magic_name__ : Dict , __magic_name__ : int=None , __magic_name__ : str=False , __magic_name__ : int="utf8" , __magic_name__ : Optional[int]="[UNK]" , __magic_name__ : Dict="[SEP]" , __magic_name__ : List[Any]="[PAD]" , __magic_name__ : str="[CLS]" , __magic_name__ : Optional[int]="[MASK]" , __magic_name__ : Optional[Dict[str, Any]] = None , **__magic_name__ : Union[str, Any] , ) -> None:
"""simple docstring"""
# Mask token behave like a normal word, i.e. include the space before it and
# is included in the raw text, there should be a match in a non-normalized sentence.
UpperCAmelCase_ : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=__magic_name__ , unk_token=__magic_name__ , sep_token=__magic_name__ , pad_token=__magic_name__ , cls_token=__magic_name__ , mask_token=__magic_name__ , vocab_file=__magic_name__ , encoding=__magic_name__ , sp_model_kwargs=self.sp_model_kwargs , **__magic_name__ , )
UpperCAmelCase_ : Optional[Any] = do_lower_case
UpperCAmelCase_ : List[str] = sentencepiece_model_ckpt
UpperCAmelCase_ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(__magic_name__ )
# to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning
if vocab_file is not None:
UpperCAmelCase_ : List[Any] = self.load_vocab(filepath=__magic_name__ )
else:
UpperCAmelCase_ : str = {self.sp_model.id_to_piece(__magic_name__ ): id for id in range(self.sp_model.get_piece_size() )}
UpperCAmelCase_ : int = {v: k for k, v in self.vocab.items()}
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Any ) -> Any:
"""simple docstring"""
if text is None:
return None
UpperCAmelCase_ : str = self.tokenize(__magic_name__ )
UpperCAmelCase_ , UpperCAmelCase_ : str = '''''', []
for i, ch in enumerate(__magic_name__ ):
if ch in self.SP_CHAR_MAPPING:
UpperCAmelCase_ : Optional[int] = self.SP_CHAR_MAPPING.get(__magic_name__ )
else:
UpperCAmelCase_ : Union[str, Any] = unicodedata.normalize('''NFKC''' , __magic_name__ )
if self.is_whitespace(__magic_name__ ):
continue
normalized_text += ch
char_mapping.extend([i] * len(__magic_name__ ) )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = normalized_text, [], 0
if self.do_lower_case:
UpperCAmelCase_ : Optional[int] = text.lower()
for token in split_tokens:
if token[:1] == "▁":
UpperCAmelCase_ : Tuple = token[1:]
UpperCAmelCase_ : int = text[offset:].index(__magic_name__ ) + offset
UpperCAmelCase_ : Optional[int] = start + len(__magic_name__ )
token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) )
UpperCAmelCase_ : int = end
return token_mapping
@property
def UpperCAmelCase__ ( self : Any ) -> Any:
"""simple docstring"""
return len(self.vocab )
def UpperCAmelCase__ ( self : List[Any] ) -> int:
"""simple docstring"""
return dict(self.vocab , **self.added_tokens_encoder )
def __getstate__( self : str ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = self.__dict__.copy()
UpperCAmelCase_ : Optional[Any] = None
return state
def __setstate__( self : str , __magic_name__ : Any ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : Dict = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
UpperCAmelCase_ : int = {}
UpperCAmelCase_ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.sentencepiece_model_ckpt )
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : Any ) -> List[str]:
"""simple docstring"""
return "".join((self.SP_CHAR_MAPPING.get(__magic_name__ , __magic_name__ ) for c in text) )
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Tuple , __magic_name__ : Any=False , __magic_name__ : List[str]=64 , __magic_name__ : List[str]=0.1 ) -> List[str]:
"""simple docstring"""
if self.sp_model_kwargs.get('''enable_sampling''' ) is True:
UpperCAmelCase_ : Dict = True
if self.sp_model_kwargs.get('''alpha''' ) is not None:
UpperCAmelCase_ : Union[str, Any] = self.sp_model_kwargs.get('''alpha''' )
if self.sp_model_kwargs.get('''nbest_size''' ) is not None:
UpperCAmelCase_ : Any = self.sp_model_kwargs.get('''nbest_size''' )
if not enable_sampling:
UpperCAmelCase_ : Dict = self.sp_model.EncodeAsPieces(__magic_name__ )
else:
UpperCAmelCase_ : Dict = self.sp_model.SampleEncodeAsPieces(__magic_name__ , __magic_name__ , __magic_name__ )
UpperCAmelCase_ : List[Any] = []
for pi, piece in enumerate(__magic_name__ ):
if piece == SPIECE_UNDERLINE:
if not pieces[pi + 1].startswith(__magic_name__ ) and pi != 0:
new_pieces.append(__magic_name__ )
continue
else:
continue
UpperCAmelCase_ : List[str] = 0
for i, chunk in enumerate(__magic_name__ ):
if chunk == SPIECE_UNDERLINE:
continue
if self.is_ch_char(__magic_name__ ) or self.is_punct(__magic_name__ ):
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
new_pieces.append(__magic_name__ )
UpperCAmelCase_ : List[Any] = i + 1
elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
UpperCAmelCase_ : List[str] = i
elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
UpperCAmelCase_ : str = i
if len(__magic_name__ ) > lst_i:
new_pieces.append(piece[lst_i:] )
return new_pieces
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Optional[int] ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = ''''''.join(__magic_name__ ).replace(__magic_name__ , ''' ''' ).strip()
return out_string
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Union[str, Any] ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : str = self.convert_ids_to_tokens(__magic_name__ )
UpperCAmelCase_ : Optional[Any] = ''''''.join(__magic_name__ ).replace(__magic_name__ , ''' ''' ).strip()
return out_string
def UpperCAmelCase__ ( self : str , __magic_name__ : Optional[Any] ) -> List[Any]:
"""simple docstring"""
return self.vocab.get(__magic_name__ , self.vocab.get(self.unk_token ) )
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
return self.reverse_vocab.get(__magic_name__ , self.unk_token )
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Any , __magic_name__ : Union[str, Any]=None ) -> Any:
"""simple docstring"""
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
UpperCAmelCase_ : Union[str, Any] = [self.cls_token_id]
UpperCAmelCase_ : List[Any] = [self.sep_token_id]
return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep
def UpperCAmelCase__ ( self : Any , __magic_name__ : Optional[Any] , __magic_name__ : List[str]=None ) -> int:
"""simple docstring"""
if offset_mapping_a is None:
return [(0, 0)] + offset_mapping_a + [(0, 0)]
return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)]
def UpperCAmelCase__ ( self : Dict , __magic_name__ : Optional[Any] , __magic_name__ : List[str]=None , __magic_name__ : Optional[Any]=False ) -> Optional[int]:
"""simple docstring"""
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(__magic_name__ )) + [1, 1] + ([0] * len(__magic_name__ )) + [1]
return [1] + ([0] * len(__magic_name__ )) + [1]
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
# called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method
if token_ids_a is None:
# [CLS] X [SEP]
return (len(__magic_name__ ) + 2) * [0]
# [CLS] A [SEP] [SEP] B [SEP]
return [0] * (len(__magic_name__ ) + 1) + [1] * (len(__magic_name__ ) + 3)
def UpperCAmelCase__ ( self : Dict , __magic_name__ : str ) -> Tuple:
"""simple docstring"""
if "\u4e00" <= char <= "\u9fff":
return True
return False
def UpperCAmelCase__ ( self : int , __magic_name__ : Optional[int] ) -> str:
"""simple docstring"""
if ("a" <= char <= "z") or ("A" <= char <= "Z"):
return True
return False
def UpperCAmelCase__ ( self : int , __magic_name__ : Optional[Any] ) -> Dict:
"""simple docstring"""
if char in ",;:.?!~,;:。?!《》【】":
return True
return False
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Any ) -> Union[str, Any]:
"""simple docstring"""
if char == " " or char == "\t" or char == "\n" or char == "\r":
return True
if len(__magic_name__ ) == 1:
UpperCAmelCase_ : Optional[Any] = unicodedata.category(__magic_name__ )
if cat == "Zs":
return True
return False
def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : Tuple ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = {}
with io.open(__magic_name__ , '''r''' , encoding='''utf-8''' ) as f:
for index, line in enumerate(__magic_name__ ):
UpperCAmelCase_ : List[Any] = line.rstrip('''\n''' )
UpperCAmelCase_ : Dict = int(__magic_name__ )
return token_to_idx
def UpperCAmelCase__ ( self : Dict , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = 0
if os.path.isdir(__magic_name__ ):
UpperCAmelCase_ : Any = os.path.join(
__magic_name__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
else:
UpperCAmelCase_ : List[str] = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory
with open(__magic_name__ , '''w''' , encoding='''utf-8''' ) as writer:
for token, token_index in sorted(self.vocab.items() , key=lambda __magic_name__ : kv[1] ):
if index != token_index:
logger.warning(
F"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."""
''' Please check that the vocabulary is not corrupted!''' )
UpperCAmelCase_ : Dict = token_index
writer.write(token + '''\n''' )
index += 1
UpperCAmelCase_ : Union[str, Any] = os.path.join(__magic_name__ , '''sentencepiece.bpe.model''' )
with open(__magic_name__ , '''wb''' ) as fi:
UpperCAmelCase_ : Optional[int] = self.sp_model.serialized_model_proto()
fi.write(__magic_name__ )
return (vocab_file,)
| 644
| 1
|
'''simple docstring'''
import argparse
import json
import os
import numpy as np
import PIL
import requests
import tensorflow.keras.applications.efficientnet as efficientnet
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from tensorflow.keras.preprocessing import image
from transformers import (
EfficientNetConfig,
EfficientNetForImageClassification,
EfficientNetImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
snake_case_ : List[str] = logging.get_logger(__name__)
snake_case_ : List[Any] = {
"b0": efficientnet.EfficientNetBa,
"b1": efficientnet.EfficientNetBa,
"b2": efficientnet.EfficientNetBa,
"b3": efficientnet.EfficientNetBa,
"b4": efficientnet.EfficientNetBa,
"b5": efficientnet.EfficientNetBa,
"b6": efficientnet.EfficientNetBa,
"b7": efficientnet.EfficientNetBa,
}
snake_case_ : Optional[Any] = {
"b0": {
"hidden_dim": 12_80,
"width_coef": 1.0,
"depth_coef": 1.0,
"image_size": 2_24,
"dropout_rate": 0.2,
"dw_padding": [],
},
"b1": {
"hidden_dim": 12_80,
"width_coef": 1.0,
"depth_coef": 1.1,
"image_size": 2_40,
"dropout_rate": 0.2,
"dw_padding": [16],
},
"b2": {
"hidden_dim": 14_08,
"width_coef": 1.1,
"depth_coef": 1.2,
"image_size": 2_60,
"dropout_rate": 0.3,
"dw_padding": [5, 8, 16],
},
"b3": {
"hidden_dim": 15_36,
"width_coef": 1.2,
"depth_coef": 1.4,
"image_size": 3_00,
"dropout_rate": 0.3,
"dw_padding": [5, 18],
},
"b4": {
"hidden_dim": 17_92,
"width_coef": 1.4,
"depth_coef": 1.8,
"image_size": 3_80,
"dropout_rate": 0.4,
"dw_padding": [6],
},
"b5": {
"hidden_dim": 20_48,
"width_coef": 1.6,
"depth_coef": 2.2,
"image_size": 4_56,
"dropout_rate": 0.4,
"dw_padding": [13, 27],
},
"b6": {
"hidden_dim": 23_04,
"width_coef": 1.8,
"depth_coef": 2.6,
"image_size": 5_28,
"dropout_rate": 0.5,
"dw_padding": [31],
},
"b7": {
"hidden_dim": 25_60,
"width_coef": 2.0,
"depth_coef": 3.1,
"image_size": 6_00,
"dropout_rate": 0.5,
"dw_padding": [18],
},
}
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : str ) -> Dict:
UpperCAmelCase_ : int = EfficientNetConfig()
UpperCAmelCase_ : str = CONFIG_MAP[model_name]['''hidden_dim''']
UpperCAmelCase_ : Any = CONFIG_MAP[model_name]['''width_coef''']
UpperCAmelCase_ : Tuple = CONFIG_MAP[model_name]['''depth_coef''']
UpperCAmelCase_ : List[Any] = CONFIG_MAP[model_name]['''image_size''']
UpperCAmelCase_ : int = CONFIG_MAP[model_name]['''dropout_rate''']
UpperCAmelCase_ : Optional[int] = CONFIG_MAP[model_name]['''dw_padding''']
UpperCAmelCase_ : int = '''huggingface/label-files'''
UpperCAmelCase_ : Dict = '''imagenet-1k-id2label.json'''
UpperCAmelCase_ : Union[str, Any] = 1000
UpperCAmelCase_ : Tuple = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, repo_type='''dataset''' ), '''r''' ) )
UpperCAmelCase_ : str = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()}
UpperCAmelCase_ : Any = idalabel
UpperCAmelCase_ : List[str] = {v: k for k, v in idalabel.items()}
return config
def lowerCamelCase_ ( ) -> Optional[Any]:
UpperCAmelCase_ : Optional[int] = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
UpperCAmelCase_ : List[Any] = Image.open(requests.get(SCREAMING_SNAKE_CASE__, stream=SCREAMING_SNAKE_CASE__ ).raw )
return im
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[str]:
UpperCAmelCase_ : Optional[Any] = CONFIG_MAP[model_name]['''image_size''']
UpperCAmelCase_ : str = EfficientNetImageProcessor(
size={'''height''': size, '''width''': size}, image_mean=[0.4_85, 0.4_56, 0.4_06], image_std=[0.47_85_39_44, 0.4_73_28_64, 0.47_43_41_63], do_center_crop=SCREAMING_SNAKE_CASE__, )
return preprocessor
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int ) -> Tuple:
UpperCAmelCase_ : Dict = [v.split('''_''' )[0].split('''block''' )[1] for v in original_param_names if v.startswith('''block''' )]
UpperCAmelCase_ : Optional[int] = sorted(set(SCREAMING_SNAKE_CASE__ ) )
UpperCAmelCase_ : Union[str, Any] = len(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : str = {b: str(SCREAMING_SNAKE_CASE__ ) for b, i in zip(SCREAMING_SNAKE_CASE__, range(SCREAMING_SNAKE_CASE__ ) )}
UpperCAmelCase_ : Optional[int] = []
rename_keys.append(('''stem_conv/kernel:0''', '''embeddings.convolution.weight''') )
rename_keys.append(('''stem_bn/gamma:0''', '''embeddings.batchnorm.weight''') )
rename_keys.append(('''stem_bn/beta:0''', '''embeddings.batchnorm.bias''') )
rename_keys.append(('''stem_bn/moving_mean:0''', '''embeddings.batchnorm.running_mean''') )
rename_keys.append(('''stem_bn/moving_variance:0''', '''embeddings.batchnorm.running_var''') )
for b in block_names:
UpperCAmelCase_ : Union[str, Any] = block_name_mapping[b]
rename_keys.append((F"""block{b}_expand_conv/kernel:0""", F"""encoder.blocks.{hf_b}.expansion.expand_conv.weight""") )
rename_keys.append((F"""block{b}_expand_bn/gamma:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.weight""") )
rename_keys.append((F"""block{b}_expand_bn/beta:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.bias""") )
rename_keys.append(
(F"""block{b}_expand_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_mean""") )
rename_keys.append(
(F"""block{b}_expand_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_var""") )
rename_keys.append(
(F"""block{b}_dwconv/depthwise_kernel:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight""") )
rename_keys.append((F"""block{b}_bn/gamma:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight""") )
rename_keys.append((F"""block{b}_bn/beta:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias""") )
rename_keys.append(
(F"""block{b}_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean""") )
rename_keys.append(
(F"""block{b}_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var""") )
rename_keys.append((F"""block{b}_se_reduce/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.weight""") )
rename_keys.append((F"""block{b}_se_reduce/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.bias""") )
rename_keys.append((F"""block{b}_se_expand/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.weight""") )
rename_keys.append((F"""block{b}_se_expand/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.bias""") )
rename_keys.append(
(F"""block{b}_project_conv/kernel:0""", F"""encoder.blocks.{hf_b}.projection.project_conv.weight""") )
rename_keys.append((F"""block{b}_project_bn/gamma:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.weight""") )
rename_keys.append((F"""block{b}_project_bn/beta:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.bias""") )
rename_keys.append(
(F"""block{b}_project_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_mean""") )
rename_keys.append(
(F"""block{b}_project_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_var""") )
rename_keys.append(('''top_conv/kernel:0''', '''encoder.top_conv.weight''') )
rename_keys.append(('''top_bn/gamma:0''', '''encoder.top_bn.weight''') )
rename_keys.append(('''top_bn/beta:0''', '''encoder.top_bn.bias''') )
rename_keys.append(('''top_bn/moving_mean:0''', '''encoder.top_bn.running_mean''') )
rename_keys.append(('''top_bn/moving_variance:0''', '''encoder.top_bn.running_var''') )
UpperCAmelCase_ : Optional[int] = {}
for item in rename_keys:
if item[0] in original_param_names:
UpperCAmelCase_ : Optional[int] = '''efficientnet.''' + item[1]
UpperCAmelCase_ : Any = '''classifier.weight'''
UpperCAmelCase_ : Dict = '''classifier.bias'''
return key_mapping
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Optional[Any], SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Optional[int]:
for key, value in tf_params.items():
if "normalization" in key:
continue
UpperCAmelCase_ : List[str] = key_mapping[key]
if "_conv" in key and "kernel" in key:
UpperCAmelCase_ : Union[str, Any] = torch.from_numpy(SCREAMING_SNAKE_CASE__ ).permute(3, 2, 0, 1 )
elif "depthwise_kernel" in key:
UpperCAmelCase_ : Tuple = torch.from_numpy(SCREAMING_SNAKE_CASE__ ).permute(2, 3, 0, 1 )
elif "kernel" in key:
UpperCAmelCase_ : str = torch.from_numpy(np.transpose(SCREAMING_SNAKE_CASE__ ) )
else:
UpperCAmelCase_ : Tuple = torch.from_numpy(SCREAMING_SNAKE_CASE__ )
# Replace HF parameters with original TF model parameters
assert hf_params[hf_key].shape == new_hf_value.shape
hf_params[hf_key].copy_(SCREAMING_SNAKE_CASE__ )
@torch.no_grad()
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[Any], SCREAMING_SNAKE_CASE__ : Dict, SCREAMING_SNAKE_CASE__ : Any, SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Any:
UpperCAmelCase_ : Optional[Any] = model_classes[model_name](
include_top=SCREAMING_SNAKE_CASE__, weights='''imagenet''', input_tensor=SCREAMING_SNAKE_CASE__, input_shape=SCREAMING_SNAKE_CASE__, pooling=SCREAMING_SNAKE_CASE__, classes=1000, classifier_activation='''softmax''', )
UpperCAmelCase_ : int = original_model.trainable_variables
UpperCAmelCase_ : List[Any] = original_model.non_trainable_variables
UpperCAmelCase_ : Tuple = {param.name: param.numpy() for param in tf_params}
for param in tf_non_train_params:
UpperCAmelCase_ : Dict = param.numpy()
UpperCAmelCase_ : Dict = list(tf_params.keys() )
# Load HuggingFace model
UpperCAmelCase_ : str = get_efficientnet_config(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Optional[int] = EfficientNetForImageClassification(SCREAMING_SNAKE_CASE__ ).eval()
UpperCAmelCase_ : Optional[int] = hf_model.state_dict()
# Create src-to-dst parameter name mapping dictionary
print('''Converting parameters...''' )
UpperCAmelCase_ : List[Any] = rename_keys(SCREAMING_SNAKE_CASE__ )
replace_params(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
# Initialize preprocessor and preprocess input image
UpperCAmelCase_ : Optional[Any] = convert_image_processor(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Union[str, Any] = preprocessor(images=prepare_img(), return_tensors='''pt''' )
# HF model inference
hf_model.eval()
with torch.no_grad():
UpperCAmelCase_ : str = hf_model(**SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Dict = outputs.logits.detach().numpy()
# Original model inference
UpperCAmelCase_ : List[str] = False
UpperCAmelCase_ : Union[str, Any] = CONFIG_MAP[model_name]['''image_size''']
UpperCAmelCase_ : str = prepare_img().resize((image_size, image_size), resample=PIL.Image.NEAREST )
UpperCAmelCase_ : Union[str, Any] = image.img_to_array(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Optional[Any] = np.expand_dims(SCREAMING_SNAKE_CASE__, axis=0 )
UpperCAmelCase_ : Optional[int] = original_model.predict(SCREAMING_SNAKE_CASE__ )
# Check whether original and HF model outputs match -> np.allclose
assert np.allclose(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, atol=1E-3 ), "The predicted logits are not the same."
print('''Model outputs match!''' )
if save_model:
# Create folder to save model
if not os.path.isdir(SCREAMING_SNAKE_CASE__ ):
os.mkdir(SCREAMING_SNAKE_CASE__ )
# Save converted model and image processor
hf_model.save_pretrained(SCREAMING_SNAKE_CASE__ )
preprocessor.save_pretrained(SCREAMING_SNAKE_CASE__ )
if push_to_hub:
# Push model and image processor to hub
print(F"""Pushing converted {model_name} to the hub...""" )
UpperCAmelCase_ : List[str] = F"""efficientnet-{model_name}"""
preprocessor.push_to_hub(SCREAMING_SNAKE_CASE__ )
hf_model.push_to_hub(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
snake_case_ : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="b0",
type=str,
help="Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].",
)
parser.add_argument(
"--pytorch_dump_folder_path",
default="hf_model",
type=str,
help="Path to the output PyTorch model directory.",
)
parser.add_argument("--save_model", action="store_true", help="Save model to local")
parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub")
snake_case_ : List[Any] = parser.parse_args()
convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
| 644
|
'''simple docstring'''
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int ) -> str:
if number > 0:
raise ValueError('''input must be a negative integer''' )
UpperCAmelCase_ : Union[str, Any] = len(bin(SCREAMING_SNAKE_CASE__ )[3:] )
UpperCAmelCase_ : Union[str, Any] = bin(abs(SCREAMING_SNAKE_CASE__ ) - (1 << binary_number_length) )[3:]
UpperCAmelCase_ : Optional[Any] = (
(
'''1'''
+ '''0''' * (binary_number_length - len(SCREAMING_SNAKE_CASE__ ))
+ twos_complement_number
)
if number < 0
else '''0'''
)
return "0b" + twos_complement_number
if __name__ == "__main__":
import doctest
doctest.testmod()
| 644
| 1
|
'''simple docstring'''
from __future__ import annotations
import time
from collections.abc import Sequence
from random import randint
from matplotlib import pyplot as plt
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Sequence[float], SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : int ) -> tuple[int | None, int | None, float]:
if not arr:
return None, None, 0
if low == high:
return low, high, arr[low]
UpperCAmelCase_ : Optional[Any] = (low + high) // 2
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Dict = max_subarray(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = max_subarray(SCREAMING_SNAKE_CASE__, mid + 1, SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = max_cross_sum(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
if left_sum >= right_sum and left_sum >= cross_sum:
return left_low, left_high, left_sum
elif right_sum >= left_sum and right_sum >= cross_sum:
return right_low, right_high, right_sum
return cross_left, cross_right, cross_sum
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Sequence[float], SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : int ) -> tuple[int, int, float]:
UpperCAmelCase_ , UpperCAmelCase_ : Dict = float('''-inf''' ), -1
UpperCAmelCase_ , UpperCAmelCase_ : Any = float('''-inf''' ), -1
UpperCAmelCase_ : int | float = 0
for i in range(SCREAMING_SNAKE_CASE__, low - 1, -1 ):
summ += arr[i]
if summ > left_sum:
UpperCAmelCase_ : int = summ
UpperCAmelCase_ : Dict = i
UpperCAmelCase_ : int = 0
for i in range(mid + 1, high + 1 ):
summ += arr[i]
if summ > right_sum:
UpperCAmelCase_ : List[str] = summ
UpperCAmelCase_ : Optional[int] = i
return max_left, max_right, (left_sum + right_sum)
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int ) -> float:
UpperCAmelCase_ : List[Any] = [randint(1, SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ )]
UpperCAmelCase_ : int = time.time()
max_subarray(SCREAMING_SNAKE_CASE__, 0, input_size - 1 )
UpperCAmelCase_ : Union[str, Any] = time.time()
return end - start
def lowerCamelCase_ ( ) -> None:
UpperCAmelCase_ : Optional[int] = [10, 100, 1000, 10000, 50000, 100000, 200000, 300000, 400000, 500000]
UpperCAmelCase_ : str = [time_max_subarray(SCREAMING_SNAKE_CASE__ ) for input_size in input_sizes]
print('''No of Inputs\t\tTime Taken''' )
for input_size, runtime in zip(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ):
print(SCREAMING_SNAKE_CASE__, '''\t\t''', SCREAMING_SNAKE_CASE__ )
plt.plot(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
plt.xlabel('''Number of Inputs''' )
plt.ylabel('''Time taken in seconds''' )
plt.show()
if __name__ == "__main__":
from doctest import testmod
testmod()
| 644
|
'''simple docstring'''
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from transformers.generation import DisjunctiveConstraint
@require_torch
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
# For consistency across different places the DisjunctiveConstraint is called,
# dc.token_ids is a list of integers. It is also initialized only by integers.
UpperCAmelCase_ : List[str] = [[1, 2, 4], [1, 2, 3, 4]]
UpperCAmelCase_ : List[str] = DisjunctiveConstraint(__magic_name__ )
self.assertTrue(isinstance(dc.token_ids , __magic_name__ ) )
with self.assertRaises(__magic_name__ ):
DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) )
with self.assertRaises(__magic_name__ ):
DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] )
def UpperCAmelCase__ ( self : List[str] ) -> Dict:
"""simple docstring"""
# We can't have constraints that are complete subsets of another. This leads to a preverse
# interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint?
# It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially
# fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm
# will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it).
UpperCAmelCase_ : Tuple = [[1, 2], [1, 2, 3, 4]]
with self.assertRaises(__magic_name__ ):
DisjunctiveConstraint(__magic_name__ ) # fails here
def UpperCAmelCase__ ( self : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = [[1, 2, 3], [1, 2, 4]]
UpperCAmelCase_ : List[str] = DisjunctiveConstraint(__magic_name__ )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = dc.update(1 )
UpperCAmelCase_ : Dict = stepped is True and completed is False and reset is False
self.assertTrue(__magic_name__ )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = dc.update(2 )
UpperCAmelCase_ : Optional[Any] = stepped is True and completed is False and reset is False
self.assertTrue(__magic_name__ )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = dc.update(3 )
UpperCAmelCase_ : Dict = stepped is True and completed is True and reset is False
self.assertTrue(__magic_name__ )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 3] )
def UpperCAmelCase__ ( self : int ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : Any = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]]
UpperCAmelCase_ : Tuple = DisjunctiveConstraint(__magic_name__ )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = dc.update(4 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2, 4] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 4, 5] )
dc.reset()
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 3 )
self.assertTrue(dc.current_seq == [1] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 2 )
self.assertTrue(dc.current_seq == [1, 2] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.remaining() == 0 )
self.assertTrue(dc.current_seq == [1, 2, 5] )
| 644
| 1
|
'''simple docstring'''
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int = 3, SCREAMING_SNAKE_CASE__ : int = 7, SCREAMING_SNAKE_CASE__ : int = 1000000 ) -> int:
UpperCAmelCase_ : int = 0
UpperCAmelCase_ : Tuple = 1
for current_denominator in range(1, limit + 1 ):
UpperCAmelCase_ : Optional[int] = current_denominator * numerator // denominator
if current_denominator % denominator == 0:
current_numerator -= 1
if current_numerator * max_denominator > current_denominator * max_numerator:
UpperCAmelCase_ : int = current_numerator
UpperCAmelCase_ : Optional[int] = current_denominator
return max_numerator
if __name__ == "__main__":
print(solution(numerator=3, denominator=7, limit=1_00_00_00))
| 644
|
'''simple docstring'''
import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.layers import LSTM, Dense
from tensorflow.keras.models import Sequential
if __name__ == "__main__":
snake_case_ : List[Any] = pd.read_csv("sample_data.csv", header=None)
snake_case_ : Optional[Any] = df.shape[:1][0]
# If you're using some other dataset input the target column
snake_case_ : Any = df.iloc[:, 1:2]
snake_case_ : str = actual_data.values.reshape(len_data, 1)
snake_case_ : Optional[Any] = MinMaxScaler().fit_transform(actual_data)
snake_case_ : List[str] = 10
snake_case_ : Any = 5
snake_case_ : Any = 20
snake_case_ : Tuple = len_data - periods * look_back
snake_case_ : str = actual_data[:division]
snake_case_ : Optional[int] = actual_data[division - look_back :]
snake_case_ ,snake_case_ : Any = [], []
snake_case_ ,snake_case_ : Union[str, Any] = [], []
for i in range(0, len(train_data) - forward_days - look_back + 1):
train_x.append(train_data[i : i + look_back])
train_y.append(train_data[i + look_back : i + look_back + forward_days])
for i in range(0, len(test_data) - forward_days - look_back + 1):
test_x.append(test_data[i : i + look_back])
test_y.append(test_data[i + look_back : i + look_back + forward_days])
snake_case_ : Any = np.array(train_x)
snake_case_ : Optional[Any] = np.array(test_x)
snake_case_ : Optional[Any] = np.array([list(i.ravel()) for i in train_y])
snake_case_ : List[str] = np.array([list(i.ravel()) for i in test_y])
snake_case_ : List[Any] = Sequential()
model.add(LSTM(1_28, input_shape=(look_back, 1), return_sequences=True))
model.add(LSTM(64, input_shape=(1_28, 1)))
model.add(Dense(forward_days))
model.compile(loss="mean_squared_error", optimizer="adam")
snake_case_ : Dict = model.fit(
x_train, y_train, epochs=1_50, verbose=1, shuffle=True, batch_size=4
)
snake_case_ : Optional[Any] = model.predict(x_test)
| 644
| 1
|
'''simple docstring'''
import numpy as np
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Union[str, Any], SCREAMING_SNAKE_CASE__ : str, SCREAMING_SNAKE_CASE__ : List[Any], SCREAMING_SNAKE_CASE__ : Dict, SCREAMING_SNAKE_CASE__ : Any ) -> Optional[Any]:
UpperCAmelCase_ : str = int(np.ceil((x_end - xa) / h ) )
UpperCAmelCase_ : str = np.zeros((n + 1,) )
UpperCAmelCase_ : Tuple = ya
UpperCAmelCase_ : Optional[int] = xa
for k in range(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase_ : int = f(SCREAMING_SNAKE_CASE__, y[k] )
UpperCAmelCase_ : Optional[int] = f(x + 0.5 * h, y[k] + 0.5 * h * ka )
UpperCAmelCase_ : Optional[Any] = f(x + 0.5 * h, y[k] + 0.5 * h * ka )
UpperCAmelCase_ : int = f(x + h, y[k] + h * ka )
UpperCAmelCase_ : str = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka)
x += h
return y
if __name__ == "__main__":
import doctest
doctest.testmod()
| 644
|
'''simple docstring'''
from typing import Any, Callable, Dict, List, Optional, Union
import torch
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
snake_case_ : Union[str, Any] = "CompVis/stable-diffusion-v1-1"
snake_case_ : Dict = "CompVis/stable-diffusion-v1-2"
snake_case_ : Any = "CompVis/stable-diffusion-v1-3"
snake_case_ : str = "CompVis/stable-diffusion-v1-4"
class __a (lowerCamelCase ):
def __init__( self : Any , __magic_name__ : AutoencoderKL , __magic_name__ : CLIPTextModel , __magic_name__ : CLIPTokenizer , __magic_name__ : UNetaDConditionModel , __magic_name__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __magic_name__ : StableDiffusionSafetyChecker , __magic_name__ : CLIPImageProcessor , __magic_name__ : bool = True , ) -> str:
"""simple docstring"""
super()._init_()
UpperCAmelCase_ : Any = StableDiffusionPipeline.from_pretrained(__magic_name__ )
UpperCAmelCase_ : Dict = StableDiffusionPipeline.from_pretrained(__magic_name__ )
UpperCAmelCase_ : List[Any] = StableDiffusionPipeline.from_pretrained(__magic_name__ )
UpperCAmelCase_ : Tuple = StableDiffusionPipeline(
vae=__magic_name__ , text_encoder=__magic_name__ , tokenizer=__magic_name__ , unet=__magic_name__ , scheduler=__magic_name__ , safety_checker=__magic_name__ , feature_extractor=__magic_name__ , requires_safety_checker=__magic_name__ , )
self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea )
@property
def UpperCAmelCase__ ( self : Tuple ) -> Dict[str, Any]:
"""simple docstring"""
return {k: getattr(self , __magic_name__ ) for k in self.config.keys() if not k.startswith('''_''' )}
def UpperCAmelCase__ ( self : Dict , __magic_name__ : Optional[Union[str, int]] = "auto" ) -> int:
"""simple docstring"""
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
UpperCAmelCase_ : List[str] = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(__magic_name__ )
def UpperCAmelCase__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
self.enable_attention_slicing(__magic_name__ )
@torch.no_grad()
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Tuple , ) -> Optional[int]:
"""simple docstring"""
return self.pipea(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
@torch.no_grad()
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Any , ) -> Any:
"""simple docstring"""
return self.pipea(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
@torch.no_grad()
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Dict , ) -> List[str]:
"""simple docstring"""
return self.pipea(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
@torch.no_grad()
def UpperCAmelCase__ ( self : int , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Optional[int] , ) -> str:
"""simple docstring"""
return self.pipea(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
@torch.no_grad()
def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Optional[int] , ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : int = '''cuda''' if torch.cuda.is_available() else '''cpu'''
self.to(__magic_name__ )
# Checks if the height and width are divisible by 8 or not
if height % 8 != 0 or width % 8 != 0:
raise ValueError(F"""`height` and `width` must be divisible by 8 but are {height} and {width}.""" )
# Get first result from Stable Diffusion Checkpoint v1.1
UpperCAmelCase_ : Optional[int] = self.textaimg_sda_a(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
# Get first result from Stable Diffusion Checkpoint v1.2
UpperCAmelCase_ : int = self.textaimg_sda_a(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
# Get first result from Stable Diffusion Checkpoint v1.3
UpperCAmelCase_ : str = self.textaimg_sda_a(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
# Get first result from Stable Diffusion Checkpoint v1.4
UpperCAmelCase_ : str = self.textaimg_sda_a(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
# Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result
return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
| 644
| 1
|
'''simple docstring'''
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Dict:
UpperCAmelCase_ : Union[str, Any] = len(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : List[Any] = sum(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : List[Any] = [[False for x in range(s + 1 )] for y in range(n + 1 )]
for i in range(1, n + 1 ):
UpperCAmelCase_ : Tuple = True
for i in range(1, s + 1 ):
UpperCAmelCase_ : str = False
for i in range(1, n + 1 ):
for j in range(1, s + 1 ):
UpperCAmelCase_ : Any = dp[i][j - 1]
if arr[i - 1] <= j:
UpperCAmelCase_ : Dict = dp[i][j] or dp[i - 1][j - arr[i - 1]]
for j in range(int(s / 2 ), -1, -1 ):
if dp[n][j] is True:
UpperCAmelCase_ : Dict = s - 2 * j
break
return diff
| 644
|
'''simple docstring'''
import argparse
import json
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
snake_case_ : Optional[int] = 16
snake_case_ : Tuple = 32
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Accelerator, SCREAMING_SNAKE_CASE__ : int = 16, SCREAMING_SNAKE_CASE__ : str = "bert-base-cased" ) -> Dict:
UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : int = load_dataset('''glue''', '''mrpc''' )
def tokenize_function(SCREAMING_SNAKE_CASE__ : Optional[int] ):
# max_length=None => use the model max length (it's actually the default)
UpperCAmelCase_ : Union[str, Any] = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=SCREAMING_SNAKE_CASE__, max_length=SCREAMING_SNAKE_CASE__ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
UpperCAmelCase_ : Tuple = datasets.map(
SCREAMING_SNAKE_CASE__, batched=SCREAMING_SNAKE_CASE__, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], load_from_cache_file=SCREAMING_SNAKE_CASE__ )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
UpperCAmelCase_ : Optional[Any] = tokenized_datasets.rename_column('''label''', '''labels''' )
def collate_fn(SCREAMING_SNAKE_CASE__ : str ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(SCREAMING_SNAKE_CASE__, padding='''max_length''', max_length=128, return_tensors='''pt''' )
return tokenizer.pad(SCREAMING_SNAKE_CASE__, padding='''longest''', return_tensors='''pt''' )
# Instantiate dataloaders.
UpperCAmelCase_ : str = DataLoader(
tokenized_datasets['''train'''], shuffle=SCREAMING_SNAKE_CASE__, collate_fn=SCREAMING_SNAKE_CASE__, batch_size=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : int = DataLoader(
tokenized_datasets['''validation'''], shuffle=SCREAMING_SNAKE_CASE__, collate_fn=SCREAMING_SNAKE_CASE__, batch_size=SCREAMING_SNAKE_CASE__ )
return train_dataloader, eval_dataloader
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Optional[Any], SCREAMING_SNAKE_CASE__ : Optional[int], SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : Any ) -> Any:
model.eval()
UpperCAmelCase_ : List[str] = 0
for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
UpperCAmelCase_ : Dict = model(**SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : str = outputs.logits.argmax(dim=-1 )
# It is slightly faster to call this once, than multiple times
UpperCAmelCase_ , UpperCAmelCase_ : List[str] = accelerator.gather(
(predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates
if accelerator.use_distributed:
if step == len(SCREAMING_SNAKE_CASE__ ) - 1:
UpperCAmelCase_ : Tuple = predictions[: len(eval_dataloader.dataset ) - samples_seen]
UpperCAmelCase_ : int = references[: len(eval_dataloader.dataset ) - samples_seen]
else:
samples_seen += references.shape[0]
metric.add_batch(
predictions=SCREAMING_SNAKE_CASE__, references=SCREAMING_SNAKE_CASE__, )
UpperCAmelCase_ : List[str] = metric.compute()
return eval_metric["accuracy"]
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : int ) -> Tuple:
# Initialize accelerator
UpperCAmelCase_ : Union[str, Any] = Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
UpperCAmelCase_ : int = config['''lr''']
UpperCAmelCase_ : Optional[int] = int(config['''num_epochs'''] )
UpperCAmelCase_ : Optional[int] = int(config['''seed'''] )
UpperCAmelCase_ : List[str] = int(config['''batch_size'''] )
UpperCAmelCase_ : Optional[int] = args.model_name_or_path
set_seed(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = get_dataloaders(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
UpperCAmelCase_ : List[Any] = AutoModelForSequenceClassification.from_pretrained(SCREAMING_SNAKE_CASE__, return_dict=SCREAMING_SNAKE_CASE__ )
# Instantiate optimizer
UpperCAmelCase_ : str = (
AdamW
if accelerator.state.deepspeed_plugin is None
or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
UpperCAmelCase_ : List[str] = optimizer_cls(params=model.parameters(), lr=SCREAMING_SNAKE_CASE__ )
if accelerator.state.deepspeed_plugin is not None:
UpperCAmelCase_ : List[Any] = accelerator.state.deepspeed_plugin.deepspeed_config[
'''gradient_accumulation_steps'''
]
else:
UpperCAmelCase_ : Tuple = 1
UpperCAmelCase_ : int = (len(SCREAMING_SNAKE_CASE__ ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
UpperCAmelCase_ : Tuple = get_linear_schedule_with_warmup(
optimizer=SCREAMING_SNAKE_CASE__, num_warmup_steps=0, num_training_steps=SCREAMING_SNAKE_CASE__, )
else:
UpperCAmelCase_ : Any = DummyScheduler(SCREAMING_SNAKE_CASE__, total_num_steps=SCREAMING_SNAKE_CASE__, warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = accelerator.prepare(
SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
# We need to keep track of how many total steps we have iterated over
UpperCAmelCase_ : Union[str, Any] = 0
# We also need to keep track of the stating epoch so files are named properly
UpperCAmelCase_ : Dict = 0
UpperCAmelCase_ : int = evaluate.load('''glue''', '''mrpc''' )
UpperCAmelCase_ : Optional[Any] = num_epochs
if args.partial_train_epoch is not None:
UpperCAmelCase_ : List[Any] = args.partial_train_epoch
if args.resume_from_checkpoint:
accelerator.load_state(args.resume_from_checkpoint )
UpperCAmelCase_ : Tuple = args.resume_from_checkpoint.split('''epoch_''' )[1]
UpperCAmelCase_ : int = ''''''
for char in epoch_string:
if char.isdigit():
state_epoch_num += char
else:
break
UpperCAmelCase_ : Union[str, Any] = int(SCREAMING_SNAKE_CASE__ ) + 1
UpperCAmelCase_ : Dict = evaluation_loop(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
accelerator.print('''resumed checkpoint performance:''', SCREAMING_SNAKE_CASE__ )
accelerator.print('''resumed checkpoint\'s scheduler\'s lr:''', lr_scheduler.get_lr()[0] )
accelerator.print('''resumed optimizers\'s lr:''', optimizer.param_groups[0]['''lr'''] )
with open(os.path.join(args.output_dir, F"""state_{starting_epoch-1}.json""" ), '''r''' ) as f:
UpperCAmelCase_ : Optional[int] = json.load(SCREAMING_SNAKE_CASE__ )
assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed"
assert (
resumed_state["lr"] == lr_scheduler.get_lr()[0]
), "Scheduler learning rate mismatch, loading from checkpoint failed"
assert (
resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"]
), "Optimizer learning rate mismatch, loading from checkpoint failed"
assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed"
return
# Now we train the model
UpperCAmelCase_ : int = {}
for epoch in range(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ):
model.train()
for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase_ : Optional[int] = model(**SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Any = outputs.loss
UpperCAmelCase_ : Tuple = loss / gradient_accumulation_steps
accelerator.backward(SCREAMING_SNAKE_CASE__ )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
UpperCAmelCase_ : Tuple = F"""epoch_{epoch}"""
UpperCAmelCase_ : Optional[int] = os.path.join(args.output_dir, SCREAMING_SNAKE_CASE__ )
accelerator.save_state(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : int = evaluation_loop(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Optional[Any] = accuracy
UpperCAmelCase_ : Any = lr_scheduler.get_lr()[0]
UpperCAmelCase_ : List[str] = optimizer.param_groups[0]['''lr''']
UpperCAmelCase_ : Tuple = epoch
UpperCAmelCase_ : Dict = overall_step
accelerator.print(F"""epoch {epoch}:""", SCREAMING_SNAKE_CASE__ )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir, F"""state_{epoch}.json""" ), '''w''' ) as f:
json.dump(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
def lowerCamelCase_ ( ) -> List[str]:
UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' )
parser.add_argument(
'''--model_name_or_path''', type=SCREAMING_SNAKE_CASE__, default='''bert-base-cased''', help='''Path to pretrained model or model identifier from huggingface.co/models.''', required=SCREAMING_SNAKE_CASE__, )
parser.add_argument(
'''--output_dir''', type=SCREAMING_SNAKE_CASE__, default='''.''', help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''', )
parser.add_argument(
'''--resume_from_checkpoint''', type=SCREAMING_SNAKE_CASE__, default=SCREAMING_SNAKE_CASE__, help='''If the training should continue from a checkpoint folder.''', )
parser.add_argument(
'''--partial_train_epoch''', type=SCREAMING_SNAKE_CASE__, default=SCREAMING_SNAKE_CASE__, help='''If passed, the training will stop after this number of epochs.''', )
parser.add_argument(
'''--num_epochs''', type=SCREAMING_SNAKE_CASE__, default=2, help='''Number of train epochs.''', )
UpperCAmelCase_ : Optional[int] = parser.parse_args()
UpperCAmelCase_ : List[Any] = {'''lr''': 2E-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16}
training_function(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
main()
| 644
| 1
|
'''simple docstring'''
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : int ) -> int:
return abs(SCREAMING_SNAKE_CASE__ ) if a == 0 else greatest_common_divisor(b % a, SCREAMING_SNAKE_CASE__ )
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : int ) -> int:
while y: # --> when y=0 then loop will terminate and return x as final GCD.
UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = y, x % y
return abs(SCREAMING_SNAKE_CASE__ )
def lowerCamelCase_ ( ) -> Optional[int]:
try:
UpperCAmelCase_ : Optional[Any] = input('''Enter two integers separated by comma (,): ''' ).split(''',''' )
UpperCAmelCase_ : Optional[int] = int(nums[0] )
UpperCAmelCase_ : List[Any] = int(nums[1] )
print(
F"""greatest_common_divisor({num_a}, {num_a}) = """
F"""{greatest_common_divisor(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )}""" )
print(F"""By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )}""" )
except (IndexError, UnboundLocalError, ValueError):
print('''Wrong input''' )
if __name__ == "__main__":
main()
| 644
|
'''simple docstring'''
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : list[int] ) -> list[list[int]]:
UpperCAmelCase_ : int = []
if len(SCREAMING_SNAKE_CASE__ ) == 1:
return [nums.copy()]
for _ in range(len(SCREAMING_SNAKE_CASE__ ) ):
UpperCAmelCase_ : List[Any] = nums.pop(0 )
UpperCAmelCase_ : Optional[Any] = permute(SCREAMING_SNAKE_CASE__ )
for perm in permutations:
perm.append(SCREAMING_SNAKE_CASE__ )
result.extend(SCREAMING_SNAKE_CASE__ )
nums.append(SCREAMING_SNAKE_CASE__ )
return result
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[str] ) -> Any:
def backtrack(SCREAMING_SNAKE_CASE__ : Union[str, Any] ):
if start == len(SCREAMING_SNAKE_CASE__ ) - 1:
output.append(nums[:] )
else:
for i in range(SCREAMING_SNAKE_CASE__, len(SCREAMING_SNAKE_CASE__ ) ):
UpperCAmelCase_ , UpperCAmelCase_ : Tuple = nums[i], nums[start]
backtrack(start + 1 )
UpperCAmelCase_ , UpperCAmelCase_ : int = nums[i], nums[start] # backtrack
UpperCAmelCase_ : Optional[int] = []
backtrack(0 )
return output
if __name__ == "__main__":
import doctest
# use res to print the data in permute2 function
snake_case_ : Tuple = permutea([1, 2, 3])
print(res)
doctest.testmod()
| 644
| 1
|
'''simple docstring'''
import json
import os
from functools import lru_cache
from typing import TYPE_CHECKING, List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
snake_case_ : Optional[Any] = logging.get_logger(__name__)
snake_case_ : str = {
"vocab_file": "vocab.json",
"merges_file": "merges.txt",
"tokenizer_config_file": "tokenizer_config.json",
}
snake_case_ : Any = {
"vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"},
"merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"},
"tokenizer_config_file": {
"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json"
},
}
snake_case_ : List[Any] = {"facebook/blenderbot-3B": 1_28}
@lru_cache()
# Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode
def lowerCamelCase_ ( ) -> List[Any]:
UpperCAmelCase_ : Any = (
list(range(ord('''!''' ), ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ), ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ), ord('''ÿ''' ) + 1 ) )
)
UpperCAmelCase_ : Optional[int] = bs[:]
UpperCAmelCase_ : List[Any] = 0
for b in range(2**8 ):
if b not in bs:
bs.append(SCREAMING_SNAKE_CASE__ )
cs.append(2**8 + n )
n += 1
UpperCAmelCase_ : Dict = [chr(SCREAMING_SNAKE_CASE__ ) for n in cs]
return dict(zip(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) )
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Any ) -> str:
UpperCAmelCase_ : List[Any] = set()
UpperCAmelCase_ : Any = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
UpperCAmelCase_ : Optional[int] = char
return pairs
class __a (lowerCamelCase ):
__a : List[Any] = VOCAB_FILES_NAMES
__a : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP
__a : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__a : List[Any] = ["input_ids", "attention_mask"]
def __init__( self : int , __magic_name__ : List[str] , __magic_name__ : Any , __magic_name__ : str="replace" , __magic_name__ : Optional[Any]="<s>" , __magic_name__ : List[Any]="</s>" , __magic_name__ : Any="</s>" , __magic_name__ : List[str]="<s>" , __magic_name__ : Union[str, Any]="<unk>" , __magic_name__ : List[str]="<pad>" , __magic_name__ : str="<mask>" , __magic_name__ : Any=False , **__magic_name__ : Tuple , ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : int = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else bos_token
UpperCAmelCase_ : int = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else eos_token
UpperCAmelCase_ : str = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else sep_token
UpperCAmelCase_ : Tuple = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else cls_token
UpperCAmelCase_ : Optional[int] = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else unk_token
UpperCAmelCase_ : Dict = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
UpperCAmelCase_ : Dict = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else mask_token
super().__init__(
errors=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , unk_token=__magic_name__ , sep_token=__magic_name__ , cls_token=__magic_name__ , pad_token=__magic_name__ , mask_token=__magic_name__ , add_prefix_space=__magic_name__ , **__magic_name__ , )
with open(__magic_name__ , encoding='''utf-8''' ) as vocab_handle:
UpperCAmelCase_ : Dict = json.load(__magic_name__ )
UpperCAmelCase_ : List[Any] = {v: k for k, v in self.encoder.items()}
UpperCAmelCase_ : Any = errors # how to handle errors in decoding
UpperCAmelCase_ : Optional[int] = bytes_to_unicode()
UpperCAmelCase_ : List[Any] = {v: k for k, v in self.byte_encoder.items()}
with open(__magic_name__ , encoding='''utf-8''' ) as merges_handle:
UpperCAmelCase_ : str = merges_handle.read().split('''\n''' )[1:-1]
UpperCAmelCase_ : List[Any] = [tuple(merge.split() ) for merge in bpe_merges]
UpperCAmelCase_ : Tuple = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) )
UpperCAmelCase_ : List[str] = {}
UpperCAmelCase_ : Union[str, Any] = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
UpperCAmelCase_ : Any = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' )
@property
# Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot
def UpperCAmelCase__ ( self : Optional[Any] ) -> str:
"""simple docstring"""
return len(self.encoder )
def UpperCAmelCase__ ( self : Dict ) -> Dict:
"""simple docstring"""
return dict(self.encoder , **self.added_tokens_encoder )
def UpperCAmelCase__ ( self : int , __magic_name__ : List[str] ) -> str:
"""simple docstring"""
if token in self.cache:
return self.cache[token]
UpperCAmelCase_ : List[Any] = tuple(__magic_name__ )
UpperCAmelCase_ : int = get_pairs(__magic_name__ )
if not pairs:
return token
while True:
UpperCAmelCase_ : Any = min(__magic_name__ , key=lambda __magic_name__ : self.bpe_ranks.get(__magic_name__ , float('''inf''' ) ) )
if bigram not in self.bpe_ranks:
break
UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = bigram
UpperCAmelCase_ : int = []
UpperCAmelCase_ : List[str] = 0
while i < len(__magic_name__ ):
try:
UpperCAmelCase_ : Any = word.index(__magic_name__ , __magic_name__ )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
UpperCAmelCase_ : Optional[int] = j
if word[i] == first and i < len(__magic_name__ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
UpperCAmelCase_ : Union[str, Any] = tuple(__magic_name__ )
UpperCAmelCase_ : List[Any] = new_word
if len(__magic_name__ ) == 1:
break
else:
UpperCAmelCase_ : Any = get_pairs(__magic_name__ )
UpperCAmelCase_ : Optional[int] = ''' '''.join(__magic_name__ )
UpperCAmelCase_ : Union[str, Any] = word
return word
def UpperCAmelCase__ ( self : int , __magic_name__ : List[Any] ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Any = []
for token in re.findall(self.pat , __magic_name__ ):
UpperCAmelCase_ : Tuple = ''''''.join(
self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__magic_name__ ).split(''' ''' ) )
return bpe_tokens
def UpperCAmelCase__ ( self : str , __magic_name__ : str ) -> str:
"""simple docstring"""
return self.encoder.get(__magic_name__ , self.encoder.get(self.unk_token ) )
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : List[Any] ) -> List[Any]:
"""simple docstring"""
return self.decoder.get(__magic_name__ )
def UpperCAmelCase__ ( self : int , __magic_name__ : Tuple ) -> str:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = ''''''.join(__magic_name__ )
UpperCAmelCase_ : Tuple = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors )
return text
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
if not os.path.isdir(__magic_name__ ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
UpperCAmelCase_ : List[Any] = os.path.join(
__magic_name__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
UpperCAmelCase_ : Tuple = os.path.join(
__magic_name__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] )
with open(__magic_name__ , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=__magic_name__ , ensure_ascii=__magic_name__ ) + '''\n''' )
UpperCAmelCase_ : int = 0
with open(__magic_name__ , '''w''' , encoding='''utf-8''' ) as writer:
writer.write('''#version: 0.2\n''' )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __magic_name__ : kv[1] ):
if index != token_index:
logger.warning(
F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."""
''' Please check that the tokenizer is not corrupted!''' )
UpperCAmelCase_ : Optional[int] = token_index
writer.write(''' '''.join(__magic_name__ ) + '''\n''' )
index += 1
return vocab_file, merge_file
def UpperCAmelCase__ ( self : str , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None , __magic_name__ : bool = False ) -> List[int]:
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__magic_name__ , token_ids_a=__magic_name__ , already_has_special_tokens=__magic_name__ )
if token_ids_a is None:
return [1] + ([0] * len(__magic_name__ )) + [1]
return [1] + ([0] * len(__magic_name__ )) + [1, 1] + ([0] * len(__magic_name__ )) + [1]
def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
UpperCAmelCase_ : Any = [self.sep_token_id]
UpperCAmelCase_ : Optional[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : List[Any] , __magic_name__ : str=False , **__magic_name__ : Optional[Any] ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = kwargs.pop('''add_prefix_space''' , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(__magic_name__ ) > 0 and not text[0].isspace()):
UpperCAmelCase_ : List[str] = ''' ''' + text
return (text, kwargs)
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[Any]:
"""simple docstring"""
return token_ids_a + [self.eos_token_id]
def UpperCAmelCase__ ( self : Dict , __magic_name__ : "Conversation" ) -> List[int]:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = []
for is_user, text in conversation.iter_texts():
if is_user:
# We need to space prefix as it's being done within blenderbot
inputs.append(''' ''' + text )
else:
# Generated responses should contain them already.
inputs.append(__magic_name__ )
UpperCAmelCase_ : Optional[int] = ''' '''.join(__magic_name__ )
UpperCAmelCase_ : Union[str, Any] = self.encode(__magic_name__ )
if len(__magic_name__ ) > self.model_max_length:
UpperCAmelCase_ : Tuple = input_ids[-self.model_max_length :]
logger.warning(F"""Trimmed input from conversation as it was longer than {self.model_max_length} tokens.""" )
return input_ids
| 644
|
'''simple docstring'''
class __a :
def __init__( self : List[Any] , __magic_name__ : int ) -> None:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = size
UpperCAmelCase_ : Tuple = [0] * size
UpperCAmelCase_ : Optional[Any] = [0] * size
@staticmethod
def UpperCAmelCase__ ( __magic_name__ : int ) -> int:
"""simple docstring"""
return index | (index + 1)
@staticmethod
def UpperCAmelCase__ ( __magic_name__ : int ) -> int:
"""simple docstring"""
return (index & (index + 1)) - 1
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : int , __magic_name__ : int ) -> None:
"""simple docstring"""
UpperCAmelCase_ : int = value
while index < self.size:
UpperCAmelCase_ : str = self.get_prev(__magic_name__ ) + 1
if current_left_border == index:
UpperCAmelCase_ : List[str] = value
else:
UpperCAmelCase_ : Optional[int] = max(__magic_name__ , __magic_name__ , __magic_name__ )
UpperCAmelCase_ : Tuple = self.get_next(__magic_name__ )
def UpperCAmelCase__ ( self : Any , __magic_name__ : int , __magic_name__ : int ) -> int:
"""simple docstring"""
right -= 1 # Because of right is exclusive
UpperCAmelCase_ : List[str] = 0
while left <= right:
UpperCAmelCase_ : Optional[Any] = self.get_prev(__magic_name__ )
if left <= current_left:
UpperCAmelCase_ : Dict = max(__magic_name__ , self.tree[right] )
UpperCAmelCase_ : Optional[Any] = current_left
else:
UpperCAmelCase_ : str = max(__magic_name__ , self.arr[right] )
right -= 1
return result
if __name__ == "__main__":
import doctest
doctest.testmod()
| 644
| 1
|
'''simple docstring'''
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : int ) -> str:
if a < 0 or b < 0:
raise ValueError('''the value of both inputs must be positive''' )
UpperCAmelCase_ : int = str(bin(SCREAMING_SNAKE_CASE__ ) )[2:] # remove the leading "0b"
UpperCAmelCase_ : Optional[Any] = str(bin(SCREAMING_SNAKE_CASE__ ) )[2:] # remove the leading "0b"
UpperCAmelCase_ : int = max(len(SCREAMING_SNAKE_CASE__ ), len(SCREAMING_SNAKE_CASE__ ) )
return "0b" + "".join(
str(int(char_a == '''1''' and char_b == '''1''' ) )
for char_a, char_b in zip(a_binary.zfill(SCREAMING_SNAKE_CASE__ ), b_binary.zfill(SCREAMING_SNAKE_CASE__ ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 644
|
'''simple docstring'''
import math
import unittest
from transformers import BioGptConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptTokenizer,
)
from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST
class __a :
def __init__( self : List[str] , __magic_name__ : List[str] , __magic_name__ : str=13 , __magic_name__ : Union[str, Any]=7 , __magic_name__ : Union[str, Any]=True , __magic_name__ : Any=True , __magic_name__ : List[str]=False , __magic_name__ : Optional[int]=True , __magic_name__ : Dict=99 , __magic_name__ : Tuple=32 , __magic_name__ : int=5 , __magic_name__ : Dict=4 , __magic_name__ : Tuple=37 , __magic_name__ : Optional[int]="gelu" , __magic_name__ : List[str]=0.1 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : str=5_12 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : int=2 , __magic_name__ : List[Any]=0.0_2 , __magic_name__ : Tuple=3 , __magic_name__ : Union[str, Any]=4 , __magic_name__ : Optional[int]=None , ) -> str:
"""simple docstring"""
UpperCAmelCase_ : Any = parent
UpperCAmelCase_ : Union[str, Any] = batch_size
UpperCAmelCase_ : List[Any] = seq_length
UpperCAmelCase_ : str = is_training
UpperCAmelCase_ : Any = use_input_mask
UpperCAmelCase_ : List[str] = use_token_type_ids
UpperCAmelCase_ : Union[str, Any] = use_labels
UpperCAmelCase_ : Dict = vocab_size
UpperCAmelCase_ : Optional[Any] = hidden_size
UpperCAmelCase_ : Dict = num_hidden_layers
UpperCAmelCase_ : List[Any] = num_attention_heads
UpperCAmelCase_ : Optional[int] = intermediate_size
UpperCAmelCase_ : Union[str, Any] = hidden_act
UpperCAmelCase_ : str = hidden_dropout_prob
UpperCAmelCase_ : Optional[Any] = attention_probs_dropout_prob
UpperCAmelCase_ : Any = max_position_embeddings
UpperCAmelCase_ : str = type_vocab_size
UpperCAmelCase_ : Optional[Any] = type_sequence_label_size
UpperCAmelCase_ : List[Any] = initializer_range
UpperCAmelCase_ : int = num_labels
UpperCAmelCase_ : Optional[int] = num_choices
UpperCAmelCase_ : Tuple = scope
def UpperCAmelCase__ ( self : Union[str, Any] ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase_ : Union[str, Any] = None
if self.use_input_mask:
UpperCAmelCase_ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase_ : str = None
if self.use_token_type_ids:
UpperCAmelCase_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase_ : Tuple = None
UpperCAmelCase_ : List[str] = None
UpperCAmelCase_ : Union[str, Any] = None
if self.use_labels:
UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase_ : int = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCAmelCase__ ( self : Any ) -> List[Any]:
"""simple docstring"""
return BioGptConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__magic_name__ , initializer_range=self.initializer_range , )
def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : Tuple , __magic_name__ : str , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = BioGptModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : Dict = model(__magic_name__ , attention_mask=__magic_name__ )
UpperCAmelCase_ : Optional[Any] = model(__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : Dict , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Any , __magic_name__ : Tuple , __magic_name__ : List[str] , __magic_name__ : Optional[int] , ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Dict = BioGptForCausalLM(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : List[Any] = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCAmelCase__ ( self : str , __magic_name__ : Optional[int] , __magic_name__ : Tuple , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : str , *__magic_name__ : Any ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Dict = BioGptModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
# create attention mask
UpperCAmelCase_ : Optional[Any] = torch.ones(input_ids.shape , dtype=torch.long , device=__magic_name__ )
UpperCAmelCase_ : Any = self.seq_length // 2
UpperCAmelCase_ : Tuple = 0
# first forward pass
UpperCAmelCase_ , UpperCAmelCase_ : Dict = model(__magic_name__ , attention_mask=__magic_name__ ).to_tuple()
# create hypothetical next token and extent to next_input_ids
UpperCAmelCase_ : Tuple = ids_tensor((self.batch_size, 1) , config.vocab_size )
# change a random masked slice from input_ids
UpperCAmelCase_ : List[str] = ids_tensor((1,) , __magic_name__ ).item() + 1
UpperCAmelCase_ : Tuple = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 )
UpperCAmelCase_ : str = random_other_next_tokens
# append to next input_ids and attn_mask
UpperCAmelCase_ : Tuple = torch.cat([input_ids, next_tokens] , dim=-1 )
UpperCAmelCase_ : int = torch.cat(
[attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=__magic_name__ )] , dim=1 , )
# get two different outputs
UpperCAmelCase_ : Any = model(__magic_name__ , attention_mask=__magic_name__ )['''last_hidden_state''']
UpperCAmelCase_ : int = model(__magic_name__ , past_key_values=__magic_name__ , attention_mask=__magic_name__ )['''last_hidden_state''']
# select random slice
UpperCAmelCase_ : Optional[int] = ids_tensor((1,) , output_from_past.shape[-1] ).item()
UpperCAmelCase_ : Union[str, Any] = output_from_no_past[:, -1, random_slice_idx].detach()
UpperCAmelCase_ : Dict = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) )
def UpperCAmelCase__ ( self : Dict , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : Dict , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , *__magic_name__ : str ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Dict = BioGptModel(config=__magic_name__ ).to(__magic_name__ ).eval()
UpperCAmelCase_ : Optional[int] = torch.ones(input_ids.shape , dtype=torch.long , device=__magic_name__ )
# first forward pass
UpperCAmelCase_ : Union[str, Any] = model(__magic_name__ , attention_mask=__magic_name__ , use_cache=__magic_name__ )
UpperCAmelCase_ , UpperCAmelCase_ : int = outputs.to_tuple()
# create hypothetical multiple next token and extent to next_input_ids
UpperCAmelCase_ : Any = ids_tensor((self.batch_size, 3) , config.vocab_size )
UpperCAmelCase_ : Any = ids_tensor((self.batch_size, 3) , 2 )
# append to next input_ids and
UpperCAmelCase_ : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1 )
UpperCAmelCase_ : List[str] = torch.cat([attention_mask, next_attn_mask] , dim=-1 )
UpperCAmelCase_ : Any = model(__magic_name__ , attention_mask=__magic_name__ )['''last_hidden_state''']
UpperCAmelCase_ : Optional[Any] = model(__magic_name__ , attention_mask=__magic_name__ , past_key_values=__magic_name__ )[
'''last_hidden_state'''
]
# select random slice
UpperCAmelCase_ : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item()
UpperCAmelCase_ : str = output_from_no_past[:, -3:, random_slice_idx].detach()
UpperCAmelCase_ : Optional[int] = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) )
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : str , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , *__magic_name__ : Any , __magic_name__ : List[Any]=False ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Any = BioGptForCausalLM(__magic_name__ )
model.to(__magic_name__ )
if gradient_checkpointing:
model.gradient_checkpointing_enable()
UpperCAmelCase_ : List[str] = model(__magic_name__ , labels=__magic_name__ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
result.loss.backward()
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Optional[int] , *__magic_name__ : List[str] ) -> str:
"""simple docstring"""
UpperCAmelCase_ : int = BioGptModel(__magic_name__ )
UpperCAmelCase_ : Dict = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers )
for key in model.state_dict().keys():
if "c_proj" in key and "weight" in key:
self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.0_0_1 )
self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.0_1 )
def UpperCAmelCase__ ( self : int , __magic_name__ : Tuple , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] , *__magic_name__ : Any ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : str = self.num_labels
UpperCAmelCase_ : Any = BioGptForTokenClassification(__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : Any = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCAmelCase__ ( self : Optional[Any] ) -> str:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = self.prepare_config_and_inputs()
(
(
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) ,
) : int = config_and_inputs
UpperCAmelCase_ : Any = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class __a (lowerCamelCase , lowerCamelCase , lowerCamelCase , unittest.TestCase ):
__a : str = (
(BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification)
if is_torch_available()
else ()
)
__a : List[Any] = (BioGptForCausalLM,) if is_torch_available() else ()
__a : Union[str, Any] = (
{
"feature-extraction": BioGptModel,
"text-classification": BioGptForSequenceClassification,
"text-generation": BioGptForCausalLM,
"token-classification": BioGptForTokenClassification,
"zero-shot": BioGptForSequenceClassification,
}
if is_torch_available()
else {}
)
__a : List[str] = False
def UpperCAmelCase__ ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : List[str] = BioGptModelTester(self )
UpperCAmelCase_ : Optional[Any] = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 )
def UpperCAmelCase__ ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCAmelCase__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__magic_name__ )
def UpperCAmelCase__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
UpperCAmelCase_ : str = type
self.model_tester.create_and_check_model(*__magic_name__ )
def UpperCAmelCase__ ( self : Optional[int] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_attention_mask_past(*__magic_name__ )
def UpperCAmelCase__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_forward_and_backwards(*__magic_name__ , gradient_checkpointing=__magic_name__ )
def UpperCAmelCase__ ( self : str ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_past_large_inputs(*__magic_name__ )
def UpperCAmelCase__ ( self : Dict ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_weight_initialization(*__magic_name__ )
def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_for_token_classification(*__magic_name__ )
@slow
def UpperCAmelCase__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' )
model.to(__magic_name__ )
UpperCAmelCase_ : List[str] = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' )
UpperCAmelCase_ : Tuple = '''left'''
# Define PAD Token = EOS Token = 50256
UpperCAmelCase_ : List[Any] = tokenizer.eos_token
UpperCAmelCase_ : List[Any] = model.config.eos_token_id
# use different length sentences to test batching
UpperCAmelCase_ : Tuple = [
'''Hello, my dog is a little''',
'''Today, I''',
]
UpperCAmelCase_ : Optional[Any] = tokenizer(__magic_name__ , return_tensors='''pt''' , padding=__magic_name__ )
UpperCAmelCase_ : Optional[Any] = inputs['''input_ids'''].to(__magic_name__ )
UpperCAmelCase_ : Any = model.generate(
input_ids=__magic_name__ , attention_mask=inputs['''attention_mask'''].to(__magic_name__ ) , )
UpperCAmelCase_ : Union[str, Any] = tokenizer(sentences[0] , return_tensors='''pt''' ).input_ids.to(__magic_name__ )
UpperCAmelCase_ : Tuple = model.generate(input_ids=__magic_name__ )
UpperCAmelCase_ : List[str] = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item()
UpperCAmelCase_ : List[Any] = tokenizer(sentences[1] , return_tensors='''pt''' ).input_ids.to(__magic_name__ )
UpperCAmelCase_ : Tuple = model.generate(input_ids=__magic_name__ , max_length=model.config.max_length - num_paddings )
UpperCAmelCase_ : int = tokenizer.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ )
UpperCAmelCase_ : Dict = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__magic_name__ )
UpperCAmelCase_ : Union[str, Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=__magic_name__ )
UpperCAmelCase_ : Optional[Any] = [
'''Hello, my dog is a little bit bigger than a little bit.''',
'''Today, I have a good idea of how to use the information''',
]
self.assertListEqual(__magic_name__ , __magic_name__ )
self.assertListEqual(__magic_name__ , [non_padded_sentence, padded_sentence] )
@slow
def UpperCAmelCase__ ( self : str ) -> Optional[Any]:
"""simple docstring"""
for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase_ : List[Any] = BioGptModel.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
def UpperCAmelCase__ ( self : Tuple ) -> str:
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase_ : List[str] = 3
UpperCAmelCase_ : Tuple = input_dict['''input_ids''']
UpperCAmelCase_ : Dict = input_ids.ne(1 ).to(__magic_name__ )
UpperCAmelCase_ : List[str] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
UpperCAmelCase_ : Dict = BioGptForSequenceClassification(__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : int = model(__magic_name__ , attention_mask=__magic_name__ , labels=__magic_name__ )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase_ : List[Any] = 3
UpperCAmelCase_ : Optional[int] = '''multi_label_classification'''
UpperCAmelCase_ : int = input_dict['''input_ids''']
UpperCAmelCase_ : str = input_ids.ne(1 ).to(__magic_name__ )
UpperCAmelCase_ : Any = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
UpperCAmelCase_ : Union[str, Any] = BioGptForSequenceClassification(__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : str = model(__magic_name__ , attention_mask=__magic_name__ , labels=__magic_name__ )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
@require_torch
class __a (unittest.TestCase ):
@slow
def UpperCAmelCase__ ( self : List[Any] ) -> str:
"""simple docstring"""
UpperCAmelCase_ : str = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' )
UpperCAmelCase_ : List[str] = torch.tensor([[2, 48_05, 9, 6_56, 21]] )
UpperCAmelCase_ : str = model(__magic_name__ )[0]
UpperCAmelCase_ : Optional[int] = 4_23_84
UpperCAmelCase_ : Tuple = torch.Size((1, 5, vocab_size) )
self.assertEqual(output.shape , __magic_name__ )
UpperCAmelCase_ : List[Any] = torch.tensor(
[[[-9.5_2_3_6, -9.8_9_1_8, 1_0.4_5_5_7], [-1_1.0_4_6_9, -9.6_4_2_3, 8.1_0_2_2], [-8.8_6_6_4, -7.8_8_2_6, 5.5_3_2_5]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __magic_name__ , atol=1E-4 ) )
@slow
def UpperCAmelCase__ ( self : Any ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Any = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' )
UpperCAmelCase_ : str = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' )
model.to(__magic_name__ )
torch.manual_seed(0 )
UpperCAmelCase_ : Optional[Any] = tokenizer('''COVID-19 is''' , return_tensors='''pt''' ).to(__magic_name__ )
UpperCAmelCase_ : Optional[int] = model.generate(
**__magic_name__ , min_length=1_00 , max_length=10_24 , num_beams=5 , early_stopping=__magic_name__ , )
UpperCAmelCase_ : int = tokenizer.decode(output_ids[0] , skip_special_tokens=__magic_name__ )
UpperCAmelCase_ : Optional[Any] = (
'''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the'''
''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and'''
''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),'''
''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and'''
''' more than 800,000 deaths.'''
)
self.assertEqual(__magic_name__ , __magic_name__ )
| 644
| 1
|
'''simple docstring'''
import re
import string
from collections import Counter
import sacrebleu
import sacremoses
from packaging import version
import datasets
snake_case_ : Optional[int] = "\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n"
snake_case_ : int = "\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n"
snake_case_ : str = "\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=[\"About 95 species are currently accepted .\"]\n >>> predictions=[\"About 95 you now get in .\"]\n >>> references=[[\"About 95 species are currently known .\"]]\n >>> wiki_split = datasets.load_metric(\"wiki_split\")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0}\n"
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Any ) -> Tuple:
def remove_articles(SCREAMING_SNAKE_CASE__ : Optional[int] ):
UpperCAmelCase_ : Any = re.compile(R'''\b(a|an|the)\b''', re.UNICODE )
return re.sub(SCREAMING_SNAKE_CASE__, ''' ''', SCREAMING_SNAKE_CASE__ )
def white_space_fix(SCREAMING_SNAKE_CASE__ : str ):
return " ".join(text.split() )
def remove_punc(SCREAMING_SNAKE_CASE__ : Union[str, Any] ):
UpperCAmelCase_ : int = set(string.punctuation )
return "".join(ch for ch in text if ch not in exclude )
def lower(SCREAMING_SNAKE_CASE__ : List[str] ):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(SCREAMING_SNAKE_CASE__ ) ) ) )
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Optional[Any], SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[int]:
return int(normalize_answer(SCREAMING_SNAKE_CASE__ ) == normalize_answer(SCREAMING_SNAKE_CASE__ ) )
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : List[Any] ) -> int:
UpperCAmelCase_ : Tuple = [any(compute_exact(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) for ref in refs ) for pred, refs in zip(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )]
return (sum(SCREAMING_SNAKE_CASE__ ) / len(SCREAMING_SNAKE_CASE__ )) * 100
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Dict, SCREAMING_SNAKE_CASE__ : Optional[int], SCREAMING_SNAKE_CASE__ : Optional[Any], SCREAMING_SNAKE_CASE__ : List[str] ) -> Optional[Any]:
UpperCAmelCase_ : Union[str, Any] = [rgram for rgrams in rgramslist for rgram in rgrams]
UpperCAmelCase_ : Any = Counter(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Optional[Any] = Counter(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Optional[Any] = Counter()
for sgram, scount in sgramcounter.items():
UpperCAmelCase_ : Optional[Any] = scount * numref
UpperCAmelCase_ : List[str] = Counter(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Union[str, Any] = Counter()
for cgram, ccount in cgramcounter.items():
UpperCAmelCase_ : Any = ccount * numref
# KEEP
UpperCAmelCase_ : List[str] = sgramcounter_rep & cgramcounter_rep
UpperCAmelCase_ : Tuple = keepgramcounter_rep & rgramcounter
UpperCAmelCase_ : Any = sgramcounter_rep & rgramcounter
UpperCAmelCase_ : Any = 0
UpperCAmelCase_ : Tuple = 0
for keepgram in keepgramcountergood_rep:
keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram]
# Fix an alleged bug [2] in the keep score computation.
# keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram]
keeptmpscorea += keepgramcountergood_rep[keepgram]
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
UpperCAmelCase_ : Union[str, Any] = 1
UpperCAmelCase_ : Optional[int] = 1
if len(SCREAMING_SNAKE_CASE__ ) > 0:
UpperCAmelCase_ : Optional[Any] = keeptmpscorea / len(SCREAMING_SNAKE_CASE__ )
if len(SCREAMING_SNAKE_CASE__ ) > 0:
# Fix an alleged bug [2] in the keep score computation.
# keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep)
UpperCAmelCase_ : List[Any] = keeptmpscorea / sum(keepgramcounterall_rep.values() )
UpperCAmelCase_ : List[Any] = 0
if keepscore_precision > 0 or keepscore_recall > 0:
UpperCAmelCase_ : List[Any] = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall)
# DELETION
UpperCAmelCase_ : List[Any] = sgramcounter_rep - cgramcounter_rep
UpperCAmelCase_ : Optional[Any] = delgramcounter_rep - rgramcounter
UpperCAmelCase_ : List[str] = sgramcounter_rep - rgramcounter
UpperCAmelCase_ : List[Any] = 0
UpperCAmelCase_ : Tuple = 0
for delgram in delgramcountergood_rep:
deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram]
deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram]
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
UpperCAmelCase_ : Union[str, Any] = 1
if len(SCREAMING_SNAKE_CASE__ ) > 0:
UpperCAmelCase_ : Union[str, Any] = deltmpscorea / len(SCREAMING_SNAKE_CASE__ )
# ADDITION
UpperCAmelCase_ : str = set(SCREAMING_SNAKE_CASE__ ) - set(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Any = set(SCREAMING_SNAKE_CASE__ ) & set(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Optional[int] = set(SCREAMING_SNAKE_CASE__ ) - set(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : int = 0
for addgram in addgramcountergood:
addtmpscore += 1
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
UpperCAmelCase_ : Dict = 1
UpperCAmelCase_ : Any = 1
if len(SCREAMING_SNAKE_CASE__ ) > 0:
UpperCAmelCase_ : str = addtmpscore / len(SCREAMING_SNAKE_CASE__ )
if len(SCREAMING_SNAKE_CASE__ ) > 0:
UpperCAmelCase_ : Optional[Any] = addtmpscore / len(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : int = 0
if addscore_precision > 0 or addscore_recall > 0:
UpperCAmelCase_ : Any = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall)
return (keepscore, delscore_precision, addscore)
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Dict, SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : Any ) -> Dict:
UpperCAmelCase_ : Optional[int] = len(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Tuple = ssent.split(''' ''' )
UpperCAmelCase_ : Tuple = csent.split(''' ''' )
UpperCAmelCase_ : List[Any] = []
UpperCAmelCase_ : Tuple = []
UpperCAmelCase_ : List[Any] = []
UpperCAmelCase_ : Dict = []
UpperCAmelCase_ : List[str] = []
UpperCAmelCase_ : Optional[Any] = []
UpperCAmelCase_ : Optional[int] = []
UpperCAmelCase_ : Tuple = []
UpperCAmelCase_ : Dict = []
UpperCAmelCase_ : Union[str, Any] = []
for rsent in rsents:
UpperCAmelCase_ : List[Any] = rsent.split(''' ''' )
UpperCAmelCase_ : Optional[int] = []
UpperCAmelCase_ : Union[str, Any] = []
UpperCAmelCase_ : Optional[int] = []
ragramslist.append(SCREAMING_SNAKE_CASE__ )
for i in range(0, len(SCREAMING_SNAKE_CASE__ ) - 1 ):
if i < len(SCREAMING_SNAKE_CASE__ ) - 1:
UpperCAmelCase_ : List[str] = ragrams[i] + ''' ''' + ragrams[i + 1]
ragrams.append(SCREAMING_SNAKE_CASE__ )
if i < len(SCREAMING_SNAKE_CASE__ ) - 2:
UpperCAmelCase_ : Any = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2]
ragrams.append(SCREAMING_SNAKE_CASE__ )
if i < len(SCREAMING_SNAKE_CASE__ ) - 3:
UpperCAmelCase_ : Dict = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3]
ragrams.append(SCREAMING_SNAKE_CASE__ )
ragramslist.append(SCREAMING_SNAKE_CASE__ )
ragramslist.append(SCREAMING_SNAKE_CASE__ )
ragramslist.append(SCREAMING_SNAKE_CASE__ )
for i in range(0, len(SCREAMING_SNAKE_CASE__ ) - 1 ):
if i < len(SCREAMING_SNAKE_CASE__ ) - 1:
UpperCAmelCase_ : Optional[Any] = sagrams[i] + ''' ''' + sagrams[i + 1]
sagrams.append(SCREAMING_SNAKE_CASE__ )
if i < len(SCREAMING_SNAKE_CASE__ ) - 2:
UpperCAmelCase_ : Optional[int] = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2]
sagrams.append(SCREAMING_SNAKE_CASE__ )
if i < len(SCREAMING_SNAKE_CASE__ ) - 3:
UpperCAmelCase_ : Union[str, Any] = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3]
sagrams.append(SCREAMING_SNAKE_CASE__ )
for i in range(0, len(SCREAMING_SNAKE_CASE__ ) - 1 ):
if i < len(SCREAMING_SNAKE_CASE__ ) - 1:
UpperCAmelCase_ : Any = cagrams[i] + ''' ''' + cagrams[i + 1]
cagrams.append(SCREAMING_SNAKE_CASE__ )
if i < len(SCREAMING_SNAKE_CASE__ ) - 2:
UpperCAmelCase_ : int = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2]
cagrams.append(SCREAMING_SNAKE_CASE__ )
if i < len(SCREAMING_SNAKE_CASE__ ) - 3:
UpperCAmelCase_ : str = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3]
cagrams.append(SCREAMING_SNAKE_CASE__ )
((UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_)) : Dict = SARIngram(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
((UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_)) : Tuple = SARIngram(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
((UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_)) : Any = SARIngram(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
((UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_)) : List[str] = SARIngram(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : List[Any] = sum([keepascore, keepascore, keepascore, keepascore] ) / 4
UpperCAmelCase_ : Optional[int] = sum([delascore, delascore, delascore, delascore] ) / 4
UpperCAmelCase_ : List[str] = sum([addascore, addascore, addascore, addascore] ) / 4
UpperCAmelCase_ : Dict = (avgkeepscore + avgdelscore + avgaddscore) / 3
return finalscore
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[str], SCREAMING_SNAKE_CASE__ : bool = True, SCREAMING_SNAKE_CASE__ : str = "13a", SCREAMING_SNAKE_CASE__ : bool = True ) -> Optional[Any]:
# Normalization is requried for the ASSET dataset (one of the primary
# datasets in sentence simplification) to allow using space
# to split the sentence. Even though Wiki-Auto and TURK datasets,
# do not require normalization, we do it for consistency.
# Code adapted from the EASSE library [1] written by the authors of the ASSET dataset.
# [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7
if lowercase:
UpperCAmelCase_ : Dict = sentence.lower()
if tokenizer in ["13a", "intl"]:
if version.parse(sacrebleu.__version__ ).major >= 2:
UpperCAmelCase_ : Optional[Any] = sacrebleu.metrics.bleu._get_tokenizer(SCREAMING_SNAKE_CASE__ )()(SCREAMING_SNAKE_CASE__ )
else:
UpperCAmelCase_ : Union[str, Any] = sacrebleu.TOKENIZERS[tokenizer]()(SCREAMING_SNAKE_CASE__ )
elif tokenizer == "moses":
UpperCAmelCase_ : Optional[int] = sacremoses.MosesTokenizer().tokenize(SCREAMING_SNAKE_CASE__, return_str=SCREAMING_SNAKE_CASE__, escape=SCREAMING_SNAKE_CASE__ )
elif tokenizer == "penn":
UpperCAmelCase_ : int = sacremoses.MosesTokenizer().penn_tokenize(SCREAMING_SNAKE_CASE__, return_str=SCREAMING_SNAKE_CASE__ )
else:
UpperCAmelCase_ : List[Any] = sentence
if not return_str:
UpperCAmelCase_ : Any = normalized_sent.split()
return normalized_sent
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Dict, SCREAMING_SNAKE_CASE__ : Optional[Any], SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Dict:
if not (len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ )):
raise ValueError('''Sources length must match predictions and references lengths.''' )
UpperCAmelCase_ : Union[str, Any] = 0
for src, pred, refs in zip(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ):
sari_score += SARIsent(normalize(SCREAMING_SNAKE_CASE__ ), normalize(SCREAMING_SNAKE_CASE__ ), [normalize(SCREAMING_SNAKE_CASE__ ) for sent in refs] )
UpperCAmelCase_ : Optional[int] = sari_score / len(SCREAMING_SNAKE_CASE__ )
return 100 * sari_score
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[Any], SCREAMING_SNAKE_CASE__ : Union[str, Any], SCREAMING_SNAKE_CASE__ : Optional[int]="exp", SCREAMING_SNAKE_CASE__ : List[str]=None, SCREAMING_SNAKE_CASE__ : Optional[int]=False, SCREAMING_SNAKE_CASE__ : List[str]=False, SCREAMING_SNAKE_CASE__ : Optional[int]=False, ) -> str:
UpperCAmelCase_ : Any = len(references[0] )
if any(len(SCREAMING_SNAKE_CASE__ ) != references_per_prediction for refs in references ):
raise ValueError('''Sacrebleu requires the same number of references for each prediction''' )
UpperCAmelCase_ : int = [[refs[i] for refs in references] for i in range(SCREAMING_SNAKE_CASE__ )]
UpperCAmelCase_ : int = sacrebleu.corpus_bleu(
SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, smooth_method=SCREAMING_SNAKE_CASE__, smooth_value=SCREAMING_SNAKE_CASE__, force=SCREAMING_SNAKE_CASE__, lowercase=SCREAMING_SNAKE_CASE__, use_effective_order=SCREAMING_SNAKE_CASE__, )
return output.score
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __a (datasets.Metric ):
def UpperCAmelCase__ ( self : Optional[int] ) -> str:
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' , id='''sequence''' ),
'''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ),
} ) , codebase_urls=[
'''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''',
'''https://github.com/cocoxu/simplification/blob/master/SARI.py''',
'''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''',
'''https://github.com/mjpost/sacreBLEU''',
] , reference_urls=[
'''https://www.aclweb.org/anthology/Q16-1029.pdf''',
'''https://github.com/mjpost/sacreBLEU''',
'''https://en.wikipedia.org/wiki/BLEU''',
'''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''',
] , )
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : int ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = {}
result.update({'''sari''': compute_sari(sources=__magic_name__ , predictions=__magic_name__ , references=__magic_name__ )} )
result.update({'''sacrebleu''': compute_sacrebleu(predictions=__magic_name__ , references=__magic_name__ )} )
result.update({'''exact''': compute_em(predictions=__magic_name__ , references=__magic_name__ )} )
return result
| 644
|
'''simple docstring'''
import json
import os
import unittest
from transformers.models.blenderbot_small.tokenization_blenderbot_small import (
VOCAB_FILES_NAMES,
BlenderbotSmallTokenizer,
)
from ...test_tokenization_common import TokenizerTesterMixin
class __a (lowerCamelCase , unittest.TestCase ):
__a : List[str] = BlenderbotSmallTokenizer
__a : List[Any] = False
def UpperCAmelCase__ ( self : str ) -> str:
"""simple docstring"""
super().setUp()
UpperCAmelCase_ : Tuple = ['''__start__''', '''adapt''', '''act''', '''ap@@''', '''te''', '''__end__''', '''__unk__''']
UpperCAmelCase_ : Optional[Any] = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) )
UpperCAmelCase_ : int = ['''#version: 0.2''', '''a p''', '''t e</w>''', '''ap t</w>''', '''a d''', '''ad apt</w>''', '''a c''', '''ac t</w>''', '''''']
UpperCAmelCase_ : Optional[Any] = {'''unk_token''': '''__unk__''', '''bos_token''': '''__start__''', '''eos_token''': '''__end__'''}
UpperCAmelCase_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
UpperCAmelCase_ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(__magic_name__ ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(__magic_name__ ) )
def UpperCAmelCase__ ( self : List[Any] , **__magic_name__ : Dict ) -> Tuple:
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **__magic_name__ )
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : List[str] ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : str = '''adapt act apte'''
UpperCAmelCase_ : Tuple = '''adapt act apte'''
return input_text, output_text
def UpperCAmelCase__ ( self : str ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : str = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map )
UpperCAmelCase_ : List[Any] = '''adapt act apte'''
UpperCAmelCase_ : Dict = ['''adapt''', '''act''', '''ap@@''', '''te''']
UpperCAmelCase_ : Dict = tokenizer.tokenize(__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
UpperCAmelCase_ : Tuple = [tokenizer.bos_token] + tokens + [tokenizer.eos_token]
UpperCAmelCase_ : Dict = [0, 1, 2, 3, 4, 5]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , __magic_name__ )
def UpperCAmelCase__ ( self : int ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' )
assert tok('''sam''' ).input_ids == [13_84]
UpperCAmelCase_ : Optional[int] = '''I am a small frog.'''
UpperCAmelCase_ : List[str] = tok([src_text] , padding=__magic_name__ , truncation=__magic_name__ )['''input_ids''']
UpperCAmelCase_ : Dict = tok.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ , clean_up_tokenization_spaces=__magic_name__ )[0]
assert src_text != decoded # I wish it did!
assert decoded == "i am a small frog ."
def UpperCAmelCase__ ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : int = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' )
UpperCAmelCase_ : List[Any] = '''I am a small frog .'''
UpperCAmelCase_ : Any = '''.'''
UpperCAmelCase_ : List[Any] = tok(__magic_name__ )['''input_ids''']
UpperCAmelCase_ : Optional[int] = tok(__magic_name__ )['''input_ids''']
assert encoded[-1] == encoded_dot[0]
| 644
| 1
|
'''simple docstring'''
from __future__ import annotations
from random import random
from typing import Generic, TypeVar
snake_case_ : List[str] = TypeVar("KT")
snake_case_ : int = TypeVar("VT")
class __a (Generic[KT, VT] ):
def __init__( self : Union[str, Any] , __magic_name__ : KT | str = "root" , __magic_name__ : VT | None = None ) -> str:
"""simple docstring"""
UpperCAmelCase_ : str = key
UpperCAmelCase_ : Dict = value
UpperCAmelCase_ : list[Node[KT, VT]] = []
def __repr__( self : Optional[Any] ) -> str:
"""simple docstring"""
return F"""Node({self.key}: {self.value})"""
@property
def UpperCAmelCase__ ( self : Any ) -> int:
"""simple docstring"""
return len(self.forward )
class __a (Generic[KT, VT] ):
def __init__( self : str , __magic_name__ : float = 0.5 , __magic_name__ : int = 16 ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : Node[KT, VT] = Node[KT, VT]()
UpperCAmelCase_ : Dict = 0
UpperCAmelCase_ : Tuple = p
UpperCAmelCase_ : Tuple = max_level
def __str__( self : Optional[Any] ) -> str:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = list(self )
if len(__magic_name__ ) == 0:
return F"""SkipList(level={self.level})"""
UpperCAmelCase_ : Tuple = max((len(str(__magic_name__ ) ) for item in items) , default=4 )
UpperCAmelCase_ : Tuple = max(__magic_name__ , 4 ) + 4
UpperCAmelCase_ : Dict = self.head
UpperCAmelCase_ : str = []
UpperCAmelCase_ : int = node.forward.copy()
lines.append(F"""[{node.key}]""".ljust(__magic_name__ , '''-''' ) + '''* ''' * len(__magic_name__ ) )
lines.append(''' ''' * label_size + '''| ''' * len(__magic_name__ ) )
while len(node.forward ) != 0:
UpperCAmelCase_ : str = node.forward[0]
lines.append(
F"""[{node.key}]""".ljust(__magic_name__ , '''-''' )
+ ''' '''.join(str(n.key ) if n.key == node.key else '''|''' for n in forwards ) )
lines.append(''' ''' * label_size + '''| ''' * len(__magic_name__ ) )
UpperCAmelCase_ : List[Any] = node.forward
lines.append('''None'''.ljust(__magic_name__ ) + '''* ''' * len(__magic_name__ ) )
return F"""SkipList(level={self.level})\n""" + "\n".join(__magic_name__ )
def __iter__( self : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = self.head
while len(node.forward ) != 0:
yield node.forward[0].key
UpperCAmelCase_ : Any = node.forward[0]
def UpperCAmelCase__ ( self : Any ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = 1
while random() < self.p and level < self.max_level:
level += 1
return level
def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : str ) -> tuple[Node[KT, VT] | None, list[Node[KT, VT]]]:
"""simple docstring"""
UpperCAmelCase_ : List[str] = []
UpperCAmelCase_ : str = self.head
for i in reversed(range(self.level ) ):
# i < node.level - When node level is lesser than `i` decrement `i`.
# node.forward[i].key < key - Jumping to node with key value higher
# or equal to searched key would result
# in skipping searched key.
while i < node.level and node.forward[i].key < key:
UpperCAmelCase_ : int = node.forward[i]
# Each leftmost node (relative to searched node) will potentially have to
# be updated.
update_vector.append(__magic_name__ )
update_vector.reverse() # Note that we were inserting values in reverse order.
# len(node.forward) != 0 - If current node doesn't contain any further
# references then searched key is not present.
# node.forward[0].key == key - Next node key should be equal to search key
# if key is present.
if len(node.forward ) != 0 and node.forward[0].key == key:
return node.forward[0], update_vector
else:
return None, update_vector
def UpperCAmelCase__ ( self : int , __magic_name__ : KT ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : Any = self._locate_node(__magic_name__ )
if node is not None:
for i, update_node in enumerate(__magic_name__ ):
# Remove or replace all references to removed node.
if update_node.level > i and update_node.forward[i].key == key:
if node.level > i:
UpperCAmelCase_ : Optional[int] = node.forward[i]
else:
UpperCAmelCase_ : List[Any] = update_node.forward[:i]
def UpperCAmelCase__ ( self : str , __magic_name__ : KT , __magic_name__ : VT ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : Dict = self._locate_node(__magic_name__ )
if node is not None:
UpperCAmelCase_ : str = value
else:
UpperCAmelCase_ : Optional[Any] = self.random_level()
if level > self.level:
# After level increase we have to add additional nodes to head.
for _ in range(self.level - 1 , __magic_name__ ):
update_vector.append(self.head )
UpperCAmelCase_ : int = level
UpperCAmelCase_ : Optional[int] = Node(__magic_name__ , __magic_name__ )
for i, update_node in enumerate(update_vector[:level] ):
# Change references to pass through new node.
if update_node.level > i:
new_node.forward.append(update_node.forward[i] )
if update_node.level < i + 1:
update_node.forward.append(__magic_name__ )
else:
UpperCAmelCase_ : Tuple = new_node
def UpperCAmelCase__ ( self : Any , __magic_name__ : VT ) -> VT | None:
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self._locate_node(__magic_name__ )
if node is not None:
return node.value
return None
def lowerCamelCase_ ( ) -> List[Any]:
UpperCAmelCase_ : List[Any] = SkipList()
skip_list.insert('''Key1''', 3 )
skip_list.insert('''Key2''', 12 )
skip_list.insert('''Key3''', 41 )
skip_list.insert('''Key4''', -19 )
UpperCAmelCase_ : Dict = skip_list.head
UpperCAmelCase_ : Any = {}
while node.level != 0:
UpperCAmelCase_ : List[str] = node.forward[0]
UpperCAmelCase_ : Any = node.value
assert len(SCREAMING_SNAKE_CASE__ ) == 4
assert all_values["Key1"] == 3
assert all_values["Key2"] == 12
assert all_values["Key3"] == 41
assert all_values["Key4"] == -19
def lowerCamelCase_ ( ) -> Any:
UpperCAmelCase_ : List[str] = SkipList()
skip_list.insert('''Key1''', 10 )
skip_list.insert('''Key1''', 12 )
skip_list.insert('''Key5''', 7 )
skip_list.insert('''Key7''', 10 )
skip_list.insert('''Key10''', 5 )
skip_list.insert('''Key7''', 7 )
skip_list.insert('''Key5''', 5 )
skip_list.insert('''Key10''', 10 )
UpperCAmelCase_ : Optional[Any] = skip_list.head
UpperCAmelCase_ : Dict = {}
while node.level != 0:
UpperCAmelCase_ : List[Any] = node.forward[0]
UpperCAmelCase_ : Dict = node.value
if len(SCREAMING_SNAKE_CASE__ ) != 4:
print()
assert len(SCREAMING_SNAKE_CASE__ ) == 4
assert all_values["Key1"] == 12
assert all_values["Key7"] == 7
assert all_values["Key5"] == 5
assert all_values["Key10"] == 10
def lowerCamelCase_ ( ) -> Union[str, Any]:
UpperCAmelCase_ : Any = SkipList()
assert skip_list.find('''Some key''' ) is None
def lowerCamelCase_ ( ) -> Optional[Any]:
UpperCAmelCase_ : Optional[Any] = SkipList()
skip_list.insert('''Key2''', 20 )
assert skip_list.find('''Key2''' ) == 20
skip_list.insert('''Some Key''', 10 )
skip_list.insert('''Key2''', 8 )
skip_list.insert('''V''', 13 )
assert skip_list.find('''Y''' ) is None
assert skip_list.find('''Key2''' ) == 8
assert skip_list.find('''Some Key''' ) == 10
assert skip_list.find('''V''' ) == 13
def lowerCamelCase_ ( ) -> Optional[int]:
UpperCAmelCase_ : int = SkipList()
skip_list.delete('''Some key''' )
assert len(skip_list.head.forward ) == 0
def lowerCamelCase_ ( ) -> List[str]:
UpperCAmelCase_ : Optional[Any] = SkipList()
skip_list.insert('''Key1''', 12 )
skip_list.insert('''V''', 13 )
skip_list.insert('''X''', 14 )
skip_list.insert('''Key2''', 15 )
skip_list.delete('''V''' )
skip_list.delete('''Key2''' )
assert skip_list.find('''V''' ) is None
assert skip_list.find('''Key2''' ) is None
def lowerCamelCase_ ( ) -> Optional[Any]:
UpperCAmelCase_ : int = SkipList()
skip_list.insert('''Key1''', 12 )
skip_list.insert('''V''', 13 )
skip_list.insert('''X''', 14 )
skip_list.insert('''Key2''', 15 )
skip_list.delete('''V''' )
assert skip_list.find('''V''' ) is None
assert skip_list.find('''X''' ) == 14
assert skip_list.find('''Key1''' ) == 12
assert skip_list.find('''Key2''' ) == 15
skip_list.delete('''X''' )
assert skip_list.find('''V''' ) is None
assert skip_list.find('''X''' ) is None
assert skip_list.find('''Key1''' ) == 12
assert skip_list.find('''Key2''' ) == 15
skip_list.delete('''Key1''' )
assert skip_list.find('''V''' ) is None
assert skip_list.find('''X''' ) is None
assert skip_list.find('''Key1''' ) is None
assert skip_list.find('''Key2''' ) == 15
skip_list.delete('''Key2''' )
assert skip_list.find('''V''' ) is None
assert skip_list.find('''X''' ) is None
assert skip_list.find('''Key1''' ) is None
assert skip_list.find('''Key2''' ) is None
def lowerCamelCase_ ( ) -> Tuple:
UpperCAmelCase_ : Tuple = SkipList()
skip_list.insert('''Key1''', 12 )
skip_list.insert('''V''', 13 )
skip_list.insert('''X''', 142 )
skip_list.insert('''Key2''', 15 )
skip_list.delete('''X''' )
def traverse_keys(SCREAMING_SNAKE_CASE__ : Optional[Any] ):
yield node.key
for forward_node in node.forward:
yield from traverse_keys(SCREAMING_SNAKE_CASE__ )
assert len(set(traverse_keys(skip_list.head ) ) ) == 4
def lowerCamelCase_ ( ) -> Union[str, Any]:
def is_sorted(SCREAMING_SNAKE_CASE__ : Tuple ):
return all(next_item >= item for item, next_item in zip(SCREAMING_SNAKE_CASE__, lst[1:] ) )
UpperCAmelCase_ : Union[str, Any] = SkipList()
for i in range(10 ):
skip_list.insert(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
assert is_sorted(list(SCREAMING_SNAKE_CASE__ ) )
skip_list.delete(5 )
skip_list.delete(8 )
skip_list.delete(2 )
assert is_sorted(list(SCREAMING_SNAKE_CASE__ ) )
skip_list.insert(-12, -12 )
skip_list.insert(77, 77 )
assert is_sorted(list(SCREAMING_SNAKE_CASE__ ) )
def lowerCamelCase_ ( ) -> Any:
for _ in range(100 ):
# Repeat test 100 times due to the probabilistic nature of skip list
# random values == random bugs
test_insert()
test_insert_overrides_existing_value()
test_searching_empty_list_returns_none()
test_search()
test_deleting_item_from_empty_list_do_nothing()
test_deleted_items_are_not_founded_by_find_method()
test_delete_removes_only_given_key()
test_delete_doesnt_leave_dead_nodes()
test_iter_always_yields_sorted_values()
def lowerCamelCase_ ( ) -> Any:
UpperCAmelCase_ : Dict = SkipList()
skip_list.insert(2, '''2''' )
skip_list.insert(4, '''4''' )
skip_list.insert(6, '''4''' )
skip_list.insert(4, '''5''' )
skip_list.insert(8, '''4''' )
skip_list.insert(9, '''4''' )
skip_list.delete(4 )
print(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 644
|
'''simple docstring'''
import unittest
import torch
from torch import nn
from diffusers.models.activations import get_activation
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : Dict ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : Dict = get_activation('''swish''' )
self.assertIsInstance(__magic_name__ , nn.SiLU )
self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
def UpperCAmelCase__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = get_activation('''silu''' )
self.assertIsInstance(__magic_name__ , nn.SiLU )
self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
def UpperCAmelCase__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = get_activation('''mish''' )
self.assertIsInstance(__magic_name__ , nn.Mish )
self.assertEqual(act(torch.tensor(-2_00 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
def UpperCAmelCase__ ( self : str ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = get_activation('''gelu''' )
self.assertIsInstance(__magic_name__ , nn.GELU )
self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
| 644
| 1
|
'''simple docstring'''
import os
import re
import unicodedata
from shutil import copyfile
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import is_torch_available, logging
if is_torch_available():
import torch
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
snake_case_ : int = logging.get_logger(__name__)
snake_case_ : Union[str, Any] = {"vocab_file": "spiece.model"}
snake_case_ : Dict = {
"vocab_file": {
"AI-Sweden/gpt-sw3-126m": "https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model",
"AI-Sweden/gpt-sw3-350m": "https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model",
"AI-Sweden/gpt-sw3-1.6b": "https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model",
"AI-Sweden/gpt-sw3-6.7b": "https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model",
"AI-Sweden/gpt-sw3-20b": "https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model",
}
}
snake_case_ : Optional[int] = {
"AI-Sweden/gpt-sw3-126m": 20_48,
"AI-Sweden/gpt-sw3-350m": 20_48,
"AI-Sweden/gpt-sw3-1.6b": 20_48,
"AI-Sweden/gpt-sw3-6.7b": 20_48,
"AI-Sweden/gpt-sw3-20b": 20_48,
}
class __a (lowerCamelCase ):
__a : List[str] = VOCAB_FILES_NAMES
__a : int = PRETRAINED_VOCAB_FILES_MAP
__a : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__a : Optional[int] = ["input_ids", "attention_mask"]
def __init__( self : Optional[int] , __magic_name__ : List[str] , __magic_name__ : str=False , __magic_name__ : List[str]=False , __magic_name__ : Any=False , __magic_name__ : Tuple=None , __magic_name__ : str=None , __magic_name__ : Union[str, Any]=None , __magic_name__ : int=None , __magic_name__ : Optional[Dict[str, Any]] = None , **__magic_name__ : List[str] , ) -> None:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs
UpperCAmelCase_ : Union[str, Any] = kwargs.get('''name_or_path''' )
if name_or_path is None:
logger.warning(
'''name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,'''
''' you are testing the model, this can safely be ignored''' )
UpperCAmelCase_ : Optional[Any] = '''None'''
# Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing
UpperCAmelCase_ : Any = '''<|endoftext|>''' if eos_token is None else eos_token
UpperCAmelCase_ : Dict = '''<unk>''' if unk_token is None else unk_token
if "gpt-sw3-7b" in name_or_path:
UpperCAmelCase_ : Optional[int] = unk_token if pad_token is None else pad_token
UpperCAmelCase_ : Any = eos_token if bos_token is None else bos_token
else:
UpperCAmelCase_ : List[str] = '''<pad>''' if pad_token is None else pad_token
UpperCAmelCase_ : Optional[int] = '''<s>''' if bos_token is None else bos_token
super().__init__(
do_lower_case=__magic_name__ , remove_space=__magic_name__ , keep_accents=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , unk_token=__magic_name__ , pad_token=__magic_name__ , sp_model_kwargs=self.sp_model_kwargs , **__magic_name__ , )
UpperCAmelCase_ : Any = do_lower_case
UpperCAmelCase_ : Union[str, Any] = remove_space
UpperCAmelCase_ : List[str] = keep_accents
UpperCAmelCase_ : Tuple = vocab_file
UpperCAmelCase_ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(__magic_name__ )
# Used for whitespace normalization in input texts
# fmt : off
UpperCAmelCase_ : int = {''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', '''''', ''''''}
# fmt : on
# Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing
UpperCAmelCase_ : Union[str, Any] = re.compile(
F"""[{"".join(map(__magic_name__ , list(range(0 , 9 ) ) + list(range(11 , 32 ) ) + list(range(1_27 , 1_60 ) ) + [1_60, 1_73, 82_03] ) )}]""" )
def __getstate__( self : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : int = self.__dict__.copy()
UpperCAmelCase_ : str = None
return state
def __setstate__( self : Union[str, Any] , __magic_name__ : Tuple ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
UpperCAmelCase_ : Union[str, Any] = {}
UpperCAmelCase_ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
@property
# Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size
def UpperCAmelCase__ ( self : str ) -> int:
"""simple docstring"""
return len(self.sp_model )
def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : str ) -> str:
"""simple docstring"""
UpperCAmelCase_ : List[str] = self.non_printing_characters_re.sub('''''' , __magic_name__ )
# Normalize whitespaces
UpperCAmelCase_ : Any = ''''''.join([char if char not in self.whitespaces else ''' ''' for char in text] )
# NFC Unicode normalization
UpperCAmelCase_ : Union[str, Any] = unicodedata.normalize('''NFC''' , __magic_name__ )
return text
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : str , **__magic_name__ : List[Any] ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = self.preprocess_text(__magic_name__ )
return self.sp_model.encode(__magic_name__ , out_type=__magic_name__ )
def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : str ) -> int:
"""simple docstring"""
return self.sp_model.PieceToId(__magic_name__ )
def UpperCAmelCase__ ( self : int , __magic_name__ : int ) -> str:
"""simple docstring"""
return self.sp_model.IdToPiece(__magic_name__ )
@staticmethod
def UpperCAmelCase__ ( __magic_name__ : str ) -> str:
"""simple docstring"""
return out_string
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : List[str] ) -> str:
"""simple docstring"""
UpperCAmelCase_ : Dict = []
UpperCAmelCase_ : Any = ''''''
UpperCAmelCase_ : int = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
# TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(__magic_name__ ) + token
UpperCAmelCase_ : Optional[Any] = True
UpperCAmelCase_ : int = []
else:
current_sub_tokens.append(__magic_name__ )
UpperCAmelCase_ : str = False
out_string += self.sp_model.decode(__magic_name__ )
return out_string
def UpperCAmelCase__ ( self : Optional[Any] ) -> Dict[str, int]:
"""simple docstring"""
UpperCAmelCase_ : List[str] = {self.convert_ids_to_tokens(__magic_name__ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
if not os.path.isdir(__magic_name__ ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
UpperCAmelCase_ : Union[str, Any] = os.path.join(
__magic_name__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__magic_name__ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __magic_name__ )
elif not os.path.isfile(self.vocab_file ):
with open(__magic_name__ , '''wb''' ) as fi:
UpperCAmelCase_ : List[Any] = self.sp_model.serialized_model_proto()
fi.write(__magic_name__ )
return (out_vocab_file,)
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Union[str, List[str]] , __magic_name__ : Union[str, bool] = False ) -> Union[List[int], List[List[int]], "torch.Tensor"]:
"""simple docstring"""
if isinstance(__magic_name__ , __magic_name__ ):
UpperCAmelCase_ : Any = self.preprocess_text(__magic_name__ )
UpperCAmelCase_ : str = self.sp_model.encode(__magic_name__ )
else:
UpperCAmelCase_ : Any = [self.preprocess_text(__magic_name__ ) for t in text]
UpperCAmelCase_ : Optional[Any] = self.sp_model.encode(__magic_name__ )
if return_tensors is True or return_tensors == "pt":
UpperCAmelCase_ : Tuple = torch.tensor(__magic_name__ )
return token_ids
def UpperCAmelCase__ ( self : Dict , __magic_name__ : Union[int, List[int]] ) -> str:
"""simple docstring"""
return self.sp_model.decode(__magic_name__ )
def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : "Conversation" ) -> List[int]:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = [F"""User: {text}""" if is_user else F"""Bot: {text}""" for is_user, text in conversation.iter_texts()]
UpperCAmelCase_ : Any = (
F"""{self.eos_token}{self.bos_token}""" + F"""{self.bos_token}""".join(__magic_name__ ) + F"""{self.bos_token}Bot:"""
)
return self.encode(text=__magic_name__ )
| 644
|
'''simple docstring'''
from typing import List, Optional, Union
import numpy as np
import PIL.Image
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import rescale, resize, to_channel_dimension_format
from ...image_utils import (
ChannelDimension,
PILImageResampling,
get_image_size,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
snake_case_ : Union[str, Any] = logging.get_logger(__name__)
class __a (lowerCamelCase ):
__a : Tuple = ["pixel_values"]
def __init__( self : List[Any] , __magic_name__ : bool = True , __magic_name__ : int = 32 , __magic_name__ : Union[str, Any]=PILImageResampling.BILINEAR , __magic_name__ : bool = True , **__magic_name__ : List[str] , ) -> None:
"""simple docstring"""
UpperCAmelCase_ : int = do_resize
UpperCAmelCase_ : Tuple = do_rescale
UpperCAmelCase_ : List[Any] = size_divisor
UpperCAmelCase_ : Any = resample
super().__init__(**__magic_name__ )
def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : np.ndarray , __magic_name__ : int , __magic_name__ : str , __magic_name__ : Optional[ChannelDimension] = None , **__magic_name__ : Tuple ) -> np.ndarray:
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : List[str] = get_image_size(__magic_name__ )
# Rounds the height and width down to the closest multiple of size_divisor
UpperCAmelCase_ : Dict = height // size_divisor * size_divisor
UpperCAmelCase_ : Dict = width // size_divisor * size_divisor
UpperCAmelCase_ : Any = resize(__magic_name__ , (new_h, new_w) , resample=__magic_name__ , data_format=__magic_name__ , **__magic_name__ )
return image
def UpperCAmelCase__ ( self : int , __magic_name__ : np.ndarray , __magic_name__ : float , __magic_name__ : Optional[ChannelDimension] = None , **__magic_name__ : Optional[Any] ) -> np.ndarray:
"""simple docstring"""
return rescale(image=__magic_name__ , scale=__magic_name__ , data_format=__magic_name__ , **__magic_name__ )
def UpperCAmelCase__ ( self : str , __magic_name__ : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[int] = None , __magic_name__ : Any=None , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[Union[TensorType, str]] = None , __magic_name__ : ChannelDimension = ChannelDimension.FIRST , **__magic_name__ : Tuple , ) -> BatchFeature:
"""simple docstring"""
UpperCAmelCase_ : Dict = do_resize if do_resize is not None else self.do_resize
UpperCAmelCase_ : str = do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase_ : Any = size_divisor if size_divisor is not None else self.size_divisor
UpperCAmelCase_ : Dict = resample if resample is not None else self.resample
if do_resize and size_divisor is None:
raise ValueError('''size_divisor is required for resizing''' )
UpperCAmelCase_ : Optional[int] = make_list_of_images(__magic_name__ )
if not valid_images(__magic_name__ ):
raise ValueError('''Invalid image(s)''' )
# All transformations expect numpy arrays.
UpperCAmelCase_ : List[str] = [to_numpy_array(__magic_name__ ) for img in images]
if do_resize:
UpperCAmelCase_ : str = [self.resize(__magic_name__ , size_divisor=__magic_name__ , resample=__magic_name__ ) for image in images]
if do_rescale:
UpperCAmelCase_ : Tuple = [self.rescale(__magic_name__ , scale=1 / 2_55 ) for image in images]
UpperCAmelCase_ : Union[str, Any] = [to_channel_dimension_format(__magic_name__ , __magic_name__ ) for image in images]
UpperCAmelCase_ : int = {'''pixel_values''': images}
return BatchFeature(data=__magic_name__ , tensor_type=__magic_name__ )
| 644
| 1
|
'''simple docstring'''
from . import __version__
# Backward compatibility imports, to make sure all those objects can be found in file_utils
from .utils import (
CLOUDFRONT_DISTRIB_PREFIX,
CONFIG_NAME,
DISABLE_TELEMETRY,
DUMMY_INPUTS,
DUMMY_MASK,
ENV_VARS_TRUE_AND_AUTO_VALUES,
ENV_VARS_TRUE_VALUES,
FEATURE_EXTRACTOR_NAME,
FLAX_WEIGHTS_NAME,
HF_MODULES_CACHE,
HUGGINGFACE_CO_PREFIX,
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
MODEL_CARD_NAME,
MULTIPLE_CHOICE_DUMMY_INPUTS,
PYTORCH_PRETRAINED_BERT_CACHE,
PYTORCH_TRANSFORMERS_CACHE,
S3_BUCKET_PREFIX,
SENTENCEPIECE_UNDERLINE,
SPIECE_UNDERLINE,
TF2_WEIGHTS_NAME,
TF_WEIGHTS_NAME,
TORCH_FX_REQUIRED_VERSION,
TRANSFORMERS_CACHE,
TRANSFORMERS_DYNAMIC_MODULE_NAME,
USE_JAX,
USE_TF,
USE_TORCH,
WEIGHTS_INDEX_NAME,
WEIGHTS_NAME,
ContextManagers,
DummyObject,
EntryNotFoundError,
ExplicitEnum,
ModelOutput,
PaddingStrategy,
PushToHubMixin,
RepositoryNotFoundError,
RevisionNotFoundError,
TensorType,
_LazyModule,
add_code_sample_docstrings,
add_end_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
cached_property,
copy_func,
default_cache_path,
define_sagemaker_information,
get_cached_models,
get_file_from_repo,
get_full_repo_name,
get_torch_version,
has_file,
http_user_agent,
is_apex_available,
is_bsa_available,
is_coloredlogs_available,
is_datasets_available,
is_detectrona_available,
is_faiss_available,
is_flax_available,
is_ftfy_available,
is_in_notebook,
is_ipex_available,
is_librosa_available,
is_offline_mode,
is_onnx_available,
is_pandas_available,
is_phonemizer_available,
is_protobuf_available,
is_psutil_available,
is_pyanvml_available,
is_pyctcdecode_available,
is_pytesseract_available,
is_pytorch_quantization_available,
is_rjieba_available,
is_sagemaker_dp_enabled,
is_sagemaker_mp_enabled,
is_scipy_available,
is_sentencepiece_available,
is_seqio_available,
is_sklearn_available,
is_soundfile_availble,
is_spacy_available,
is_speech_available,
is_tensor,
is_tensorflow_probability_available,
is_tfaonnx_available,
is_tf_available,
is_timm_available,
is_tokenizers_available,
is_torch_available,
is_torch_bfaa_available,
is_torch_cuda_available,
is_torch_fx_available,
is_torch_fx_proxy,
is_torch_mps_available,
is_torch_tfaa_available,
is_torch_tpu_available,
is_torchaudio_available,
is_training_run_on_sagemaker,
is_vision_available,
replace_return_docstrings,
requires_backends,
to_numpy,
to_py_obj,
torch_only_method,
)
| 644
|
'''simple docstring'''
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int = 10, SCREAMING_SNAKE_CASE__ : int = 22 ) -> int:
UpperCAmelCase_ : Optional[int] = range(1, SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : List[Any] = range(1, SCREAMING_SNAKE_CASE__ )
return sum(
1 for power in powers for base in bases if len(str(base**power ) ) == power )
if __name__ == "__main__":
print(f'''{solution(10, 22) = }''')
| 644
| 1
|
'''simple docstring'''
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : str ) -> str:
UpperCAmelCase_ : Optional[Any] = 0
# if input_string is "aba" than new_input_string become "a|b|a"
UpperCAmelCase_ : Tuple = ''''''
UpperCAmelCase_ : Dict = ''''''
# append each character + "|" in new_string for range(0, length-1)
for i in input_string[: len(SCREAMING_SNAKE_CASE__ ) - 1]:
new_input_string += i + "|"
# append last character
new_input_string += input_string[-1]
# we will store the starting and ending of previous furthest ending palindromic
# substring
UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = 0, 0
# length[i] shows the length of palindromic substring with center i
UpperCAmelCase_ : List[Any] = [1 for i in range(len(SCREAMING_SNAKE_CASE__ ) )]
# for each character in new_string find corresponding palindromic string
UpperCAmelCase_ : str = 0
for j in range(len(SCREAMING_SNAKE_CASE__ ) ):
UpperCAmelCase_ : Union[str, Any] = 1 if j > r else min(length[l + r - j] // 2, r - j + 1 )
while (
j - k >= 0
and j + k < len(SCREAMING_SNAKE_CASE__ )
and new_input_string[k + j] == new_input_string[j - k]
):
k += 1
UpperCAmelCase_ : List[Any] = 2 * k - 1
# does this string is ending after the previously explored end (that is r) ?
# if yes the update the new r to the last index of this
if j + k - 1 > r:
UpperCAmelCase_ : Union[str, Any] = j - k + 1 # noqa: E741
UpperCAmelCase_ : Union[str, Any] = j + k - 1
# update max_length and start position
if max_length < length[j]:
UpperCAmelCase_ : Any = length[j]
UpperCAmelCase_ : List[str] = j
# create that string
UpperCAmelCase_ : Any = new_input_string[start - max_length // 2 : start + max_length // 2 + 1]
for i in s:
if i != "|":
output_string += i
return output_string
if __name__ == "__main__":
import doctest
doctest.testmod()
| 644
|
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
import torch
from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor
from ..utils import requires_backends
from .base import PipelineTool
if TYPE_CHECKING:
from PIL import Image
class __a (lowerCamelCase ):
__a : int = "dandelin/vilt-b32-finetuned-vqa"
__a : Any = (
"This is a tool that answers a question about an image. It takes an input named `image` which should be the "
"image containing the information, as well as a `question` which should be the question in English. It "
"returns a text that is the answer to the question."
)
__a : Any = "image_qa"
__a : str = AutoProcessor
__a : Any = AutoModelForVisualQuestionAnswering
__a : List[Any] = ["image", "text"]
__a : int = ["text"]
def __init__( self : Tuple , *__magic_name__ : Any , **__magic_name__ : Any ) -> Tuple:
"""simple docstring"""
requires_backends(self , ['''vision'''] )
super().__init__(*__magic_name__ , **__magic_name__ )
def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : "Image" , __magic_name__ : str ) -> Tuple:
"""simple docstring"""
return self.pre_processor(__magic_name__ , __magic_name__ , return_tensors='''pt''' )
def UpperCAmelCase__ ( self : Any , __magic_name__ : List[str] ) -> Optional[Any]:
"""simple docstring"""
with torch.no_grad():
return self.model(**__magic_name__ ).logits
def UpperCAmelCase__ ( self : int , __magic_name__ : int ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Dict = outputs.argmax(-1 ).item()
return self.model.config.idalabel[idx]
| 644
| 1
|
'''simple docstring'''
# This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
ControlNetModel,
DDIMScheduler,
StableDiffusionControlNetImgaImgPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel
from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
)
enable_full_determinism()
class __a (lowerCamelCase , lowerCamelCase , lowerCamelCase , unittest.TestCase ):
__a : Dict = StableDiffusionControlNetImgaImgPipeline
__a : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"}
__a : str = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
__a : Union[str, Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({"control_image"} )
__a : str = IMAGE_TO_IMAGE_IMAGE_PARAMS
def UpperCAmelCase__ ( self : Tuple ) -> int:
"""simple docstring"""
torch.manual_seed(0 )
UpperCAmelCase_ : Union[str, Any] = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , )
torch.manual_seed(0 )
UpperCAmelCase_ : str = ControlNetModel(
block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , )
torch.manual_seed(0 )
UpperCAmelCase_ : str = DDIMScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=__magic_name__ , set_alpha_to_one=__magic_name__ , )
torch.manual_seed(0 )
UpperCAmelCase_ : str = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
torch.manual_seed(0 )
UpperCAmelCase_ : Any = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , )
UpperCAmelCase_ : List[Any] = CLIPTextModel(__magic_name__ )
UpperCAmelCase_ : Any = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
UpperCAmelCase_ : int = {
'''unet''': unet,
'''controlnet''': controlnet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''safety_checker''': None,
'''feature_extractor''': None,
}
return components
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : int , __magic_name__ : Union[str, Any]=0 ) -> List[str]:
"""simple docstring"""
if str(__magic_name__ ).startswith('''mps''' ):
UpperCAmelCase_ : str = torch.manual_seed(__magic_name__ )
else:
UpperCAmelCase_ : Optional[int] = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ )
UpperCAmelCase_ : List[Any] = 2
UpperCAmelCase_ : Tuple = randn_tensor(
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=__magic_name__ , device=torch.device(__magic_name__ ) , )
UpperCAmelCase_ : List[str] = floats_tensor(control_image.shape , rng=random.Random(__magic_name__ ) ).to(__magic_name__ )
UpperCAmelCase_ : Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0]
UpperCAmelCase_ : Optional[int] = Image.fromarray(np.uinta(__magic_name__ ) ).convert('''RGB''' ).resize((64, 64) )
UpperCAmelCase_ : int = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
'''image''': image,
'''control_image''': control_image,
}
return inputs
def UpperCAmelCase__ ( self : List[str] ) -> List[str]:
"""simple docstring"""
return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 )
@unittest.skipIf(
torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , )
def UpperCAmelCase__ ( self : Optional[Any] ) -> str:
"""simple docstring"""
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 )
def UpperCAmelCase__ ( self : int ) -> Dict:
"""simple docstring"""
self._test_inference_batch_single_identical(expected_max_diff=2E-3 )
class __a (lowerCamelCase , lowerCamelCase , unittest.TestCase ):
__a : str = StableDiffusionControlNetImgaImgPipeline
__a : Tuple = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"}
__a : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
__a : List[Any] = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess
def UpperCAmelCase__ ( self : int ) -> int:
"""simple docstring"""
torch.manual_seed(0 )
UpperCAmelCase_ : Optional[int] = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , )
torch.manual_seed(0 )
def init_weights(__magic_name__ : str ):
if isinstance(__magic_name__ , torch.nn.Convad ):
torch.nn.init.normal(m.weight )
m.bias.data.fill_(1.0 )
UpperCAmelCase_ : Optional[Any] = ControlNetModel(
block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , )
controlneta.controlnet_down_blocks.apply(__magic_name__ )
torch.manual_seed(0 )
UpperCAmelCase_ : Optional[int] = ControlNetModel(
block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , )
controlneta.controlnet_down_blocks.apply(__magic_name__ )
torch.manual_seed(0 )
UpperCAmelCase_ : Optional[Any] = DDIMScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=__magic_name__ , set_alpha_to_one=__magic_name__ , )
torch.manual_seed(0 )
UpperCAmelCase_ : Optional[int] = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
torch.manual_seed(0 )
UpperCAmelCase_ : Optional[Any] = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , )
UpperCAmelCase_ : Any = CLIPTextModel(__magic_name__ )
UpperCAmelCase_ : Tuple = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
UpperCAmelCase_ : Tuple = MultiControlNetModel([controlneta, controlneta] )
UpperCAmelCase_ : Union[str, Any] = {
'''unet''': unet,
'''controlnet''': controlnet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''safety_checker''': None,
'''feature_extractor''': None,
}
return components
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : List[Any] , __magic_name__ : Optional[int]=0 ) -> List[Any]:
"""simple docstring"""
if str(__magic_name__ ).startswith('''mps''' ):
UpperCAmelCase_ : Any = torch.manual_seed(__magic_name__ )
else:
UpperCAmelCase_ : Optional[Any] = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ )
UpperCAmelCase_ : Union[str, Any] = 2
UpperCAmelCase_ : Tuple = [
randn_tensor(
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=__magic_name__ , device=torch.device(__magic_name__ ) , ),
randn_tensor(
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=__magic_name__ , device=torch.device(__magic_name__ ) , ),
]
UpperCAmelCase_ : Any = floats_tensor(control_image[0].shape , rng=random.Random(__magic_name__ ) ).to(__magic_name__ )
UpperCAmelCase_ : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0]
UpperCAmelCase_ : List[Any] = Image.fromarray(np.uinta(__magic_name__ ) ).convert('''RGB''' ).resize((64, 64) )
UpperCAmelCase_ : List[Any] = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
'''image''': image,
'''control_image''': control_image,
}
return inputs
def UpperCAmelCase__ ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = self.get_dummy_components()
UpperCAmelCase_ : List[str] = self.pipeline_class(**__magic_name__ )
pipe.to(__magic_name__ )
UpperCAmelCase_ : List[Any] = 1_0.0
UpperCAmelCase_ : Optional[int] = 4
UpperCAmelCase_ : Optional[Any] = self.get_dummy_inputs(__magic_name__ )
UpperCAmelCase_ : Tuple = steps
UpperCAmelCase_ : List[Any] = scale
UpperCAmelCase_ : str = pipe(**__magic_name__ )[0]
UpperCAmelCase_ : Any = self.get_dummy_inputs(__magic_name__ )
UpperCAmelCase_ : Dict = steps
UpperCAmelCase_ : Dict = scale
UpperCAmelCase_ : str = pipe(**__magic_name__ , control_guidance_start=0.1 , control_guidance_end=0.2 )[0]
UpperCAmelCase_ : Any = self.get_dummy_inputs(__magic_name__ )
UpperCAmelCase_ : int = steps
UpperCAmelCase_ : Union[str, Any] = scale
UpperCAmelCase_ : Optional[int] = pipe(**__magic_name__ , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0]
UpperCAmelCase_ : Union[str, Any] = self.get_dummy_inputs(__magic_name__ )
UpperCAmelCase_ : Optional[int] = steps
UpperCAmelCase_ : List[Any] = scale
UpperCAmelCase_ : Union[str, Any] = pipe(**__magic_name__ , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0]
# make sure that all outputs are different
assert np.sum(np.abs(output_a - output_a ) ) > 1E-3
assert np.sum(np.abs(output_a - output_a ) ) > 1E-3
assert np.sum(np.abs(output_a - output_a ) ) > 1E-3
def UpperCAmelCase__ ( self : int ) -> Tuple:
"""simple docstring"""
return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 )
@unittest.skipIf(
torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , )
def UpperCAmelCase__ ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 )
def UpperCAmelCase__ ( self : List[Any] ) -> Dict:
"""simple docstring"""
self._test_inference_batch_single_identical(expected_max_diff=2E-3 )
def UpperCAmelCase__ ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = self.get_dummy_components()
UpperCAmelCase_ : str = self.pipeline_class(**__magic_name__ )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
with tempfile.TemporaryDirectory() as tmpdir:
try:
# save_pretrained is not implemented for Multi-ControlNet
pipe.save_pretrained(__magic_name__ )
except NotImplementedError:
pass
@slow
@require_torch_gpu
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ ( self : int ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = ControlNetModel.from_pretrained('''lllyasviel/sd-controlnet-canny''' )
UpperCAmelCase_ : Any = StableDiffusionControlNetImgaImgPipeline.from_pretrained(
'''runwayml/stable-diffusion-v1-5''' , safety_checker=__magic_name__ , controlnet=__magic_name__ )
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : Dict = torch.Generator(device='''cpu''' ).manual_seed(0 )
UpperCAmelCase_ : Dict = '''evil space-punk bird'''
UpperCAmelCase_ : str = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png''' ).resize((5_12, 5_12) )
UpperCAmelCase_ : List[Any] = load_image(
'''https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png''' ).resize((5_12, 5_12) )
UpperCAmelCase_ : List[Any] = pipe(
__magic_name__ , __magic_name__ , control_image=__magic_name__ , generator=__magic_name__ , output_type='''np''' , num_inference_steps=50 , strength=0.6 , )
UpperCAmelCase_ : Tuple = output.images[0]
assert image.shape == (5_12, 5_12, 3)
UpperCAmelCase_ : Optional[int] = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy''' )
assert np.abs(expected_image - image ).max() < 9E-2
| 644
|
'''simple docstring'''
from collections.abc import Iterable
from typing import Any
class __a :
def __init__( self : Optional[Any] , __magic_name__ : int | None = None ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : List[str] = value
UpperCAmelCase_ : Node | None = None # Added in order to delete a node easier
UpperCAmelCase_ : Node | None = None
UpperCAmelCase_ : Node | None = None
def __repr__( self : List[str] ) -> str:
"""simple docstring"""
from pprint import pformat
if self.left is None and self.right is None:
return str(self.value )
return pformat({F"""{self.value}""": (self.left, self.right)} , indent=1 )
class __a :
def __init__( self : int , __magic_name__ : Node | None = None ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : str = root
def __str__( self : Any ) -> str:
"""simple docstring"""
return str(self.root )
def UpperCAmelCase__ ( self : Any , __magic_name__ : Node , __magic_name__ : Node | None ) -> None:
"""simple docstring"""
if new_children is not None: # reset its kids
UpperCAmelCase_ : Dict = node.parent
if node.parent is not None: # reset its parent
if self.is_right(__magic_name__ ): # If it is the right children
UpperCAmelCase_ : Optional[Any] = new_children
else:
UpperCAmelCase_ : Optional[int] = new_children
else:
UpperCAmelCase_ : List[str] = new_children
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Node ) -> bool:
"""simple docstring"""
if node.parent and node.parent.right:
return node == node.parent.right
return False
def UpperCAmelCase__ ( self : Union[str, Any] ) -> bool:
"""simple docstring"""
return self.root is None
def UpperCAmelCase__ ( self : Any , __magic_name__ : str ) -> None:
"""simple docstring"""
UpperCAmelCase_ : Tuple = Node(__magic_name__ ) # create a new Node
if self.empty(): # if Tree is empty
UpperCAmelCase_ : List[Any] = new_node # set its root
else: # Tree is not empty
UpperCAmelCase_ : str = self.root # from root
if parent_node is None:
return
while True: # While we don't get to a leaf
if value < parent_node.value: # We go left
if parent_node.left is None:
UpperCAmelCase_ : Union[str, Any] = new_node # We insert the new node in a leaf
break
else:
UpperCAmelCase_ : List[Any] = parent_node.left
else:
if parent_node.right is None:
UpperCAmelCase_ : List[Any] = new_node
break
else:
UpperCAmelCase_ : Union[str, Any] = parent_node.right
UpperCAmelCase_ : Union[str, Any] = parent_node
def UpperCAmelCase__ ( self : Optional[Any] , *__magic_name__ : List[str] ) -> None:
"""simple docstring"""
for value in values:
self.__insert(__magic_name__ )
def UpperCAmelCase__ ( self : Dict , __magic_name__ : int ) -> Node | None:
"""simple docstring"""
if self.empty():
raise IndexError('''Warning: Tree is empty! please use another.''' )
else:
UpperCAmelCase_ : str = self.root
# use lazy evaluation here to avoid NoneType Attribute error
while node is not None and node.value is not value:
UpperCAmelCase_ : List[str] = node.left if value < node.value else node.right
return node
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : Node | None = None ) -> Node | None:
"""simple docstring"""
if node is None:
if self.root is None:
return None
UpperCAmelCase_ : Dict = self.root
if not self.empty():
while node.right is not None:
UpperCAmelCase_ : Any = node.right
return node
def UpperCAmelCase__ ( self : Dict , __magic_name__ : Node | None = None ) -> Node | None:
"""simple docstring"""
if node is None:
UpperCAmelCase_ : Optional[int] = self.root
if self.root is None:
return None
if not self.empty():
UpperCAmelCase_ : Union[str, Any] = self.root
while node.left is not None:
UpperCAmelCase_ : Dict = node.left
return node
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : int ) -> None:
"""simple docstring"""
UpperCAmelCase_ : List[str] = self.search(__magic_name__ ) # Look for the node with that label
if node is not None:
if node.left is None and node.right is None: # If it has no children
self.__reassign_nodes(__magic_name__ , __magic_name__ )
elif node.left is None: # Has only right children
self.__reassign_nodes(__magic_name__ , node.right )
elif node.right is None: # Has only left children
self.__reassign_nodes(__magic_name__ , node.left )
else:
UpperCAmelCase_ : List[str] = self.get_max(
node.left ) # Gets the max value of the left branch
self.remove(tmp_node.value ) # type: ignore
UpperCAmelCase_ : Optional[int] = (
tmp_node.value # type: ignore
) # Assigns the value to the node to delete and keep tree structure
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Node | None ) -> Iterable:
"""simple docstring"""
if node is not None:
yield node # Preorder Traversal
yield from self.preorder_traverse(node.left )
yield from self.preorder_traverse(node.right )
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : List[Any]=None ) -> Any:
"""simple docstring"""
if traversal_function is None:
return self.preorder_traverse(self.root )
else:
return traversal_function(self.root )
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : list , __magic_name__ : Node | None ) -> None:
"""simple docstring"""
if node:
self.inorder(__magic_name__ , node.left )
arr.append(node.value )
self.inorder(__magic_name__ , node.right )
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : int , __magic_name__ : Node ) -> int:
"""simple docstring"""
UpperCAmelCase_ : list[int] = []
self.inorder(__magic_name__ , __magic_name__ ) # append all values to list using inorder traversal
return arr[k - 1]
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Node | None ) -> list[Node]:
UpperCAmelCase_ : Any = []
if curr_node is not None:
UpperCAmelCase_ : Any = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node]
return node_list
def lowerCamelCase_ ( ) -> None:
UpperCAmelCase_ : str = (8, 3, 6, 1, 10, 14, 13, 4, 7)
UpperCAmelCase_ : Tuple = BinarySearchTree()
for i in testlist:
t.insert(SCREAMING_SNAKE_CASE__ )
# Prints all the elements of the list in order traversal
print(SCREAMING_SNAKE_CASE__ )
if t.search(6 ) is not None:
print('''The value 6 exists''' )
else:
print('''The value 6 doesn\'t exist''' )
if t.search(-1 ) is not None:
print('''The value -1 exists''' )
else:
print('''The value -1 doesn\'t exist''' )
if not t.empty():
print('''Max Value: ''', t.get_max().value ) # type: ignore
print('''Min Value: ''', t.get_min().value ) # type: ignore
for i in testlist:
t.remove(SCREAMING_SNAKE_CASE__ )
print(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
| 644
| 1
|
'''simple docstring'''
from typing import List, Optional, Union
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class __a (lowerCamelCase ):
__a : Optional[int] = ["image_processor", "tokenizer"]
__a : Optional[Any] = "BlipImageProcessor"
__a : List[str] = ("BertTokenizer", "BertTokenizerFast")
def __init__( self : List[str] , __magic_name__ : Tuple , __magic_name__ : Dict ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = False
super().__init__(__magic_name__ , __magic_name__ )
UpperCAmelCase_ : Union[str, Any] = self.image_processor
def __call__( self : Optional[int] , __magic_name__ : ImageInput = None , __magic_name__ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __magic_name__ : bool = True , __magic_name__ : Union[bool, str, PaddingStrategy] = False , __magic_name__ : Union[bool, str, TruncationStrategy] = None , __magic_name__ : Optional[int] = None , __magic_name__ : int = 0 , __magic_name__ : Optional[int] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : bool = False , __magic_name__ : bool = False , __magic_name__ : bool = False , __magic_name__ : bool = False , __magic_name__ : bool = False , __magic_name__ : bool = True , __magic_name__ : Optional[Union[str, TensorType]] = None , **__magic_name__ : Optional[int] , ) -> BatchEncoding:
"""simple docstring"""
if images is None and text is None:
raise ValueError('''You have to specify either images or text.''' )
# Get only text
if images is None:
UpperCAmelCase_ : Any = self.tokenizer
UpperCAmelCase_ : Any = self.tokenizer(
text=__magic_name__ , add_special_tokens=__magic_name__ , padding=__magic_name__ , truncation=__magic_name__ , max_length=__magic_name__ , stride=__magic_name__ , pad_to_multiple_of=__magic_name__ , return_attention_mask=__magic_name__ , return_overflowing_tokens=__magic_name__ , return_special_tokens_mask=__magic_name__ , return_offsets_mapping=__magic_name__ , return_token_type_ids=__magic_name__ , return_length=__magic_name__ , verbose=__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ , )
return text_encoding
# add pixel_values
UpperCAmelCase_ : Union[str, Any] = self.image_processor(__magic_name__ , return_tensors=__magic_name__ )
if text is not None:
UpperCAmelCase_ : int = self.tokenizer(
text=__magic_name__ , add_special_tokens=__magic_name__ , padding=__magic_name__ , truncation=__magic_name__ , max_length=__magic_name__ , stride=__magic_name__ , pad_to_multiple_of=__magic_name__ , return_attention_mask=__magic_name__ , return_overflowing_tokens=__magic_name__ , return_special_tokens_mask=__magic_name__ , return_offsets_mapping=__magic_name__ , return_token_type_ids=__magic_name__ , return_length=__magic_name__ , verbose=__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ , )
else:
UpperCAmelCase_ : Optional[Any] = None
if text_encoding is not None:
encoding_image_processor.update(__magic_name__ )
return encoding_image_processor
def UpperCAmelCase__ ( self : int , *__magic_name__ : Any , **__magic_name__ : Any ) -> Union[str, Any]:
"""simple docstring"""
return self.tokenizer.batch_decode(*__magic_name__ , **__magic_name__ )
def UpperCAmelCase__ ( self : str , *__magic_name__ : Optional[Any] , **__magic_name__ : List[str] ) -> Dict:
"""simple docstring"""
return self.tokenizer.decode(*__magic_name__ , **__magic_name__ )
@property
def UpperCAmelCase__ ( self : str ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : Tuple = self.tokenizer.model_input_names
UpperCAmelCase_ : Any = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 644
|
'''simple docstring'''
import sys
import turtle
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : tuple[float, float] ) -> tuple[float, float]:
return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : int, ) -> None:
my_pen.up()
my_pen.goto(vertexa[0], vertexa[1] )
my_pen.down()
my_pen.goto(vertexa[0], vertexa[1] )
my_pen.goto(vertexa[0], vertexa[1] )
my_pen.goto(vertexa[0], vertexa[1] )
if depth == 0:
return
triangle(SCREAMING_SNAKE_CASE__, get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), depth - 1 )
triangle(SCREAMING_SNAKE_CASE__, get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), depth - 1 )
triangle(SCREAMING_SNAKE_CASE__, get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), depth - 1 )
if __name__ == "__main__":
if len(sys.argv) != 2:
raise ValueError(
"Correct format for using this script: "
"python fractals.py <int:depth_for_fractal>"
)
snake_case_ : Any = turtle.Turtle()
my_pen.ht()
my_pen.speed(5)
my_pen.pencolor("red")
snake_case_ : Tuple = [(-1_75, -1_25), (0, 1_75), (1_75, -1_25)] # vertices of triangle
triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
| 644
| 1
|
'''simple docstring'''
import argparse
import json
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
snake_case_ : Optional[int] = 16
snake_case_ : Tuple = 32
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Accelerator, SCREAMING_SNAKE_CASE__ : int = 16, SCREAMING_SNAKE_CASE__ : str = "bert-base-cased" ) -> Dict:
UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : int = load_dataset('''glue''', '''mrpc''' )
def tokenize_function(SCREAMING_SNAKE_CASE__ : Optional[int] ):
# max_length=None => use the model max length (it's actually the default)
UpperCAmelCase_ : Union[str, Any] = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=SCREAMING_SNAKE_CASE__, max_length=SCREAMING_SNAKE_CASE__ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
UpperCAmelCase_ : Tuple = datasets.map(
SCREAMING_SNAKE_CASE__, batched=SCREAMING_SNAKE_CASE__, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], load_from_cache_file=SCREAMING_SNAKE_CASE__ )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
UpperCAmelCase_ : Optional[Any] = tokenized_datasets.rename_column('''label''', '''labels''' )
def collate_fn(SCREAMING_SNAKE_CASE__ : str ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(SCREAMING_SNAKE_CASE__, padding='''max_length''', max_length=128, return_tensors='''pt''' )
return tokenizer.pad(SCREAMING_SNAKE_CASE__, padding='''longest''', return_tensors='''pt''' )
# Instantiate dataloaders.
UpperCAmelCase_ : str = DataLoader(
tokenized_datasets['''train'''], shuffle=SCREAMING_SNAKE_CASE__, collate_fn=SCREAMING_SNAKE_CASE__, batch_size=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : int = DataLoader(
tokenized_datasets['''validation'''], shuffle=SCREAMING_SNAKE_CASE__, collate_fn=SCREAMING_SNAKE_CASE__, batch_size=SCREAMING_SNAKE_CASE__ )
return train_dataloader, eval_dataloader
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Optional[Any], SCREAMING_SNAKE_CASE__ : Optional[int], SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : Any ) -> Any:
model.eval()
UpperCAmelCase_ : List[str] = 0
for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
UpperCAmelCase_ : Dict = model(**SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : str = outputs.logits.argmax(dim=-1 )
# It is slightly faster to call this once, than multiple times
UpperCAmelCase_ , UpperCAmelCase_ : List[str] = accelerator.gather(
(predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates
if accelerator.use_distributed:
if step == len(SCREAMING_SNAKE_CASE__ ) - 1:
UpperCAmelCase_ : Tuple = predictions[: len(eval_dataloader.dataset ) - samples_seen]
UpperCAmelCase_ : int = references[: len(eval_dataloader.dataset ) - samples_seen]
else:
samples_seen += references.shape[0]
metric.add_batch(
predictions=SCREAMING_SNAKE_CASE__, references=SCREAMING_SNAKE_CASE__, )
UpperCAmelCase_ : List[str] = metric.compute()
return eval_metric["accuracy"]
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : int ) -> Tuple:
# Initialize accelerator
UpperCAmelCase_ : Union[str, Any] = Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
UpperCAmelCase_ : int = config['''lr''']
UpperCAmelCase_ : Optional[int] = int(config['''num_epochs'''] )
UpperCAmelCase_ : Optional[int] = int(config['''seed'''] )
UpperCAmelCase_ : List[str] = int(config['''batch_size'''] )
UpperCAmelCase_ : Optional[int] = args.model_name_or_path
set_seed(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = get_dataloaders(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
UpperCAmelCase_ : List[Any] = AutoModelForSequenceClassification.from_pretrained(SCREAMING_SNAKE_CASE__, return_dict=SCREAMING_SNAKE_CASE__ )
# Instantiate optimizer
UpperCAmelCase_ : str = (
AdamW
if accelerator.state.deepspeed_plugin is None
or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
UpperCAmelCase_ : List[str] = optimizer_cls(params=model.parameters(), lr=SCREAMING_SNAKE_CASE__ )
if accelerator.state.deepspeed_plugin is not None:
UpperCAmelCase_ : List[Any] = accelerator.state.deepspeed_plugin.deepspeed_config[
'''gradient_accumulation_steps'''
]
else:
UpperCAmelCase_ : Tuple = 1
UpperCAmelCase_ : int = (len(SCREAMING_SNAKE_CASE__ ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
UpperCAmelCase_ : Tuple = get_linear_schedule_with_warmup(
optimizer=SCREAMING_SNAKE_CASE__, num_warmup_steps=0, num_training_steps=SCREAMING_SNAKE_CASE__, )
else:
UpperCAmelCase_ : Any = DummyScheduler(SCREAMING_SNAKE_CASE__, total_num_steps=SCREAMING_SNAKE_CASE__, warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = accelerator.prepare(
SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
# We need to keep track of how many total steps we have iterated over
UpperCAmelCase_ : Union[str, Any] = 0
# We also need to keep track of the stating epoch so files are named properly
UpperCAmelCase_ : Dict = 0
UpperCAmelCase_ : int = evaluate.load('''glue''', '''mrpc''' )
UpperCAmelCase_ : Optional[Any] = num_epochs
if args.partial_train_epoch is not None:
UpperCAmelCase_ : List[Any] = args.partial_train_epoch
if args.resume_from_checkpoint:
accelerator.load_state(args.resume_from_checkpoint )
UpperCAmelCase_ : Tuple = args.resume_from_checkpoint.split('''epoch_''' )[1]
UpperCAmelCase_ : int = ''''''
for char in epoch_string:
if char.isdigit():
state_epoch_num += char
else:
break
UpperCAmelCase_ : Union[str, Any] = int(SCREAMING_SNAKE_CASE__ ) + 1
UpperCAmelCase_ : Dict = evaluation_loop(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
accelerator.print('''resumed checkpoint performance:''', SCREAMING_SNAKE_CASE__ )
accelerator.print('''resumed checkpoint\'s scheduler\'s lr:''', lr_scheduler.get_lr()[0] )
accelerator.print('''resumed optimizers\'s lr:''', optimizer.param_groups[0]['''lr'''] )
with open(os.path.join(args.output_dir, F"""state_{starting_epoch-1}.json""" ), '''r''' ) as f:
UpperCAmelCase_ : Optional[int] = json.load(SCREAMING_SNAKE_CASE__ )
assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed"
assert (
resumed_state["lr"] == lr_scheduler.get_lr()[0]
), "Scheduler learning rate mismatch, loading from checkpoint failed"
assert (
resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"]
), "Optimizer learning rate mismatch, loading from checkpoint failed"
assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed"
return
# Now we train the model
UpperCAmelCase_ : int = {}
for epoch in range(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ):
model.train()
for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase_ : Optional[int] = model(**SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Any = outputs.loss
UpperCAmelCase_ : Tuple = loss / gradient_accumulation_steps
accelerator.backward(SCREAMING_SNAKE_CASE__ )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
UpperCAmelCase_ : Tuple = F"""epoch_{epoch}"""
UpperCAmelCase_ : Optional[int] = os.path.join(args.output_dir, SCREAMING_SNAKE_CASE__ )
accelerator.save_state(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : int = evaluation_loop(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Optional[Any] = accuracy
UpperCAmelCase_ : Any = lr_scheduler.get_lr()[0]
UpperCAmelCase_ : List[str] = optimizer.param_groups[0]['''lr''']
UpperCAmelCase_ : Tuple = epoch
UpperCAmelCase_ : Dict = overall_step
accelerator.print(F"""epoch {epoch}:""", SCREAMING_SNAKE_CASE__ )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir, F"""state_{epoch}.json""" ), '''w''' ) as f:
json.dump(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
def lowerCamelCase_ ( ) -> List[str]:
UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' )
parser.add_argument(
'''--model_name_or_path''', type=SCREAMING_SNAKE_CASE__, default='''bert-base-cased''', help='''Path to pretrained model or model identifier from huggingface.co/models.''', required=SCREAMING_SNAKE_CASE__, )
parser.add_argument(
'''--output_dir''', type=SCREAMING_SNAKE_CASE__, default='''.''', help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''', )
parser.add_argument(
'''--resume_from_checkpoint''', type=SCREAMING_SNAKE_CASE__, default=SCREAMING_SNAKE_CASE__, help='''If the training should continue from a checkpoint folder.''', )
parser.add_argument(
'''--partial_train_epoch''', type=SCREAMING_SNAKE_CASE__, default=SCREAMING_SNAKE_CASE__, help='''If passed, the training will stop after this number of epochs.''', )
parser.add_argument(
'''--num_epochs''', type=SCREAMING_SNAKE_CASE__, default=2, help='''Number of train epochs.''', )
UpperCAmelCase_ : Optional[int] = parser.parse_args()
UpperCAmelCase_ : List[Any] = {'''lr''': 2E-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16}
training_function(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
main()
| 644
|
'''simple docstring'''
import gc
import tempfile
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionPipeline
from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device
snake_case_ : List[str] = False
class __a (unittest.TestCase ):
pass
@nightly
@require_torch_gpu
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : int ) -> str:
"""simple docstring"""
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : List[Any] = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' )
UpperCAmelCase_ : Optional[int] = torch.manual_seed(0 )
UpperCAmelCase_ : Union[str, Any] = pipe.dual_guided(
prompt='''first prompt''' , image=__magic_name__ , text_to_image_strength=0.7_5 , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(__magic_name__ )
UpperCAmelCase_ : Optional[int] = VersatileDiffusionPipeline.from_pretrained(__magic_name__ , torch_dtype=torch.floataa )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : Any = generator.manual_seed(0 )
UpperCAmelCase_ : Dict = pipe.dual_guided(
prompt='''first prompt''' , image=__magic_name__ , text_to_image_strength=0.7_5 , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images
assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass"
def UpperCAmelCase__ ( self : str ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : str = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : Union[str, Any] = '''cyberpunk 2077'''
UpperCAmelCase_ : Union[str, Any] = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' )
UpperCAmelCase_ : Tuple = torch.manual_seed(0 )
UpperCAmelCase_ : Optional[Any] = pipe.dual_guided(
prompt=__magic_name__ , image=__magic_name__ , text_to_image_strength=0.7_5 , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' , ).images
UpperCAmelCase_ : List[str] = image[0, 2_53:2_56, 2_53:2_56, -1]
assert image.shape == (1, 5_12, 5_12, 3)
UpperCAmelCase_ : Union[str, Any] = np.array([0.1_4_4_8, 0.1_6_1_9, 0.1_7_4_1, 0.1_0_8_6, 0.1_1_4_7, 0.1_1_2_8, 0.1_1_9_9, 0.1_1_6_5, 0.1_0_0_1] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
UpperCAmelCase_ : Tuple = '''A painting of a squirrel eating a burger '''
UpperCAmelCase_ : Optional[int] = torch.manual_seed(0 )
UpperCAmelCase_ : List[Any] = pipe.text_to_image(
prompt=__magic_name__ , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' ).images
UpperCAmelCase_ : Tuple = image[0, 2_53:2_56, 2_53:2_56, -1]
assert image.shape == (1, 5_12, 5_12, 3)
UpperCAmelCase_ : Any = np.array([0.3_3_6_7, 0.3_1_6_9, 0.2_6_5_6, 0.3_8_7_0, 0.4_7_9_0, 0.3_7_9_6, 0.4_0_0_9, 0.4_8_7_8, 0.4_7_7_8] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
UpperCAmelCase_ : Tuple = pipe.image_variation(__magic_name__ , generator=__magic_name__ , output_type='''numpy''' ).images
UpperCAmelCase_ : Optional[Any] = image[0, 2_53:2_56, 2_53:2_56, -1]
assert image.shape == (1, 5_12, 5_12, 3)
UpperCAmelCase_ : List[str] = np.array([0.3_0_7_6, 0.3_1_2_3, 0.3_2_8_4, 0.3_7_8_2, 0.3_7_7_0, 0.3_8_9_4, 0.4_2_9_7, 0.4_3_3_1, 0.4_4_5_6] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
| 644
| 1
|
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
snake_case_ : Optional[Any] = logging.get_logger(__name__)
snake_case_ : Tuple = {
"facebook/levit-128S": "https://huggingface.co/facebook/levit-128S/resolve/main/config.json",
# See all LeViT models at https://huggingface.co/models?filter=levit
}
class __a (lowerCamelCase ):
__a : Tuple = "levit"
def __init__( self : List[str] , __magic_name__ : Optional[Any]=2_24 , __magic_name__ : Tuple=3 , __magic_name__ : List[str]=3 , __magic_name__ : Optional[int]=2 , __magic_name__ : Optional[Any]=1 , __magic_name__ : Optional[Any]=16 , __magic_name__ : str=[1_28, 2_56, 3_84] , __magic_name__ : Union[str, Any]=[4, 8, 12] , __magic_name__ : int=[4, 4, 4] , __magic_name__ : List[Any]=[16, 16, 16] , __magic_name__ : Dict=0 , __magic_name__ : Union[str, Any]=[2, 2, 2] , __magic_name__ : int=[2, 2, 2] , __magic_name__ : Any=0.0_2 , **__magic_name__ : Union[str, Any] , ) -> Dict:
"""simple docstring"""
super().__init__(**__magic_name__ )
UpperCAmelCase_ : Tuple = image_size
UpperCAmelCase_ : str = num_channels
UpperCAmelCase_ : Tuple = kernel_size
UpperCAmelCase_ : int = stride
UpperCAmelCase_ : List[Any] = padding
UpperCAmelCase_ : int = hidden_sizes
UpperCAmelCase_ : int = num_attention_heads
UpperCAmelCase_ : Union[str, Any] = depths
UpperCAmelCase_ : List[Any] = key_dim
UpperCAmelCase_ : Tuple = drop_path_rate
UpperCAmelCase_ : Optional[Any] = patch_size
UpperCAmelCase_ : Tuple = attention_ratio
UpperCAmelCase_ : Union[str, Any] = mlp_ratio
UpperCAmelCase_ : Dict = initializer_range
UpperCAmelCase_ : Tuple = [
['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2],
['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2],
]
class __a (lowerCamelCase ):
__a : Optional[Any] = version.parse("1.11" )
@property
def UpperCAmelCase__ ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
return OrderedDict(
[
('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}),
] )
@property
def UpperCAmelCase__ ( self : Any ) -> float:
"""simple docstring"""
return 1E-4
| 644
|
'''simple docstring'''
snake_case_ : int = {
"Pillow": "Pillow",
"accelerate": "accelerate>=0.11.0",
"compel": "compel==0.1.8",
"black": "black~=23.1",
"datasets": "datasets",
"filelock": "filelock",
"flax": "flax>=0.4.1",
"hf-doc-builder": "hf-doc-builder>=0.3.0",
"huggingface-hub": "huggingface-hub>=0.13.2",
"requests-mock": "requests-mock==1.10.0",
"importlib_metadata": "importlib_metadata",
"invisible-watermark": "invisible-watermark",
"isort": "isort>=5.5.4",
"jax": "jax>=0.2.8,!=0.3.2",
"jaxlib": "jaxlib>=0.1.65",
"Jinja2": "Jinja2",
"k-diffusion": "k-diffusion>=0.0.12",
"torchsde": "torchsde",
"note_seq": "note_seq",
"librosa": "librosa",
"numpy": "numpy",
"omegaconf": "omegaconf",
"parameterized": "parameterized",
"protobuf": "protobuf>=3.20.3,<4",
"pytest": "pytest",
"pytest-timeout": "pytest-timeout",
"pytest-xdist": "pytest-xdist",
"ruff": "ruff>=0.0.241",
"safetensors": "safetensors",
"sentencepiece": "sentencepiece>=0.1.91,!=0.1.92",
"scipy": "scipy",
"onnx": "onnx",
"regex": "regex!=2019.12.17",
"requests": "requests",
"tensorboard": "tensorboard",
"torch": "torch>=1.4",
"torchvision": "torchvision",
"transformers": "transformers>=4.25.1",
"urllib3": "urllib3<=2.0.0",
}
| 644
| 1
|
'''simple docstring'''
import io
import itertools
import json
from dataclasses import dataclass
from typing import Optional
import pyarrow as pa
import pyarrow.json as paj
import datasets
from datasets.table import table_cast
from datasets.utils.file_utils import readline
snake_case_ : Dict = datasets.utils.logging.get_logger(__name__)
@dataclass
class __a (datasets.BuilderConfig ):
__a : Optional[datasets.Features] = None
__a : str = "utf-8"
__a : Optional[str] = None
__a : Optional[str] = None
__a : bool = True # deprecated
__a : Optional[int] = None # deprecated
__a : int = 10 << 20 # 10MB
__a : Optional[bool] = None
class __a (datasets.ArrowBasedBuilder ):
__a : Optional[int] = JsonConfig
def UpperCAmelCase__ ( self : int ) -> Union[str, Any]:
"""simple docstring"""
if self.config.block_size is not None:
logger.warning('''The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead''' )
UpperCAmelCase_ : Optional[int] = self.config.block_size
if self.config.use_threads is not True:
logger.warning(
'''The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.''' )
if self.config.newlines_in_values is not None:
raise ValueError('''The JSON loader parameter `newlines_in_values` is no longer supported''' )
return datasets.DatasetInfo(features=self.config.features )
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : List[str] ) -> Tuple:
"""simple docstring"""
if not self.config.data_files:
raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" )
UpperCAmelCase_ : int = dl_manager.download_and_extract(self.config.data_files )
if isinstance(__magic_name__ , (str, list, tuple) ):
UpperCAmelCase_ : Tuple = data_files
if isinstance(__magic_name__ , __magic_name__ ):
UpperCAmelCase_ : Optional[int] = [files]
UpperCAmelCase_ : Any = [dl_manager.iter_files(__magic_name__ ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )]
UpperCAmelCase_ : Optional[Any] = []
for split_name, files in data_files.items():
if isinstance(__magic_name__ , __magic_name__ ):
UpperCAmelCase_ : List[Any] = [files]
UpperCAmelCase_ : Any = [dl_manager.iter_files(__magic_name__ ) for file in files]
splits.append(datasets.SplitGenerator(name=__magic_name__ , gen_kwargs={'''files''': files} ) )
return splits
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : pa.Table ) -> pa.Table:
"""simple docstring"""
if self.config.features is not None:
# adding missing columns
for column_name in set(self.config.features ) - set(pa_table.column_names ):
UpperCAmelCase_ : int = self.config.features.arrow_schema.field(__magic_name__ ).type
UpperCAmelCase_ : Optional[int] = pa_table.append_column(__magic_name__ , pa.array([None] * len(__magic_name__ ) , type=__magic_name__ ) )
# more expensive cast to support nested structures with keys in a different order
# allows str <-> int/float or str to Audio for example
UpperCAmelCase_ : Optional[Any] = table_cast(__magic_name__ , self.config.features.arrow_schema )
return pa_table
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Tuple ) -> List[Any]:
"""simple docstring"""
for file_idx, file in enumerate(itertools.chain.from_iterable(__magic_name__ ) ):
# If the file is one json object and if we need to look at the list of items in one specific field
if self.config.field is not None:
with open(__magic_name__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f:
UpperCAmelCase_ : List[str] = json.load(__magic_name__ )
# We keep only the field we are interested in
UpperCAmelCase_ : Any = dataset[self.config.field]
# We accept two format: a list of dicts or a dict of lists
if isinstance(__magic_name__ , (list, tuple) ):
UpperCAmelCase_ : int = set().union(*[row.keys() for row in dataset] )
UpperCAmelCase_ : List[Any] = {col: [row.get(__magic_name__ ) for row in dataset] for col in keys}
else:
UpperCAmelCase_ : Optional[int] = dataset
UpperCAmelCase_ : int = pa.Table.from_pydict(__magic_name__ )
yield file_idx, self._cast_table(__magic_name__ )
# If the file has one json object per line
else:
with open(__magic_name__ , '''rb''' ) as f:
UpperCAmelCase_ : Optional[Any] = 0
# Use block_size equal to the chunk size divided by 32 to leverage multithreading
# Set a default minimum value of 16kB if the chunk size is really small
UpperCAmelCase_ : List[Any] = max(self.config.chunksize // 32 , 16 << 10 )
UpperCAmelCase_ : List[Any] = (
self.config.encoding_errors if self.config.encoding_errors is not None else '''strict'''
)
while True:
UpperCAmelCase_ : List[Any] = f.read(self.config.chunksize )
if not batch:
break
# Finish current line
try:
batch += f.readline()
except (AttributeError, io.UnsupportedOperation):
batch += readline(__magic_name__ )
# PyArrow only accepts utf-8 encoded bytes
if self.config.encoding != "utf-8":
UpperCAmelCase_ : List[Any] = batch.decode(self.config.encoding , errors=__magic_name__ ).encode('''utf-8''' )
try:
while True:
try:
UpperCAmelCase_ : Union[str, Any] = paj.read_json(
io.BytesIO(__magic_name__ ) , read_options=paj.ReadOptions(block_size=__magic_name__ ) )
break
except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e:
if (
isinstance(__magic_name__ , pa.ArrowInvalid )
and "straddling" not in str(__magic_name__ )
or block_size > len(__magic_name__ )
):
raise
else:
# Increase the block size in case it was too small.
# The block size will be reset for the next file.
logger.debug(
F"""Batch of {len(__magic_name__ )} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.""" )
block_size *= 2
except pa.ArrowInvalid as e:
try:
with open(
__magic_name__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f:
UpperCAmelCase_ : int = json.load(__magic_name__ )
except json.JSONDecodeError:
logger.error(F"""Failed to read file '{file}' with error {type(__magic_name__ )}: {e}""" )
raise e
# If possible, parse the file as a list of json objects and exit the loop
if isinstance(__magic_name__ , __magic_name__ ): # list is the only sequence type supported in JSON
try:
UpperCAmelCase_ : str = set().union(*[row.keys() for row in dataset] )
UpperCAmelCase_ : Optional[int] = {col: [row.get(__magic_name__ ) for row in dataset] for col in keys}
UpperCAmelCase_ : Union[str, Any] = pa.Table.from_pydict(__magic_name__ )
except (pa.ArrowInvalid, AttributeError) as e:
logger.error(F"""Failed to read file '{file}' with error {type(__magic_name__ )}: {e}""" )
raise ValueError(F"""Not able to read records in the JSON file at {file}.""" ) from None
yield file_idx, self._cast_table(__magic_name__ )
break
else:
logger.error(F"""Failed to read file '{file}' with error {type(__magic_name__ )}: {e}""" )
raise ValueError(
F"""Not able to read records in the JSON file at {file}. """
F"""You should probably indicate the field of the JSON file containing your records. """
F"""This JSON file contain the following fields: {str(list(dataset.keys() ) )}. """
F"""Select the correct one and provide it as `field='XXX'` to the dataset loading method. """ ) from None
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(__magic_name__ )
batch_idx += 1
| 644
|
'''simple docstring'''
import unittest
import numpy as np
import torch
from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class __a (unittest.TestCase ):
@property
def UpperCAmelCase__ ( self : Dict ) -> str:
"""simple docstring"""
torch.manual_seed(0 )
UpperCAmelCase_ : Optional[Any] = UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , )
return model
def UpperCAmelCase__ ( self : Dict ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = self.dummy_uncond_unet
UpperCAmelCase_ : Dict = KarrasVeScheduler()
UpperCAmelCase_ : Union[str, Any] = KarrasVePipeline(unet=__magic_name__ , scheduler=__magic_name__ )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : Dict = torch.manual_seed(0 )
UpperCAmelCase_ : Optional[int] = pipe(num_inference_steps=2 , generator=__magic_name__ , output_type='''numpy''' ).images
UpperCAmelCase_ : Tuple = torch.manual_seed(0 )
UpperCAmelCase_ : str = pipe(num_inference_steps=2 , generator=__magic_name__ , output_type='''numpy''' , return_dict=__magic_name__ )[0]
UpperCAmelCase_ : Union[str, Any] = image[0, -3:, -3:, -1]
UpperCAmelCase_ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
UpperCAmelCase_ : Dict = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : int ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : List[str] = '''google/ncsnpp-celebahq-256'''
UpperCAmelCase_ : List[str] = UNetaDModel.from_pretrained(__magic_name__ )
UpperCAmelCase_ : List[Any] = KarrasVeScheduler()
UpperCAmelCase_ : Any = KarrasVePipeline(unet=__magic_name__ , scheduler=__magic_name__ )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : Dict = torch.manual_seed(0 )
UpperCAmelCase_ : Optional[Any] = pipe(num_inference_steps=20 , generator=__magic_name__ , output_type='''numpy''' ).images
UpperCAmelCase_ : Any = image[0, -3:, -3:, -1]
assert image.shape == (1, 2_56, 2_56, 3)
UpperCAmelCase_ : Optional[Any] = np.array([0.5_7_8, 0.5_8_1_1, 0.5_9_2_4, 0.5_8_0_9, 0.5_8_7, 0.5_8_8_6, 0.5_8_6_1, 0.5_8_0_2, 0.5_8_6] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 644
| 1
|
'''simple docstring'''
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
snake_case_ : Tuple = {
"configuration_informer": [
"INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"InformerConfig",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ : Any = [
"INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"InformerForPrediction",
"InformerModel",
"InformerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_informer import (
INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
InformerForPrediction,
InformerModel,
InformerPreTrainedModel,
)
else:
import sys
snake_case_ : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 644
|
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor
from .base import PipelineTool
class __a (lowerCamelCase ):
__a : List[Any] = "openai/whisper-base"
__a : Optional[Any] = (
"This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the "
"transcribed text."
)
__a : Any = "transcriber"
__a : str = WhisperProcessor
__a : List[Any] = WhisperForConditionalGeneration
__a : int = ["audio"]
__a : Optional[Any] = ["text"]
def UpperCAmelCase__ ( self : Dict , __magic_name__ : List[str] ) -> Optional[int]:
"""simple docstring"""
return self.pre_processor(__magic_name__ , return_tensors='''pt''' ).input_features
def UpperCAmelCase__ ( self : Dict , __magic_name__ : Dict ) -> Tuple:
"""simple docstring"""
return self.model.generate(inputs=__magic_name__ )
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Dict ) -> str:
"""simple docstring"""
return self.pre_processor.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ )[0]
| 644
| 1
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
snake_case_ : Dict = {
"configuration_swinv2": ["SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Swinv2Config"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ : str = [
"SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST",
"Swinv2ForImageClassification",
"Swinv2ForMaskedImageModeling",
"Swinv2Model",
"Swinv2PreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_swinva import (
SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST,
SwinvaForImageClassification,
SwinvaForMaskedImageModeling,
SwinvaModel,
SwinvaPreTrainedModel,
)
else:
import sys
snake_case_ : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 644
|
'''simple docstring'''
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : int ) -> int:
return abs(SCREAMING_SNAKE_CASE__ ) if a == 0 else greatest_common_divisor(b % a, SCREAMING_SNAKE_CASE__ )
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : int ) -> int:
while y: # --> when y=0 then loop will terminate and return x as final GCD.
UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = y, x % y
return abs(SCREAMING_SNAKE_CASE__ )
def lowerCamelCase_ ( ) -> Optional[int]:
try:
UpperCAmelCase_ : Optional[Any] = input('''Enter two integers separated by comma (,): ''' ).split(''',''' )
UpperCAmelCase_ : Optional[int] = int(nums[0] )
UpperCAmelCase_ : List[Any] = int(nums[1] )
print(
F"""greatest_common_divisor({num_a}, {num_a}) = """
F"""{greatest_common_divisor(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )}""" )
print(F"""By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )}""" )
except (IndexError, UnboundLocalError, ValueError):
print('''Wrong input''' )
if __name__ == "__main__":
main()
| 644
| 1
|
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor
from .base import PipelineTool
class __a (lowerCamelCase ):
__a : List[Any] = "openai/whisper-base"
__a : Optional[Any] = (
"This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the "
"transcribed text."
)
__a : Any = "transcriber"
__a : str = WhisperProcessor
__a : List[Any] = WhisperForConditionalGeneration
__a : int = ["audio"]
__a : Optional[Any] = ["text"]
def UpperCAmelCase__ ( self : Dict , __magic_name__ : List[str] ) -> Optional[int]:
"""simple docstring"""
return self.pre_processor(__magic_name__ , return_tensors='''pt''' ).input_features
def UpperCAmelCase__ ( self : Dict , __magic_name__ : Dict ) -> Tuple:
"""simple docstring"""
return self.model.generate(inputs=__magic_name__ )
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Dict ) -> str:
"""simple docstring"""
return self.pre_processor.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ )[0]
| 644
|
'''simple docstring'''
import unittest
from transformers import LiltConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
LiltForQuestionAnswering,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltModel,
)
from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST
class __a :
def __init__( self : int , __magic_name__ : Optional[Any] , __magic_name__ : Any=13 , __magic_name__ : Any=7 , __magic_name__ : Union[str, Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : str=True , __magic_name__ : Optional[int]=True , __magic_name__ : List[Any]=99 , __magic_name__ : int=24 , __magic_name__ : Optional[int]=2 , __magic_name__ : Tuple=6 , __magic_name__ : Union[str, Any]=37 , __magic_name__ : Optional[Any]="gelu" , __magic_name__ : Any=0.1 , __magic_name__ : str=0.1 , __magic_name__ : Tuple=5_12 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : Tuple=2 , __magic_name__ : Tuple=0.0_2 , __magic_name__ : Optional[Any]=3 , __magic_name__ : Optional[int]=None , __magic_name__ : Any=10_00 , ) -> str:
"""simple docstring"""
UpperCAmelCase_ : Tuple = parent
UpperCAmelCase_ : Optional[int] = batch_size
UpperCAmelCase_ : List[str] = seq_length
UpperCAmelCase_ : Dict = is_training
UpperCAmelCase_ : List[str] = use_input_mask
UpperCAmelCase_ : Any = use_token_type_ids
UpperCAmelCase_ : Any = use_labels
UpperCAmelCase_ : Any = vocab_size
UpperCAmelCase_ : Dict = hidden_size
UpperCAmelCase_ : Tuple = num_hidden_layers
UpperCAmelCase_ : Tuple = num_attention_heads
UpperCAmelCase_ : int = intermediate_size
UpperCAmelCase_ : Union[str, Any] = hidden_act
UpperCAmelCase_ : Optional[int] = hidden_dropout_prob
UpperCAmelCase_ : Optional[Any] = attention_probs_dropout_prob
UpperCAmelCase_ : Union[str, Any] = max_position_embeddings
UpperCAmelCase_ : int = type_vocab_size
UpperCAmelCase_ : List[Any] = type_sequence_label_size
UpperCAmelCase_ : int = initializer_range
UpperCAmelCase_ : Dict = num_labels
UpperCAmelCase_ : List[str] = scope
UpperCAmelCase_ : List[str] = range_bbox
def UpperCAmelCase__ ( self : Optional[int] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
UpperCAmelCase_ : List[str] = bbox[i, j, 3]
UpperCAmelCase_ : Dict = bbox[i, j, 1]
UpperCAmelCase_ : Optional[Any] = t
if bbox[i, j, 2] < bbox[i, j, 0]:
UpperCAmelCase_ : List[str] = bbox[i, j, 2]
UpperCAmelCase_ : Tuple = bbox[i, j, 0]
UpperCAmelCase_ : Union[str, Any] = t
UpperCAmelCase_ : int = None
if self.use_input_mask:
UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
UpperCAmelCase_ : Optional[int] = None
if self.use_token_type_ids:
UpperCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase_ : Dict = None
UpperCAmelCase_ : Tuple = None
if self.use_labels:
UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase_ : int = self.get_config()
return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels
def UpperCAmelCase__ ( self : Any ) -> List[Any]:
"""simple docstring"""
return LiltConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : str , __magic_name__ : Optional[Any] , __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : int , ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Any = LiltModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : Optional[Any] = model(__magic_name__ , bbox=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ )
UpperCAmelCase_ : List[Any] = model(__magic_name__ , bbox=__magic_name__ , token_type_ids=__magic_name__ )
UpperCAmelCase_ : Optional[int] = model(__magic_name__ , bbox=__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def UpperCAmelCase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[int] , __magic_name__ : List[Any] , ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : Any = self.num_labels
UpperCAmelCase_ : List[Any] = LiltForTokenClassification(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : List[Any] = model(
__magic_name__ , bbox=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCAmelCase__ ( self : Any , __magic_name__ : Optional[Any] , __magic_name__ : Dict , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : Any , ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : str = LiltForQuestionAnswering(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : Optional[Any] = model(
__magic_name__ , bbox=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = self.prepare_config_and_inputs()
(
(
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) ,
) : Optional[int] = config_and_inputs
UpperCAmelCase_ : Tuple = {
'''input_ids''': input_ids,
'''bbox''': bbox,
'''token_type_ids''': token_type_ids,
'''attention_mask''': input_mask,
}
return config, inputs_dict
@require_torch
class __a (lowerCamelCase , lowerCamelCase , lowerCamelCase , unittest.TestCase ):
__a : Tuple = (
(
LiltModel,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltForQuestionAnswering,
)
if is_torch_available()
else ()
)
__a : Any = (
{
"feature-extraction": LiltModel,
"question-answering": LiltForQuestionAnswering,
"text-classification": LiltForSequenceClassification,
"token-classification": LiltForTokenClassification,
"zero-shot": LiltForSequenceClassification,
}
if is_torch_available()
else {}
)
__a : Union[str, Any] = False
__a : int = False
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : int ) -> str:
"""simple docstring"""
return True
def UpperCAmelCase__ ( self : str ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = LiltModelTester(self )
UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 )
def UpperCAmelCase__ ( self : Union[str, Any] ) -> str:
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCAmelCase__ ( self : str ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__magic_name__ )
def UpperCAmelCase__ ( self : str ) -> str:
"""simple docstring"""
UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
UpperCAmelCase_ : Tuple = type
self.model_tester.create_and_check_model(*__magic_name__ )
def UpperCAmelCase__ ( self : Union[str, Any] ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__magic_name__ )
def UpperCAmelCase__ ( self : str ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__magic_name__ )
@slow
def UpperCAmelCase__ ( self : int ) -> Union[str, Any]:
"""simple docstring"""
for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase_ : Optional[int] = LiltModel.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
@require_torch
@slow
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : str = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(__magic_name__ )
UpperCAmelCase_ : Any = torch.tensor([[1, 2]] , device=__magic_name__ )
UpperCAmelCase_ : int = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=__magic_name__ )
# forward pass
with torch.no_grad():
UpperCAmelCase_ : Optional[int] = model(input_ids=__magic_name__ , bbox=__magic_name__ )
UpperCAmelCase_ : int = torch.Size([1, 2, 7_68] )
UpperCAmelCase_ : List[str] = torch.tensor(
[[-0.0_6_5_3, 0.0_9_5_0, -0.0_0_6_1], [-0.0_5_4_5, 0.0_9_2_6, -0.0_3_2_4]] , device=__magic_name__ , )
self.assertTrue(outputs.last_hidden_state.shape , __magic_name__ )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , __magic_name__ , atol=1E-3 ) )
| 644
| 1
|
'''simple docstring'''
class __a :
def __init__( self : Tuple , __magic_name__ : Dict , __magic_name__ : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : Any = name
UpperCAmelCase_ : Union[str, Any] = val
def __str__( self : str ) -> Tuple:
"""simple docstring"""
return F"""{self.__class__.__name__}({self.name}, {self.val})"""
def __lt__( self : int , __magic_name__ : str ) -> Tuple:
"""simple docstring"""
return self.val < other.val
class __a :
def __init__( self : Dict , __magic_name__ : List[Any] ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : Tuple = {}
UpperCAmelCase_ : Any = {}
UpperCAmelCase_ : Optional[Any] = self.build_heap(__magic_name__ )
def __getitem__( self : Tuple , __magic_name__ : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
return self.get_value(__magic_name__ )
def UpperCAmelCase__ ( self : int , __magic_name__ : List[Any] ) -> Any:
"""simple docstring"""
return (idx - 1) // 2
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
return idx * 2 + 1
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Tuple ) -> Optional[int]:
"""simple docstring"""
return idx * 2 + 2
def UpperCAmelCase__ ( self : Dict , __magic_name__ : int ) -> List[str]:
"""simple docstring"""
return self.heap_dict[key]
def UpperCAmelCase__ ( self : str , __magic_name__ : int ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : int = len(__magic_name__ ) - 1
UpperCAmelCase_ : Dict = self.get_parent_idx(__magic_name__ )
for idx, i in enumerate(__magic_name__ ):
UpperCAmelCase_ : Dict = idx
UpperCAmelCase_ : Tuple = i.val
for i in range(__magic_name__ , -1 , -1 ):
self.sift_down(__magic_name__ , __magic_name__ )
return array
def UpperCAmelCase__ ( self : Dict , __magic_name__ : List[str] , __magic_name__ : List[Any] ) -> List[Any]:
"""simple docstring"""
while True:
UpperCAmelCase_ : Optional[int] = self.get_left_child_idx(__magic_name__ ) # noqa: E741
UpperCAmelCase_ : Tuple = self.get_right_child_idx(__magic_name__ )
UpperCAmelCase_ : str = idx
if l < len(__magic_name__ ) and array[l] < array[idx]:
UpperCAmelCase_ : str = l
if r < len(__magic_name__ ) and array[r] < array[smallest]:
UpperCAmelCase_ : Tuple = r
if smallest != idx:
UpperCAmelCase_ , UpperCAmelCase_ : Dict = array[smallest], array[idx]
(
(
UpperCAmelCase_
) , (
UpperCAmelCase_
) ,
) : Union[str, Any] = (
self.idx_of_element[array[smallest]],
self.idx_of_element[array[idx]],
)
UpperCAmelCase_ : str = smallest
else:
break
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : int ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = self.get_parent_idx(__magic_name__ )
while p >= 0 and self.heap[p] > self.heap[idx]:
UpperCAmelCase_ , UpperCAmelCase_ : int = self.heap[idx], self.heap[p]
UpperCAmelCase_ , UpperCAmelCase_ : Dict = (
self.idx_of_element[self.heap[idx]],
self.idx_of_element[self.heap[p]],
)
UpperCAmelCase_ : int = p
UpperCAmelCase_ : Union[str, Any] = self.get_parent_idx(__magic_name__ )
def UpperCAmelCase__ ( self : Optional[Any] ) -> Any:
"""simple docstring"""
return self.heap[0]
def UpperCAmelCase__ ( self : int ) -> str:
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = self.heap[-1], self.heap[0]
UpperCAmelCase_ , UpperCAmelCase_ : Dict = (
self.idx_of_element[self.heap[-1]],
self.idx_of_element[self.heap[0]],
)
UpperCAmelCase_ : Dict = self.heap.pop()
del self.idx_of_element[x]
self.sift_down(0 , self.heap )
return x
def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
self.heap.append(__magic_name__ )
UpperCAmelCase_ : str = len(self.heap ) - 1
UpperCAmelCase_ : Any = node.val
self.sift_up(len(self.heap ) - 1 )
def UpperCAmelCase__ ( self : str ) -> Dict:
"""simple docstring"""
return len(self.heap ) == 0
def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : Any , __magic_name__ : Union[str, Any] ) -> Tuple:
"""simple docstring"""
assert (
self.heap[self.idx_of_element[node]].val > new_value
), "newValue must be less that current value"
UpperCAmelCase_ : Any = new_value
UpperCAmelCase_ : List[Any] = new_value
self.sift_up(self.idx_of_element[node] )
snake_case_ : Optional[Any] = Node("R", -1)
snake_case_ : Union[str, Any] = Node("B", 6)
snake_case_ : List[str] = Node("A", 3)
snake_case_ : Optional[Any] = Node("X", 1)
snake_case_ : List[str] = Node("E", 4)
# Use one of these two ways to generate Min-Heap
# Generating Min-Heap from array
snake_case_ : Tuple = MinHeap([r, b, a, x, e])
# Generating Min-Heap by Insert method
# myMinHeap.insert(a)
# myMinHeap.insert(b)
# myMinHeap.insert(x)
# myMinHeap.insert(r)
# myMinHeap.insert(e)
# Before
print("Min Heap - before decrease key")
for i in my_min_heap.heap:
print(i)
print("Min Heap - After decrease key of node [B -> -17]")
my_min_heap.decrease_key(b, -17)
# After
for i in my_min_heap.heap:
print(i)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 644
|
'''simple docstring'''
import io
import os
import unicodedata
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
snake_case_ : str = logging.get_logger(__name__)
snake_case_ : int = "▁"
snake_case_ : str = {"vocab_file": "vocab.txt", "sentencepiece_model_ckpt": "sentencepiece.bpe.model"}
snake_case_ : int = {
"sentencepiece_model_file": "sentencepiece.bpe.model",
"vocab_file": "vocab.txt",
}
snake_case_ : Optional[Any] = {
"vocab_file": {
"ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt",
"ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt",
},
"sentencepiece_model_file": {
"ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model",
"ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model",
},
}
snake_case_ : Dict = {
"ernie-m-base": 5_14,
"ernie-m-large": 5_14,
}
snake_case_ : Any = {
"ernie-m-base": {"do_lower_case": False},
"ernie-m-large": {"do_lower_case": False},
}
class __a (lowerCamelCase ):
__a : List[str] = ["input_ids"]
__a : Union[str, Any] = VOCAB_FILES_NAMES
__a : Tuple = PRETRAINED_INIT_CONFIGURATION
__a : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__a : Optional[int] = PRETRAINED_VOCAB_FILES_MAP
__a : Union[str, Any] = RESOURCE_FILES_NAMES
def __init__( self : Union[str, Any] , __magic_name__ : Dict , __magic_name__ : int=None , __magic_name__ : str=False , __magic_name__ : int="utf8" , __magic_name__ : Optional[int]="[UNK]" , __magic_name__ : Dict="[SEP]" , __magic_name__ : List[Any]="[PAD]" , __magic_name__ : str="[CLS]" , __magic_name__ : Optional[int]="[MASK]" , __magic_name__ : Optional[Dict[str, Any]] = None , **__magic_name__ : Union[str, Any] , ) -> None:
"""simple docstring"""
# Mask token behave like a normal word, i.e. include the space before it and
# is included in the raw text, there should be a match in a non-normalized sentence.
UpperCAmelCase_ : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=__magic_name__ , unk_token=__magic_name__ , sep_token=__magic_name__ , pad_token=__magic_name__ , cls_token=__magic_name__ , mask_token=__magic_name__ , vocab_file=__magic_name__ , encoding=__magic_name__ , sp_model_kwargs=self.sp_model_kwargs , **__magic_name__ , )
UpperCAmelCase_ : Optional[Any] = do_lower_case
UpperCAmelCase_ : List[str] = sentencepiece_model_ckpt
UpperCAmelCase_ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(__magic_name__ )
# to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning
if vocab_file is not None:
UpperCAmelCase_ : List[Any] = self.load_vocab(filepath=__magic_name__ )
else:
UpperCAmelCase_ : str = {self.sp_model.id_to_piece(__magic_name__ ): id for id in range(self.sp_model.get_piece_size() )}
UpperCAmelCase_ : int = {v: k for k, v in self.vocab.items()}
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Any ) -> Any:
"""simple docstring"""
if text is None:
return None
UpperCAmelCase_ : str = self.tokenize(__magic_name__ )
UpperCAmelCase_ , UpperCAmelCase_ : str = '''''', []
for i, ch in enumerate(__magic_name__ ):
if ch in self.SP_CHAR_MAPPING:
UpperCAmelCase_ : Optional[int] = self.SP_CHAR_MAPPING.get(__magic_name__ )
else:
UpperCAmelCase_ : Union[str, Any] = unicodedata.normalize('''NFKC''' , __magic_name__ )
if self.is_whitespace(__magic_name__ ):
continue
normalized_text += ch
char_mapping.extend([i] * len(__magic_name__ ) )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = normalized_text, [], 0
if self.do_lower_case:
UpperCAmelCase_ : Optional[int] = text.lower()
for token in split_tokens:
if token[:1] == "▁":
UpperCAmelCase_ : Tuple = token[1:]
UpperCAmelCase_ : int = text[offset:].index(__magic_name__ ) + offset
UpperCAmelCase_ : Optional[int] = start + len(__magic_name__ )
token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) )
UpperCAmelCase_ : int = end
return token_mapping
@property
def UpperCAmelCase__ ( self : Any ) -> Any:
"""simple docstring"""
return len(self.vocab )
def UpperCAmelCase__ ( self : List[Any] ) -> int:
"""simple docstring"""
return dict(self.vocab , **self.added_tokens_encoder )
def __getstate__( self : str ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = self.__dict__.copy()
UpperCAmelCase_ : Optional[Any] = None
return state
def __setstate__( self : str , __magic_name__ : Any ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : Dict = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
UpperCAmelCase_ : int = {}
UpperCAmelCase_ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.sentencepiece_model_ckpt )
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : Any ) -> List[str]:
"""simple docstring"""
return "".join((self.SP_CHAR_MAPPING.get(__magic_name__ , __magic_name__ ) for c in text) )
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Tuple , __magic_name__ : Any=False , __magic_name__ : List[str]=64 , __magic_name__ : List[str]=0.1 ) -> List[str]:
"""simple docstring"""
if self.sp_model_kwargs.get('''enable_sampling''' ) is True:
UpperCAmelCase_ : Dict = True
if self.sp_model_kwargs.get('''alpha''' ) is not None:
UpperCAmelCase_ : Union[str, Any] = self.sp_model_kwargs.get('''alpha''' )
if self.sp_model_kwargs.get('''nbest_size''' ) is not None:
UpperCAmelCase_ : Any = self.sp_model_kwargs.get('''nbest_size''' )
if not enable_sampling:
UpperCAmelCase_ : Dict = self.sp_model.EncodeAsPieces(__magic_name__ )
else:
UpperCAmelCase_ : Dict = self.sp_model.SampleEncodeAsPieces(__magic_name__ , __magic_name__ , __magic_name__ )
UpperCAmelCase_ : List[Any] = []
for pi, piece in enumerate(__magic_name__ ):
if piece == SPIECE_UNDERLINE:
if not pieces[pi + 1].startswith(__magic_name__ ) and pi != 0:
new_pieces.append(__magic_name__ )
continue
else:
continue
UpperCAmelCase_ : List[str] = 0
for i, chunk in enumerate(__magic_name__ ):
if chunk == SPIECE_UNDERLINE:
continue
if self.is_ch_char(__magic_name__ ) or self.is_punct(__magic_name__ ):
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
new_pieces.append(__magic_name__ )
UpperCAmelCase_ : List[Any] = i + 1
elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
UpperCAmelCase_ : List[str] = i
elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
UpperCAmelCase_ : str = i
if len(__magic_name__ ) > lst_i:
new_pieces.append(piece[lst_i:] )
return new_pieces
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Optional[int] ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = ''''''.join(__magic_name__ ).replace(__magic_name__ , ''' ''' ).strip()
return out_string
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Union[str, Any] ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : str = self.convert_ids_to_tokens(__magic_name__ )
UpperCAmelCase_ : Optional[Any] = ''''''.join(__magic_name__ ).replace(__magic_name__ , ''' ''' ).strip()
return out_string
def UpperCAmelCase__ ( self : str , __magic_name__ : Optional[Any] ) -> List[Any]:
"""simple docstring"""
return self.vocab.get(__magic_name__ , self.vocab.get(self.unk_token ) )
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
return self.reverse_vocab.get(__magic_name__ , self.unk_token )
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Any , __magic_name__ : Union[str, Any]=None ) -> Any:
"""simple docstring"""
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
UpperCAmelCase_ : Union[str, Any] = [self.cls_token_id]
UpperCAmelCase_ : List[Any] = [self.sep_token_id]
return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep
def UpperCAmelCase__ ( self : Any , __magic_name__ : Optional[Any] , __magic_name__ : List[str]=None ) -> int:
"""simple docstring"""
if offset_mapping_a is None:
return [(0, 0)] + offset_mapping_a + [(0, 0)]
return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)]
def UpperCAmelCase__ ( self : Dict , __magic_name__ : Optional[Any] , __magic_name__ : List[str]=None , __magic_name__ : Optional[Any]=False ) -> Optional[int]:
"""simple docstring"""
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(__magic_name__ )) + [1, 1] + ([0] * len(__magic_name__ )) + [1]
return [1] + ([0] * len(__magic_name__ )) + [1]
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
# called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method
if token_ids_a is None:
# [CLS] X [SEP]
return (len(__magic_name__ ) + 2) * [0]
# [CLS] A [SEP] [SEP] B [SEP]
return [0] * (len(__magic_name__ ) + 1) + [1] * (len(__magic_name__ ) + 3)
def UpperCAmelCase__ ( self : Dict , __magic_name__ : str ) -> Tuple:
"""simple docstring"""
if "\u4e00" <= char <= "\u9fff":
return True
return False
def UpperCAmelCase__ ( self : int , __magic_name__ : Optional[int] ) -> str:
"""simple docstring"""
if ("a" <= char <= "z") or ("A" <= char <= "Z"):
return True
return False
def UpperCAmelCase__ ( self : int , __magic_name__ : Optional[Any] ) -> Dict:
"""simple docstring"""
if char in ",;:.?!~,;:。?!《》【】":
return True
return False
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Any ) -> Union[str, Any]:
"""simple docstring"""
if char == " " or char == "\t" or char == "\n" or char == "\r":
return True
if len(__magic_name__ ) == 1:
UpperCAmelCase_ : Optional[Any] = unicodedata.category(__magic_name__ )
if cat == "Zs":
return True
return False
def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : Tuple ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = {}
with io.open(__magic_name__ , '''r''' , encoding='''utf-8''' ) as f:
for index, line in enumerate(__magic_name__ ):
UpperCAmelCase_ : List[Any] = line.rstrip('''\n''' )
UpperCAmelCase_ : Dict = int(__magic_name__ )
return token_to_idx
def UpperCAmelCase__ ( self : Dict , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = 0
if os.path.isdir(__magic_name__ ):
UpperCAmelCase_ : Any = os.path.join(
__magic_name__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
else:
UpperCAmelCase_ : List[str] = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory
with open(__magic_name__ , '''w''' , encoding='''utf-8''' ) as writer:
for token, token_index in sorted(self.vocab.items() , key=lambda __magic_name__ : kv[1] ):
if index != token_index:
logger.warning(
F"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."""
''' Please check that the vocabulary is not corrupted!''' )
UpperCAmelCase_ : Dict = token_index
writer.write(token + '''\n''' )
index += 1
UpperCAmelCase_ : Union[str, Any] = os.path.join(__magic_name__ , '''sentencepiece.bpe.model''' )
with open(__magic_name__ , '''wb''' ) as fi:
UpperCAmelCase_ : Optional[int] = self.sp_model.serialized_model_proto()
fi.write(__magic_name__ )
return (vocab_file,)
| 644
| 1
|
'''simple docstring'''
import logging
import os
import random
import sys
from dataclasses import dataclass, field
from typing import Optional
import datasets
import evaluate
import numpy as np
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
AutoModelForSequenceClassification,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.31.0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
snake_case_ : str = logging.getLogger(__name__)
@dataclass
class __a :
__a : Optional[int] = field(
default=128 , metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
__a : bool = field(
default=lowerCamelCase , metadata={"help": "Overwrite the cached preprocessed datasets or not."} )
__a : bool = field(
default=lowerCamelCase , metadata={
"help": (
"Whether to pad all samples to `max_seq_length`. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch."
)
} , )
__a : Optional[int] = field(
default=lowerCamelCase , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
} , )
__a : Optional[int] = field(
default=lowerCamelCase , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
} , )
__a : Optional[int] = field(
default=lowerCamelCase , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of prediction examples to this "
"value if set."
)
} , )
@dataclass
class __a :
__a : str = field(
default=lowerCamelCase , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} )
__a : str = field(
default=lowerCamelCase , metadata={"help": "Evaluation language. Also train language if `train_language` is set to None."} )
__a : Optional[str] = field(
default=lowerCamelCase , metadata={"help": "Train language if it is different from the evaluation language."} )
__a : Optional[str] = field(
default=lowerCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"} )
__a : Optional[str] = field(
default=lowerCamelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} )
__a : Optional[str] = field(
default=lowerCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , )
__a : Optional[bool] = field(
default=lowerCamelCase , metadata={"help": "arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()"} , )
__a : bool = field(
default=lowerCamelCase , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , )
__a : str = field(
default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , )
__a : bool = field(
default=lowerCamelCase , metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
} , )
__a : bool = field(
default=lowerCamelCase , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , )
def lowerCamelCase_ ( ) -> Union[str, Any]:
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
UpperCAmelCase_ : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry('''run_xnli''', SCREAMING_SNAKE_CASE__ )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', handlers=[logging.StreamHandler(sys.stdout )], )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
UpperCAmelCase_ : Optional[Any] = training_args.get_process_log_level()
logger.setLevel(SCREAMING_SNAKE_CASE__ )
datasets.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE__ )
transformers.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE__ )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"""
+ F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" )
logger.info(F"""Training/evaluation parameters {training_args}""" )
# Detecting last checkpoint.
UpperCAmelCase_ : Optional[int] = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
UpperCAmelCase_ : Dict = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F"""Output directory ({training_args.output_dir}) already exists and is not empty. """
'''Use --overwrite_output_dir to overcome.''' )
elif last_checkpoint is not None:
logger.info(
F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """
'''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' )
# Set seed before initializing model.
set_seed(training_args.seed )
# In distributed training, the load_dataset function guarantees that only one local process can concurrently
# download the dataset.
# Downloading and loading xnli dataset from the hub.
if training_args.do_train:
if model_args.train_language is None:
UpperCAmelCase_ : Any = load_dataset(
'''xnli''', model_args.language, split='''train''', cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, )
else:
UpperCAmelCase_ : Union[str, Any] = load_dataset(
'''xnli''', model_args.train_language, split='''train''', cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, )
UpperCAmelCase_ : Optional[Any] = train_dataset.features['''label'''].names
if training_args.do_eval:
UpperCAmelCase_ : Dict = load_dataset(
'''xnli''', model_args.language, split='''validation''', cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, )
UpperCAmelCase_ : Union[str, Any] = eval_dataset.features['''label'''].names
if training_args.do_predict:
UpperCAmelCase_ : Any = load_dataset(
'''xnli''', model_args.language, split='''test''', cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, )
UpperCAmelCase_ : List[Any] = predict_dataset.features['''label'''].names
# Labels
UpperCAmelCase_ : List[Any] = len(SCREAMING_SNAKE_CASE__ )
# Load pretrained model and tokenizer
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
UpperCAmelCase_ : Dict = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=SCREAMING_SNAKE_CASE__, idalabel={str(SCREAMING_SNAKE_CASE__ ): label for i, label in enumerate(SCREAMING_SNAKE_CASE__ )}, labelaid={label: i for i, label in enumerate(SCREAMING_SNAKE_CASE__ )}, finetuning_task='''xnli''', cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, )
UpperCAmelCase_ : str = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, do_lower_case=model_args.do_lower_case, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, )
UpperCAmelCase_ : str = AutoModelForSequenceClassification.from_pretrained(
model_args.model_name_or_path, from_tf=bool('''.ckpt''' in model_args.model_name_or_path ), config=SCREAMING_SNAKE_CASE__, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ignore_mismatched_sizes=model_args.ignore_mismatched_sizes, )
# Preprocessing the datasets
# Padding strategy
if data_args.pad_to_max_length:
UpperCAmelCase_ : Dict = '''max_length'''
else:
# We will pad later, dynamically at batch creation, to the max sequence length in each batch
UpperCAmelCase_ : Any = False
def preprocess_function(SCREAMING_SNAKE_CASE__ : Tuple ):
# Tokenize the texts
return tokenizer(
examples['''premise'''], examples['''hypothesis'''], padding=SCREAMING_SNAKE_CASE__, max_length=data_args.max_seq_length, truncation=SCREAMING_SNAKE_CASE__, )
if training_args.do_train:
if data_args.max_train_samples is not None:
UpperCAmelCase_ : List[Any] = min(len(SCREAMING_SNAKE_CASE__ ), data_args.max_train_samples )
UpperCAmelCase_ : Union[str, Any] = train_dataset.select(range(SCREAMING_SNAKE_CASE__ ) )
with training_args.main_process_first(desc='''train dataset map pre-processing''' ):
UpperCAmelCase_ : Optional[Any] = train_dataset.map(
SCREAMING_SNAKE_CASE__, batched=SCREAMING_SNAKE_CASE__, load_from_cache_file=not data_args.overwrite_cache, desc='''Running tokenizer on train dataset''', )
# Log a few random samples from the training set:
for index in random.sample(range(len(SCREAMING_SNAKE_CASE__ ) ), 3 ):
logger.info(F"""Sample {index} of the training set: {train_dataset[index]}.""" )
if training_args.do_eval:
if data_args.max_eval_samples is not None:
UpperCAmelCase_ : str = min(len(SCREAMING_SNAKE_CASE__ ), data_args.max_eval_samples )
UpperCAmelCase_ : Optional[int] = eval_dataset.select(range(SCREAMING_SNAKE_CASE__ ) )
with training_args.main_process_first(desc='''validation dataset map pre-processing''' ):
UpperCAmelCase_ : Optional[Any] = eval_dataset.map(
SCREAMING_SNAKE_CASE__, batched=SCREAMING_SNAKE_CASE__, load_from_cache_file=not data_args.overwrite_cache, desc='''Running tokenizer on validation dataset''', )
if training_args.do_predict:
if data_args.max_predict_samples is not None:
UpperCAmelCase_ : Optional[int] = min(len(SCREAMING_SNAKE_CASE__ ), data_args.max_predict_samples )
UpperCAmelCase_ : int = predict_dataset.select(range(SCREAMING_SNAKE_CASE__ ) )
with training_args.main_process_first(desc='''prediction dataset map pre-processing''' ):
UpperCAmelCase_ : List[Any] = predict_dataset.map(
SCREAMING_SNAKE_CASE__, batched=SCREAMING_SNAKE_CASE__, load_from_cache_file=not data_args.overwrite_cache, desc='''Running tokenizer on prediction dataset''', )
# Get the metric function
UpperCAmelCase_ : Optional[Any] = evaluate.load('''xnli''' )
# You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
# predictions and label_ids field) and has to return a dictionary string to float.
def compute_metrics(SCREAMING_SNAKE_CASE__ : EvalPrediction ):
UpperCAmelCase_ : Dict = p.predictions[0] if isinstance(p.predictions, SCREAMING_SNAKE_CASE__ ) else p.predictions
UpperCAmelCase_ : Dict = np.argmax(SCREAMING_SNAKE_CASE__, axis=1 )
return metric.compute(predictions=SCREAMING_SNAKE_CASE__, references=p.label_ids )
# Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding.
if data_args.pad_to_max_length:
UpperCAmelCase_ : Dict = default_data_collator
elif training_args.fpaa:
UpperCAmelCase_ : Optional[int] = DataCollatorWithPadding(SCREAMING_SNAKE_CASE__, pad_to_multiple_of=8 )
else:
UpperCAmelCase_ : Dict = None
# Initialize our Trainer
UpperCAmelCase_ : int = Trainer(
model=SCREAMING_SNAKE_CASE__, args=SCREAMING_SNAKE_CASE__, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, compute_metrics=SCREAMING_SNAKE_CASE__, tokenizer=SCREAMING_SNAKE_CASE__, data_collator=SCREAMING_SNAKE_CASE__, )
# Training
if training_args.do_train:
UpperCAmelCase_ : str = None
if training_args.resume_from_checkpoint is not None:
UpperCAmelCase_ : int = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
UpperCAmelCase_ : Dict = last_checkpoint
UpperCAmelCase_ : str = trainer.train(resume_from_checkpoint=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : int = train_result.metrics
UpperCAmelCase_ : Optional[int] = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(SCREAMING_SNAKE_CASE__ )
)
UpperCAmelCase_ : Optional[int] = min(SCREAMING_SNAKE_CASE__, len(SCREAMING_SNAKE_CASE__ ) )
trainer.save_model() # Saves the tokenizer too for easy upload
trainer.log_metrics('''train''', SCREAMING_SNAKE_CASE__ )
trainer.save_metrics('''train''', SCREAMING_SNAKE_CASE__ )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
UpperCAmelCase_ : int = trainer.evaluate(eval_dataset=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : List[str] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : int = min(SCREAMING_SNAKE_CASE__, len(SCREAMING_SNAKE_CASE__ ) )
trainer.log_metrics('''eval''', SCREAMING_SNAKE_CASE__ )
trainer.save_metrics('''eval''', SCREAMING_SNAKE_CASE__ )
# Prediction
if training_args.do_predict:
logger.info('''*** Predict ***''' )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = trainer.predict(SCREAMING_SNAKE_CASE__, metric_key_prefix='''predict''' )
UpperCAmelCase_ : List[str] = (
data_args.max_predict_samples if data_args.max_predict_samples is not None else len(SCREAMING_SNAKE_CASE__ )
)
UpperCAmelCase_ : List[str] = min(SCREAMING_SNAKE_CASE__, len(SCREAMING_SNAKE_CASE__ ) )
trainer.log_metrics('''predict''', SCREAMING_SNAKE_CASE__ )
trainer.save_metrics('''predict''', SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : str = np.argmax(SCREAMING_SNAKE_CASE__, axis=1 )
UpperCAmelCase_ : Optional[Any] = os.path.join(training_args.output_dir, '''predictions.txt''' )
if trainer.is_world_process_zero():
with open(SCREAMING_SNAKE_CASE__, '''w''' ) as writer:
writer.write('''index\tprediction\n''' )
for index, item in enumerate(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase_ : Any = label_list[item]
writer.write(F"""{index}\t{item}\n""" )
if __name__ == "__main__":
main()
| 644
|
'''simple docstring'''
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int ) -> str:
if number > 0:
raise ValueError('''input must be a negative integer''' )
UpperCAmelCase_ : Union[str, Any] = len(bin(SCREAMING_SNAKE_CASE__ )[3:] )
UpperCAmelCase_ : Union[str, Any] = bin(abs(SCREAMING_SNAKE_CASE__ ) - (1 << binary_number_length) )[3:]
UpperCAmelCase_ : Optional[Any] = (
(
'''1'''
+ '''0''' * (binary_number_length - len(SCREAMING_SNAKE_CASE__ ))
+ twos_complement_number
)
if number < 0
else '''0'''
)
return "0b" + twos_complement_number
if __name__ == "__main__":
import doctest
doctest.testmod()
| 644
| 1
|
'''simple docstring'''
import json
import os
import subprocess
import unittest
from ast import literal_eval
import pytest
from parameterized import parameterized_class
from . import is_sagemaker_available
if is_sagemaker_available():
from sagemaker import Session, TrainingJobAnalytics
from sagemaker.huggingface import HuggingFace
@pytest.mark.skipif(
literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , )
@pytest.mark.usefixtures("sm_env" )
@parameterized_class(
[
{
"framework": "pytorch",
"script": "run_glue.py",
"model_name_or_path": "distilbert-base-cased",
"instance_type": "ml.g4dn.xlarge",
"results": {"train_runtime": 650, "eval_accuracy": 0.6, "eval_loss": 0.9},
},
{
"framework": "tensorflow",
"script": "run_tf.py",
"model_name_or_path": "distilbert-base-cased",
"instance_type": "ml.g4dn.xlarge",
"results": {"train_runtime": 600, "eval_accuracy": 0.3, "eval_loss": 0.9},
},
] )
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : Tuple ) -> Optional[Any]:
"""simple docstring"""
if self.framework == "pytorch":
subprocess.run(
F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding='''utf-8''' , check=__magic_name__ , )
assert hasattr(self , '''env''' )
def UpperCAmelCase__ ( self : Dict , __magic_name__ : List[str]=1 ) -> Optional[int]:
"""simple docstring"""
# creates estimator
return HuggingFace(
entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F"""{self.env.base_job_name}-single""" , instance_count=__magic_name__ , instance_type=self.instance_type , debugger_hook_config=__magic_name__ , hyperparameters={**self.env.hyperparameters, '''model_name_or_path''': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version='''py36''' , )
def UpperCAmelCase__ ( self : Dict , __magic_name__ : List[Any] ) -> Optional[Any]:
"""simple docstring"""
TrainingJobAnalytics(__magic_name__ ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" )
def UpperCAmelCase__ ( self : Union[str, Any] ) -> Any:
"""simple docstring"""
# create estimator
UpperCAmelCase_ : Dict = self.create_estimator()
# run training
estimator.fit()
# result dataframe
UpperCAmelCase_ : Dict = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe()
# extract kpis
UpperCAmelCase_ : Union[str, Any] = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] )
UpperCAmelCase_ : int = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] )
# get train time from SageMaker job, this includes starting, preprocessing, stopping
UpperCAmelCase_ : int = (
Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 99_99_99 )
)
# assert kpis
assert train_runtime <= self.results["train_runtime"]
assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy )
assert all(t <= self.results['''eval_loss'''] for t in eval_loss )
# dump tests result into json file to share in PR
with open(F"""{estimator.latest_training_job.name}.json""" , '''w''' ) as outfile:
json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , __magic_name__ )
| 644
|
'''simple docstring'''
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from transformers.generation import DisjunctiveConstraint
@require_torch
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
# For consistency across different places the DisjunctiveConstraint is called,
# dc.token_ids is a list of integers. It is also initialized only by integers.
UpperCAmelCase_ : List[str] = [[1, 2, 4], [1, 2, 3, 4]]
UpperCAmelCase_ : List[str] = DisjunctiveConstraint(__magic_name__ )
self.assertTrue(isinstance(dc.token_ids , __magic_name__ ) )
with self.assertRaises(__magic_name__ ):
DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) )
with self.assertRaises(__magic_name__ ):
DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] )
def UpperCAmelCase__ ( self : List[str] ) -> Dict:
"""simple docstring"""
# We can't have constraints that are complete subsets of another. This leads to a preverse
# interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint?
# It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially
# fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm
# will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it).
UpperCAmelCase_ : Tuple = [[1, 2], [1, 2, 3, 4]]
with self.assertRaises(__magic_name__ ):
DisjunctiveConstraint(__magic_name__ ) # fails here
def UpperCAmelCase__ ( self : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = [[1, 2, 3], [1, 2, 4]]
UpperCAmelCase_ : List[str] = DisjunctiveConstraint(__magic_name__ )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = dc.update(1 )
UpperCAmelCase_ : Dict = stepped is True and completed is False and reset is False
self.assertTrue(__magic_name__ )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = dc.update(2 )
UpperCAmelCase_ : Optional[Any] = stepped is True and completed is False and reset is False
self.assertTrue(__magic_name__ )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = dc.update(3 )
UpperCAmelCase_ : Dict = stepped is True and completed is True and reset is False
self.assertTrue(__magic_name__ )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 3] )
def UpperCAmelCase__ ( self : int ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : Any = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]]
UpperCAmelCase_ : Tuple = DisjunctiveConstraint(__magic_name__ )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = dc.update(4 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2, 4] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 4, 5] )
dc.reset()
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 3 )
self.assertTrue(dc.current_seq == [1] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 2 )
self.assertTrue(dc.current_seq == [1, 2] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.remaining() == 0 )
self.assertTrue(dc.current_seq == [1, 2, 5] )
| 644
| 1
|
'''simple docstring'''
import math
def lowerCamelCase_ ( ) -> None:
UpperCAmelCase_ : Union[str, Any] = input('''Enter message: ''' )
UpperCAmelCase_ : List[str] = int(input(F"""Enter key [2-{len(SCREAMING_SNAKE_CASE__ ) - 1}]: """ ) )
UpperCAmelCase_ : Any = input('''Encryption/Decryption [e/d]: ''' )
if mode.lower().startswith('''e''' ):
UpperCAmelCase_ : Optional[int] = encrypt_message(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
elif mode.lower().startswith('''d''' ):
UpperCAmelCase_ : int = decrypt_message(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
# Append pipe symbol (vertical bar) to identify spaces at the end.
print(F"""Output:\n{text + "|"}""" )
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : str ) -> str:
UpperCAmelCase_ : Optional[int] = [''''''] * key
for col in range(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase_ : Optional[Any] = col
while pointer < len(SCREAMING_SNAKE_CASE__ ):
cipher_text[col] += message[pointer]
pointer += key
return "".join(SCREAMING_SNAKE_CASE__ )
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : str ) -> str:
UpperCAmelCase_ : Union[str, Any] = math.ceil(len(SCREAMING_SNAKE_CASE__ ) / key )
UpperCAmelCase_ : int = key
UpperCAmelCase_ : Optional[int] = (num_cols * num_rows) - len(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Any = [''''''] * num_cols
UpperCAmelCase_ : str = 0
UpperCAmelCase_ : Optional[int] = 0
for symbol in message:
plain_text[col] += symbol
col += 1
if (
(col == num_cols)
or (col == num_cols - 1)
and (row >= num_rows - num_shaded_boxes)
):
UpperCAmelCase_ : Any = 0
row += 1
return "".join(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 644
|
'''simple docstring'''
import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.layers import LSTM, Dense
from tensorflow.keras.models import Sequential
if __name__ == "__main__":
snake_case_ : List[Any] = pd.read_csv("sample_data.csv", header=None)
snake_case_ : Optional[Any] = df.shape[:1][0]
# If you're using some other dataset input the target column
snake_case_ : Any = df.iloc[:, 1:2]
snake_case_ : str = actual_data.values.reshape(len_data, 1)
snake_case_ : Optional[Any] = MinMaxScaler().fit_transform(actual_data)
snake_case_ : List[str] = 10
snake_case_ : Any = 5
snake_case_ : Any = 20
snake_case_ : Tuple = len_data - periods * look_back
snake_case_ : str = actual_data[:division]
snake_case_ : Optional[int] = actual_data[division - look_back :]
snake_case_ ,snake_case_ : Any = [], []
snake_case_ ,snake_case_ : Union[str, Any] = [], []
for i in range(0, len(train_data) - forward_days - look_back + 1):
train_x.append(train_data[i : i + look_back])
train_y.append(train_data[i + look_back : i + look_back + forward_days])
for i in range(0, len(test_data) - forward_days - look_back + 1):
test_x.append(test_data[i : i + look_back])
test_y.append(test_data[i + look_back : i + look_back + forward_days])
snake_case_ : Any = np.array(train_x)
snake_case_ : Optional[Any] = np.array(test_x)
snake_case_ : Optional[Any] = np.array([list(i.ravel()) for i in train_y])
snake_case_ : List[str] = np.array([list(i.ravel()) for i in test_y])
snake_case_ : List[Any] = Sequential()
model.add(LSTM(1_28, input_shape=(look_back, 1), return_sequences=True))
model.add(LSTM(64, input_shape=(1_28, 1)))
model.add(Dense(forward_days))
model.compile(loss="mean_squared_error", optimizer="adam")
snake_case_ : Dict = model.fit(
x_train, y_train, epochs=1_50, verbose=1, shuffle=True, batch_size=4
)
snake_case_ : Optional[Any] = model.predict(x_test)
| 644
| 1
|
'''simple docstring'''
from __future__ import annotations
snake_case_ : Any = 8.988E9 # units = N * m^s * C^-2
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : float, SCREAMING_SNAKE_CASE__ : float, SCREAMING_SNAKE_CASE__ : float, SCREAMING_SNAKE_CASE__ : float ) -> dict[str, float]:
UpperCAmelCase_ : int = abs(chargea * chargea )
if (force, chargea, chargea, distance).count(0 ) != 1:
raise ValueError('''One and only one argument must be 0''' )
if distance < 0:
raise ValueError('''Distance cannot be negative''' )
if force == 0:
UpperCAmelCase_ : List[Any] = COULOMBS_CONSTANT * charge_product / (distance**2)
return {"force": force}
elif chargea == 0:
UpperCAmelCase_ : Optional[Any] = abs(SCREAMING_SNAKE_CASE__ ) * (distance**2) / (COULOMBS_CONSTANT * chargea)
return {"charge1": chargea}
elif chargea == 0:
UpperCAmelCase_ : List[str] = abs(SCREAMING_SNAKE_CASE__ ) * (distance**2) / (COULOMBS_CONSTANT * chargea)
return {"charge2": chargea}
elif distance == 0:
UpperCAmelCase_ : Optional[int] = (COULOMBS_CONSTANT * charge_product / abs(SCREAMING_SNAKE_CASE__ )) ** 0.5
return {"distance": distance}
raise ValueError('''Exactly one argument must be 0''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 644
|
'''simple docstring'''
from typing import Any, Callable, Dict, List, Optional, Union
import torch
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
snake_case_ : Union[str, Any] = "CompVis/stable-diffusion-v1-1"
snake_case_ : Dict = "CompVis/stable-diffusion-v1-2"
snake_case_ : Any = "CompVis/stable-diffusion-v1-3"
snake_case_ : str = "CompVis/stable-diffusion-v1-4"
class __a (lowerCamelCase ):
def __init__( self : Any , __magic_name__ : AutoencoderKL , __magic_name__ : CLIPTextModel , __magic_name__ : CLIPTokenizer , __magic_name__ : UNetaDConditionModel , __magic_name__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __magic_name__ : StableDiffusionSafetyChecker , __magic_name__ : CLIPImageProcessor , __magic_name__ : bool = True , ) -> str:
"""simple docstring"""
super()._init_()
UpperCAmelCase_ : Any = StableDiffusionPipeline.from_pretrained(__magic_name__ )
UpperCAmelCase_ : Dict = StableDiffusionPipeline.from_pretrained(__magic_name__ )
UpperCAmelCase_ : List[Any] = StableDiffusionPipeline.from_pretrained(__magic_name__ )
UpperCAmelCase_ : Tuple = StableDiffusionPipeline(
vae=__magic_name__ , text_encoder=__magic_name__ , tokenizer=__magic_name__ , unet=__magic_name__ , scheduler=__magic_name__ , safety_checker=__magic_name__ , feature_extractor=__magic_name__ , requires_safety_checker=__magic_name__ , )
self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea )
@property
def UpperCAmelCase__ ( self : Tuple ) -> Dict[str, Any]:
"""simple docstring"""
return {k: getattr(self , __magic_name__ ) for k in self.config.keys() if not k.startswith('''_''' )}
def UpperCAmelCase__ ( self : Dict , __magic_name__ : Optional[Union[str, int]] = "auto" ) -> int:
"""simple docstring"""
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
UpperCAmelCase_ : List[str] = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(__magic_name__ )
def UpperCAmelCase__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
self.enable_attention_slicing(__magic_name__ )
@torch.no_grad()
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Tuple , ) -> Optional[int]:
"""simple docstring"""
return self.pipea(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
@torch.no_grad()
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Any , ) -> Any:
"""simple docstring"""
return self.pipea(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
@torch.no_grad()
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Dict , ) -> List[str]:
"""simple docstring"""
return self.pipea(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
@torch.no_grad()
def UpperCAmelCase__ ( self : int , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Optional[int] , ) -> str:
"""simple docstring"""
return self.pipea(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
@torch.no_grad()
def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Optional[int] , ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : int = '''cuda''' if torch.cuda.is_available() else '''cpu'''
self.to(__magic_name__ )
# Checks if the height and width are divisible by 8 or not
if height % 8 != 0 or width % 8 != 0:
raise ValueError(F"""`height` and `width` must be divisible by 8 but are {height} and {width}.""" )
# Get first result from Stable Diffusion Checkpoint v1.1
UpperCAmelCase_ : Optional[int] = self.textaimg_sda_a(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
# Get first result from Stable Diffusion Checkpoint v1.2
UpperCAmelCase_ : int = self.textaimg_sda_a(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
# Get first result from Stable Diffusion Checkpoint v1.3
UpperCAmelCase_ : str = self.textaimg_sda_a(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
# Get first result from Stable Diffusion Checkpoint v1.4
UpperCAmelCase_ : str = self.textaimg_sda_a(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
# Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result
return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
| 644
| 1
|
'''simple docstring'''
from __future__ import annotations
from typing import Any
class __a :
def __init__( self : List[str] , __magic_name__ : int = 6 ) -> None:
"""simple docstring"""
UpperCAmelCase_ : Node | None = None
UpperCAmelCase_ : Node | None = None
self.create_linked_list(__magic_name__ )
def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : int ) -> None:
"""simple docstring"""
UpperCAmelCase_ : Tuple = Node()
UpperCAmelCase_ : Optional[int] = current_node
UpperCAmelCase_ : int = current_node
UpperCAmelCase_ : Optional[int] = current_node
for _ in range(1 , __magic_name__ ):
UpperCAmelCase_ : str = Node()
UpperCAmelCase_ : Dict = current_node
UpperCAmelCase_ : Union[str, Any] = previous_node
UpperCAmelCase_ : List[str] = current_node
UpperCAmelCase_ : List[Any] = self.front
UpperCAmelCase_ : Union[str, Any] = previous_node
def UpperCAmelCase__ ( self : str ) -> bool:
"""simple docstring"""
return (
self.front == self.rear
and self.front is not None
and self.front.data is None
)
def UpperCAmelCase__ ( self : List[str] ) -> Any | None:
"""simple docstring"""
self.check_can_perform_operation()
return self.front.data if self.front else None
def UpperCAmelCase__ ( self : Any , __magic_name__ : Any ) -> None:
"""simple docstring"""
if self.rear is None:
return
self.check_is_full()
if not self.is_empty():
UpperCAmelCase_ : Any = self.rear.next
if self.rear:
UpperCAmelCase_ : List[str] = data
def UpperCAmelCase__ ( self : Union[str, Any] ) -> Any:
"""simple docstring"""
self.check_can_perform_operation()
if self.rear is None or self.front is None:
return None
if self.front == self.rear:
UpperCAmelCase_ : Any = self.front.data
UpperCAmelCase_ : Optional[Any] = None
return data
UpperCAmelCase_ : Dict = self.front
UpperCAmelCase_ : Dict = old_front.next
UpperCAmelCase_ : Optional[Any] = old_front.data
UpperCAmelCase_ : List[str] = None
return data
def UpperCAmelCase__ ( self : Tuple ) -> None:
"""simple docstring"""
if self.is_empty():
raise Exception('''Empty Queue''' )
def UpperCAmelCase__ ( self : str ) -> None:
"""simple docstring"""
if self.rear and self.rear.next == self.front:
raise Exception('''Full Queue''' )
class __a :
def __init__( self : Optional[int] ) -> None:
"""simple docstring"""
UpperCAmelCase_ : Any | None = None
UpperCAmelCase_ : Node | None = None
UpperCAmelCase_ : Node | None = None
if __name__ == "__main__":
import doctest
doctest.testmod()
| 644
|
'''simple docstring'''
import argparse
import json
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
snake_case_ : Optional[int] = 16
snake_case_ : Tuple = 32
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Accelerator, SCREAMING_SNAKE_CASE__ : int = 16, SCREAMING_SNAKE_CASE__ : str = "bert-base-cased" ) -> Dict:
UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : int = load_dataset('''glue''', '''mrpc''' )
def tokenize_function(SCREAMING_SNAKE_CASE__ : Optional[int] ):
# max_length=None => use the model max length (it's actually the default)
UpperCAmelCase_ : Union[str, Any] = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=SCREAMING_SNAKE_CASE__, max_length=SCREAMING_SNAKE_CASE__ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
UpperCAmelCase_ : Tuple = datasets.map(
SCREAMING_SNAKE_CASE__, batched=SCREAMING_SNAKE_CASE__, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], load_from_cache_file=SCREAMING_SNAKE_CASE__ )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
UpperCAmelCase_ : Optional[Any] = tokenized_datasets.rename_column('''label''', '''labels''' )
def collate_fn(SCREAMING_SNAKE_CASE__ : str ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(SCREAMING_SNAKE_CASE__, padding='''max_length''', max_length=128, return_tensors='''pt''' )
return tokenizer.pad(SCREAMING_SNAKE_CASE__, padding='''longest''', return_tensors='''pt''' )
# Instantiate dataloaders.
UpperCAmelCase_ : str = DataLoader(
tokenized_datasets['''train'''], shuffle=SCREAMING_SNAKE_CASE__, collate_fn=SCREAMING_SNAKE_CASE__, batch_size=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : int = DataLoader(
tokenized_datasets['''validation'''], shuffle=SCREAMING_SNAKE_CASE__, collate_fn=SCREAMING_SNAKE_CASE__, batch_size=SCREAMING_SNAKE_CASE__ )
return train_dataloader, eval_dataloader
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Optional[Any], SCREAMING_SNAKE_CASE__ : Optional[int], SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : Any ) -> Any:
model.eval()
UpperCAmelCase_ : List[str] = 0
for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
UpperCAmelCase_ : Dict = model(**SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : str = outputs.logits.argmax(dim=-1 )
# It is slightly faster to call this once, than multiple times
UpperCAmelCase_ , UpperCAmelCase_ : List[str] = accelerator.gather(
(predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates
if accelerator.use_distributed:
if step == len(SCREAMING_SNAKE_CASE__ ) - 1:
UpperCAmelCase_ : Tuple = predictions[: len(eval_dataloader.dataset ) - samples_seen]
UpperCAmelCase_ : int = references[: len(eval_dataloader.dataset ) - samples_seen]
else:
samples_seen += references.shape[0]
metric.add_batch(
predictions=SCREAMING_SNAKE_CASE__, references=SCREAMING_SNAKE_CASE__, )
UpperCAmelCase_ : List[str] = metric.compute()
return eval_metric["accuracy"]
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : int ) -> Tuple:
# Initialize accelerator
UpperCAmelCase_ : Union[str, Any] = Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
UpperCAmelCase_ : int = config['''lr''']
UpperCAmelCase_ : Optional[int] = int(config['''num_epochs'''] )
UpperCAmelCase_ : Optional[int] = int(config['''seed'''] )
UpperCAmelCase_ : List[str] = int(config['''batch_size'''] )
UpperCAmelCase_ : Optional[int] = args.model_name_or_path
set_seed(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = get_dataloaders(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
UpperCAmelCase_ : List[Any] = AutoModelForSequenceClassification.from_pretrained(SCREAMING_SNAKE_CASE__, return_dict=SCREAMING_SNAKE_CASE__ )
# Instantiate optimizer
UpperCAmelCase_ : str = (
AdamW
if accelerator.state.deepspeed_plugin is None
or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
UpperCAmelCase_ : List[str] = optimizer_cls(params=model.parameters(), lr=SCREAMING_SNAKE_CASE__ )
if accelerator.state.deepspeed_plugin is not None:
UpperCAmelCase_ : List[Any] = accelerator.state.deepspeed_plugin.deepspeed_config[
'''gradient_accumulation_steps'''
]
else:
UpperCAmelCase_ : Tuple = 1
UpperCAmelCase_ : int = (len(SCREAMING_SNAKE_CASE__ ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
UpperCAmelCase_ : Tuple = get_linear_schedule_with_warmup(
optimizer=SCREAMING_SNAKE_CASE__, num_warmup_steps=0, num_training_steps=SCREAMING_SNAKE_CASE__, )
else:
UpperCAmelCase_ : Any = DummyScheduler(SCREAMING_SNAKE_CASE__, total_num_steps=SCREAMING_SNAKE_CASE__, warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = accelerator.prepare(
SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
# We need to keep track of how many total steps we have iterated over
UpperCAmelCase_ : Union[str, Any] = 0
# We also need to keep track of the stating epoch so files are named properly
UpperCAmelCase_ : Dict = 0
UpperCAmelCase_ : int = evaluate.load('''glue''', '''mrpc''' )
UpperCAmelCase_ : Optional[Any] = num_epochs
if args.partial_train_epoch is not None:
UpperCAmelCase_ : List[Any] = args.partial_train_epoch
if args.resume_from_checkpoint:
accelerator.load_state(args.resume_from_checkpoint )
UpperCAmelCase_ : Tuple = args.resume_from_checkpoint.split('''epoch_''' )[1]
UpperCAmelCase_ : int = ''''''
for char in epoch_string:
if char.isdigit():
state_epoch_num += char
else:
break
UpperCAmelCase_ : Union[str, Any] = int(SCREAMING_SNAKE_CASE__ ) + 1
UpperCAmelCase_ : Dict = evaluation_loop(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
accelerator.print('''resumed checkpoint performance:''', SCREAMING_SNAKE_CASE__ )
accelerator.print('''resumed checkpoint\'s scheduler\'s lr:''', lr_scheduler.get_lr()[0] )
accelerator.print('''resumed optimizers\'s lr:''', optimizer.param_groups[0]['''lr'''] )
with open(os.path.join(args.output_dir, F"""state_{starting_epoch-1}.json""" ), '''r''' ) as f:
UpperCAmelCase_ : Optional[int] = json.load(SCREAMING_SNAKE_CASE__ )
assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed"
assert (
resumed_state["lr"] == lr_scheduler.get_lr()[0]
), "Scheduler learning rate mismatch, loading from checkpoint failed"
assert (
resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"]
), "Optimizer learning rate mismatch, loading from checkpoint failed"
assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed"
return
# Now we train the model
UpperCAmelCase_ : int = {}
for epoch in range(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ):
model.train()
for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase_ : Optional[int] = model(**SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Any = outputs.loss
UpperCAmelCase_ : Tuple = loss / gradient_accumulation_steps
accelerator.backward(SCREAMING_SNAKE_CASE__ )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
UpperCAmelCase_ : Tuple = F"""epoch_{epoch}"""
UpperCAmelCase_ : Optional[int] = os.path.join(args.output_dir, SCREAMING_SNAKE_CASE__ )
accelerator.save_state(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : int = evaluation_loop(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Optional[Any] = accuracy
UpperCAmelCase_ : Any = lr_scheduler.get_lr()[0]
UpperCAmelCase_ : List[str] = optimizer.param_groups[0]['''lr''']
UpperCAmelCase_ : Tuple = epoch
UpperCAmelCase_ : Dict = overall_step
accelerator.print(F"""epoch {epoch}:""", SCREAMING_SNAKE_CASE__ )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir, F"""state_{epoch}.json""" ), '''w''' ) as f:
json.dump(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
def lowerCamelCase_ ( ) -> List[str]:
UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' )
parser.add_argument(
'''--model_name_or_path''', type=SCREAMING_SNAKE_CASE__, default='''bert-base-cased''', help='''Path to pretrained model or model identifier from huggingface.co/models.''', required=SCREAMING_SNAKE_CASE__, )
parser.add_argument(
'''--output_dir''', type=SCREAMING_SNAKE_CASE__, default='''.''', help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''', )
parser.add_argument(
'''--resume_from_checkpoint''', type=SCREAMING_SNAKE_CASE__, default=SCREAMING_SNAKE_CASE__, help='''If the training should continue from a checkpoint folder.''', )
parser.add_argument(
'''--partial_train_epoch''', type=SCREAMING_SNAKE_CASE__, default=SCREAMING_SNAKE_CASE__, help='''If passed, the training will stop after this number of epochs.''', )
parser.add_argument(
'''--num_epochs''', type=SCREAMING_SNAKE_CASE__, default=2, help='''Number of train epochs.''', )
UpperCAmelCase_ : Optional[int] = parser.parse_args()
UpperCAmelCase_ : List[Any] = {'''lr''': 2E-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16}
training_function(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
main()
| 644
| 1
|
'''simple docstring'''
# Imports
import numpy as np
class __a :
def __init__( self : List[Any] , __magic_name__ : Optional[Any]=None , __magic_name__ : int=None , __magic_name__ : Dict=None , __magic_name__ : Union[str, Any]=None , __magic_name__ : Optional[int]=None ) -> str:
"""simple docstring"""
self.set_matricies(red=__magic_name__ , green=__magic_name__ , blue=__magic_name__ , red_edge=__magic_name__ , nir=__magic_name__ )
def UpperCAmelCase__ ( self : int , __magic_name__ : Dict=None , __magic_name__ : Union[str, Any]=None , __magic_name__ : List[str]=None , __magic_name__ : Any=None , __magic_name__ : Optional[Any]=None ) -> Tuple:
"""simple docstring"""
if red is not None:
UpperCAmelCase_ : Any = red
if green is not None:
UpperCAmelCase_ : Union[str, Any] = green
if blue is not None:
UpperCAmelCase_ : Optional[Any] = blue
if red_edge is not None:
UpperCAmelCase_ : str = red_edge
if nir is not None:
UpperCAmelCase_ : List[str] = nir
return True
def UpperCAmelCase__ ( self : Dict , __magic_name__ : List[str]="" , __magic_name__ : Union[str, Any]=None , __magic_name__ : str=None , __magic_name__ : Optional[int]=None , __magic_name__ : Union[str, Any]=None , __magic_name__ : str=None ) -> Dict:
"""simple docstring"""
self.set_matricies(red=__magic_name__ , green=__magic_name__ , blue=__magic_name__ , red_edge=__magic_name__ , nir=__magic_name__ )
UpperCAmelCase_ : List[str] = {
'''ARVI2''': self.arvaa,
'''CCCI''': self.ccci,
'''CVI''': self.cvi,
'''GLI''': self.gli,
'''NDVI''': self.ndvi,
'''BNDVI''': self.bndvi,
'''redEdgeNDVI''': self.red_edge_ndvi,
'''GNDVI''': self.gndvi,
'''GBNDVI''': self.gbndvi,
'''GRNDVI''': self.grndvi,
'''RBNDVI''': self.rbndvi,
'''PNDVI''': self.pndvi,
'''ATSAVI''': self.atsavi,
'''BWDRVI''': self.bwdrvi,
'''CIgreen''': self.ci_green,
'''CIrededge''': self.ci_rededge,
'''CI''': self.ci,
'''CTVI''': self.ctvi,
'''GDVI''': self.gdvi,
'''EVI''': self.evi,
'''GEMI''': self.gemi,
'''GOSAVI''': self.gosavi,
'''GSAVI''': self.gsavi,
'''Hue''': self.hue,
'''IVI''': self.ivi,
'''IPVI''': self.ipvi,
'''I''': self.i,
'''RVI''': self.rvi,
'''MRVI''': self.mrvi,
'''MSAVI''': self.m_savi,
'''NormG''': self.norm_g,
'''NormNIR''': self.norm_nir,
'''NormR''': self.norm_r,
'''NGRDI''': self.ngrdi,
'''RI''': self.ri,
'''S''': self.s,
'''IF''': self._if,
'''DVI''': self.dvi,
'''TVI''': self.tvi,
'''NDRE''': self.ndre,
}
try:
return funcs[index]()
except KeyError:
print('''Index not in the list!''' )
return False
def UpperCAmelCase__ ( self : Dict ) -> Tuple:
"""simple docstring"""
return -0.1_8 + (1.1_7 * ((self.nir - self.red) / (self.nir + self.red)))
def UpperCAmelCase__ ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / (
(self.nir - self.red) / (self.nir + self.red)
)
def UpperCAmelCase__ ( self : Dict ) -> Tuple:
"""simple docstring"""
return self.nir * (self.red / (self.green**2))
def UpperCAmelCase__ ( self : int ) -> Any:
"""simple docstring"""
return (2 * self.green - self.red - self.blue) / (
2 * self.green + self.red + self.blue
)
def UpperCAmelCase__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
return (self.nir - self.red) / (self.nir + self.red)
def UpperCAmelCase__ ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
return (self.nir - self.blue) / (self.nir + self.blue)
def UpperCAmelCase__ ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
return (self.redEdge - self.red) / (self.redEdge + self.red)
def UpperCAmelCase__ ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
return (self.nir - self.green) / (self.nir + self.green)
def UpperCAmelCase__ ( self : Tuple ) -> Dict:
"""simple docstring"""
return (self.nir - (self.green + self.blue)) / (
self.nir + (self.green + self.blue)
)
def UpperCAmelCase__ ( self : Union[str, Any] ) -> str:
"""simple docstring"""
return (self.nir - (self.green + self.red)) / (
self.nir + (self.green + self.red)
)
def UpperCAmelCase__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red))
def UpperCAmelCase__ ( self : int ) -> List[Any]:
"""simple docstring"""
return (self.nir - (self.green + self.red + self.blue)) / (
self.nir + (self.green + self.red + self.blue)
)
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Union[str, Any]=0.0_8 , __magic_name__ : Any=1.2_2 , __magic_name__ : Union[str, Any]=0.0_3 ) -> Optional[int]:
"""simple docstring"""
return a * (
(self.nir - a * self.red - b)
/ (a * self.nir + self.red - a * b + x * (1 + a**2))
)
def UpperCAmelCase__ ( self : Optional[Any] ) -> List[str]:
"""simple docstring"""
return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue)
def UpperCAmelCase__ ( self : List[Any] ) -> Dict:
"""simple docstring"""
return (self.nir / self.green) - 1
def UpperCAmelCase__ ( self : List[Any] ) -> str:
"""simple docstring"""
return (self.nir / self.redEdge) - 1
def UpperCAmelCase__ ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
return (self.red - self.blue) / self.red
def UpperCAmelCase__ ( self : Union[str, Any] ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : Any = self.ndvi()
return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2))
def UpperCAmelCase__ ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
return self.nir - self.green
def UpperCAmelCase__ ( self : str ) -> List[Any]:
"""simple docstring"""
return 2.5 * (
(self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1)
)
def UpperCAmelCase__ ( self : Any ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : List[str] = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / (
self.nir + self.red + 0.5
)
return n * (1 - 0.2_5 * n) - (self.red - 0.1_2_5) / (1 - self.red)
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : List[Any]=0.1_6 ) -> List[Any]:
"""simple docstring"""
return (self.nir - self.green) / (self.nir + self.green + y)
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : List[str]=0.5 ) -> Optional[int]:
"""simple docstring"""
return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n)
def UpperCAmelCase__ ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
return np.arctan(
((2 * self.red - self.green - self.blue) / 3_0.5) * (self.green - self.blue) )
def UpperCAmelCase__ ( self : Dict , __magic_name__ : str=None , __magic_name__ : Optional[int]=None ) -> Any:
"""simple docstring"""
return (self.nir - b) / (a * self.red)
def UpperCAmelCase__ ( self : int ) -> List[Any]:
"""simple docstring"""
return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1)
def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
return (self.red + self.green + self.blue) / 3_0.5
def UpperCAmelCase__ ( self : Union[str, Any] ) -> str:
"""simple docstring"""
return self.nir / self.red
def UpperCAmelCase__ ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
return (self.rvi() - 1) / (self.rvi() + 1)
def UpperCAmelCase__ ( self : Any ) -> Optional[int]:
"""simple docstring"""
return (
(2 * self.nir + 1)
- ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2)
) / 2
def UpperCAmelCase__ ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
return self.green / (self.nir + self.red + self.green)
def UpperCAmelCase__ ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
return self.nir / (self.nir + self.red + self.green)
def UpperCAmelCase__ ( self : Tuple ) -> Optional[Any]:
"""simple docstring"""
return self.red / (self.nir + self.red + self.green)
def UpperCAmelCase__ ( self : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
return (self.green - self.red) / (self.green + self.red)
def UpperCAmelCase__ ( self : str ) -> int:
"""simple docstring"""
return (self.red - self.green) / (self.red + self.green)
def UpperCAmelCase__ ( self : Any ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] )
UpperCAmelCase_ : Union[str, Any] = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] )
return (max_value - min_value) / max_value
def UpperCAmelCase__ ( self : List[str] ) -> Tuple:
"""simple docstring"""
return (2 * self.red - self.green - self.blue) / (self.green - self.blue)
def UpperCAmelCase__ ( self : Dict ) -> List[Any]:
"""simple docstring"""
return self.nir / self.red
def UpperCAmelCase__ ( self : str ) -> Tuple:
"""simple docstring"""
return (self.ndvi() + 0.5) ** (1 / 2)
def UpperCAmelCase__ ( self : Any ) -> Optional[int]:
"""simple docstring"""
return (self.nir - self.redEdge) / (self.nir + self.redEdge)
| 644
|
'''simple docstring'''
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : list[int] ) -> list[list[int]]:
UpperCAmelCase_ : int = []
if len(SCREAMING_SNAKE_CASE__ ) == 1:
return [nums.copy()]
for _ in range(len(SCREAMING_SNAKE_CASE__ ) ):
UpperCAmelCase_ : List[Any] = nums.pop(0 )
UpperCAmelCase_ : Optional[Any] = permute(SCREAMING_SNAKE_CASE__ )
for perm in permutations:
perm.append(SCREAMING_SNAKE_CASE__ )
result.extend(SCREAMING_SNAKE_CASE__ )
nums.append(SCREAMING_SNAKE_CASE__ )
return result
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[str] ) -> Any:
def backtrack(SCREAMING_SNAKE_CASE__ : Union[str, Any] ):
if start == len(SCREAMING_SNAKE_CASE__ ) - 1:
output.append(nums[:] )
else:
for i in range(SCREAMING_SNAKE_CASE__, len(SCREAMING_SNAKE_CASE__ ) ):
UpperCAmelCase_ , UpperCAmelCase_ : Tuple = nums[i], nums[start]
backtrack(start + 1 )
UpperCAmelCase_ , UpperCAmelCase_ : int = nums[i], nums[start] # backtrack
UpperCAmelCase_ : Optional[int] = []
backtrack(0 )
return output
if __name__ == "__main__":
import doctest
# use res to print the data in permute2 function
snake_case_ : Tuple = permutea([1, 2, 3])
print(res)
doctest.testmod()
| 644
| 1
|
'''simple docstring'''
import torch
from diffusers import StableDiffusionPipeline
snake_case_ : int = "path-to-your-trained-model"
snake_case_ : Optional[Any] = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to("cuda")
snake_case_ : int = "A photo of sks dog in a bucket"
snake_case_ : Optional[Any] = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0]
image.save("dog-bucket.png")
| 644
|
'''simple docstring'''
class __a :
def __init__( self : List[Any] , __magic_name__ : int ) -> None:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = size
UpperCAmelCase_ : Tuple = [0] * size
UpperCAmelCase_ : Optional[Any] = [0] * size
@staticmethod
def UpperCAmelCase__ ( __magic_name__ : int ) -> int:
"""simple docstring"""
return index | (index + 1)
@staticmethod
def UpperCAmelCase__ ( __magic_name__ : int ) -> int:
"""simple docstring"""
return (index & (index + 1)) - 1
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : int , __magic_name__ : int ) -> None:
"""simple docstring"""
UpperCAmelCase_ : int = value
while index < self.size:
UpperCAmelCase_ : str = self.get_prev(__magic_name__ ) + 1
if current_left_border == index:
UpperCAmelCase_ : List[str] = value
else:
UpperCAmelCase_ : Optional[int] = max(__magic_name__ , __magic_name__ , __magic_name__ )
UpperCAmelCase_ : Tuple = self.get_next(__magic_name__ )
def UpperCAmelCase__ ( self : Any , __magic_name__ : int , __magic_name__ : int ) -> int:
"""simple docstring"""
right -= 1 # Because of right is exclusive
UpperCAmelCase_ : List[str] = 0
while left <= right:
UpperCAmelCase_ : Optional[Any] = self.get_prev(__magic_name__ )
if left <= current_left:
UpperCAmelCase_ : Dict = max(__magic_name__ , self.tree[right] )
UpperCAmelCase_ : Optional[Any] = current_left
else:
UpperCAmelCase_ : str = max(__magic_name__ , self.arr[right] )
right -= 1
return result
if __name__ == "__main__":
import doctest
doctest.testmod()
| 644
| 1
|
'''simple docstring'''
import os
from typing import List, Optional, Union
from ...image_processing_utils import BatchFeature
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
from ..auto import AutoTokenizer
class __a (lowerCamelCase ):
__a : Dict = ["image_processor", "tokenizer"]
__a : Optional[Any] = "BlipImageProcessor"
__a : int = "AutoTokenizer"
def __init__( self : int , __magic_name__ : Tuple , __magic_name__ : Optional[Any] , __magic_name__ : Dict ) -> Tuple:
"""simple docstring"""
super().__init__(__magic_name__ , __magic_name__ )
# add QFormer tokenizer
UpperCAmelCase_ : Union[str, Any] = qformer_tokenizer
def __call__( self : Union[str, Any] , __magic_name__ : ImageInput = None , __magic_name__ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __magic_name__ : bool = True , __magic_name__ : Union[bool, str, PaddingStrategy] = False , __magic_name__ : Union[bool, str, TruncationStrategy] = None , __magic_name__ : Optional[int] = None , __magic_name__ : int = 0 , __magic_name__ : Optional[int] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : bool = False , __magic_name__ : bool = False , __magic_name__ : bool = False , __magic_name__ : bool = False , __magic_name__ : bool = False , __magic_name__ : bool = True , __magic_name__ : Optional[Union[str, TensorType]] = None , **__magic_name__ : Any , ) -> BatchFeature:
"""simple docstring"""
if images is None and text is None:
raise ValueError('''You have to specify at least images or text.''' )
UpperCAmelCase_ : Dict = BatchFeature()
if text is not None:
UpperCAmelCase_ : Optional[int] = self.tokenizer(
text=__magic_name__ , add_special_tokens=__magic_name__ , padding=__magic_name__ , truncation=__magic_name__ , max_length=__magic_name__ , stride=__magic_name__ , pad_to_multiple_of=__magic_name__ , return_attention_mask=__magic_name__ , return_overflowing_tokens=__magic_name__ , return_special_tokens_mask=__magic_name__ , return_offsets_mapping=__magic_name__ , return_token_type_ids=__magic_name__ , return_length=__magic_name__ , verbose=__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ , )
encoding.update(__magic_name__ )
UpperCAmelCase_ : List[str] = self.qformer_tokenizer(
text=__magic_name__ , add_special_tokens=__magic_name__ , padding=__magic_name__ , truncation=__magic_name__ , max_length=__magic_name__ , stride=__magic_name__ , pad_to_multiple_of=__magic_name__ , return_attention_mask=__magic_name__ , return_overflowing_tokens=__magic_name__ , return_special_tokens_mask=__magic_name__ , return_offsets_mapping=__magic_name__ , return_token_type_ids=__magic_name__ , return_length=__magic_name__ , verbose=__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ , )
UpperCAmelCase_ : int = qformer_text_encoding.pop('''input_ids''' )
UpperCAmelCase_ : Union[str, Any] = qformer_text_encoding.pop('''attention_mask''' )
if images is not None:
UpperCAmelCase_ : Optional[Any] = self.image_processor(__magic_name__ , return_tensors=__magic_name__ )
encoding.update(__magic_name__ )
return encoding
def UpperCAmelCase__ ( self : Tuple , *__magic_name__ : Optional[int] , **__magic_name__ : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
return self.tokenizer.batch_decode(*__magic_name__ , **__magic_name__ )
def UpperCAmelCase__ ( self : List[str] , *__magic_name__ : Optional[int] , **__magic_name__ : Optional[Any] ) -> List[str]:
"""simple docstring"""
return self.tokenizer.decode(*__magic_name__ , **__magic_name__ )
@property
# Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names
def UpperCAmelCase__ ( self : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : Any = self.tokenizer.model_input_names
UpperCAmelCase_ : Tuple = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
def UpperCAmelCase__ ( self : Any , __magic_name__ : Dict , **__magic_name__ : Tuple ) -> int:
"""simple docstring"""
if os.path.isfile(__magic_name__ ):
raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""" )
os.makedirs(__magic_name__ , exist_ok=__magic_name__ )
UpperCAmelCase_ : List[str] = os.path.join(__magic_name__ , '''qformer_tokenizer''' )
self.qformer_tokenizer.save_pretrained(__magic_name__ )
return super().save_pretrained(__magic_name__ , **__magic_name__ )
@classmethod
def UpperCAmelCase__ ( cls : List[Any] , __magic_name__ : int , **__magic_name__ : List[str] ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained(__magic_name__ , subfolder='''qformer_tokenizer''' )
UpperCAmelCase_ : Optional[Any] = cls._get_arguments_from_pretrained(__magic_name__ , **__magic_name__ )
args.append(__magic_name__ )
return cls(*__magic_name__ )
| 644
|
'''simple docstring'''
import math
import unittest
from transformers import BioGptConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptTokenizer,
)
from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST
class __a :
def __init__( self : List[str] , __magic_name__ : List[str] , __magic_name__ : str=13 , __magic_name__ : Union[str, Any]=7 , __magic_name__ : Union[str, Any]=True , __magic_name__ : Any=True , __magic_name__ : List[str]=False , __magic_name__ : Optional[int]=True , __magic_name__ : Dict=99 , __magic_name__ : Tuple=32 , __magic_name__ : int=5 , __magic_name__ : Dict=4 , __magic_name__ : Tuple=37 , __magic_name__ : Optional[int]="gelu" , __magic_name__ : List[str]=0.1 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : str=5_12 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : int=2 , __magic_name__ : List[Any]=0.0_2 , __magic_name__ : Tuple=3 , __magic_name__ : Union[str, Any]=4 , __magic_name__ : Optional[int]=None , ) -> str:
"""simple docstring"""
UpperCAmelCase_ : Any = parent
UpperCAmelCase_ : Union[str, Any] = batch_size
UpperCAmelCase_ : List[Any] = seq_length
UpperCAmelCase_ : str = is_training
UpperCAmelCase_ : Any = use_input_mask
UpperCAmelCase_ : List[str] = use_token_type_ids
UpperCAmelCase_ : Union[str, Any] = use_labels
UpperCAmelCase_ : Dict = vocab_size
UpperCAmelCase_ : Optional[Any] = hidden_size
UpperCAmelCase_ : Dict = num_hidden_layers
UpperCAmelCase_ : List[Any] = num_attention_heads
UpperCAmelCase_ : Optional[int] = intermediate_size
UpperCAmelCase_ : Union[str, Any] = hidden_act
UpperCAmelCase_ : str = hidden_dropout_prob
UpperCAmelCase_ : Optional[Any] = attention_probs_dropout_prob
UpperCAmelCase_ : Any = max_position_embeddings
UpperCAmelCase_ : str = type_vocab_size
UpperCAmelCase_ : Optional[Any] = type_sequence_label_size
UpperCAmelCase_ : List[Any] = initializer_range
UpperCAmelCase_ : int = num_labels
UpperCAmelCase_ : Optional[int] = num_choices
UpperCAmelCase_ : Tuple = scope
def UpperCAmelCase__ ( self : Union[str, Any] ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase_ : Union[str, Any] = None
if self.use_input_mask:
UpperCAmelCase_ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase_ : str = None
if self.use_token_type_ids:
UpperCAmelCase_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase_ : Tuple = None
UpperCAmelCase_ : List[str] = None
UpperCAmelCase_ : Union[str, Any] = None
if self.use_labels:
UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase_ : int = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCAmelCase__ ( self : Any ) -> List[Any]:
"""simple docstring"""
return BioGptConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__magic_name__ , initializer_range=self.initializer_range , )
def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : Tuple , __magic_name__ : str , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = BioGptModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : Dict = model(__magic_name__ , attention_mask=__magic_name__ )
UpperCAmelCase_ : Optional[Any] = model(__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : Dict , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Any , __magic_name__ : Tuple , __magic_name__ : List[str] , __magic_name__ : Optional[int] , ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Dict = BioGptForCausalLM(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : List[Any] = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCAmelCase__ ( self : str , __magic_name__ : Optional[int] , __magic_name__ : Tuple , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : str , *__magic_name__ : Any ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Dict = BioGptModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
# create attention mask
UpperCAmelCase_ : Optional[Any] = torch.ones(input_ids.shape , dtype=torch.long , device=__magic_name__ )
UpperCAmelCase_ : Any = self.seq_length // 2
UpperCAmelCase_ : Tuple = 0
# first forward pass
UpperCAmelCase_ , UpperCAmelCase_ : Dict = model(__magic_name__ , attention_mask=__magic_name__ ).to_tuple()
# create hypothetical next token and extent to next_input_ids
UpperCAmelCase_ : Tuple = ids_tensor((self.batch_size, 1) , config.vocab_size )
# change a random masked slice from input_ids
UpperCAmelCase_ : List[str] = ids_tensor((1,) , __magic_name__ ).item() + 1
UpperCAmelCase_ : Tuple = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 )
UpperCAmelCase_ : str = random_other_next_tokens
# append to next input_ids and attn_mask
UpperCAmelCase_ : Tuple = torch.cat([input_ids, next_tokens] , dim=-1 )
UpperCAmelCase_ : int = torch.cat(
[attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=__magic_name__ )] , dim=1 , )
# get two different outputs
UpperCAmelCase_ : Any = model(__magic_name__ , attention_mask=__magic_name__ )['''last_hidden_state''']
UpperCAmelCase_ : int = model(__magic_name__ , past_key_values=__magic_name__ , attention_mask=__magic_name__ )['''last_hidden_state''']
# select random slice
UpperCAmelCase_ : Optional[int] = ids_tensor((1,) , output_from_past.shape[-1] ).item()
UpperCAmelCase_ : Union[str, Any] = output_from_no_past[:, -1, random_slice_idx].detach()
UpperCAmelCase_ : Dict = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) )
def UpperCAmelCase__ ( self : Dict , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : Dict , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , *__magic_name__ : str ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Dict = BioGptModel(config=__magic_name__ ).to(__magic_name__ ).eval()
UpperCAmelCase_ : Optional[int] = torch.ones(input_ids.shape , dtype=torch.long , device=__magic_name__ )
# first forward pass
UpperCAmelCase_ : Union[str, Any] = model(__magic_name__ , attention_mask=__magic_name__ , use_cache=__magic_name__ )
UpperCAmelCase_ , UpperCAmelCase_ : int = outputs.to_tuple()
# create hypothetical multiple next token and extent to next_input_ids
UpperCAmelCase_ : Any = ids_tensor((self.batch_size, 3) , config.vocab_size )
UpperCAmelCase_ : Any = ids_tensor((self.batch_size, 3) , 2 )
# append to next input_ids and
UpperCAmelCase_ : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1 )
UpperCAmelCase_ : List[str] = torch.cat([attention_mask, next_attn_mask] , dim=-1 )
UpperCAmelCase_ : Any = model(__magic_name__ , attention_mask=__magic_name__ )['''last_hidden_state''']
UpperCAmelCase_ : Optional[Any] = model(__magic_name__ , attention_mask=__magic_name__ , past_key_values=__magic_name__ )[
'''last_hidden_state'''
]
# select random slice
UpperCAmelCase_ : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item()
UpperCAmelCase_ : str = output_from_no_past[:, -3:, random_slice_idx].detach()
UpperCAmelCase_ : Optional[int] = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) )
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : str , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , *__magic_name__ : Any , __magic_name__ : List[Any]=False ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Any = BioGptForCausalLM(__magic_name__ )
model.to(__magic_name__ )
if gradient_checkpointing:
model.gradient_checkpointing_enable()
UpperCAmelCase_ : List[str] = model(__magic_name__ , labels=__magic_name__ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
result.loss.backward()
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Optional[int] , *__magic_name__ : List[str] ) -> str:
"""simple docstring"""
UpperCAmelCase_ : int = BioGptModel(__magic_name__ )
UpperCAmelCase_ : Dict = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers )
for key in model.state_dict().keys():
if "c_proj" in key and "weight" in key:
self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.0_0_1 )
self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.0_1 )
def UpperCAmelCase__ ( self : int , __magic_name__ : Tuple , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] , *__magic_name__ : Any ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : str = self.num_labels
UpperCAmelCase_ : Any = BioGptForTokenClassification(__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : Any = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCAmelCase__ ( self : Optional[Any] ) -> str:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = self.prepare_config_and_inputs()
(
(
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) ,
) : int = config_and_inputs
UpperCAmelCase_ : Any = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class __a (lowerCamelCase , lowerCamelCase , lowerCamelCase , unittest.TestCase ):
__a : str = (
(BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification)
if is_torch_available()
else ()
)
__a : List[Any] = (BioGptForCausalLM,) if is_torch_available() else ()
__a : Union[str, Any] = (
{
"feature-extraction": BioGptModel,
"text-classification": BioGptForSequenceClassification,
"text-generation": BioGptForCausalLM,
"token-classification": BioGptForTokenClassification,
"zero-shot": BioGptForSequenceClassification,
}
if is_torch_available()
else {}
)
__a : List[str] = False
def UpperCAmelCase__ ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : List[str] = BioGptModelTester(self )
UpperCAmelCase_ : Optional[Any] = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 )
def UpperCAmelCase__ ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCAmelCase__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__magic_name__ )
def UpperCAmelCase__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
UpperCAmelCase_ : str = type
self.model_tester.create_and_check_model(*__magic_name__ )
def UpperCAmelCase__ ( self : Optional[int] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_attention_mask_past(*__magic_name__ )
def UpperCAmelCase__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_forward_and_backwards(*__magic_name__ , gradient_checkpointing=__magic_name__ )
def UpperCAmelCase__ ( self : str ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_past_large_inputs(*__magic_name__ )
def UpperCAmelCase__ ( self : Dict ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_weight_initialization(*__magic_name__ )
def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_for_token_classification(*__magic_name__ )
@slow
def UpperCAmelCase__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' )
model.to(__magic_name__ )
UpperCAmelCase_ : List[str] = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' )
UpperCAmelCase_ : Tuple = '''left'''
# Define PAD Token = EOS Token = 50256
UpperCAmelCase_ : List[Any] = tokenizer.eos_token
UpperCAmelCase_ : List[Any] = model.config.eos_token_id
# use different length sentences to test batching
UpperCAmelCase_ : Tuple = [
'''Hello, my dog is a little''',
'''Today, I''',
]
UpperCAmelCase_ : Optional[Any] = tokenizer(__magic_name__ , return_tensors='''pt''' , padding=__magic_name__ )
UpperCAmelCase_ : Optional[Any] = inputs['''input_ids'''].to(__magic_name__ )
UpperCAmelCase_ : Any = model.generate(
input_ids=__magic_name__ , attention_mask=inputs['''attention_mask'''].to(__magic_name__ ) , )
UpperCAmelCase_ : Union[str, Any] = tokenizer(sentences[0] , return_tensors='''pt''' ).input_ids.to(__magic_name__ )
UpperCAmelCase_ : Tuple = model.generate(input_ids=__magic_name__ )
UpperCAmelCase_ : List[str] = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item()
UpperCAmelCase_ : List[Any] = tokenizer(sentences[1] , return_tensors='''pt''' ).input_ids.to(__magic_name__ )
UpperCAmelCase_ : Tuple = model.generate(input_ids=__magic_name__ , max_length=model.config.max_length - num_paddings )
UpperCAmelCase_ : int = tokenizer.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ )
UpperCAmelCase_ : Dict = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__magic_name__ )
UpperCAmelCase_ : Union[str, Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=__magic_name__ )
UpperCAmelCase_ : Optional[Any] = [
'''Hello, my dog is a little bit bigger than a little bit.''',
'''Today, I have a good idea of how to use the information''',
]
self.assertListEqual(__magic_name__ , __magic_name__ )
self.assertListEqual(__magic_name__ , [non_padded_sentence, padded_sentence] )
@slow
def UpperCAmelCase__ ( self : str ) -> Optional[Any]:
"""simple docstring"""
for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase_ : List[Any] = BioGptModel.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
def UpperCAmelCase__ ( self : Tuple ) -> str:
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase_ : List[str] = 3
UpperCAmelCase_ : Tuple = input_dict['''input_ids''']
UpperCAmelCase_ : Dict = input_ids.ne(1 ).to(__magic_name__ )
UpperCAmelCase_ : List[str] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
UpperCAmelCase_ : Dict = BioGptForSequenceClassification(__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : int = model(__magic_name__ , attention_mask=__magic_name__ , labels=__magic_name__ )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase_ : List[Any] = 3
UpperCAmelCase_ : Optional[int] = '''multi_label_classification'''
UpperCAmelCase_ : int = input_dict['''input_ids''']
UpperCAmelCase_ : str = input_ids.ne(1 ).to(__magic_name__ )
UpperCAmelCase_ : Any = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
UpperCAmelCase_ : Union[str, Any] = BioGptForSequenceClassification(__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : str = model(__magic_name__ , attention_mask=__magic_name__ , labels=__magic_name__ )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
@require_torch
class __a (unittest.TestCase ):
@slow
def UpperCAmelCase__ ( self : List[Any] ) -> str:
"""simple docstring"""
UpperCAmelCase_ : str = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' )
UpperCAmelCase_ : List[str] = torch.tensor([[2, 48_05, 9, 6_56, 21]] )
UpperCAmelCase_ : str = model(__magic_name__ )[0]
UpperCAmelCase_ : Optional[int] = 4_23_84
UpperCAmelCase_ : Tuple = torch.Size((1, 5, vocab_size) )
self.assertEqual(output.shape , __magic_name__ )
UpperCAmelCase_ : List[Any] = torch.tensor(
[[[-9.5_2_3_6, -9.8_9_1_8, 1_0.4_5_5_7], [-1_1.0_4_6_9, -9.6_4_2_3, 8.1_0_2_2], [-8.8_6_6_4, -7.8_8_2_6, 5.5_3_2_5]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __magic_name__ , atol=1E-4 ) )
@slow
def UpperCAmelCase__ ( self : Any ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Any = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' )
UpperCAmelCase_ : str = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' )
model.to(__magic_name__ )
torch.manual_seed(0 )
UpperCAmelCase_ : Optional[Any] = tokenizer('''COVID-19 is''' , return_tensors='''pt''' ).to(__magic_name__ )
UpperCAmelCase_ : Optional[int] = model.generate(
**__magic_name__ , min_length=1_00 , max_length=10_24 , num_beams=5 , early_stopping=__magic_name__ , )
UpperCAmelCase_ : int = tokenizer.decode(output_ids[0] , skip_special_tokens=__magic_name__ )
UpperCAmelCase_ : Optional[Any] = (
'''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the'''
''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and'''
''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),'''
''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and'''
''' more than 800,000 deaths.'''
)
self.assertEqual(__magic_name__ , __magic_name__ )
| 644
| 1
|
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_xlnet import XLNetTokenizer
else:
snake_case_ : int = None
snake_case_ : Dict = logging.get_logger(__name__)
snake_case_ : Optional[int] = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"}
snake_case_ : Any = {
"vocab_file": {
"xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model",
"xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model",
},
"tokenizer_file": {
"xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json",
"xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json",
},
}
snake_case_ : Tuple = {
"xlnet-base-cased": None,
"xlnet-large-cased": None,
}
snake_case_ : Optional[int] = "▁"
# Segments (not really needed)
snake_case_ : Dict = 0
snake_case_ : List[str] = 1
snake_case_ : List[Any] = 2
snake_case_ : Any = 3
snake_case_ : Optional[int] = 4
class __a (lowerCamelCase ):
__a : Union[str, Any] = VOCAB_FILES_NAMES
__a : Any = PRETRAINED_VOCAB_FILES_MAP
__a : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__a : Union[str, Any] = "left"
__a : List[Any] = XLNetTokenizer
def __init__( self : List[str] , __magic_name__ : List[str]=None , __magic_name__ : str=None , __magic_name__ : Optional[int]=False , __magic_name__ : Tuple=True , __magic_name__ : List[Any]=False , __magic_name__ : Any="<s>" , __magic_name__ : List[str]="</s>" , __magic_name__ : List[str]="<unk>" , __magic_name__ : Optional[Any]="<sep>" , __magic_name__ : Optional[Any]="<pad>" , __magic_name__ : Optional[int]="<cls>" , __magic_name__ : Tuple="<mask>" , __magic_name__ : str=["<eop>", "<eod>"] , **__magic_name__ : int , ) -> Optional[Any]:
"""simple docstring"""
# Mask token behave like a normal word, i.e. include the space before it
UpperCAmelCase_ : Union[str, Any] = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else mask_token
super().__init__(
vocab_file=__magic_name__ , tokenizer_file=__magic_name__ , do_lower_case=__magic_name__ , remove_space=__magic_name__ , keep_accents=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , unk_token=__magic_name__ , sep_token=__magic_name__ , pad_token=__magic_name__ , cls_token=__magic_name__ , mask_token=__magic_name__ , additional_special_tokens=__magic_name__ , **__magic_name__ , )
UpperCAmelCase_ : Union[str, Any] = 3
UpperCAmelCase_ : Any = do_lower_case
UpperCAmelCase_ : Union[str, Any] = remove_space
UpperCAmelCase_ : List[Any] = keep_accents
UpperCAmelCase_ : List[str] = vocab_file
UpperCAmelCase_ : Tuple = False if not self.vocab_file else True
def UpperCAmelCase__ ( self : str , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = [self.sep_token_id]
UpperCAmelCase_ : int = [self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = [self.sep_token_id]
UpperCAmelCase_ : int = [2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
if not self.can_save_slow_tokenizer:
raise ValueError(
'''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '''
'''tokenizer.''' )
if not os.path.isdir(__magic_name__ ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
UpperCAmelCase_ : Union[str, Any] = os.path.join(
__magic_name__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__magic_name__ ):
copyfile(self.vocab_file , __magic_name__ )
return (out_vocab_file,)
| 644
|
'''simple docstring'''
import json
import os
import unittest
from transformers.models.blenderbot_small.tokenization_blenderbot_small import (
VOCAB_FILES_NAMES,
BlenderbotSmallTokenizer,
)
from ...test_tokenization_common import TokenizerTesterMixin
class __a (lowerCamelCase , unittest.TestCase ):
__a : List[str] = BlenderbotSmallTokenizer
__a : List[Any] = False
def UpperCAmelCase__ ( self : str ) -> str:
"""simple docstring"""
super().setUp()
UpperCAmelCase_ : Tuple = ['''__start__''', '''adapt''', '''act''', '''ap@@''', '''te''', '''__end__''', '''__unk__''']
UpperCAmelCase_ : Optional[Any] = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) )
UpperCAmelCase_ : int = ['''#version: 0.2''', '''a p''', '''t e</w>''', '''ap t</w>''', '''a d''', '''ad apt</w>''', '''a c''', '''ac t</w>''', '''''']
UpperCAmelCase_ : Optional[Any] = {'''unk_token''': '''__unk__''', '''bos_token''': '''__start__''', '''eos_token''': '''__end__'''}
UpperCAmelCase_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
UpperCAmelCase_ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(__magic_name__ ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(__magic_name__ ) )
def UpperCAmelCase__ ( self : List[Any] , **__magic_name__ : Dict ) -> Tuple:
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **__magic_name__ )
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : List[str] ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : str = '''adapt act apte'''
UpperCAmelCase_ : Tuple = '''adapt act apte'''
return input_text, output_text
def UpperCAmelCase__ ( self : str ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : str = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map )
UpperCAmelCase_ : List[Any] = '''adapt act apte'''
UpperCAmelCase_ : Dict = ['''adapt''', '''act''', '''ap@@''', '''te''']
UpperCAmelCase_ : Dict = tokenizer.tokenize(__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
UpperCAmelCase_ : Tuple = [tokenizer.bos_token] + tokens + [tokenizer.eos_token]
UpperCAmelCase_ : Dict = [0, 1, 2, 3, 4, 5]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , __magic_name__ )
def UpperCAmelCase__ ( self : int ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' )
assert tok('''sam''' ).input_ids == [13_84]
UpperCAmelCase_ : Optional[int] = '''I am a small frog.'''
UpperCAmelCase_ : List[str] = tok([src_text] , padding=__magic_name__ , truncation=__magic_name__ )['''input_ids''']
UpperCAmelCase_ : Dict = tok.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ , clean_up_tokenization_spaces=__magic_name__ )[0]
assert src_text != decoded # I wish it did!
assert decoded == "i am a small frog ."
def UpperCAmelCase__ ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : int = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' )
UpperCAmelCase_ : List[Any] = '''I am a small frog .'''
UpperCAmelCase_ : Any = '''.'''
UpperCAmelCase_ : List[Any] = tok(__magic_name__ )['''input_ids''']
UpperCAmelCase_ : Optional[int] = tok(__magic_name__ )['''input_ids''']
assert encoded[-1] == encoded_dot[0]
| 644
| 1
|
'''simple docstring'''
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : list[list[float]] ) -> list[list[float]]:
UpperCAmelCase_ : list[list[float]] = []
for data in source_data:
for i, el in enumerate(SCREAMING_SNAKE_CASE__ ):
if len(SCREAMING_SNAKE_CASE__ ) < i + 1:
data_lists.append([] )
data_lists[i].append(float(SCREAMING_SNAKE_CASE__ ) )
return data_lists
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : list[list[float]], SCREAMING_SNAKE_CASE__ : list[int] ) -> list[list[float]]:
UpperCAmelCase_ : list[list[float]] = []
for dlist, weight in zip(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase_ : Union[str, Any] = min(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Dict = max(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : list[float] = []
# for weight 0 score is 1 - actual score
if weight == 0:
for item in dlist:
try:
score.append(1 - ((item - mind) / (maxd - mind)) )
except ZeroDivisionError:
score.append(1 )
elif weight == 1:
for item in dlist:
try:
score.append((item - mind) / (maxd - mind) )
except ZeroDivisionError:
score.append(0 )
# weight not 0 or 1
else:
UpperCAmelCase_ : Union[str, Any] = F"""Invalid weight of {weight:f} provided"""
raise ValueError(SCREAMING_SNAKE_CASE__ )
score_lists.append(SCREAMING_SNAKE_CASE__ )
return score_lists
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : list[list[float]] ) -> list[float]:
UpperCAmelCase_ : list[float] = [0 for i in range(len(score_lists[0] ) )]
for slist in score_lists:
for j, ele in enumerate(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase_ : Optional[Any] = final_scores[j] + ele
return final_scores
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : list[list[float]], SCREAMING_SNAKE_CASE__ : list[int] ) -> list[list[float]]:
UpperCAmelCase_ : Union[str, Any] = get_data(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : int = calculate_each_score(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Optional[Any] = generate_final_scores(SCREAMING_SNAKE_CASE__ )
# append scores to source data
for i, ele in enumerate(SCREAMING_SNAKE_CASE__ ):
source_data[i].append(SCREAMING_SNAKE_CASE__ )
return source_data
| 644
|
'''simple docstring'''
import unittest
import torch
from torch import nn
from diffusers.models.activations import get_activation
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : Dict ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : Dict = get_activation('''swish''' )
self.assertIsInstance(__magic_name__ , nn.SiLU )
self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
def UpperCAmelCase__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = get_activation('''silu''' )
self.assertIsInstance(__magic_name__ , nn.SiLU )
self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
def UpperCAmelCase__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = get_activation('''mish''' )
self.assertIsInstance(__magic_name__ , nn.Mish )
self.assertEqual(act(torch.tensor(-2_00 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
def UpperCAmelCase__ ( self : str ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = get_activation('''gelu''' )
self.assertIsInstance(__magic_name__ , nn.GELU )
self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
| 644
| 1
|
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
snake_case_ : Any = logging.get_logger(__name__)
snake_case_ : Optional[int] = {
"facebook/nllb-moe-54B": "https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json",
}
class __a (lowerCamelCase ):
__a : str = "nllb-moe"
__a : List[Any] = ["past_key_values"]
__a : int = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__( self : Any , __magic_name__ : Dict=12_81_12 , __magic_name__ : List[str]=10_24 , __magic_name__ : Optional[Any]=12 , __magic_name__ : str=40_96 , __magic_name__ : List[str]=16 , __magic_name__ : Optional[int]=12 , __magic_name__ : str=40_96 , __magic_name__ : Optional[Any]=16 , __magic_name__ : Optional[Any]=0.0_5 , __magic_name__ : Optional[int]=0.0_5 , __magic_name__ : Optional[int]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : Optional[int]="relu" , __magic_name__ : Dict=10_24 , __magic_name__ : Tuple=0.1 , __magic_name__ : Optional[Any]=0.1 , __magic_name__ : Optional[int]=0.0 , __magic_name__ : Tuple=0.0_2 , __magic_name__ : Dict=2 , __magic_name__ : Any=True , __magic_name__ : List[Any]=False , __magic_name__ : Dict="float32" , __magic_name__ : str=False , __magic_name__ : int=1_28 , __magic_name__ : Optional[int]=64 , __magic_name__ : str=4 , __magic_name__ : Optional[Any]=4 , __magic_name__ : List[str]=0.0_0_1 , __magic_name__ : Dict=0.0_0_1 , __magic_name__ : Tuple="all" , __magic_name__ : Any=False , __magic_name__ : Any=False , __magic_name__ : Union[str, Any]=1.0 , __magic_name__ : List[str]=0.2 , __magic_name__ : str=1 , __magic_name__ : int=0 , __magic_name__ : int=2 , __magic_name__ : Dict=False , **__magic_name__ : int , ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Dict = vocab_size
UpperCAmelCase_ : int = max_position_embeddings
UpperCAmelCase_ : int = d_model
UpperCAmelCase_ : Dict = encoder_ffn_dim
UpperCAmelCase_ : str = encoder_layers
UpperCAmelCase_ : Union[str, Any] = encoder_attention_heads
UpperCAmelCase_ : int = decoder_ffn_dim
UpperCAmelCase_ : str = decoder_layers
UpperCAmelCase_ : Dict = decoder_attention_heads
UpperCAmelCase_ : Any = dropout
UpperCAmelCase_ : Tuple = attention_dropout
UpperCAmelCase_ : Dict = activation_dropout
UpperCAmelCase_ : str = activation_function
UpperCAmelCase_ : Union[str, Any] = init_std
UpperCAmelCase_ : Union[str, Any] = encoder_layerdrop
UpperCAmelCase_ : List[Any] = decoder_layerdrop
UpperCAmelCase_ : str = use_cache
UpperCAmelCase_ : int = encoder_layers
UpperCAmelCase_ : Optional[Any] = scale_embedding # scale factor will be sqrt(d_model) if True
UpperCAmelCase_ : List[str] = router_z_loss_coef
UpperCAmelCase_ : Optional[Any] = router_aux_loss_coef
UpperCAmelCase_ : str = decoder_sparse_step
UpperCAmelCase_ : int = encoder_sparse_step
UpperCAmelCase_ : int = num_experts
UpperCAmelCase_ : Optional[int] = expert_capacity
UpperCAmelCase_ : Union[str, Any] = router_bias
if router_dtype not in ["float32", "float16", "bfloat16"]:
raise ValueError(F"""`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}""" )
UpperCAmelCase_ : List[str] = router_dtype
UpperCAmelCase_ : List[str] = router_ignore_padding_tokens
UpperCAmelCase_ : Dict = batch_prioritized_routing
UpperCAmelCase_ : Optional[int] = second_expert_policy
UpperCAmelCase_ : int = normalize_router_prob_before_dropping
UpperCAmelCase_ : int = moe_eval_capacity_token_fraction
UpperCAmelCase_ : Union[str, Any] = moe_token_dropout
UpperCAmelCase_ : Optional[int] = output_router_logits
super().__init__(
pad_token_id=__magic_name__ , bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , is_encoder_decoder=__magic_name__ , decoder_start_token_id=__magic_name__ , **__magic_name__ , )
| 644
|
'''simple docstring'''
from typing import List, Optional, Union
import numpy as np
import PIL.Image
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import rescale, resize, to_channel_dimension_format
from ...image_utils import (
ChannelDimension,
PILImageResampling,
get_image_size,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
snake_case_ : Union[str, Any] = logging.get_logger(__name__)
class __a (lowerCamelCase ):
__a : Tuple = ["pixel_values"]
def __init__( self : List[Any] , __magic_name__ : bool = True , __magic_name__ : int = 32 , __magic_name__ : Union[str, Any]=PILImageResampling.BILINEAR , __magic_name__ : bool = True , **__magic_name__ : List[str] , ) -> None:
"""simple docstring"""
UpperCAmelCase_ : int = do_resize
UpperCAmelCase_ : Tuple = do_rescale
UpperCAmelCase_ : List[Any] = size_divisor
UpperCAmelCase_ : Any = resample
super().__init__(**__magic_name__ )
def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : np.ndarray , __magic_name__ : int , __magic_name__ : str , __magic_name__ : Optional[ChannelDimension] = None , **__magic_name__ : Tuple ) -> np.ndarray:
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : List[str] = get_image_size(__magic_name__ )
# Rounds the height and width down to the closest multiple of size_divisor
UpperCAmelCase_ : Dict = height // size_divisor * size_divisor
UpperCAmelCase_ : Dict = width // size_divisor * size_divisor
UpperCAmelCase_ : Any = resize(__magic_name__ , (new_h, new_w) , resample=__magic_name__ , data_format=__magic_name__ , **__magic_name__ )
return image
def UpperCAmelCase__ ( self : int , __magic_name__ : np.ndarray , __magic_name__ : float , __magic_name__ : Optional[ChannelDimension] = None , **__magic_name__ : Optional[Any] ) -> np.ndarray:
"""simple docstring"""
return rescale(image=__magic_name__ , scale=__magic_name__ , data_format=__magic_name__ , **__magic_name__ )
def UpperCAmelCase__ ( self : str , __magic_name__ : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[int] = None , __magic_name__ : Any=None , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[Union[TensorType, str]] = None , __magic_name__ : ChannelDimension = ChannelDimension.FIRST , **__magic_name__ : Tuple , ) -> BatchFeature:
"""simple docstring"""
UpperCAmelCase_ : Dict = do_resize if do_resize is not None else self.do_resize
UpperCAmelCase_ : str = do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase_ : Any = size_divisor if size_divisor is not None else self.size_divisor
UpperCAmelCase_ : Dict = resample if resample is not None else self.resample
if do_resize and size_divisor is None:
raise ValueError('''size_divisor is required for resizing''' )
UpperCAmelCase_ : Optional[int] = make_list_of_images(__magic_name__ )
if not valid_images(__magic_name__ ):
raise ValueError('''Invalid image(s)''' )
# All transformations expect numpy arrays.
UpperCAmelCase_ : List[str] = [to_numpy_array(__magic_name__ ) for img in images]
if do_resize:
UpperCAmelCase_ : str = [self.resize(__magic_name__ , size_divisor=__magic_name__ , resample=__magic_name__ ) for image in images]
if do_rescale:
UpperCAmelCase_ : Tuple = [self.rescale(__magic_name__ , scale=1 / 2_55 ) for image in images]
UpperCAmelCase_ : Union[str, Any] = [to_channel_dimension_format(__magic_name__ , __magic_name__ ) for image in images]
UpperCAmelCase_ : int = {'''pixel_values''': images}
return BatchFeature(data=__magic_name__ , tensor_type=__magic_name__ )
| 644
| 1
|
'''simple docstring'''
from __future__ import annotations
import typing
from collections.abc import Iterable
import numpy as np
snake_case_ : Optional[Any] = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007
snake_case_ : Union[str, Any] = typing.Union[np.floataa, int, float] # noqa: UP007
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Vector, SCREAMING_SNAKE_CASE__ : Vector ) -> VectorOut:
return np.sqrt(np.sum((np.asarray(SCREAMING_SNAKE_CASE__ ) - np.asarray(SCREAMING_SNAKE_CASE__ )) ** 2 ) )
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Vector, SCREAMING_SNAKE_CASE__ : Vector ) -> VectorOut:
return sum((va - va) ** 2 for va, va in zip(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) ) ** (1 / 2)
if __name__ == "__main__":
def lowerCamelCase_ ( ) -> None:
from timeit import timeit
print('''Without Numpy''' )
print(
timeit(
'''euclidean_distance_no_np([1, 2, 3], [4, 5, 6])''', number=10000, globals=globals(), ) )
print('''With Numpy''' )
print(
timeit(
'''euclidean_distance([1, 2, 3], [4, 5, 6])''', number=10000, globals=globals(), ) )
benchmark()
| 644
|
'''simple docstring'''
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int = 10, SCREAMING_SNAKE_CASE__ : int = 22 ) -> int:
UpperCAmelCase_ : Optional[int] = range(1, SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : List[Any] = range(1, SCREAMING_SNAKE_CASE__ )
return sum(
1 for power in powers for base in bases if len(str(base**power ) ) == power )
if __name__ == "__main__":
print(f'''{solution(10, 22) = }''')
| 644
| 1
|
'''simple docstring'''
import requests
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : str, SCREAMING_SNAKE_CASE__ : str ) -> None:
UpperCAmelCase_ : List[str] = {'''Content-Type''': '''application/json'''}
UpperCAmelCase_ : Optional[Any] = requests.post(SCREAMING_SNAKE_CASE__, json={'''text''': message_body}, headers=SCREAMING_SNAKE_CASE__ )
if response.status_code != 200:
UpperCAmelCase_ : str = (
'''Request to slack returned an error '''
F"""{response.status_code}, the response is:\n{response.text}"""
)
raise ValueError(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
# Set the slack url to the one provided by Slack when you create the webhook at
# https://my.slack.com/services/new/incoming-webhook/
send_slack_message("<YOUR MESSAGE BODY>", "<SLACK CHANNEL URL>")
| 644
|
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
import torch
from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor
from ..utils import requires_backends
from .base import PipelineTool
if TYPE_CHECKING:
from PIL import Image
class __a (lowerCamelCase ):
__a : int = "dandelin/vilt-b32-finetuned-vqa"
__a : Any = (
"This is a tool that answers a question about an image. It takes an input named `image` which should be the "
"image containing the information, as well as a `question` which should be the question in English. It "
"returns a text that is the answer to the question."
)
__a : Any = "image_qa"
__a : str = AutoProcessor
__a : Any = AutoModelForVisualQuestionAnswering
__a : List[Any] = ["image", "text"]
__a : int = ["text"]
def __init__( self : Tuple , *__magic_name__ : Any , **__magic_name__ : Any ) -> Tuple:
"""simple docstring"""
requires_backends(self , ['''vision'''] )
super().__init__(*__magic_name__ , **__magic_name__ )
def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : "Image" , __magic_name__ : str ) -> Tuple:
"""simple docstring"""
return self.pre_processor(__magic_name__ , __magic_name__ , return_tensors='''pt''' )
def UpperCAmelCase__ ( self : Any , __magic_name__ : List[str] ) -> Optional[Any]:
"""simple docstring"""
with torch.no_grad():
return self.model(**__magic_name__ ).logits
def UpperCAmelCase__ ( self : int , __magic_name__ : int ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Dict = outputs.argmax(-1 ).item()
return self.model.config.idalabel[idx]
| 644
| 1
|
'''simple docstring'''
import inspect
import unittest
from transformers import ViTMSNConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTMSNForImageClassification, ViTMSNModel
from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class __a :
def __init__( self : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : List[str]=13 , __magic_name__ : Optional[Any]=30 , __magic_name__ : Union[str, Any]=2 , __magic_name__ : Optional[Any]=3 , __magic_name__ : Optional[int]=True , __magic_name__ : Optional[int]=True , __magic_name__ : Tuple=32 , __magic_name__ : str=5 , __magic_name__ : Optional[Any]=4 , __magic_name__ : List[str]=37 , __magic_name__ : List[Any]="gelu" , __magic_name__ : List[Any]=0.1 , __magic_name__ : int=0.1 , __magic_name__ : Union[str, Any]=10 , __magic_name__ : List[Any]=0.0_2 , __magic_name__ : Any=None , ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = parent
UpperCAmelCase_ : int = batch_size
UpperCAmelCase_ : Any = image_size
UpperCAmelCase_ : int = patch_size
UpperCAmelCase_ : Dict = num_channels
UpperCAmelCase_ : Union[str, Any] = is_training
UpperCAmelCase_ : str = use_labels
UpperCAmelCase_ : List[Any] = hidden_size
UpperCAmelCase_ : Union[str, Any] = num_hidden_layers
UpperCAmelCase_ : Union[str, Any] = num_attention_heads
UpperCAmelCase_ : List[Any] = intermediate_size
UpperCAmelCase_ : Any = hidden_act
UpperCAmelCase_ : Union[str, Any] = hidden_dropout_prob
UpperCAmelCase_ : Any = attention_probs_dropout_prob
UpperCAmelCase_ : str = type_sequence_label_size
UpperCAmelCase_ : List[Any] = initializer_range
UpperCAmelCase_ : Any = scope
# in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
UpperCAmelCase_ : List[Any] = (image_size // patch_size) ** 2
UpperCAmelCase_ : List[Any] = num_patches + 1
def UpperCAmelCase__ ( self : Any ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase_ : Optional[int] = None
if self.use_labels:
UpperCAmelCase_ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase_ : Optional[Any] = self.get_config()
return config, pixel_values, labels
def UpperCAmelCase__ ( self : int ) -> Union[str, Any]:
"""simple docstring"""
return ViTMSNConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , )
def UpperCAmelCase__ ( self : str , __magic_name__ : List[Any] , __magic_name__ : Tuple , __magic_name__ : Optional[Any] ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = ViTMSNModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : List[str] = model(__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCAmelCase__ ( self : int , __magic_name__ : Any , __magic_name__ : str , __magic_name__ : str ) -> str:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = self.type_sequence_label_size
UpperCAmelCase_ : str = ViTMSNForImageClassification(__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : int = model(__magic_name__ , labels=__magic_name__ )
print('''Pixel and labels shape: {pixel_values.shape}, {labels.shape}''' )
print('''Labels: {labels}''' )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
UpperCAmelCase_ : Optional[Any] = 1
UpperCAmelCase_ : List[Any] = ViTMSNForImageClassification(__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCAmelCase_ : Tuple = model(__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def UpperCAmelCase__ ( self : Dict ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = self.prepare_config_and_inputs()
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[str] = config_and_inputs
UpperCAmelCase_ : int = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class __a (lowerCamelCase , lowerCamelCase , unittest.TestCase ):
__a : str = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else ()
__a : str = (
{"feature-extraction": ViTMSNModel, "image-classification": ViTMSNForImageClassification}
if is_torch_available()
else {}
)
__a : Union[str, Any] = False
__a : Optional[int] = False
__a : Any = False
__a : str = False
def UpperCAmelCase__ ( self : List[Any] ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : int = ViTMSNModelTester(self )
UpperCAmelCase_ : Tuple = ConfigTester(self , config_class=__magic_name__ , has_text_modality=__magic_name__ , hidden_size=37 )
def UpperCAmelCase__ ( self : Optional[Any] ) -> int:
"""simple docstring"""
self.config_tester.run_common_tests()
@unittest.skip(reason='''ViTMSN does not use inputs_embeds''' )
def UpperCAmelCase__ ( self : str ) -> List[str]:
"""simple docstring"""
pass
def UpperCAmelCase__ ( self : List[Any] ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ : int = model_class(__magic_name__ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
UpperCAmelCase_ : Optional[int] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__magic_name__ , nn.Linear ) )
def UpperCAmelCase__ ( self : int ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ : Optional[int] = model_class(__magic_name__ )
UpperCAmelCase_ : Tuple = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase_ : Optional[int] = [*signature.parameters.keys()]
UpperCAmelCase_ : Tuple = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , __magic_name__ )
def UpperCAmelCase__ ( self : int ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__magic_name__ )
def UpperCAmelCase__ ( self : int ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__magic_name__ )
@slow
def UpperCAmelCase__ ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase_ : Dict = ViTMSNModel.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
def lowerCamelCase_ ( ) -> List[str]:
UpperCAmelCase_ : Union[str, Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class __a (unittest.TestCase ):
@cached_property
def UpperCAmelCase__ ( self : int ) -> Union[str, Any]:
"""simple docstring"""
return ViTImageProcessor.from_pretrained('''facebook/vit-msn-small''' ) if is_vision_available() else None
@slow
def UpperCAmelCase__ ( self : str ) -> Union[str, Any]:
"""simple docstring"""
torch.manual_seed(2 )
UpperCAmelCase_ : List[str] = ViTMSNForImageClassification.from_pretrained('''facebook/vit-msn-small''' ).to(__magic_name__ )
UpperCAmelCase_ : Dict = self.default_image_processor
UpperCAmelCase_ : Union[str, Any] = prepare_img()
UpperCAmelCase_ : Optional[Any] = image_processor(images=__magic_name__ , return_tensors='''pt''' ).to(__magic_name__ )
# forward pass
with torch.no_grad():
UpperCAmelCase_ : Optional[int] = model(**__magic_name__ )
# verify the logits
UpperCAmelCase_ : List[str] = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape , __magic_name__ )
UpperCAmelCase_ : str = torch.tensor([-0.0_8_0_3, -0.4_4_5_4, -0.2_3_7_5] ).to(__magic_name__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __magic_name__ , atol=1E-4 ) )
| 644
|
'''simple docstring'''
from collections.abc import Iterable
from typing import Any
class __a :
def __init__( self : Optional[Any] , __magic_name__ : int | None = None ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : List[str] = value
UpperCAmelCase_ : Node | None = None # Added in order to delete a node easier
UpperCAmelCase_ : Node | None = None
UpperCAmelCase_ : Node | None = None
def __repr__( self : List[str] ) -> str:
"""simple docstring"""
from pprint import pformat
if self.left is None and self.right is None:
return str(self.value )
return pformat({F"""{self.value}""": (self.left, self.right)} , indent=1 )
class __a :
def __init__( self : int , __magic_name__ : Node | None = None ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : str = root
def __str__( self : Any ) -> str:
"""simple docstring"""
return str(self.root )
def UpperCAmelCase__ ( self : Any , __magic_name__ : Node , __magic_name__ : Node | None ) -> None:
"""simple docstring"""
if new_children is not None: # reset its kids
UpperCAmelCase_ : Dict = node.parent
if node.parent is not None: # reset its parent
if self.is_right(__magic_name__ ): # If it is the right children
UpperCAmelCase_ : Optional[Any] = new_children
else:
UpperCAmelCase_ : Optional[int] = new_children
else:
UpperCAmelCase_ : List[str] = new_children
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Node ) -> bool:
"""simple docstring"""
if node.parent and node.parent.right:
return node == node.parent.right
return False
def UpperCAmelCase__ ( self : Union[str, Any] ) -> bool:
"""simple docstring"""
return self.root is None
def UpperCAmelCase__ ( self : Any , __magic_name__ : str ) -> None:
"""simple docstring"""
UpperCAmelCase_ : Tuple = Node(__magic_name__ ) # create a new Node
if self.empty(): # if Tree is empty
UpperCAmelCase_ : List[Any] = new_node # set its root
else: # Tree is not empty
UpperCAmelCase_ : str = self.root # from root
if parent_node is None:
return
while True: # While we don't get to a leaf
if value < parent_node.value: # We go left
if parent_node.left is None:
UpperCAmelCase_ : Union[str, Any] = new_node # We insert the new node in a leaf
break
else:
UpperCAmelCase_ : List[Any] = parent_node.left
else:
if parent_node.right is None:
UpperCAmelCase_ : List[Any] = new_node
break
else:
UpperCAmelCase_ : Union[str, Any] = parent_node.right
UpperCAmelCase_ : Union[str, Any] = parent_node
def UpperCAmelCase__ ( self : Optional[Any] , *__magic_name__ : List[str] ) -> None:
"""simple docstring"""
for value in values:
self.__insert(__magic_name__ )
def UpperCAmelCase__ ( self : Dict , __magic_name__ : int ) -> Node | None:
"""simple docstring"""
if self.empty():
raise IndexError('''Warning: Tree is empty! please use another.''' )
else:
UpperCAmelCase_ : str = self.root
# use lazy evaluation here to avoid NoneType Attribute error
while node is not None and node.value is not value:
UpperCAmelCase_ : List[str] = node.left if value < node.value else node.right
return node
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : Node | None = None ) -> Node | None:
"""simple docstring"""
if node is None:
if self.root is None:
return None
UpperCAmelCase_ : Dict = self.root
if not self.empty():
while node.right is not None:
UpperCAmelCase_ : Any = node.right
return node
def UpperCAmelCase__ ( self : Dict , __magic_name__ : Node | None = None ) -> Node | None:
"""simple docstring"""
if node is None:
UpperCAmelCase_ : Optional[int] = self.root
if self.root is None:
return None
if not self.empty():
UpperCAmelCase_ : Union[str, Any] = self.root
while node.left is not None:
UpperCAmelCase_ : Dict = node.left
return node
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : int ) -> None:
"""simple docstring"""
UpperCAmelCase_ : List[str] = self.search(__magic_name__ ) # Look for the node with that label
if node is not None:
if node.left is None and node.right is None: # If it has no children
self.__reassign_nodes(__magic_name__ , __magic_name__ )
elif node.left is None: # Has only right children
self.__reassign_nodes(__magic_name__ , node.right )
elif node.right is None: # Has only left children
self.__reassign_nodes(__magic_name__ , node.left )
else:
UpperCAmelCase_ : List[str] = self.get_max(
node.left ) # Gets the max value of the left branch
self.remove(tmp_node.value ) # type: ignore
UpperCAmelCase_ : Optional[int] = (
tmp_node.value # type: ignore
) # Assigns the value to the node to delete and keep tree structure
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Node | None ) -> Iterable:
"""simple docstring"""
if node is not None:
yield node # Preorder Traversal
yield from self.preorder_traverse(node.left )
yield from self.preorder_traverse(node.right )
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : List[Any]=None ) -> Any:
"""simple docstring"""
if traversal_function is None:
return self.preorder_traverse(self.root )
else:
return traversal_function(self.root )
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : list , __magic_name__ : Node | None ) -> None:
"""simple docstring"""
if node:
self.inorder(__magic_name__ , node.left )
arr.append(node.value )
self.inorder(__magic_name__ , node.right )
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : int , __magic_name__ : Node ) -> int:
"""simple docstring"""
UpperCAmelCase_ : list[int] = []
self.inorder(__magic_name__ , __magic_name__ ) # append all values to list using inorder traversal
return arr[k - 1]
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Node | None ) -> list[Node]:
UpperCAmelCase_ : Any = []
if curr_node is not None:
UpperCAmelCase_ : Any = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node]
return node_list
def lowerCamelCase_ ( ) -> None:
UpperCAmelCase_ : str = (8, 3, 6, 1, 10, 14, 13, 4, 7)
UpperCAmelCase_ : Tuple = BinarySearchTree()
for i in testlist:
t.insert(SCREAMING_SNAKE_CASE__ )
# Prints all the elements of the list in order traversal
print(SCREAMING_SNAKE_CASE__ )
if t.search(6 ) is not None:
print('''The value 6 exists''' )
else:
print('''The value 6 doesn\'t exist''' )
if t.search(-1 ) is not None:
print('''The value -1 exists''' )
else:
print('''The value -1 doesn\'t exist''' )
if not t.empty():
print('''Max Value: ''', t.get_max().value ) # type: ignore
print('''Min Value: ''', t.get_min().value ) # type: ignore
for i in testlist:
t.remove(SCREAMING_SNAKE_CASE__ )
print(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
| 644
| 1
|
'''simple docstring'''
import unittest
from transformers import LiltConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
LiltForQuestionAnswering,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltModel,
)
from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST
class __a :
def __init__( self : int , __magic_name__ : Optional[Any] , __magic_name__ : Any=13 , __magic_name__ : Any=7 , __magic_name__ : Union[str, Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : str=True , __magic_name__ : Optional[int]=True , __magic_name__ : List[Any]=99 , __magic_name__ : int=24 , __magic_name__ : Optional[int]=2 , __magic_name__ : Tuple=6 , __magic_name__ : Union[str, Any]=37 , __magic_name__ : Optional[Any]="gelu" , __magic_name__ : Any=0.1 , __magic_name__ : str=0.1 , __magic_name__ : Tuple=5_12 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : Tuple=2 , __magic_name__ : Tuple=0.0_2 , __magic_name__ : Optional[Any]=3 , __magic_name__ : Optional[int]=None , __magic_name__ : Any=10_00 , ) -> str:
"""simple docstring"""
UpperCAmelCase_ : Tuple = parent
UpperCAmelCase_ : Optional[int] = batch_size
UpperCAmelCase_ : List[str] = seq_length
UpperCAmelCase_ : Dict = is_training
UpperCAmelCase_ : List[str] = use_input_mask
UpperCAmelCase_ : Any = use_token_type_ids
UpperCAmelCase_ : Any = use_labels
UpperCAmelCase_ : Any = vocab_size
UpperCAmelCase_ : Dict = hidden_size
UpperCAmelCase_ : Tuple = num_hidden_layers
UpperCAmelCase_ : Tuple = num_attention_heads
UpperCAmelCase_ : int = intermediate_size
UpperCAmelCase_ : Union[str, Any] = hidden_act
UpperCAmelCase_ : Optional[int] = hidden_dropout_prob
UpperCAmelCase_ : Optional[Any] = attention_probs_dropout_prob
UpperCAmelCase_ : Union[str, Any] = max_position_embeddings
UpperCAmelCase_ : int = type_vocab_size
UpperCAmelCase_ : List[Any] = type_sequence_label_size
UpperCAmelCase_ : int = initializer_range
UpperCAmelCase_ : Dict = num_labels
UpperCAmelCase_ : List[str] = scope
UpperCAmelCase_ : List[str] = range_bbox
def UpperCAmelCase__ ( self : Optional[int] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
UpperCAmelCase_ : List[str] = bbox[i, j, 3]
UpperCAmelCase_ : Dict = bbox[i, j, 1]
UpperCAmelCase_ : Optional[Any] = t
if bbox[i, j, 2] < bbox[i, j, 0]:
UpperCAmelCase_ : List[str] = bbox[i, j, 2]
UpperCAmelCase_ : Tuple = bbox[i, j, 0]
UpperCAmelCase_ : Union[str, Any] = t
UpperCAmelCase_ : int = None
if self.use_input_mask:
UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
UpperCAmelCase_ : Optional[int] = None
if self.use_token_type_ids:
UpperCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase_ : Dict = None
UpperCAmelCase_ : Tuple = None
if self.use_labels:
UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase_ : int = self.get_config()
return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels
def UpperCAmelCase__ ( self : Any ) -> List[Any]:
"""simple docstring"""
return LiltConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : str , __magic_name__ : Optional[Any] , __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : int , ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Any = LiltModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : Optional[Any] = model(__magic_name__ , bbox=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ )
UpperCAmelCase_ : List[Any] = model(__magic_name__ , bbox=__magic_name__ , token_type_ids=__magic_name__ )
UpperCAmelCase_ : Optional[int] = model(__magic_name__ , bbox=__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def UpperCAmelCase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[int] , __magic_name__ : List[Any] , ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : Any = self.num_labels
UpperCAmelCase_ : List[Any] = LiltForTokenClassification(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : List[Any] = model(
__magic_name__ , bbox=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCAmelCase__ ( self : Any , __magic_name__ : Optional[Any] , __magic_name__ : Dict , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : Any , ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : str = LiltForQuestionAnswering(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : Optional[Any] = model(
__magic_name__ , bbox=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = self.prepare_config_and_inputs()
(
(
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) ,
) : Optional[int] = config_and_inputs
UpperCAmelCase_ : Tuple = {
'''input_ids''': input_ids,
'''bbox''': bbox,
'''token_type_ids''': token_type_ids,
'''attention_mask''': input_mask,
}
return config, inputs_dict
@require_torch
class __a (lowerCamelCase , lowerCamelCase , lowerCamelCase , unittest.TestCase ):
__a : Tuple = (
(
LiltModel,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltForQuestionAnswering,
)
if is_torch_available()
else ()
)
__a : Any = (
{
"feature-extraction": LiltModel,
"question-answering": LiltForQuestionAnswering,
"text-classification": LiltForSequenceClassification,
"token-classification": LiltForTokenClassification,
"zero-shot": LiltForSequenceClassification,
}
if is_torch_available()
else {}
)
__a : Union[str, Any] = False
__a : int = False
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : int ) -> str:
"""simple docstring"""
return True
def UpperCAmelCase__ ( self : str ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = LiltModelTester(self )
UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 )
def UpperCAmelCase__ ( self : Union[str, Any] ) -> str:
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCAmelCase__ ( self : str ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__magic_name__ )
def UpperCAmelCase__ ( self : str ) -> str:
"""simple docstring"""
UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
UpperCAmelCase_ : Tuple = type
self.model_tester.create_and_check_model(*__magic_name__ )
def UpperCAmelCase__ ( self : Union[str, Any] ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__magic_name__ )
def UpperCAmelCase__ ( self : str ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__magic_name__ )
@slow
def UpperCAmelCase__ ( self : int ) -> Union[str, Any]:
"""simple docstring"""
for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase_ : Optional[int] = LiltModel.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
@require_torch
@slow
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : str = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(__magic_name__ )
UpperCAmelCase_ : Any = torch.tensor([[1, 2]] , device=__magic_name__ )
UpperCAmelCase_ : int = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=__magic_name__ )
# forward pass
with torch.no_grad():
UpperCAmelCase_ : Optional[int] = model(input_ids=__magic_name__ , bbox=__magic_name__ )
UpperCAmelCase_ : int = torch.Size([1, 2, 7_68] )
UpperCAmelCase_ : List[str] = torch.tensor(
[[-0.0_6_5_3, 0.0_9_5_0, -0.0_0_6_1], [-0.0_5_4_5, 0.0_9_2_6, -0.0_3_2_4]] , device=__magic_name__ , )
self.assertTrue(outputs.last_hidden_state.shape , __magic_name__ )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , __magic_name__ , atol=1E-3 ) )
| 644
|
'''simple docstring'''
import sys
import turtle
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : tuple[float, float] ) -> tuple[float, float]:
return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : int, ) -> None:
my_pen.up()
my_pen.goto(vertexa[0], vertexa[1] )
my_pen.down()
my_pen.goto(vertexa[0], vertexa[1] )
my_pen.goto(vertexa[0], vertexa[1] )
my_pen.goto(vertexa[0], vertexa[1] )
if depth == 0:
return
triangle(SCREAMING_SNAKE_CASE__, get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), depth - 1 )
triangle(SCREAMING_SNAKE_CASE__, get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), depth - 1 )
triangle(SCREAMING_SNAKE_CASE__, get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), depth - 1 )
if __name__ == "__main__":
if len(sys.argv) != 2:
raise ValueError(
"Correct format for using this script: "
"python fractals.py <int:depth_for_fractal>"
)
snake_case_ : Any = turtle.Turtle()
my_pen.ht()
my_pen.speed(5)
my_pen.pencolor("red")
snake_case_ : Tuple = [(-1_75, -1_25), (0, 1_75), (1_75, -1_25)] # vertices of triangle
triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
| 644
| 1
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
snake_case_ : Optional[int] = {"configuration_plbart": ["PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP", "PLBartConfig"]}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ : Optional[Any] = ["PLBartTokenizer"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ : Optional[int] = [
"PLBART_PRETRAINED_MODEL_ARCHIVE_LIST",
"PLBartForCausalLM",
"PLBartForConditionalGeneration",
"PLBartForSequenceClassification",
"PLBartModel",
"PLBartPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_plbart import PLBartTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_plbart import (
PLBART_PRETRAINED_MODEL_ARCHIVE_LIST,
PLBartForCausalLM,
PLBartForConditionalGeneration,
PLBartForSequenceClassification,
PLBartModel,
PLBartPreTrainedModel,
)
else:
import sys
snake_case_ : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure)
| 644
|
'''simple docstring'''
import gc
import tempfile
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionPipeline
from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device
snake_case_ : List[str] = False
class __a (unittest.TestCase ):
pass
@nightly
@require_torch_gpu
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : int ) -> str:
"""simple docstring"""
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : List[Any] = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' )
UpperCAmelCase_ : Optional[int] = torch.manual_seed(0 )
UpperCAmelCase_ : Union[str, Any] = pipe.dual_guided(
prompt='''first prompt''' , image=__magic_name__ , text_to_image_strength=0.7_5 , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(__magic_name__ )
UpperCAmelCase_ : Optional[int] = VersatileDiffusionPipeline.from_pretrained(__magic_name__ , torch_dtype=torch.floataa )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : Any = generator.manual_seed(0 )
UpperCAmelCase_ : Dict = pipe.dual_guided(
prompt='''first prompt''' , image=__magic_name__ , text_to_image_strength=0.7_5 , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images
assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass"
def UpperCAmelCase__ ( self : str ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : str = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : Union[str, Any] = '''cyberpunk 2077'''
UpperCAmelCase_ : Union[str, Any] = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' )
UpperCAmelCase_ : Tuple = torch.manual_seed(0 )
UpperCAmelCase_ : Optional[Any] = pipe.dual_guided(
prompt=__magic_name__ , image=__magic_name__ , text_to_image_strength=0.7_5 , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' , ).images
UpperCAmelCase_ : List[str] = image[0, 2_53:2_56, 2_53:2_56, -1]
assert image.shape == (1, 5_12, 5_12, 3)
UpperCAmelCase_ : Union[str, Any] = np.array([0.1_4_4_8, 0.1_6_1_9, 0.1_7_4_1, 0.1_0_8_6, 0.1_1_4_7, 0.1_1_2_8, 0.1_1_9_9, 0.1_1_6_5, 0.1_0_0_1] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
UpperCAmelCase_ : Tuple = '''A painting of a squirrel eating a burger '''
UpperCAmelCase_ : Optional[int] = torch.manual_seed(0 )
UpperCAmelCase_ : List[Any] = pipe.text_to_image(
prompt=__magic_name__ , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' ).images
UpperCAmelCase_ : Tuple = image[0, 2_53:2_56, 2_53:2_56, -1]
assert image.shape == (1, 5_12, 5_12, 3)
UpperCAmelCase_ : Any = np.array([0.3_3_6_7, 0.3_1_6_9, 0.2_6_5_6, 0.3_8_7_0, 0.4_7_9_0, 0.3_7_9_6, 0.4_0_0_9, 0.4_8_7_8, 0.4_7_7_8] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
UpperCAmelCase_ : Tuple = pipe.image_variation(__magic_name__ , generator=__magic_name__ , output_type='''numpy''' ).images
UpperCAmelCase_ : Optional[Any] = image[0, 2_53:2_56, 2_53:2_56, -1]
assert image.shape == (1, 5_12, 5_12, 3)
UpperCAmelCase_ : List[str] = np.array([0.3_0_7_6, 0.3_1_2_3, 0.3_2_8_4, 0.3_7_8_2, 0.3_7_7_0, 0.3_8_9_4, 0.4_2_9_7, 0.4_3_3_1, 0.4_4_5_6] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
| 644
| 1
|
'''simple docstring'''
import unittest
import torch
from torch import nn
from diffusers.models.activations import get_activation
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : Dict ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : Dict = get_activation('''swish''' )
self.assertIsInstance(__magic_name__ , nn.SiLU )
self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
def UpperCAmelCase__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = get_activation('''silu''' )
self.assertIsInstance(__magic_name__ , nn.SiLU )
self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
def UpperCAmelCase__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = get_activation('''mish''' )
self.assertIsInstance(__magic_name__ , nn.Mish )
self.assertEqual(act(torch.tensor(-2_00 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
def UpperCAmelCase__ ( self : str ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = get_activation('''gelu''' )
self.assertIsInstance(__magic_name__ , nn.GELU )
self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
| 644
|
'''simple docstring'''
snake_case_ : int = {
"Pillow": "Pillow",
"accelerate": "accelerate>=0.11.0",
"compel": "compel==0.1.8",
"black": "black~=23.1",
"datasets": "datasets",
"filelock": "filelock",
"flax": "flax>=0.4.1",
"hf-doc-builder": "hf-doc-builder>=0.3.0",
"huggingface-hub": "huggingface-hub>=0.13.2",
"requests-mock": "requests-mock==1.10.0",
"importlib_metadata": "importlib_metadata",
"invisible-watermark": "invisible-watermark",
"isort": "isort>=5.5.4",
"jax": "jax>=0.2.8,!=0.3.2",
"jaxlib": "jaxlib>=0.1.65",
"Jinja2": "Jinja2",
"k-diffusion": "k-diffusion>=0.0.12",
"torchsde": "torchsde",
"note_seq": "note_seq",
"librosa": "librosa",
"numpy": "numpy",
"omegaconf": "omegaconf",
"parameterized": "parameterized",
"protobuf": "protobuf>=3.20.3,<4",
"pytest": "pytest",
"pytest-timeout": "pytest-timeout",
"pytest-xdist": "pytest-xdist",
"ruff": "ruff>=0.0.241",
"safetensors": "safetensors",
"sentencepiece": "sentencepiece>=0.1.91,!=0.1.92",
"scipy": "scipy",
"onnx": "onnx",
"regex": "regex!=2019.12.17",
"requests": "requests",
"tensorboard": "tensorboard",
"torch": "torch>=1.4",
"torchvision": "torchvision",
"transformers": "transformers>=4.25.1",
"urllib3": "urllib3<=2.0.0",
}
| 644
| 1
|
'''simple docstring'''
import argparse
import requests
import torch
# pip3 install salesforce-lavis
# I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis
from lavis.models import load_model_and_preprocess
from PIL import Image
from transformers import (
AutoTokenizer,
BlipaConfig,
BlipaForConditionalGeneration,
BlipaProcessor,
BlipaVisionConfig,
BlipImageProcessor,
OPTConfig,
TaConfig,
)
from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
def lowerCamelCase_ ( ) -> int:
UpperCAmelCase_ : Dict = '''https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png'''
UpperCAmelCase_ : Optional[Any] = Image.open(requests.get(SCREAMING_SNAKE_CASE__, stream=SCREAMING_SNAKE_CASE__ ).raw ).convert('''RGB''' )
return image
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[str] ) -> Optional[Any]:
UpperCAmelCase_ : Any = []
# fmt: off
# vision encoder
rename_keys.append(('''visual_encoder.cls_token''', '''vision_model.embeddings.class_embedding''') )
rename_keys.append(('''visual_encoder.pos_embed''', '''vision_model.embeddings.position_embedding''') )
rename_keys.append(('''visual_encoder.patch_embed.proj.weight''', '''vision_model.embeddings.patch_embedding.weight''') )
rename_keys.append(('''visual_encoder.patch_embed.proj.bias''', '''vision_model.embeddings.patch_embedding.bias''') )
rename_keys.append(('''ln_vision.weight''', '''vision_model.post_layernorm.weight''') )
rename_keys.append(('''ln_vision.bias''', '''vision_model.post_layernorm.bias''') )
for i in range(config.vision_config.num_hidden_layers ):
rename_keys.append((F"""visual_encoder.blocks.{i}.norm1.weight""", F"""vision_model.encoder.layers.{i}.layer_norm1.weight""") )
rename_keys.append((F"""visual_encoder.blocks.{i}.norm1.bias""", F"""vision_model.encoder.layers.{i}.layer_norm1.bias""") )
rename_keys.append((F"""visual_encoder.blocks.{i}.norm2.weight""", F"""vision_model.encoder.layers.{i}.layer_norm2.weight""") )
rename_keys.append((F"""visual_encoder.blocks.{i}.norm2.bias""", F"""vision_model.encoder.layers.{i}.layer_norm2.bias""") )
rename_keys.append((F"""visual_encoder.blocks.{i}.attn.qkv.weight""", F"""vision_model.encoder.layers.{i}.self_attn.qkv.weight""") )
rename_keys.append((F"""visual_encoder.blocks.{i}.attn.proj.weight""", F"""vision_model.encoder.layers.{i}.self_attn.projection.weight""",) )
rename_keys.append((F"""visual_encoder.blocks.{i}.attn.proj.bias""", F"""vision_model.encoder.layers.{i}.self_attn.projection.bias""") )
rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc1.weight""", F"""vision_model.encoder.layers.{i}.mlp.fc1.weight""") )
rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc1.bias""", F"""vision_model.encoder.layers.{i}.mlp.fc1.bias""") )
rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc2.weight""", F"""vision_model.encoder.layers.{i}.mlp.fc2.weight""") )
rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc2.bias""", F"""vision_model.encoder.layers.{i}.mlp.fc2.bias""") )
# QFormer
rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.weight''', '''qformer.layernorm.weight''') )
rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.bias''', '''qformer.layernorm.bias''') )
# fmt: on
return rename_keys
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Union[str, Any], SCREAMING_SNAKE_CASE__ : Union[str, Any], SCREAMING_SNAKE_CASE__ : List[Any] ) -> Any:
UpperCAmelCase_ : int = dct.pop(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Union[str, Any] = val
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[Any], SCREAMING_SNAKE_CASE__ : Tuple ) -> List[str]:
for i in range(config.vision_config.num_hidden_layers ):
# read in original q and v biases
UpperCAmelCase_ : Optional[int] = state_dict.pop(F"""visual_encoder.blocks.{i}.attn.q_bias""" )
UpperCAmelCase_ : Any = state_dict.pop(F"""visual_encoder.blocks.{i}.attn.v_bias""" )
# next, set bias in the state dict
UpperCAmelCase_ : Dict = torch.cat((q_bias, torch.zeros_like(SCREAMING_SNAKE_CASE__, requires_grad=SCREAMING_SNAKE_CASE__ ), v_bias) )
UpperCAmelCase_ : Union[str, Any] = qkv_bias
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Dict, SCREAMING_SNAKE_CASE__ : Optional[int] ) -> str:
UpperCAmelCase_ : Optional[int] = 364 if '''coco''' in model_name else 224
UpperCAmelCase_ : List[str] = BlipaVisionConfig(image_size=SCREAMING_SNAKE_CASE__ ).to_dict()
# make sure the models have proper bos_token_id and eos_token_id set (important for generation)
# seems like flan-T5 models don't have bos_token_id properly set?
if "opt-2.7b" in model_name:
UpperCAmelCase_ : Dict = OPTConfig.from_pretrained('''facebook/opt-2.7b''', eos_token_id=SCREAMING_SNAKE_CASE__ ).to_dict()
elif "opt-6.7b" in model_name:
UpperCAmelCase_ : int = OPTConfig.from_pretrained('''facebook/opt-6.7b''', eos_token_id=SCREAMING_SNAKE_CASE__ ).to_dict()
elif "t5-xl" in model_name:
UpperCAmelCase_ : Any = TaConfig.from_pretrained('''google/flan-t5-xl''', dense_act_fn='''gelu''', bos_token_id=1 ).to_dict()
elif "t5-xxl" in model_name:
UpperCAmelCase_ : str = TaConfig.from_pretrained('''google/flan-t5-xxl''', dense_act_fn='''gelu''', bos_token_id=1 ).to_dict()
UpperCAmelCase_ : str = BlipaConfig(vision_config=SCREAMING_SNAKE_CASE__, text_config=SCREAMING_SNAKE_CASE__ )
return config, image_size
@torch.no_grad()
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : str, SCREAMING_SNAKE_CASE__ : List[str]=None, SCREAMING_SNAKE_CASE__ : Tuple=False ) -> Optional[Any]:
UpperCAmelCase_ : Union[str, Any] = (
AutoTokenizer.from_pretrained('''facebook/opt-2.7b''' )
if '''opt''' in model_name
else AutoTokenizer.from_pretrained('''google/flan-t5-xl''' )
)
UpperCAmelCase_ : Union[str, Any] = tokenizer('''\n''', add_special_tokens=SCREAMING_SNAKE_CASE__ ).input_ids[0]
UpperCAmelCase_ , UpperCAmelCase_ : List[str] = get_blipa_config(SCREAMING_SNAKE_CASE__, eos_token_id=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Optional[int] = BlipaForConditionalGeneration(SCREAMING_SNAKE_CASE__ ).eval()
UpperCAmelCase_ : Optional[int] = {
'''blip2-opt-2.7b''': ('''blip2_opt''', '''pretrain_opt2.7b'''),
'''blip2-opt-6.7b''': ('''blip2_opt''', '''pretrain_opt6.7b'''),
'''blip2-opt-2.7b-coco''': ('''blip2_opt''', '''caption_coco_opt2.7b'''),
'''blip2-opt-6.7b-coco''': ('''blip2_opt''', '''caption_coco_opt6.7b'''),
'''blip2-flan-t5-xl''': ('''blip2_t5''', '''pretrain_flant5xl'''),
'''blip2-flan-t5-xl-coco''': ('''blip2_t5''', '''caption_coco_flant5xl'''),
'''blip2-flan-t5-xxl''': ('''blip2_t5''', '''pretrain_flant5xxl'''),
}
UpperCAmelCase_ , UpperCAmelCase_ : List[str] = model_name_to_original[model_name]
# load original model
print('''Loading original model...''' )
UpperCAmelCase_ : List[Any] = '''cuda''' if torch.cuda.is_available() else '''cpu'''
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = load_model_and_preprocess(
name=SCREAMING_SNAKE_CASE__, model_type=SCREAMING_SNAKE_CASE__, is_eval=SCREAMING_SNAKE_CASE__, device=SCREAMING_SNAKE_CASE__ )
original_model.eval()
print('''Done!''' )
# update state dict keys
UpperCAmelCase_ : Union[str, Any] = original_model.state_dict()
UpperCAmelCase_ : Dict = create_rename_keys(SCREAMING_SNAKE_CASE__ )
for src, dest in rename_keys:
rename_key(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
# some keys can be renamed efficiently
for key, val in state_dict.copy().items():
UpperCAmelCase_ : int = state_dict.pop(SCREAMING_SNAKE_CASE__ )
if key.startswith('''Qformer.bert''' ):
UpperCAmelCase_ : Optional[int] = key.replace('''Qformer.bert''', '''qformer''' )
if "attention.self" in key:
UpperCAmelCase_ : Any = key.replace('''self''', '''attention''' )
if "opt_proj" in key:
UpperCAmelCase_ : Tuple = key.replace('''opt_proj''', '''language_projection''' )
if "t5_proj" in key:
UpperCAmelCase_ : int = key.replace('''t5_proj''', '''language_projection''' )
if key.startswith('''opt''' ):
UpperCAmelCase_ : int = key.replace('''opt''', '''language''' )
if key.startswith('''t5''' ):
UpperCAmelCase_ : Union[str, Any] = key.replace('''t5''', '''language''' )
UpperCAmelCase_ : str = val
# read in qv biases
read_in_q_v_bias(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = hf_model.load_state_dict(SCREAMING_SNAKE_CASE__, strict=SCREAMING_SNAKE_CASE__ )
assert len(SCREAMING_SNAKE_CASE__ ) == 0
assert unexpected_keys == ["qformer.embeddings.position_ids"]
UpperCAmelCase_ : Optional[Any] = load_demo_image()
UpperCAmelCase_ : Optional[int] = vis_processors['''eval'''](SCREAMING_SNAKE_CASE__ ).unsqueeze(0 ).to(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : List[Any] = tokenizer(['''\n'''], return_tensors='''pt''' ).input_ids.to(SCREAMING_SNAKE_CASE__ )
# create processor
UpperCAmelCase_ : Any = BlipImageProcessor(
size={'''height''': image_size, '''width''': image_size}, image_mean=SCREAMING_SNAKE_CASE__, image_std=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Tuple = BlipaProcessor(image_processor=SCREAMING_SNAKE_CASE__, tokenizer=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Dict = processor(images=SCREAMING_SNAKE_CASE__, return_tensors='''pt''' ).pixel_values.to(SCREAMING_SNAKE_CASE__ )
# make sure processor creates exact same pixel values
assert torch.allclose(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
original_model.to(SCREAMING_SNAKE_CASE__ )
hf_model.to(SCREAMING_SNAKE_CASE__ )
with torch.no_grad():
if "opt" in model_name:
UpperCAmelCase_ : List[Any] = original_model({'''image''': original_pixel_values, '''text_input''': ['''''']} ).logits
UpperCAmelCase_ : Any = hf_model(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ).logits
else:
UpperCAmelCase_ : List[Any] = original_model(
{'''image''': original_pixel_values, '''text_input''': ['''\n'''], '''text_output''': ['''\n''']} ).logits
UpperCAmelCase_ : Dict = input_ids.masked_fill(input_ids == tokenizer.pad_token_id, -100 )
UpperCAmelCase_ : List[str] = hf_model(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, labels=SCREAMING_SNAKE_CASE__ ).logits
assert original_logits.shape == logits.shape
print('''First values of original logits:''', original_logits[0, :3, :3] )
print('''First values of HF logits:''', logits[0, :3, :3] )
# assert values
if model_name == "blip2-flan-t5-xl":
UpperCAmelCase_ : Any = torch.tensor(
[[-41.58_50, -4.44_40, -8.99_22], [-47.43_22, -5.91_43, -1.73_40]], device=SCREAMING_SNAKE_CASE__ )
assert torch.allclose(logits[0, :3, :3], SCREAMING_SNAKE_CASE__, atol=1E-4 )
elif model_name == "blip2-flan-t5-xl-coco":
UpperCAmelCase_ : Optional[Any] = torch.tensor(
[[-57.01_09, -9.89_67, -12.62_80], [-68.65_78, -12.71_91, -10.50_65]], device=SCREAMING_SNAKE_CASE__ )
else:
# cast to same type
UpperCAmelCase_ : List[str] = logits.dtype
assert torch.allclose(original_logits.to(SCREAMING_SNAKE_CASE__ ), SCREAMING_SNAKE_CASE__, atol=1E-2 )
print('''Looks ok!''' )
print('''Generating a caption...''' )
UpperCAmelCase_ : Tuple = ''''''
UpperCAmelCase_ : Any = tokenizer(SCREAMING_SNAKE_CASE__, return_tensors='''pt''' ).input_ids.to(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : int = original_model.generate({'''image''': original_pixel_values} )
UpperCAmelCase_ : str = hf_model.generate(
SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, do_sample=SCREAMING_SNAKE_CASE__, num_beams=5, max_length=30, min_length=1, top_p=0.9, repetition_penalty=1.0, length_penalty=1.0, temperature=1, )
print('''Original generation:''', SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : str = input_ids.shape[1]
UpperCAmelCase_ : Tuple = processor.batch_decode(outputs[:, prompt_length:], skip_special_tokens=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Union[str, Any] = [text.strip() for text in output_text]
print('''HF generation:''', SCREAMING_SNAKE_CASE__ )
if pytorch_dump_folder_path is not None:
processor.save_pretrained(SCREAMING_SNAKE_CASE__ )
hf_model.save_pretrained(SCREAMING_SNAKE_CASE__ )
if push_to_hub:
processor.push_to_hub(F"""nielsr/{model_name}""" )
hf_model.push_to_hub(F"""nielsr/{model_name}""" )
if __name__ == "__main__":
snake_case_ : int = argparse.ArgumentParser()
snake_case_ : int = [
"blip2-opt-2.7b",
"blip2-opt-6.7b",
"blip2-opt-2.7b-coco",
"blip2-opt-6.7b-coco",
"blip2-flan-t5-xl",
"blip2-flan-t5-xl-coco",
"blip2-flan-t5-xxl",
]
parser.add_argument(
"--model_name",
default="blip2-opt-2.7b",
choices=choices,
type=str,
help="Path to hf config.json of model to convert",
)
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument(
"--push_to_hub",
action="store_true",
help="Whether to push the model and processor to the hub after converting",
)
snake_case_ : List[str] = parser.parse_args()
convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 644
|
'''simple docstring'''
import unittest
import numpy as np
import torch
from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class __a (unittest.TestCase ):
@property
def UpperCAmelCase__ ( self : Dict ) -> str:
"""simple docstring"""
torch.manual_seed(0 )
UpperCAmelCase_ : Optional[Any] = UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , )
return model
def UpperCAmelCase__ ( self : Dict ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = self.dummy_uncond_unet
UpperCAmelCase_ : Dict = KarrasVeScheduler()
UpperCAmelCase_ : Union[str, Any] = KarrasVePipeline(unet=__magic_name__ , scheduler=__magic_name__ )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : Dict = torch.manual_seed(0 )
UpperCAmelCase_ : Optional[int] = pipe(num_inference_steps=2 , generator=__magic_name__ , output_type='''numpy''' ).images
UpperCAmelCase_ : Tuple = torch.manual_seed(0 )
UpperCAmelCase_ : str = pipe(num_inference_steps=2 , generator=__magic_name__ , output_type='''numpy''' , return_dict=__magic_name__ )[0]
UpperCAmelCase_ : Union[str, Any] = image[0, -3:, -3:, -1]
UpperCAmelCase_ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
UpperCAmelCase_ : Dict = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : int ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : List[str] = '''google/ncsnpp-celebahq-256'''
UpperCAmelCase_ : List[str] = UNetaDModel.from_pretrained(__magic_name__ )
UpperCAmelCase_ : List[Any] = KarrasVeScheduler()
UpperCAmelCase_ : Any = KarrasVePipeline(unet=__magic_name__ , scheduler=__magic_name__ )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : Dict = torch.manual_seed(0 )
UpperCAmelCase_ : Optional[Any] = pipe(num_inference_steps=20 , generator=__magic_name__ , output_type='''numpy''' ).images
UpperCAmelCase_ : Any = image[0, -3:, -3:, -1]
assert image.shape == (1, 2_56, 2_56, 3)
UpperCAmelCase_ : Optional[Any] = np.array([0.5_7_8, 0.5_8_1_1, 0.5_9_2_4, 0.5_8_0_9, 0.5_8_7, 0.5_8_8_6, 0.5_8_6_1, 0.5_8_0_2, 0.5_8_6] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 644
| 1
|
'''simple docstring'''
import os
def lowerCamelCase_ ( ) -> str:
with open(os.path.dirname(SCREAMING_SNAKE_CASE__ ) + '''/p022_names.txt''' ) as file:
UpperCAmelCase_ : Optional[int] = str(file.readlines()[0] )
UpperCAmelCase_ : Optional[int] = names.replace('''"''', '''''' ).split(''',''' )
names.sort()
UpperCAmelCase_ : Dict = 0
UpperCAmelCase_ : List[str] = 0
for i, name in enumerate(SCREAMING_SNAKE_CASE__ ):
for letter in name:
name_score += ord(SCREAMING_SNAKE_CASE__ ) - 64
total_score += (i + 1) * name_score
UpperCAmelCase_ : Optional[int] = 0
return total_score
if __name__ == "__main__":
print(solution())
| 644
|
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor
from .base import PipelineTool
class __a (lowerCamelCase ):
__a : List[Any] = "openai/whisper-base"
__a : Optional[Any] = (
"This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the "
"transcribed text."
)
__a : Any = "transcriber"
__a : str = WhisperProcessor
__a : List[Any] = WhisperForConditionalGeneration
__a : int = ["audio"]
__a : Optional[Any] = ["text"]
def UpperCAmelCase__ ( self : Dict , __magic_name__ : List[str] ) -> Optional[int]:
"""simple docstring"""
return self.pre_processor(__magic_name__ , return_tensors='''pt''' ).input_features
def UpperCAmelCase__ ( self : Dict , __magic_name__ : Dict ) -> Tuple:
"""simple docstring"""
return self.model.generate(inputs=__magic_name__ )
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Dict ) -> str:
"""simple docstring"""
return self.pre_processor.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ )[0]
| 644
| 1
|
'''simple docstring'''
from typing import List, Optional, Tuple
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_herbert import HerbertTokenizer
snake_case_ : Any = logging.get_logger(__name__)
snake_case_ : Optional[int] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
snake_case_ : Dict = {
"vocab_file": {
"allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json"
},
"merges_file": {
"allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt"
},
}
snake_case_ : Optional[Any] = {"allegro/herbert-base-cased": 5_14}
snake_case_ : Union[str, Any] = {}
class __a (lowerCamelCase ):
__a : Optional[Any] = VOCAB_FILES_NAMES
__a : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP
__a : Dict = PRETRAINED_INIT_CONFIGURATION
__a : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__a : Optional[int] = HerbertTokenizer
def __init__( self : Optional[int] , __magic_name__ : List[Any]=None , __magic_name__ : Optional[int]=None , __magic_name__ : List[str]=None , __magic_name__ : int="<s>" , __magic_name__ : str="<unk>" , __magic_name__ : int="<pad>" , __magic_name__ : Any="<mask>" , __magic_name__ : Optional[Any]="</s>" , **__magic_name__ : Any , ) -> Union[str, Any]:
"""simple docstring"""
super().__init__(
__magic_name__ , __magic_name__ , tokenizer_file=__magic_name__ , cls_token=__magic_name__ , unk_token=__magic_name__ , pad_token=__magic_name__ , mask_token=__magic_name__ , sep_token=__magic_name__ , **__magic_name__ , )
def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = [self.cls_token_id]
UpperCAmelCase_ : List[Any] = [self.sep_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None , __magic_name__ : bool = False ) -> List[int]:
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__magic_name__ , token_ids_a=__magic_name__ , already_has_special_tokens=__magic_name__ )
if token_ids_a is None:
return [1] + ([0] * len(__magic_name__ )) + [1]
return [1] + ([0] * len(__magic_name__ )) + [1] + ([0] * len(__magic_name__ )) + [1]
def UpperCAmelCase__ ( self : str , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
UpperCAmelCase_ : Dict = [self.sep_token_id]
UpperCAmelCase_ : Any = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
UpperCAmelCase_ : int = self._tokenizer.model.save(__magic_name__ , name=__magic_name__ )
return tuple(__magic_name__ )
| 644
|
'''simple docstring'''
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : int ) -> int:
return abs(SCREAMING_SNAKE_CASE__ ) if a == 0 else greatest_common_divisor(b % a, SCREAMING_SNAKE_CASE__ )
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : int ) -> int:
while y: # --> when y=0 then loop will terminate and return x as final GCD.
UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = y, x % y
return abs(SCREAMING_SNAKE_CASE__ )
def lowerCamelCase_ ( ) -> Optional[int]:
try:
UpperCAmelCase_ : Optional[Any] = input('''Enter two integers separated by comma (,): ''' ).split(''',''' )
UpperCAmelCase_ : Optional[int] = int(nums[0] )
UpperCAmelCase_ : List[Any] = int(nums[1] )
print(
F"""greatest_common_divisor({num_a}, {num_a}) = """
F"""{greatest_common_divisor(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )}""" )
print(F"""By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )}""" )
except (IndexError, UnboundLocalError, ValueError):
print('''Wrong input''' )
if __name__ == "__main__":
main()
| 644
| 1
|
'''simple docstring'''
from __future__ import annotations
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : list[int], SCREAMING_SNAKE_CASE__ : int ) -> list[list[int]]:
UpperCAmelCase_ : list[list[int]] = []
UpperCAmelCase_ : list[int] = []
UpperCAmelCase_ : Any = 0
UpperCAmelCase_ : Tuple = sum(SCREAMING_SNAKE_CASE__ )
create_state_space_tree(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
return result
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : list[int], SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : list[int], SCREAMING_SNAKE_CASE__ : list[list[int]], SCREAMING_SNAKE_CASE__ : int, ) -> None:
if sum(SCREAMING_SNAKE_CASE__ ) > max_sum or (remaining_nums_sum + sum(SCREAMING_SNAKE_CASE__ )) < max_sum:
return
if sum(SCREAMING_SNAKE_CASE__ ) == max_sum:
result.append(SCREAMING_SNAKE_CASE__ )
return
for index in range(SCREAMING_SNAKE_CASE__, len(SCREAMING_SNAKE_CASE__ ) ):
create_state_space_tree(
SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, index + 1, [*path, nums[index]], SCREAMING_SNAKE_CASE__, remaining_nums_sum - nums[index], )
snake_case_ : Optional[int] = [3, 34, 4, 12, 5, 2]
snake_case_ : int = 9
snake_case_ : List[Any] = generate_sum_of_subsets_soln(nums, max_sum)
print(*result)
| 644
|
'''simple docstring'''
import unittest
from transformers import LiltConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
LiltForQuestionAnswering,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltModel,
)
from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST
class __a :
def __init__( self : int , __magic_name__ : Optional[Any] , __magic_name__ : Any=13 , __magic_name__ : Any=7 , __magic_name__ : Union[str, Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : str=True , __magic_name__ : Optional[int]=True , __magic_name__ : List[Any]=99 , __magic_name__ : int=24 , __magic_name__ : Optional[int]=2 , __magic_name__ : Tuple=6 , __magic_name__ : Union[str, Any]=37 , __magic_name__ : Optional[Any]="gelu" , __magic_name__ : Any=0.1 , __magic_name__ : str=0.1 , __magic_name__ : Tuple=5_12 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : Tuple=2 , __magic_name__ : Tuple=0.0_2 , __magic_name__ : Optional[Any]=3 , __magic_name__ : Optional[int]=None , __magic_name__ : Any=10_00 , ) -> str:
"""simple docstring"""
UpperCAmelCase_ : Tuple = parent
UpperCAmelCase_ : Optional[int] = batch_size
UpperCAmelCase_ : List[str] = seq_length
UpperCAmelCase_ : Dict = is_training
UpperCAmelCase_ : List[str] = use_input_mask
UpperCAmelCase_ : Any = use_token_type_ids
UpperCAmelCase_ : Any = use_labels
UpperCAmelCase_ : Any = vocab_size
UpperCAmelCase_ : Dict = hidden_size
UpperCAmelCase_ : Tuple = num_hidden_layers
UpperCAmelCase_ : Tuple = num_attention_heads
UpperCAmelCase_ : int = intermediate_size
UpperCAmelCase_ : Union[str, Any] = hidden_act
UpperCAmelCase_ : Optional[int] = hidden_dropout_prob
UpperCAmelCase_ : Optional[Any] = attention_probs_dropout_prob
UpperCAmelCase_ : Union[str, Any] = max_position_embeddings
UpperCAmelCase_ : int = type_vocab_size
UpperCAmelCase_ : List[Any] = type_sequence_label_size
UpperCAmelCase_ : int = initializer_range
UpperCAmelCase_ : Dict = num_labels
UpperCAmelCase_ : List[str] = scope
UpperCAmelCase_ : List[str] = range_bbox
def UpperCAmelCase__ ( self : Optional[int] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
UpperCAmelCase_ : List[str] = bbox[i, j, 3]
UpperCAmelCase_ : Dict = bbox[i, j, 1]
UpperCAmelCase_ : Optional[Any] = t
if bbox[i, j, 2] < bbox[i, j, 0]:
UpperCAmelCase_ : List[str] = bbox[i, j, 2]
UpperCAmelCase_ : Tuple = bbox[i, j, 0]
UpperCAmelCase_ : Union[str, Any] = t
UpperCAmelCase_ : int = None
if self.use_input_mask:
UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
UpperCAmelCase_ : Optional[int] = None
if self.use_token_type_ids:
UpperCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase_ : Dict = None
UpperCAmelCase_ : Tuple = None
if self.use_labels:
UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase_ : int = self.get_config()
return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels
def UpperCAmelCase__ ( self : Any ) -> List[Any]:
"""simple docstring"""
return LiltConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : str , __magic_name__ : Optional[Any] , __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : int , ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Any = LiltModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : Optional[Any] = model(__magic_name__ , bbox=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ )
UpperCAmelCase_ : List[Any] = model(__magic_name__ , bbox=__magic_name__ , token_type_ids=__magic_name__ )
UpperCAmelCase_ : Optional[int] = model(__magic_name__ , bbox=__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def UpperCAmelCase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[int] , __magic_name__ : List[Any] , ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : Any = self.num_labels
UpperCAmelCase_ : List[Any] = LiltForTokenClassification(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : List[Any] = model(
__magic_name__ , bbox=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCAmelCase__ ( self : Any , __magic_name__ : Optional[Any] , __magic_name__ : Dict , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : Any , ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : str = LiltForQuestionAnswering(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : Optional[Any] = model(
__magic_name__ , bbox=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = self.prepare_config_and_inputs()
(
(
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) ,
) : Optional[int] = config_and_inputs
UpperCAmelCase_ : Tuple = {
'''input_ids''': input_ids,
'''bbox''': bbox,
'''token_type_ids''': token_type_ids,
'''attention_mask''': input_mask,
}
return config, inputs_dict
@require_torch
class __a (lowerCamelCase , lowerCamelCase , lowerCamelCase , unittest.TestCase ):
__a : Tuple = (
(
LiltModel,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltForQuestionAnswering,
)
if is_torch_available()
else ()
)
__a : Any = (
{
"feature-extraction": LiltModel,
"question-answering": LiltForQuestionAnswering,
"text-classification": LiltForSequenceClassification,
"token-classification": LiltForTokenClassification,
"zero-shot": LiltForSequenceClassification,
}
if is_torch_available()
else {}
)
__a : Union[str, Any] = False
__a : int = False
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : int ) -> str:
"""simple docstring"""
return True
def UpperCAmelCase__ ( self : str ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = LiltModelTester(self )
UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 )
def UpperCAmelCase__ ( self : Union[str, Any] ) -> str:
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCAmelCase__ ( self : str ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__magic_name__ )
def UpperCAmelCase__ ( self : str ) -> str:
"""simple docstring"""
UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
UpperCAmelCase_ : Tuple = type
self.model_tester.create_and_check_model(*__magic_name__ )
def UpperCAmelCase__ ( self : Union[str, Any] ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__magic_name__ )
def UpperCAmelCase__ ( self : str ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__magic_name__ )
@slow
def UpperCAmelCase__ ( self : int ) -> Union[str, Any]:
"""simple docstring"""
for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase_ : Optional[int] = LiltModel.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
@require_torch
@slow
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : str = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(__magic_name__ )
UpperCAmelCase_ : Any = torch.tensor([[1, 2]] , device=__magic_name__ )
UpperCAmelCase_ : int = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=__magic_name__ )
# forward pass
with torch.no_grad():
UpperCAmelCase_ : Optional[int] = model(input_ids=__magic_name__ , bbox=__magic_name__ )
UpperCAmelCase_ : int = torch.Size([1, 2, 7_68] )
UpperCAmelCase_ : List[str] = torch.tensor(
[[-0.0_6_5_3, 0.0_9_5_0, -0.0_0_6_1], [-0.0_5_4_5, 0.0_9_2_6, -0.0_3_2_4]] , device=__magic_name__ , )
self.assertTrue(outputs.last_hidden_state.shape , __magic_name__ )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , __magic_name__ , atol=1E-3 ) )
| 644
| 1
|
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import RoFormerConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFRoFormerForCausalLM,
TFRoFormerForMaskedLM,
TFRoFormerForMultipleChoice,
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerModel,
)
from transformers.models.roformer.modeling_tf_roformer import (
TFRoFormerSelfAttention,
TFRoFormerSinusoidalPositionalEmbedding,
)
class __a :
def __init__( self : Optional[Any] , __magic_name__ : str , __magic_name__ : Any=13 , __magic_name__ : List[str]=7 , __magic_name__ : Union[str, Any]=True , __magic_name__ : Tuple=True , __magic_name__ : Optional[Any]=True , __magic_name__ : str=True , __magic_name__ : Dict=99 , __magic_name__ : Any=32 , __magic_name__ : Tuple=2 , __magic_name__ : List[Any]=4 , __magic_name__ : Any=37 , __magic_name__ : List[Any]="gelu" , __magic_name__ : Any=0.1 , __magic_name__ : List[str]=0.1 , __magic_name__ : List[str]=5_12 , __magic_name__ : Optional[Any]=16 , __magic_name__ : Dict=2 , __magic_name__ : int=0.0_2 , __magic_name__ : List[str]=3 , __magic_name__ : List[Any]=4 , __magic_name__ : str=None , ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = parent
UpperCAmelCase_ : Optional[Any] = 13
UpperCAmelCase_ : List[str] = 7
UpperCAmelCase_ : List[str] = True
UpperCAmelCase_ : Union[str, Any] = True
UpperCAmelCase_ : List[str] = True
UpperCAmelCase_ : int = True
UpperCAmelCase_ : Dict = 99
UpperCAmelCase_ : Dict = 32
UpperCAmelCase_ : Dict = 2
UpperCAmelCase_ : Optional[Any] = 4
UpperCAmelCase_ : int = 37
UpperCAmelCase_ : Union[str, Any] = '''gelu'''
UpperCAmelCase_ : str = 0.1
UpperCAmelCase_ : Optional[int] = 0.1
UpperCAmelCase_ : Union[str, Any] = 5_12
UpperCAmelCase_ : str = 16
UpperCAmelCase_ : Dict = 2
UpperCAmelCase_ : List[Any] = 0.0_2
UpperCAmelCase_ : Optional[Any] = 3
UpperCAmelCase_ : List[Any] = 4
UpperCAmelCase_ : Any = None
def UpperCAmelCase__ ( self : Any ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase_ : List[str] = None
if self.use_input_mask:
UpperCAmelCase_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase_ : str = None
if self.use_token_type_ids:
UpperCAmelCase_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase_ : Optional[Any] = None
UpperCAmelCase_ : Optional[int] = None
UpperCAmelCase_ : Union[str, Any] = None
if self.use_labels:
UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase_ : str = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase_ : Dict = RoFormerConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__magic_name__ , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Tuple , __magic_name__ : Dict , __magic_name__ : Optional[int] , __magic_name__ : Tuple , __magic_name__ : str , __magic_name__ : Tuple , __magic_name__ : Union[str, Any] ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = TFRoFormerModel(config=__magic_name__ )
UpperCAmelCase_ : List[str] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
UpperCAmelCase_ : Optional[Any] = [input_ids, input_mask]
UpperCAmelCase_ : Any = model(__magic_name__ )
UpperCAmelCase_ : str = model(__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : Union[str, Any] , __magic_name__ : Dict , __magic_name__ : int , __magic_name__ : List[str] , __magic_name__ : Any , __magic_name__ : Dict , __magic_name__ : Dict ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : List[str] = True
UpperCAmelCase_ : Any = TFRoFormerForCausalLM(config=__magic_name__ )
UpperCAmelCase_ : Dict = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
UpperCAmelCase_ : str = model(__magic_name__ )['''logits''']
self.parent.assertListEqual(
list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] )
def UpperCAmelCase__ ( self : Any , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] , __magic_name__ : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : Tuple , __magic_name__ : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : Dict = TFRoFormerForMaskedLM(config=__magic_name__ )
UpperCAmelCase_ : Union[str, Any] = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
UpperCAmelCase_ : List[str] = model(__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : Optional[int] , __magic_name__ : List[str] , __magic_name__ : Optional[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : str ) -> str:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = self.num_labels
UpperCAmelCase_ : Tuple = TFRoFormerForSequenceClassification(config=__magic_name__ )
UpperCAmelCase_ : Optional[int] = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
UpperCAmelCase_ : Any = model(__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def UpperCAmelCase__ ( self : Dict , __magic_name__ : int , __magic_name__ : Dict , __magic_name__ : int , __magic_name__ : Optional[int] , __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : str ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = self.num_choices
UpperCAmelCase_ : List[Any] = TFRoFormerForMultipleChoice(config=__magic_name__ )
UpperCAmelCase_ : List[Any] = tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.num_choices, 1) )
UpperCAmelCase_ : List[str] = tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.num_choices, 1) )
UpperCAmelCase_ : Optional[int] = tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.num_choices, 1) )
UpperCAmelCase_ : Optional[Any] = {
'''input_ids''': multiple_choice_inputs_ids,
'''attention_mask''': multiple_choice_input_mask,
'''token_type_ids''': multiple_choice_token_type_ids,
}
UpperCAmelCase_ : int = model(__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : int , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] , __magic_name__ : Tuple , __magic_name__ : Any , __magic_name__ : List[Any] , __magic_name__ : List[Any] ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = self.num_labels
UpperCAmelCase_ : Optional[int] = TFRoFormerForTokenClassification(config=__magic_name__ )
UpperCAmelCase_ : List[str] = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
UpperCAmelCase_ : Dict = model(__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : Tuple , __magic_name__ : List[str] , __magic_name__ : List[str] , __magic_name__ : Dict , __magic_name__ : str , __magic_name__ : Union[str, Any] , __magic_name__ : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : Dict = TFRoFormerForQuestionAnswering(config=__magic_name__ )
UpperCAmelCase_ : Union[str, Any] = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
UpperCAmelCase_ : Any = model(__magic_name__ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def UpperCAmelCase__ ( self : Any ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : Dict = self.prepare_config_and_inputs()
(
(
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) ,
) : int = config_and_inputs
UpperCAmelCase_ : Any = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_tf
class __a (lowerCamelCase , lowerCamelCase , unittest.TestCase ):
__a : Tuple = (
(
TFRoFormerModel,
TFRoFormerForCausalLM,
TFRoFormerForMaskedLM,
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerForMultipleChoice,
)
if is_tf_available()
else ()
)
__a : str = (
{
"feature-extraction": TFRoFormerModel,
"fill-mask": TFRoFormerForMaskedLM,
"question-answering": TFRoFormerForQuestionAnswering,
"text-classification": TFRoFormerForSequenceClassification,
"text-generation": TFRoFormerForCausalLM,
"token-classification": TFRoFormerForTokenClassification,
"zero-shot": TFRoFormerForSequenceClassification,
}
if is_tf_available()
else {}
)
__a : List[Any] = False
__a : str = False
def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : Dict , __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : Dict , __magic_name__ : List[str] ) -> Union[str, Any]:
"""simple docstring"""
if pipeline_test_casse_name == "TextGenerationPipelineTests":
return True
return False
def UpperCAmelCase__ ( self : Tuple ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : List[str] = TFRoFormerModelTester(self )
UpperCAmelCase_ : int = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 )
def UpperCAmelCase__ ( self : Tuple ) -> str:
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCAmelCase__ ( self : Any ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__magic_name__ )
def UpperCAmelCase__ ( self : Any ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__magic_name__ )
def UpperCAmelCase__ ( self : Optional[Any] ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head(*__magic_name__ )
def UpperCAmelCase__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*__magic_name__ )
def UpperCAmelCase__ ( self : int ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__magic_name__ )
def UpperCAmelCase__ ( self : Any ) -> int:
"""simple docstring"""
UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*__magic_name__ )
def UpperCAmelCase__ ( self : int ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__magic_name__ )
@slow
def UpperCAmelCase__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = TFRoFormerModel.from_pretrained('''junnyu/roformer_chinese_base''' )
self.assertIsNotNone(__magic_name__ )
@require_tf
class __a (unittest.TestCase ):
@slow
def UpperCAmelCase__ ( self : str ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = TFRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' )
UpperCAmelCase_ : Tuple = tf.constant([[0, 1, 2, 3, 4, 5]] )
UpperCAmelCase_ : int = model(__magic_name__ )[0]
# TODO Replace vocab size
UpperCAmelCase_ : List[str] = 5_00_00
UpperCAmelCase_ : str = [1, 6, vocab_size]
self.assertEqual(output.shape , __magic_name__ )
print(output[:, :3, :3] )
# TODO Replace values below with what was printed above.
UpperCAmelCase_ : str = tf.constant(
[
[
[-0.1_2_0_5_3_3_4_1, -1.0_2_6_4_9_0_1, 0.2_9_2_2_1_9_4_6],
[-1.5_1_3_3_7_8_3, 0.1_9_7_4_3_3, 0.1_5_1_9_0_6_0_7],
[-5.0_1_3_5_4_0_3, -3.9_0_0_2_5_6, -0.8_4_0_3_8_7_6_4],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , __magic_name__ , atol=1E-4 )
@require_tf
class __a (unittest.TestCase ):
__a : int = 1e-4
def UpperCAmelCase__ ( self : str ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : Dict = tf.constant([[4, 10]] )
UpperCAmelCase_ : int = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 )
UpperCAmelCase_ : str = emba(input_ids.shape )
UpperCAmelCase_ : str = tf.constant(
[[0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0], [0.8_4_1_5, 0.0_4_6_4, 0.0_0_2_2, 0.5_4_0_3, 0.9_9_8_9, 1.0_0_0_0]] )
tf.debugging.assert_near(__magic_name__ , __magic_name__ , atol=self.tolerance )
def UpperCAmelCase__ ( self : List[Any] ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = tf.constant(
[
[0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0],
[0.8_4_1_5, 0.8_2_1_9, 0.8_0_2_0, 0.7_8_1_9, 0.7_6_1_7],
[0.9_0_9_3, 0.9_3_6_4, 0.9_5_8_1, 0.9_7_4_9, 0.9_8_7_0],
] )
UpperCAmelCase_ : Union[str, Any] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=5_12 , embedding_dim=5_12 )
emba([2, 16, 5_12] )
UpperCAmelCase_ : Any = emba.weight[:3, :5]
tf.debugging.assert_near(__magic_name__ , __magic_name__ , atol=self.tolerance )
@require_tf
class __a (unittest.TestCase ):
__a : List[str] = 1e-4
def UpperCAmelCase__ ( self : Optional[Any] ) -> Tuple:
"""simple docstring"""
# 2,12,16,64
UpperCAmelCase_ : str = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 1_00
UpperCAmelCase_ : str = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 1_00
UpperCAmelCase_ : int = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 )
UpperCAmelCase_ : Dict = embed_positions([2, 16, 7_68] )[None, None, :, :]
UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = TFRoFormerSelfAttention.apply_rotary_position_embeddings(
__magic_name__ , __magic_name__ , __magic_name__ )
UpperCAmelCase_ : Union[str, Any] = tf.constant(
[
[0.0_0_0_0, 0.0_1_0_0, 0.0_2_0_0, 0.0_3_0_0, 0.0_4_0_0, 0.0_5_0_0, 0.0_6_0_0, 0.0_7_0_0],
[-0.2_0_1_2, 0.8_8_9_7, 0.0_2_6_3, 0.9_4_0_1, 0.2_0_7_4, 0.9_4_6_3, 0.3_4_8_1, 0.9_3_4_3],
[-1.7_0_5_7, 0.6_2_7_1, -1.2_1_4_5, 1.3_8_9_7, -0.6_3_0_3, 1.7_6_4_7, -0.1_1_7_3, 1.8_9_8_5],
[-2.1_7_3_1, -1.6_3_9_7, -2.7_3_5_8, 0.2_8_5_4, -2.1_8_4_0, 1.7_1_8_3, -1.3_0_1_8, 2.4_8_7_1],
[0.2_7_1_7, -3.6_1_7_3, -2.9_2_0_6, -2.1_9_8_8, -3.6_6_3_8, 0.3_8_5_8, -2.9_1_5_5, 2.2_9_8_0],
[3.9_8_5_9, -2.1_5_8_0, -0.7_9_8_4, -4.4_9_0_4, -4.1_1_8_1, -2.0_2_5_2, -4.4_7_8_2, 1.1_2_5_3],
] )
UpperCAmelCase_ : Any = tf.constant(
[
[0.0_0_0_0, -0.0_1_0_0, -0.0_2_0_0, -0.0_3_0_0, -0.0_4_0_0, -0.0_5_0_0, -0.0_6_0_0, -0.0_7_0_0],
[0.2_0_1_2, -0.8_8_9_7, -0.0_2_6_3, -0.9_4_0_1, -0.2_0_7_4, -0.9_4_6_3, -0.3_4_8_1, -0.9_3_4_3],
[1.7_0_5_7, -0.6_2_7_1, 1.2_1_4_5, -1.3_8_9_7, 0.6_3_0_3, -1.7_6_4_7, 0.1_1_7_3, -1.8_9_8_5],
[2.1_7_3_1, 1.6_3_9_7, 2.7_3_5_8, -0.2_8_5_4, 2.1_8_4_0, -1.7_1_8_3, 1.3_0_1_8, -2.4_8_7_1],
[-0.2_7_1_7, 3.6_1_7_3, 2.9_2_0_6, 2.1_9_8_8, 3.6_6_3_8, -0.3_8_5_8, 2.9_1_5_5, -2.2_9_8_0],
[-3.9_8_5_9, 2.1_5_8_0, 0.7_9_8_4, 4.4_9_0_4, 4.1_1_8_1, 2.0_2_5_2, 4.4_7_8_2, -1.1_2_5_3],
] )
tf.debugging.assert_near(query_layer[0, 0, :6, :8] , __magic_name__ , atol=self.tolerance )
tf.debugging.assert_near(key_layer[0, 0, :6, :8] , __magic_name__ , atol=self.tolerance )
| 644
|
'''simple docstring'''
import io
import os
import unicodedata
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
snake_case_ : str = logging.get_logger(__name__)
snake_case_ : int = "▁"
snake_case_ : str = {"vocab_file": "vocab.txt", "sentencepiece_model_ckpt": "sentencepiece.bpe.model"}
snake_case_ : int = {
"sentencepiece_model_file": "sentencepiece.bpe.model",
"vocab_file": "vocab.txt",
}
snake_case_ : Optional[Any] = {
"vocab_file": {
"ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt",
"ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt",
},
"sentencepiece_model_file": {
"ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model",
"ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model",
},
}
snake_case_ : Dict = {
"ernie-m-base": 5_14,
"ernie-m-large": 5_14,
}
snake_case_ : Any = {
"ernie-m-base": {"do_lower_case": False},
"ernie-m-large": {"do_lower_case": False},
}
class __a (lowerCamelCase ):
__a : List[str] = ["input_ids"]
__a : Union[str, Any] = VOCAB_FILES_NAMES
__a : Tuple = PRETRAINED_INIT_CONFIGURATION
__a : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__a : Optional[int] = PRETRAINED_VOCAB_FILES_MAP
__a : Union[str, Any] = RESOURCE_FILES_NAMES
def __init__( self : Union[str, Any] , __magic_name__ : Dict , __magic_name__ : int=None , __magic_name__ : str=False , __magic_name__ : int="utf8" , __magic_name__ : Optional[int]="[UNK]" , __magic_name__ : Dict="[SEP]" , __magic_name__ : List[Any]="[PAD]" , __magic_name__ : str="[CLS]" , __magic_name__ : Optional[int]="[MASK]" , __magic_name__ : Optional[Dict[str, Any]] = None , **__magic_name__ : Union[str, Any] , ) -> None:
"""simple docstring"""
# Mask token behave like a normal word, i.e. include the space before it and
# is included in the raw text, there should be a match in a non-normalized sentence.
UpperCAmelCase_ : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=__magic_name__ , unk_token=__magic_name__ , sep_token=__magic_name__ , pad_token=__magic_name__ , cls_token=__magic_name__ , mask_token=__magic_name__ , vocab_file=__magic_name__ , encoding=__magic_name__ , sp_model_kwargs=self.sp_model_kwargs , **__magic_name__ , )
UpperCAmelCase_ : Optional[Any] = do_lower_case
UpperCAmelCase_ : List[str] = sentencepiece_model_ckpt
UpperCAmelCase_ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(__magic_name__ )
# to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning
if vocab_file is not None:
UpperCAmelCase_ : List[Any] = self.load_vocab(filepath=__magic_name__ )
else:
UpperCAmelCase_ : str = {self.sp_model.id_to_piece(__magic_name__ ): id for id in range(self.sp_model.get_piece_size() )}
UpperCAmelCase_ : int = {v: k for k, v in self.vocab.items()}
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Any ) -> Any:
"""simple docstring"""
if text is None:
return None
UpperCAmelCase_ : str = self.tokenize(__magic_name__ )
UpperCAmelCase_ , UpperCAmelCase_ : str = '''''', []
for i, ch in enumerate(__magic_name__ ):
if ch in self.SP_CHAR_MAPPING:
UpperCAmelCase_ : Optional[int] = self.SP_CHAR_MAPPING.get(__magic_name__ )
else:
UpperCAmelCase_ : Union[str, Any] = unicodedata.normalize('''NFKC''' , __magic_name__ )
if self.is_whitespace(__magic_name__ ):
continue
normalized_text += ch
char_mapping.extend([i] * len(__magic_name__ ) )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = normalized_text, [], 0
if self.do_lower_case:
UpperCAmelCase_ : Optional[int] = text.lower()
for token in split_tokens:
if token[:1] == "▁":
UpperCAmelCase_ : Tuple = token[1:]
UpperCAmelCase_ : int = text[offset:].index(__magic_name__ ) + offset
UpperCAmelCase_ : Optional[int] = start + len(__magic_name__ )
token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) )
UpperCAmelCase_ : int = end
return token_mapping
@property
def UpperCAmelCase__ ( self : Any ) -> Any:
"""simple docstring"""
return len(self.vocab )
def UpperCAmelCase__ ( self : List[Any] ) -> int:
"""simple docstring"""
return dict(self.vocab , **self.added_tokens_encoder )
def __getstate__( self : str ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = self.__dict__.copy()
UpperCAmelCase_ : Optional[Any] = None
return state
def __setstate__( self : str , __magic_name__ : Any ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : Dict = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
UpperCAmelCase_ : int = {}
UpperCAmelCase_ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.sentencepiece_model_ckpt )
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : Any ) -> List[str]:
"""simple docstring"""
return "".join((self.SP_CHAR_MAPPING.get(__magic_name__ , __magic_name__ ) for c in text) )
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Tuple , __magic_name__ : Any=False , __magic_name__ : List[str]=64 , __magic_name__ : List[str]=0.1 ) -> List[str]:
"""simple docstring"""
if self.sp_model_kwargs.get('''enable_sampling''' ) is True:
UpperCAmelCase_ : Dict = True
if self.sp_model_kwargs.get('''alpha''' ) is not None:
UpperCAmelCase_ : Union[str, Any] = self.sp_model_kwargs.get('''alpha''' )
if self.sp_model_kwargs.get('''nbest_size''' ) is not None:
UpperCAmelCase_ : Any = self.sp_model_kwargs.get('''nbest_size''' )
if not enable_sampling:
UpperCAmelCase_ : Dict = self.sp_model.EncodeAsPieces(__magic_name__ )
else:
UpperCAmelCase_ : Dict = self.sp_model.SampleEncodeAsPieces(__magic_name__ , __magic_name__ , __magic_name__ )
UpperCAmelCase_ : List[Any] = []
for pi, piece in enumerate(__magic_name__ ):
if piece == SPIECE_UNDERLINE:
if not pieces[pi + 1].startswith(__magic_name__ ) and pi != 0:
new_pieces.append(__magic_name__ )
continue
else:
continue
UpperCAmelCase_ : List[str] = 0
for i, chunk in enumerate(__magic_name__ ):
if chunk == SPIECE_UNDERLINE:
continue
if self.is_ch_char(__magic_name__ ) or self.is_punct(__magic_name__ ):
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
new_pieces.append(__magic_name__ )
UpperCAmelCase_ : List[Any] = i + 1
elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
UpperCAmelCase_ : List[str] = i
elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
UpperCAmelCase_ : str = i
if len(__magic_name__ ) > lst_i:
new_pieces.append(piece[lst_i:] )
return new_pieces
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Optional[int] ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = ''''''.join(__magic_name__ ).replace(__magic_name__ , ''' ''' ).strip()
return out_string
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Union[str, Any] ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : str = self.convert_ids_to_tokens(__magic_name__ )
UpperCAmelCase_ : Optional[Any] = ''''''.join(__magic_name__ ).replace(__magic_name__ , ''' ''' ).strip()
return out_string
def UpperCAmelCase__ ( self : str , __magic_name__ : Optional[Any] ) -> List[Any]:
"""simple docstring"""
return self.vocab.get(__magic_name__ , self.vocab.get(self.unk_token ) )
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
return self.reverse_vocab.get(__magic_name__ , self.unk_token )
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Any , __magic_name__ : Union[str, Any]=None ) -> Any:
"""simple docstring"""
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
UpperCAmelCase_ : Union[str, Any] = [self.cls_token_id]
UpperCAmelCase_ : List[Any] = [self.sep_token_id]
return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep
def UpperCAmelCase__ ( self : Any , __magic_name__ : Optional[Any] , __magic_name__ : List[str]=None ) -> int:
"""simple docstring"""
if offset_mapping_a is None:
return [(0, 0)] + offset_mapping_a + [(0, 0)]
return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)]
def UpperCAmelCase__ ( self : Dict , __magic_name__ : Optional[Any] , __magic_name__ : List[str]=None , __magic_name__ : Optional[Any]=False ) -> Optional[int]:
"""simple docstring"""
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(__magic_name__ )) + [1, 1] + ([0] * len(__magic_name__ )) + [1]
return [1] + ([0] * len(__magic_name__ )) + [1]
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
# called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method
if token_ids_a is None:
# [CLS] X [SEP]
return (len(__magic_name__ ) + 2) * [0]
# [CLS] A [SEP] [SEP] B [SEP]
return [0] * (len(__magic_name__ ) + 1) + [1] * (len(__magic_name__ ) + 3)
def UpperCAmelCase__ ( self : Dict , __magic_name__ : str ) -> Tuple:
"""simple docstring"""
if "\u4e00" <= char <= "\u9fff":
return True
return False
def UpperCAmelCase__ ( self : int , __magic_name__ : Optional[int] ) -> str:
"""simple docstring"""
if ("a" <= char <= "z") or ("A" <= char <= "Z"):
return True
return False
def UpperCAmelCase__ ( self : int , __magic_name__ : Optional[Any] ) -> Dict:
"""simple docstring"""
if char in ",;:.?!~,;:。?!《》【】":
return True
return False
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Any ) -> Union[str, Any]:
"""simple docstring"""
if char == " " or char == "\t" or char == "\n" or char == "\r":
return True
if len(__magic_name__ ) == 1:
UpperCAmelCase_ : Optional[Any] = unicodedata.category(__magic_name__ )
if cat == "Zs":
return True
return False
def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : Tuple ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = {}
with io.open(__magic_name__ , '''r''' , encoding='''utf-8''' ) as f:
for index, line in enumerate(__magic_name__ ):
UpperCAmelCase_ : List[Any] = line.rstrip('''\n''' )
UpperCAmelCase_ : Dict = int(__magic_name__ )
return token_to_idx
def UpperCAmelCase__ ( self : Dict , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = 0
if os.path.isdir(__magic_name__ ):
UpperCAmelCase_ : Any = os.path.join(
__magic_name__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
else:
UpperCAmelCase_ : List[str] = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory
with open(__magic_name__ , '''w''' , encoding='''utf-8''' ) as writer:
for token, token_index in sorted(self.vocab.items() , key=lambda __magic_name__ : kv[1] ):
if index != token_index:
logger.warning(
F"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."""
''' Please check that the vocabulary is not corrupted!''' )
UpperCAmelCase_ : Dict = token_index
writer.write(token + '''\n''' )
index += 1
UpperCAmelCase_ : Union[str, Any] = os.path.join(__magic_name__ , '''sentencepiece.bpe.model''' )
with open(__magic_name__ , '''wb''' ) as fi:
UpperCAmelCase_ : Optional[int] = self.sp_model.serialized_model_proto()
fi.write(__magic_name__ )
return (vocab_file,)
| 644
| 1
|
'''simple docstring'''
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int = 1000 ) -> int:
return sum(e for e in range(3, SCREAMING_SNAKE_CASE__ ) if e % 3 == 0 or e % 5 == 0 )
if __name__ == "__main__":
print(f'''{solution() = }''')
| 644
|
'''simple docstring'''
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int ) -> str:
if number > 0:
raise ValueError('''input must be a negative integer''' )
UpperCAmelCase_ : Union[str, Any] = len(bin(SCREAMING_SNAKE_CASE__ )[3:] )
UpperCAmelCase_ : Union[str, Any] = bin(abs(SCREAMING_SNAKE_CASE__ ) - (1 << binary_number_length) )[3:]
UpperCAmelCase_ : Optional[Any] = (
(
'''1'''
+ '''0''' * (binary_number_length - len(SCREAMING_SNAKE_CASE__ ))
+ twos_complement_number
)
if number < 0
else '''0'''
)
return "0b" + twos_complement_number
if __name__ == "__main__":
import doctest
doctest.testmod()
| 644
| 1
|
'''simple docstring'''
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : int ) -> int:
while b:
UpperCAmelCase_ , UpperCAmelCase_ : List[str] = b, a % b
return a
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : int ) -> int:
return a if b == 0 else euclidean_gcd_recursive(SCREAMING_SNAKE_CASE__, a % b )
def lowerCamelCase_ ( ) -> List[Any]:
print(F"""euclidean_gcd(3, 5) = {euclidean_gcd(3, 5 )}""" )
print(F"""euclidean_gcd(5, 3) = {euclidean_gcd(5, 3 )}""" )
print(F"""euclidean_gcd(1, 3) = {euclidean_gcd(1, 3 )}""" )
print(F"""euclidean_gcd(3, 6) = {euclidean_gcd(3, 6 )}""" )
print(F"""euclidean_gcd(6, 3) = {euclidean_gcd(6, 3 )}""" )
print(F"""euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3, 5 )}""" )
print(F"""euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5, 3 )}""" )
print(F"""euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1, 3 )}""" )
print(F"""euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3, 6 )}""" )
print(F"""euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6, 3 )}""" )
if __name__ == "__main__":
main()
| 644
|
'''simple docstring'''
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from transformers.generation import DisjunctiveConstraint
@require_torch
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
# For consistency across different places the DisjunctiveConstraint is called,
# dc.token_ids is a list of integers. It is also initialized only by integers.
UpperCAmelCase_ : List[str] = [[1, 2, 4], [1, 2, 3, 4]]
UpperCAmelCase_ : List[str] = DisjunctiveConstraint(__magic_name__ )
self.assertTrue(isinstance(dc.token_ids , __magic_name__ ) )
with self.assertRaises(__magic_name__ ):
DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) )
with self.assertRaises(__magic_name__ ):
DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] )
def UpperCAmelCase__ ( self : List[str] ) -> Dict:
"""simple docstring"""
# We can't have constraints that are complete subsets of another. This leads to a preverse
# interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint?
# It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially
# fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm
# will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it).
UpperCAmelCase_ : Tuple = [[1, 2], [1, 2, 3, 4]]
with self.assertRaises(__magic_name__ ):
DisjunctiveConstraint(__magic_name__ ) # fails here
def UpperCAmelCase__ ( self : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = [[1, 2, 3], [1, 2, 4]]
UpperCAmelCase_ : List[str] = DisjunctiveConstraint(__magic_name__ )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = dc.update(1 )
UpperCAmelCase_ : Dict = stepped is True and completed is False and reset is False
self.assertTrue(__magic_name__ )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = dc.update(2 )
UpperCAmelCase_ : Optional[Any] = stepped is True and completed is False and reset is False
self.assertTrue(__magic_name__ )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = dc.update(3 )
UpperCAmelCase_ : Dict = stepped is True and completed is True and reset is False
self.assertTrue(__magic_name__ )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 3] )
def UpperCAmelCase__ ( self : int ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : Any = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]]
UpperCAmelCase_ : Tuple = DisjunctiveConstraint(__magic_name__ )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = dc.update(4 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2, 4] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 4, 5] )
dc.reset()
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 3 )
self.assertTrue(dc.current_seq == [1] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 2 )
self.assertTrue(dc.current_seq == [1, 2] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.remaining() == 0 )
self.assertTrue(dc.current_seq == [1, 2, 5] )
| 644
| 1
|
'''simple docstring'''
snake_case_ : List[Any] = 8.314_4598
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : float, SCREAMING_SNAKE_CASE__ : float ) -> float:
if temperature < 0:
raise Exception('''Temperature cannot be less than 0 K''' )
if molar_mass <= 0:
raise Exception('''Molar mass cannot be less than or equal to 0 kg/mol''' )
else:
return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5
if __name__ == "__main__":
import doctest
# run doctest
doctest.testmod()
# example
snake_case_ : int = 3_00
snake_case_ : Dict = 28
snake_case_ : Optional[Any] = rms_speed_of_molecule(temperature, molar_mass)
print(f'''Vrms of Nitrogen gas at 300 K is {vrms} m/s''')
| 644
|
'''simple docstring'''
import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.layers import LSTM, Dense
from tensorflow.keras.models import Sequential
if __name__ == "__main__":
snake_case_ : List[Any] = pd.read_csv("sample_data.csv", header=None)
snake_case_ : Optional[Any] = df.shape[:1][0]
# If you're using some other dataset input the target column
snake_case_ : Any = df.iloc[:, 1:2]
snake_case_ : str = actual_data.values.reshape(len_data, 1)
snake_case_ : Optional[Any] = MinMaxScaler().fit_transform(actual_data)
snake_case_ : List[str] = 10
snake_case_ : Any = 5
snake_case_ : Any = 20
snake_case_ : Tuple = len_data - periods * look_back
snake_case_ : str = actual_data[:division]
snake_case_ : Optional[int] = actual_data[division - look_back :]
snake_case_ ,snake_case_ : Any = [], []
snake_case_ ,snake_case_ : Union[str, Any] = [], []
for i in range(0, len(train_data) - forward_days - look_back + 1):
train_x.append(train_data[i : i + look_back])
train_y.append(train_data[i + look_back : i + look_back + forward_days])
for i in range(0, len(test_data) - forward_days - look_back + 1):
test_x.append(test_data[i : i + look_back])
test_y.append(test_data[i + look_back : i + look_back + forward_days])
snake_case_ : Any = np.array(train_x)
snake_case_ : Optional[Any] = np.array(test_x)
snake_case_ : Optional[Any] = np.array([list(i.ravel()) for i in train_y])
snake_case_ : List[str] = np.array([list(i.ravel()) for i in test_y])
snake_case_ : List[Any] = Sequential()
model.add(LSTM(1_28, input_shape=(look_back, 1), return_sequences=True))
model.add(LSTM(64, input_shape=(1_28, 1)))
model.add(Dense(forward_days))
model.compile(loss="mean_squared_error", optimizer="adam")
snake_case_ : Dict = model.fit(
x_train, y_train, epochs=1_50, verbose=1, shuffle=True, batch_size=4
)
snake_case_ : Optional[Any] = model.predict(x_test)
| 644
| 1
|
'''simple docstring'''
from manim import *
class __a (lowerCamelCase ):
def UpperCAmelCase__ ( self : Union[str, Any] ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = Rectangle(height=0.5 , width=0.5 )
UpperCAmelCase_ : Any = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 )
UpperCAmelCase_ : Dict = [mem.copy() for i in range(6 )]
UpperCAmelCase_ : int = [mem.copy() for i in range(6 )]
UpperCAmelCase_ : int = VGroup(*__magic_name__ ).arrange(__magic_name__ , buff=0 )
UpperCAmelCase_ : Any = VGroup(*__magic_name__ ).arrange(__magic_name__ , buff=0 )
UpperCAmelCase_ : Dict = VGroup(__magic_name__ , __magic_name__ ).arrange(__magic_name__ , buff=0 )
UpperCAmelCase_ : Tuple = Text('''CPU''' , font_size=24 )
UpperCAmelCase_ : int = Group(__magic_name__ , __magic_name__ ).arrange(__magic_name__ , buff=0.5 , aligned_edge=__magic_name__ )
cpu.move_to([-2.5, -0.5, 0] )
self.add(__magic_name__ )
UpperCAmelCase_ : Union[str, Any] = [mem.copy() for i in range(4 )]
UpperCAmelCase_ : int = VGroup(*__magic_name__ ).arrange(__magic_name__ , buff=0 )
UpperCAmelCase_ : str = Text('''GPU''' , font_size=24 )
UpperCAmelCase_ : Union[str, Any] = Group(__magic_name__ , __magic_name__ ).arrange(__magic_name__ , buff=0.5 , aligned_edge=__magic_name__ )
gpu.move_to([-1, -1, 0] )
self.add(__magic_name__ )
UpperCAmelCase_ : Any = [mem.copy() for i in range(6 )]
UpperCAmelCase_ : Dict = VGroup(*__magic_name__ ).arrange(__magic_name__ , buff=0 )
UpperCAmelCase_ : Union[str, Any] = Text('''Model''' , font_size=24 )
UpperCAmelCase_ : Union[str, Any] = Group(__magic_name__ , __magic_name__ ).arrange(__magic_name__ , buff=0.5 , aligned_edge=__magic_name__ )
model.move_to([3, -1.0, 0] )
self.add(__magic_name__ )
UpperCAmelCase_ : Optional[Any] = []
for i, rect in enumerate(__magic_name__ ):
rect.set_stroke(__magic_name__ )
# target = fill.copy().set_fill(YELLOW, opacity=0.7)
# target.move_to(rect)
# self.add(target)
UpperCAmelCase_ : str = Rectangle(height=0.4_6 / 4 , width=0.4_6 / 3 ).set_stroke(width=0.0 ).set_fill(__magic_name__ , opacity=0.7 )
if i == 0:
cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=__magic_name__ )
cpu_target.set_x(cpu_target.get_x() + 0.1 )
elif i == 3:
cpu_target.next_to(cpu_targs[0] , direction=__magic_name__ , buff=0.0 )
else:
cpu_target.next_to(cpu_targs[i - 1] , direction=__magic_name__ , buff=0.0 )
self.add(__magic_name__ )
cpu_targs.append(__magic_name__ )
UpperCAmelCase_ : Dict = [mem.copy() for i in range(6 )]
UpperCAmelCase_ : List[Any] = VGroup(*__magic_name__ ).arrange(__magic_name__ , buff=0 )
UpperCAmelCase_ : List[Any] = Text('''Loaded Checkpoint''' , font_size=24 )
UpperCAmelCase_ : Dict = Group(__magic_name__ , __magic_name__ ).arrange(__magic_name__ , aligned_edge=__magic_name__ , buff=0.4 )
checkpoint.move_to([3, 0.5, 0] )
UpperCAmelCase_ : List[str] = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
UpperCAmelCase_ : List[Any] = MarkupText(
F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , )
key_text.move_to([-5, 2.4, 0] )
self.add(__magic_name__ , __magic_name__ )
UpperCAmelCase_ : str = MarkupText(
F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , )
blue_text.next_to(__magic_name__ , DOWN * 2.4 , aligned_edge=key_text.get_left() )
UpperCAmelCase_ : Any = MarkupText(
F"""Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>.""" , font_size=24 , )
step_a.move_to([2, 2, 0] )
self.play(Write(__magic_name__ ) , Write(__magic_name__ ) )
self.play(Write(__magic_name__ , run_time=1 ) , Create(__magic_name__ , run_time=1 ) )
UpperCAmelCase_ : List[str] = []
UpperCAmelCase_ : List[str] = []
for i, rect in enumerate(__magic_name__ ):
UpperCAmelCase_ : str = fill.copy().set_fill(__magic_name__ , opacity=0.7 )
target.move_to(__magic_name__ )
first_animations.append(GrowFromCenter(__magic_name__ , run_time=1 ) )
UpperCAmelCase_ : List[Any] = target.copy()
cpu_target.generate_target()
if i < 5:
cpu_target.target.move_to(cpu_left_col_base[i + 1] )
else:
cpu_target.target.move_to(cpu_right_col_base[i - 5] )
second_animations.append(MoveToTarget(__magic_name__ , run_time=1.5 ) )
self.play(*__magic_name__ )
self.play(*__magic_name__ )
self.wait()
| 644
|
'''simple docstring'''
from typing import Any, Callable, Dict, List, Optional, Union
import torch
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
snake_case_ : Union[str, Any] = "CompVis/stable-diffusion-v1-1"
snake_case_ : Dict = "CompVis/stable-diffusion-v1-2"
snake_case_ : Any = "CompVis/stable-diffusion-v1-3"
snake_case_ : str = "CompVis/stable-diffusion-v1-4"
class __a (lowerCamelCase ):
def __init__( self : Any , __magic_name__ : AutoencoderKL , __magic_name__ : CLIPTextModel , __magic_name__ : CLIPTokenizer , __magic_name__ : UNetaDConditionModel , __magic_name__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __magic_name__ : StableDiffusionSafetyChecker , __magic_name__ : CLIPImageProcessor , __magic_name__ : bool = True , ) -> str:
"""simple docstring"""
super()._init_()
UpperCAmelCase_ : Any = StableDiffusionPipeline.from_pretrained(__magic_name__ )
UpperCAmelCase_ : Dict = StableDiffusionPipeline.from_pretrained(__magic_name__ )
UpperCAmelCase_ : List[Any] = StableDiffusionPipeline.from_pretrained(__magic_name__ )
UpperCAmelCase_ : Tuple = StableDiffusionPipeline(
vae=__magic_name__ , text_encoder=__magic_name__ , tokenizer=__magic_name__ , unet=__magic_name__ , scheduler=__magic_name__ , safety_checker=__magic_name__ , feature_extractor=__magic_name__ , requires_safety_checker=__magic_name__ , )
self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea )
@property
def UpperCAmelCase__ ( self : Tuple ) -> Dict[str, Any]:
"""simple docstring"""
return {k: getattr(self , __magic_name__ ) for k in self.config.keys() if not k.startswith('''_''' )}
def UpperCAmelCase__ ( self : Dict , __magic_name__ : Optional[Union[str, int]] = "auto" ) -> int:
"""simple docstring"""
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
UpperCAmelCase_ : List[str] = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(__magic_name__ )
def UpperCAmelCase__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
self.enable_attention_slicing(__magic_name__ )
@torch.no_grad()
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Tuple , ) -> Optional[int]:
"""simple docstring"""
return self.pipea(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
@torch.no_grad()
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Any , ) -> Any:
"""simple docstring"""
return self.pipea(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
@torch.no_grad()
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Dict , ) -> List[str]:
"""simple docstring"""
return self.pipea(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
@torch.no_grad()
def UpperCAmelCase__ ( self : int , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Optional[int] , ) -> str:
"""simple docstring"""
return self.pipea(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
@torch.no_grad()
def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Optional[int] , ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : int = '''cuda''' if torch.cuda.is_available() else '''cpu'''
self.to(__magic_name__ )
# Checks if the height and width are divisible by 8 or not
if height % 8 != 0 or width % 8 != 0:
raise ValueError(F"""`height` and `width` must be divisible by 8 but are {height} and {width}.""" )
# Get first result from Stable Diffusion Checkpoint v1.1
UpperCAmelCase_ : Optional[int] = self.textaimg_sda_a(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
# Get first result from Stable Diffusion Checkpoint v1.2
UpperCAmelCase_ : int = self.textaimg_sda_a(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
# Get first result from Stable Diffusion Checkpoint v1.3
UpperCAmelCase_ : str = self.textaimg_sda_a(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
# Get first result from Stable Diffusion Checkpoint v1.4
UpperCAmelCase_ : str = self.textaimg_sda_a(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
# Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result
return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
| 644
| 1
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
snake_case_ : Tuple = {
"configuration_roberta": ["ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "RobertaConfig", "RobertaOnnxConfig"],
"tokenization_roberta": ["RobertaTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ : Optional[int] = ["RobertaTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ : Optional[int] = [
"ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST",
"RobertaForCausalLM",
"RobertaForMaskedLM",
"RobertaForMultipleChoice",
"RobertaForQuestionAnswering",
"RobertaForSequenceClassification",
"RobertaForTokenClassification",
"RobertaModel",
"RobertaPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ : Dict = [
"TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFRobertaForCausalLM",
"TFRobertaForMaskedLM",
"TFRobertaForMultipleChoice",
"TFRobertaForQuestionAnswering",
"TFRobertaForSequenceClassification",
"TFRobertaForTokenClassification",
"TFRobertaMainLayer",
"TFRobertaModel",
"TFRobertaPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ : int = [
"FlaxRobertaForCausalLM",
"FlaxRobertaForMaskedLM",
"FlaxRobertaForMultipleChoice",
"FlaxRobertaForQuestionAnswering",
"FlaxRobertaForSequenceClassification",
"FlaxRobertaForTokenClassification",
"FlaxRobertaModel",
"FlaxRobertaPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig
from .tokenization_roberta import RobertaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_roberta_fast import RobertaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roberta import (
ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
RobertaForCausalLM,
RobertaForMaskedLM,
RobertaForMultipleChoice,
RobertaForQuestionAnswering,
RobertaForSequenceClassification,
RobertaForTokenClassification,
RobertaModel,
RobertaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_roberta import (
TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRobertaForCausalLM,
TFRobertaForMaskedLM,
TFRobertaForMultipleChoice,
TFRobertaForQuestionAnswering,
TFRobertaForSequenceClassification,
TFRobertaForTokenClassification,
TFRobertaMainLayer,
TFRobertaModel,
TFRobertaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_roberta import (
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaModel,
FlaxRobertaPreTrainedModel,
)
else:
import sys
snake_case_ : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 644
|
'''simple docstring'''
import argparse
import json
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
snake_case_ : Optional[int] = 16
snake_case_ : Tuple = 32
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Accelerator, SCREAMING_SNAKE_CASE__ : int = 16, SCREAMING_SNAKE_CASE__ : str = "bert-base-cased" ) -> Dict:
UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : int = load_dataset('''glue''', '''mrpc''' )
def tokenize_function(SCREAMING_SNAKE_CASE__ : Optional[int] ):
# max_length=None => use the model max length (it's actually the default)
UpperCAmelCase_ : Union[str, Any] = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=SCREAMING_SNAKE_CASE__, max_length=SCREAMING_SNAKE_CASE__ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
UpperCAmelCase_ : Tuple = datasets.map(
SCREAMING_SNAKE_CASE__, batched=SCREAMING_SNAKE_CASE__, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], load_from_cache_file=SCREAMING_SNAKE_CASE__ )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
UpperCAmelCase_ : Optional[Any] = tokenized_datasets.rename_column('''label''', '''labels''' )
def collate_fn(SCREAMING_SNAKE_CASE__ : str ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(SCREAMING_SNAKE_CASE__, padding='''max_length''', max_length=128, return_tensors='''pt''' )
return tokenizer.pad(SCREAMING_SNAKE_CASE__, padding='''longest''', return_tensors='''pt''' )
# Instantiate dataloaders.
UpperCAmelCase_ : str = DataLoader(
tokenized_datasets['''train'''], shuffle=SCREAMING_SNAKE_CASE__, collate_fn=SCREAMING_SNAKE_CASE__, batch_size=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : int = DataLoader(
tokenized_datasets['''validation'''], shuffle=SCREAMING_SNAKE_CASE__, collate_fn=SCREAMING_SNAKE_CASE__, batch_size=SCREAMING_SNAKE_CASE__ )
return train_dataloader, eval_dataloader
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Optional[Any], SCREAMING_SNAKE_CASE__ : Optional[int], SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : Any ) -> Any:
model.eval()
UpperCAmelCase_ : List[str] = 0
for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
UpperCAmelCase_ : Dict = model(**SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : str = outputs.logits.argmax(dim=-1 )
# It is slightly faster to call this once, than multiple times
UpperCAmelCase_ , UpperCAmelCase_ : List[str] = accelerator.gather(
(predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates
if accelerator.use_distributed:
if step == len(SCREAMING_SNAKE_CASE__ ) - 1:
UpperCAmelCase_ : Tuple = predictions[: len(eval_dataloader.dataset ) - samples_seen]
UpperCAmelCase_ : int = references[: len(eval_dataloader.dataset ) - samples_seen]
else:
samples_seen += references.shape[0]
metric.add_batch(
predictions=SCREAMING_SNAKE_CASE__, references=SCREAMING_SNAKE_CASE__, )
UpperCAmelCase_ : List[str] = metric.compute()
return eval_metric["accuracy"]
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : int ) -> Tuple:
# Initialize accelerator
UpperCAmelCase_ : Union[str, Any] = Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
UpperCAmelCase_ : int = config['''lr''']
UpperCAmelCase_ : Optional[int] = int(config['''num_epochs'''] )
UpperCAmelCase_ : Optional[int] = int(config['''seed'''] )
UpperCAmelCase_ : List[str] = int(config['''batch_size'''] )
UpperCAmelCase_ : Optional[int] = args.model_name_or_path
set_seed(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = get_dataloaders(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
UpperCAmelCase_ : List[Any] = AutoModelForSequenceClassification.from_pretrained(SCREAMING_SNAKE_CASE__, return_dict=SCREAMING_SNAKE_CASE__ )
# Instantiate optimizer
UpperCAmelCase_ : str = (
AdamW
if accelerator.state.deepspeed_plugin is None
or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
UpperCAmelCase_ : List[str] = optimizer_cls(params=model.parameters(), lr=SCREAMING_SNAKE_CASE__ )
if accelerator.state.deepspeed_plugin is not None:
UpperCAmelCase_ : List[Any] = accelerator.state.deepspeed_plugin.deepspeed_config[
'''gradient_accumulation_steps'''
]
else:
UpperCAmelCase_ : Tuple = 1
UpperCAmelCase_ : int = (len(SCREAMING_SNAKE_CASE__ ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
UpperCAmelCase_ : Tuple = get_linear_schedule_with_warmup(
optimizer=SCREAMING_SNAKE_CASE__, num_warmup_steps=0, num_training_steps=SCREAMING_SNAKE_CASE__, )
else:
UpperCAmelCase_ : Any = DummyScheduler(SCREAMING_SNAKE_CASE__, total_num_steps=SCREAMING_SNAKE_CASE__, warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = accelerator.prepare(
SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
# We need to keep track of how many total steps we have iterated over
UpperCAmelCase_ : Union[str, Any] = 0
# We also need to keep track of the stating epoch so files are named properly
UpperCAmelCase_ : Dict = 0
UpperCAmelCase_ : int = evaluate.load('''glue''', '''mrpc''' )
UpperCAmelCase_ : Optional[Any] = num_epochs
if args.partial_train_epoch is not None:
UpperCAmelCase_ : List[Any] = args.partial_train_epoch
if args.resume_from_checkpoint:
accelerator.load_state(args.resume_from_checkpoint )
UpperCAmelCase_ : Tuple = args.resume_from_checkpoint.split('''epoch_''' )[1]
UpperCAmelCase_ : int = ''''''
for char in epoch_string:
if char.isdigit():
state_epoch_num += char
else:
break
UpperCAmelCase_ : Union[str, Any] = int(SCREAMING_SNAKE_CASE__ ) + 1
UpperCAmelCase_ : Dict = evaluation_loop(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
accelerator.print('''resumed checkpoint performance:''', SCREAMING_SNAKE_CASE__ )
accelerator.print('''resumed checkpoint\'s scheduler\'s lr:''', lr_scheduler.get_lr()[0] )
accelerator.print('''resumed optimizers\'s lr:''', optimizer.param_groups[0]['''lr'''] )
with open(os.path.join(args.output_dir, F"""state_{starting_epoch-1}.json""" ), '''r''' ) as f:
UpperCAmelCase_ : Optional[int] = json.load(SCREAMING_SNAKE_CASE__ )
assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed"
assert (
resumed_state["lr"] == lr_scheduler.get_lr()[0]
), "Scheduler learning rate mismatch, loading from checkpoint failed"
assert (
resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"]
), "Optimizer learning rate mismatch, loading from checkpoint failed"
assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed"
return
# Now we train the model
UpperCAmelCase_ : int = {}
for epoch in range(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ):
model.train()
for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase_ : Optional[int] = model(**SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Any = outputs.loss
UpperCAmelCase_ : Tuple = loss / gradient_accumulation_steps
accelerator.backward(SCREAMING_SNAKE_CASE__ )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
UpperCAmelCase_ : Tuple = F"""epoch_{epoch}"""
UpperCAmelCase_ : Optional[int] = os.path.join(args.output_dir, SCREAMING_SNAKE_CASE__ )
accelerator.save_state(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : int = evaluation_loop(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Optional[Any] = accuracy
UpperCAmelCase_ : Any = lr_scheduler.get_lr()[0]
UpperCAmelCase_ : List[str] = optimizer.param_groups[0]['''lr''']
UpperCAmelCase_ : Tuple = epoch
UpperCAmelCase_ : Dict = overall_step
accelerator.print(F"""epoch {epoch}:""", SCREAMING_SNAKE_CASE__ )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir, F"""state_{epoch}.json""" ), '''w''' ) as f:
json.dump(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
def lowerCamelCase_ ( ) -> List[str]:
UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' )
parser.add_argument(
'''--model_name_or_path''', type=SCREAMING_SNAKE_CASE__, default='''bert-base-cased''', help='''Path to pretrained model or model identifier from huggingface.co/models.''', required=SCREAMING_SNAKE_CASE__, )
parser.add_argument(
'''--output_dir''', type=SCREAMING_SNAKE_CASE__, default='''.''', help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''', )
parser.add_argument(
'''--resume_from_checkpoint''', type=SCREAMING_SNAKE_CASE__, default=SCREAMING_SNAKE_CASE__, help='''If the training should continue from a checkpoint folder.''', )
parser.add_argument(
'''--partial_train_epoch''', type=SCREAMING_SNAKE_CASE__, default=SCREAMING_SNAKE_CASE__, help='''If passed, the training will stop after this number of epochs.''', )
parser.add_argument(
'''--num_epochs''', type=SCREAMING_SNAKE_CASE__, default=2, help='''Number of train epochs.''', )
UpperCAmelCase_ : Optional[int] = parser.parse_args()
UpperCAmelCase_ : List[Any] = {'''lr''': 2E-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16}
training_function(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
main()
| 644
| 1
|
'''simple docstring'''
import os
def lowerCamelCase_ ( ) -> str:
with open(os.path.dirname(SCREAMING_SNAKE_CASE__ ) + '''/grid.txt''' ) as f:
UpperCAmelCase_ : Tuple = [] # noqa: E741
for _ in range(20 ):
l.append([int(SCREAMING_SNAKE_CASE__ ) for x in f.readline().split()] )
UpperCAmelCase_ : Optional[Any] = 0
# right
for i in range(20 ):
for j in range(17 ):
UpperCAmelCase_ : str = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3]
if temp > maximum:
UpperCAmelCase_ : Optional[Any] = temp
# down
for i in range(17 ):
for j in range(20 ):
UpperCAmelCase_ : Optional[int] = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j]
if temp > maximum:
UpperCAmelCase_ : Dict = temp
# diagonal 1
for i in range(17 ):
for j in range(17 ):
UpperCAmelCase_ : int = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3]
if temp > maximum:
UpperCAmelCase_ : Tuple = temp
# diagonal 2
for i in range(17 ):
for j in range(3, 20 ):
UpperCAmelCase_ : Tuple = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3]
if temp > maximum:
UpperCAmelCase_ : Optional[int] = temp
return maximum
if __name__ == "__main__":
print(solution())
| 644
|
'''simple docstring'''
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : list[int] ) -> list[list[int]]:
UpperCAmelCase_ : int = []
if len(SCREAMING_SNAKE_CASE__ ) == 1:
return [nums.copy()]
for _ in range(len(SCREAMING_SNAKE_CASE__ ) ):
UpperCAmelCase_ : List[Any] = nums.pop(0 )
UpperCAmelCase_ : Optional[Any] = permute(SCREAMING_SNAKE_CASE__ )
for perm in permutations:
perm.append(SCREAMING_SNAKE_CASE__ )
result.extend(SCREAMING_SNAKE_CASE__ )
nums.append(SCREAMING_SNAKE_CASE__ )
return result
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[str] ) -> Any:
def backtrack(SCREAMING_SNAKE_CASE__ : Union[str, Any] ):
if start == len(SCREAMING_SNAKE_CASE__ ) - 1:
output.append(nums[:] )
else:
for i in range(SCREAMING_SNAKE_CASE__, len(SCREAMING_SNAKE_CASE__ ) ):
UpperCAmelCase_ , UpperCAmelCase_ : Tuple = nums[i], nums[start]
backtrack(start + 1 )
UpperCAmelCase_ , UpperCAmelCase_ : int = nums[i], nums[start] # backtrack
UpperCAmelCase_ : Optional[int] = []
backtrack(0 )
return output
if __name__ == "__main__":
import doctest
# use res to print the data in permute2 function
snake_case_ : Tuple = permutea([1, 2, 3])
print(res)
doctest.testmod()
| 644
| 1
|
'''simple docstring'''
from collections.abc import Iterable
from typing import Any
class __a :
def __init__( self : Optional[Any] , __magic_name__ : int | None = None ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : List[str] = value
UpperCAmelCase_ : Node | None = None # Added in order to delete a node easier
UpperCAmelCase_ : Node | None = None
UpperCAmelCase_ : Node | None = None
def __repr__( self : List[str] ) -> str:
"""simple docstring"""
from pprint import pformat
if self.left is None and self.right is None:
return str(self.value )
return pformat({F"""{self.value}""": (self.left, self.right)} , indent=1 )
class __a :
def __init__( self : int , __magic_name__ : Node | None = None ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : str = root
def __str__( self : Any ) -> str:
"""simple docstring"""
return str(self.root )
def UpperCAmelCase__ ( self : Any , __magic_name__ : Node , __magic_name__ : Node | None ) -> None:
"""simple docstring"""
if new_children is not None: # reset its kids
UpperCAmelCase_ : Dict = node.parent
if node.parent is not None: # reset its parent
if self.is_right(__magic_name__ ): # If it is the right children
UpperCAmelCase_ : Optional[Any] = new_children
else:
UpperCAmelCase_ : Optional[int] = new_children
else:
UpperCAmelCase_ : List[str] = new_children
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Node ) -> bool:
"""simple docstring"""
if node.parent and node.parent.right:
return node == node.parent.right
return False
def UpperCAmelCase__ ( self : Union[str, Any] ) -> bool:
"""simple docstring"""
return self.root is None
def UpperCAmelCase__ ( self : Any , __magic_name__ : str ) -> None:
"""simple docstring"""
UpperCAmelCase_ : Tuple = Node(__magic_name__ ) # create a new Node
if self.empty(): # if Tree is empty
UpperCAmelCase_ : List[Any] = new_node # set its root
else: # Tree is not empty
UpperCAmelCase_ : str = self.root # from root
if parent_node is None:
return
while True: # While we don't get to a leaf
if value < parent_node.value: # We go left
if parent_node.left is None:
UpperCAmelCase_ : Union[str, Any] = new_node # We insert the new node in a leaf
break
else:
UpperCAmelCase_ : List[Any] = parent_node.left
else:
if parent_node.right is None:
UpperCAmelCase_ : List[Any] = new_node
break
else:
UpperCAmelCase_ : Union[str, Any] = parent_node.right
UpperCAmelCase_ : Union[str, Any] = parent_node
def UpperCAmelCase__ ( self : Optional[Any] , *__magic_name__ : List[str] ) -> None:
"""simple docstring"""
for value in values:
self.__insert(__magic_name__ )
def UpperCAmelCase__ ( self : Dict , __magic_name__ : int ) -> Node | None:
"""simple docstring"""
if self.empty():
raise IndexError('''Warning: Tree is empty! please use another.''' )
else:
UpperCAmelCase_ : str = self.root
# use lazy evaluation here to avoid NoneType Attribute error
while node is not None and node.value is not value:
UpperCAmelCase_ : List[str] = node.left if value < node.value else node.right
return node
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : Node | None = None ) -> Node | None:
"""simple docstring"""
if node is None:
if self.root is None:
return None
UpperCAmelCase_ : Dict = self.root
if not self.empty():
while node.right is not None:
UpperCAmelCase_ : Any = node.right
return node
def UpperCAmelCase__ ( self : Dict , __magic_name__ : Node | None = None ) -> Node | None:
"""simple docstring"""
if node is None:
UpperCAmelCase_ : Optional[int] = self.root
if self.root is None:
return None
if not self.empty():
UpperCAmelCase_ : Union[str, Any] = self.root
while node.left is not None:
UpperCAmelCase_ : Dict = node.left
return node
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : int ) -> None:
"""simple docstring"""
UpperCAmelCase_ : List[str] = self.search(__magic_name__ ) # Look for the node with that label
if node is not None:
if node.left is None and node.right is None: # If it has no children
self.__reassign_nodes(__magic_name__ , __magic_name__ )
elif node.left is None: # Has only right children
self.__reassign_nodes(__magic_name__ , node.right )
elif node.right is None: # Has only left children
self.__reassign_nodes(__magic_name__ , node.left )
else:
UpperCAmelCase_ : List[str] = self.get_max(
node.left ) # Gets the max value of the left branch
self.remove(tmp_node.value ) # type: ignore
UpperCAmelCase_ : Optional[int] = (
tmp_node.value # type: ignore
) # Assigns the value to the node to delete and keep tree structure
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Node | None ) -> Iterable:
"""simple docstring"""
if node is not None:
yield node # Preorder Traversal
yield from self.preorder_traverse(node.left )
yield from self.preorder_traverse(node.right )
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : List[Any]=None ) -> Any:
"""simple docstring"""
if traversal_function is None:
return self.preorder_traverse(self.root )
else:
return traversal_function(self.root )
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : list , __magic_name__ : Node | None ) -> None:
"""simple docstring"""
if node:
self.inorder(__magic_name__ , node.left )
arr.append(node.value )
self.inorder(__magic_name__ , node.right )
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : int , __magic_name__ : Node ) -> int:
"""simple docstring"""
UpperCAmelCase_ : list[int] = []
self.inorder(__magic_name__ , __magic_name__ ) # append all values to list using inorder traversal
return arr[k - 1]
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Node | None ) -> list[Node]:
UpperCAmelCase_ : Any = []
if curr_node is not None:
UpperCAmelCase_ : Any = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node]
return node_list
def lowerCamelCase_ ( ) -> None:
UpperCAmelCase_ : str = (8, 3, 6, 1, 10, 14, 13, 4, 7)
UpperCAmelCase_ : Tuple = BinarySearchTree()
for i in testlist:
t.insert(SCREAMING_SNAKE_CASE__ )
# Prints all the elements of the list in order traversal
print(SCREAMING_SNAKE_CASE__ )
if t.search(6 ) is not None:
print('''The value 6 exists''' )
else:
print('''The value 6 doesn\'t exist''' )
if t.search(-1 ) is not None:
print('''The value -1 exists''' )
else:
print('''The value -1 doesn\'t exist''' )
if not t.empty():
print('''Max Value: ''', t.get_max().value ) # type: ignore
print('''Min Value: ''', t.get_min().value ) # type: ignore
for i in testlist:
t.remove(SCREAMING_SNAKE_CASE__ )
print(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
| 644
|
'''simple docstring'''
class __a :
def __init__( self : List[Any] , __magic_name__ : int ) -> None:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = size
UpperCAmelCase_ : Tuple = [0] * size
UpperCAmelCase_ : Optional[Any] = [0] * size
@staticmethod
def UpperCAmelCase__ ( __magic_name__ : int ) -> int:
"""simple docstring"""
return index | (index + 1)
@staticmethod
def UpperCAmelCase__ ( __magic_name__ : int ) -> int:
"""simple docstring"""
return (index & (index + 1)) - 1
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : int , __magic_name__ : int ) -> None:
"""simple docstring"""
UpperCAmelCase_ : int = value
while index < self.size:
UpperCAmelCase_ : str = self.get_prev(__magic_name__ ) + 1
if current_left_border == index:
UpperCAmelCase_ : List[str] = value
else:
UpperCAmelCase_ : Optional[int] = max(__magic_name__ , __magic_name__ , __magic_name__ )
UpperCAmelCase_ : Tuple = self.get_next(__magic_name__ )
def UpperCAmelCase__ ( self : Any , __magic_name__ : int , __magic_name__ : int ) -> int:
"""simple docstring"""
right -= 1 # Because of right is exclusive
UpperCAmelCase_ : List[str] = 0
while left <= right:
UpperCAmelCase_ : Optional[Any] = self.get_prev(__magic_name__ )
if left <= current_left:
UpperCAmelCase_ : Dict = max(__magic_name__ , self.tree[right] )
UpperCAmelCase_ : Optional[Any] = current_left
else:
UpperCAmelCase_ : str = max(__magic_name__ , self.arr[right] )
right -= 1
return result
if __name__ == "__main__":
import doctest
doctest.testmod()
| 644
| 1
|
'''simple docstring'''
import math
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int ) -> bool:
UpperCAmelCase_ : Optional[int] = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 )
return exponent == int(SCREAMING_SNAKE_CASE__ )
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : float = 1 / 12345 ) -> int:
UpperCAmelCase_ : str = 0
UpperCAmelCase_ : int = 0
UpperCAmelCase_ : int = 3
while True:
UpperCAmelCase_ : str = (integer**2 - 1) / 4
# if candidate is an integer, then there is a partition for k
if partition_candidate == int(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase_ : Tuple = int(SCREAMING_SNAKE_CASE__ )
total_partitions += 1
if check_partition_perfect(SCREAMING_SNAKE_CASE__ ):
perfect_partitions += 1
if perfect_partitions > 0:
if perfect_partitions / total_partitions < max_proportion:
return int(SCREAMING_SNAKE_CASE__ )
integer += 1
if __name__ == "__main__":
print(f'''{solution() = }''')
| 644
|
'''simple docstring'''
import math
import unittest
from transformers import BioGptConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptTokenizer,
)
from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST
class __a :
def __init__( self : List[str] , __magic_name__ : List[str] , __magic_name__ : str=13 , __magic_name__ : Union[str, Any]=7 , __magic_name__ : Union[str, Any]=True , __magic_name__ : Any=True , __magic_name__ : List[str]=False , __magic_name__ : Optional[int]=True , __magic_name__ : Dict=99 , __magic_name__ : Tuple=32 , __magic_name__ : int=5 , __magic_name__ : Dict=4 , __magic_name__ : Tuple=37 , __magic_name__ : Optional[int]="gelu" , __magic_name__ : List[str]=0.1 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : str=5_12 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : int=2 , __magic_name__ : List[Any]=0.0_2 , __magic_name__ : Tuple=3 , __magic_name__ : Union[str, Any]=4 , __magic_name__ : Optional[int]=None , ) -> str:
"""simple docstring"""
UpperCAmelCase_ : Any = parent
UpperCAmelCase_ : Union[str, Any] = batch_size
UpperCAmelCase_ : List[Any] = seq_length
UpperCAmelCase_ : str = is_training
UpperCAmelCase_ : Any = use_input_mask
UpperCAmelCase_ : List[str] = use_token_type_ids
UpperCAmelCase_ : Union[str, Any] = use_labels
UpperCAmelCase_ : Dict = vocab_size
UpperCAmelCase_ : Optional[Any] = hidden_size
UpperCAmelCase_ : Dict = num_hidden_layers
UpperCAmelCase_ : List[Any] = num_attention_heads
UpperCAmelCase_ : Optional[int] = intermediate_size
UpperCAmelCase_ : Union[str, Any] = hidden_act
UpperCAmelCase_ : str = hidden_dropout_prob
UpperCAmelCase_ : Optional[Any] = attention_probs_dropout_prob
UpperCAmelCase_ : Any = max_position_embeddings
UpperCAmelCase_ : str = type_vocab_size
UpperCAmelCase_ : Optional[Any] = type_sequence_label_size
UpperCAmelCase_ : List[Any] = initializer_range
UpperCAmelCase_ : int = num_labels
UpperCAmelCase_ : Optional[int] = num_choices
UpperCAmelCase_ : Tuple = scope
def UpperCAmelCase__ ( self : Union[str, Any] ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase_ : Union[str, Any] = None
if self.use_input_mask:
UpperCAmelCase_ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase_ : str = None
if self.use_token_type_ids:
UpperCAmelCase_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase_ : Tuple = None
UpperCAmelCase_ : List[str] = None
UpperCAmelCase_ : Union[str, Any] = None
if self.use_labels:
UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase_ : int = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCAmelCase__ ( self : Any ) -> List[Any]:
"""simple docstring"""
return BioGptConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__magic_name__ , initializer_range=self.initializer_range , )
def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : Tuple , __magic_name__ : str , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = BioGptModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : Dict = model(__magic_name__ , attention_mask=__magic_name__ )
UpperCAmelCase_ : Optional[Any] = model(__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : Dict , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Any , __magic_name__ : Tuple , __magic_name__ : List[str] , __magic_name__ : Optional[int] , ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Dict = BioGptForCausalLM(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : List[Any] = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCAmelCase__ ( self : str , __magic_name__ : Optional[int] , __magic_name__ : Tuple , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : str , *__magic_name__ : Any ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Dict = BioGptModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
# create attention mask
UpperCAmelCase_ : Optional[Any] = torch.ones(input_ids.shape , dtype=torch.long , device=__magic_name__ )
UpperCAmelCase_ : Any = self.seq_length // 2
UpperCAmelCase_ : Tuple = 0
# first forward pass
UpperCAmelCase_ , UpperCAmelCase_ : Dict = model(__magic_name__ , attention_mask=__magic_name__ ).to_tuple()
# create hypothetical next token and extent to next_input_ids
UpperCAmelCase_ : Tuple = ids_tensor((self.batch_size, 1) , config.vocab_size )
# change a random masked slice from input_ids
UpperCAmelCase_ : List[str] = ids_tensor((1,) , __magic_name__ ).item() + 1
UpperCAmelCase_ : Tuple = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 )
UpperCAmelCase_ : str = random_other_next_tokens
# append to next input_ids and attn_mask
UpperCAmelCase_ : Tuple = torch.cat([input_ids, next_tokens] , dim=-1 )
UpperCAmelCase_ : int = torch.cat(
[attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=__magic_name__ )] , dim=1 , )
# get two different outputs
UpperCAmelCase_ : Any = model(__magic_name__ , attention_mask=__magic_name__ )['''last_hidden_state''']
UpperCAmelCase_ : int = model(__magic_name__ , past_key_values=__magic_name__ , attention_mask=__magic_name__ )['''last_hidden_state''']
# select random slice
UpperCAmelCase_ : Optional[int] = ids_tensor((1,) , output_from_past.shape[-1] ).item()
UpperCAmelCase_ : Union[str, Any] = output_from_no_past[:, -1, random_slice_idx].detach()
UpperCAmelCase_ : Dict = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) )
def UpperCAmelCase__ ( self : Dict , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : Dict , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , *__magic_name__ : str ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Dict = BioGptModel(config=__magic_name__ ).to(__magic_name__ ).eval()
UpperCAmelCase_ : Optional[int] = torch.ones(input_ids.shape , dtype=torch.long , device=__magic_name__ )
# first forward pass
UpperCAmelCase_ : Union[str, Any] = model(__magic_name__ , attention_mask=__magic_name__ , use_cache=__magic_name__ )
UpperCAmelCase_ , UpperCAmelCase_ : int = outputs.to_tuple()
# create hypothetical multiple next token and extent to next_input_ids
UpperCAmelCase_ : Any = ids_tensor((self.batch_size, 3) , config.vocab_size )
UpperCAmelCase_ : Any = ids_tensor((self.batch_size, 3) , 2 )
# append to next input_ids and
UpperCAmelCase_ : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1 )
UpperCAmelCase_ : List[str] = torch.cat([attention_mask, next_attn_mask] , dim=-1 )
UpperCAmelCase_ : Any = model(__magic_name__ , attention_mask=__magic_name__ )['''last_hidden_state''']
UpperCAmelCase_ : Optional[Any] = model(__magic_name__ , attention_mask=__magic_name__ , past_key_values=__magic_name__ )[
'''last_hidden_state'''
]
# select random slice
UpperCAmelCase_ : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item()
UpperCAmelCase_ : str = output_from_no_past[:, -3:, random_slice_idx].detach()
UpperCAmelCase_ : Optional[int] = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) )
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : str , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , *__magic_name__ : Any , __magic_name__ : List[Any]=False ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Any = BioGptForCausalLM(__magic_name__ )
model.to(__magic_name__ )
if gradient_checkpointing:
model.gradient_checkpointing_enable()
UpperCAmelCase_ : List[str] = model(__magic_name__ , labels=__magic_name__ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
result.loss.backward()
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Optional[int] , *__magic_name__ : List[str] ) -> str:
"""simple docstring"""
UpperCAmelCase_ : int = BioGptModel(__magic_name__ )
UpperCAmelCase_ : Dict = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers )
for key in model.state_dict().keys():
if "c_proj" in key and "weight" in key:
self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.0_0_1 )
self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.0_1 )
def UpperCAmelCase__ ( self : int , __magic_name__ : Tuple , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] , *__magic_name__ : Any ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : str = self.num_labels
UpperCAmelCase_ : Any = BioGptForTokenClassification(__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : Any = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCAmelCase__ ( self : Optional[Any] ) -> str:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = self.prepare_config_and_inputs()
(
(
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) ,
) : int = config_and_inputs
UpperCAmelCase_ : Any = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class __a (lowerCamelCase , lowerCamelCase , lowerCamelCase , unittest.TestCase ):
__a : str = (
(BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification)
if is_torch_available()
else ()
)
__a : List[Any] = (BioGptForCausalLM,) if is_torch_available() else ()
__a : Union[str, Any] = (
{
"feature-extraction": BioGptModel,
"text-classification": BioGptForSequenceClassification,
"text-generation": BioGptForCausalLM,
"token-classification": BioGptForTokenClassification,
"zero-shot": BioGptForSequenceClassification,
}
if is_torch_available()
else {}
)
__a : List[str] = False
def UpperCAmelCase__ ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : List[str] = BioGptModelTester(self )
UpperCAmelCase_ : Optional[Any] = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 )
def UpperCAmelCase__ ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCAmelCase__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__magic_name__ )
def UpperCAmelCase__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
UpperCAmelCase_ : str = type
self.model_tester.create_and_check_model(*__magic_name__ )
def UpperCAmelCase__ ( self : Optional[int] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_attention_mask_past(*__magic_name__ )
def UpperCAmelCase__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_forward_and_backwards(*__magic_name__ , gradient_checkpointing=__magic_name__ )
def UpperCAmelCase__ ( self : str ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_past_large_inputs(*__magic_name__ )
def UpperCAmelCase__ ( self : Dict ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_weight_initialization(*__magic_name__ )
def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_for_token_classification(*__magic_name__ )
@slow
def UpperCAmelCase__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' )
model.to(__magic_name__ )
UpperCAmelCase_ : List[str] = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' )
UpperCAmelCase_ : Tuple = '''left'''
# Define PAD Token = EOS Token = 50256
UpperCAmelCase_ : List[Any] = tokenizer.eos_token
UpperCAmelCase_ : List[Any] = model.config.eos_token_id
# use different length sentences to test batching
UpperCAmelCase_ : Tuple = [
'''Hello, my dog is a little''',
'''Today, I''',
]
UpperCAmelCase_ : Optional[Any] = tokenizer(__magic_name__ , return_tensors='''pt''' , padding=__magic_name__ )
UpperCAmelCase_ : Optional[Any] = inputs['''input_ids'''].to(__magic_name__ )
UpperCAmelCase_ : Any = model.generate(
input_ids=__magic_name__ , attention_mask=inputs['''attention_mask'''].to(__magic_name__ ) , )
UpperCAmelCase_ : Union[str, Any] = tokenizer(sentences[0] , return_tensors='''pt''' ).input_ids.to(__magic_name__ )
UpperCAmelCase_ : Tuple = model.generate(input_ids=__magic_name__ )
UpperCAmelCase_ : List[str] = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item()
UpperCAmelCase_ : List[Any] = tokenizer(sentences[1] , return_tensors='''pt''' ).input_ids.to(__magic_name__ )
UpperCAmelCase_ : Tuple = model.generate(input_ids=__magic_name__ , max_length=model.config.max_length - num_paddings )
UpperCAmelCase_ : int = tokenizer.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ )
UpperCAmelCase_ : Dict = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__magic_name__ )
UpperCAmelCase_ : Union[str, Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=__magic_name__ )
UpperCAmelCase_ : Optional[Any] = [
'''Hello, my dog is a little bit bigger than a little bit.''',
'''Today, I have a good idea of how to use the information''',
]
self.assertListEqual(__magic_name__ , __magic_name__ )
self.assertListEqual(__magic_name__ , [non_padded_sentence, padded_sentence] )
@slow
def UpperCAmelCase__ ( self : str ) -> Optional[Any]:
"""simple docstring"""
for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase_ : List[Any] = BioGptModel.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
def UpperCAmelCase__ ( self : Tuple ) -> str:
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase_ : List[str] = 3
UpperCAmelCase_ : Tuple = input_dict['''input_ids''']
UpperCAmelCase_ : Dict = input_ids.ne(1 ).to(__magic_name__ )
UpperCAmelCase_ : List[str] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
UpperCAmelCase_ : Dict = BioGptForSequenceClassification(__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : int = model(__magic_name__ , attention_mask=__magic_name__ , labels=__magic_name__ )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase_ : List[Any] = 3
UpperCAmelCase_ : Optional[int] = '''multi_label_classification'''
UpperCAmelCase_ : int = input_dict['''input_ids''']
UpperCAmelCase_ : str = input_ids.ne(1 ).to(__magic_name__ )
UpperCAmelCase_ : Any = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
UpperCAmelCase_ : Union[str, Any] = BioGptForSequenceClassification(__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : str = model(__magic_name__ , attention_mask=__magic_name__ , labels=__magic_name__ )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
@require_torch
class __a (unittest.TestCase ):
@slow
def UpperCAmelCase__ ( self : List[Any] ) -> str:
"""simple docstring"""
UpperCAmelCase_ : str = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' )
UpperCAmelCase_ : List[str] = torch.tensor([[2, 48_05, 9, 6_56, 21]] )
UpperCAmelCase_ : str = model(__magic_name__ )[0]
UpperCAmelCase_ : Optional[int] = 4_23_84
UpperCAmelCase_ : Tuple = torch.Size((1, 5, vocab_size) )
self.assertEqual(output.shape , __magic_name__ )
UpperCAmelCase_ : List[Any] = torch.tensor(
[[[-9.5_2_3_6, -9.8_9_1_8, 1_0.4_5_5_7], [-1_1.0_4_6_9, -9.6_4_2_3, 8.1_0_2_2], [-8.8_6_6_4, -7.8_8_2_6, 5.5_3_2_5]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __magic_name__ , atol=1E-4 ) )
@slow
def UpperCAmelCase__ ( self : Any ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Any = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' )
UpperCAmelCase_ : str = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' )
model.to(__magic_name__ )
torch.manual_seed(0 )
UpperCAmelCase_ : Optional[Any] = tokenizer('''COVID-19 is''' , return_tensors='''pt''' ).to(__magic_name__ )
UpperCAmelCase_ : Optional[int] = model.generate(
**__magic_name__ , min_length=1_00 , max_length=10_24 , num_beams=5 , early_stopping=__magic_name__ , )
UpperCAmelCase_ : int = tokenizer.decode(output_ids[0] , skip_special_tokens=__magic_name__ )
UpperCAmelCase_ : Optional[Any] = (
'''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the'''
''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and'''
''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),'''
''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and'''
''' more than 800,000 deaths.'''
)
self.assertEqual(__magic_name__ , __magic_name__ )
| 644
| 1
|
'''simple docstring'''
import logging
import os
import threading
import time
try:
import warnings
except ImportError:
snake_case_ : Union[str, Any] = None
try:
import msvcrt
except ImportError:
snake_case_ : Optional[Any] = None
try:
import fcntl
except ImportError:
snake_case_ : int = None
# Backward compatibility
# ------------------------------------------------
try:
TimeoutError
except NameError:
snake_case_ : int = OSError
# Data
# ------------------------------------------------
snake_case_ : Optional[int] = [
"Timeout",
"BaseFileLock",
"WindowsFileLock",
"UnixFileLock",
"SoftFileLock",
"FileLock",
]
snake_case_ : int = "3.0.12"
snake_case_ : Optional[Any] = None
def lowerCamelCase_ ( ) -> str:
global _logger
UpperCAmelCase_ : Any = _logger or logging.getLogger(__name__ )
return _logger
class __a (lowerCamelCase ):
def __init__( self : int , __magic_name__ : List[str] ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : int = lock_file
return None
def __str__( self : List[str] ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : Tuple = F"""The file lock '{self.lock_file}' could not be acquired."""
return temp
class __a :
def __init__( self : Optional[int] , __magic_name__ : Optional[int] ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = lock
return None
def __enter__( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
return self.lock
def __exit__( self : str , __magic_name__ : Dict , __magic_name__ : Tuple , __magic_name__ : Tuple ) -> Dict:
"""simple docstring"""
self.lock.release()
return None
class __a :
def __init__( self : Union[str, Any] , __magic_name__ : Union[str, Any] , __magic_name__ : str=-1 , __magic_name__ : Dict=None ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = max_filename_length if max_filename_length is not None else 2_55
# Hash the filename if it's too long
UpperCAmelCase_ : List[Any] = self.hash_filename_if_too_long(__magic_name__ , __magic_name__ )
# The path to the lock file.
UpperCAmelCase_ : str = lock_file
# The file descriptor for the *_lock_file* as it is returned by the
# os.open() function.
# This file lock is only NOT None, if the object currently holds the
# lock.
UpperCAmelCase_ : int = None
# The default timeout value.
UpperCAmelCase_ : Union[str, Any] = timeout
# We use this lock primarily for the lock counter.
UpperCAmelCase_ : Tuple = threading.Lock()
# The lock counter is used for implementing the nested locking
# mechanism. Whenever the lock is acquired, the counter is increased and
# the lock is only released, when this value is 0 again.
UpperCAmelCase_ : int = 0
return None
@property
def UpperCAmelCase__ ( self : List[Any] ) -> Any:
"""simple docstring"""
return self._lock_file
@property
def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
return self._timeout
@timeout.setter
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : str ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : Dict = float(__magic_name__ )
return None
def UpperCAmelCase__ ( self : Union[str, Any] ) -> Any:
"""simple docstring"""
raise NotImplementedError()
def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
raise NotImplementedError()
@property
def UpperCAmelCase__ ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
return self._lock_file_fd is not None
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Optional[Any]=None , __magic_name__ : str=0.0_5 ) -> Optional[int]:
"""simple docstring"""
# Use the default timeout, if no timeout is provided.
if timeout is None:
UpperCAmelCase_ : Optional[Any] = self.timeout
# Increment the number right at the beginning.
# We can still undo it, if something fails.
with self._thread_lock:
self._lock_counter += 1
UpperCAmelCase_ : Optional[Any] = id(self )
UpperCAmelCase_ : List[str] = self._lock_file
UpperCAmelCase_ : List[str] = time.time()
try:
while True:
with self._thread_lock:
if not self.is_locked:
logger().debug(F"""Attempting to acquire lock {lock_id} on {lock_filename}""" )
self._acquire()
if self.is_locked:
logger().debug(F"""Lock {lock_id} acquired on {lock_filename}""" )
break
elif timeout >= 0 and time.time() - start_time > timeout:
logger().debug(F"""Timeout on acquiring lock {lock_id} on {lock_filename}""" )
raise Timeout(self._lock_file )
else:
logger().debug(
F"""Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...""" )
time.sleep(__magic_name__ )
except: # noqa
# Something did go wrong, so decrement the counter.
with self._thread_lock:
UpperCAmelCase_ : Optional[int] = max(0 , self._lock_counter - 1 )
raise
return _Acquire_ReturnProxy(lock=self )
def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : Optional[Any]=False ) -> Tuple:
"""simple docstring"""
with self._thread_lock:
if self.is_locked:
self._lock_counter -= 1
if self._lock_counter == 0 or force:
UpperCAmelCase_ : Optional[Any] = id(self )
UpperCAmelCase_ : Any = self._lock_file
logger().debug(F"""Attempting to release lock {lock_id} on {lock_filename}""" )
self._release()
UpperCAmelCase_ : Optional[Any] = 0
logger().debug(F"""Lock {lock_id} released on {lock_filename}""" )
return None
def __enter__( self : Any ) -> int:
"""simple docstring"""
self.acquire()
return self
def __exit__( self : Tuple , __magic_name__ : Dict , __magic_name__ : Optional[Any] , __magic_name__ : Dict ) -> Dict:
"""simple docstring"""
self.release()
return None
def __del__( self : int ) -> Optional[Any]:
"""simple docstring"""
self.release(force=__magic_name__ )
return None
def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : str , __magic_name__ : int ) -> str:
"""simple docstring"""
UpperCAmelCase_ : Any = os.path.basename(__magic_name__ )
if len(__magic_name__ ) > max_length and max_length > 0:
UpperCAmelCase_ : Dict = os.path.dirname(__magic_name__ )
UpperCAmelCase_ : int = str(hash(__magic_name__ ) )
UpperCAmelCase_ : Any = filename[: max_length - len(__magic_name__ ) - 8] + '''...''' + hashed_filename + '''.lock'''
return os.path.join(__magic_name__ , __magic_name__ )
else:
return path
class __a (lowerCamelCase ):
def __init__( self : Optional[int] , __magic_name__ : int , __magic_name__ : Dict=-1 , __magic_name__ : Tuple=None ) -> Optional[int]:
"""simple docstring"""
from .file_utils import relative_to_absolute_path
super().__init__(__magic_name__ , timeout=__magic_name__ , max_filename_length=__magic_name__ )
UpperCAmelCase_ : List[str] = '''\\\\?\\''' + relative_to_absolute_path(self.lock_file )
def UpperCAmelCase__ ( self : List[Any] ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : str = os.O_RDWR | os.O_CREAT | os.O_TRUNC
try:
UpperCAmelCase_ : Union[str, Any] = os.open(self._lock_file , __magic_name__ )
except OSError:
pass
else:
try:
msvcrt.locking(__magic_name__ , msvcrt.LK_NBLCK , 1 )
except OSError:
os.close(__magic_name__ )
else:
UpperCAmelCase_ : Any = fd
return None
def UpperCAmelCase__ ( self : Union[str, Any] ) -> str:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = self._lock_file_fd
UpperCAmelCase_ : Union[str, Any] = None
msvcrt.locking(__magic_name__ , msvcrt.LK_UNLCK , 1 )
os.close(__magic_name__ )
try:
os.remove(self._lock_file )
# Probably another instance of the application
# that acquired the file lock.
except OSError:
pass
return None
class __a (lowerCamelCase ):
def __init__( self : List[Any] , __magic_name__ : Tuple , __magic_name__ : List[str]=-1 , __magic_name__ : List[str]=None ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : int = os.statvfs(os.path.dirname(__magic_name__ ) ).f_namemax
super().__init__(__magic_name__ , timeout=__magic_name__ , max_filename_length=__magic_name__ )
def UpperCAmelCase__ ( self : List[Any] ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : str = os.O_RDWR | os.O_CREAT | os.O_TRUNC
UpperCAmelCase_ : Union[str, Any] = os.open(self._lock_file , __magic_name__ )
try:
fcntl.flock(__magic_name__ , fcntl.LOCK_EX | fcntl.LOCK_NB )
except OSError:
os.close(__magic_name__ )
else:
UpperCAmelCase_ : str = fd
return None
def UpperCAmelCase__ ( self : Any ) -> Optional[int]:
"""simple docstring"""
# Do not remove the lockfile:
#
# https://github.com/benediktschmitt/py-filelock/issues/31
# https://stackoverflow.com/questions/17708885/flock-removing-locked-file-without-race-condition
UpperCAmelCase_ : Optional[int] = self._lock_file_fd
UpperCAmelCase_ : List[Any] = None
fcntl.flock(__magic_name__ , fcntl.LOCK_UN )
os.close(__magic_name__ )
return None
class __a (lowerCamelCase ):
def UpperCAmelCase__ ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : List[str] = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC
try:
UpperCAmelCase_ : Tuple = os.open(self._lock_file , __magic_name__ )
except OSError:
pass
else:
UpperCAmelCase_ : Optional[Any] = fd
return None
def UpperCAmelCase__ ( self : Any ) -> Optional[int]:
"""simple docstring"""
os.close(self._lock_file_fd )
UpperCAmelCase_ : Tuple = None
try:
os.remove(self._lock_file )
# The file is already deleted and that's what we want.
except OSError:
pass
return None
snake_case_ : List[str] = None
if msvcrt:
snake_case_ : int = WindowsFileLock
elif fcntl:
snake_case_ : Any = UnixFileLock
else:
snake_case_ : Dict = SoftFileLock
if warnings is not None:
warnings.warn("only soft file lock is available")
| 644
|
'''simple docstring'''
import json
import os
import unittest
from transformers.models.blenderbot_small.tokenization_blenderbot_small import (
VOCAB_FILES_NAMES,
BlenderbotSmallTokenizer,
)
from ...test_tokenization_common import TokenizerTesterMixin
class __a (lowerCamelCase , unittest.TestCase ):
__a : List[str] = BlenderbotSmallTokenizer
__a : List[Any] = False
def UpperCAmelCase__ ( self : str ) -> str:
"""simple docstring"""
super().setUp()
UpperCAmelCase_ : Tuple = ['''__start__''', '''adapt''', '''act''', '''ap@@''', '''te''', '''__end__''', '''__unk__''']
UpperCAmelCase_ : Optional[Any] = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) )
UpperCAmelCase_ : int = ['''#version: 0.2''', '''a p''', '''t e</w>''', '''ap t</w>''', '''a d''', '''ad apt</w>''', '''a c''', '''ac t</w>''', '''''']
UpperCAmelCase_ : Optional[Any] = {'''unk_token''': '''__unk__''', '''bos_token''': '''__start__''', '''eos_token''': '''__end__'''}
UpperCAmelCase_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
UpperCAmelCase_ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(__magic_name__ ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(__magic_name__ ) )
def UpperCAmelCase__ ( self : List[Any] , **__magic_name__ : Dict ) -> Tuple:
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **__magic_name__ )
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : List[str] ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : str = '''adapt act apte'''
UpperCAmelCase_ : Tuple = '''adapt act apte'''
return input_text, output_text
def UpperCAmelCase__ ( self : str ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : str = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map )
UpperCAmelCase_ : List[Any] = '''adapt act apte'''
UpperCAmelCase_ : Dict = ['''adapt''', '''act''', '''ap@@''', '''te''']
UpperCAmelCase_ : Dict = tokenizer.tokenize(__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
UpperCAmelCase_ : Tuple = [tokenizer.bos_token] + tokens + [tokenizer.eos_token]
UpperCAmelCase_ : Dict = [0, 1, 2, 3, 4, 5]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , __magic_name__ )
def UpperCAmelCase__ ( self : int ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' )
assert tok('''sam''' ).input_ids == [13_84]
UpperCAmelCase_ : Optional[int] = '''I am a small frog.'''
UpperCAmelCase_ : List[str] = tok([src_text] , padding=__magic_name__ , truncation=__magic_name__ )['''input_ids''']
UpperCAmelCase_ : Dict = tok.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ , clean_up_tokenization_spaces=__magic_name__ )[0]
assert src_text != decoded # I wish it did!
assert decoded == "i am a small frog ."
def UpperCAmelCase__ ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : int = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' )
UpperCAmelCase_ : List[Any] = '''I am a small frog .'''
UpperCAmelCase_ : Any = '''.'''
UpperCAmelCase_ : List[Any] = tok(__magic_name__ )['''input_ids''']
UpperCAmelCase_ : Optional[int] = tok(__magic_name__ )['''input_ids''']
assert encoded[-1] == encoded_dot[0]
| 644
| 1
|
'''simple docstring'''
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
snake_case_ : Dict = logging.get_logger(__name__)
snake_case_ : Optional[int] = {"vocab_file": "spiece.model"}
snake_case_ : List[str] = {
"vocab_file": {
"bert_for_seq_generation": (
"https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model"
),
}
}
snake_case_ : Union[str, Any] = {"bert_for_seq_generation": 5_12}
class __a (lowerCamelCase ):
__a : Any = VOCAB_FILES_NAMES
__a : Dict = PRETRAINED_VOCAB_FILES_MAP
__a : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__a : List[int] = []
__a : Optional[Any] = ["input_ids", "attention_mask"]
def __init__( self : Dict , __magic_name__ : int , __magic_name__ : Union[str, Any]="<s>" , __magic_name__ : List[Any]="</s>" , __magic_name__ : Tuple="<unk>" , __magic_name__ : List[str]="<pad>" , __magic_name__ : Optional[int]="<::::>" , __magic_name__ : Optional[Dict[str, Any]] = None , **__magic_name__ : int , ) -> None:
"""simple docstring"""
UpperCAmelCase_ : int = {} if sp_model_kwargs is None else sp_model_kwargs
# Add extra_ids to the special token list
super().__init__(
bos_token=__magic_name__ , eos_token=__magic_name__ , unk_token=__magic_name__ , pad_token=__magic_name__ , sep_token=__magic_name__ , sp_model_kwargs=self.sp_model_kwargs , **__magic_name__ , )
UpperCAmelCase_ : int = vocab_file
UpperCAmelCase_ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(__magic_name__ )
@property
def UpperCAmelCase__ ( self : List[str] ) -> List[str]:
"""simple docstring"""
return self.sp_model.get_piece_size()
def UpperCAmelCase__ ( self : str ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : List[str] = {self.convert_ids_to_tokens(__magic_name__ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Optional[int] ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : str = self.__dict__.copy()
UpperCAmelCase_ : List[str] = None
return state
def __setstate__( self : Any , __magic_name__ : str ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : str = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
UpperCAmelCase_ : List[str] = {}
UpperCAmelCase_ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def UpperCAmelCase__ ( self : str , __magic_name__ : str ) -> List[str]:
"""simple docstring"""
return self.sp_model.encode(__magic_name__ , out_type=__magic_name__ )
def UpperCAmelCase__ ( self : Any , __magic_name__ : int ) -> List[str]:
"""simple docstring"""
return self.sp_model.piece_to_id(__magic_name__ )
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Union[str, Any] ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : List[str] = self.sp_model.IdToPiece(__magic_name__ )
return token
def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : Optional[int] ) -> int:
"""simple docstring"""
UpperCAmelCase_ : int = []
UpperCAmelCase_ : Any = ''''''
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
out_string += self.sp_model.decode(__magic_name__ ) + token
UpperCAmelCase_ : Optional[int] = []
else:
current_sub_tokens.append(__magic_name__ )
out_string += self.sp_model.decode(__magic_name__ )
return out_string.strip()
def UpperCAmelCase__ ( self : int , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
if not os.path.isdir(__magic_name__ ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
UpperCAmelCase_ : Any = os.path.join(
__magic_name__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__magic_name__ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __magic_name__ )
elif not os.path.isfile(self.vocab_file ):
with open(__magic_name__ , '''wb''' ) as fi:
UpperCAmelCase_ : Optional[int] = self.sp_model.serialized_model_proto()
fi.write(__magic_name__ )
return (out_vocab_file,)
| 644
|
'''simple docstring'''
import unittest
import torch
from torch import nn
from diffusers.models.activations import get_activation
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : Dict ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : Dict = get_activation('''swish''' )
self.assertIsInstance(__magic_name__ , nn.SiLU )
self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
def UpperCAmelCase__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = get_activation('''silu''' )
self.assertIsInstance(__magic_name__ , nn.SiLU )
self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
def UpperCAmelCase__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = get_activation('''mish''' )
self.assertIsInstance(__magic_name__ , nn.Mish )
self.assertEqual(act(torch.tensor(-2_00 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
def UpperCAmelCase__ ( self : str ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = get_activation('''gelu''' )
self.assertIsInstance(__magic_name__ , nn.GELU )
self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
| 644
| 1
|
'''simple docstring'''
from argparse import ArgumentParser
from datasets.commands.convert import ConvertCommand
from datasets.commands.dummy_data import DummyDataCommand
from datasets.commands.env import EnvironmentCommand
from datasets.commands.run_beam import RunBeamCommand
from datasets.commands.test import TestCommand
from datasets.utils.logging import set_verbosity_info
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Dict ) -> Optional[Any]:
return {key.lstrip('''-''' ): value for key, value in zip(unknown_args[::2], unknown_args[1::2] )}
def lowerCamelCase_ ( ) -> List[str]:
UpperCAmelCase_ : Optional[Any] = ArgumentParser(
'''HuggingFace Datasets CLI tool''', usage='''datasets-cli <command> [<args>]''', allow_abbrev=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : List[str] = parser.add_subparsers(help='''datasets-cli command helpers''' )
set_verbosity_info()
# Register commands
ConvertCommand.register_subcommand(SCREAMING_SNAKE_CASE__ )
EnvironmentCommand.register_subcommand(SCREAMING_SNAKE_CASE__ )
TestCommand.register_subcommand(SCREAMING_SNAKE_CASE__ )
RunBeamCommand.register_subcommand(SCREAMING_SNAKE_CASE__ )
DummyDataCommand.register_subcommand(SCREAMING_SNAKE_CASE__ )
# Parse args
UpperCAmelCase_ , UpperCAmelCase_ : int = parser.parse_known_args()
if not hasattr(SCREAMING_SNAKE_CASE__, '''func''' ):
parser.print_help()
exit(1 )
UpperCAmelCase_ : int = parse_unknown_args(SCREAMING_SNAKE_CASE__ )
# Run
UpperCAmelCase_ : Dict = args.func(SCREAMING_SNAKE_CASE__, **SCREAMING_SNAKE_CASE__ )
service.run()
if __name__ == "__main__":
main()
| 644
|
'''simple docstring'''
from typing import List, Optional, Union
import numpy as np
import PIL.Image
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import rescale, resize, to_channel_dimension_format
from ...image_utils import (
ChannelDimension,
PILImageResampling,
get_image_size,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
snake_case_ : Union[str, Any] = logging.get_logger(__name__)
class __a (lowerCamelCase ):
__a : Tuple = ["pixel_values"]
def __init__( self : List[Any] , __magic_name__ : bool = True , __magic_name__ : int = 32 , __magic_name__ : Union[str, Any]=PILImageResampling.BILINEAR , __magic_name__ : bool = True , **__magic_name__ : List[str] , ) -> None:
"""simple docstring"""
UpperCAmelCase_ : int = do_resize
UpperCAmelCase_ : Tuple = do_rescale
UpperCAmelCase_ : List[Any] = size_divisor
UpperCAmelCase_ : Any = resample
super().__init__(**__magic_name__ )
def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : np.ndarray , __magic_name__ : int , __magic_name__ : str , __magic_name__ : Optional[ChannelDimension] = None , **__magic_name__ : Tuple ) -> np.ndarray:
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : List[str] = get_image_size(__magic_name__ )
# Rounds the height and width down to the closest multiple of size_divisor
UpperCAmelCase_ : Dict = height // size_divisor * size_divisor
UpperCAmelCase_ : Dict = width // size_divisor * size_divisor
UpperCAmelCase_ : Any = resize(__magic_name__ , (new_h, new_w) , resample=__magic_name__ , data_format=__magic_name__ , **__magic_name__ )
return image
def UpperCAmelCase__ ( self : int , __magic_name__ : np.ndarray , __magic_name__ : float , __magic_name__ : Optional[ChannelDimension] = None , **__magic_name__ : Optional[Any] ) -> np.ndarray:
"""simple docstring"""
return rescale(image=__magic_name__ , scale=__magic_name__ , data_format=__magic_name__ , **__magic_name__ )
def UpperCAmelCase__ ( self : str , __magic_name__ : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[int] = None , __magic_name__ : Any=None , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[Union[TensorType, str]] = None , __magic_name__ : ChannelDimension = ChannelDimension.FIRST , **__magic_name__ : Tuple , ) -> BatchFeature:
"""simple docstring"""
UpperCAmelCase_ : Dict = do_resize if do_resize is not None else self.do_resize
UpperCAmelCase_ : str = do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase_ : Any = size_divisor if size_divisor is not None else self.size_divisor
UpperCAmelCase_ : Dict = resample if resample is not None else self.resample
if do_resize and size_divisor is None:
raise ValueError('''size_divisor is required for resizing''' )
UpperCAmelCase_ : Optional[int] = make_list_of_images(__magic_name__ )
if not valid_images(__magic_name__ ):
raise ValueError('''Invalid image(s)''' )
# All transformations expect numpy arrays.
UpperCAmelCase_ : List[str] = [to_numpy_array(__magic_name__ ) for img in images]
if do_resize:
UpperCAmelCase_ : str = [self.resize(__magic_name__ , size_divisor=__magic_name__ , resample=__magic_name__ ) for image in images]
if do_rescale:
UpperCAmelCase_ : Tuple = [self.rescale(__magic_name__ , scale=1 / 2_55 ) for image in images]
UpperCAmelCase_ : Union[str, Any] = [to_channel_dimension_format(__magic_name__ , __magic_name__ ) for image in images]
UpperCAmelCase_ : int = {'''pixel_values''': images}
return BatchFeature(data=__magic_name__ , tensor_type=__magic_name__ )
| 644
| 1
|
'''simple docstring'''
import inspect
import unittest
from transformers import DPTConfig
from transformers.file_utils import is_torch_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel
from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import DPTImageProcessor
class __a :
def __init__( self : str , __magic_name__ : List[str] , __magic_name__ : Optional[int]=2 , __magic_name__ : Dict=32 , __magic_name__ : Optional[Any]=16 , __magic_name__ : int=3 , __magic_name__ : Dict=True , __magic_name__ : List[str]=True , __magic_name__ : Tuple=32 , __magic_name__ : str=4 , __magic_name__ : List[Any]=[0, 1, 2, 3] , __magic_name__ : Any=4 , __magic_name__ : Optional[Any]=37 , __magic_name__ : List[str]="gelu" , __magic_name__ : Any=0.1 , __magic_name__ : str=0.1 , __magic_name__ : Optional[int]=0.0_2 , __magic_name__ : str=3 , __magic_name__ : List[str]=[1, 3_84, 24, 24] , __magic_name__ : List[Any]=True , __magic_name__ : int=None , ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : Dict = parent
UpperCAmelCase_ : Union[str, Any] = batch_size
UpperCAmelCase_ : Union[str, Any] = image_size
UpperCAmelCase_ : Optional[int] = patch_size
UpperCAmelCase_ : List[Any] = num_channels
UpperCAmelCase_ : Optional[int] = is_training
UpperCAmelCase_ : Tuple = use_labels
UpperCAmelCase_ : List[str] = hidden_size
UpperCAmelCase_ : Optional[Any] = num_hidden_layers
UpperCAmelCase_ : str = backbone_out_indices
UpperCAmelCase_ : Tuple = num_attention_heads
UpperCAmelCase_ : List[Any] = intermediate_size
UpperCAmelCase_ : Optional[Any] = hidden_act
UpperCAmelCase_ : Union[str, Any] = hidden_dropout_prob
UpperCAmelCase_ : Tuple = attention_probs_dropout_prob
UpperCAmelCase_ : List[Any] = initializer_range
UpperCAmelCase_ : List[str] = num_labels
UpperCAmelCase_ : int = backbone_featmap_shape
UpperCAmelCase_ : Optional[Any] = scope
UpperCAmelCase_ : str = is_hybrid
# sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token)
UpperCAmelCase_ : Union[str, Any] = (image_size // patch_size) ** 2
UpperCAmelCase_ : Optional[Any] = num_patches + 1
def UpperCAmelCase__ ( self : Any ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase_ : int = None
if self.use_labels:
UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
UpperCAmelCase_ : Optional[Any] = self.get_config()
return config, pixel_values, labels
def UpperCAmelCase__ ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = {
'''global_padding''': '''same''',
'''layer_type''': '''bottleneck''',
'''depths''': [3, 4, 9],
'''out_features''': ['''stage1''', '''stage2''', '''stage3'''],
'''embedding_dynamic_padding''': True,
'''hidden_sizes''': [96, 1_92, 3_84, 7_68],
'''num_groups''': 2,
}
return DPTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__magic_name__ , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=__magic_name__ , backbone_featmap_shape=self.backbone_featmap_shape , )
def UpperCAmelCase__ ( self : int , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : str = DPTModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : Tuple = model(__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : Tuple , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = self.num_labels
UpperCAmelCase_ : Optional[int] = DPTForDepthEstimation(__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : Optional[Any] = model(__magic_name__ )
self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) )
def UpperCAmelCase__ ( self : int , __magic_name__ : str , __magic_name__ : Dict , __magic_name__ : int ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = self.num_labels
UpperCAmelCase_ : Optional[Any] = DPTForSemanticSegmentation(__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : Tuple = model(__magic_name__ , labels=__magic_name__ )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) )
def UpperCAmelCase__ ( self : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = self.prepare_config_and_inputs()
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Dict = config_and_inputs
UpperCAmelCase_ : Optional[int] = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class __a (lowerCamelCase , lowerCamelCase , unittest.TestCase ):
__a : int = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else ()
__a : Tuple = (
{
"depth-estimation": DPTForDepthEstimation,
"feature-extraction": DPTModel,
"image-segmentation": DPTForSemanticSegmentation,
}
if is_torch_available()
else {}
)
__a : List[str] = False
__a : List[str] = False
__a : Union[str, Any] = False
def UpperCAmelCase__ ( self : Any ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : Dict = DPTModelTester(self )
UpperCAmelCase_ : List[str] = ConfigTester(self , config_class=__magic_name__ , has_text_modality=__magic_name__ , hidden_size=37 )
def UpperCAmelCase__ ( self : Dict ) -> List[str]:
"""simple docstring"""
self.config_tester.run_common_tests()
@unittest.skip(reason='''DPT does not use inputs_embeds''' )
def UpperCAmelCase__ ( self : Optional[int] ) -> str:
"""simple docstring"""
pass
def UpperCAmelCase__ ( self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ : str = model_class(__magic_name__ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
UpperCAmelCase_ : Tuple = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__magic_name__ , nn.Linear ) )
def UpperCAmelCase__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ : Tuple = model_class(__magic_name__ )
UpperCAmelCase_ : Dict = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase_ : str = [*signature.parameters.keys()]
UpperCAmelCase_ : Dict = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , __magic_name__ )
def UpperCAmelCase__ ( self : Dict ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__magic_name__ )
def UpperCAmelCase__ ( self : Optional[int] ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_depth_estimation(*__magic_name__ )
def UpperCAmelCase__ ( self : List[str] ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*__magic_name__ )
def UpperCAmelCase__ ( self : Optional[Any] ) -> str:
"""simple docstring"""
for model_class in self.all_model_classes:
if model_class.__name__ == "DPTForDepthEstimation":
continue
UpperCAmelCase_ , UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase_ : List[str] = True
if model_class in get_values(__magic_name__ ):
continue
UpperCAmelCase_ : List[Any] = model_class(__magic_name__ )
model.to(__magic_name__ )
model.train()
UpperCAmelCase_ : Tuple = self._prepare_for_class(__magic_name__ , __magic_name__ , return_labels=__magic_name__ )
UpperCAmelCase_ : Dict = model(**__magic_name__ ).loss
loss.backward()
def UpperCAmelCase__ ( self : Union[str, Any] ) -> List[str]:
"""simple docstring"""
for model_class in self.all_model_classes:
if model_class.__name__ == "DPTForDepthEstimation":
continue
UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase_ : List[Any] = False
UpperCAmelCase_ : int = True
if model_class in get_values(__magic_name__ ) or not model_class.supports_gradient_checkpointing:
continue
UpperCAmelCase_ : Optional[Any] = model_class(__magic_name__ )
model.to(__magic_name__ )
model.gradient_checkpointing_enable()
model.train()
UpperCAmelCase_ : int = self._prepare_for_class(__magic_name__ , __magic_name__ , return_labels=__magic_name__ )
UpperCAmelCase_ : int = model(**__magic_name__ ).loss
loss.backward()
def UpperCAmelCase__ ( self : List[str] ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase_ : str = _config_zero_init(__magic_name__ )
for model_class in self.all_model_classes:
UpperCAmelCase_ : int = model_class(config=__magic_name__ )
# Skip the check for the backbone
UpperCAmelCase_ : Optional[int] = []
for name, module in model.named_modules():
if module.__class__.__name__ == "DPTViTHybridEmbeddings":
UpperCAmelCase_ : Any = [F"""{name}.{key}""" for key in module.state_dict().keys()]
break
for name, param in model.named_parameters():
if param.requires_grad:
if name in backbone_params:
continue
self.assertIn(
((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , )
@unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' )
def UpperCAmelCase__ ( self : Optional[int] ) -> List[Any]:
"""simple docstring"""
pass
@slow
def UpperCAmelCase__ ( self : List[Any] ) -> Optional[Any]:
"""simple docstring"""
for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]:
UpperCAmelCase_ : Tuple = DPTModel.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
def UpperCAmelCase__ ( self : List[Any] ) -> List[str]:
"""simple docstring"""
# We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type
UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase_ : Optional[int] = '''add'''
with self.assertRaises(__magic_name__ ):
UpperCAmelCase_ : Union[str, Any] = DPTForDepthEstimation(__magic_name__ )
def lowerCamelCase_ ( ) -> Any:
UpperCAmelCase_ : Union[str, Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
@slow
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : Dict = DPTImageProcessor.from_pretrained('''Intel/dpt-hybrid-midas''' )
UpperCAmelCase_ : Any = DPTForDepthEstimation.from_pretrained('''Intel/dpt-hybrid-midas''' ).to(__magic_name__ )
UpperCAmelCase_ : List[Any] = prepare_img()
UpperCAmelCase_ : Tuple = image_processor(images=__magic_name__ , return_tensors='''pt''' ).to(__magic_name__ )
# forward pass
with torch.no_grad():
UpperCAmelCase_ : int = model(**__magic_name__ )
UpperCAmelCase_ : Optional[int] = outputs.predicted_depth
# verify the predicted depth
UpperCAmelCase_ : Optional[int] = torch.Size((1, 3_84, 3_84) )
self.assertEqual(predicted_depth.shape , __magic_name__ )
UpperCAmelCase_ : List[str] = torch.tensor(
[[[5.6_4_3_7, 5.6_1_4_6, 5.6_5_1_1], [5.4_3_7_1, 5.5_6_4_9, 5.5_9_5_8], [5.5_2_1_5, 5.5_1_8_4, 5.5_2_9_3]]] ).to(__magic_name__ )
self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 1_00 , __magic_name__ , atol=1E-4 ) )
| 644
|
'''simple docstring'''
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int = 10, SCREAMING_SNAKE_CASE__ : int = 22 ) -> int:
UpperCAmelCase_ : Optional[int] = range(1, SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : List[Any] = range(1, SCREAMING_SNAKE_CASE__ )
return sum(
1 for power in powers for base in bases if len(str(base**power ) ) == power )
if __name__ == "__main__":
print(f'''{solution(10, 22) = }''')
| 644
| 1
|
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import CLIPImageProcessor, CLIPProcessor
@require_vision
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = tempfile.mkdtemp()
# fmt: off
UpperCAmelCase_ : Dict = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>''']
# fmt: on
UpperCAmelCase_ : List[Any] = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) )
UpperCAmelCase_ : List[Any] = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', '''''']
UpperCAmelCase_ : Tuple = {'''unk_token''': '''<unk>'''}
UpperCAmelCase_ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
UpperCAmelCase_ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(__magic_name__ ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(__magic_name__ ) )
UpperCAmelCase_ : List[Any] = {
'''do_resize''': True,
'''size''': 20,
'''do_center_crop''': True,
'''crop_size''': 18,
'''do_normalize''': True,
'''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3],
'''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1],
}
UpperCAmelCase_ : Union[str, Any] = os.path.join(self.tmpdirname , __magic_name__ )
with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp:
json.dump(__magic_name__ , __magic_name__ )
def UpperCAmelCase__ ( self : Optional[int] , **__magic_name__ : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
return CLIPTokenizer.from_pretrained(self.tmpdirname , **__magic_name__ )
def UpperCAmelCase__ ( self : int , **__magic_name__ : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **__magic_name__ )
def UpperCAmelCase__ ( self : List[Any] , **__magic_name__ : List[str] ) -> int:
"""simple docstring"""
return CLIPImageProcessor.from_pretrained(self.tmpdirname , **__magic_name__ )
def UpperCAmelCase__ ( self : int ) -> str:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def UpperCAmelCase__ ( self : Tuple ) -> int:
"""simple docstring"""
UpperCAmelCase_ : List[str] = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
UpperCAmelCase_ : Tuple = [Image.fromarray(np.moveaxis(__magic_name__ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = self.get_tokenizer()
UpperCAmelCase_ : Optional[int] = self.get_rust_tokenizer()
UpperCAmelCase_ : Union[str, Any] = self.get_image_processor()
UpperCAmelCase_ : Optional[int] = CLIPProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ )
processor_slow.save_pretrained(self.tmpdirname )
UpperCAmelCase_ : int = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=__magic_name__ )
UpperCAmelCase_ : Union[str, Any] = CLIPProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ )
processor_fast.save_pretrained(self.tmpdirname )
UpperCAmelCase_ : int = CLIPProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , __magic_name__ )
self.assertIsInstance(processor_fast.tokenizer , __magic_name__ )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , __magic_name__ )
self.assertIsInstance(processor_fast.image_processor , __magic_name__ )
def UpperCAmelCase__ ( self : Any ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Any = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
UpperCAmelCase_ : Any = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' )
UpperCAmelCase_ : Union[str, Any] = self.get_image_processor(do_normalize=__magic_name__ , padding_value=1.0 )
UpperCAmelCase_ : Any = CLIPProcessor.from_pretrained(
self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__magic_name__ , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , __magic_name__ )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __magic_name__ )
def UpperCAmelCase__ ( self : List[str] ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = self.get_image_processor()
UpperCAmelCase_ : Optional[int] = self.get_tokenizer()
UpperCAmelCase_ : Tuple = CLIPProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ )
UpperCAmelCase_ : List[Any] = self.prepare_image_inputs()
UpperCAmelCase_ : Dict = image_processor(__magic_name__ , return_tensors='''np''' )
UpperCAmelCase_ : Dict = processor(images=__magic_name__ , return_tensors='''np''' )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 )
def UpperCAmelCase__ ( self : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : List[str] = self.get_image_processor()
UpperCAmelCase_ : Optional[Any] = self.get_tokenizer()
UpperCAmelCase_ : Any = CLIPProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ )
UpperCAmelCase_ : int = '''lower newer'''
UpperCAmelCase_ : str = processor(text=__magic_name__ )
UpperCAmelCase_ : Union[str, Any] = tokenizer(__magic_name__ )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def UpperCAmelCase__ ( self : int ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = self.get_image_processor()
UpperCAmelCase_ : Dict = self.get_tokenizer()
UpperCAmelCase_ : List[str] = CLIPProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ )
UpperCAmelCase_ : List[Any] = '''lower newer'''
UpperCAmelCase_ : List[Any] = self.prepare_image_inputs()
UpperCAmelCase_ : Optional[int] = processor(text=__magic_name__ , images=__magic_name__ )
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] )
# test if it raises when no input is passed
with pytest.raises(__magic_name__ ):
processor()
def UpperCAmelCase__ ( self : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : Any = self.get_image_processor()
UpperCAmelCase_ : List[Any] = self.get_tokenizer()
UpperCAmelCase_ : Optional[Any] = CLIPProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ )
UpperCAmelCase_ : Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
UpperCAmelCase_ : Dict = processor.batch_decode(__magic_name__ )
UpperCAmelCase_ : List[str] = tokenizer.batch_decode(__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
def UpperCAmelCase__ ( self : str ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : Dict = self.get_image_processor()
UpperCAmelCase_ : Optional[Any] = self.get_tokenizer()
UpperCAmelCase_ : Tuple = CLIPProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ )
UpperCAmelCase_ : List[str] = '''lower newer'''
UpperCAmelCase_ : Any = self.prepare_image_inputs()
UpperCAmelCase_ : Tuple = processor(text=__magic_name__ , images=__magic_name__ )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 644
|
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
import torch
from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor
from ..utils import requires_backends
from .base import PipelineTool
if TYPE_CHECKING:
from PIL import Image
class __a (lowerCamelCase ):
__a : int = "dandelin/vilt-b32-finetuned-vqa"
__a : Any = (
"This is a tool that answers a question about an image. It takes an input named `image` which should be the "
"image containing the information, as well as a `question` which should be the question in English. It "
"returns a text that is the answer to the question."
)
__a : Any = "image_qa"
__a : str = AutoProcessor
__a : Any = AutoModelForVisualQuestionAnswering
__a : List[Any] = ["image", "text"]
__a : int = ["text"]
def __init__( self : Tuple , *__magic_name__ : Any , **__magic_name__ : Any ) -> Tuple:
"""simple docstring"""
requires_backends(self , ['''vision'''] )
super().__init__(*__magic_name__ , **__magic_name__ )
def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : "Image" , __magic_name__ : str ) -> Tuple:
"""simple docstring"""
return self.pre_processor(__magic_name__ , __magic_name__ , return_tensors='''pt''' )
def UpperCAmelCase__ ( self : Any , __magic_name__ : List[str] ) -> Optional[Any]:
"""simple docstring"""
with torch.no_grad():
return self.model(**__magic_name__ ).logits
def UpperCAmelCase__ ( self : int , __magic_name__ : int ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Dict = outputs.argmax(-1 ).item()
return self.model.config.idalabel[idx]
| 644
| 1
|
'''simple docstring'''
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : list[int] ) -> list[list[int]]:
UpperCAmelCase_ : int = []
if len(SCREAMING_SNAKE_CASE__ ) == 1:
return [nums.copy()]
for _ in range(len(SCREAMING_SNAKE_CASE__ ) ):
UpperCAmelCase_ : List[Any] = nums.pop(0 )
UpperCAmelCase_ : Optional[Any] = permute(SCREAMING_SNAKE_CASE__ )
for perm in permutations:
perm.append(SCREAMING_SNAKE_CASE__ )
result.extend(SCREAMING_SNAKE_CASE__ )
nums.append(SCREAMING_SNAKE_CASE__ )
return result
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[str] ) -> Any:
def backtrack(SCREAMING_SNAKE_CASE__ : Union[str, Any] ):
if start == len(SCREAMING_SNAKE_CASE__ ) - 1:
output.append(nums[:] )
else:
for i in range(SCREAMING_SNAKE_CASE__, len(SCREAMING_SNAKE_CASE__ ) ):
UpperCAmelCase_ , UpperCAmelCase_ : Tuple = nums[i], nums[start]
backtrack(start + 1 )
UpperCAmelCase_ , UpperCAmelCase_ : int = nums[i], nums[start] # backtrack
UpperCAmelCase_ : Optional[int] = []
backtrack(0 )
return output
if __name__ == "__main__":
import doctest
# use res to print the data in permute2 function
snake_case_ : Tuple = permutea([1, 2, 3])
print(res)
doctest.testmod()
| 644
|
'''simple docstring'''
from collections.abc import Iterable
from typing import Any
class __a :
def __init__( self : Optional[Any] , __magic_name__ : int | None = None ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : List[str] = value
UpperCAmelCase_ : Node | None = None # Added in order to delete a node easier
UpperCAmelCase_ : Node | None = None
UpperCAmelCase_ : Node | None = None
def __repr__( self : List[str] ) -> str:
"""simple docstring"""
from pprint import pformat
if self.left is None and self.right is None:
return str(self.value )
return pformat({F"""{self.value}""": (self.left, self.right)} , indent=1 )
class __a :
def __init__( self : int , __magic_name__ : Node | None = None ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : str = root
def __str__( self : Any ) -> str:
"""simple docstring"""
return str(self.root )
def UpperCAmelCase__ ( self : Any , __magic_name__ : Node , __magic_name__ : Node | None ) -> None:
"""simple docstring"""
if new_children is not None: # reset its kids
UpperCAmelCase_ : Dict = node.parent
if node.parent is not None: # reset its parent
if self.is_right(__magic_name__ ): # If it is the right children
UpperCAmelCase_ : Optional[Any] = new_children
else:
UpperCAmelCase_ : Optional[int] = new_children
else:
UpperCAmelCase_ : List[str] = new_children
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Node ) -> bool:
"""simple docstring"""
if node.parent and node.parent.right:
return node == node.parent.right
return False
def UpperCAmelCase__ ( self : Union[str, Any] ) -> bool:
"""simple docstring"""
return self.root is None
def UpperCAmelCase__ ( self : Any , __magic_name__ : str ) -> None:
"""simple docstring"""
UpperCAmelCase_ : Tuple = Node(__magic_name__ ) # create a new Node
if self.empty(): # if Tree is empty
UpperCAmelCase_ : List[Any] = new_node # set its root
else: # Tree is not empty
UpperCAmelCase_ : str = self.root # from root
if parent_node is None:
return
while True: # While we don't get to a leaf
if value < parent_node.value: # We go left
if parent_node.left is None:
UpperCAmelCase_ : Union[str, Any] = new_node # We insert the new node in a leaf
break
else:
UpperCAmelCase_ : List[Any] = parent_node.left
else:
if parent_node.right is None:
UpperCAmelCase_ : List[Any] = new_node
break
else:
UpperCAmelCase_ : Union[str, Any] = parent_node.right
UpperCAmelCase_ : Union[str, Any] = parent_node
def UpperCAmelCase__ ( self : Optional[Any] , *__magic_name__ : List[str] ) -> None:
"""simple docstring"""
for value in values:
self.__insert(__magic_name__ )
def UpperCAmelCase__ ( self : Dict , __magic_name__ : int ) -> Node | None:
"""simple docstring"""
if self.empty():
raise IndexError('''Warning: Tree is empty! please use another.''' )
else:
UpperCAmelCase_ : str = self.root
# use lazy evaluation here to avoid NoneType Attribute error
while node is not None and node.value is not value:
UpperCAmelCase_ : List[str] = node.left if value < node.value else node.right
return node
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : Node | None = None ) -> Node | None:
"""simple docstring"""
if node is None:
if self.root is None:
return None
UpperCAmelCase_ : Dict = self.root
if not self.empty():
while node.right is not None:
UpperCAmelCase_ : Any = node.right
return node
def UpperCAmelCase__ ( self : Dict , __magic_name__ : Node | None = None ) -> Node | None:
"""simple docstring"""
if node is None:
UpperCAmelCase_ : Optional[int] = self.root
if self.root is None:
return None
if not self.empty():
UpperCAmelCase_ : Union[str, Any] = self.root
while node.left is not None:
UpperCAmelCase_ : Dict = node.left
return node
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : int ) -> None:
"""simple docstring"""
UpperCAmelCase_ : List[str] = self.search(__magic_name__ ) # Look for the node with that label
if node is not None:
if node.left is None and node.right is None: # If it has no children
self.__reassign_nodes(__magic_name__ , __magic_name__ )
elif node.left is None: # Has only right children
self.__reassign_nodes(__magic_name__ , node.right )
elif node.right is None: # Has only left children
self.__reassign_nodes(__magic_name__ , node.left )
else:
UpperCAmelCase_ : List[str] = self.get_max(
node.left ) # Gets the max value of the left branch
self.remove(tmp_node.value ) # type: ignore
UpperCAmelCase_ : Optional[int] = (
tmp_node.value # type: ignore
) # Assigns the value to the node to delete and keep tree structure
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Node | None ) -> Iterable:
"""simple docstring"""
if node is not None:
yield node # Preorder Traversal
yield from self.preorder_traverse(node.left )
yield from self.preorder_traverse(node.right )
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : List[Any]=None ) -> Any:
"""simple docstring"""
if traversal_function is None:
return self.preorder_traverse(self.root )
else:
return traversal_function(self.root )
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : list , __magic_name__ : Node | None ) -> None:
"""simple docstring"""
if node:
self.inorder(__magic_name__ , node.left )
arr.append(node.value )
self.inorder(__magic_name__ , node.right )
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : int , __magic_name__ : Node ) -> int:
"""simple docstring"""
UpperCAmelCase_ : list[int] = []
self.inorder(__magic_name__ , __magic_name__ ) # append all values to list using inorder traversal
return arr[k - 1]
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Node | None ) -> list[Node]:
UpperCAmelCase_ : Any = []
if curr_node is not None:
UpperCAmelCase_ : Any = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node]
return node_list
def lowerCamelCase_ ( ) -> None:
UpperCAmelCase_ : str = (8, 3, 6, 1, 10, 14, 13, 4, 7)
UpperCAmelCase_ : Tuple = BinarySearchTree()
for i in testlist:
t.insert(SCREAMING_SNAKE_CASE__ )
# Prints all the elements of the list in order traversal
print(SCREAMING_SNAKE_CASE__ )
if t.search(6 ) is not None:
print('''The value 6 exists''' )
else:
print('''The value 6 doesn\'t exist''' )
if t.search(-1 ) is not None:
print('''The value -1 exists''' )
else:
print('''The value -1 doesn\'t exist''' )
if not t.empty():
print('''Max Value: ''', t.get_max().value ) # type: ignore
print('''Min Value: ''', t.get_min().value ) # type: ignore
for i in testlist:
t.remove(SCREAMING_SNAKE_CASE__ )
print(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
| 644
| 1
|
'''simple docstring'''
import unittest
from transformers import (
MODEL_FOR_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_CAUSAL_LM_MAPPING,
TextGenerationPipeline,
logging,
pipeline,
)
from transformers.testing_utils import (
CaptureLogger,
is_pipeline_test,
require_accelerate,
require_tf,
require_torch,
require_torch_gpu,
require_torch_or_tf,
)
from .test_pipelines_common import ANY
@is_pipeline_test
@require_torch_or_tf
class __a (unittest.TestCase ):
__a : str = MODEL_FOR_CAUSAL_LM_MAPPING
__a : Any = TF_MODEL_FOR_CAUSAL_LM_MAPPING
@require_torch
def UpperCAmelCase__ ( self : List[str] ) -> int:
"""simple docstring"""
UpperCAmelCase_ : str = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''pt''' )
# Using `do_sample=False` to force deterministic output
UpperCAmelCase_ : Optional[Any] = text_generator('''This is a test''' , do_sample=__magic_name__ )
self.assertEqual(
__magic_name__ , [
{
'''generated_text''': (
'''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.'''
''' oscope. FiliFili@@'''
)
}
] , )
UpperCAmelCase_ : Any = text_generator(['''This is a test''', '''This is a second test'''] )
self.assertEqual(
__magic_name__ , [
[
{
'''generated_text''': (
'''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.'''
''' oscope. FiliFili@@'''
)
}
],
[
{
'''generated_text''': (
'''This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy'''
''' oscope. oscope. FiliFili@@'''
)
}
],
] , )
UpperCAmelCase_ : List[Any] = text_generator('''This is a test''' , do_sample=__magic_name__ , num_return_sequences=2 , return_tensors=__magic_name__ )
self.assertEqual(
__magic_name__ , [
{'''generated_token_ids''': ANY(__magic_name__ )},
{'''generated_token_ids''': ANY(__magic_name__ )},
] , )
UpperCAmelCase_ : Any = text_generator.model.config.eos_token_id
UpperCAmelCase_ : Union[str, Any] = '''<pad>'''
UpperCAmelCase_ : List[Any] = text_generator(
['''This is a test''', '''This is a second test'''] , do_sample=__magic_name__ , num_return_sequences=2 , batch_size=2 , return_tensors=__magic_name__ , )
self.assertEqual(
__magic_name__ , [
[
{'''generated_token_ids''': ANY(__magic_name__ )},
{'''generated_token_ids''': ANY(__magic_name__ )},
],
[
{'''generated_token_ids''': ANY(__magic_name__ )},
{'''generated_token_ids''': ANY(__magic_name__ )},
],
] , )
@require_tf
def UpperCAmelCase__ ( self : Any ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : str = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''tf''' )
# Using `do_sample=False` to force deterministic output
UpperCAmelCase_ : Tuple = text_generator('''This is a test''' , do_sample=__magic_name__ )
self.assertEqual(
__magic_name__ , [
{
'''generated_text''': (
'''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵'''
''' please,'''
)
}
] , )
UpperCAmelCase_ : List[Any] = text_generator(['''This is a test''', '''This is a second test'''] , do_sample=__magic_name__ )
self.assertEqual(
__magic_name__ , [
[
{
'''generated_text''': (
'''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵'''
''' please,'''
)
}
],
[
{
'''generated_text''': (
'''This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes'''
''' Cannes 閲閲Cannes Cannes Cannes 攵 please,'''
)
}
],
] , )
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : Any , __magic_name__ : Any ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = TextGenerationPipeline(model=__magic_name__ , tokenizer=__magic_name__ )
return text_generator, ["This is a test", "Another test"]
def UpperCAmelCase__ ( self : str ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = '''Hello I believe in'''
UpperCAmelCase_ : Optional[int] = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' )
UpperCAmelCase_ : Tuple = text_generator(__magic_name__ )
self.assertEqual(
__magic_name__ , [{'''generated_text''': '''Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'''}] , )
UpperCAmelCase_ : Optional[Any] = text_generator(__magic_name__ , stop_sequence=''' fe''' )
self.assertEqual(__magic_name__ , [{'''generated_text''': '''Hello I believe in fe'''}] )
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : Tuple ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = text_generator.model
UpperCAmelCase_ : Optional[int] = text_generator.tokenizer
UpperCAmelCase_ : Any = text_generator('''This is a test''' )
self.assertEqual(__magic_name__ , [{'''generated_text''': ANY(__magic_name__ )}] )
self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) )
UpperCAmelCase_ : Optional[int] = text_generator('''This is a test''' , return_full_text=__magic_name__ )
self.assertEqual(__magic_name__ , [{'''generated_text''': ANY(__magic_name__ )}] )
self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] )
UpperCAmelCase_ : Optional[int] = pipeline(task='''text-generation''' , model=__magic_name__ , tokenizer=__magic_name__ , return_full_text=__magic_name__ )
UpperCAmelCase_ : str = text_generator('''This is a test''' )
self.assertEqual(__magic_name__ , [{'''generated_text''': ANY(__magic_name__ )}] )
self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] )
UpperCAmelCase_ : Optional[int] = text_generator('''This is a test''' , return_full_text=__magic_name__ )
self.assertEqual(__magic_name__ , [{'''generated_text''': ANY(__magic_name__ )}] )
self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) )
UpperCAmelCase_ : Any = text_generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=__magic_name__ )
self.assertEqual(
__magic_name__ , [
[{'''generated_text''': ANY(__magic_name__ )}, {'''generated_text''': ANY(__magic_name__ )}],
[{'''generated_text''': ANY(__magic_name__ )}, {'''generated_text''': ANY(__magic_name__ )}],
] , )
if text_generator.tokenizer.pad_token is not None:
UpperCAmelCase_ : str = text_generator(
['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=__magic_name__ )
self.assertEqual(
__magic_name__ , [
[{'''generated_text''': ANY(__magic_name__ )}, {'''generated_text''': ANY(__magic_name__ )}],
[{'''generated_text''': ANY(__magic_name__ )}, {'''generated_text''': ANY(__magic_name__ )}],
] , )
with self.assertRaises(__magic_name__ ):
UpperCAmelCase_ : Union[str, Any] = text_generator('''test''' , return_full_text=__magic_name__ , return_text=__magic_name__ )
with self.assertRaises(__magic_name__ ):
UpperCAmelCase_ : List[str] = text_generator('''test''' , return_full_text=__magic_name__ , return_tensors=__magic_name__ )
with self.assertRaises(__magic_name__ ):
UpperCAmelCase_ : List[Any] = text_generator('''test''' , return_text=__magic_name__ , return_tensors=__magic_name__ )
# Empty prompt is slighly special
# it requires BOS token to exist.
# Special case for Pegasus which will always append EOS so will
# work even without BOS.
if (
text_generator.tokenizer.bos_token_id is not None
or "Pegasus" in tokenizer.__class__.__name__
or "Git" in model.__class__.__name__
):
UpperCAmelCase_ : Union[str, Any] = text_generator('''''' )
self.assertEqual(__magic_name__ , [{'''generated_text''': ANY(__magic_name__ )}] )
else:
with self.assertRaises((ValueError, AssertionError) ):
UpperCAmelCase_ : Any = text_generator('''''' )
if text_generator.framework == "tf":
# TF generation does not support max_new_tokens, and it's impossible
# to control long generation with only max_length without
# fancy calculation, dismissing tests for now.
return
# We don't care about infinite range models.
# They already work.
# Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly.
UpperCAmelCase_ : Tuple = ['''RwkvForCausalLM''', '''XGLMForCausalLM''', '''GPTNeoXForCausalLM''']
if (
tokenizer.model_max_length < 1_00_00
and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS
):
# Handling of large generations
with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ):
text_generator('''This is a test''' * 5_00 , max_new_tokens=20 )
UpperCAmelCase_ : int = text_generator('''This is a test''' * 5_00 , handle_long_generation='''hole''' , max_new_tokens=20 )
# Hole strategy cannot work
with self.assertRaises(__magic_name__ ):
text_generator(
'''This is a test''' * 5_00 , handle_long_generation='''hole''' , max_new_tokens=tokenizer.model_max_length + 10 , )
@require_torch
@require_accelerate
@require_torch_gpu
def UpperCAmelCase__ ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
import torch
# Classic `model_kwargs`
UpperCAmelCase_ : Union[str, Any] = pipeline(
model='''hf-internal-testing/tiny-random-bloom''' , model_kwargs={'''device_map''': '''auto''', '''torch_dtype''': torch.bfloataa} , )
self.assertEqual(pipe.model.device , torch.device(0 ) )
self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa )
UpperCAmelCase_ : Dict = pipe('''This is a test''' )
self.assertEqual(
__magic_name__ , [
{
'''generated_text''': (
'''This is a test test test test test test test test test test test test test test test test'''
''' test'''
)
}
] , )
# Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.)
UpperCAmelCase_ : List[Any] = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.bfloataa )
self.assertEqual(pipe.model.device , torch.device(0 ) )
self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa )
UpperCAmelCase_ : Any = pipe('''This is a test''' )
self.assertEqual(
__magic_name__ , [
{
'''generated_text''': (
'''This is a test test test test test test test test test test test test test test test test'''
''' test'''
)
}
] , )
# torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602
UpperCAmelCase_ : List[Any] = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' )
self.assertEqual(pipe.model.device , torch.device(0 ) )
self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa )
UpperCAmelCase_ : Optional[int] = pipe('''This is a test''' )
self.assertEqual(
__magic_name__ , [
{
'''generated_text''': (
'''This is a test test test test test test test test test test test test test test test test'''
''' test'''
)
}
] , )
@require_torch
@require_torch_gpu
def UpperCAmelCase__ ( self : List[str] ) -> Optional[Any]:
"""simple docstring"""
import torch
UpperCAmelCase_ : Any = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device=0 , torch_dtype=torch.floataa )
pipe('''This is a test''' )
@require_torch
@require_accelerate
@require_torch_gpu
def UpperCAmelCase__ ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
import torch
UpperCAmelCase_ : Tuple = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.floataa )
pipe('''This is a test''' , do_sample=__magic_name__ , top_p=0.5 )
def UpperCAmelCase__ ( self : List[Any] ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = '''Hello world'''
UpperCAmelCase_ : Optional[int] = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' )
if text_generator.model.framework == "tf":
UpperCAmelCase_ : str = logging.get_logger('''transformers.generation.tf_utils''' )
else:
UpperCAmelCase_ : Optional[int] = logging.get_logger('''transformers.generation.utils''' )
UpperCAmelCase_ : str = '''Both `max_new_tokens`''' # The beggining of the message to be checked in this test
# Both are set by the user -> log warning
with CaptureLogger(__magic_name__ ) as cl:
UpperCAmelCase_ : int = text_generator(__magic_name__ , max_length=10 , max_new_tokens=1 )
self.assertIn(__magic_name__ , cl.out )
# The user only sets one -> no warning
with CaptureLogger(__magic_name__ ) as cl:
UpperCAmelCase_ : Any = text_generator(__magic_name__ , max_new_tokens=1 )
self.assertNotIn(__magic_name__ , cl.out )
with CaptureLogger(__magic_name__ ) as cl:
UpperCAmelCase_ : Tuple = text_generator(__magic_name__ , max_length=10 )
self.assertNotIn(__magic_name__ , cl.out )
| 644
|
'''simple docstring'''
import sys
import turtle
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : tuple[float, float] ) -> tuple[float, float]:
return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : int, ) -> None:
my_pen.up()
my_pen.goto(vertexa[0], vertexa[1] )
my_pen.down()
my_pen.goto(vertexa[0], vertexa[1] )
my_pen.goto(vertexa[0], vertexa[1] )
my_pen.goto(vertexa[0], vertexa[1] )
if depth == 0:
return
triangle(SCREAMING_SNAKE_CASE__, get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), depth - 1 )
triangle(SCREAMING_SNAKE_CASE__, get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), depth - 1 )
triangle(SCREAMING_SNAKE_CASE__, get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), depth - 1 )
if __name__ == "__main__":
if len(sys.argv) != 2:
raise ValueError(
"Correct format for using this script: "
"python fractals.py <int:depth_for_fractal>"
)
snake_case_ : Any = turtle.Turtle()
my_pen.ht()
my_pen.speed(5)
my_pen.pencolor("red")
snake_case_ : Tuple = [(-1_75, -1_25), (0, 1_75), (1_75, -1_25)] # vertices of triangle
triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
| 644
| 1
|
'''simple docstring'''
from __future__ import annotations
import math
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int ) -> bool:
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5, int(math.sqrt(SCREAMING_SNAKE_CASE__ ) + 1 ), 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int ) -> list[int]:
UpperCAmelCase_ : Tuple = str(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Optional[Any] = [n]
for i in range(1, len(SCREAMING_SNAKE_CASE__ ) ):
list_nums.append(int(str_num[i:] ) )
list_nums.append(int(str_num[:-i] ) )
return list_nums
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int ) -> bool:
if len(str(SCREAMING_SNAKE_CASE__ ) ) > 3:
if not is_prime(int(str(SCREAMING_SNAKE_CASE__ )[-3:] ) ) or not is_prime(int(str(SCREAMING_SNAKE_CASE__ )[:3] ) ):
return False
return True
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int = 11 ) -> list[int]:
UpperCAmelCase_ : list[int] = []
UpperCAmelCase_ : List[str] = 13
while len(SCREAMING_SNAKE_CASE__ ) != count:
if validate(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase_ : List[str] = list_truncated_nums(SCREAMING_SNAKE_CASE__ )
if all(is_prime(SCREAMING_SNAKE_CASE__ ) for i in list_nums ):
list_truncated_primes.append(SCREAMING_SNAKE_CASE__ )
num += 2
return list_truncated_primes
def lowerCamelCase_ ( ) -> int:
return sum(compute_truncated_primes(11 ) )
if __name__ == "__main__":
print(f'''{sum(compute_truncated_primes(11)) = }''')
| 644
|
'''simple docstring'''
import gc
import tempfile
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionPipeline
from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device
snake_case_ : List[str] = False
class __a (unittest.TestCase ):
pass
@nightly
@require_torch_gpu
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : int ) -> str:
"""simple docstring"""
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : List[Any] = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' )
UpperCAmelCase_ : Optional[int] = torch.manual_seed(0 )
UpperCAmelCase_ : Union[str, Any] = pipe.dual_guided(
prompt='''first prompt''' , image=__magic_name__ , text_to_image_strength=0.7_5 , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(__magic_name__ )
UpperCAmelCase_ : Optional[int] = VersatileDiffusionPipeline.from_pretrained(__magic_name__ , torch_dtype=torch.floataa )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : Any = generator.manual_seed(0 )
UpperCAmelCase_ : Dict = pipe.dual_guided(
prompt='''first prompt''' , image=__magic_name__ , text_to_image_strength=0.7_5 , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images
assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass"
def UpperCAmelCase__ ( self : str ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : str = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : Union[str, Any] = '''cyberpunk 2077'''
UpperCAmelCase_ : Union[str, Any] = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' )
UpperCAmelCase_ : Tuple = torch.manual_seed(0 )
UpperCAmelCase_ : Optional[Any] = pipe.dual_guided(
prompt=__magic_name__ , image=__magic_name__ , text_to_image_strength=0.7_5 , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' , ).images
UpperCAmelCase_ : List[str] = image[0, 2_53:2_56, 2_53:2_56, -1]
assert image.shape == (1, 5_12, 5_12, 3)
UpperCAmelCase_ : Union[str, Any] = np.array([0.1_4_4_8, 0.1_6_1_9, 0.1_7_4_1, 0.1_0_8_6, 0.1_1_4_7, 0.1_1_2_8, 0.1_1_9_9, 0.1_1_6_5, 0.1_0_0_1] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
UpperCAmelCase_ : Tuple = '''A painting of a squirrel eating a burger '''
UpperCAmelCase_ : Optional[int] = torch.manual_seed(0 )
UpperCAmelCase_ : List[Any] = pipe.text_to_image(
prompt=__magic_name__ , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' ).images
UpperCAmelCase_ : Tuple = image[0, 2_53:2_56, 2_53:2_56, -1]
assert image.shape == (1, 5_12, 5_12, 3)
UpperCAmelCase_ : Any = np.array([0.3_3_6_7, 0.3_1_6_9, 0.2_6_5_6, 0.3_8_7_0, 0.4_7_9_0, 0.3_7_9_6, 0.4_0_0_9, 0.4_8_7_8, 0.4_7_7_8] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
UpperCAmelCase_ : Tuple = pipe.image_variation(__magic_name__ , generator=__magic_name__ , output_type='''numpy''' ).images
UpperCAmelCase_ : Optional[Any] = image[0, 2_53:2_56, 2_53:2_56, -1]
assert image.shape == (1, 5_12, 5_12, 3)
UpperCAmelCase_ : List[str] = np.array([0.3_0_7_6, 0.3_1_2_3, 0.3_2_8_4, 0.3_7_8_2, 0.3_7_7_0, 0.3_8_9_4, 0.4_2_9_7, 0.4_3_3_1, 0.4_4_5_6] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
| 644
| 1
|
'''simple docstring'''
import argparse
import OmegaConf
import torch
from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : str, SCREAMING_SNAKE_CASE__ : Optional[Any], SCREAMING_SNAKE_CASE__ : Dict ) -> int:
UpperCAmelCase_ : str = OmegaConf.load(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : List[str] = torch.load(SCREAMING_SNAKE_CASE__, map_location='''cpu''' )['''model''']
UpperCAmelCase_ : str = list(state_dict.keys() )
# extract state_dict for VQVAE
UpperCAmelCase_ : List[str] = {}
UpperCAmelCase_ : Tuple = '''first_stage_model.'''
for key in keys:
if key.startswith(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase_ : Dict = state_dict[key]
# extract state_dict for UNetLDM
UpperCAmelCase_ : Any = {}
UpperCAmelCase_ : Optional[Any] = '''model.diffusion_model.'''
for key in keys:
if key.startswith(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase_ : List[Any] = state_dict[key]
UpperCAmelCase_ : int = config.model.params.first_stage_config.params
UpperCAmelCase_ : int = config.model.params.unet_config.params
UpperCAmelCase_ : List[str] = VQModel(**SCREAMING_SNAKE_CASE__ ).eval()
vqvae.load_state_dict(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Dict = UNetLDMModel(**SCREAMING_SNAKE_CASE__ ).eval()
unet.load_state_dict(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Union[str, Any] = DDIMScheduler(
timesteps=config.model.params.timesteps, beta_schedule='''scaled_linear''', beta_start=config.model.params.linear_start, beta_end=config.model.params.linear_end, clip_sample=SCREAMING_SNAKE_CASE__, )
UpperCAmelCase_ : Optional[int] = LDMPipeline(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
pipeline.save_pretrained(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
snake_case_ : Optional[Any] = argparse.ArgumentParser()
parser.add_argument("--checkpoint_path", type=str, required=True)
parser.add_argument("--config_path", type=str, required=True)
parser.add_argument("--output_path", type=str, required=True)
snake_case_ : Union[str, Any] = parser.parse_args()
convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
| 644
|
'''simple docstring'''
snake_case_ : int = {
"Pillow": "Pillow",
"accelerate": "accelerate>=0.11.0",
"compel": "compel==0.1.8",
"black": "black~=23.1",
"datasets": "datasets",
"filelock": "filelock",
"flax": "flax>=0.4.1",
"hf-doc-builder": "hf-doc-builder>=0.3.0",
"huggingface-hub": "huggingface-hub>=0.13.2",
"requests-mock": "requests-mock==1.10.0",
"importlib_metadata": "importlib_metadata",
"invisible-watermark": "invisible-watermark",
"isort": "isort>=5.5.4",
"jax": "jax>=0.2.8,!=0.3.2",
"jaxlib": "jaxlib>=0.1.65",
"Jinja2": "Jinja2",
"k-diffusion": "k-diffusion>=0.0.12",
"torchsde": "torchsde",
"note_seq": "note_seq",
"librosa": "librosa",
"numpy": "numpy",
"omegaconf": "omegaconf",
"parameterized": "parameterized",
"protobuf": "protobuf>=3.20.3,<4",
"pytest": "pytest",
"pytest-timeout": "pytest-timeout",
"pytest-xdist": "pytest-xdist",
"ruff": "ruff>=0.0.241",
"safetensors": "safetensors",
"sentencepiece": "sentencepiece>=0.1.91,!=0.1.92",
"scipy": "scipy",
"onnx": "onnx",
"regex": "regex!=2019.12.17",
"requests": "requests",
"tensorboard": "tensorboard",
"torch": "torch>=1.4",
"torchvision": "torchvision",
"transformers": "transformers>=4.25.1",
"urllib3": "urllib3<=2.0.0",
}
| 644
| 1
|
'''simple docstring'''
from collections import namedtuple
snake_case_ : Optional[int] = namedtuple("from_to", "from_ to")
snake_case_ : Optional[int] = {
"cubicmeter": from_to(1, 1),
"litre": from_to(0.001, 10_00),
"kilolitre": from_to(1, 1),
"gallon": from_to(0.0_0454, 264.172),
"cubicyard": from_to(0.7_6455, 1.3_0795),
"cubicfoot": from_to(0.028, 35.3147),
"cup": from_to(0.0_0023_6588, 4226.75),
}
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : float, SCREAMING_SNAKE_CASE__ : str, SCREAMING_SNAKE_CASE__ : str ) -> float:
if from_type not in METRIC_CONVERSION:
raise ValueError(
F"""Invalid 'from_type' value: {from_type!r} Supported values are:\n"""
+ ''', '''.join(SCREAMING_SNAKE_CASE__ ) )
if to_type not in METRIC_CONVERSION:
raise ValueError(
F"""Invalid 'to_type' value: {to_type!r}. Supported values are:\n"""
+ ''', '''.join(SCREAMING_SNAKE_CASE__ ) )
return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to
if __name__ == "__main__":
import doctest
doctest.testmod()
| 644
|
'''simple docstring'''
import unittest
import numpy as np
import torch
from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class __a (unittest.TestCase ):
@property
def UpperCAmelCase__ ( self : Dict ) -> str:
"""simple docstring"""
torch.manual_seed(0 )
UpperCAmelCase_ : Optional[Any] = UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , )
return model
def UpperCAmelCase__ ( self : Dict ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = self.dummy_uncond_unet
UpperCAmelCase_ : Dict = KarrasVeScheduler()
UpperCAmelCase_ : Union[str, Any] = KarrasVePipeline(unet=__magic_name__ , scheduler=__magic_name__ )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : Dict = torch.manual_seed(0 )
UpperCAmelCase_ : Optional[int] = pipe(num_inference_steps=2 , generator=__magic_name__ , output_type='''numpy''' ).images
UpperCAmelCase_ : Tuple = torch.manual_seed(0 )
UpperCAmelCase_ : str = pipe(num_inference_steps=2 , generator=__magic_name__ , output_type='''numpy''' , return_dict=__magic_name__ )[0]
UpperCAmelCase_ : Union[str, Any] = image[0, -3:, -3:, -1]
UpperCAmelCase_ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
UpperCAmelCase_ : Dict = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : int ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : List[str] = '''google/ncsnpp-celebahq-256'''
UpperCAmelCase_ : List[str] = UNetaDModel.from_pretrained(__magic_name__ )
UpperCAmelCase_ : List[Any] = KarrasVeScheduler()
UpperCAmelCase_ : Any = KarrasVePipeline(unet=__magic_name__ , scheduler=__magic_name__ )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : Dict = torch.manual_seed(0 )
UpperCAmelCase_ : Optional[Any] = pipe(num_inference_steps=20 , generator=__magic_name__ , output_type='''numpy''' ).images
UpperCAmelCase_ : Any = image[0, -3:, -3:, -1]
assert image.shape == (1, 2_56, 2_56, 3)
UpperCAmelCase_ : Optional[Any] = np.array([0.5_7_8, 0.5_8_1_1, 0.5_9_2_4, 0.5_8_0_9, 0.5_8_7, 0.5_8_8_6, 0.5_8_6_1, 0.5_8_0_2, 0.5_8_6] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 644
| 1
|
'''simple docstring'''
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import datasets
import numpy as np
import tensorflow as tf
from transformers import (
AutoConfig,
AutoTokenizer,
EvalPrediction,
HfArgumentParser,
PreTrainedTokenizer,
TFAutoModelForSequenceClassification,
TFTrainer,
TFTrainingArguments,
)
from transformers.utils import logging as hf_logging
hf_logging.set_verbosity_info()
hf_logging.enable_default_handler()
hf_logging.enable_explicit_format()
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : str, SCREAMING_SNAKE_CASE__ : str, SCREAMING_SNAKE_CASE__ : str, SCREAMING_SNAKE_CASE__ : PreTrainedTokenizer, SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : Optional[int] = None, ) -> Union[str, Any]:
UpperCAmelCase_ : List[str] = {}
if train_file is not None:
UpperCAmelCase_ : Optional[Any] = [train_file]
if eval_file is not None:
UpperCAmelCase_ : Any = [eval_file]
if test_file is not None:
UpperCAmelCase_ : int = [test_file]
UpperCAmelCase_ : Dict = datasets.load_dataset('''csv''', data_files=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : List[str] = list(ds[list(files.keys() )[0]].features.keys() )
UpperCAmelCase_ : int = features_name.pop(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : str = list(set(ds[list(files.keys() )[0]][label_name] ) )
UpperCAmelCase_ : int = {label: i for i, label in enumerate(SCREAMING_SNAKE_CASE__ )}
UpperCAmelCase_ : List[str] = tokenizer.model_input_names
UpperCAmelCase_ : Union[str, Any] = {}
if len(SCREAMING_SNAKE_CASE__ ) == 1:
for k in files.keys():
UpperCAmelCase_ : int = ds[k].map(
lambda SCREAMING_SNAKE_CASE__ : tokenizer.batch_encode_plus(
example[features_name[0]], truncation=SCREAMING_SNAKE_CASE__, max_length=SCREAMING_SNAKE_CASE__, padding='''max_length''' ), batched=SCREAMING_SNAKE_CASE__, )
elif len(SCREAMING_SNAKE_CASE__ ) == 2:
for k in files.keys():
UpperCAmelCase_ : List[Any] = ds[k].map(
lambda SCREAMING_SNAKE_CASE__ : tokenizer.batch_encode_plus(
(example[features_name[0]], example[features_name[1]]), truncation=SCREAMING_SNAKE_CASE__, max_length=SCREAMING_SNAKE_CASE__, padding='''max_length''', ), batched=SCREAMING_SNAKE_CASE__, )
def gen_train():
for ex in transformed_ds[datasets.Split.TRAIN]:
UpperCAmelCase_ : Union[str, Any] = {k: v for k, v in ex.items() if k in input_names}
UpperCAmelCase_ : Dict = labelaid[ex[label_name]]
yield (d, label)
def gen_val():
for ex in transformed_ds[datasets.Split.VALIDATION]:
UpperCAmelCase_ : Dict = {k: v for k, v in ex.items() if k in input_names}
UpperCAmelCase_ : List[Any] = labelaid[ex[label_name]]
yield (d, label)
def gen_test():
for ex in transformed_ds[datasets.Split.TEST]:
UpperCAmelCase_ : List[str] = {k: v for k, v in ex.items() if k in input_names}
UpperCAmelCase_ : Optional[int] = labelaid[ex[label_name]]
yield (d, label)
UpperCAmelCase_ : str = (
tf.data.Dataset.from_generator(
SCREAMING_SNAKE_CASE__, ({k: tf.intaa for k in input_names}, tf.intaa), ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )), )
if datasets.Split.TRAIN in transformed_ds
else None
)
if train_ds is not None:
UpperCAmelCase_ : str = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) )
UpperCAmelCase_ : Dict = (
tf.data.Dataset.from_generator(
SCREAMING_SNAKE_CASE__, ({k: tf.intaa for k in input_names}, tf.intaa), ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )), )
if datasets.Split.VALIDATION in transformed_ds
else None
)
if val_ds is not None:
UpperCAmelCase_ : List[Any] = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) )
UpperCAmelCase_ : List[str] = (
tf.data.Dataset.from_generator(
SCREAMING_SNAKE_CASE__, ({k: tf.intaa for k in input_names}, tf.intaa), ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )), )
if datasets.Split.TEST in transformed_ds
else None
)
if test_ds is not None:
UpperCAmelCase_ : Optional[Any] = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) )
return train_ds, val_ds, test_ds, labelaid
snake_case_ : Optional[Any] = logging.getLogger(__name__)
@dataclass
class __a :
__a : int = field(metadata={"help": "Which column contains the label"} )
__a : str = field(default=lowerCamelCase , metadata={"help": "The path of the training file"} )
__a : Optional[str] = field(default=lowerCamelCase , metadata={"help": "The path of the development file"} )
__a : Optional[str] = field(default=lowerCamelCase , metadata={"help": "The path of the test file"} )
__a : int = field(
default=128 , metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
__a : bool = field(
default=lowerCamelCase , metadata={"help": "Overwrite the cached training and evaluation sets"} )
@dataclass
class __a :
__a : str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} )
__a : Optional[str] = field(
default=lowerCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"} )
__a : Optional[str] = field(
default=lowerCamelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} )
__a : bool = field(default=lowerCamelCase , metadata={"help": "Set this flag to use fast tokenization."} )
# If you want to tweak more attributes on your tokenizer, you should do it in a distinct script,
# or just modify its tokenizer_config.json.
__a : Optional[str] = field(
default=lowerCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , )
def lowerCamelCase_ ( ) -> Dict:
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
UpperCAmelCase_ : Optional[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use"""
''' --overwrite_output_dir to overcome.''' )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, )
logger.info(
F"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """
F"""16-bits training: {training_args.fpaa}""" )
logger.info(F"""Training/evaluation parameters {training_args}""" )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
UpperCAmelCase_ : Tuple = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = get_tfds(
train_file=data_args.train_file, eval_file=data_args.dev_file, test_file=data_args.test_file, tokenizer=SCREAMING_SNAKE_CASE__, label_column_id=data_args.label_column_id, max_seq_length=data_args.max_seq_length, )
UpperCAmelCase_ : Union[str, Any] = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=len(SCREAMING_SNAKE_CASE__ ), labelaid=SCREAMING_SNAKE_CASE__, idalabel={id: label for label, id in labelaid.items()}, finetuning_task='''text-classification''', cache_dir=model_args.cache_dir, )
with training_args.strategy.scope():
UpperCAmelCase_ : str = TFAutoModelForSequenceClassification.from_pretrained(
model_args.model_name_or_path, from_pt=bool('''.bin''' in model_args.model_name_or_path ), config=SCREAMING_SNAKE_CASE__, cache_dir=model_args.cache_dir, )
def compute_metrics(SCREAMING_SNAKE_CASE__ : EvalPrediction ) -> Dict:
UpperCAmelCase_ : List[Any] = np.argmax(p.predictions, axis=1 )
return {"acc": (preds == p.label_ids).mean()}
# Initialize our Trainer
UpperCAmelCase_ : List[Any] = TFTrainer(
model=SCREAMING_SNAKE_CASE__, args=SCREAMING_SNAKE_CASE__, train_dataset=SCREAMING_SNAKE_CASE__, eval_dataset=SCREAMING_SNAKE_CASE__, compute_metrics=SCREAMING_SNAKE_CASE__, )
# Training
if training_args.do_train:
trainer.train()
trainer.save_model()
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
UpperCAmelCase_ : Optional[int] = {}
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
UpperCAmelCase_ : Tuple = trainer.evaluate()
UpperCAmelCase_ : int = os.path.join(training_args.output_dir, '''eval_results.txt''' )
with open(SCREAMING_SNAKE_CASE__, '''w''' ) as writer:
logger.info('''***** Eval results *****''' )
for key, value in result.items():
logger.info(F""" {key} = {value}""" )
writer.write(F"""{key} = {value}\n""" )
results.update(SCREAMING_SNAKE_CASE__ )
return results
if __name__ == "__main__":
main()
| 644
|
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor
from .base import PipelineTool
class __a (lowerCamelCase ):
__a : List[Any] = "openai/whisper-base"
__a : Optional[Any] = (
"This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the "
"transcribed text."
)
__a : Any = "transcriber"
__a : str = WhisperProcessor
__a : List[Any] = WhisperForConditionalGeneration
__a : int = ["audio"]
__a : Optional[Any] = ["text"]
def UpperCAmelCase__ ( self : Dict , __magic_name__ : List[str] ) -> Optional[int]:
"""simple docstring"""
return self.pre_processor(__magic_name__ , return_tensors='''pt''' ).input_features
def UpperCAmelCase__ ( self : Dict , __magic_name__ : Dict ) -> Tuple:
"""simple docstring"""
return self.model.generate(inputs=__magic_name__ )
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Dict ) -> str:
"""simple docstring"""
return self.pre_processor.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ )[0]
| 644
| 1
|
'''simple docstring'''
from sklearn.metrics import fa_score
import datasets
snake_case_ : Union[str, Any] = "\nThe F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:\nF1 = 2 * (precision * recall) / (precision + recall)\n"
snake_case_ : Dict = "\nArgs:\n predictions (`list` of `int`): Predicted labels.\n references (`list` of `int`): Ground truth labels.\n labels (`list` of `int`): The set of labels to include when `average` is not set to `'binary'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.\n pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.\n average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n\n - 'binary': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.\n - 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives.\n - 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - 'weighted': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.\n - 'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n sample_weight (`list` of `float`): Sample weights Defaults to None.\n\nReturns:\n f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.\n\nExamples:\n\n Example 1-A simple binary example\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])\n >>> print(results)\n {'f1': 0.5}\n\n Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)\n >>> print(round(results['f1'], 2))\n 0.67\n\n Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])\n >>> print(round(results['f1'], 2))\n 0.35\n\n Example 4-A multiclass example, with different values for the `average` input.\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"macro\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"micro\")\n >>> print(round(results['f1'], 2))\n 0.33\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"weighted\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'f1': array([0.8, 0. , 0. ])}\n"
snake_case_ : Any = "\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __a (datasets.Metric ):
def UpperCAmelCase__ ( self : Tuple ) -> List[Any]:
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ),
'''references''': datasets.Sequence(datasets.Value('''int32''' ) ),
}
if self.config_name == '''multilabel'''
else {
'''predictions''': datasets.Value('''int32''' ),
'''references''': datasets.Value('''int32''' ),
} ) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'''] , )
def UpperCAmelCase__ ( self : Dict , __magic_name__ : List[str] , __magic_name__ : List[str] , __magic_name__ : Tuple=None , __magic_name__ : Optional[Any]=1 , __magic_name__ : Tuple="binary" , __magic_name__ : List[Any]=None ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Dict = fa_score(
__magic_name__ , __magic_name__ , labels=__magic_name__ , pos_label=__magic_name__ , average=__magic_name__ , sample_weight=__magic_name__ )
return {"f1": float(__magic_name__ ) if score.size == 1 else score}
| 644
|
'''simple docstring'''
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : int ) -> int:
return abs(SCREAMING_SNAKE_CASE__ ) if a == 0 else greatest_common_divisor(b % a, SCREAMING_SNAKE_CASE__ )
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : int ) -> int:
while y: # --> when y=0 then loop will terminate and return x as final GCD.
UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = y, x % y
return abs(SCREAMING_SNAKE_CASE__ )
def lowerCamelCase_ ( ) -> Optional[int]:
try:
UpperCAmelCase_ : Optional[Any] = input('''Enter two integers separated by comma (,): ''' ).split(''',''' )
UpperCAmelCase_ : Optional[int] = int(nums[0] )
UpperCAmelCase_ : List[Any] = int(nums[1] )
print(
F"""greatest_common_divisor({num_a}, {num_a}) = """
F"""{greatest_common_divisor(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )}""" )
print(F"""By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )}""" )
except (IndexError, UnboundLocalError, ValueError):
print('''Wrong input''' )
if __name__ == "__main__":
main()
| 644
| 1
|
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
snake_case_ : Union[str, Any] = logging.get_logger(__name__)
snake_case_ : Union[str, Any] = {
"facebook/data2vec-vision-base-ft": (
"https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json"
),
}
class __a (lowerCamelCase ):
__a : List[Any] = "data2vec-vision"
def __init__( self : List[Any] , __magic_name__ : Dict=7_68 , __magic_name__ : int=12 , __magic_name__ : Dict=12 , __magic_name__ : List[str]=30_72 , __magic_name__ : Dict="gelu" , __magic_name__ : Dict=0.0 , __magic_name__ : str=0.0 , __magic_name__ : Tuple=0.0_2 , __magic_name__ : Tuple=1E-12 , __magic_name__ : List[Any]=2_24 , __magic_name__ : Any=16 , __magic_name__ : Union[str, Any]=3 , __magic_name__ : Optional[int]=False , __magic_name__ : Union[str, Any]=False , __magic_name__ : Dict=False , __magic_name__ : int=False , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : str=0.1 , __magic_name__ : Dict=True , __magic_name__ : Any=[3, 5, 7, 11] , __magic_name__ : Any=[1, 2, 3, 6] , __magic_name__ : int=True , __magic_name__ : List[str]=0.4 , __magic_name__ : Any=2_56 , __magic_name__ : Union[str, Any]=1 , __magic_name__ : List[str]=False , __magic_name__ : List[str]=2_55 , **__magic_name__ : int , ) -> Union[str, Any]:
"""simple docstring"""
super().__init__(**__magic_name__ )
UpperCAmelCase_ : Optional[int] = hidden_size
UpperCAmelCase_ : Optional[Any] = num_hidden_layers
UpperCAmelCase_ : str = num_attention_heads
UpperCAmelCase_ : str = intermediate_size
UpperCAmelCase_ : int = hidden_act
UpperCAmelCase_ : str = hidden_dropout_prob
UpperCAmelCase_ : int = attention_probs_dropout_prob
UpperCAmelCase_ : Optional[Any] = initializer_range
UpperCAmelCase_ : Dict = layer_norm_eps
UpperCAmelCase_ : Optional[int] = image_size
UpperCAmelCase_ : int = patch_size
UpperCAmelCase_ : Union[str, Any] = num_channels
UpperCAmelCase_ : List[Any] = use_mask_token
UpperCAmelCase_ : List[Any] = use_absolute_position_embeddings
UpperCAmelCase_ : str = use_relative_position_bias
UpperCAmelCase_ : Tuple = use_shared_relative_position_bias
UpperCAmelCase_ : Tuple = layer_scale_init_value
UpperCAmelCase_ : Union[str, Any] = drop_path_rate
UpperCAmelCase_ : Tuple = use_mean_pooling
# decode head attributes (semantic segmentation)
UpperCAmelCase_ : Optional[int] = out_indices
UpperCAmelCase_ : List[Any] = pool_scales
# auxiliary head attributes (semantic segmentation)
UpperCAmelCase_ : str = use_auxiliary_head
UpperCAmelCase_ : List[Any] = auxiliary_loss_weight
UpperCAmelCase_ : Dict = auxiliary_channels
UpperCAmelCase_ : str = auxiliary_num_convs
UpperCAmelCase_ : Union[str, Any] = auxiliary_concat_input
UpperCAmelCase_ : List[Any] = semantic_loss_ignore_index
class __a (lowerCamelCase ):
__a : Union[str, Any] = version.parse("1.11" )
@property
def UpperCAmelCase__ ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
return OrderedDict(
[
('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}),
] )
@property
def UpperCAmelCase__ ( self : List[Any] ) -> float:
"""simple docstring"""
return 1E-4
| 644
|
'''simple docstring'''
import unittest
from transformers import LiltConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
LiltForQuestionAnswering,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltModel,
)
from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST
class __a :
def __init__( self : int , __magic_name__ : Optional[Any] , __magic_name__ : Any=13 , __magic_name__ : Any=7 , __magic_name__ : Union[str, Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : str=True , __magic_name__ : Optional[int]=True , __magic_name__ : List[Any]=99 , __magic_name__ : int=24 , __magic_name__ : Optional[int]=2 , __magic_name__ : Tuple=6 , __magic_name__ : Union[str, Any]=37 , __magic_name__ : Optional[Any]="gelu" , __magic_name__ : Any=0.1 , __magic_name__ : str=0.1 , __magic_name__ : Tuple=5_12 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : Tuple=2 , __magic_name__ : Tuple=0.0_2 , __magic_name__ : Optional[Any]=3 , __magic_name__ : Optional[int]=None , __magic_name__ : Any=10_00 , ) -> str:
"""simple docstring"""
UpperCAmelCase_ : Tuple = parent
UpperCAmelCase_ : Optional[int] = batch_size
UpperCAmelCase_ : List[str] = seq_length
UpperCAmelCase_ : Dict = is_training
UpperCAmelCase_ : List[str] = use_input_mask
UpperCAmelCase_ : Any = use_token_type_ids
UpperCAmelCase_ : Any = use_labels
UpperCAmelCase_ : Any = vocab_size
UpperCAmelCase_ : Dict = hidden_size
UpperCAmelCase_ : Tuple = num_hidden_layers
UpperCAmelCase_ : Tuple = num_attention_heads
UpperCAmelCase_ : int = intermediate_size
UpperCAmelCase_ : Union[str, Any] = hidden_act
UpperCAmelCase_ : Optional[int] = hidden_dropout_prob
UpperCAmelCase_ : Optional[Any] = attention_probs_dropout_prob
UpperCAmelCase_ : Union[str, Any] = max_position_embeddings
UpperCAmelCase_ : int = type_vocab_size
UpperCAmelCase_ : List[Any] = type_sequence_label_size
UpperCAmelCase_ : int = initializer_range
UpperCAmelCase_ : Dict = num_labels
UpperCAmelCase_ : List[str] = scope
UpperCAmelCase_ : List[str] = range_bbox
def UpperCAmelCase__ ( self : Optional[int] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
UpperCAmelCase_ : List[str] = bbox[i, j, 3]
UpperCAmelCase_ : Dict = bbox[i, j, 1]
UpperCAmelCase_ : Optional[Any] = t
if bbox[i, j, 2] < bbox[i, j, 0]:
UpperCAmelCase_ : List[str] = bbox[i, j, 2]
UpperCAmelCase_ : Tuple = bbox[i, j, 0]
UpperCAmelCase_ : Union[str, Any] = t
UpperCAmelCase_ : int = None
if self.use_input_mask:
UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
UpperCAmelCase_ : Optional[int] = None
if self.use_token_type_ids:
UpperCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase_ : Dict = None
UpperCAmelCase_ : Tuple = None
if self.use_labels:
UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase_ : int = self.get_config()
return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels
def UpperCAmelCase__ ( self : Any ) -> List[Any]:
"""simple docstring"""
return LiltConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : str , __magic_name__ : Optional[Any] , __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : int , ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Any = LiltModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : Optional[Any] = model(__magic_name__ , bbox=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ )
UpperCAmelCase_ : List[Any] = model(__magic_name__ , bbox=__magic_name__ , token_type_ids=__magic_name__ )
UpperCAmelCase_ : Optional[int] = model(__magic_name__ , bbox=__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def UpperCAmelCase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[int] , __magic_name__ : List[Any] , ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : Any = self.num_labels
UpperCAmelCase_ : List[Any] = LiltForTokenClassification(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : List[Any] = model(
__magic_name__ , bbox=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCAmelCase__ ( self : Any , __magic_name__ : Optional[Any] , __magic_name__ : Dict , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : Any , ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : str = LiltForQuestionAnswering(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : Optional[Any] = model(
__magic_name__ , bbox=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = self.prepare_config_and_inputs()
(
(
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) ,
) : Optional[int] = config_and_inputs
UpperCAmelCase_ : Tuple = {
'''input_ids''': input_ids,
'''bbox''': bbox,
'''token_type_ids''': token_type_ids,
'''attention_mask''': input_mask,
}
return config, inputs_dict
@require_torch
class __a (lowerCamelCase , lowerCamelCase , lowerCamelCase , unittest.TestCase ):
__a : Tuple = (
(
LiltModel,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltForQuestionAnswering,
)
if is_torch_available()
else ()
)
__a : Any = (
{
"feature-extraction": LiltModel,
"question-answering": LiltForQuestionAnswering,
"text-classification": LiltForSequenceClassification,
"token-classification": LiltForTokenClassification,
"zero-shot": LiltForSequenceClassification,
}
if is_torch_available()
else {}
)
__a : Union[str, Any] = False
__a : int = False
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : int ) -> str:
"""simple docstring"""
return True
def UpperCAmelCase__ ( self : str ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = LiltModelTester(self )
UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 )
def UpperCAmelCase__ ( self : Union[str, Any] ) -> str:
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCAmelCase__ ( self : str ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__magic_name__ )
def UpperCAmelCase__ ( self : str ) -> str:
"""simple docstring"""
UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
UpperCAmelCase_ : Tuple = type
self.model_tester.create_and_check_model(*__magic_name__ )
def UpperCAmelCase__ ( self : Union[str, Any] ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__magic_name__ )
def UpperCAmelCase__ ( self : str ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__magic_name__ )
@slow
def UpperCAmelCase__ ( self : int ) -> Union[str, Any]:
"""simple docstring"""
for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase_ : Optional[int] = LiltModel.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
@require_torch
@slow
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : str = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(__magic_name__ )
UpperCAmelCase_ : Any = torch.tensor([[1, 2]] , device=__magic_name__ )
UpperCAmelCase_ : int = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=__magic_name__ )
# forward pass
with torch.no_grad():
UpperCAmelCase_ : Optional[int] = model(input_ids=__magic_name__ , bbox=__magic_name__ )
UpperCAmelCase_ : int = torch.Size([1, 2, 7_68] )
UpperCAmelCase_ : List[str] = torch.tensor(
[[-0.0_6_5_3, 0.0_9_5_0, -0.0_0_6_1], [-0.0_5_4_5, 0.0_9_2_6, -0.0_3_2_4]] , device=__magic_name__ , )
self.assertTrue(outputs.last_hidden_state.shape , __magic_name__ )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , __magic_name__ , atol=1E-3 ) )
| 644
| 1
|
'''simple docstring'''
import numpy as np
from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : int ) -> np.ndarray:
# prepare kernel
# the kernel size have to be odd
if (ksize % 2) == 0:
UpperCAmelCase_ : Any = ksize + 1
UpperCAmelCase_ : Tuple = np.zeros((ksize, ksize), dtype=np.floataa )
# each value
for y in range(SCREAMING_SNAKE_CASE__ ):
for x in range(SCREAMING_SNAKE_CASE__ ):
# distance from center
UpperCAmelCase_ : Dict = x - ksize // 2
UpperCAmelCase_ : str = y - ksize // 2
# degree to radiant
UpperCAmelCase_ : List[Any] = theta / 180 * np.pi
UpperCAmelCase_ : Optional[Any] = np.cos(_theta )
UpperCAmelCase_ : int = np.sin(_theta )
# get kernel x
UpperCAmelCase_ : int = cos_theta * px + sin_theta * py
# get kernel y
UpperCAmelCase_ : Any = -sin_theta * px + cos_theta * py
# fill kernel
UpperCAmelCase_ : str = np.exp(
-(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi )
return gabor
if __name__ == "__main__":
import doctest
doctest.testmod()
# read original image
snake_case_ : Tuple = imread("../image_data/lena.jpg")
# turn image in gray scale value
snake_case_ : Optional[int] = cvtColor(img, COLOR_BGR2GRAY)
# Apply multiple Kernel to detect edges
snake_case_ : Tuple = np.zeros(gray.shape[:2])
for theta in [0, 30, 60, 90, 1_20, 1_50]:
snake_case_ : List[str] = gabor_filter_kernel(10, 8, theta, 10, 0, 0)
out += filteraD(gray, CV_8UC3, kernel_aa)
snake_case_ : Optional[Any] = out / out.max() * 2_55
snake_case_ : int = out.astype(np.uinta)
imshow("Original", gray)
imshow("Gabor filter with 20x20 mask and 6 directions", out)
waitKey(0)
| 644
|
'''simple docstring'''
import io
import os
import unicodedata
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
snake_case_ : str = logging.get_logger(__name__)
snake_case_ : int = "▁"
snake_case_ : str = {"vocab_file": "vocab.txt", "sentencepiece_model_ckpt": "sentencepiece.bpe.model"}
snake_case_ : int = {
"sentencepiece_model_file": "sentencepiece.bpe.model",
"vocab_file": "vocab.txt",
}
snake_case_ : Optional[Any] = {
"vocab_file": {
"ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt",
"ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt",
},
"sentencepiece_model_file": {
"ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model",
"ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model",
},
}
snake_case_ : Dict = {
"ernie-m-base": 5_14,
"ernie-m-large": 5_14,
}
snake_case_ : Any = {
"ernie-m-base": {"do_lower_case": False},
"ernie-m-large": {"do_lower_case": False},
}
class __a (lowerCamelCase ):
__a : List[str] = ["input_ids"]
__a : Union[str, Any] = VOCAB_FILES_NAMES
__a : Tuple = PRETRAINED_INIT_CONFIGURATION
__a : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__a : Optional[int] = PRETRAINED_VOCAB_FILES_MAP
__a : Union[str, Any] = RESOURCE_FILES_NAMES
def __init__( self : Union[str, Any] , __magic_name__ : Dict , __magic_name__ : int=None , __magic_name__ : str=False , __magic_name__ : int="utf8" , __magic_name__ : Optional[int]="[UNK]" , __magic_name__ : Dict="[SEP]" , __magic_name__ : List[Any]="[PAD]" , __magic_name__ : str="[CLS]" , __magic_name__ : Optional[int]="[MASK]" , __magic_name__ : Optional[Dict[str, Any]] = None , **__magic_name__ : Union[str, Any] , ) -> None:
"""simple docstring"""
# Mask token behave like a normal word, i.e. include the space before it and
# is included in the raw text, there should be a match in a non-normalized sentence.
UpperCAmelCase_ : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=__magic_name__ , unk_token=__magic_name__ , sep_token=__magic_name__ , pad_token=__magic_name__ , cls_token=__magic_name__ , mask_token=__magic_name__ , vocab_file=__magic_name__ , encoding=__magic_name__ , sp_model_kwargs=self.sp_model_kwargs , **__magic_name__ , )
UpperCAmelCase_ : Optional[Any] = do_lower_case
UpperCAmelCase_ : List[str] = sentencepiece_model_ckpt
UpperCAmelCase_ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(__magic_name__ )
# to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning
if vocab_file is not None:
UpperCAmelCase_ : List[Any] = self.load_vocab(filepath=__magic_name__ )
else:
UpperCAmelCase_ : str = {self.sp_model.id_to_piece(__magic_name__ ): id for id in range(self.sp_model.get_piece_size() )}
UpperCAmelCase_ : int = {v: k for k, v in self.vocab.items()}
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Any ) -> Any:
"""simple docstring"""
if text is None:
return None
UpperCAmelCase_ : str = self.tokenize(__magic_name__ )
UpperCAmelCase_ , UpperCAmelCase_ : str = '''''', []
for i, ch in enumerate(__magic_name__ ):
if ch in self.SP_CHAR_MAPPING:
UpperCAmelCase_ : Optional[int] = self.SP_CHAR_MAPPING.get(__magic_name__ )
else:
UpperCAmelCase_ : Union[str, Any] = unicodedata.normalize('''NFKC''' , __magic_name__ )
if self.is_whitespace(__magic_name__ ):
continue
normalized_text += ch
char_mapping.extend([i] * len(__magic_name__ ) )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = normalized_text, [], 0
if self.do_lower_case:
UpperCAmelCase_ : Optional[int] = text.lower()
for token in split_tokens:
if token[:1] == "▁":
UpperCAmelCase_ : Tuple = token[1:]
UpperCAmelCase_ : int = text[offset:].index(__magic_name__ ) + offset
UpperCAmelCase_ : Optional[int] = start + len(__magic_name__ )
token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) )
UpperCAmelCase_ : int = end
return token_mapping
@property
def UpperCAmelCase__ ( self : Any ) -> Any:
"""simple docstring"""
return len(self.vocab )
def UpperCAmelCase__ ( self : List[Any] ) -> int:
"""simple docstring"""
return dict(self.vocab , **self.added_tokens_encoder )
def __getstate__( self : str ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = self.__dict__.copy()
UpperCAmelCase_ : Optional[Any] = None
return state
def __setstate__( self : str , __magic_name__ : Any ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : Dict = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
UpperCAmelCase_ : int = {}
UpperCAmelCase_ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.sentencepiece_model_ckpt )
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : Any ) -> List[str]:
"""simple docstring"""
return "".join((self.SP_CHAR_MAPPING.get(__magic_name__ , __magic_name__ ) for c in text) )
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Tuple , __magic_name__ : Any=False , __magic_name__ : List[str]=64 , __magic_name__ : List[str]=0.1 ) -> List[str]:
"""simple docstring"""
if self.sp_model_kwargs.get('''enable_sampling''' ) is True:
UpperCAmelCase_ : Dict = True
if self.sp_model_kwargs.get('''alpha''' ) is not None:
UpperCAmelCase_ : Union[str, Any] = self.sp_model_kwargs.get('''alpha''' )
if self.sp_model_kwargs.get('''nbest_size''' ) is not None:
UpperCAmelCase_ : Any = self.sp_model_kwargs.get('''nbest_size''' )
if not enable_sampling:
UpperCAmelCase_ : Dict = self.sp_model.EncodeAsPieces(__magic_name__ )
else:
UpperCAmelCase_ : Dict = self.sp_model.SampleEncodeAsPieces(__magic_name__ , __magic_name__ , __magic_name__ )
UpperCAmelCase_ : List[Any] = []
for pi, piece in enumerate(__magic_name__ ):
if piece == SPIECE_UNDERLINE:
if not pieces[pi + 1].startswith(__magic_name__ ) and pi != 0:
new_pieces.append(__magic_name__ )
continue
else:
continue
UpperCAmelCase_ : List[str] = 0
for i, chunk in enumerate(__magic_name__ ):
if chunk == SPIECE_UNDERLINE:
continue
if self.is_ch_char(__magic_name__ ) or self.is_punct(__magic_name__ ):
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
new_pieces.append(__magic_name__ )
UpperCAmelCase_ : List[Any] = i + 1
elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
UpperCAmelCase_ : List[str] = i
elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
UpperCAmelCase_ : str = i
if len(__magic_name__ ) > lst_i:
new_pieces.append(piece[lst_i:] )
return new_pieces
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Optional[int] ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = ''''''.join(__magic_name__ ).replace(__magic_name__ , ''' ''' ).strip()
return out_string
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Union[str, Any] ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : str = self.convert_ids_to_tokens(__magic_name__ )
UpperCAmelCase_ : Optional[Any] = ''''''.join(__magic_name__ ).replace(__magic_name__ , ''' ''' ).strip()
return out_string
def UpperCAmelCase__ ( self : str , __magic_name__ : Optional[Any] ) -> List[Any]:
"""simple docstring"""
return self.vocab.get(__magic_name__ , self.vocab.get(self.unk_token ) )
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
return self.reverse_vocab.get(__magic_name__ , self.unk_token )
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Any , __magic_name__ : Union[str, Any]=None ) -> Any:
"""simple docstring"""
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
UpperCAmelCase_ : Union[str, Any] = [self.cls_token_id]
UpperCAmelCase_ : List[Any] = [self.sep_token_id]
return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep
def UpperCAmelCase__ ( self : Any , __magic_name__ : Optional[Any] , __magic_name__ : List[str]=None ) -> int:
"""simple docstring"""
if offset_mapping_a is None:
return [(0, 0)] + offset_mapping_a + [(0, 0)]
return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)]
def UpperCAmelCase__ ( self : Dict , __magic_name__ : Optional[Any] , __magic_name__ : List[str]=None , __magic_name__ : Optional[Any]=False ) -> Optional[int]:
"""simple docstring"""
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(__magic_name__ )) + [1, 1] + ([0] * len(__magic_name__ )) + [1]
return [1] + ([0] * len(__magic_name__ )) + [1]
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
# called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method
if token_ids_a is None:
# [CLS] X [SEP]
return (len(__magic_name__ ) + 2) * [0]
# [CLS] A [SEP] [SEP] B [SEP]
return [0] * (len(__magic_name__ ) + 1) + [1] * (len(__magic_name__ ) + 3)
def UpperCAmelCase__ ( self : Dict , __magic_name__ : str ) -> Tuple:
"""simple docstring"""
if "\u4e00" <= char <= "\u9fff":
return True
return False
def UpperCAmelCase__ ( self : int , __magic_name__ : Optional[int] ) -> str:
"""simple docstring"""
if ("a" <= char <= "z") or ("A" <= char <= "Z"):
return True
return False
def UpperCAmelCase__ ( self : int , __magic_name__ : Optional[Any] ) -> Dict:
"""simple docstring"""
if char in ",;:.?!~,;:。?!《》【】":
return True
return False
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Any ) -> Union[str, Any]:
"""simple docstring"""
if char == " " or char == "\t" or char == "\n" or char == "\r":
return True
if len(__magic_name__ ) == 1:
UpperCAmelCase_ : Optional[Any] = unicodedata.category(__magic_name__ )
if cat == "Zs":
return True
return False
def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : Tuple ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = {}
with io.open(__magic_name__ , '''r''' , encoding='''utf-8''' ) as f:
for index, line in enumerate(__magic_name__ ):
UpperCAmelCase_ : List[Any] = line.rstrip('''\n''' )
UpperCAmelCase_ : Dict = int(__magic_name__ )
return token_to_idx
def UpperCAmelCase__ ( self : Dict , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = 0
if os.path.isdir(__magic_name__ ):
UpperCAmelCase_ : Any = os.path.join(
__magic_name__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
else:
UpperCAmelCase_ : List[str] = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory
with open(__magic_name__ , '''w''' , encoding='''utf-8''' ) as writer:
for token, token_index in sorted(self.vocab.items() , key=lambda __magic_name__ : kv[1] ):
if index != token_index:
logger.warning(
F"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."""
''' Please check that the vocabulary is not corrupted!''' )
UpperCAmelCase_ : Dict = token_index
writer.write(token + '''\n''' )
index += 1
UpperCAmelCase_ : Union[str, Any] = os.path.join(__magic_name__ , '''sentencepiece.bpe.model''' )
with open(__magic_name__ , '''wb''' ) as fi:
UpperCAmelCase_ : Optional[int] = self.sp_model.serialized_model_proto()
fi.write(__magic_name__ )
return (vocab_file,)
| 644
| 1
|
'''simple docstring'''
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConfig,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaForCTC,
WavaVecaForPreTraining,
WavaVecaProcessor,
logging,
)
from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification
logging.set_verbosity_info()
snake_case_ : Tuple = logging.get_logger(__name__)
snake_case_ : List[Any] = {
"post_extract_proj": "feature_projection.projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.k_proj": "encoder.layers.*.attention.k_proj",
"self_attn.v_proj": "encoder.layers.*.attention.v_proj",
"self_attn.q_proj": "encoder.layers.*.attention.q_proj",
"self_attn.out_proj": "encoder.layers.*.attention.out_proj",
"self_attn_layer_norm": "encoder.layers.*.layer_norm",
"fc1": "encoder.layers.*.feed_forward.intermediate_dense",
"fc2": "encoder.layers.*.feed_forward.output_dense",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.layer_norm": "encoder.layer_norm",
"adapter_layer": "encoder.layers.*.adapter_layer",
"w2v_model.layer_norm": "feature_projection.layer_norm",
"quantizer.weight_proj": "quantizer.weight_proj",
"quantizer.vars": "quantizer.codevectors",
"project_q": "project_q",
"final_proj": "project_hid",
"w2v_encoder.proj": "lm_head",
"mask_emb": "masked_spec_embed",
"pooling_layer.linear": "projector",
"pooling_layer.projection": "classifier",
}
snake_case_ : List[str] = [
"lm_head",
"quantizer.weight_proj",
"quantizer.codevectors",
"project_q",
"project_hid",
"projector",
"classifier",
]
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[Any] ) -> Any:
UpperCAmelCase_ : Any = {}
with open(SCREAMING_SNAKE_CASE__, '''r''' ) as file:
for line_number, line in enumerate(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase_ : Dict = line.strip()
if line:
UpperCAmelCase_ : Tuple = line.split()
UpperCAmelCase_ : Any = line_number
UpperCAmelCase_ : Any = words[0]
UpperCAmelCase_ : Any = value
return result
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Optional[int], SCREAMING_SNAKE_CASE__ : Any, SCREAMING_SNAKE_CASE__ : List[str], SCREAMING_SNAKE_CASE__ : Any, SCREAMING_SNAKE_CASE__ : int ) -> List[Any]:
for attribute in key.split('''.''' ):
UpperCAmelCase_ : int = getattr(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Optional[Any] = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase_ : List[Any] = PARAM_MAPPING[full_name.split('''.''' )[-1]]
UpperCAmelCase_ : str = '''param'''
if weight_type is not None and weight_type != "param":
UpperCAmelCase_ : str = getattr(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ).shape
elif weight_type is not None and weight_type == "param":
UpperCAmelCase_ : Tuple = hf_pointer
for attribute in hf_param_name.split('''.''' ):
UpperCAmelCase_ : Optional[int] = getattr(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : List[str] = shape_pointer.shape
# let's reduce dimension
UpperCAmelCase_ : str = value[0]
else:
UpperCAmelCase_ : Optional[Any] = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be"""
F""" {value.shape} for {full_name}""" )
if weight_type == "weight":
UpperCAmelCase_ : int = value
elif weight_type == "weight_g":
UpperCAmelCase_ : str = value
elif weight_type == "weight_v":
UpperCAmelCase_ : List[Any] = value
elif weight_type == "bias":
UpperCAmelCase_ : List[str] = value
elif weight_type == "param":
for attribute in hf_param_name.split('''.''' ):
UpperCAmelCase_ : Dict = getattr(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : List[Any] = value
else:
UpperCAmelCase_ : Optional[int] = value
logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" )
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : List[Any], SCREAMING_SNAKE_CASE__ : Any, SCREAMING_SNAKE_CASE__ : Dict, SCREAMING_SNAKE_CASE__ : str ) -> int:
UpperCAmelCase_ : Union[str, Any] = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase_ : Tuple = PARAM_MAPPING[full_name.split('''.''' )[-1]]
UpperCAmelCase_ : Optional[int] = '''param'''
if weight_type is not None and weight_type != "param":
UpperCAmelCase_ : Optional[Any] = '''.'''.join([key, weight_type] )
elif weight_type is not None and weight_type == "param":
UpperCAmelCase_ : Union[str, Any] = '''.'''.join([key, hf_param_name] )
else:
UpperCAmelCase_ : str = key
UpperCAmelCase_ : Any = value if '''lm_head''' in full_key else value[0]
snake_case_ : int = {
"W_a": "linear_1.weight",
"W_b": "linear_2.weight",
"b_a": "linear_1.bias",
"b_b": "linear_2.bias",
"ln_W": "norm.weight",
"ln_b": "norm.bias",
}
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Optional[int], SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : Any=None, SCREAMING_SNAKE_CASE__ : Dict=None ) -> Optional[int]:
UpperCAmelCase_ : Tuple = False
for key, mapped_key in MAPPING.items():
UpperCAmelCase_ : Union[str, Any] = '''wav2vec2.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]:
UpperCAmelCase_ : List[Any] = True
if "*" in mapped_key:
UpperCAmelCase_ : List[Any] = name.split(SCREAMING_SNAKE_CASE__ )[0].split('''.''' )[-2]
UpperCAmelCase_ : Dict = mapped_key.replace('''*''', SCREAMING_SNAKE_CASE__ )
if "weight_g" in name:
UpperCAmelCase_ : List[str] = '''weight_g'''
elif "weight_v" in name:
UpperCAmelCase_ : Optional[Any] = '''weight_v'''
elif "bias" in name:
UpperCAmelCase_ : Union[str, Any] = '''bias'''
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
UpperCAmelCase_ : Optional[Any] = '''weight'''
else:
UpperCAmelCase_ : Optional[Any] = None
if hf_dict is not None:
rename_dict(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
else:
set_recursively(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
return is_used
return is_used
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : str, SCREAMING_SNAKE_CASE__ : Any, SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[str]:
UpperCAmelCase_ : str = []
UpperCAmelCase_ : Dict = fairseq_model.state_dict()
UpperCAmelCase_ : List[str] = hf_model.wavaveca.feature_extractor
for name, value in fairseq_dict.items():
UpperCAmelCase_ : int = False
if "conv_layers" in name:
load_conv_layer(
SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, hf_model.config.feat_extract_norm == '''group''', )
UpperCAmelCase_ : Any = True
else:
UpperCAmelCase_ : List[str] = load_wavaveca_layer(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
if not is_used:
unused_weights.append(SCREAMING_SNAKE_CASE__ )
logger.warning(F"""Unused weights: {unused_weights}""" )
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[str], SCREAMING_SNAKE_CASE__ : List[Any], SCREAMING_SNAKE_CASE__ : List[Any], SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : List[str] ) -> Optional[int]:
UpperCAmelCase_ : Optional[int] = full_name.split('''conv_layers.''' )[-1]
UpperCAmelCase_ : int = name.split('''.''' )
UpperCAmelCase_ : Any = int(items[0] )
UpperCAmelCase_ : int = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" )
UpperCAmelCase_ : Optional[Any] = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" )
UpperCAmelCase_ : Dict = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" )
UpperCAmelCase_ : str = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" )
UpperCAmelCase_ : str = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(SCREAMING_SNAKE_CASE__ )
@torch.no_grad()
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : str, SCREAMING_SNAKE_CASE__ : Any, SCREAMING_SNAKE_CASE__ : Optional[Any]=None, SCREAMING_SNAKE_CASE__ : Tuple=None, SCREAMING_SNAKE_CASE__ : List[str]=True, SCREAMING_SNAKE_CASE__ : List[Any]=False ) -> str:
if config_path is not None:
UpperCAmelCase_ : Optional[int] = WavaVecaConfig.from_pretrained(SCREAMING_SNAKE_CASE__ )
else:
UpperCAmelCase_ : str = WavaVecaConfig()
if is_seq_class:
UpperCAmelCase_ : List[str] = read_txt_into_dict(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Tuple = idalabel
UpperCAmelCase_ : int = WavaVecaForSequenceClassification(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Optional[Any] = WavaVecaFeatureExtractor(
feature_size=1, sampling_rate=16000, padding_value=0, do_normalize=SCREAMING_SNAKE_CASE__, return_attention_mask=SCREAMING_SNAKE_CASE__, )
feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE__ )
elif is_finetuned:
if dict_path:
UpperCAmelCase_ : Any = Dictionary.load(SCREAMING_SNAKE_CASE__ )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
UpperCAmelCase_ : Optional[int] = target_dict.pad_index
UpperCAmelCase_ : Optional[Any] = target_dict.bos_index
UpperCAmelCase_ : Tuple = target_dict.eos_index
UpperCAmelCase_ : Dict = len(target_dict.symbols )
UpperCAmelCase_ : Optional[int] = os.path.join(SCREAMING_SNAKE_CASE__, '''vocab.json''' )
if not os.path.isdir(SCREAMING_SNAKE_CASE__ ):
logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(SCREAMING_SNAKE_CASE__ ) )
return
os.makedirs(SCREAMING_SNAKE_CASE__, exist_ok=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : List[str] = target_dict.indices
# fairseq has the <pad> and <s> switched
UpperCAmelCase_ : Optional[int] = 0
UpperCAmelCase_ : List[str] = 1
with open(SCREAMING_SNAKE_CASE__, '''w''', encoding='''utf-8''' ) as vocab_handle:
json.dump(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Dict = WavaVecaCTCTokenizer(
SCREAMING_SNAKE_CASE__, unk_token=target_dict.unk_word, pad_token=target_dict.pad_word, bos_token=target_dict.bos_word, eos_token=target_dict.eos_word, word_delimiter_token='''|''', do_lower_case=SCREAMING_SNAKE_CASE__, )
UpperCAmelCase_ : List[str] = True if config.feat_extract_norm == '''layer''' else False
UpperCAmelCase_ : int = WavaVecaFeatureExtractor(
feature_size=1, sampling_rate=16000, padding_value=0, do_normalize=SCREAMING_SNAKE_CASE__, return_attention_mask=SCREAMING_SNAKE_CASE__, )
UpperCAmelCase_ : Optional[Any] = WavaVecaProcessor(feature_extractor=SCREAMING_SNAKE_CASE__, tokenizer=SCREAMING_SNAKE_CASE__ )
processor.save_pretrained(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : List[Any] = WavaVecaForCTC(SCREAMING_SNAKE_CASE__ )
else:
UpperCAmelCase_ : Optional[int] = WavaVecaForPreTraining(SCREAMING_SNAKE_CASE__ )
if is_finetuned or is_seq_class:
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path], arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} )
else:
UpperCAmelCase_ : Union[str, Any] = argparse.Namespace(task='''audio_pretraining''' )
UpperCAmelCase_ : List[str] = fairseq.tasks.setup_task(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path], task=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Any = model[0].eval()
recursively_load_weights(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, not is_finetuned )
hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
snake_case_ : Any = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not"
)
parser.add_argument(
"--is_seq_class",
action="store_true",
help="Whether the model to convert is a fine-tuned sequence classification model or not",
)
snake_case_ : int = parser.parse_args()
snake_case_ : List[str] = not args.not_finetuned and not args.is_seq_class
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.dict_path,
is_finetuned,
args.is_seq_class,
)
| 644
|
'''simple docstring'''
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int ) -> str:
if number > 0:
raise ValueError('''input must be a negative integer''' )
UpperCAmelCase_ : Union[str, Any] = len(bin(SCREAMING_SNAKE_CASE__ )[3:] )
UpperCAmelCase_ : Union[str, Any] = bin(abs(SCREAMING_SNAKE_CASE__ ) - (1 << binary_number_length) )[3:]
UpperCAmelCase_ : Optional[Any] = (
(
'''1'''
+ '''0''' * (binary_number_length - len(SCREAMING_SNAKE_CASE__ ))
+ twos_complement_number
)
if number < 0
else '''0'''
)
return "0b" + twos_complement_number
if __name__ == "__main__":
import doctest
doctest.testmod()
| 644
| 1
|
'''simple docstring'''
import json
import os
from functools import lru_cache
from typing import Dict, List, Optional, Tuple, Union
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...tokenization_utils_base import BatchEncoding, EncodedInput
from ...utils import PaddingStrategy, logging
snake_case_ : Optional[Any] = logging.get_logger(__name__)
snake_case_ : List[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt"}
# See all LED models at https://huggingface.co/models?filter=LED
snake_case_ : Optional[Any] = {
"vocab_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json",
},
"merges_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt",
},
"tokenizer_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json",
},
}
snake_case_ : Union[str, Any] = {
"allenai/led-base-16384": 1_63_84,
}
@lru_cache()
# Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode
def lowerCamelCase_ ( ) -> List[Any]:
UpperCAmelCase_ : List[str] = (
list(range(ord('''!''' ), ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ), ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ), ord('''ÿ''' ) + 1 ) )
)
UpperCAmelCase_ : List[Any] = bs[:]
UpperCAmelCase_ : List[Any] = 0
for b in range(2**8 ):
if b not in bs:
bs.append(SCREAMING_SNAKE_CASE__ )
cs.append(2**8 + n )
n += 1
UpperCAmelCase_ : Dict = [chr(SCREAMING_SNAKE_CASE__ ) for n in cs]
return dict(zip(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) )
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[int]:
UpperCAmelCase_ : Optional[int] = set()
UpperCAmelCase_ : Any = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
UpperCAmelCase_ : List[str] = char
return pairs
class __a (lowerCamelCase ):
__a : Tuple = VOCAB_FILES_NAMES
__a : int = PRETRAINED_VOCAB_FILES_MAP
__a : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__a : str = ["input_ids", "attention_mask"]
def __init__( self : Dict , __magic_name__ : Any , __magic_name__ : int , __magic_name__ : str="replace" , __magic_name__ : Any="<s>" , __magic_name__ : int="</s>" , __magic_name__ : Tuple="</s>" , __magic_name__ : List[str]="<s>" , __magic_name__ : List[Any]="<unk>" , __magic_name__ : Tuple="<pad>" , __magic_name__ : str="<mask>" , __magic_name__ : Optional[Any]=False , **__magic_name__ : int , ) -> int:
"""simple docstring"""
UpperCAmelCase_ : int = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else bos_token
UpperCAmelCase_ : int = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else eos_token
UpperCAmelCase_ : List[Any] = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else sep_token
UpperCAmelCase_ : Dict = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else cls_token
UpperCAmelCase_ : Optional[int] = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else unk_token
UpperCAmelCase_ : Dict = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
UpperCAmelCase_ : List[str] = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else mask_token
super().__init__(
errors=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , unk_token=__magic_name__ , sep_token=__magic_name__ , cls_token=__magic_name__ , pad_token=__magic_name__ , mask_token=__magic_name__ , add_prefix_space=__magic_name__ , **__magic_name__ , )
with open(__magic_name__ , encoding='''utf-8''' ) as vocab_handle:
UpperCAmelCase_ : Optional[Any] = json.load(__magic_name__ )
UpperCAmelCase_ : int = {v: k for k, v in self.encoder.items()}
UpperCAmelCase_ : int = errors # how to handle errors in decoding
UpperCAmelCase_ : Tuple = bytes_to_unicode()
UpperCAmelCase_ : Optional[Any] = {v: k for k, v in self.byte_encoder.items()}
with open(__magic_name__ , encoding='''utf-8''' ) as merges_handle:
UpperCAmelCase_ : Any = merges_handle.read().split('''\n''' )[1:-1]
UpperCAmelCase_ : str = [tuple(merge.split() ) for merge in bpe_merges]
UpperCAmelCase_ : int = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) )
UpperCAmelCase_ : List[Any] = {}
UpperCAmelCase_ : Tuple = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
UpperCAmelCase_ : Dict = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' )
@property
# Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size
def UpperCAmelCase__ ( self : List[Any] ) -> Tuple:
"""simple docstring"""
return len(self.encoder )
def UpperCAmelCase__ ( self : List[Any] ) -> Dict:
"""simple docstring"""
return dict(self.encoder , **self.added_tokens_encoder )
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : List[str] ) -> Tuple:
"""simple docstring"""
if token in self.cache:
return self.cache[token]
UpperCAmelCase_ : List[str] = tuple(__magic_name__ )
UpperCAmelCase_ : Optional[Any] = get_pairs(__magic_name__ )
if not pairs:
return token
while True:
UpperCAmelCase_ : str = min(__magic_name__ , key=lambda __magic_name__ : self.bpe_ranks.get(__magic_name__ , float('''inf''' ) ) )
if bigram not in self.bpe_ranks:
break
UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = bigram
UpperCAmelCase_ : List[str] = []
UpperCAmelCase_ : List[str] = 0
while i < len(__magic_name__ ):
try:
UpperCAmelCase_ : Tuple = word.index(__magic_name__ , __magic_name__ )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
UpperCAmelCase_ : List[str] = j
if word[i] == first and i < len(__magic_name__ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
UpperCAmelCase_ : Tuple = tuple(__magic_name__ )
UpperCAmelCase_ : Any = new_word
if len(__magic_name__ ) == 1:
break
else:
UpperCAmelCase_ : Union[str, Any] = get_pairs(__magic_name__ )
UpperCAmelCase_ : List[Any] = ''' '''.join(__magic_name__ )
UpperCAmelCase_ : Tuple = word
return word
def UpperCAmelCase__ ( self : int , __magic_name__ : List[str] ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = []
for token in re.findall(self.pat , __magic_name__ ):
UpperCAmelCase_ : Union[str, Any] = ''''''.join(
self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__magic_name__ ).split(''' ''' ) )
return bpe_tokens
def UpperCAmelCase__ ( self : Any , __magic_name__ : Optional[int] ) -> List[str]:
"""simple docstring"""
return self.encoder.get(__magic_name__ , self.encoder.get(self.unk_token ) )
def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : int ) -> Any:
"""simple docstring"""
return self.decoder.get(__magic_name__ )
def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : Union[str, Any] ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : Any = ''''''.join(__magic_name__ )
UpperCAmelCase_ : str = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors )
return text
def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
if not os.path.isdir(__magic_name__ ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
UpperCAmelCase_ : Union[str, Any] = os.path.join(
__magic_name__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
UpperCAmelCase_ : Optional[int] = os.path.join(
__magic_name__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] )
with open(__magic_name__ , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=__magic_name__ , ensure_ascii=__magic_name__ ) + '''\n''' )
UpperCAmelCase_ : Tuple = 0
with open(__magic_name__ , '''w''' , encoding='''utf-8''' ) as writer:
writer.write('''#version: 0.2\n''' )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __magic_name__ : kv[1] ):
if index != token_index:
logger.warning(
F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."""
''' Please check that the tokenizer is not corrupted!''' )
UpperCAmelCase_ : int = token_index
writer.write(''' '''.join(__magic_name__ ) + '''\n''' )
index += 1
return vocab_file, merge_file
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
UpperCAmelCase_ : Any = [self.cls_token_id]
UpperCAmelCase_ : int = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def UpperCAmelCase__ ( self : Any , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None , __magic_name__ : bool = False ) -> List[int]:
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__magic_name__ , token_ids_a=__magic_name__ , already_has_special_tokens=__magic_name__ )
if token_ids_a is None:
return [1] + ([0] * len(__magic_name__ )) + [1]
return [1] + ([0] * len(__magic_name__ )) + [1, 1] + ([0] * len(__magic_name__ )) + [1]
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = [self.sep_token_id]
UpperCAmelCase_ : int = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def UpperCAmelCase__ ( self : str , __magic_name__ : Union[str, Any] , __magic_name__ : str=False , **__magic_name__ : Any ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = kwargs.pop('''add_prefix_space''' , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(__magic_name__ ) > 0 and not text[0].isspace()):
UpperCAmelCase_ : Tuple = ''' ''' + text
return (text, kwargs)
def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : Union[Dict[str, EncodedInput], BatchEncoding] , __magic_name__ : Optional[int] = None , __magic_name__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __magic_name__ : Optional[int] = None , __magic_name__ : Optional[bool] = None , ) -> dict:
"""simple docstring"""
UpperCAmelCase_ : Any = super()._pad(
encoded_inputs=__magic_name__ , max_length=__magic_name__ , padding_strategy=__magic_name__ , pad_to_multiple_of=__magic_name__ , return_attention_mask=__magic_name__ , )
# Load from model defaults
if return_attention_mask is None:
UpperCAmelCase_ : int = '''attention_mask''' in self.model_input_names
if return_attention_mask and "global_attention_mask" in encoded_inputs:
UpperCAmelCase_ : int = encoded_inputs[self.model_input_names[0]]
# `global_attention_mask` need to have the same length as other (sequential) inputs.
UpperCAmelCase_ : List[str] = len(encoded_inputs['''global_attention_mask'''] ) != len(__magic_name__ )
if needs_to_be_padded:
UpperCAmelCase_ : Union[str, Any] = len(__magic_name__ ) - len(encoded_inputs['''global_attention_mask'''] )
if self.padding_side == "right":
# Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend`
UpperCAmelCase_ : Union[str, Any] = (
encoded_inputs['''global_attention_mask'''] + [-1] * difference
)
elif self.padding_side == "left":
UpperCAmelCase_ : Any = [-1] * difference + encoded_inputs[
'''global_attention_mask'''
]
else:
raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) )
return encoded_inputs
| 644
|
'''simple docstring'''
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from transformers.generation import DisjunctiveConstraint
@require_torch
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
# For consistency across different places the DisjunctiveConstraint is called,
# dc.token_ids is a list of integers. It is also initialized only by integers.
UpperCAmelCase_ : List[str] = [[1, 2, 4], [1, 2, 3, 4]]
UpperCAmelCase_ : List[str] = DisjunctiveConstraint(__magic_name__ )
self.assertTrue(isinstance(dc.token_ids , __magic_name__ ) )
with self.assertRaises(__magic_name__ ):
DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) )
with self.assertRaises(__magic_name__ ):
DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] )
def UpperCAmelCase__ ( self : List[str] ) -> Dict:
"""simple docstring"""
# We can't have constraints that are complete subsets of another. This leads to a preverse
# interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint?
# It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially
# fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm
# will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it).
UpperCAmelCase_ : Tuple = [[1, 2], [1, 2, 3, 4]]
with self.assertRaises(__magic_name__ ):
DisjunctiveConstraint(__magic_name__ ) # fails here
def UpperCAmelCase__ ( self : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = [[1, 2, 3], [1, 2, 4]]
UpperCAmelCase_ : List[str] = DisjunctiveConstraint(__magic_name__ )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = dc.update(1 )
UpperCAmelCase_ : Dict = stepped is True and completed is False and reset is False
self.assertTrue(__magic_name__ )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = dc.update(2 )
UpperCAmelCase_ : Optional[Any] = stepped is True and completed is False and reset is False
self.assertTrue(__magic_name__ )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = dc.update(3 )
UpperCAmelCase_ : Dict = stepped is True and completed is True and reset is False
self.assertTrue(__magic_name__ )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 3] )
def UpperCAmelCase__ ( self : int ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : Any = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]]
UpperCAmelCase_ : Tuple = DisjunctiveConstraint(__magic_name__ )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = dc.update(4 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2, 4] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 4, 5] )
dc.reset()
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 3 )
self.assertTrue(dc.current_seq == [1] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 2 )
self.assertTrue(dc.current_seq == [1, 2] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.remaining() == 0 )
self.assertTrue(dc.current_seq == [1, 2, 5] )
| 644
| 1
|
'''simple docstring'''
import os
from collections import deque
import torch
from torch.utils.data import Dataset
class __a (lowerCamelCase ):
def __init__( self : List[Any] , __magic_name__ : Any="" , __magic_name__ : Tuple="train" ) -> int:
"""simple docstring"""
assert os.path.isdir(__magic_name__ )
UpperCAmelCase_ : List[Any] = []
UpperCAmelCase_ : Union[str, Any] = os.listdir(__magic_name__ )
for story_filename in story_filenames_list:
if "summary" in story_filename:
continue
UpperCAmelCase_ : Dict = os.path.join(__magic_name__ , __magic_name__ )
if not os.path.isfile(__magic_name__ ):
continue
self.documents.append(__magic_name__ )
def __len__( self : List[str] ) -> Optional[Any]:
"""simple docstring"""
return len(self.documents )
def __getitem__( self : Union[str, Any] , __magic_name__ : Dict ) -> str:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = self.documents[idx]
UpperCAmelCase_ : str = document_path.split('''/''' )[-1]
with open(__magic_name__ , encoding='''utf-8''' ) as source:
UpperCAmelCase_ : str = source.read()
UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = process_story(__magic_name__ )
return document_name, story_lines, summary_lines
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[Any]:
UpperCAmelCase_ : Tuple = list(filter(lambda SCREAMING_SNAKE_CASE__ : len(SCREAMING_SNAKE_CASE__ ) != 0, [line.strip() for line in raw_story.split('''\n''' )] ) )
# for some unknown reason some lines miss a period, add it
UpperCAmelCase_ : int = [_add_missing_period(SCREAMING_SNAKE_CASE__ ) for line in nonempty_lines]
# gather article lines
UpperCAmelCase_ : List[Any] = []
UpperCAmelCase_ : Union[str, Any] = deque(SCREAMING_SNAKE_CASE__ )
while True:
try:
UpperCAmelCase_ : List[Any] = lines.popleft()
if element.startswith('''@highlight''' ):
break
story_lines.append(SCREAMING_SNAKE_CASE__ )
except IndexError:
# if "@highlight" is absent from the file we pop
# all elements until there is None, raising an exception.
return story_lines, []
# gather summary lines
UpperCAmelCase_ : Optional[int] = list(filter(lambda SCREAMING_SNAKE_CASE__ : not t.startswith('''@highlight''' ), SCREAMING_SNAKE_CASE__ ) )
return story_lines, summary_lines
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> int:
UpperCAmelCase_ : Union[str, Any] = ['''.''', '''!''', '''?''', '''...''', '''\'''', '''`''', '''"''', '''\u2019''', '''\u2019''', ''')''']
if line.startswith('''@highlight''' ):
return line
if line[-1] in END_TOKENS:
return line
return line + "."
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Any, SCREAMING_SNAKE_CASE__ : Any, SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[Any]:
if len(SCREAMING_SNAKE_CASE__ ) > block_size:
return sequence[:block_size]
else:
sequence.extend([pad_token_id] * (block_size - len(SCREAMING_SNAKE_CASE__ )) )
return sequence
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : List[str] ) -> Optional[Any]:
UpperCAmelCase_ : Optional[Any] = torch.ones_like(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : str = sequence == pad_token_id
UpperCAmelCase_ : Tuple = 0
return mask
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Dict, SCREAMING_SNAKE_CASE__ : Dict, SCREAMING_SNAKE_CASE__ : str ) -> Dict:
UpperCAmelCase_ : Tuple = [tokenizer.encode(SCREAMING_SNAKE_CASE__ ) for line in story_lines]
UpperCAmelCase_ : Any = [token for sentence in story_lines_token_ids for token in sentence]
UpperCAmelCase_ : List[str] = [tokenizer.encode(SCREAMING_SNAKE_CASE__ ) for line in summary_lines]
UpperCAmelCase_ : str = [token for sentence in summary_lines_token_ids for token in sentence]
return story_token_ids, summary_token_ids
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> List[Any]:
UpperCAmelCase_ : Tuple = []
for sequence in batch:
UpperCAmelCase_ : Optional[int] = -1
UpperCAmelCase_ : Tuple = []
for s in sequence:
if s == separator_token_id:
sentence_num += 1
embeddings.append(sentence_num % 2 )
batch_embeddings.append(SCREAMING_SNAKE_CASE__ )
return torch.tensor(SCREAMING_SNAKE_CASE__ )
| 644
|
'''simple docstring'''
import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.layers import LSTM, Dense
from tensorflow.keras.models import Sequential
if __name__ == "__main__":
snake_case_ : List[Any] = pd.read_csv("sample_data.csv", header=None)
snake_case_ : Optional[Any] = df.shape[:1][0]
# If you're using some other dataset input the target column
snake_case_ : Any = df.iloc[:, 1:2]
snake_case_ : str = actual_data.values.reshape(len_data, 1)
snake_case_ : Optional[Any] = MinMaxScaler().fit_transform(actual_data)
snake_case_ : List[str] = 10
snake_case_ : Any = 5
snake_case_ : Any = 20
snake_case_ : Tuple = len_data - periods * look_back
snake_case_ : str = actual_data[:division]
snake_case_ : Optional[int] = actual_data[division - look_back :]
snake_case_ ,snake_case_ : Any = [], []
snake_case_ ,snake_case_ : Union[str, Any] = [], []
for i in range(0, len(train_data) - forward_days - look_back + 1):
train_x.append(train_data[i : i + look_back])
train_y.append(train_data[i + look_back : i + look_back + forward_days])
for i in range(0, len(test_data) - forward_days - look_back + 1):
test_x.append(test_data[i : i + look_back])
test_y.append(test_data[i + look_back : i + look_back + forward_days])
snake_case_ : Any = np.array(train_x)
snake_case_ : Optional[Any] = np.array(test_x)
snake_case_ : Optional[Any] = np.array([list(i.ravel()) for i in train_y])
snake_case_ : List[str] = np.array([list(i.ravel()) for i in test_y])
snake_case_ : List[Any] = Sequential()
model.add(LSTM(1_28, input_shape=(look_back, 1), return_sequences=True))
model.add(LSTM(64, input_shape=(1_28, 1)))
model.add(Dense(forward_days))
model.compile(loss="mean_squared_error", optimizer="adam")
snake_case_ : Dict = model.fit(
x_train, y_train, epochs=1_50, verbose=1, shuffle=True, batch_size=4
)
snake_case_ : Optional[Any] = model.predict(x_test)
| 644
| 1
|
'''simple docstring'''
import inspect
import re
from hashlib import shaaaa
from typing import Dict, List
from .arrow import arrow
from .audiofolder import audiofolder
from .csv import csv
from .imagefolder import imagefolder
from .json import json
from .pandas import pandas
from .parquet import parquet
from .sql import sql # noqa F401
from .text import text
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[str] ) -> str:
UpperCAmelCase_ : str = []
for line in lines:
UpperCAmelCase_ : Tuple = re.sub(R'''#.*''', '''''', SCREAMING_SNAKE_CASE__ ) # remove comments
if line:
filtered_lines.append(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : List[str] = '''\n'''.join(SCREAMING_SNAKE_CASE__ )
# Make a hash from all this code
UpperCAmelCase_ : Dict = full_str.encode('''utf-8''' )
return shaaaa(SCREAMING_SNAKE_CASE__ ).hexdigest()
# get importable module names and hash for caching
snake_case_ : Union[str, Any] = {
"csv": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())),
"json": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())),
"pandas": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())),
"parquet": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())),
"arrow": (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())),
"text": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())),
"imagefolder": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())),
"audiofolder": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())),
}
# Used to infer the module to use based on the data files extensions
snake_case_ : str = {
".csv": ("csv", {}),
".tsv": ("csv", {"sep": "\t"}),
".json": ("json", {}),
".jsonl": ("json", {}),
".parquet": ("parquet", {}),
".arrow": ("arrow", {}),
".txt": ("text", {}),
}
_EXTENSION_TO_MODULE.update({ext: ("imagefolder", {}) for ext in imagefolder.ImageFolder.EXTENSIONS})
_EXTENSION_TO_MODULE.update({ext.upper(): ("imagefolder", {}) for ext in imagefolder.ImageFolder.EXTENSIONS})
_EXTENSION_TO_MODULE.update({ext: ("audiofolder", {}) for ext in audiofolder.AudioFolder.EXTENSIONS})
_EXTENSION_TO_MODULE.update({ext.upper(): ("audiofolder", {}) for ext in audiofolder.AudioFolder.EXTENSIONS})
snake_case_ : List[Any] = {"imagefolder", "audiofolder"}
# Used to filter data files based on extensions given a module name
snake_case_ : Dict[str, List[str]] = {}
for _ext, (_module, _) in _EXTENSION_TO_MODULE.items():
_MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext)
_MODULE_TO_EXTENSIONS["imagefolder"].append(".zip")
_MODULE_TO_EXTENSIONS["audiofolder"].append(".zip")
| 644
|
'''simple docstring'''
from typing import Any, Callable, Dict, List, Optional, Union
import torch
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
snake_case_ : Union[str, Any] = "CompVis/stable-diffusion-v1-1"
snake_case_ : Dict = "CompVis/stable-diffusion-v1-2"
snake_case_ : Any = "CompVis/stable-diffusion-v1-3"
snake_case_ : str = "CompVis/stable-diffusion-v1-4"
class __a (lowerCamelCase ):
def __init__( self : Any , __magic_name__ : AutoencoderKL , __magic_name__ : CLIPTextModel , __magic_name__ : CLIPTokenizer , __magic_name__ : UNetaDConditionModel , __magic_name__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __magic_name__ : StableDiffusionSafetyChecker , __magic_name__ : CLIPImageProcessor , __magic_name__ : bool = True , ) -> str:
"""simple docstring"""
super()._init_()
UpperCAmelCase_ : Any = StableDiffusionPipeline.from_pretrained(__magic_name__ )
UpperCAmelCase_ : Dict = StableDiffusionPipeline.from_pretrained(__magic_name__ )
UpperCAmelCase_ : List[Any] = StableDiffusionPipeline.from_pretrained(__magic_name__ )
UpperCAmelCase_ : Tuple = StableDiffusionPipeline(
vae=__magic_name__ , text_encoder=__magic_name__ , tokenizer=__magic_name__ , unet=__magic_name__ , scheduler=__magic_name__ , safety_checker=__magic_name__ , feature_extractor=__magic_name__ , requires_safety_checker=__magic_name__ , )
self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea )
@property
def UpperCAmelCase__ ( self : Tuple ) -> Dict[str, Any]:
"""simple docstring"""
return {k: getattr(self , __magic_name__ ) for k in self.config.keys() if not k.startswith('''_''' )}
def UpperCAmelCase__ ( self : Dict , __magic_name__ : Optional[Union[str, int]] = "auto" ) -> int:
"""simple docstring"""
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
UpperCAmelCase_ : List[str] = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(__magic_name__ )
def UpperCAmelCase__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
self.enable_attention_slicing(__magic_name__ )
@torch.no_grad()
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Tuple , ) -> Optional[int]:
"""simple docstring"""
return self.pipea(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
@torch.no_grad()
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Any , ) -> Any:
"""simple docstring"""
return self.pipea(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
@torch.no_grad()
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Dict , ) -> List[str]:
"""simple docstring"""
return self.pipea(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
@torch.no_grad()
def UpperCAmelCase__ ( self : int , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Optional[int] , ) -> str:
"""simple docstring"""
return self.pipea(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
@torch.no_grad()
def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Optional[int] , ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : int = '''cuda''' if torch.cuda.is_available() else '''cpu'''
self.to(__magic_name__ )
# Checks if the height and width are divisible by 8 or not
if height % 8 != 0 or width % 8 != 0:
raise ValueError(F"""`height` and `width` must be divisible by 8 but are {height} and {width}.""" )
# Get first result from Stable Diffusion Checkpoint v1.1
UpperCAmelCase_ : Optional[int] = self.textaimg_sda_a(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
# Get first result from Stable Diffusion Checkpoint v1.2
UpperCAmelCase_ : int = self.textaimg_sda_a(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
# Get first result from Stable Diffusion Checkpoint v1.3
UpperCAmelCase_ : str = self.textaimg_sda_a(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
# Get first result from Stable Diffusion Checkpoint v1.4
UpperCAmelCase_ : str = self.textaimg_sda_a(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
# Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result
return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
| 644
| 1
|
'''simple docstring'''
from __future__ import annotations
from statistics import mean
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : list[int], SCREAMING_SNAKE_CASE__ : list[int], SCREAMING_SNAKE_CASE__ : int ) -> list[int]:
UpperCAmelCase_ : List[str] = [0] * no_of_processes
UpperCAmelCase_ : Optional[int] = [0] * no_of_processes
# Initialize remaining_time to waiting_time.
for i in range(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase_ : int = burst_time[i]
UpperCAmelCase_ : list[int] = []
UpperCAmelCase_ : Dict = 0
UpperCAmelCase_ : Any = 0
# When processes are not completed,
# A process whose arrival time has passed \
# and has remaining execution time is put into the ready_process.
# The shortest process in the ready_process, target_process is executed.
while completed != no_of_processes:
UpperCAmelCase_ : Any = []
UpperCAmelCase_ : Any = -1
for i in range(SCREAMING_SNAKE_CASE__ ):
if (arrival_time[i] <= total_time) and (remaining_time[i] > 0):
ready_process.append(SCREAMING_SNAKE_CASE__ )
if len(SCREAMING_SNAKE_CASE__ ) > 0:
UpperCAmelCase_ : int = ready_process[0]
for i in ready_process:
if remaining_time[i] < remaining_time[target_process]:
UpperCAmelCase_ : str = i
total_time += burst_time[target_process]
completed += 1
UpperCAmelCase_ : Union[str, Any] = 0
UpperCAmelCase_ : Optional[int] = (
total_time - arrival_time[target_process] - burst_time[target_process]
)
else:
total_time += 1
return waiting_time
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : list[int], SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : list[int] ) -> list[int]:
UpperCAmelCase_ : Union[str, Any] = [0] * no_of_processes
for i in range(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase_ : Dict = burst_time[i] + waiting_time[i]
return turn_around_time
if __name__ == "__main__":
print("[TEST CASE 01]")
snake_case_ : Tuple = 4
snake_case_ : int = [2, 5, 3, 7]
snake_case_ : Union[str, Any] = [0, 0, 0, 0]
snake_case_ : int = calculate_waitingtime(arrival_time, burst_time, no_of_processes)
snake_case_ : Tuple = calculate_turnaroundtime(
burst_time, no_of_processes, waiting_time
)
# Printing the Result
print("PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time")
for i, process_id in enumerate(list(range(1, 5))):
print(
f'''{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t'''
f'''{waiting_time[i]}\t\t\t\t{turn_around_time[i]}'''
)
print(f'''\nAverage waiting time = {mean(waiting_time):.5f}''')
print(f'''Average turnaround time = {mean(turn_around_time):.5f}''')
| 644
|
'''simple docstring'''
import argparse
import json
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
snake_case_ : Optional[int] = 16
snake_case_ : Tuple = 32
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Accelerator, SCREAMING_SNAKE_CASE__ : int = 16, SCREAMING_SNAKE_CASE__ : str = "bert-base-cased" ) -> Dict:
UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : int = load_dataset('''glue''', '''mrpc''' )
def tokenize_function(SCREAMING_SNAKE_CASE__ : Optional[int] ):
# max_length=None => use the model max length (it's actually the default)
UpperCAmelCase_ : Union[str, Any] = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=SCREAMING_SNAKE_CASE__, max_length=SCREAMING_SNAKE_CASE__ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
UpperCAmelCase_ : Tuple = datasets.map(
SCREAMING_SNAKE_CASE__, batched=SCREAMING_SNAKE_CASE__, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], load_from_cache_file=SCREAMING_SNAKE_CASE__ )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
UpperCAmelCase_ : Optional[Any] = tokenized_datasets.rename_column('''label''', '''labels''' )
def collate_fn(SCREAMING_SNAKE_CASE__ : str ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(SCREAMING_SNAKE_CASE__, padding='''max_length''', max_length=128, return_tensors='''pt''' )
return tokenizer.pad(SCREAMING_SNAKE_CASE__, padding='''longest''', return_tensors='''pt''' )
# Instantiate dataloaders.
UpperCAmelCase_ : str = DataLoader(
tokenized_datasets['''train'''], shuffle=SCREAMING_SNAKE_CASE__, collate_fn=SCREAMING_SNAKE_CASE__, batch_size=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : int = DataLoader(
tokenized_datasets['''validation'''], shuffle=SCREAMING_SNAKE_CASE__, collate_fn=SCREAMING_SNAKE_CASE__, batch_size=SCREAMING_SNAKE_CASE__ )
return train_dataloader, eval_dataloader
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Optional[Any], SCREAMING_SNAKE_CASE__ : Optional[int], SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : Any ) -> Any:
model.eval()
UpperCAmelCase_ : List[str] = 0
for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
UpperCAmelCase_ : Dict = model(**SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : str = outputs.logits.argmax(dim=-1 )
# It is slightly faster to call this once, than multiple times
UpperCAmelCase_ , UpperCAmelCase_ : List[str] = accelerator.gather(
(predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates
if accelerator.use_distributed:
if step == len(SCREAMING_SNAKE_CASE__ ) - 1:
UpperCAmelCase_ : Tuple = predictions[: len(eval_dataloader.dataset ) - samples_seen]
UpperCAmelCase_ : int = references[: len(eval_dataloader.dataset ) - samples_seen]
else:
samples_seen += references.shape[0]
metric.add_batch(
predictions=SCREAMING_SNAKE_CASE__, references=SCREAMING_SNAKE_CASE__, )
UpperCAmelCase_ : List[str] = metric.compute()
return eval_metric["accuracy"]
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : int ) -> Tuple:
# Initialize accelerator
UpperCAmelCase_ : Union[str, Any] = Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
UpperCAmelCase_ : int = config['''lr''']
UpperCAmelCase_ : Optional[int] = int(config['''num_epochs'''] )
UpperCAmelCase_ : Optional[int] = int(config['''seed'''] )
UpperCAmelCase_ : List[str] = int(config['''batch_size'''] )
UpperCAmelCase_ : Optional[int] = args.model_name_or_path
set_seed(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = get_dataloaders(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
UpperCAmelCase_ : List[Any] = AutoModelForSequenceClassification.from_pretrained(SCREAMING_SNAKE_CASE__, return_dict=SCREAMING_SNAKE_CASE__ )
# Instantiate optimizer
UpperCAmelCase_ : str = (
AdamW
if accelerator.state.deepspeed_plugin is None
or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
UpperCAmelCase_ : List[str] = optimizer_cls(params=model.parameters(), lr=SCREAMING_SNAKE_CASE__ )
if accelerator.state.deepspeed_plugin is not None:
UpperCAmelCase_ : List[Any] = accelerator.state.deepspeed_plugin.deepspeed_config[
'''gradient_accumulation_steps'''
]
else:
UpperCAmelCase_ : Tuple = 1
UpperCAmelCase_ : int = (len(SCREAMING_SNAKE_CASE__ ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
UpperCAmelCase_ : Tuple = get_linear_schedule_with_warmup(
optimizer=SCREAMING_SNAKE_CASE__, num_warmup_steps=0, num_training_steps=SCREAMING_SNAKE_CASE__, )
else:
UpperCAmelCase_ : Any = DummyScheduler(SCREAMING_SNAKE_CASE__, total_num_steps=SCREAMING_SNAKE_CASE__, warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = accelerator.prepare(
SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
# We need to keep track of how many total steps we have iterated over
UpperCAmelCase_ : Union[str, Any] = 0
# We also need to keep track of the stating epoch so files are named properly
UpperCAmelCase_ : Dict = 0
UpperCAmelCase_ : int = evaluate.load('''glue''', '''mrpc''' )
UpperCAmelCase_ : Optional[Any] = num_epochs
if args.partial_train_epoch is not None:
UpperCAmelCase_ : List[Any] = args.partial_train_epoch
if args.resume_from_checkpoint:
accelerator.load_state(args.resume_from_checkpoint )
UpperCAmelCase_ : Tuple = args.resume_from_checkpoint.split('''epoch_''' )[1]
UpperCAmelCase_ : int = ''''''
for char in epoch_string:
if char.isdigit():
state_epoch_num += char
else:
break
UpperCAmelCase_ : Union[str, Any] = int(SCREAMING_SNAKE_CASE__ ) + 1
UpperCAmelCase_ : Dict = evaluation_loop(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
accelerator.print('''resumed checkpoint performance:''', SCREAMING_SNAKE_CASE__ )
accelerator.print('''resumed checkpoint\'s scheduler\'s lr:''', lr_scheduler.get_lr()[0] )
accelerator.print('''resumed optimizers\'s lr:''', optimizer.param_groups[0]['''lr'''] )
with open(os.path.join(args.output_dir, F"""state_{starting_epoch-1}.json""" ), '''r''' ) as f:
UpperCAmelCase_ : Optional[int] = json.load(SCREAMING_SNAKE_CASE__ )
assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed"
assert (
resumed_state["lr"] == lr_scheduler.get_lr()[0]
), "Scheduler learning rate mismatch, loading from checkpoint failed"
assert (
resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"]
), "Optimizer learning rate mismatch, loading from checkpoint failed"
assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed"
return
# Now we train the model
UpperCAmelCase_ : int = {}
for epoch in range(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ):
model.train()
for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase_ : Optional[int] = model(**SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Any = outputs.loss
UpperCAmelCase_ : Tuple = loss / gradient_accumulation_steps
accelerator.backward(SCREAMING_SNAKE_CASE__ )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
UpperCAmelCase_ : Tuple = F"""epoch_{epoch}"""
UpperCAmelCase_ : Optional[int] = os.path.join(args.output_dir, SCREAMING_SNAKE_CASE__ )
accelerator.save_state(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : int = evaluation_loop(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Optional[Any] = accuracy
UpperCAmelCase_ : Any = lr_scheduler.get_lr()[0]
UpperCAmelCase_ : List[str] = optimizer.param_groups[0]['''lr''']
UpperCAmelCase_ : Tuple = epoch
UpperCAmelCase_ : Dict = overall_step
accelerator.print(F"""epoch {epoch}:""", SCREAMING_SNAKE_CASE__ )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir, F"""state_{epoch}.json""" ), '''w''' ) as f:
json.dump(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
def lowerCamelCase_ ( ) -> List[str]:
UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' )
parser.add_argument(
'''--model_name_or_path''', type=SCREAMING_SNAKE_CASE__, default='''bert-base-cased''', help='''Path to pretrained model or model identifier from huggingface.co/models.''', required=SCREAMING_SNAKE_CASE__, )
parser.add_argument(
'''--output_dir''', type=SCREAMING_SNAKE_CASE__, default='''.''', help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''', )
parser.add_argument(
'''--resume_from_checkpoint''', type=SCREAMING_SNAKE_CASE__, default=SCREAMING_SNAKE_CASE__, help='''If the training should continue from a checkpoint folder.''', )
parser.add_argument(
'''--partial_train_epoch''', type=SCREAMING_SNAKE_CASE__, default=SCREAMING_SNAKE_CASE__, help='''If passed, the training will stop after this number of epochs.''', )
parser.add_argument(
'''--num_epochs''', type=SCREAMING_SNAKE_CASE__, default=2, help='''Number of train epochs.''', )
UpperCAmelCase_ : Optional[int] = parser.parse_args()
UpperCAmelCase_ : List[Any] = {'''lr''': 2E-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16}
training_function(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
main()
| 644
| 1
|
'''simple docstring'''
import argparse
import logging
import os
import sys
import numpy as np
import onnxruntime
import torch
from bart_onnx.generation_onnx import BARTBeamSearchGenerator
from bart_onnx.reduce_onnx_size import remove_dup_initializers
import transformers
from transformers import BartForConditionalGeneration, BartTokenizer
logging.basicConfig(
format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
level=os.environ.get("LOGLEVEL", "INFO").upper(),
stream=sys.stdout,
)
snake_case_ : Any = logging.getLogger(__name__)
snake_case_ : Dict = {"facebook/bart-base": BartForConditionalGeneration}
snake_case_ : Optional[Any] = {"facebook/bart-base": BartTokenizer}
def lowerCamelCase_ ( ) -> Optional[int]:
UpperCAmelCase_ : List[str] = argparse.ArgumentParser(description='''Export Bart model + Beam Search to ONNX graph.''' )
parser.add_argument(
'''--validation_file''', type=SCREAMING_SNAKE_CASE__, default=SCREAMING_SNAKE_CASE__, help='''A csv or a json file containing the validation data.''' )
parser.add_argument(
'''--max_length''', type=SCREAMING_SNAKE_CASE__, default=5, help='''The maximum total input sequence length after tokenization.''', )
parser.add_argument(
'''--num_beams''', type=SCREAMING_SNAKE_CASE__, default=SCREAMING_SNAKE_CASE__, help=(
'''Number of beams to use for evaluation. This argument will be '''
'''passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.'''
), )
parser.add_argument(
'''--model_name_or_path''', type=SCREAMING_SNAKE_CASE__, help='''Path to pretrained model or model identifier from huggingface.co/models.''', required=SCREAMING_SNAKE_CASE__, )
parser.add_argument(
'''--config_name''', type=SCREAMING_SNAKE_CASE__, default=SCREAMING_SNAKE_CASE__, help='''Pretrained config name or path if not the same as model_name''', )
parser.add_argument(
'''--device''', type=SCREAMING_SNAKE_CASE__, default='''cpu''', help='''Device where the model will be run''', )
parser.add_argument('''--output_file_path''', type=SCREAMING_SNAKE_CASE__, default=SCREAMING_SNAKE_CASE__, help='''Where to store the final ONNX file.''' )
UpperCAmelCase_ : Optional[int] = parser.parse_args()
return args
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[Any], SCREAMING_SNAKE_CASE__ : Union[str, Any]="cpu" ) -> Tuple:
UpperCAmelCase_ : Tuple = model_dict[model_name].from_pretrained(SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : List[str] = tokenizer_dict[model_name].from_pretrained(SCREAMING_SNAKE_CASE__ )
if model_name in ["facebook/bart-base"]:
UpperCAmelCase_ : Optional[Any] = 0
UpperCAmelCase_ : Any = None
UpperCAmelCase_ : List[Any] = 0
return huggingface_model, tokenizer
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Optional[Any], SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : str, SCREAMING_SNAKE_CASE__ : Optional[int], SCREAMING_SNAKE_CASE__ : List[Any] ) -> Any:
model.eval()
UpperCAmelCase_ : Optional[Any] = None
UpperCAmelCase_ : Union[str, Any] = torch.jit.script(BARTBeamSearchGenerator(SCREAMING_SNAKE_CASE__ ) )
with torch.no_grad():
UpperCAmelCase_ : Optional[Any] = '''My friends are cool but they eat too many carbs.'''
UpperCAmelCase_ : List[str] = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors='''pt''' ).to(model.device )
UpperCAmelCase_ : Optional[int] = model.generate(
inputs['''input_ids'''], attention_mask=inputs['''attention_mask'''], num_beams=SCREAMING_SNAKE_CASE__, max_length=SCREAMING_SNAKE_CASE__, early_stopping=SCREAMING_SNAKE_CASE__, decoder_start_token_id=model.config.decoder_start_token_id, )
torch.onnx.export(
SCREAMING_SNAKE_CASE__, (
inputs['''input_ids'''],
inputs['''attention_mask'''],
num_beams,
max_length,
model.config.decoder_start_token_id,
), SCREAMING_SNAKE_CASE__, opset_version=14, input_names=['''input_ids''', '''attention_mask''', '''num_beams''', '''max_length''', '''decoder_start_token_id'''], output_names=['''output_ids'''], dynamic_axes={
'''input_ids''': {0: '''batch''', 1: '''seq'''},
'''output_ids''': {0: '''batch''', 1: '''seq_out'''},
}, example_outputs=SCREAMING_SNAKE_CASE__, )
logger.info('''Model exported to {}'''.format(SCREAMING_SNAKE_CASE__ ) )
UpperCAmelCase_ : Union[str, Any] = remove_dup_initializers(os.path.abspath(SCREAMING_SNAKE_CASE__ ) )
logger.info('''Deduplicated and optimized model written to {}'''.format(SCREAMING_SNAKE_CASE__ ) )
UpperCAmelCase_ : Dict = onnxruntime.InferenceSession(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Optional[int] = ort_sess.run(
SCREAMING_SNAKE_CASE__, {
'''input_ids''': inputs['''input_ids'''].cpu().numpy(),
'''attention_mask''': inputs['''attention_mask'''].cpu().numpy(),
'''num_beams''': np.array(SCREAMING_SNAKE_CASE__ ),
'''max_length''': np.array(SCREAMING_SNAKE_CASE__ ),
'''decoder_start_token_id''': np.array(model.config.decoder_start_token_id ),
}, )
np.testing.assert_allclose(summary_ids.cpu().numpy(), ort_out[0], rtol=1E-3, atol=1E-3 )
logger.info('''Model outputs from torch and ONNX Runtime are similar.''' )
logger.info('''Success.''' )
def lowerCamelCase_ ( ) -> Optional[Any]:
UpperCAmelCase_ : List[Any] = parse_args()
UpperCAmelCase_ : List[str] = 5
UpperCAmelCase_ : Optional[Any] = 4
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, )
logger.setLevel(logging.INFO )
transformers.utils.logging.set_verbosity_error()
UpperCAmelCase_ : Dict = torch.device(args.device )
UpperCAmelCase_ , UpperCAmelCase_ : Dict = load_model_tokenizer(args.model_name_or_path, SCREAMING_SNAKE_CASE__ )
if model.config.decoder_start_token_id is None:
raise ValueError('''Make sure that `config.decoder_start_token_id` is correctly defined''' )
model.to(SCREAMING_SNAKE_CASE__ )
if args.max_length:
UpperCAmelCase_ : Tuple = args.max_length
if args.num_beams:
UpperCAmelCase_ : Optional[int] = args.num_beams
if args.output_file_path:
UpperCAmelCase_ : Optional[int] = args.output_file_path
else:
UpperCAmelCase_ : Dict = '''BART.onnx'''
logger.info('''Exporting model to ONNX''' )
export_and_validate_model(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
main()
| 644
|
'''simple docstring'''
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : list[int] ) -> list[list[int]]:
UpperCAmelCase_ : int = []
if len(SCREAMING_SNAKE_CASE__ ) == 1:
return [nums.copy()]
for _ in range(len(SCREAMING_SNAKE_CASE__ ) ):
UpperCAmelCase_ : List[Any] = nums.pop(0 )
UpperCAmelCase_ : Optional[Any] = permute(SCREAMING_SNAKE_CASE__ )
for perm in permutations:
perm.append(SCREAMING_SNAKE_CASE__ )
result.extend(SCREAMING_SNAKE_CASE__ )
nums.append(SCREAMING_SNAKE_CASE__ )
return result
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[str] ) -> Any:
def backtrack(SCREAMING_SNAKE_CASE__ : Union[str, Any] ):
if start == len(SCREAMING_SNAKE_CASE__ ) - 1:
output.append(nums[:] )
else:
for i in range(SCREAMING_SNAKE_CASE__, len(SCREAMING_SNAKE_CASE__ ) ):
UpperCAmelCase_ , UpperCAmelCase_ : Tuple = nums[i], nums[start]
backtrack(start + 1 )
UpperCAmelCase_ , UpperCAmelCase_ : int = nums[i], nums[start] # backtrack
UpperCAmelCase_ : Optional[int] = []
backtrack(0 )
return output
if __name__ == "__main__":
import doctest
# use res to print the data in permute2 function
snake_case_ : Tuple = permutea([1, 2, 3])
print(res)
doctest.testmod()
| 644
| 1
|
'''simple docstring'''
import math
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : float, SCREAMING_SNAKE_CASE__ : float ) -> float:
if initial_intensity < 0:
raise ValueError('''The value of intensity cannot be negative''' )
# handling of negative values of initial intensity
if angle < 0 or angle > 360:
raise ValueError('''In Malus Law, the angle is in the range 0-360 degrees''' )
# handling of values out of allowed range
return initial_intensity * (math.cos(math.radians(SCREAMING_SNAKE_CASE__ ) ) ** 2)
if __name__ == "__main__":
import doctest
doctest.testmod(name="malus_law")
| 644
|
'''simple docstring'''
class __a :
def __init__( self : List[Any] , __magic_name__ : int ) -> None:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = size
UpperCAmelCase_ : Tuple = [0] * size
UpperCAmelCase_ : Optional[Any] = [0] * size
@staticmethod
def UpperCAmelCase__ ( __magic_name__ : int ) -> int:
"""simple docstring"""
return index | (index + 1)
@staticmethod
def UpperCAmelCase__ ( __magic_name__ : int ) -> int:
"""simple docstring"""
return (index & (index + 1)) - 1
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : int , __magic_name__ : int ) -> None:
"""simple docstring"""
UpperCAmelCase_ : int = value
while index < self.size:
UpperCAmelCase_ : str = self.get_prev(__magic_name__ ) + 1
if current_left_border == index:
UpperCAmelCase_ : List[str] = value
else:
UpperCAmelCase_ : Optional[int] = max(__magic_name__ , __magic_name__ , __magic_name__ )
UpperCAmelCase_ : Tuple = self.get_next(__magic_name__ )
def UpperCAmelCase__ ( self : Any , __magic_name__ : int , __magic_name__ : int ) -> int:
"""simple docstring"""
right -= 1 # Because of right is exclusive
UpperCAmelCase_ : List[str] = 0
while left <= right:
UpperCAmelCase_ : Optional[Any] = self.get_prev(__magic_name__ )
if left <= current_left:
UpperCAmelCase_ : Dict = max(__magic_name__ , self.tree[right] )
UpperCAmelCase_ : Optional[Any] = current_left
else:
UpperCAmelCase_ : str = max(__magic_name__ , self.arr[right] )
right -= 1
return result
if __name__ == "__main__":
import doctest
doctest.testmod()
| 644
| 1
|
'''simple docstring'''
from typing import Dict, Iterable, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
snake_case_ : List[Any] = logging.get_logger(__name__)
class __a (lowerCamelCase ):
__a : Any = ["pixel_values"]
def __init__( self : Optional[Any] , __magic_name__ : bool = True , __magic_name__ : Dict[str, int] = None , __magic_name__ : PILImageResampling = PILImageResampling.BICUBIC , __magic_name__ : bool = True , __magic_name__ : Dict[str, int] = None , __magic_name__ : bool = True , __magic_name__ : Union[int, float] = 1 / 2_55 , __magic_name__ : bool = True , __magic_name__ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , __magic_name__ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **__magic_name__ : List[str] , ) -> None:
"""simple docstring"""
super().__init__(**__magic_name__ )
UpperCAmelCase_ : Any = size if size is not None else {'''shortest_edge''': 2_24}
UpperCAmelCase_ : int = get_size_dict(__magic_name__ , default_to_square=__magic_name__ )
UpperCAmelCase_ : Any = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24}
UpperCAmelCase_ : Tuple = get_size_dict(__magic_name__ , param_name='''crop_size''' )
UpperCAmelCase_ : Tuple = do_resize
UpperCAmelCase_ : List[str] = size
UpperCAmelCase_ : int = resample
UpperCAmelCase_ : Optional[int] = do_center_crop
UpperCAmelCase_ : Dict = crop_size
UpperCAmelCase_ : str = do_rescale
UpperCAmelCase_ : List[str] = rescale_factor
UpperCAmelCase_ : Tuple = do_normalize
UpperCAmelCase_ : List[str] = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
UpperCAmelCase_ : Any = image_std if image_std is not None else IMAGENET_DEFAULT_STD
def UpperCAmelCase__ ( self : Any , __magic_name__ : np.ndarray , __magic_name__ : Dict[str, int] , __magic_name__ : PILImageResampling = PILImageResampling.BICUBIC , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : int , ) -> np.ndarray:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = get_size_dict(__magic_name__ , default_to_square=__magic_name__ )
# size_dict is a dict with either keys "height" and "width" or "shortest_edge"
if "shortest_edge" in size:
UpperCAmelCase_ : Dict = int((2_56 / 2_24) * size['''shortest_edge'''] )
UpperCAmelCase_ : Optional[Any] = get_resize_output_image_size(__magic_name__ , size=__magic_name__ , default_to_square=__magic_name__ )
UpperCAmelCase_ : Any = {'''height''': output_size[0], '''width''': output_size[1]}
if "height" not in size_dict or "width" not in size_dict:
raise ValueError(
F"""Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}""" )
return resize(
__magic_name__ , size=(size_dict['''height'''], size_dict['''width''']) , resample=__magic_name__ , data_format=__magic_name__ , **__magic_name__ )
def UpperCAmelCase__ ( self : Dict , __magic_name__ : np.ndarray , __magic_name__ : Dict[str, int] , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : Dict , ) -> np.ndarray:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = get_size_dict(__magic_name__ )
if "height" not in size or "width" not in size:
raise ValueError(F"""Size dict must have keys 'height' and 'width'. Got {size.keys()}""" )
return center_crop(__magic_name__ , size=(size['''height'''], size['''width''']) , data_format=__magic_name__ , **__magic_name__ )
def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : np.ndarray , __magic_name__ : Union[int, float] , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : int , ) -> np.ndarray:
"""simple docstring"""
return rescale(__magic_name__ , scale=__magic_name__ , data_format=__magic_name__ , **__magic_name__ )
def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : np.ndarray , __magic_name__ : Union[float, List[float]] , __magic_name__ : Union[float, List[float]] , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : Tuple , ) -> np.ndarray:
"""simple docstring"""
return normalize(__magic_name__ , mean=__magic_name__ , std=__magic_name__ , data_format=__magic_name__ , **__magic_name__ )
def UpperCAmelCase__ ( self : Dict , __magic_name__ : ImageInput , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[Dict[str, int]] = None , __magic_name__ : PILImageResampling = None , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[Dict[str, int]] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[float] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[Union[float, Iterable[float]]] = None , __magic_name__ : Optional[Union[float, Iterable[float]]] = None , __magic_name__ : Optional[TensorType] = None , __magic_name__ : ChannelDimension = ChannelDimension.FIRST , **__magic_name__ : Any , ) -> BatchFeature:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = do_resize if do_resize is not None else self.do_resize
UpperCAmelCase_ : List[Any] = resample if resample is not None else self.resample
UpperCAmelCase_ : List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop
UpperCAmelCase_ : List[Any] = do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase_ : Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCAmelCase_ : Tuple = do_normalize if do_normalize is not None else self.do_normalize
UpperCAmelCase_ : str = image_mean if image_mean is not None else self.image_mean
UpperCAmelCase_ : Any = image_std if image_std is not None else self.image_std
UpperCAmelCase_ : Optional[int] = size if size is not None else self.size
UpperCAmelCase_ : List[Any] = get_size_dict(__magic_name__ , default_to_square=__magic_name__ )
UpperCAmelCase_ : Optional[int] = crop_size if crop_size is not None else self.crop_size
UpperCAmelCase_ : int = get_size_dict(__magic_name__ , param_name='''crop_size''' )
UpperCAmelCase_ : int = make_list_of_images(__magic_name__ )
if not valid_images(__magic_name__ ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# All transformations expect numpy arrays.
UpperCAmelCase_ : str = [to_numpy_array(__magic_name__ ) for image in images]
if do_resize:
UpperCAmelCase_ : Union[str, Any] = [self.resize(__magic_name__ , __magic_name__ , __magic_name__ ) for image in images]
if do_center_crop:
UpperCAmelCase_ : Optional[int] = [self.center_crop(__magic_name__ , __magic_name__ ) for image in images]
if do_rescale:
UpperCAmelCase_ : Optional[Any] = [self.rescale(__magic_name__ , __magic_name__ ) for image in images]
if do_normalize:
UpperCAmelCase_ : Union[str, Any] = [self.normalize(__magic_name__ , __magic_name__ , __magic_name__ ) for image in images]
UpperCAmelCase_ : List[str] = [to_channel_dimension_format(__magic_name__ , __magic_name__ ) for image in images]
UpperCAmelCase_ : Dict = {'''pixel_values''': images}
return BatchFeature(data=__magic_name__ , tensor_type=__magic_name__ )
| 644
|
'''simple docstring'''
import math
import unittest
from transformers import BioGptConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptTokenizer,
)
from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST
class __a :
def __init__( self : List[str] , __magic_name__ : List[str] , __magic_name__ : str=13 , __magic_name__ : Union[str, Any]=7 , __magic_name__ : Union[str, Any]=True , __magic_name__ : Any=True , __magic_name__ : List[str]=False , __magic_name__ : Optional[int]=True , __magic_name__ : Dict=99 , __magic_name__ : Tuple=32 , __magic_name__ : int=5 , __magic_name__ : Dict=4 , __magic_name__ : Tuple=37 , __magic_name__ : Optional[int]="gelu" , __magic_name__ : List[str]=0.1 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : str=5_12 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : int=2 , __magic_name__ : List[Any]=0.0_2 , __magic_name__ : Tuple=3 , __magic_name__ : Union[str, Any]=4 , __magic_name__ : Optional[int]=None , ) -> str:
"""simple docstring"""
UpperCAmelCase_ : Any = parent
UpperCAmelCase_ : Union[str, Any] = batch_size
UpperCAmelCase_ : List[Any] = seq_length
UpperCAmelCase_ : str = is_training
UpperCAmelCase_ : Any = use_input_mask
UpperCAmelCase_ : List[str] = use_token_type_ids
UpperCAmelCase_ : Union[str, Any] = use_labels
UpperCAmelCase_ : Dict = vocab_size
UpperCAmelCase_ : Optional[Any] = hidden_size
UpperCAmelCase_ : Dict = num_hidden_layers
UpperCAmelCase_ : List[Any] = num_attention_heads
UpperCAmelCase_ : Optional[int] = intermediate_size
UpperCAmelCase_ : Union[str, Any] = hidden_act
UpperCAmelCase_ : str = hidden_dropout_prob
UpperCAmelCase_ : Optional[Any] = attention_probs_dropout_prob
UpperCAmelCase_ : Any = max_position_embeddings
UpperCAmelCase_ : str = type_vocab_size
UpperCAmelCase_ : Optional[Any] = type_sequence_label_size
UpperCAmelCase_ : List[Any] = initializer_range
UpperCAmelCase_ : int = num_labels
UpperCAmelCase_ : Optional[int] = num_choices
UpperCAmelCase_ : Tuple = scope
def UpperCAmelCase__ ( self : Union[str, Any] ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase_ : Union[str, Any] = None
if self.use_input_mask:
UpperCAmelCase_ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase_ : str = None
if self.use_token_type_ids:
UpperCAmelCase_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase_ : Tuple = None
UpperCAmelCase_ : List[str] = None
UpperCAmelCase_ : Union[str, Any] = None
if self.use_labels:
UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase_ : int = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCAmelCase__ ( self : Any ) -> List[Any]:
"""simple docstring"""
return BioGptConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__magic_name__ , initializer_range=self.initializer_range , )
def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : Tuple , __magic_name__ : str , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = BioGptModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : Dict = model(__magic_name__ , attention_mask=__magic_name__ )
UpperCAmelCase_ : Optional[Any] = model(__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : Dict , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Any , __magic_name__ : Tuple , __magic_name__ : List[str] , __magic_name__ : Optional[int] , ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Dict = BioGptForCausalLM(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : List[Any] = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCAmelCase__ ( self : str , __magic_name__ : Optional[int] , __magic_name__ : Tuple , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : str , *__magic_name__ : Any ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Dict = BioGptModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
# create attention mask
UpperCAmelCase_ : Optional[Any] = torch.ones(input_ids.shape , dtype=torch.long , device=__magic_name__ )
UpperCAmelCase_ : Any = self.seq_length // 2
UpperCAmelCase_ : Tuple = 0
# first forward pass
UpperCAmelCase_ , UpperCAmelCase_ : Dict = model(__magic_name__ , attention_mask=__magic_name__ ).to_tuple()
# create hypothetical next token and extent to next_input_ids
UpperCAmelCase_ : Tuple = ids_tensor((self.batch_size, 1) , config.vocab_size )
# change a random masked slice from input_ids
UpperCAmelCase_ : List[str] = ids_tensor((1,) , __magic_name__ ).item() + 1
UpperCAmelCase_ : Tuple = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 )
UpperCAmelCase_ : str = random_other_next_tokens
# append to next input_ids and attn_mask
UpperCAmelCase_ : Tuple = torch.cat([input_ids, next_tokens] , dim=-1 )
UpperCAmelCase_ : int = torch.cat(
[attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=__magic_name__ )] , dim=1 , )
# get two different outputs
UpperCAmelCase_ : Any = model(__magic_name__ , attention_mask=__magic_name__ )['''last_hidden_state''']
UpperCAmelCase_ : int = model(__magic_name__ , past_key_values=__magic_name__ , attention_mask=__magic_name__ )['''last_hidden_state''']
# select random slice
UpperCAmelCase_ : Optional[int] = ids_tensor((1,) , output_from_past.shape[-1] ).item()
UpperCAmelCase_ : Union[str, Any] = output_from_no_past[:, -1, random_slice_idx].detach()
UpperCAmelCase_ : Dict = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) )
def UpperCAmelCase__ ( self : Dict , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : Dict , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , *__magic_name__ : str ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Dict = BioGptModel(config=__magic_name__ ).to(__magic_name__ ).eval()
UpperCAmelCase_ : Optional[int] = torch.ones(input_ids.shape , dtype=torch.long , device=__magic_name__ )
# first forward pass
UpperCAmelCase_ : Union[str, Any] = model(__magic_name__ , attention_mask=__magic_name__ , use_cache=__magic_name__ )
UpperCAmelCase_ , UpperCAmelCase_ : int = outputs.to_tuple()
# create hypothetical multiple next token and extent to next_input_ids
UpperCAmelCase_ : Any = ids_tensor((self.batch_size, 3) , config.vocab_size )
UpperCAmelCase_ : Any = ids_tensor((self.batch_size, 3) , 2 )
# append to next input_ids and
UpperCAmelCase_ : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1 )
UpperCAmelCase_ : List[str] = torch.cat([attention_mask, next_attn_mask] , dim=-1 )
UpperCAmelCase_ : Any = model(__magic_name__ , attention_mask=__magic_name__ )['''last_hidden_state''']
UpperCAmelCase_ : Optional[Any] = model(__magic_name__ , attention_mask=__magic_name__ , past_key_values=__magic_name__ )[
'''last_hidden_state'''
]
# select random slice
UpperCAmelCase_ : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item()
UpperCAmelCase_ : str = output_from_no_past[:, -3:, random_slice_idx].detach()
UpperCAmelCase_ : Optional[int] = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) )
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : str , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , *__magic_name__ : Any , __magic_name__ : List[Any]=False ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Any = BioGptForCausalLM(__magic_name__ )
model.to(__magic_name__ )
if gradient_checkpointing:
model.gradient_checkpointing_enable()
UpperCAmelCase_ : List[str] = model(__magic_name__ , labels=__magic_name__ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
result.loss.backward()
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Optional[int] , *__magic_name__ : List[str] ) -> str:
"""simple docstring"""
UpperCAmelCase_ : int = BioGptModel(__magic_name__ )
UpperCAmelCase_ : Dict = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers )
for key in model.state_dict().keys():
if "c_proj" in key and "weight" in key:
self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.0_0_1 )
self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.0_1 )
def UpperCAmelCase__ ( self : int , __magic_name__ : Tuple , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] , *__magic_name__ : Any ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : str = self.num_labels
UpperCAmelCase_ : Any = BioGptForTokenClassification(__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : Any = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCAmelCase__ ( self : Optional[Any] ) -> str:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = self.prepare_config_and_inputs()
(
(
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) ,
) : int = config_and_inputs
UpperCAmelCase_ : Any = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class __a (lowerCamelCase , lowerCamelCase , lowerCamelCase , unittest.TestCase ):
__a : str = (
(BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification)
if is_torch_available()
else ()
)
__a : List[Any] = (BioGptForCausalLM,) if is_torch_available() else ()
__a : Union[str, Any] = (
{
"feature-extraction": BioGptModel,
"text-classification": BioGptForSequenceClassification,
"text-generation": BioGptForCausalLM,
"token-classification": BioGptForTokenClassification,
"zero-shot": BioGptForSequenceClassification,
}
if is_torch_available()
else {}
)
__a : List[str] = False
def UpperCAmelCase__ ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : List[str] = BioGptModelTester(self )
UpperCAmelCase_ : Optional[Any] = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 )
def UpperCAmelCase__ ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCAmelCase__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__magic_name__ )
def UpperCAmelCase__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
UpperCAmelCase_ : str = type
self.model_tester.create_and_check_model(*__magic_name__ )
def UpperCAmelCase__ ( self : Optional[int] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_attention_mask_past(*__magic_name__ )
def UpperCAmelCase__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_forward_and_backwards(*__magic_name__ , gradient_checkpointing=__magic_name__ )
def UpperCAmelCase__ ( self : str ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_past_large_inputs(*__magic_name__ )
def UpperCAmelCase__ ( self : Dict ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_weight_initialization(*__magic_name__ )
def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_for_token_classification(*__magic_name__ )
@slow
def UpperCAmelCase__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' )
model.to(__magic_name__ )
UpperCAmelCase_ : List[str] = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' )
UpperCAmelCase_ : Tuple = '''left'''
# Define PAD Token = EOS Token = 50256
UpperCAmelCase_ : List[Any] = tokenizer.eos_token
UpperCAmelCase_ : List[Any] = model.config.eos_token_id
# use different length sentences to test batching
UpperCAmelCase_ : Tuple = [
'''Hello, my dog is a little''',
'''Today, I''',
]
UpperCAmelCase_ : Optional[Any] = tokenizer(__magic_name__ , return_tensors='''pt''' , padding=__magic_name__ )
UpperCAmelCase_ : Optional[Any] = inputs['''input_ids'''].to(__magic_name__ )
UpperCAmelCase_ : Any = model.generate(
input_ids=__magic_name__ , attention_mask=inputs['''attention_mask'''].to(__magic_name__ ) , )
UpperCAmelCase_ : Union[str, Any] = tokenizer(sentences[0] , return_tensors='''pt''' ).input_ids.to(__magic_name__ )
UpperCAmelCase_ : Tuple = model.generate(input_ids=__magic_name__ )
UpperCAmelCase_ : List[str] = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item()
UpperCAmelCase_ : List[Any] = tokenizer(sentences[1] , return_tensors='''pt''' ).input_ids.to(__magic_name__ )
UpperCAmelCase_ : Tuple = model.generate(input_ids=__magic_name__ , max_length=model.config.max_length - num_paddings )
UpperCAmelCase_ : int = tokenizer.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ )
UpperCAmelCase_ : Dict = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__magic_name__ )
UpperCAmelCase_ : Union[str, Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=__magic_name__ )
UpperCAmelCase_ : Optional[Any] = [
'''Hello, my dog is a little bit bigger than a little bit.''',
'''Today, I have a good idea of how to use the information''',
]
self.assertListEqual(__magic_name__ , __magic_name__ )
self.assertListEqual(__magic_name__ , [non_padded_sentence, padded_sentence] )
@slow
def UpperCAmelCase__ ( self : str ) -> Optional[Any]:
"""simple docstring"""
for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase_ : List[Any] = BioGptModel.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
def UpperCAmelCase__ ( self : Tuple ) -> str:
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase_ : List[str] = 3
UpperCAmelCase_ : Tuple = input_dict['''input_ids''']
UpperCAmelCase_ : Dict = input_ids.ne(1 ).to(__magic_name__ )
UpperCAmelCase_ : List[str] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
UpperCAmelCase_ : Dict = BioGptForSequenceClassification(__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : int = model(__magic_name__ , attention_mask=__magic_name__ , labels=__magic_name__ )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase_ : List[Any] = 3
UpperCAmelCase_ : Optional[int] = '''multi_label_classification'''
UpperCAmelCase_ : int = input_dict['''input_ids''']
UpperCAmelCase_ : str = input_ids.ne(1 ).to(__magic_name__ )
UpperCAmelCase_ : Any = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
UpperCAmelCase_ : Union[str, Any] = BioGptForSequenceClassification(__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : str = model(__magic_name__ , attention_mask=__magic_name__ , labels=__magic_name__ )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
@require_torch
class __a (unittest.TestCase ):
@slow
def UpperCAmelCase__ ( self : List[Any] ) -> str:
"""simple docstring"""
UpperCAmelCase_ : str = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' )
UpperCAmelCase_ : List[str] = torch.tensor([[2, 48_05, 9, 6_56, 21]] )
UpperCAmelCase_ : str = model(__magic_name__ )[0]
UpperCAmelCase_ : Optional[int] = 4_23_84
UpperCAmelCase_ : Tuple = torch.Size((1, 5, vocab_size) )
self.assertEqual(output.shape , __magic_name__ )
UpperCAmelCase_ : List[Any] = torch.tensor(
[[[-9.5_2_3_6, -9.8_9_1_8, 1_0.4_5_5_7], [-1_1.0_4_6_9, -9.6_4_2_3, 8.1_0_2_2], [-8.8_6_6_4, -7.8_8_2_6, 5.5_3_2_5]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __magic_name__ , atol=1E-4 ) )
@slow
def UpperCAmelCase__ ( self : Any ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Any = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' )
UpperCAmelCase_ : str = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' )
model.to(__magic_name__ )
torch.manual_seed(0 )
UpperCAmelCase_ : Optional[Any] = tokenizer('''COVID-19 is''' , return_tensors='''pt''' ).to(__magic_name__ )
UpperCAmelCase_ : Optional[int] = model.generate(
**__magic_name__ , min_length=1_00 , max_length=10_24 , num_beams=5 , early_stopping=__magic_name__ , )
UpperCAmelCase_ : int = tokenizer.decode(output_ids[0] , skip_special_tokens=__magic_name__ )
UpperCAmelCase_ : Optional[Any] = (
'''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the'''
''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and'''
''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),'''
''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and'''
''' more than 800,000 deaths.'''
)
self.assertEqual(__magic_name__ , __magic_name__ )
| 644
| 1
|
'''simple docstring'''
import sys
snake_case_ : Optional[int] = (
"73167176531330624919225119674426574742355349194934"
"96983520312774506326239578318016984801869478851843"
"85861560789112949495459501737958331952853208805511"
"12540698747158523863050715693290963295227443043557"
"66896648950445244523161731856403098711121722383113"
"62229893423380308135336276614282806444486645238749"
"30358907296290491560440772390713810515859307960866"
"70172427121883998797908792274921901699720888093776"
"65727333001053367881220235421809751254540594752243"
"52584907711670556013604839586446706324415722155397"
"53697817977846174064955149290862569321978468622482"
"83972241375657056057490261407972968652414535100474"
"82166370484403199890008895243450658541227588666881"
"16427171479924442928230863465674813919123162824586"
"17866458359124566529476545682848912883142607690042"
"24219022671055626321111109370544217506941658960408"
"07198403850962455444362981230987879927244284909188"
"84580156166097919133875499200524063689912560717606"
"05886116467109405077541002256983155200055935729725"
"71636269561882670428252483600823257530420752963450"
)
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : str = N ) -> int:
UpperCAmelCase_ : str = -sys.maxsize - 1
for i in range(len(SCREAMING_SNAKE_CASE__ ) - 12 ):
UpperCAmelCase_ : Union[str, Any] = 1
for j in range(13 ):
product *= int(n[i + j] )
if product > largest_product:
UpperCAmelCase_ : List[Any] = product
return largest_product
if __name__ == "__main__":
print(f'''{solution() = }''')
| 644
|
'''simple docstring'''
import json
import os
import unittest
from transformers.models.blenderbot_small.tokenization_blenderbot_small import (
VOCAB_FILES_NAMES,
BlenderbotSmallTokenizer,
)
from ...test_tokenization_common import TokenizerTesterMixin
class __a (lowerCamelCase , unittest.TestCase ):
__a : List[str] = BlenderbotSmallTokenizer
__a : List[Any] = False
def UpperCAmelCase__ ( self : str ) -> str:
"""simple docstring"""
super().setUp()
UpperCAmelCase_ : Tuple = ['''__start__''', '''adapt''', '''act''', '''ap@@''', '''te''', '''__end__''', '''__unk__''']
UpperCAmelCase_ : Optional[Any] = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) )
UpperCAmelCase_ : int = ['''#version: 0.2''', '''a p''', '''t e</w>''', '''ap t</w>''', '''a d''', '''ad apt</w>''', '''a c''', '''ac t</w>''', '''''']
UpperCAmelCase_ : Optional[Any] = {'''unk_token''': '''__unk__''', '''bos_token''': '''__start__''', '''eos_token''': '''__end__'''}
UpperCAmelCase_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
UpperCAmelCase_ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(__magic_name__ ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(__magic_name__ ) )
def UpperCAmelCase__ ( self : List[Any] , **__magic_name__ : Dict ) -> Tuple:
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **__magic_name__ )
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : List[str] ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : str = '''adapt act apte'''
UpperCAmelCase_ : Tuple = '''adapt act apte'''
return input_text, output_text
def UpperCAmelCase__ ( self : str ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : str = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map )
UpperCAmelCase_ : List[Any] = '''adapt act apte'''
UpperCAmelCase_ : Dict = ['''adapt''', '''act''', '''ap@@''', '''te''']
UpperCAmelCase_ : Dict = tokenizer.tokenize(__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
UpperCAmelCase_ : Tuple = [tokenizer.bos_token] + tokens + [tokenizer.eos_token]
UpperCAmelCase_ : Dict = [0, 1, 2, 3, 4, 5]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , __magic_name__ )
def UpperCAmelCase__ ( self : int ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' )
assert tok('''sam''' ).input_ids == [13_84]
UpperCAmelCase_ : Optional[int] = '''I am a small frog.'''
UpperCAmelCase_ : List[str] = tok([src_text] , padding=__magic_name__ , truncation=__magic_name__ )['''input_ids''']
UpperCAmelCase_ : Dict = tok.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ , clean_up_tokenization_spaces=__magic_name__ )[0]
assert src_text != decoded # I wish it did!
assert decoded == "i am a small frog ."
def UpperCAmelCase__ ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : int = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' )
UpperCAmelCase_ : List[Any] = '''I am a small frog .'''
UpperCAmelCase_ : Any = '''.'''
UpperCAmelCase_ : List[Any] = tok(__magic_name__ )['''input_ids''']
UpperCAmelCase_ : Optional[int] = tok(__magic_name__ )['''input_ids''']
assert encoded[-1] == encoded_dot[0]
| 644
| 1
|
'''simple docstring'''
from itertools import permutations
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : tuple ) -> bool:
if num[3] % 2 != 0:
return False
if (num[2] + num[3] + num[4]) % 3 != 0:
return False
if num[5] % 5 != 0:
return False
UpperCAmelCase_ : str = [7, 11, 13, 17]
for i, test in enumerate(SCREAMING_SNAKE_CASE__ ):
if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0:
return False
return True
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int = 10 ) -> int:
return sum(
int(''''''.join(map(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) ) )
for num in permutations(range(SCREAMING_SNAKE_CASE__ ) )
if is_substring_divisible(SCREAMING_SNAKE_CASE__ ) )
if __name__ == "__main__":
print(f'''{solution() = }''')
| 644
|
'''simple docstring'''
import unittest
import torch
from torch import nn
from diffusers.models.activations import get_activation
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : Dict ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : Dict = get_activation('''swish''' )
self.assertIsInstance(__magic_name__ , nn.SiLU )
self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
def UpperCAmelCase__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = get_activation('''silu''' )
self.assertIsInstance(__magic_name__ , nn.SiLU )
self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
def UpperCAmelCase__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = get_activation('''mish''' )
self.assertIsInstance(__magic_name__ , nn.Mish )
self.assertEqual(act(torch.tensor(-2_00 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
def UpperCAmelCase__ ( self : str ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = get_activation('''gelu''' )
self.assertIsInstance(__magic_name__ , nn.GELU )
self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
| 644
| 1
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
snake_case_ : Dict = {
"configuration_clipseg": [
"CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP",
"CLIPSegConfig",
"CLIPSegTextConfig",
"CLIPSegVisionConfig",
],
"processing_clipseg": ["CLIPSegProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ : Optional[int] = [
"CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST",
"CLIPSegModel",
"CLIPSegPreTrainedModel",
"CLIPSegTextModel",
"CLIPSegVisionModel",
"CLIPSegForImageSegmentation",
]
if TYPE_CHECKING:
from .configuration_clipseg import (
CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP,
CLIPSegConfig,
CLIPSegTextConfig,
CLIPSegVisionConfig,
)
from .processing_clipseg import CLIPSegProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_clipseg import (
CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST,
CLIPSegForImageSegmentation,
CLIPSegModel,
CLIPSegPreTrainedModel,
CLIPSegTextModel,
CLIPSegVisionModel,
)
else:
import sys
snake_case_ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 644
|
'''simple docstring'''
from typing import List, Optional, Union
import numpy as np
import PIL.Image
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import rescale, resize, to_channel_dimension_format
from ...image_utils import (
ChannelDimension,
PILImageResampling,
get_image_size,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
snake_case_ : Union[str, Any] = logging.get_logger(__name__)
class __a (lowerCamelCase ):
__a : Tuple = ["pixel_values"]
def __init__( self : List[Any] , __magic_name__ : bool = True , __magic_name__ : int = 32 , __magic_name__ : Union[str, Any]=PILImageResampling.BILINEAR , __magic_name__ : bool = True , **__magic_name__ : List[str] , ) -> None:
"""simple docstring"""
UpperCAmelCase_ : int = do_resize
UpperCAmelCase_ : Tuple = do_rescale
UpperCAmelCase_ : List[Any] = size_divisor
UpperCAmelCase_ : Any = resample
super().__init__(**__magic_name__ )
def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : np.ndarray , __magic_name__ : int , __magic_name__ : str , __magic_name__ : Optional[ChannelDimension] = None , **__magic_name__ : Tuple ) -> np.ndarray:
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : List[str] = get_image_size(__magic_name__ )
# Rounds the height and width down to the closest multiple of size_divisor
UpperCAmelCase_ : Dict = height // size_divisor * size_divisor
UpperCAmelCase_ : Dict = width // size_divisor * size_divisor
UpperCAmelCase_ : Any = resize(__magic_name__ , (new_h, new_w) , resample=__magic_name__ , data_format=__magic_name__ , **__magic_name__ )
return image
def UpperCAmelCase__ ( self : int , __magic_name__ : np.ndarray , __magic_name__ : float , __magic_name__ : Optional[ChannelDimension] = None , **__magic_name__ : Optional[Any] ) -> np.ndarray:
"""simple docstring"""
return rescale(image=__magic_name__ , scale=__magic_name__ , data_format=__magic_name__ , **__magic_name__ )
def UpperCAmelCase__ ( self : str , __magic_name__ : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[int] = None , __magic_name__ : Any=None , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[Union[TensorType, str]] = None , __magic_name__ : ChannelDimension = ChannelDimension.FIRST , **__magic_name__ : Tuple , ) -> BatchFeature:
"""simple docstring"""
UpperCAmelCase_ : Dict = do_resize if do_resize is not None else self.do_resize
UpperCAmelCase_ : str = do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase_ : Any = size_divisor if size_divisor is not None else self.size_divisor
UpperCAmelCase_ : Dict = resample if resample is not None else self.resample
if do_resize and size_divisor is None:
raise ValueError('''size_divisor is required for resizing''' )
UpperCAmelCase_ : Optional[int] = make_list_of_images(__magic_name__ )
if not valid_images(__magic_name__ ):
raise ValueError('''Invalid image(s)''' )
# All transformations expect numpy arrays.
UpperCAmelCase_ : List[str] = [to_numpy_array(__magic_name__ ) for img in images]
if do_resize:
UpperCAmelCase_ : str = [self.resize(__magic_name__ , size_divisor=__magic_name__ , resample=__magic_name__ ) for image in images]
if do_rescale:
UpperCAmelCase_ : Tuple = [self.rescale(__magic_name__ , scale=1 / 2_55 ) for image in images]
UpperCAmelCase_ : Union[str, Any] = [to_channel_dimension_format(__magic_name__ , __magic_name__ ) for image in images]
UpperCAmelCase_ : int = {'''pixel_values''': images}
return BatchFeature(data=__magic_name__ , tensor_type=__magic_name__ )
| 644
| 1
|
'''simple docstring'''
import inspect
import unittest
from math import floor
from transformers import CvtConfig
from transformers.file_utils import cached_property, is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import CvtForImageClassification, CvtModel
from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class __a (lowerCamelCase ):
def UpperCAmelCase__ ( self : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(__magic_name__ , '''embed_dim''' ) )
self.parent.assertTrue(hasattr(__magic_name__ , '''num_heads''' ) )
class __a :
def __init__( self : List[str] , __magic_name__ : Dict , __magic_name__ : Tuple=13 , __magic_name__ : Any=64 , __magic_name__ : Optional[Any]=3 , __magic_name__ : Tuple=[16, 48, 96] , __magic_name__ : Optional[Any]=[1, 3, 6] , __magic_name__ : str=[1, 2, 10] , __magic_name__ : str=[7, 3, 3] , __magic_name__ : Dict=[4, 2, 2] , __magic_name__ : Any=[2, 1, 1] , __magic_name__ : str=[2, 2, 2] , __magic_name__ : Union[str, Any]=[False, False, True] , __magic_name__ : Dict=[0.0, 0.0, 0.0] , __magic_name__ : Optional[int]=0.0_2 , __magic_name__ : Dict=1E-12 , __magic_name__ : Optional[Any]=True , __magic_name__ : List[str]=True , __magic_name__ : int=2 , ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : int = parent
UpperCAmelCase_ : int = batch_size
UpperCAmelCase_ : Dict = image_size
UpperCAmelCase_ : Tuple = patch_sizes
UpperCAmelCase_ : List[Any] = patch_stride
UpperCAmelCase_ : Dict = patch_padding
UpperCAmelCase_ : Union[str, Any] = is_training
UpperCAmelCase_ : Optional[Any] = use_labels
UpperCAmelCase_ : Union[str, Any] = num_labels
UpperCAmelCase_ : Any = num_channels
UpperCAmelCase_ : Union[str, Any] = embed_dim
UpperCAmelCase_ : str = num_heads
UpperCAmelCase_ : int = stride_kv
UpperCAmelCase_ : Any = depth
UpperCAmelCase_ : Tuple = cls_token
UpperCAmelCase_ : str = attention_drop_rate
UpperCAmelCase_ : Any = initializer_range
UpperCAmelCase_ : Optional[Any] = layer_norm_eps
def UpperCAmelCase__ ( self : int ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase_ : Any = None
if self.use_labels:
UpperCAmelCase_ : int = ids_tensor([self.batch_size] , self.num_labels )
UpperCAmelCase_ : int = self.get_config()
return config, pixel_values, labels
def UpperCAmelCase__ ( self : str ) -> Optional[Any]:
"""simple docstring"""
return CvtConfig(
image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , )
def UpperCAmelCase__ ( self : str , __magic_name__ : Any , __magic_name__ : Tuple , __magic_name__ : Dict ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : int = CvtModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : Any = model(__magic_name__ )
UpperCAmelCase_ : Optional[int] = (self.image_size, self.image_size)
UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = image_size[0], image_size[1]
for i in range(len(self.depth ) ):
UpperCAmelCase_ : Tuple = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 )
UpperCAmelCase_ : List[Any] = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) )
def UpperCAmelCase__ ( self : int , __magic_name__ : Optional[int] , __magic_name__ : Any , __magic_name__ : int ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : Any = self.num_labels
UpperCAmelCase_ : List[str] = CvtForImageClassification(__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : str = model(__magic_name__ , labels=__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : Any = self.prepare_config_and_inputs()
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[str] = config_and_inputs
UpperCAmelCase_ : Union[str, Any] = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class __a (lowerCamelCase , lowerCamelCase , unittest.TestCase ):
__a : Union[str, Any] = (CvtModel, CvtForImageClassification) if is_torch_available() else ()
__a : Union[str, Any] = (
{"feature-extraction": CvtModel, "image-classification": CvtForImageClassification}
if is_torch_available()
else {}
)
__a : Dict = False
__a : List[Any] = False
__a : Optional[Any] = False
__a : List[str] = False
__a : str = False
def UpperCAmelCase__ ( self : Dict ) -> str:
"""simple docstring"""
UpperCAmelCase_ : int = CvtModelTester(self )
UpperCAmelCase_ : Optional[Any] = ConfigTester(self , config_class=__magic_name__ , has_text_modality=__magic_name__ , hidden_size=37 )
def UpperCAmelCase__ ( self : int ) -> Optional[int]:
"""simple docstring"""
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def UpperCAmelCase__ ( self : str ) -> Optional[int]:
"""simple docstring"""
return
@unittest.skip(reason='''Cvt does not output attentions''' )
def UpperCAmelCase__ ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
pass
@unittest.skip(reason='''Cvt does not use inputs_embeds''' )
def UpperCAmelCase__ ( self : List[str] ) -> Optional[Any]:
"""simple docstring"""
pass
@unittest.skip(reason='''Cvt does not support input and output embeddings''' )
def UpperCAmelCase__ ( self : List[Any] ) -> Optional[Any]:
"""simple docstring"""
pass
def UpperCAmelCase__ ( self : Any ) -> int:
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ : Optional[int] = model_class(__magic_name__ )
UpperCAmelCase_ : Optional[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase_ : str = [*signature.parameters.keys()]
UpperCAmelCase_ : Optional[int] = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , __magic_name__ )
def UpperCAmelCase__ ( self : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__magic_name__ )
def UpperCAmelCase__ ( self : Union[str, Any] ) -> str:
"""simple docstring"""
def check_hidden_states_output(__magic_name__ : List[str] , __magic_name__ : List[str] , __magic_name__ : int ):
UpperCAmelCase_ : List[Any] = model_class(__magic_name__ )
model.to(__magic_name__ )
model.eval()
with torch.no_grad():
UpperCAmelCase_ : Any = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) )
UpperCAmelCase_ : Optional[Any] = outputs.hidden_states
UpperCAmelCase_ : List[str] = len(self.model_tester.depth )
self.assertEqual(len(__magic_name__ ) , __magic_name__ )
# verify the first hidden states (first block)
self.assertListEqual(
list(hidden_states[0].shape[-3:] ) , [
self.model_tester.embed_dim[0],
self.model_tester.image_size // 4,
self.model_tester.image_size // 4,
] , )
UpperCAmelCase_ , UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ : Dict = True
check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase_ : Any = True
check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ )
def UpperCAmelCase__ ( self : Dict ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__magic_name__ )
@unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' )
def UpperCAmelCase__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
pass
@slow
def UpperCAmelCase__ ( self : str ) -> List[Any]:
"""simple docstring"""
for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase_ : List[Any] = CvtModel.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
def lowerCamelCase_ ( ) -> str:
UpperCAmelCase_ : str = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class __a (unittest.TestCase ):
@cached_property
def UpperCAmelCase__ ( self : str ) -> List[Any]:
"""simple docstring"""
return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
@slow
def UpperCAmelCase__ ( self : List[Any] ) -> str:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(__magic_name__ )
UpperCAmelCase_ : List[Any] = self.default_image_processor
UpperCAmelCase_ : Any = prepare_img()
UpperCAmelCase_ : Any = image_processor(images=__magic_name__ , return_tensors='''pt''' ).to(__magic_name__ )
# forward pass
with torch.no_grad():
UpperCAmelCase_ : str = model(**__magic_name__ )
# verify the logits
UpperCAmelCase_ : Dict = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape , __magic_name__ )
UpperCAmelCase_ : Union[str, Any] = torch.tensor([0.9_2_8_5, 0.9_0_1_5, -0.3_1_5_0] ).to(__magic_name__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __magic_name__ , atol=1E-4 ) )
| 644
|
'''simple docstring'''
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int = 10, SCREAMING_SNAKE_CASE__ : int = 22 ) -> int:
UpperCAmelCase_ : Optional[int] = range(1, SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : List[Any] = range(1, SCREAMING_SNAKE_CASE__ )
return sum(
1 for power in powers for base in bases if len(str(base**power ) ) == power )
if __name__ == "__main__":
print(f'''{solution(10, 22) = }''')
| 644
| 1
|
'''simple docstring'''
import itertools
import os
from collections import Counter, defaultdict
from concurrent.futures import ThreadPoolExecutor, as_completed
import numpy as np
import datasets
from .execute import check_correctness
snake_case_ : List[Any] = "\\n@misc{chen2021evaluating,\n title={Evaluating Large Language Models Trained on Code},\n author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \\nand Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \\nand Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \\nand Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \\nand Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \\nand Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \\nand Mohammad Bavarian and Clemens Winter and Philippe Tillet \\nand Felipe Petroski Such and Dave Cummings and Matthias Plappert \\nand Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \\nand William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \\nand Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \\nand William Saunders and Christopher Hesse and Andrew N. Carr \\nand Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \\nand Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \\nand Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \\nand Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},\n year={2021},\n eprint={2107.03374},\n archivePrefix={arXiv},\n primaryClass={cs.LG}\n}\n"
snake_case_ : Union[str, Any] = "\\nThis metric implements the evaluation harness for the HumanEval problem solving dataset\ndescribed in the paper \"Evaluating Large Language Models Trained on Code\"\n(https://arxiv.org/abs/2107.03374).\n"
snake_case_ : Any = "\nCalculates how good are predictions given some references, using certain scores\nArgs:\n predictions: list of candidates to evaluate. Each candidates should be a list\n of strings with several code candidates to solve the problem.\n references: a list with a test for each prediction. Each test should evaluate the\n correctness of a code candidate.\n k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])\n num_workers: number of workers used to evaluate the canidate programs (Default: 4).\n timeout:\nReturns:\n pass_at_k: dict with pass rates for each k\n results: dict with granular results of each unittest\nExamples:\n >>> code_eval = datasets.load_metric(\"code_eval\")\n >>> test_cases = [\"assert add(2,3)==5\"]\n >>> candidates = [[\"def add(a,b): return a*b\", \"def add(a, b): return a+b\"]]\n >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])\n >>> print(pass_at_k)\n {'pass@1': 0.5, 'pass@2': 1.0}\n"
snake_case_ : Union[str, Any] = "\n################################################################################\n !!!WARNING!!!\n################################################################################\nThe \"code_eval\" metric executes untrusted model-generated code in Python.\nAlthough it is highly unlikely that model-generated code will do something\novertly malicious in response to this test suite, model-generated code may act\ndestructively due to a lack of model capability or alignment.\nUsers are strongly encouraged to sandbox this evaluation suite so that it\ndoes not perform destructive actions on their host or network. For more\ninformation on how OpenAI sandboxes its code, see the paper \"Evaluating Large\nLanguage Models Trained on Code\" (https://arxiv.org/abs/2107.03374).\n\nOnce you have read this disclaimer and taken appropriate precautions,\nset the environment variable HF_ALLOW_CODE_EVAL=\"1\". Within Python you can to this\nwith:\n\n>>> import os\n>>> os.environ[\"HF_ALLOW_CODE_EVAL\"] = \"1\"\n\n################################################################################\\n"
snake_case_ : Tuple = "The MIT License\n\nCopyright (c) OpenAI (https://openai.com)\n\nPermission is hereby granted, free of charge, to any person obtaining a copy\nof this software and associated documentation files (the \"Software\"), to deal\nin the Software without restriction, including without limitation the rights\nto use, copy, modify, merge, publish, distribute, sublicense, and/or sell\ncopies of the Software, and to permit persons to whom the Software is\nfurnished to do so, subject to the following conditions:\n\nThe above copyright notice and this permission notice shall be included in\nall copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\nIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\nFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\nLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\nOUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\nTHE SOFTWARE."
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __a (datasets.Metric ):
def UpperCAmelCase__ ( self : int ) -> str:
"""simple docstring"""
return datasets.MetricInfo(
# This is the description that will appear on the metrics page.
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Sequence(datasets.Value('''string''' ) ),
'''references''': datasets.Value('''string''' ),
} ) , homepage='''https://github.com/openai/human-eval''' , codebase_urls=['''https://github.com/openai/human-eval'''] , reference_urls=['''https://github.com/openai/human-eval'''] , license=_LICENSE , )
def UpperCAmelCase__ ( self : str , __magic_name__ : int , __magic_name__ : Optional[int] , __magic_name__ : str=[1, 10, 1_00] , __magic_name__ : Optional[Any]=4 , __magic_name__ : List[Any]=3.0 ) -> int:
"""simple docstring"""
if os.getenv('''HF_ALLOW_CODE_EVAL''' , 0 ) != "1":
raise ValueError(_WARNING )
if os.name == "nt":
raise NotImplementedError('''This metric is currently not supported on Windows.''' )
with ThreadPoolExecutor(max_workers=__magic_name__ ) as executor:
UpperCAmelCase_ : List[Any] = []
UpperCAmelCase_ : Union[str, Any] = Counter()
UpperCAmelCase_ : Dict = 0
UpperCAmelCase_ : Union[str, Any] = defaultdict(__magic_name__ )
for task_id, (candidates, test_case) in enumerate(zip(__magic_name__ , __magic_name__ ) ):
for candidate in candidates:
UpperCAmelCase_ : Tuple = candidate + '''\n''' + test_case
UpperCAmelCase_ : int = (test_program, timeout, task_id, completion_id[task_id])
UpperCAmelCase_ : Optional[int] = executor.submit(__magic_name__ , *__magic_name__ )
futures.append(__magic_name__ )
completion_id[task_id] += 1
n_samples += 1
for future in as_completed(__magic_name__ ):
UpperCAmelCase_ : Dict = future.result()
results[result["task_id"]].append((result['''completion_id'''], result) )
UpperCAmelCase_ , UpperCAmelCase_ : Dict = [], []
for result in results.values():
result.sort()
UpperCAmelCase_ : Dict = [r[1]['''passed'''] for r in result]
total.append(len(__magic_name__ ) )
correct.append(sum(__magic_name__ ) )
UpperCAmelCase_ : str = np.array(__magic_name__ )
UpperCAmelCase_ : str = np.array(__magic_name__ )
UpperCAmelCase_ : List[str] = k
UpperCAmelCase_ : Optional[Any] = {F"""pass@{k}""": estimate_pass_at_k(__magic_name__ , __magic_name__ , __magic_name__ ).mean() for k in ks if (total >= k).all()}
return pass_at_k, results
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[str], SCREAMING_SNAKE_CASE__ : Dict, SCREAMING_SNAKE_CASE__ : Any ) -> Tuple:
def estimator(SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : int ) -> float:
if n - c < k:
return 1.0
return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1, n + 1 ) )
if isinstance(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase_ : List[Any] = itertools.repeat(SCREAMING_SNAKE_CASE__, len(SCREAMING_SNAKE_CASE__ ) )
else:
assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Dict = iter(SCREAMING_SNAKE_CASE__ )
return np.array([estimator(int(SCREAMING_SNAKE_CASE__ ), int(SCREAMING_SNAKE_CASE__ ), SCREAMING_SNAKE_CASE__ ) for n, c in zip(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )] )
| 644
|
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
import torch
from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor
from ..utils import requires_backends
from .base import PipelineTool
if TYPE_CHECKING:
from PIL import Image
class __a (lowerCamelCase ):
__a : int = "dandelin/vilt-b32-finetuned-vqa"
__a : Any = (
"This is a tool that answers a question about an image. It takes an input named `image` which should be the "
"image containing the information, as well as a `question` which should be the question in English. It "
"returns a text that is the answer to the question."
)
__a : Any = "image_qa"
__a : str = AutoProcessor
__a : Any = AutoModelForVisualQuestionAnswering
__a : List[Any] = ["image", "text"]
__a : int = ["text"]
def __init__( self : Tuple , *__magic_name__ : Any , **__magic_name__ : Any ) -> Tuple:
"""simple docstring"""
requires_backends(self , ['''vision'''] )
super().__init__(*__magic_name__ , **__magic_name__ )
def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : "Image" , __magic_name__ : str ) -> Tuple:
"""simple docstring"""
return self.pre_processor(__magic_name__ , __magic_name__ , return_tensors='''pt''' )
def UpperCAmelCase__ ( self : Any , __magic_name__ : List[str] ) -> Optional[Any]:
"""simple docstring"""
with torch.no_grad():
return self.model(**__magic_name__ ).logits
def UpperCAmelCase__ ( self : int , __magic_name__ : int ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Dict = outputs.argmax(-1 ).item()
return self.model.config.idalabel[idx]
| 644
| 1
|
'''simple docstring'''
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel
from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline
from diffusers.utils import floats_tensor, nightly, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def UpperCAmelCase__ ( self : Optional[int] ) -> int:
"""simple docstring"""
UpperCAmelCase_ : int = 1
UpperCAmelCase_ : Union[str, Any] = 3
UpperCAmelCase_ : Union[str, Any] = (32, 32)
UpperCAmelCase_ : List[str] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__magic_name__ )
return image
@property
def UpperCAmelCase__ ( self : Tuple ) -> List[Any]:
"""simple docstring"""
torch.manual_seed(0 )
UpperCAmelCase_ : List[Any] = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , )
return model
@property
def UpperCAmelCase__ ( self : Optional[Any] ) -> str:
"""simple docstring"""
torch.manual_seed(0 )
UpperCAmelCase_ : List[Any] = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
return model
@property
def UpperCAmelCase__ ( self : List[str] ) -> Dict:
"""simple docstring"""
torch.manual_seed(0 )
UpperCAmelCase_ : int = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , )
return CLIPTextModel(__magic_name__ )
@property
def UpperCAmelCase__ ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
def extract(*__magic_name__ : int , **__magic_name__ : Optional[Any] ):
class __a :
def __init__( self : Any ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = torch.ones([0] )
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Tuple ) -> Dict:
"""simple docstring"""
self.pixel_values.to(__magic_name__ )
return self
return Out()
return extract
def UpperCAmelCase__ ( self : str ) -> int:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator
UpperCAmelCase_ : Any = self.dummy_cond_unet
UpperCAmelCase_ : Any = DDIMScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=__magic_name__ , set_alpha_to_one=__magic_name__ , )
UpperCAmelCase_ : List[str] = self.dummy_vae
UpperCAmelCase_ : Any = self.dummy_text_encoder
UpperCAmelCase_ : str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
# make sure here that pndm scheduler skips prk
UpperCAmelCase_ : Dict = StableDiffusionPipeline(
unet=__magic_name__ , scheduler=__magic_name__ , vae=__magic_name__ , text_encoder=__magic_name__ , tokenizer=__magic_name__ , safety_checker=__magic_name__ , feature_extractor=self.dummy_extractor , )
UpperCAmelCase_ : str = sd_pipe.to(__magic_name__ )
sd_pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : Optional[Any] = '''A painting of a squirrel eating a burger'''
UpperCAmelCase_ : List[str] = torch.Generator(device=__magic_name__ ).manual_seed(0 )
UpperCAmelCase_ : Tuple = sd_pipe([prompt] , generator=__magic_name__ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' )
UpperCAmelCase_ : List[Any] = output.images
UpperCAmelCase_ : List[str] = torch.Generator(device=__magic_name__ ).manual_seed(0 )
UpperCAmelCase_ : List[Any] = sd_pipe(
[prompt] , generator=__magic_name__ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , return_dict=__magic_name__ , )[0]
UpperCAmelCase_ : Optional[Any] = image[0, -3:, -3:, -1]
UpperCAmelCase_ : Optional[int] = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
UpperCAmelCase_ : Union[str, Any] = np.array([0.5_7_5_6, 0.6_1_1_8, 0.5_0_0_5, 0.5_0_4_1, 0.5_4_7_1, 0.4_7_2_6, 0.4_9_7_6, 0.4_8_6_5, 0.4_8_6_4] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def UpperCAmelCase__ ( self : Optional[Any] ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Any = '''cpu''' # ensure determinism for the device-dependent torch.Generator
UpperCAmelCase_ : Union[str, Any] = self.dummy_cond_unet
UpperCAmelCase_ : Union[str, Any] = PNDMScheduler(skip_prk_steps=__magic_name__ )
UpperCAmelCase_ : Tuple = self.dummy_vae
UpperCAmelCase_ : List[Any] = self.dummy_text_encoder
UpperCAmelCase_ : List[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
# make sure here that pndm scheduler skips prk
UpperCAmelCase_ : int = StableDiffusionPipeline(
unet=__magic_name__ , scheduler=__magic_name__ , vae=__magic_name__ , text_encoder=__magic_name__ , tokenizer=__magic_name__ , safety_checker=__magic_name__ , feature_extractor=self.dummy_extractor , )
UpperCAmelCase_ : Union[str, Any] = sd_pipe.to(__magic_name__ )
sd_pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : str = '''A painting of a squirrel eating a burger'''
UpperCAmelCase_ : str = torch.Generator(device=__magic_name__ ).manual_seed(0 )
UpperCAmelCase_ : List[str] = sd_pipe([prompt] , generator=__magic_name__ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' )
UpperCAmelCase_ : int = output.images
UpperCAmelCase_ : str = torch.Generator(device=__magic_name__ ).manual_seed(0 )
UpperCAmelCase_ : Optional[Any] = sd_pipe(
[prompt] , generator=__magic_name__ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , return_dict=__magic_name__ , )[0]
UpperCAmelCase_ : Optional[int] = image[0, -3:, -3:, -1]
UpperCAmelCase_ : List[Any] = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
UpperCAmelCase_ : str = np.array([0.5_1_2_5, 0.5_7_1_6, 0.4_8_2_8, 0.5_0_6_0, 0.5_6_5_0, 0.4_7_6_8, 0.5_1_8_5, 0.4_8_9_5, 0.4_9_9_3] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def UpperCAmelCase__ ( self : Dict ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : int = StableDiffusionPipeline.from_pretrained(
'''hf-internal-testing/tiny-stable-diffusion-lms-pipe''' , safety_checker=__magic_name__ )
assert isinstance(__magic_name__ , __magic_name__ )
assert isinstance(pipe.scheduler , __magic_name__ )
assert pipe.safety_checker is None
UpperCAmelCase_ : Tuple = pipe('''example prompt''' , num_inference_steps=2 ).images[0]
assert image is not None
# check that there's no error when saving a pipeline with one of the models being None
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(__magic_name__ )
UpperCAmelCase_ : Dict = StableDiffusionPipeline.from_pretrained(__magic_name__ )
# sanity check that the pipeline still works
assert pipe.safety_checker is None
UpperCAmelCase_ : int = pipe('''example prompt''' , num_inference_steps=2 ).images[0]
assert image is not None
@unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' )
def UpperCAmelCase__ ( self : List[Any] ) -> int:
"""simple docstring"""
UpperCAmelCase_ : str = self.dummy_cond_unet
UpperCAmelCase_ : Optional[int] = PNDMScheduler(skip_prk_steps=__magic_name__ )
UpperCAmelCase_ : Optional[int] = self.dummy_vae
UpperCAmelCase_ : List[str] = self.dummy_text_encoder
UpperCAmelCase_ : Optional[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
# put models in fp16
UpperCAmelCase_ : Tuple = unet.half()
UpperCAmelCase_ : List[str] = vae.half()
UpperCAmelCase_ : Union[str, Any] = bert.half()
# make sure here that pndm scheduler skips prk
UpperCAmelCase_ : Union[str, Any] = StableDiffusionPipeline(
unet=__magic_name__ , scheduler=__magic_name__ , vae=__magic_name__ , text_encoder=__magic_name__ , tokenizer=__magic_name__ , safety_checker=__magic_name__ , feature_extractor=self.dummy_extractor , )
UpperCAmelCase_ : Optional[Any] = sd_pipe.to(__magic_name__ )
sd_pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : Union[str, Any] = '''A painting of a squirrel eating a burger'''
UpperCAmelCase_ : Any = sd_pipe([prompt] , num_inference_steps=2 , output_type='''np''' ).images
assert image.shape == (1, 64, 64, 3)
@nightly
@require_torch_gpu
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : Dict ) -> str:
"""simple docstring"""
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ ( self : Optional[int] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' , safety_checker=__magic_name__ )
UpperCAmelCase_ : Any = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config )
UpperCAmelCase_ : Optional[int] = sd_pipe.to(__magic_name__ )
sd_pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : Tuple = (
'''portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle'''
''' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with'''
''' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and'''
''' children from bahnhof zoo, detailed '''
)
UpperCAmelCase_ : Dict = 40_03_66_03_46
UpperCAmelCase_ : Optional[int] = 7
# without safety guidance (sld_guidance_scale = 0)
UpperCAmelCase_ : Union[str, Any] = torch.manual_seed(__magic_name__ )
UpperCAmelCase_ : Dict = sd_pipe(
[prompt] , generator=__magic_name__ , guidance_scale=__magic_name__ , num_inference_steps=50 , output_type='''np''' , width=5_12 , height=5_12 , sld_guidance_scale=0 , )
UpperCAmelCase_ : Optional[int] = output.images
UpperCAmelCase_ : Union[str, Any] = image[0, -3:, -3:, -1]
UpperCAmelCase_ : Dict = [0.2_2_7_8, 0.2_2_3_1, 0.2_2_4_9, 0.2_3_3_3, 0.2_3_0_3, 0.1_8_8_5, 0.2_2_7_3, 0.2_1_4_4, 0.2_1_7_6]
assert image.shape == (1, 5_12, 5_12, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
# without safety guidance (strong configuration)
UpperCAmelCase_ : Union[str, Any] = torch.manual_seed(__magic_name__ )
UpperCAmelCase_ : Any = sd_pipe(
[prompt] , generator=__magic_name__ , guidance_scale=__magic_name__ , num_inference_steps=50 , output_type='''np''' , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
UpperCAmelCase_ : str = output.images
UpperCAmelCase_ : Optional[int] = image[0, -3:, -3:, -1]
UpperCAmelCase_ : List[Any] = [0.2_3_8_3, 0.2_2_7_6, 0.2_3_6, 0.2_1_9_2, 0.2_1_8_6, 0.2_0_5_3, 0.1_9_7_1, 0.1_9_0_1, 0.1_7_1_9]
assert image.shape == (1, 5_12, 5_12, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def UpperCAmelCase__ ( self : int ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' , safety_checker=__magic_name__ )
UpperCAmelCase_ : Tuple = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config )
UpperCAmelCase_ : List[Any] = sd_pipe.to(__magic_name__ )
sd_pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : Any = '''padme amidala taking a bath artwork, safe for work, no nudity'''
UpperCAmelCase_ : Union[str, Any] = 27_34_97_17_55
UpperCAmelCase_ : str = 7
UpperCAmelCase_ : List[str] = torch.manual_seed(__magic_name__ )
UpperCAmelCase_ : Tuple = sd_pipe(
[prompt] , generator=__magic_name__ , guidance_scale=__magic_name__ , num_inference_steps=50 , output_type='''np''' , width=5_12 , height=5_12 , sld_guidance_scale=0 , )
UpperCAmelCase_ : str = output.images
UpperCAmelCase_ : int = image[0, -3:, -3:, -1]
UpperCAmelCase_ : Dict = [0.3_5_0_2, 0.3_6_2_2, 0.3_3_9_6, 0.3_6_4_2, 0.3_4_7_8, 0.3_3_1_8, 0.3_5, 0.3_3_4_8, 0.3_2_9_7]
assert image.shape == (1, 5_12, 5_12, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
UpperCAmelCase_ : Optional[Any] = torch.manual_seed(__magic_name__ )
UpperCAmelCase_ : int = sd_pipe(
[prompt] , generator=__magic_name__ , guidance_scale=__magic_name__ , num_inference_steps=50 , output_type='''np''' , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
UpperCAmelCase_ : Optional[int] = output.images
UpperCAmelCase_ : Union[str, Any] = image[0, -3:, -3:, -1]
UpperCAmelCase_ : Optional[Any] = [0.5_5_3_1, 0.5_2_0_6, 0.4_8_9_5, 0.5_1_5_6, 0.5_1_8_2, 0.4_7_5_1, 0.4_8_0_2, 0.4_8_0_3, 0.4_4_4_3]
assert image.shape == (1, 5_12, 5_12, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def UpperCAmelCase__ ( self : Optional[int] ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' )
UpperCAmelCase_ : Optional[Any] = sd_pipe.to(__magic_name__ )
sd_pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : str = (
'''the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.'''
''' leyendecker'''
)
UpperCAmelCase_ : Any = 10_44_35_52_34
UpperCAmelCase_ : Dict = 12
UpperCAmelCase_ : List[str] = torch.manual_seed(__magic_name__ )
UpperCAmelCase_ : int = sd_pipe(
[prompt] , generator=__magic_name__ , guidance_scale=__magic_name__ , num_inference_steps=50 , output_type='''np''' , width=5_12 , height=5_12 , sld_guidance_scale=0 , )
UpperCAmelCase_ : Union[str, Any] = output.images
UpperCAmelCase_ : Optional[int] = image[0, -3:, -3:, -1]
UpperCAmelCase_ : List[Any] = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] )
assert image.shape == (1, 5_12, 5_12, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7
UpperCAmelCase_ : Union[str, Any] = torch.manual_seed(__magic_name__ )
UpperCAmelCase_ : Any = sd_pipe(
[prompt] , generator=__magic_name__ , guidance_scale=__magic_name__ , num_inference_steps=50 , output_type='''np''' , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
UpperCAmelCase_ : Tuple = output.images
UpperCAmelCase_ : Any = image[0, -3:, -3:, -1]
UpperCAmelCase_ : Optional[int] = np.array([0.5_8_1_8, 0.6_2_8_5, 0.6_8_3_5, 0.6_0_1_9, 0.6_2_5, 0.6_7_5_4, 0.6_0_9_6, 0.6_3_3_4, 0.6_5_6_1] )
assert image.shape == (1, 5_12, 5_12, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 644
|
'''simple docstring'''
from collections.abc import Iterable
from typing import Any
class __a :
def __init__( self : Optional[Any] , __magic_name__ : int | None = None ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : List[str] = value
UpperCAmelCase_ : Node | None = None # Added in order to delete a node easier
UpperCAmelCase_ : Node | None = None
UpperCAmelCase_ : Node | None = None
def __repr__( self : List[str] ) -> str:
"""simple docstring"""
from pprint import pformat
if self.left is None and self.right is None:
return str(self.value )
return pformat({F"""{self.value}""": (self.left, self.right)} , indent=1 )
class __a :
def __init__( self : int , __magic_name__ : Node | None = None ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : str = root
def __str__( self : Any ) -> str:
"""simple docstring"""
return str(self.root )
def UpperCAmelCase__ ( self : Any , __magic_name__ : Node , __magic_name__ : Node | None ) -> None:
"""simple docstring"""
if new_children is not None: # reset its kids
UpperCAmelCase_ : Dict = node.parent
if node.parent is not None: # reset its parent
if self.is_right(__magic_name__ ): # If it is the right children
UpperCAmelCase_ : Optional[Any] = new_children
else:
UpperCAmelCase_ : Optional[int] = new_children
else:
UpperCAmelCase_ : List[str] = new_children
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Node ) -> bool:
"""simple docstring"""
if node.parent and node.parent.right:
return node == node.parent.right
return False
def UpperCAmelCase__ ( self : Union[str, Any] ) -> bool:
"""simple docstring"""
return self.root is None
def UpperCAmelCase__ ( self : Any , __magic_name__ : str ) -> None:
"""simple docstring"""
UpperCAmelCase_ : Tuple = Node(__magic_name__ ) # create a new Node
if self.empty(): # if Tree is empty
UpperCAmelCase_ : List[Any] = new_node # set its root
else: # Tree is not empty
UpperCAmelCase_ : str = self.root # from root
if parent_node is None:
return
while True: # While we don't get to a leaf
if value < parent_node.value: # We go left
if parent_node.left is None:
UpperCAmelCase_ : Union[str, Any] = new_node # We insert the new node in a leaf
break
else:
UpperCAmelCase_ : List[Any] = parent_node.left
else:
if parent_node.right is None:
UpperCAmelCase_ : List[Any] = new_node
break
else:
UpperCAmelCase_ : Union[str, Any] = parent_node.right
UpperCAmelCase_ : Union[str, Any] = parent_node
def UpperCAmelCase__ ( self : Optional[Any] , *__magic_name__ : List[str] ) -> None:
"""simple docstring"""
for value in values:
self.__insert(__magic_name__ )
def UpperCAmelCase__ ( self : Dict , __magic_name__ : int ) -> Node | None:
"""simple docstring"""
if self.empty():
raise IndexError('''Warning: Tree is empty! please use another.''' )
else:
UpperCAmelCase_ : str = self.root
# use lazy evaluation here to avoid NoneType Attribute error
while node is not None and node.value is not value:
UpperCAmelCase_ : List[str] = node.left if value < node.value else node.right
return node
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : Node | None = None ) -> Node | None:
"""simple docstring"""
if node is None:
if self.root is None:
return None
UpperCAmelCase_ : Dict = self.root
if not self.empty():
while node.right is not None:
UpperCAmelCase_ : Any = node.right
return node
def UpperCAmelCase__ ( self : Dict , __magic_name__ : Node | None = None ) -> Node | None:
"""simple docstring"""
if node is None:
UpperCAmelCase_ : Optional[int] = self.root
if self.root is None:
return None
if not self.empty():
UpperCAmelCase_ : Union[str, Any] = self.root
while node.left is not None:
UpperCAmelCase_ : Dict = node.left
return node
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : int ) -> None:
"""simple docstring"""
UpperCAmelCase_ : List[str] = self.search(__magic_name__ ) # Look for the node with that label
if node is not None:
if node.left is None and node.right is None: # If it has no children
self.__reassign_nodes(__magic_name__ , __magic_name__ )
elif node.left is None: # Has only right children
self.__reassign_nodes(__magic_name__ , node.right )
elif node.right is None: # Has only left children
self.__reassign_nodes(__magic_name__ , node.left )
else:
UpperCAmelCase_ : List[str] = self.get_max(
node.left ) # Gets the max value of the left branch
self.remove(tmp_node.value ) # type: ignore
UpperCAmelCase_ : Optional[int] = (
tmp_node.value # type: ignore
) # Assigns the value to the node to delete and keep tree structure
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Node | None ) -> Iterable:
"""simple docstring"""
if node is not None:
yield node # Preorder Traversal
yield from self.preorder_traverse(node.left )
yield from self.preorder_traverse(node.right )
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : List[Any]=None ) -> Any:
"""simple docstring"""
if traversal_function is None:
return self.preorder_traverse(self.root )
else:
return traversal_function(self.root )
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : list , __magic_name__ : Node | None ) -> None:
"""simple docstring"""
if node:
self.inorder(__magic_name__ , node.left )
arr.append(node.value )
self.inorder(__magic_name__ , node.right )
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : int , __magic_name__ : Node ) -> int:
"""simple docstring"""
UpperCAmelCase_ : list[int] = []
self.inorder(__magic_name__ , __magic_name__ ) # append all values to list using inorder traversal
return arr[k - 1]
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Node | None ) -> list[Node]:
UpperCAmelCase_ : Any = []
if curr_node is not None:
UpperCAmelCase_ : Any = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node]
return node_list
def lowerCamelCase_ ( ) -> None:
UpperCAmelCase_ : str = (8, 3, 6, 1, 10, 14, 13, 4, 7)
UpperCAmelCase_ : Tuple = BinarySearchTree()
for i in testlist:
t.insert(SCREAMING_SNAKE_CASE__ )
# Prints all the elements of the list in order traversal
print(SCREAMING_SNAKE_CASE__ )
if t.search(6 ) is not None:
print('''The value 6 exists''' )
else:
print('''The value 6 doesn\'t exist''' )
if t.search(-1 ) is not None:
print('''The value -1 exists''' )
else:
print('''The value -1 doesn\'t exist''' )
if not t.empty():
print('''Max Value: ''', t.get_max().value ) # type: ignore
print('''Min Value: ''', t.get_min().value ) # type: ignore
for i in testlist:
t.remove(SCREAMING_SNAKE_CASE__ )
print(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
| 644
| 1
|
'''simple docstring'''
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : str ) -> str:
return " ".join(input_str.split()[::-1] )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 644
|
'''simple docstring'''
import sys
import turtle
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : tuple[float, float] ) -> tuple[float, float]:
return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : int, ) -> None:
my_pen.up()
my_pen.goto(vertexa[0], vertexa[1] )
my_pen.down()
my_pen.goto(vertexa[0], vertexa[1] )
my_pen.goto(vertexa[0], vertexa[1] )
my_pen.goto(vertexa[0], vertexa[1] )
if depth == 0:
return
triangle(SCREAMING_SNAKE_CASE__, get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), depth - 1 )
triangle(SCREAMING_SNAKE_CASE__, get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), depth - 1 )
triangle(SCREAMING_SNAKE_CASE__, get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), depth - 1 )
if __name__ == "__main__":
if len(sys.argv) != 2:
raise ValueError(
"Correct format for using this script: "
"python fractals.py <int:depth_for_fractal>"
)
snake_case_ : Any = turtle.Turtle()
my_pen.ht()
my_pen.speed(5)
my_pen.pencolor("red")
snake_case_ : Tuple = [(-1_75, -1_25), (0, 1_75), (1_75, -1_25)] # vertices of triangle
triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
| 644
| 1
|
'''simple docstring'''
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : str = "The quick brown fox jumps over the lazy dog", ) -> bool:
UpperCAmelCase_ : List[str] = set()
# Replace all the whitespace in our sentence
UpperCAmelCase_ : Union[str, Any] = input_str.replace(''' ''', '''''' )
for alpha in input_str:
if "a" <= alpha.lower() <= "z":
frequency.add(alpha.lower() )
return len(SCREAMING_SNAKE_CASE__ ) == 26
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : str = "The quick brown fox jumps over the lazy dog", ) -> bool:
UpperCAmelCase_ : int = [False] * 26
for char in input_str:
if char.islower():
UpperCAmelCase_ : Dict = True
elif char.isupper():
UpperCAmelCase_ : List[Any] = True
return all(SCREAMING_SNAKE_CASE__ )
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : str = "The quick brown fox jumps over the lazy dog", ) -> bool:
return len({char for char in input_str.lower() if char.isalpha()} ) == 26
def lowerCamelCase_ ( ) -> None:
from timeit import timeit
UpperCAmelCase_ : Any = '''from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest'''
print(timeit('''is_pangram()''', setup=SCREAMING_SNAKE_CASE__ ) )
print(timeit('''is_pangram_faster()''', setup=SCREAMING_SNAKE_CASE__ ) )
print(timeit('''is_pangram_fastest()''', setup=SCREAMING_SNAKE_CASE__ ) )
# 5.348480500048026, 2.6477354579837993, 1.8470395830227062
# 5.036091582966037, 2.644472333951853, 1.8869528750656173
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 644
|
'''simple docstring'''
import gc
import tempfile
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionPipeline
from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device
snake_case_ : List[str] = False
class __a (unittest.TestCase ):
pass
@nightly
@require_torch_gpu
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : int ) -> str:
"""simple docstring"""
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : List[Any] = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' )
UpperCAmelCase_ : Optional[int] = torch.manual_seed(0 )
UpperCAmelCase_ : Union[str, Any] = pipe.dual_guided(
prompt='''first prompt''' , image=__magic_name__ , text_to_image_strength=0.7_5 , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(__magic_name__ )
UpperCAmelCase_ : Optional[int] = VersatileDiffusionPipeline.from_pretrained(__magic_name__ , torch_dtype=torch.floataa )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : Any = generator.manual_seed(0 )
UpperCAmelCase_ : Dict = pipe.dual_guided(
prompt='''first prompt''' , image=__magic_name__ , text_to_image_strength=0.7_5 , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images
assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass"
def UpperCAmelCase__ ( self : str ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : str = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : Union[str, Any] = '''cyberpunk 2077'''
UpperCAmelCase_ : Union[str, Any] = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' )
UpperCAmelCase_ : Tuple = torch.manual_seed(0 )
UpperCAmelCase_ : Optional[Any] = pipe.dual_guided(
prompt=__magic_name__ , image=__magic_name__ , text_to_image_strength=0.7_5 , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' , ).images
UpperCAmelCase_ : List[str] = image[0, 2_53:2_56, 2_53:2_56, -1]
assert image.shape == (1, 5_12, 5_12, 3)
UpperCAmelCase_ : Union[str, Any] = np.array([0.1_4_4_8, 0.1_6_1_9, 0.1_7_4_1, 0.1_0_8_6, 0.1_1_4_7, 0.1_1_2_8, 0.1_1_9_9, 0.1_1_6_5, 0.1_0_0_1] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
UpperCAmelCase_ : Tuple = '''A painting of a squirrel eating a burger '''
UpperCAmelCase_ : Optional[int] = torch.manual_seed(0 )
UpperCAmelCase_ : List[Any] = pipe.text_to_image(
prompt=__magic_name__ , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' ).images
UpperCAmelCase_ : Tuple = image[0, 2_53:2_56, 2_53:2_56, -1]
assert image.shape == (1, 5_12, 5_12, 3)
UpperCAmelCase_ : Any = np.array([0.3_3_6_7, 0.3_1_6_9, 0.2_6_5_6, 0.3_8_7_0, 0.4_7_9_0, 0.3_7_9_6, 0.4_0_0_9, 0.4_8_7_8, 0.4_7_7_8] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
UpperCAmelCase_ : Tuple = pipe.image_variation(__magic_name__ , generator=__magic_name__ , output_type='''numpy''' ).images
UpperCAmelCase_ : Optional[Any] = image[0, 2_53:2_56, 2_53:2_56, -1]
assert image.shape == (1, 5_12, 5_12, 3)
UpperCAmelCase_ : List[str] = np.array([0.3_0_7_6, 0.3_1_2_3, 0.3_2_8_4, 0.3_7_8_2, 0.3_7_7_0, 0.3_8_9_4, 0.4_2_9_7, 0.4_3_3_1, 0.4_4_5_6] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
| 644
| 1
|
'''simple docstring'''
from typing import Optional, Tuple
import jax
import jax.numpy as jnp
from flax import linen as nn
from flax.core.frozen_dict import FrozenDict
from transformers import CLIPConfig, FlaxPreTrainedModel
from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : str, SCREAMING_SNAKE_CASE__ : Any, SCREAMING_SNAKE_CASE__ : Union[str, Any]=1E-12 ) -> Optional[Any]:
UpperCAmelCase_ : Any = jnp.divide(emb_a.T, jnp.clip(jnp.linalg.norm(SCREAMING_SNAKE_CASE__, axis=1 ), a_min=SCREAMING_SNAKE_CASE__ ) ).T
UpperCAmelCase_ : Optional[int] = jnp.divide(emb_a.T, jnp.clip(jnp.linalg.norm(SCREAMING_SNAKE_CASE__, axis=1 ), a_min=SCREAMING_SNAKE_CASE__ ) ).T
return jnp.matmul(SCREAMING_SNAKE_CASE__, norm_emb_a.T )
class __a (nn.Module ):
__a : CLIPConfig
__a : jnp.dtype = jnp.floataa
def UpperCAmelCase__ ( self : Union[str, Any] ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = FlaxCLIPVisionModule(self.config.vision_config )
UpperCAmelCase_ : Tuple = nn.Dense(self.config.projection_dim , use_bias=__magic_name__ , dtype=self.dtype )
UpperCAmelCase_ : Optional[Any] = self.param('''concept_embeds''' , jax.nn.initializers.ones , (17, self.config.projection_dim) )
UpperCAmelCase_ : Union[str, Any] = self.param(
'''special_care_embeds''' , jax.nn.initializers.ones , (3, self.config.projection_dim) )
UpperCAmelCase_ : Tuple = self.param('''concept_embeds_weights''' , jax.nn.initializers.ones , (17,) )
UpperCAmelCase_ : Tuple = self.param('''special_care_embeds_weights''' , jax.nn.initializers.ones , (3,) )
def __call__( self : Any , __magic_name__ : Tuple ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Dict = self.vision_model(__magic_name__ )[1]
UpperCAmelCase_ : Optional[Any] = self.visual_projection(__magic_name__ )
UpperCAmelCase_ : Union[str, Any] = jax_cosine_distance(__magic_name__ , self.special_care_embeds )
UpperCAmelCase_ : Optional[int] = jax_cosine_distance(__magic_name__ , self.concept_embeds )
# increase this value to create a stronger `nfsw` filter
# at the cost of increasing the possibility of filtering benign image inputs
UpperCAmelCase_ : Any = 0.0
UpperCAmelCase_ : Any = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment
UpperCAmelCase_ : List[Any] = jnp.round(__magic_name__ , 3 )
UpperCAmelCase_ : Optional[Any] = jnp.any(special_scores > 0 , axis=1 , keepdims=__magic_name__ )
# Use a lower threshold if an image has any special care concept
UpperCAmelCase_ : Union[str, Any] = is_special_care * 0.0_1
UpperCAmelCase_ : str = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment
UpperCAmelCase_ : Optional[Any] = jnp.round(__magic_name__ , 3 )
UpperCAmelCase_ : Optional[Any] = jnp.any(concept_scores > 0 , axis=1 )
return has_nsfw_concepts
class __a (lowerCamelCase ):
__a : str = CLIPConfig
__a : Optional[Any] = "clip_input"
__a : List[str] = FlaxStableDiffusionSafetyCheckerModule
def __init__( self : Optional[Any] , __magic_name__ : CLIPConfig , __magic_name__ : Optional[Tuple] = None , __magic_name__ : int = 0 , __magic_name__ : jnp.dtype = jnp.floataa , __magic_name__ : bool = True , **__magic_name__ : int , ) -> Any:
"""simple docstring"""
if input_shape is None:
UpperCAmelCase_ : List[str] = (1, 2_24, 2_24, 3)
UpperCAmelCase_ : Dict = self.module_class(config=__magic_name__ , dtype=__magic_name__ , **__magic_name__ )
super().__init__(__magic_name__ , __magic_name__ , input_shape=__magic_name__ , seed=__magic_name__ , dtype=__magic_name__ , _do_init=_do_init )
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : jax.random.KeyArray , __magic_name__ : Tuple , __magic_name__ : FrozenDict = None ) -> FrozenDict:
"""simple docstring"""
# init input tensor
UpperCAmelCase_ : Dict = jax.random.normal(__magic_name__ , __magic_name__ )
UpperCAmelCase_ , UpperCAmelCase_ : str = jax.random.split(__magic_name__ )
UpperCAmelCase_ : Union[str, Any] = {'''params''': params_rng, '''dropout''': dropout_rng}
UpperCAmelCase_ : Optional[Any] = self.module.init(__magic_name__ , __magic_name__ )['''params''']
return random_params
def __call__( self : Optional[Any] , __magic_name__ : Any , __magic_name__ : dict = None , ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = jnp.transpose(__magic_name__ , (0, 2, 3, 1) )
return self.module.apply(
{'''params''': params or self.params} , jnp.array(__magic_name__ , dtype=jnp.floataa ) , rngs={} , )
| 644
|
'''simple docstring'''
snake_case_ : int = {
"Pillow": "Pillow",
"accelerate": "accelerate>=0.11.0",
"compel": "compel==0.1.8",
"black": "black~=23.1",
"datasets": "datasets",
"filelock": "filelock",
"flax": "flax>=0.4.1",
"hf-doc-builder": "hf-doc-builder>=0.3.0",
"huggingface-hub": "huggingface-hub>=0.13.2",
"requests-mock": "requests-mock==1.10.0",
"importlib_metadata": "importlib_metadata",
"invisible-watermark": "invisible-watermark",
"isort": "isort>=5.5.4",
"jax": "jax>=0.2.8,!=0.3.2",
"jaxlib": "jaxlib>=0.1.65",
"Jinja2": "Jinja2",
"k-diffusion": "k-diffusion>=0.0.12",
"torchsde": "torchsde",
"note_seq": "note_seq",
"librosa": "librosa",
"numpy": "numpy",
"omegaconf": "omegaconf",
"parameterized": "parameterized",
"protobuf": "protobuf>=3.20.3,<4",
"pytest": "pytest",
"pytest-timeout": "pytest-timeout",
"pytest-xdist": "pytest-xdist",
"ruff": "ruff>=0.0.241",
"safetensors": "safetensors",
"sentencepiece": "sentencepiece>=0.1.91,!=0.1.92",
"scipy": "scipy",
"onnx": "onnx",
"regex": "regex!=2019.12.17",
"requests": "requests",
"tensorboard": "tensorboard",
"torch": "torch>=1.4",
"torchvision": "torchvision",
"transformers": "transformers>=4.25.1",
"urllib3": "urllib3<=2.0.0",
}
| 644
| 1
|
'''simple docstring'''
from copy import deepcopy
from typing import Optional, Union
import numpy as np
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, is_tf_available, is_torch_available
if is_torch_available():
import torch
if is_tf_available():
import tensorflow as tf
class __a (lowerCamelCase ):
__a : Union[str, Any] = ["image_processor"]
__a : List[Any] = "SamImageProcessor"
def __init__( self : Optional[int] , __magic_name__ : Tuple ) -> Optional[int]:
"""simple docstring"""
super().__init__(__magic_name__ )
UpperCAmelCase_ : Optional[Any] = self.image_processor
UpperCAmelCase_ : Optional[int] = -10
UpperCAmelCase_ : Any = self.image_processor.size['''longest_edge''']
def __call__( self : Tuple , __magic_name__ : Tuple=None , __magic_name__ : List[str]=None , __magic_name__ : int=None , __magic_name__ : Optional[int]=None , __magic_name__ : Optional[Union[str, TensorType]] = None , **__magic_name__ : Dict , ) -> BatchEncoding:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = self.image_processor(
__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ , )
# pop arguments that are not used in the foward but used nevertheless
UpperCAmelCase_ : Union[str, Any] = encoding_image_processor['''original_sizes''']
if hasattr(__magic_name__ , '''numpy''' ): # Checks if Torch or TF tensor
UpperCAmelCase_ : Optional[Any] = original_sizes.numpy()
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = self._check_and_preprocess_points(
input_points=__magic_name__ , input_labels=__magic_name__ , input_boxes=__magic_name__ , )
UpperCAmelCase_ : List[Any] = self._normalize_and_convert(
__magic_name__ , __magic_name__ , input_points=__magic_name__ , input_labels=__magic_name__ , input_boxes=__magic_name__ , return_tensors=__magic_name__ , )
return encoding_image_processor
def UpperCAmelCase__ ( self : Dict , __magic_name__ : List[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : List[str]=None , __magic_name__ : List[str]=None , __magic_name__ : Optional[int]=None , __magic_name__ : List[Any]="pt" , ) -> Tuple:
"""simple docstring"""
if input_points is not None:
if len(__magic_name__ ) != len(__magic_name__ ):
UpperCAmelCase_ : Dict = [
self._normalize_coordinates(self.target_size , __magic_name__ , original_sizes[0] ) for point in input_points
]
else:
UpperCAmelCase_ : int = [
self._normalize_coordinates(self.target_size , __magic_name__ , __magic_name__ )
for point, original_size in zip(__magic_name__ , __magic_name__ )
]
# check that all arrays have the same shape
if not all(point.shape == input_points[0].shape for point in input_points ):
if input_labels is not None:
UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = self._pad_points_and_labels(__magic_name__ , __magic_name__ )
UpperCAmelCase_ : List[Any] = np.array(__magic_name__ )
if input_labels is not None:
UpperCAmelCase_ : List[str] = np.array(__magic_name__ )
if input_boxes is not None:
if len(__magic_name__ ) != len(__magic_name__ ):
UpperCAmelCase_ : List[Any] = [
self._normalize_coordinates(self.target_size , __magic_name__ , original_sizes[0] , is_bounding_box=__magic_name__ )
for box in input_boxes
]
else:
UpperCAmelCase_ : Any = [
self._normalize_coordinates(self.target_size , __magic_name__ , __magic_name__ , is_bounding_box=__magic_name__ )
for box, original_size in zip(__magic_name__ , __magic_name__ )
]
UpperCAmelCase_ : int = np.array(__magic_name__ )
if input_boxes is not None:
if return_tensors == "pt":
UpperCAmelCase_ : List[str] = torch.from_numpy(__magic_name__ )
# boxes batch size of 1 by default
UpperCAmelCase_ : Tuple = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes
elif return_tensors == "tf":
UpperCAmelCase_ : Union[str, Any] = tf.convert_to_tensor(__magic_name__ )
# boxes batch size of 1 by default
UpperCAmelCase_ : Tuple = tf.expand_dims(__magic_name__ , 1 ) if len(input_boxes.shape ) != 3 else input_boxes
encoding_image_processor.update({'''input_boxes''': input_boxes} )
if input_points is not None:
if return_tensors == "pt":
UpperCAmelCase_ : List[Any] = torch.from_numpy(__magic_name__ )
# point batch size of 1 by default
UpperCAmelCase_ : Tuple = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points
elif return_tensors == "tf":
UpperCAmelCase_ : List[str] = tf.convert_to_tensor(__magic_name__ )
# point batch size of 1 by default
UpperCAmelCase_ : str = tf.expand_dims(__magic_name__ , 1 ) if len(input_points.shape ) != 4 else input_points
encoding_image_processor.update({'''input_points''': input_points} )
if input_labels is not None:
if return_tensors == "pt":
UpperCAmelCase_ : Dict = torch.from_numpy(__magic_name__ )
# point batch size of 1 by default
UpperCAmelCase_ : Any = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels
elif return_tensors == "tf":
UpperCAmelCase_ : int = tf.convert_to_tensor(__magic_name__ )
# point batch size of 1 by default
UpperCAmelCase_ : Any = tf.expand_dims(__magic_name__ , 1 ) if len(input_labels.shape ) != 3 else input_labels
encoding_image_processor.update({'''input_labels''': input_labels} )
return encoding_image_processor
def UpperCAmelCase__ ( self : int , __magic_name__ : Any , __magic_name__ : Dict ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : str = max([point.shape[0] for point in input_points] )
UpperCAmelCase_ : Any = []
for i, point in enumerate(__magic_name__ ):
if point.shape[0] != expected_nb_points:
UpperCAmelCase_ : Optional[Any] = np.concatenate(
[point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 )
UpperCAmelCase_ : str = np.append(input_labels[i] , [self.point_pad_value] )
processed_input_points.append(__magic_name__ )
UpperCAmelCase_ : Optional[Any] = processed_input_points
return input_points, input_labels
def UpperCAmelCase__ ( self : str , __magic_name__ : int , __magic_name__ : np.ndarray , __magic_name__ : Any , __magic_name__ : Optional[int]=False ) -> np.ndarray:
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : Any = original_size
UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self.image_processor._get_preprocess_shape(__magic_name__ , longest_edge=__magic_name__ )
UpperCAmelCase_ : Optional[int] = deepcopy(__magic_name__ ).astype(__magic_name__ )
if is_bounding_box:
UpperCAmelCase_ : Dict = coords.reshape(-1 , 2 , 2 )
UpperCAmelCase_ : Optional[Any] = coords[..., 0] * (new_w / old_w)
UpperCAmelCase_ : str = coords[..., 1] * (new_h / old_h)
if is_bounding_box:
UpperCAmelCase_ : List[str] = coords.reshape(-1 , 4 )
return coords
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Any=None , __magic_name__ : Optional[Any]=None , __magic_name__ : Tuple=None , ) -> Optional[int]:
"""simple docstring"""
if input_points is not None:
if hasattr(__magic_name__ , '''numpy''' ): # Checks for TF or Torch tensor
UpperCAmelCase_ : Union[str, Any] = input_points.numpy().tolist()
if not isinstance(__magic_name__ , __magic_name__ ) or not isinstance(input_points[0] , __magic_name__ ):
raise ValueError('''Input points must be a list of list of floating points.''' )
UpperCAmelCase_ : int = [np.array(__magic_name__ ) for input_point in input_points]
else:
UpperCAmelCase_ : List[str] = None
if input_labels is not None:
if hasattr(__magic_name__ , '''numpy''' ):
UpperCAmelCase_ : Optional[int] = input_labels.numpy().tolist()
if not isinstance(__magic_name__ , __magic_name__ ) or not isinstance(input_labels[0] , __magic_name__ ):
raise ValueError('''Input labels must be a list of list integers.''' )
UpperCAmelCase_ : Union[str, Any] = [np.array(__magic_name__ ) for label in input_labels]
else:
UpperCAmelCase_ : int = None
if input_boxes is not None:
if hasattr(__magic_name__ , '''numpy''' ):
UpperCAmelCase_ : int = input_boxes.numpy().tolist()
if (
not isinstance(__magic_name__ , __magic_name__ )
or not isinstance(input_boxes[0] , __magic_name__ )
or not isinstance(input_boxes[0][0] , __magic_name__ )
):
raise ValueError('''Input boxes must be a list of list of list of floating points.''' )
UpperCAmelCase_ : Any = [np.array(__magic_name__ ).astype(np.floataa ) for box in input_boxes]
else:
UpperCAmelCase_ : int = None
return input_points, input_labels, input_boxes
@property
def UpperCAmelCase__ ( self : Union[str, Any] ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = self.image_processor.model_input_names
return list(dict.fromkeys(__magic_name__ ) )
def UpperCAmelCase__ ( self : Any , *__magic_name__ : Optional[int] , **__magic_name__ : List[str] ) -> List[Any]:
"""simple docstring"""
return self.image_processor.post_process_masks(*__magic_name__ , **__magic_name__ )
| 644
|
'''simple docstring'''
import unittest
import numpy as np
import torch
from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class __a (unittest.TestCase ):
@property
def UpperCAmelCase__ ( self : Dict ) -> str:
"""simple docstring"""
torch.manual_seed(0 )
UpperCAmelCase_ : Optional[Any] = UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , )
return model
def UpperCAmelCase__ ( self : Dict ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = self.dummy_uncond_unet
UpperCAmelCase_ : Dict = KarrasVeScheduler()
UpperCAmelCase_ : Union[str, Any] = KarrasVePipeline(unet=__magic_name__ , scheduler=__magic_name__ )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : Dict = torch.manual_seed(0 )
UpperCAmelCase_ : Optional[int] = pipe(num_inference_steps=2 , generator=__magic_name__ , output_type='''numpy''' ).images
UpperCAmelCase_ : Tuple = torch.manual_seed(0 )
UpperCAmelCase_ : str = pipe(num_inference_steps=2 , generator=__magic_name__ , output_type='''numpy''' , return_dict=__magic_name__ )[0]
UpperCAmelCase_ : Union[str, Any] = image[0, -3:, -3:, -1]
UpperCAmelCase_ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
UpperCAmelCase_ : Dict = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : int ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : List[str] = '''google/ncsnpp-celebahq-256'''
UpperCAmelCase_ : List[str] = UNetaDModel.from_pretrained(__magic_name__ )
UpperCAmelCase_ : List[Any] = KarrasVeScheduler()
UpperCAmelCase_ : Any = KarrasVePipeline(unet=__magic_name__ , scheduler=__magic_name__ )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : Dict = torch.manual_seed(0 )
UpperCAmelCase_ : Optional[Any] = pipe(num_inference_steps=20 , generator=__magic_name__ , output_type='''numpy''' ).images
UpperCAmelCase_ : Any = image[0, -3:, -3:, -1]
assert image.shape == (1, 2_56, 2_56, 3)
UpperCAmelCase_ : Optional[Any] = np.array([0.5_7_8, 0.5_8_1_1, 0.5_9_2_4, 0.5_8_0_9, 0.5_8_7, 0.5_8_8_6, 0.5_8_6_1, 0.5_8_0_2, 0.5_8_6] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 644
| 1
|
'''simple docstring'''
import time
from contextlib import contextmanager
from pathlib import Path
import pytest
import requests
from huggingface_hub.hf_api import HfApi, HfFolder
snake_case_ : str = "__DUMMY_TRANSFORMERS_USER__"
snake_case_ : Optional[Any] = "Dummy User"
snake_case_ : Optional[int] = "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"
snake_case_ : Any = "https://hub-ci.huggingface.co"
snake_case_ : List[str] = CI_HUB_ENDPOINT + "/datasets/{repo_id}/resolve/{revision}/{path}"
snake_case_ : Tuple = CI_HUB_ENDPOINT + "/{repo_id}/resolve/{revision}/{filename}"
snake_case_ : List[str] = Path("~/.huggingface/hub_ci_token").expanduser()
@pytest.fixture
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> List[str]:
monkeypatch.setattr(
'''huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE''', SCREAMING_SNAKE_CASE__ )
@pytest.fixture
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Dict:
monkeypatch.setattr('''datasets.config.HF_ENDPOINT''', SCREAMING_SNAKE_CASE__ )
monkeypatch.setattr('''datasets.config.HUB_DATASETS_URL''', SCREAMING_SNAKE_CASE__ )
@pytest.fixture
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Dict ) -> Optional[Any]:
monkeypatch.setattr('''huggingface_hub.hf_api.HfFolder.path_token''', SCREAMING_SNAKE_CASE__ )
@pytest.fixture
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : str, SCREAMING_SNAKE_CASE__ : List[str] ) -> Dict:
HfFolder.save_token(SCREAMING_SNAKE_CASE__ )
yield
HfFolder.delete_token()
@pytest.fixture(scope='''session''' )
def lowerCamelCase_ ( ) -> Dict:
return HfApi(endpoint=SCREAMING_SNAKE_CASE__ )
@pytest.fixture(scope='''session''' )
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : HfApi ) -> List[str]:
UpperCAmelCase_ : Dict = HfFolder.get_token()
HfFolder.save_token(SCREAMING_SNAKE_CASE__ )
yield CI_HUB_USER_TOKEN
if previous_token is not None:
HfFolder.save_token(SCREAMING_SNAKE_CASE__ )
@pytest.fixture
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[str] ) -> Dict:
def _cleanup_repo(SCREAMING_SNAKE_CASE__ : Optional[Any] ):
hf_api.delete_repo(SCREAMING_SNAKE_CASE__, token=SCREAMING_SNAKE_CASE__, repo_type='''dataset''' )
return _cleanup_repo
@pytest.fixture
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[Any]:
@contextmanager
def _temporary_repo(SCREAMING_SNAKE_CASE__ : List[str] ):
try:
yield repo_id
finally:
cleanup_repo(SCREAMING_SNAKE_CASE__ )
return _temporary_repo
@pytest.fixture(scope='''session''' )
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : HfApi, SCREAMING_SNAKE_CASE__ : Dict, SCREAMING_SNAKE_CASE__ : List[str] ) -> Any:
UpperCAmelCase_ : Optional[Any] = F"""repo_txt_data-{int(time.time() * 10E3 )}"""
UpperCAmelCase_ : Tuple = F"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(SCREAMING_SNAKE_CASE__, token=SCREAMING_SNAKE_CASE__, repo_type='''dataset''', private=SCREAMING_SNAKE_CASE__ )
hf_api.upload_file(
token=SCREAMING_SNAKE_CASE__, path_or_fileobj=str(SCREAMING_SNAKE_CASE__ ), path_in_repo='''data/text_data.txt''', repo_id=SCREAMING_SNAKE_CASE__, repo_type='''dataset''', )
yield repo_id
try:
hf_api.delete_repo(SCREAMING_SNAKE_CASE__, token=SCREAMING_SNAKE_CASE__, repo_type='''dataset''' )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[str], SCREAMING_SNAKE_CASE__ : Dict, SCREAMING_SNAKE_CASE__ : str ) -> Dict:
return hf_private_dataset_repo_txt_data_
@pytest.fixture(scope='''session''' )
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : HfApi, SCREAMING_SNAKE_CASE__ : Dict, SCREAMING_SNAKE_CASE__ : List[str] ) -> Union[str, Any]:
UpperCAmelCase_ : Dict = F"""repo_zipped_txt_data-{int(time.time() * 10E3 )}"""
UpperCAmelCase_ : str = F"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(SCREAMING_SNAKE_CASE__, token=SCREAMING_SNAKE_CASE__, repo_type='''dataset''', private=SCREAMING_SNAKE_CASE__ )
hf_api.upload_file(
token=SCREAMING_SNAKE_CASE__, path_or_fileobj=str(SCREAMING_SNAKE_CASE__ ), path_in_repo='''data.zip''', repo_id=SCREAMING_SNAKE_CASE__, repo_type='''dataset''', )
yield repo_id
try:
hf_api.delete_repo(SCREAMING_SNAKE_CASE__, token=SCREAMING_SNAKE_CASE__, repo_type='''dataset''' )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Optional[Any], SCREAMING_SNAKE_CASE__ : Optional[Any], SCREAMING_SNAKE_CASE__ : str ) -> Optional[Any]:
return hf_private_dataset_repo_zipped_txt_data_
@pytest.fixture(scope='''session''' )
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : HfApi, SCREAMING_SNAKE_CASE__ : Dict, SCREAMING_SNAKE_CASE__ : Any ) -> Tuple:
UpperCAmelCase_ : str = F"""repo_zipped_img_data-{int(time.time() * 10E3 )}"""
UpperCAmelCase_ : Dict = F"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(SCREAMING_SNAKE_CASE__, token=SCREAMING_SNAKE_CASE__, repo_type='''dataset''', private=SCREAMING_SNAKE_CASE__ )
hf_api.upload_file(
token=SCREAMING_SNAKE_CASE__, path_or_fileobj=str(SCREAMING_SNAKE_CASE__ ), path_in_repo='''data.zip''', repo_id=SCREAMING_SNAKE_CASE__, repo_type='''dataset''', )
yield repo_id
try:
hf_api.delete_repo(SCREAMING_SNAKE_CASE__, token=SCREAMING_SNAKE_CASE__, repo_type='''dataset''' )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Any, SCREAMING_SNAKE_CASE__ : Dict, SCREAMING_SNAKE_CASE__ : List[str] ) -> Any:
return hf_private_dataset_repo_zipped_img_data_
| 644
|
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor
from .base import PipelineTool
class __a (lowerCamelCase ):
__a : List[Any] = "openai/whisper-base"
__a : Optional[Any] = (
"This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the "
"transcribed text."
)
__a : Any = "transcriber"
__a : str = WhisperProcessor
__a : List[Any] = WhisperForConditionalGeneration
__a : int = ["audio"]
__a : Optional[Any] = ["text"]
def UpperCAmelCase__ ( self : Dict , __magic_name__ : List[str] ) -> Optional[int]:
"""simple docstring"""
return self.pre_processor(__magic_name__ , return_tensors='''pt''' ).input_features
def UpperCAmelCase__ ( self : Dict , __magic_name__ : Dict ) -> Tuple:
"""simple docstring"""
return self.model.generate(inputs=__magic_name__ )
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Dict ) -> str:
"""simple docstring"""
return self.pre_processor.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ )[0]
| 644
| 1
|
'''simple docstring'''
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : str ) -> str:
return " ".join(
''''''.join(word[::-1] ) if len(SCREAMING_SNAKE_CASE__ ) > 4 else word for word in sentence.split() )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(reverse_long_words("Hey wollef sroirraw"))
| 644
|
'''simple docstring'''
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : int ) -> int:
return abs(SCREAMING_SNAKE_CASE__ ) if a == 0 else greatest_common_divisor(b % a, SCREAMING_SNAKE_CASE__ )
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : int ) -> int:
while y: # --> when y=0 then loop will terminate and return x as final GCD.
UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = y, x % y
return abs(SCREAMING_SNAKE_CASE__ )
def lowerCamelCase_ ( ) -> Optional[int]:
try:
UpperCAmelCase_ : Optional[Any] = input('''Enter two integers separated by comma (,): ''' ).split(''',''' )
UpperCAmelCase_ : Optional[int] = int(nums[0] )
UpperCAmelCase_ : List[Any] = int(nums[1] )
print(
F"""greatest_common_divisor({num_a}, {num_a}) = """
F"""{greatest_common_divisor(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )}""" )
print(F"""By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )}""" )
except (IndexError, UnboundLocalError, ValueError):
print('''Wrong input''' )
if __name__ == "__main__":
main()
| 644
| 1
|
'''simple docstring'''
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : list[list] ) -> list[list]:
UpperCAmelCase_ : List[str] = current_set.copy()
for row_index, row in enumerate(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase_ : str = row[0]
for column_index, column in enumerate(SCREAMING_SNAKE_CASE__ ):
if magnitude == 0:
UpperCAmelCase_ : List[str] = column
continue
UpperCAmelCase_ : Tuple = column / magnitude
# Subtract to cancel term
UpperCAmelCase_ : Union[str, Any] = current_set[0]
UpperCAmelCase_ : Optional[int] = [first_row]
UpperCAmelCase_ : Optional[Any] = current_set[1::]
for row in current_set:
UpperCAmelCase_ : Any = []
# If first term is 0, it is already in form we want, so we preserve it
if row[0] == 0:
final_set.append(SCREAMING_SNAKE_CASE__ )
continue
for column_index in range(len(SCREAMING_SNAKE_CASE__ ) ):
temp_row.append(first_row[column_index] - row[column_index] )
final_set.append(SCREAMING_SNAKE_CASE__ )
# Create next recursion iteration set
if len(final_set[0] ) != 3:
UpperCAmelCase_ : Dict = final_set[0]
UpperCAmelCase_ : Dict = []
UpperCAmelCase_ : Any = []
for row in final_set[1::]:
current_first_column.append(row[0] )
next_iteration.append(row[1::] )
UpperCAmelCase_ : Dict = simplify(SCREAMING_SNAKE_CASE__ )
for i in range(len(SCREAMING_SNAKE_CASE__ ) ):
resultant[i].insert(0, current_first_column[i] )
resultant.insert(0, SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Optional[Any] = resultant
return final_set
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : list[list] ) -> list:
if len(SCREAMING_SNAKE_CASE__ ) == 0:
raise IndexError('''solve_simultaneous() requires n lists of length n+1''' )
UpperCAmelCase_ : List[str] = len(SCREAMING_SNAKE_CASE__ ) + 1
if any(len(SCREAMING_SNAKE_CASE__ ) != _length for item in equations ):
raise IndexError('''solve_simultaneous() requires n lists of length n+1''' )
for row in equations:
if any(not isinstance(SCREAMING_SNAKE_CASE__, (int, float) ) for column in row ):
raise ValueError('''solve_simultaneous() requires lists of integers''' )
if len(SCREAMING_SNAKE_CASE__ ) == 1:
return [equations[0][-1] / equations[0][0]]
UpperCAmelCase_ : str = equations.copy()
if any(0 in row for row in data_set ):
UpperCAmelCase_ : str = data_set.copy()
UpperCAmelCase_ : List[str] = []
for row_index, row in enumerate(SCREAMING_SNAKE_CASE__ ):
if 0 not in row:
UpperCAmelCase_ : Optional[int] = data_set.pop(SCREAMING_SNAKE_CASE__ )
break
if not full_row:
raise ValueError('''solve_simultaneous() requires at least 1 full equation''' )
data_set.insert(0, SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : int = data_set.copy()
UpperCAmelCase_ : List[Any] = simplify(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : List[Any] = simplified[::-1]
UpperCAmelCase_ : list = []
for row in simplified:
UpperCAmelCase_ : Optional[Any] = row[-1]
if not solutions:
if row[-2] == 0:
solutions.append(0 )
continue
solutions.append(current_solution / row[-2] )
continue
UpperCAmelCase_ : Union[str, Any] = row.copy()[: len(SCREAMING_SNAKE_CASE__ ) - 1 :]
while temp_row[0] == 0:
temp_row.pop(0 )
if len(SCREAMING_SNAKE_CASE__ ) == 0:
solutions.append(0 )
continue
UpperCAmelCase_ : Tuple = temp_row[1::]
UpperCAmelCase_ : Union[str, Any] = temp_row[::-1]
for column_index, column in enumerate(SCREAMING_SNAKE_CASE__ ):
current_solution -= column * solutions[column_index]
solutions.append(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : List[str] = []
for item in solutions:
final.append(float(round(SCREAMING_SNAKE_CASE__, 5 ) ) )
return final[::-1]
if __name__ == "__main__":
import doctest
doctest.testmod()
snake_case_ : Optional[int] = [
[2, 1, 1, 1, 1, 4],
[1, 2, 1, 1, 1, 5],
[1, 1, 2, 1, 1, 6],
[1, 1, 1, 2, 1, 7],
[1, 1, 1, 1, 2, 8],
]
print(solve_simultaneous(eq))
print(solve_simultaneous([[4, 2]]))
| 644
|
'''simple docstring'''
import unittest
from transformers import LiltConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
LiltForQuestionAnswering,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltModel,
)
from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST
class __a :
def __init__( self : int , __magic_name__ : Optional[Any] , __magic_name__ : Any=13 , __magic_name__ : Any=7 , __magic_name__ : Union[str, Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : str=True , __magic_name__ : Optional[int]=True , __magic_name__ : List[Any]=99 , __magic_name__ : int=24 , __magic_name__ : Optional[int]=2 , __magic_name__ : Tuple=6 , __magic_name__ : Union[str, Any]=37 , __magic_name__ : Optional[Any]="gelu" , __magic_name__ : Any=0.1 , __magic_name__ : str=0.1 , __magic_name__ : Tuple=5_12 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : Tuple=2 , __magic_name__ : Tuple=0.0_2 , __magic_name__ : Optional[Any]=3 , __magic_name__ : Optional[int]=None , __magic_name__ : Any=10_00 , ) -> str:
"""simple docstring"""
UpperCAmelCase_ : Tuple = parent
UpperCAmelCase_ : Optional[int] = batch_size
UpperCAmelCase_ : List[str] = seq_length
UpperCAmelCase_ : Dict = is_training
UpperCAmelCase_ : List[str] = use_input_mask
UpperCAmelCase_ : Any = use_token_type_ids
UpperCAmelCase_ : Any = use_labels
UpperCAmelCase_ : Any = vocab_size
UpperCAmelCase_ : Dict = hidden_size
UpperCAmelCase_ : Tuple = num_hidden_layers
UpperCAmelCase_ : Tuple = num_attention_heads
UpperCAmelCase_ : int = intermediate_size
UpperCAmelCase_ : Union[str, Any] = hidden_act
UpperCAmelCase_ : Optional[int] = hidden_dropout_prob
UpperCAmelCase_ : Optional[Any] = attention_probs_dropout_prob
UpperCAmelCase_ : Union[str, Any] = max_position_embeddings
UpperCAmelCase_ : int = type_vocab_size
UpperCAmelCase_ : List[Any] = type_sequence_label_size
UpperCAmelCase_ : int = initializer_range
UpperCAmelCase_ : Dict = num_labels
UpperCAmelCase_ : List[str] = scope
UpperCAmelCase_ : List[str] = range_bbox
def UpperCAmelCase__ ( self : Optional[int] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
UpperCAmelCase_ : List[str] = bbox[i, j, 3]
UpperCAmelCase_ : Dict = bbox[i, j, 1]
UpperCAmelCase_ : Optional[Any] = t
if bbox[i, j, 2] < bbox[i, j, 0]:
UpperCAmelCase_ : List[str] = bbox[i, j, 2]
UpperCAmelCase_ : Tuple = bbox[i, j, 0]
UpperCAmelCase_ : Union[str, Any] = t
UpperCAmelCase_ : int = None
if self.use_input_mask:
UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
UpperCAmelCase_ : Optional[int] = None
if self.use_token_type_ids:
UpperCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase_ : Dict = None
UpperCAmelCase_ : Tuple = None
if self.use_labels:
UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase_ : int = self.get_config()
return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels
def UpperCAmelCase__ ( self : Any ) -> List[Any]:
"""simple docstring"""
return LiltConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : str , __magic_name__ : Optional[Any] , __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : int , ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Any = LiltModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : Optional[Any] = model(__magic_name__ , bbox=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ )
UpperCAmelCase_ : List[Any] = model(__magic_name__ , bbox=__magic_name__ , token_type_ids=__magic_name__ )
UpperCAmelCase_ : Optional[int] = model(__magic_name__ , bbox=__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def UpperCAmelCase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[int] , __magic_name__ : List[Any] , ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : Any = self.num_labels
UpperCAmelCase_ : List[Any] = LiltForTokenClassification(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : List[Any] = model(
__magic_name__ , bbox=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCAmelCase__ ( self : Any , __magic_name__ : Optional[Any] , __magic_name__ : Dict , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : Any , ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : str = LiltForQuestionAnswering(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : Optional[Any] = model(
__magic_name__ , bbox=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = self.prepare_config_and_inputs()
(
(
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) ,
) : Optional[int] = config_and_inputs
UpperCAmelCase_ : Tuple = {
'''input_ids''': input_ids,
'''bbox''': bbox,
'''token_type_ids''': token_type_ids,
'''attention_mask''': input_mask,
}
return config, inputs_dict
@require_torch
class __a (lowerCamelCase , lowerCamelCase , lowerCamelCase , unittest.TestCase ):
__a : Tuple = (
(
LiltModel,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltForQuestionAnswering,
)
if is_torch_available()
else ()
)
__a : Any = (
{
"feature-extraction": LiltModel,
"question-answering": LiltForQuestionAnswering,
"text-classification": LiltForSequenceClassification,
"token-classification": LiltForTokenClassification,
"zero-shot": LiltForSequenceClassification,
}
if is_torch_available()
else {}
)
__a : Union[str, Any] = False
__a : int = False
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : int ) -> str:
"""simple docstring"""
return True
def UpperCAmelCase__ ( self : str ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = LiltModelTester(self )
UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 )
def UpperCAmelCase__ ( self : Union[str, Any] ) -> str:
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCAmelCase__ ( self : str ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__magic_name__ )
def UpperCAmelCase__ ( self : str ) -> str:
"""simple docstring"""
UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
UpperCAmelCase_ : Tuple = type
self.model_tester.create_and_check_model(*__magic_name__ )
def UpperCAmelCase__ ( self : Union[str, Any] ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__magic_name__ )
def UpperCAmelCase__ ( self : str ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__magic_name__ )
@slow
def UpperCAmelCase__ ( self : int ) -> Union[str, Any]:
"""simple docstring"""
for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase_ : Optional[int] = LiltModel.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
@require_torch
@slow
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : str = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(__magic_name__ )
UpperCAmelCase_ : Any = torch.tensor([[1, 2]] , device=__magic_name__ )
UpperCAmelCase_ : int = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=__magic_name__ )
# forward pass
with torch.no_grad():
UpperCAmelCase_ : Optional[int] = model(input_ids=__magic_name__ , bbox=__magic_name__ )
UpperCAmelCase_ : int = torch.Size([1, 2, 7_68] )
UpperCAmelCase_ : List[str] = torch.tensor(
[[-0.0_6_5_3, 0.0_9_5_0, -0.0_0_6_1], [-0.0_5_4_5, 0.0_9_2_6, -0.0_3_2_4]] , device=__magic_name__ , )
self.assertTrue(outputs.last_hidden_state.shape , __magic_name__ )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , __magic_name__ , atol=1E-3 ) )
| 644
| 1
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.